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Abstract 
 
 The objective of this research is to study various methods for censoring state estimate 

updates generated from radar measurements. The generated 2-D radar data are sent to a fusion 

center using the J-Divergence metric as the means to assess the quality of the data. Three 

different distributed sensor network architectures are considered which include different levels 

of feedback. The Extended Kalman Filter (EKF) and the Gaussian Particle Filter (GPF) were used 

in order to test the censoring methods in scenarios which vary in their degrees of non-linearity. 

A derivation for the direct calculation of the J-Divergence using a particle filter is provided. Results 

show that state estimate updates can be censored using the J-Divergence as a metric controlled 

via feedback, with higher J-Divergence thresholds leading to a larger covariance at the fusion 

center. 
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Chapter I: Introduction 
 

The success of the use of tracking methods in radar technology has created a niche in the 

field of statistical signal processing. Researchers desire to increase the accuracy of available 

tracks, so that their interpretation of otherwise noisy measurement data is more trustworthy and 

usable in a wider variety of applications. One method of increasing track accuracy is to fuse data 

from multiple sensors and take advantage of spatially distributed measurement data. Increasing 

the number of sensors has the prime disadvantage in that it also requires a greater 

communication rate between sensors and a fusion center. The goal of this thesis is to investigate 

and provide various methods that reduce the data-rate from sensors to a distributed fusion 

network that generates tracks, while maintaining certain level of accuracy. 

Research in the field of distributed radar track filtering covers a wide distribution of topics. 

Some fusion research in the area of radar includes angle only tracking [1] [2] [3] and range only 

tracking [3] [4] [5]. The sensors in this thesis are radars that take measurements in bearing and 

range and use them to provide state estimates to a fusion center. This means that each sensor 

node maintains its own state estimates in Cartesian coordinate space, which transfers the data 

to a fusion center where the results are fused to form a more accurate estimate. Distributed 

fusion is an alternative to the purely centralized fusion, where the raw measurement data are 

sent to the fusion center via the sensors and all tracking and data processing is done there and 

the decentralized method where there is no fusion center at all. The specifics of the distributed 

fusion technique with a fusion center are described later in this thesis. Generally speaking 

distributed fusion is preferred when it is desired to have robustness against a single point of 
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failure or to gain a savings in communications. For more information on fusion techniques in 

general, refer to [6] and the tracking handbook [7]. 

Radar tracking is inherently a non-linear problem. While radar data are taken in polar 

coordinate systems for 2D Radar (spherical coordinates for 3D) the target trajectory is more easily 

modelled in Cartesian coordinate systems. In addition, the trajectory itself can also be non-linear. 

The Kalman filter is an obvious starting point, as its inherent objective is to perform an estimation 

on a hidden target state (the Cartesian position and velocity of the target) given a set of noisy 

measurements. However there are two major assumptions incurred by the Kalman filter that 

inhibit its direct implementation in certain scenarios. These are that: 

(1) All statistics are Gaussian 

(2) Both the state and measurement equations are either linear or have been linearized 

Due to the computational complexity of optimal non-linear filtering, most non-linear 

methods that are available are suboptimal. Even more for highly non-linear cases, it must also 

account for non-Gaussianity to gain a better track accuracy. Two methods will be used in this 

thesis that fulfill the requirement for a non-linear estimator: either the Extended Kalman Filter 

(EKF) or the Particle Filter (PF). It is also possible to use non-linear fusion techniques in order to 

compensate for the bias when using linear fusion approaches. All of these techniques are 

described in more depth in the theory chapters. For more on the EKF and the Kalman Filter (KF), 

see [7] and [8]. Information on various particle filtering techniques can be found in [9]. 

The purpose of this thesis is to study a method for gaining communication savings 

between a set of distributed sensors and a fusion center. To do this, the quality of the data that 

are transmitted will be rated prior to making a decision on whether it should be censored. The 
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following papers describe methods to measure the quality of the measurement data before 

sending the information to a centralized fusion center [10] [11] [12]. The journal paper [10] tested 

state estimates for new information using the innovation metric. In addition [13] discusses the 

use of censoring data with the Kullback-Leibler (KL) divergence. The results in this thesis expand 

upon the techniques described in [10] and [13] using a J-Divergence metric for both the EKF and 

Gaussian Particle Filter (GPF) for 2D radar.  

Novelties introduced as a result of this research include the following. First, the use of J-

Divergence thresholding in limiting 2D radar state estimates.  Second, the use of the fusion center 

state estimates as input to only the threshold calculation, later as model II. Finally, a derivation 

of the J-Divergence for comparing the prior and posterior local state probability density functions 

(pdfs) of particle filters. 

The remainder of this thesis is structured as follows. Chapter II provides the linear Kalman 

filtering equations and initialization techniques. Chapter III gives an overview of the nonlinear 

filtering techniques. Chapters IV explains the theory behind the fusion architectures for both 

centralized and distributed fusion. Chapter V gives the theory behind the KL-Divergence and the 

J-Divergence and also provides the J-Divergence derivation of the particle filter. Chapter VI 

explains the censoring and distributed feedback models used in this thesis. Chapter VII describes 

the parameters and the scenarios used to test the feedback models. Chapter VIII provides the 

results of the tests. Chapter IX gives a discussion of the results and how they relate to the theory 

described. Finally Chapter X concludes and provides directions to potential future expansion on 

the work provided.  
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Chapter II: Kalman Filter 
 

The Kalman Filter is an algorithm that makes estimates on the hidden state of a system 

given a set of measurements. It is required that the state-transition equation and the 

measurement equation be linear, and that all of the noises are Gaussian. This chapter describes 

the equations used in the Kalman Filter, which is the optimal method to perform linear filtering. 

2.1. State and Measurement Equations 

 
The state equation is given as in (1), where 𝐱𝑘 is the state vector, 𝐅𝑘 is the state transition matrix, 

and  𝐯𝑘 ~ N(0, 𝐐𝒌). 𝑘 is an independent variable, which in many cases is simply time. Note that 

this can be expanded to include a control input.  

 𝐱𝑘 = 𝐅𝑘𝐱𝑘−1 + 𝐯𝑘 (1)  
                                                                             
The measurement equation is given as in (2) where 𝐳𝑘 is the measurement vector, 𝐇𝑘 is the 

state transition matrix, and 𝐰𝑘 ~ N(0, 𝐑𝒌). 

 𝐳𝑘 = 𝐇𝑘𝐱𝑘 + 𝐰𝑘 (2)  
  

2.2. Kalman Filter Prediction                                                        

 
Taking the expected value on both sides of (1) and (2) gives the predicted state and predicted 

measurements in (3) and (4) respectively. 

 
 �̂�𝑘|𝑘−1 = 𝐅𝑘�̂�𝑘−1|𝑘−1 (3)  

 �̂�𝑘|𝑘−1 = 𝐇𝑘�̂�𝑘|𝑘−1 (4)  

 
The covariances of (1) and (2) are given as (5) and (6) respectively, where 𝐒𝑘 is known as the 

covariance of the innovation.  
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 𝐏𝑘|𝑘−1 = 𝐅𝑘𝐏𝑘−1𝐅𝑘
T + 𝐐𝑘 (5)  

 𝐒𝑘 = 𝐇𝑘𝐏𝑘|𝑘−1𝐇𝑘
T + 𝐑𝑘 (6)  

 

2.3. Kalman Filter Update 

 
Under the condition of orthogonality shown in (7), 

 𝐸((𝐱𝑘 − �̂�𝑘)𝐳𝑘
𝐓) = 𝟎 (7)  

 

a gain factor, known as the Kalman gain can be derived such that when a new measurement 

comes in, the state estimate can be updated so that it is more accurate and the covariance can 

be reduced accordingly. This is done using the innovation, which is given as 𝛎𝑘 in (8) and whose 

covariance was given in (6).  

 𝛎𝑘 = 𝐳𝑘 − �̂�𝑘|𝑘−1 (8)  

Taking the ratio between the cross-covariance between the state and measurement given in (9), 

and the covariance of the innovation in (6) gives the Kalman gain in (10).  

 𝐏𝑘|𝑘−1𝐇𝑘
𝐓 (9)  

 

 𝐊𝑘 = 𝐏𝑘|𝑘−1𝐇
𝐓
𝑘(𝐇𝑘𝐏𝑘|𝑘−1𝐇

𝐓
𝑘 + 𝐑𝑘)

−1 

 

(10)  

The Kalman filter gain can then be used to update the predicted state estimate and covariance 

acting as a weight on the innovation for both the state in (11) and the covariance in (12). 

 �̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐊𝑘𝛎𝑘 (11)  

 𝐏𝑘|𝑘 = 𝐏𝑘|𝑘−1 − 𝐊𝑘𝐒𝑘𝐊𝑘
𝐓 (12)  
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A simple interpretation of the Kalman filter gain is that when the true measurement error is high 

relative to the predicted measurement covariance, we will trust the prediction more and the 

observed innovation less, the opposite of which is true when the measurement error is low 

relative to the predicted measurement covariance.  

By performing the prediction equations (3) – (6) and then when a new measurement 

comes in using equations (8) – (12), the Kalman filter can be sequentially updated to provide a 

better estimate of the state given the initial assumptions. 

2.4. Initialization 

 
In order to perform Kalman Filtering, the state estimate must be initialized. There are 

several different ways to do this, but one of the more practical methods is known as two-point 

differencing. If the measurement conversion is linear in a case where the state 𝐱 is a two 

dimensional vector in 1D Cartesian coordinate space, where the first element 𝑥𝑝,0 is the initial 

state position and the second element 𝑥𝑣,0 is the initial state velocity and 𝑧−1 and 𝑧0 are the first 

two consecutive measurements on the position, then two-point differencing can be performed 

using equations (13) – (15) as adapted from [8]. 

 �̂�𝑝,0 = 𝑧0 (13)  

 �̂�𝑣,0 =
𝑧0 − 𝑧−1

𝑇
 (14)  

The covariance matrix of �̂�0|0 is calculated directly as shown in (15), as 𝐏0|0, where R is the 

measurement variance and T is the time difference between the measurements 𝑧0 and 𝑧−1. 
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𝐏0|0 = [
R

R

T
R

T

2R

T2

] 

(15)  

  
Two-point differencing is the basis for the more complex initialization that is performed for the 

case of non-linear filtering as shown later in Section 3.4. There are also other ways available to 

perform initialization, even with a single measurement point, for more information see [7] and 

[8]. 
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Chapter III: Nonlinear Filtering 
 

The reason that nonlinear filters are required for 2D radar, instead of the Kalman filter, is 

because of the non-linear conversion in coordinate systems between how the target motion is 

modelled (Cartesian) and how the measurements are taken (polar). This chapter describes two 

non-linear techniques, the Extended Kalman Filter (EKF) and the Particle Filter (PF) that can be 

used to perform tracking in 2D radar, along with the non-linear initialization technique that is 

used in this thesis.  

3.1. Extended Kalman Filter  

 
The need for the EKF arises when either the measurement and/or the state transition 

equations are non-linear, but the statistics are still Gaussian as shown in equations (16) and (17).  

 𝐱𝑘 = 𝑓(𝐱𝑘−1,𝐯𝑡) (16)  

 𝐳𝑘 = ℎ(𝐱𝑘, 𝐰𝑘) (17)  

 

The problem with using a simple Kalman filter for this is that the state transition and 

measurement matrices are required in order to calculate the predicted covariance and the 

updated state/covariance. In the EKF a 1st order Taylor series expansion can be used to perform 

this approximation. To do this the Jacobian of the state and measurement matrices is taken and 

used in their place. In other words redefine 𝐅𝑘 and 𝐇𝑘 as shown in (18) and (19) respectively, 

where 𝑁𝑥 is size of the state vector and 𝑁𝑧  is the size of the measurement vector. In (18) 𝐅𝑘 is 

evaluated at �̂�𝑘−1|𝑘−1 and has the size of 𝑁𝑥  x 𝑁𝑥 while in (19) 𝐇𝑘 is evaluated at �̂�𝑘|𝑘−1 and has 

the size of  𝑁𝑧  x 𝑁𝑥. 
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𝐅𝑘 =

[
 
 
 
 
 
𝜕𝑓1,𝑘

𝜕𝑥1,𝑘
⋯

𝜕𝑓1,𝑘

𝜕𝑥𝑁𝑥,𝑘

⋮ ⋱ ⋮
𝜕𝑓𝑁𝑥,𝑘

𝜕𝑥1,𝑘
⋯

𝜕𝑓𝑁𝑥,𝑘

𝜕𝑥𝑁𝑥,𝑘]
 
 
 
 
 

 

(18)  

 

𝐇𝑘 =

[
 
 
 
 
 
𝜕ℎ1,𝑘

𝜕𝑥1,𝑘
⋯

𝜕ℎ1,𝑘

𝜕𝑥𝑁𝑥,𝑘

⋮ ⋱ ⋮
𝜕ℎ𝑁𝑧,𝑘

𝜕𝑥1,𝑘
⋯

𝜕ℎ𝑁𝑧,𝑘

𝜕𝑥𝑁𝑥,𝑘]
 
 
 
 
 

 

(19)  

 

 Using these equations can create a linearization error and it is important to note that the 

approximated matrices in (18) and (19) should not be used in the state transition and 

measurement equations (1) and (2), but rather (16) and (17) should be used directly when 

possible. Eq. (18) and (19) allow for Eq. (9) – (12) to be calculated when 𝐅𝑘  and 𝐇𝑘  are not 

otherwise available.  

Depending on the degree of noise and non-linearity of the equations present in the 

system, the linearization errors in the EKF may become an issue. One way to account for this in 

the EKF, in the case of both 2-D and 3-D radars, is shown in [14]. The choice solution for the 

purposes of this research is to use the particle filter which eliminates the Gaussian assumption 

at the cost of computational complexity, and is described as a Markov Chain Monte-Carlo type 

of technique.  

3.2. Particle Filter 

 
Particle filters have the same purpose as a Kalman Filter of making an estimate on the 

hidden state of a system that produces noisy measurements. It does this by modelling a 
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continuous probability distribution as a set of discrete weighted points known as particles that 

are randomly drawn from a so called proposal distribution. The resulting set of particles can take 

any shape and with updates from measurements and enough particles, the particles and their 

weights will produce a more accurate discrete representation of the continuous distribution. A 

simple variation of the sequential importance sampling (SIS) particle filter algorithm, from which 

other particle filters are derived from follows below. More in depth information on particle filters 

can be found in [9]. 

(1) Initialize particles and weights, drawing a set of particles from an importance density 

given as 𝑞, where the number of particles is typically based upon the complexity of the 

problem as well as the state dimension. This proposal density can be a Gaussian 

distribution with mean and covariance obtained using the two-point differencing 

approach described in (13) – (15) 

(2) When a measurement comes in, propagate each particle using the prediction equation in 

(16) to generate the prior discrete distribution.  

(3) Update each weight w𝑘
𝑖 , where 𝑖 is the particle index and 𝑁𝑝 is the number of particles, 

using equation (20) below and normalize the weights such that their sum is equal to one. 

Note that if 𝑞 is set as in (21), then we simply need to multiply the prior weights by the 

likelihood to perform an update. 

 
 

w𝑘
𝑖 = w𝑘−1

𝑖
𝑝(𝐳𝑘|𝐱𝑘

𝑖 ) 𝑝(𝐱𝑘
𝑖 |𝐱𝑘−1

𝑖 )

𝑞(𝐱𝑘
𝑖 |𝐱𝑘−1

𝑖 , 𝐳𝑘)
, 𝑖 = 1,… , 𝑁𝑝 

 

(20)  

 𝑞(𝐱𝑘
𝑖 |𝐱𝑘−1

𝑖 , 𝐳𝑘) =  𝑝(𝐱𝑘
𝑖 |𝐱𝑘−1

𝑖 ) 

 

(21)  
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(4) Repeat steps 2 and 3 each time a new measurement is available 

From this, we can obtain the first two moments of the posterior state pdf using equations (22) 

and (23) below, where 𝑁𝑝 is the total number of particles, 𝛍𝑘 is the estimated mean and 𝐏𝑘 is 

the estimated covariance. 

 

𝛍𝑘 = ∑w𝑘
𝑖 𝐱𝑘

𝑖

𝑁𝑝

𝑖=1

 

(22)  

 

𝐏𝑘 = ∑w𝑘
𝑖 (𝐱𝑘

𝑖 − 𝛍𝑘)(𝐱𝑘
𝑖 − 𝛍𝑘)𝑇

𝑁𝑝

𝑖=1

 

(23)  

3.2.1. Particle Degeneracy 

 
The SIS algorithm is in many applications not practical because of particle degeneracy. 

Since a finite number of particles are being used in order to describe the shape of a probability 

distribution, this means that the more particles there are, the more intricacies of the shape of 

the posterior pdf can be captured. Unfortunately, more particles also imply a greater 

computational complexity. Due to computing power limitations, particle filter are limited in the 

total number of particles that can be used. This issue is examined in much greater detail in 

publications that involve algorithms to improve the particle filter to counter the curse of 

dimensionality [15] [16]. Unfortunately even with a large number of particles, a case called 

particle degeneracy will occur where as more updates are provided, the spread of the distribution 

is likely to tighten over time to the point that all weights except for one are approximated as zero. 

The next section discusses a few variations of the particle filter that address the issue of particle 

degeneracy.  
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3.2.2. Variations 

 
There are a few methods of getting by the problem of particle degeneracy, including the 

bootstrap filter and the Gaussian particle-filter. The bootstrap filter involves deleting low 

weighted particles and then resampling from the currently known distribution. Resampling can 

create a drastic increase in the computational complexity of the particle filter and also results in 

a change in the distribution, but it ensures that particles with low weights are not taken into 

account. Unfortunately, this can also create a different, but similar effect of the SIS filter where 

all of the particles occupy a single point and the shape of the distribution is lost. While there are 

ways to correct this using techniques such as the regularized particle filter, the added 

computations from the resampling step make the bootstrap filter unattractive for many practical 

purposes. 

The Gaussian particle filter [17] reduces the approximation of the posterior pdf 

propagated between updates and predictions to a Gaussian (or other known) distribution. While 

this adds a redraw step to the simple SIS algorithm, this eliminates the need to resample particles 

because all of the particles are drawn from a Gaussian distribution at each iteration of the filter. 

The disadvantage is that the shape of the prior pdf is limited to Gaussian. Since the Gaussian 

particle filter does not assume that the posterior pdf of the distribution must be linear and/or 

Gaussian, this allows for the particle filter to cover both the nonlinearity in both the trajectory 

and the radar measurements.  

 

3.3. Applicability of Non-linear Filtering to 2-D Radar Tracking 
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In 2-D radar the primary source of non-linearity is that the measurements are taken in 

polar coordinates, while the state estimates are given in Cartesian coordinates. If bearing and 

range are measured, then assuming a state vector as shown in (24) the measurement matrix is 

given by (25).  

 

𝐱 = [

𝑥
�̇�
𝑦
�̇�

] (24)  

 

 

 

𝐇𝑘 =

[
 
 
 

𝑥

√𝑥2 + 𝑦2
0

𝑦

√𝑥2 + 𝑦2
0

−
𝑦

𝑥2 + 𝑦2
0

𝑥

𝑥2 + 𝑦2
0
]
 
 
 

||

𝐱𝑘=�̂�𝑘|𝑘−1

 

(25)  

 

The performance of the tracking filters and their associated fusion will vary based upon 

the type of radar used. Two parameters that directly affect how accurately targets will be able to 

be tracked include the measurement accuracy and update rate. In the literature, [18] describes 

some generic tracking frame times for various types of targets that can be tracked by a multi -

function array radar. A condensed version of the table with the applicable frame times is provided 

below in Table 1.  
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Radar Function (distance) Frame Time (seconds) 

Long-range search (200km) 10 

Medium-range search (60km) 6 

Horizon search (40km) 3 

Tracking (Air Traffic Control) (80km) 2 

Tracking (Hostile) (80km) 0.5 

Guidance (80km) 0.1 

Table 1: List of Nominal Frame Times for a Multi-Function Phased Array Radar 

 

Frame time indicates the amount of time dedicated to revisiting an individual target. The 

difference between search and tracking is that in tracking, additional time is dedicated to the 

target’s location. For the purposes of this research, the 2 second frame time from Table 1 was 

used to simulate a realistic air traffic control scenario. 

3.4. Initialization for Non-linear Filtering 

 
The Kalman filtering initialization technique described in Chapter 2.4 cannot be always be 

performed when the state/measurement equations are non-linear. This thesis uses a Converted 

Measurement Kalman Filter (CMKF) to perform the two point differencing portion for both the 

EKF and PF. The methods used to create the initialization using the CMKF for initialization of a 2D 

radar filter are described below as adapted from [19].  

(1) Measurements are taken for both range (𝑅−1 and 𝑅0) and bearing (𝜃−1 and 𝜃0) at two 

consecutive times (𝑘−1 and 𝑘0). 
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(2) The state estimate is then given by (26)-(29) where the noises are assumed to be Gaussian 

distributed and tλ and tλ
’ are respectively given in (30) and (31) and Lx and Ly respectively 

are the x and y positions of a stationary sensor. 

 
�̂�𝑥 =

𝑅0 𝑐𝑜𝑠(𝜃0) + 𝐿𝑥

𝑡𝜆
 

(26)  

 
�̂�𝑥 =

𝑝𝑥 − (𝑅−1 cos(𝜃−1) + 𝐿𝑥)

𝑡𝜆(𝑘0 − 𝑘−1)
 (27)  

 
�̂�𝑦 =

𝑅0 sin(𝜃0) + 𝐿𝑥

𝑡𝜆
 (28)  

 
�̂�𝑦 =

𝑝𝑦 − (𝑅−1 sin(𝜃−1) + 𝐿𝑦)

𝑡𝜆(𝑘0 − 𝑘−1)
 (29)  

 
 𝑡𝜆 = 𝑒−2𝜎𝜃

2
 (30)  

 
 𝑡𝜆

′ = 𝑡𝜆
2 (31)  

 
 
If the corresponding covariance matrix 𝐏, calculated via 2-point differencing is given by (32), 

taken by calculating the variance elements directly, then the standard deviation elements, 𝜎𝑥𝑥,𝑘 

, 𝜎𝑦𝑦,𝑘 , and 𝜎𝑥𝑦,𝑘 are given by (33), (34), or (35) as shown in [19]. 

 
 

𝐏 =

[
 
 
 
 
 
 
 
 𝜎𝑥𝑥,0

2
𝜎𝑥𝑥,0

2

T
𝜎𝑥𝑦,0

2
𝜎𝑥𝑦,0

2

T
𝜎𝑥𝑥,0

2

T

𝜎𝑥𝑥,0
2 + 𝜎𝑥𝑥,−1

2

T2

𝜎𝑥𝑦,0
2

T

𝜎𝑥𝑦,0
2 + 𝜎𝑥𝑦,−1

2

T2

𝜎𝑥𝑦,0
2

𝜎𝑥𝑦,0
2

T
𝜎𝑦𝑦,0

2
𝜎𝑦𝑦,0

2

T
𝜎𝑥𝑦,0

2

T

𝜎𝑥𝑦,0
2 + 𝜎𝑥𝑦,−1

2

T2

𝜎𝑦𝑦,0
2

T

𝜎𝑦𝑦,0
2 + 𝜎𝑦𝑦,−1

2

T2 ]
 
 
 
 
 
 
 
 

 (32)  

 
 

 
𝜎𝑥𝑥,𝑘 = √𝑅𝑘

2𝜎𝜃
2𝑠𝑖𝑛2(𝜃𝑘) + 𝜎𝑅

2𝑐𝑜𝑠2(𝜃𝑘) (33)  
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𝜎𝑦𝑦,𝑘 = √𝑅𝑘

2𝜎𝜃
2𝑐𝑜𝑠2(𝜃𝑘) + 𝜎𝑅

2𝑠𝑖𝑛2(𝜃𝑘) 

 
(34)  

  

𝜎𝑥𝑦,𝑘 =  √(𝜎𝑅
2 − 𝑅𝑘

2𝑠𝑖𝑛2(𝜃𝑘))sin(𝜃𝑘)cos(𝜃𝑘) 

 

 
(35)  

 

 If the same initialization procedure is not performed in every scenario, then the problem 

may be biased due to a too accurate, or inaccurate initial value for the filter. This method is an 

unbiased and repeatable procedure for selecting the filter value, and is performed in each 

scenario for both the EKF and the GPF.  
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Chapter IV: Fusion Theory 
 

It is desired to take measurement data from multiple sensors in order to obtain a better 

estimate of the target state by taking advantage of diversity of the sensors. Some general 

references that build the basic theory behind data fusion, specifically for tracking, include [6] , 

[7] , and [20]. If the sensors provide different information, then these pieces of information can 

be combined to generate a more overall encompassing view of the state estimate. Spatial 

diversity for the case of 2D Radar in particular increases the observability of the target state, 

when the measurements and their associated noises are taken in range and azimuth. Centralized 

and distributed fusion are two different architectures that are analyzed in the following sections.  

4.1. Centralized 

 
 In centralized fusion, sensors provide their raw measurements directly to a fusion center. 

The fusion center then combines all of the measurements and generates a state estimate. 

According to [6] in a linear setting, this is the optimal fusion method in terms of accuracy. Since 

the sensors are required to transmit all of their data to the fusion center, and then the fusion 

center is required to combine all of the estimates, this can create much larger communication 

costs than other methods that are available. See Figure 1 for an overview of how centralized 

fusion works.  
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4.2. Distributed 

 
Another type of fusion is called distributed. In distributed fusion, the local sensors 

generate their own state estimates based upon the local measurements. Only the state estimates 

are then sent to the fusion center, unlike in the centralized case. This creates an advantage in 

distributed fusion over centralized fusion, because the state-estimates do not need to be 

transmitted by the local sensors at every sampling interval. On the other-hand, if the state 

estimates are not transmitted at each interval, distributed fusion is sub-optimal in comparison 

with centralized fusion. See Figure 2 for the basic data flow structure of the distributed fusion 

architecture.  

 

 

 

 

 
Figure 1: Centralized Fusion Architecture 

Sensor 1 Sensor 2 Sensor N

Fusion Center

Measurements

Global Posterior State pdf
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4.3. Fusion Center 

 
 The purpose of the fusion center is to combine the local estimates into a more accurate 

global estimate. A method known as feedback, where the fusion center provides its estimate to 

the local sensors for use in the filter update, can be used to perform even more accurate filtering 

with a fusion center.  At a general level there is a linear and a nonlinear method available to 

perform filtering, as described in [6]. Fusion changes both of these methods slightly because the 

additional prior information from the local sensors must be subtracted out. The linear fusion 

equations without feedback are described below for the information matrix (inverse of the 

covariance matrix) as (36) and the state fusion equation, which must be multiplied by the global 

covariance in (37). Note that in equations (36) – (41), 𝑖 is the sensor index, 𝑁 is the total number 

of sensors, and the subscripted variables indicate local while the non-subscripted indicate global.  

 

 
𝐏𝑘|𝑘

−1 = 𝐏𝑘|𝑘−1
−1 + ∑[𝐏𝑖,𝑘|𝑘

−1 − 𝐏𝑖,𝑘|𝑘−1
−1 ]

𝑁

𝑖=1

 (36)  

 
Figure 2: Distributed Fusion Architecture 

Sensor 1 Sensor 2 Sensor N

Fusion Center

Measurements

Local Posterior pdfs

Global Posterior State pdf

Filter 1 Filter 2 Filter N
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𝐏𝑘|𝑘

−1 �̂�𝑘|𝑘 = 𝐏𝑘|𝑘−1
−1 �̂�𝑘|𝑘−1 + ∑[𝐏𝑖,𝑘|𝑘

−1 �̂�𝑖,𝑘|𝑘 − 𝐏𝑖,𝑘|𝑘−1
−1 �̂�𝑖,𝑘|𝑘−1]

𝑁

𝑖=1

 (37)  

With feedback, the global prior is included in each of the updated state estimates, so it must be 

subtracted out 𝑁 − 1 times in order to ensure that it is not double counted. 

 
𝐏𝑘|𝑘

−1 = ∑[𝐏𝑖,𝑘|𝑘
−1 − (𝑁 − 1)𝐏𝑖,𝑘|𝑘−1

−1 ]

𝑁

𝑖=1

 (38)  

 
𝐏𝑘|𝑘

−1 �̂�𝑘|𝑘 = ∑[𝐏𝑖,𝑘|𝑘
−1 �̂�𝑖,𝑘|𝑘 − (𝑁 − 1)𝐏𝑖,𝑘|𝑘−1

−1 �̂�𝑖,𝑘|𝑘−1]

𝑁

𝑖=1

 (39)  

The nonlinear fusion equations are given by (40) and (41), for no-feedback and feedback 

respectively. In equations (40) and (41), the constant 𝐶 is equal to the integral of the other terms 

on the right hand side of the equation and effectively is known as a normalizing constant and 

𝐙𝑘indicates the total set of measurements leading up to time 𝑘. 

 
𝑝[𝐱𝑘|𝐙𝑘] = 𝐶−1[𝐙𝑘] {∏

𝑝[𝐱𝑘|𝐙𝑖,𝑘]

𝑝[𝐱𝑘|𝐙𝑖,𝑘−1]

𝑁

𝑖=1

} 𝑝[𝐱𝑘|𝐙𝑘−1] (40)  

 
𝑝[𝐱𝑘|𝐙𝑘] = 𝐶−1[𝐙𝑘] {∏𝑝[𝐱𝑘|𝐙𝑖,𝑘]

𝑁

𝑖=1

} {𝑝[𝐱𝑘|𝐙𝑘−1]}
−(𝑁−1) (41)  
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Chapter V: Comparing Probability Distributions 
 

Another aspect which is touched on in this thesis is the concept of utilizing the distance 

between two different probability distributions as the method of quantifying the amount of new 

information between the two.  

5.1. Kullback-Leibler Distance 

 
 One type of metric is known as the Kullback-Leibler (KL) Distance [21]. The general 

purpose of the KL Distance is to provide two different probability distributions with the same 

support a non-symmetric distance between these two distributions. By non-symmetric, it is 

meant that if the two probability distributions are input into the KL Distance equation in two 

different orders, a different metric will be obtained. The general formula for the KL distance is 

given as (42). 

 
𝐾𝐿(𝑝(𝑥)||𝑞(𝑥)) = ∫ 𝑝(𝑥)𝑙𝑜𝑔

𝑝(𝑥)

𝑞(𝑥)

∞

−∞

𝑑𝑥 (42)  

5.2. J-Divergence 

 
  J-Divergence, also known as the Jensen-Shannon Divergence, transforms the Kullback-

Leibler Distance into a symmetric metric. In the literature, [21] describes the J-Divergence as a 

quantity proportional to the  power 2 mean of the two versions of the KL distances, see equation 

(43), but some sources simply describe it as an arithmetic mean [22] (see (44)), or simply a sum 

[23]. The general purpose is to avoid the non-symmetric biasing from the KL Distance. Since each 

serves approximately the same function, the proper J-Divergence can be selected based upon 
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the problem at hand, with the necessary calculations taken into account. The general formula for 

J-Divergence as the power mean is (43) and as the arithmetic mean is (44). 

 𝐽(𝑝(𝐱)||𝑞(𝐱)) =  √𝐾𝐿(𝑝(𝐱)||𝑞(𝐱))2 + 𝐾𝐿(𝑞(𝐱)||𝑝(𝐱))2 (43)  

 
𝐽(𝑝(𝐱)||𝑞(𝐱)) =  

𝐾𝐿(𝑝(𝐱)||𝑞(𝐱))

2
+

𝐾𝐿(𝑞(𝐱)||𝑝(𝐱))

2
 (44)  

When 𝑝(𝐱) and 𝑞(𝐱) are Gaussian distributed, with mean described as �̅�𝑝(𝐱)and �̅�𝑝(𝐱), the 

covariance described as 𝐏𝑝(𝐱) and 𝐏𝑞(𝐱), 𝑑 denoting the dimensionality of the state vector 𝐱, 𝑡𝑟 

denoting the trace function, and ln denoting the natural logarithm, a closed form for the KL 

distance is given in [24] as (45). 

𝐾𝐿(𝑝(𝐱)||𝑞(𝐱))

=
1

2
 𝑡𝑟(𝐏𝑞(𝐱)

−1𝐏𝑝(𝐱))

−
1

2
ln

|𝐏𝑝(𝐱)|

|𝐏𝑞(𝐱)|
−

𝑑

2
+

1

2
(�̅�𝑞(𝐱) − �̅�𝑝(𝐱))

𝑇𝐏𝑝(𝐱)
−1 (�̅�𝑞(𝐱) − �̅�𝑝(𝐱)) 

 

(45)  

In this thesis, (45) is used in (43) for the simulations described in Chapter VII. 
 

5.3. Particle Filter J-Divergence Calculation 

Assuming 𝐾𝐿(𝑝(𝑥)||𝑞(𝑥)) and 𝐾𝐿(𝑞(𝑥)||𝑝(𝑥)) are two versions of the Kullback-Leibler 

divergence as defined by (42) and the variation of the J-Divergence in (44) is adopted. The J-

Divergence can be expanded by inputting the definition in (42) into (44), and then rearranging to 

get (46) and then (47). 
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𝐽(𝑝(𝐱)||𝑞(𝐱)) =  

1

2
[∫𝑝(𝑥)[log 𝑝(𝐱) − log 𝑞(𝐱)]𝑑𝑥

+ ∫𝑞(𝑥)[log 𝑞(𝐱) − log 𝑝(𝐱)]𝑑𝑥] 

(46)  

 
𝐽(𝑝(𝐱)||𝑞(𝐱)) =   

1

2
[∫[𝑝(𝐱) − 𝑞(𝐱)][log 𝑝(𝐱) − log 𝑞(𝐱)]𝑑𝑥] 

(47)  

Assume that 𝑝(𝐱) and 𝑞(𝐱) are respectively the posterior and prior probability 

distribution functions. In a particle filter, 𝑝(𝐱) and 𝑞(𝐱) are approximated as shown in (48) and 

(49), where 𝐱𝑖 is a particle with weight 𝑤𝑖, 𝑖 is the particle index and 𝑁𝑝is the total number of 

particles.  

 

𝑝(𝐱) ≈  ∑𝑤𝑛𝑒𝑤
𝑖 𝛿(𝐱 − 𝐱𝑖)

𝑁𝑝

𝑖=1

 

(48)  

 

𝑞(𝐱) ≈ ∑𝑤𝑜𝑙𝑑
𝑖 𝛿(𝐱 − 𝐱𝑖)

𝑁𝑝

𝑖=1

 

(49)  

Adding the approximations in (48) and (49) into the first part of (47), we get (50). 

 

𝐽(𝑝(𝐱)||𝑞(𝐱)) =  
1

2
[∫ [(∑𝑤𝑛𝑒𝑤

𝑖 𝛿(𝐱 − 𝐱𝑖)

𝑁𝑝

𝑖=1

)

− (∑𝑤𝑜𝑙𝑑
𝑖 𝛿(𝐱 − 𝐱𝑖)

𝑁𝑝

𝑖=1

)] [log
𝑝(𝐱)

𝑞(𝐱)
] 𝑑𝑥] 

(50)  

 

Using the sifting property of the delta function we get (51).  

 

𝐽(𝑝(𝐱)||𝑞(𝐱)) =  
1

2
[∑((𝑤𝑛𝑒𝑤

𝑖 − 𝑤𝑜𝑙𝑑
𝑖 ) log

𝑝(𝐱𝑖)

𝑞(𝐱𝑖)
)

𝑁𝑝

𝑖=1

] 

(51)  
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Substituting the particle approximations of (48) and (49) for the second half of (51), we get (52) 
 

 

𝐽(𝑝(𝐱)||𝑞(𝐱)) =  
1

2
[∑((𝑤𝑛𝑒𝑤

𝑖 − 𝑤𝑜𝑙𝑑
𝑖 ) log

∑ 𝑤𝑛𝑒𝑤
𝑗 𝛿(𝐱𝑖 − 𝐱𝑗)

𝑁𝑝

𝑗=1

∑ 𝑤𝑜𝑙𝑑
𝑗 𝛿(𝐱𝑖 − 𝐱𝑗)

𝑁𝑝

𝑗=1

)

𝑁𝑝

𝑖=1

] 

(52)  

 

Since the summation of 𝛿(𝐱𝑖 − 𝐱𝑗) only has support when 𝑖 = 𝑗, the summation and 

delta functions can be removed from (52), giving a closed form for the J-divergence of a particle 

filter as shown in (53). 

 

𝐽(𝑝(𝐱)||𝑞(𝐱)) =  
1

2
∑([𝑤𝑛𝑒𝑤

𝑖 − 𝑤𝑜𝑙𝑑
𝑖 ] log (

𝑤𝑛𝑒𝑤
𝑖

𝑤𝑜𝑙𝑑
𝑖

))

𝑁𝑝

𝑖=1

 

(53)  

 
There is a problem in using this equation when the support changes between particle 

filter iterations. This occurs when the Gaussian particle filter or resampling is performed. Due to 

this issue, of the models shown in Chapter VI, only Model I allows for the particle filter J-

Divergence to be used. 
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Chapter VI: Feedback Models 
 

Three different feedback models have been used for this research. Feedback from the 

fusion center to the local sensors improves tracking performance, by giving the local state 

estimators a better state estimate as its prior.  

6.1. Model I 

 In the first model there is no feedback performed. The obvious disadvantage is that the 

fusion center can easily diverge. This is likely to occur in cases where the target maintains the 

same system model over a long period of time. The advantage to this is that the transmitting cost 

is reduced because the fusion center does not need to transmit its state estimate back to the 

sensors.  

 

Figure 3: Model I - No Feedback 

6.2. Model II 
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In Model II, the fusion center sends its global state estimate back to the local sensors. The 

sensors then, using their own prior state estimate generate a posterior state estimate and 

compares it against the global prior state estimate. Compared to Model I, this offers a degree of 

control to the fusion center, enabling the fusion center to “call” for a new measurement when 

its state estimate begins to diverge. Model II also enables the sensors to develop their own 

estimates which protects them from faults that may occur at the Fusion Center.  

 

Figure 4: Model II - Feedback to Local Thresholds 

 

6.3. Model III 

Model III is similar to Model II in that the global state estimates from the fusion center 

are sent back to the local sensors for processing. The difference is that the sensors then replace 

their prior with that of the global prior. This enables a degree of control that is different and 

possibly greater from that seen in Model II. More specifically, the local posterior is generated 

from the global prior and the comparison is made between the new local posterior and the global 

prior. 
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6.4. Fusion Model Table 

Table 2 provides a general overview of the inputs to the threshold and the local state estimate 

filter.  

MODEL # Threshold Input Local Filter Input 

I Sensor prior pdf Sensor prior pdf 

II Global prior pdf Sensor prior pdf 

III Global prior pdf Global prior pdf 

 

Table 2: Overview of Model Inputs 

 
Figure 5: Model III - Feedback to Local State Estimators 
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Chapter VII: Experiment Settings 

7.1. State and Measurement Equations 

 This subsection denotes the various models that are used for the scenarios performed. In 2-

D Radar with a near-constant-velocity model the state vector is defined as (54) with its elements 

in Cartesian coordinates.  

 

𝐱 = [

𝑥
�̇�
𝑦
�̇�

] (54)  

 
 

The measurement vector is defined in range and bearing as shown in (55), with elements in 

polar coordinates. 

 𝒛 = [
𝑅
𝜃
] (55)  

 The state evolves linearly according to (56). Using a linear white noise acceleration motion 

model [8], the state-transition matrix is defined in (57), where T is defined as the difference in 

time between state estimate updates. 𝐯 is the process noise with zero-mean and a covariance 

which is defined in (58), where q~  is the power spectral density of the continuous process noise 

before its discretization over time. In equations (56) – (63), 𝑘 is an independent variable denoting 

time and 𝑖 is the sensor index. 

 

 
𝐱𝑘+1|𝑘 = 𝐅𝐱𝑘|𝑘 + 𝐯𝑘  

(56)  
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𝐅 = [

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

]  
(57)  

 

𝐐 =

[
 
 
 
 
 
 
 
 T

T2

2
0 0

T2

2
T 0 0

0 0
T3

3

T2

2

0 0
T2

2
T ]

 
 
 
 
 
 
 
 

 
(58)  

 

The measurements in 2-D Radar are nonlinear because of the transformation between Cartesian 

and polar coordinate systems. Assuming that the position of the target at time 𝑘 is given as (𝑥𝑘, 𝑦𝑘) 

and the position of radar 𝑖 is given as (𝑥𝑖, 𝑦𝑖). Then we define 𝑥𝑘,𝑖  as in (59) and 𝑦𝑘,𝑖 as in (60). 

 xk,i = xk − xi (59)  

 yk,i = yk − yi (60)  

                    

 

Similarly the measurement equation is defined in (70) as 

 

𝐳k,i =

[
 
 
 
 √xk,i

2 + yk,i
2

atan (
yk,i

xk,i
)
]
 
 
 
 

+ 𝐰k,i (61)  

where  𝐰𝑘,𝑖  is the measurement noise with a covariance defined as 𝐑 in (71). 

 
𝐑 = [

σR
2 0

0 σθ
2] (62)  
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While this is not needed in the Gaussian particle filter, the EKF requires a first order 

approximation of the measurement matrix 𝐇, which is the Jacobian of the matrix shown in 

equation (61). This is given as equation (63) and is evaluated using (59) and (60). 

 

𝐇𝑘,𝑖 =

[
 
 
 
 

xk,i

√xk,i
2 + yk,i

2

0
yk,i

√xk,i
2 + yk,i

2

0

−
yk,i

xk,i
2 + yk,i

2 0
xk,i

xk,i
2 + yk,i

2 0
]
 
 
 
 

 
(63)  

7.2. Test Scenario  

7.2.1. Assumptions 

 
For each scenario, the following assumptions are made:  

(1) Measurements are taken in Range and Bearing, where zero degrees is aligned with the 

positive x-axis as opposed to the y-axis. Thus in a more real-life scenario the x-axis will 

correspond to North and the negative y-axis corresponds to East. 

(2) The sensors are stationary. 

(3) The target is fully detectable throughout the run and measurements are taken iteratively 

and are processed in the order in which they were taken. 

(4) A linear state transition function is used in both the EKF and the PF and q~ is set to 2 for 

all runs. 

(5) The fusion center can use either the general linear combination or a particle filter 

implementation.  

7.2.2. Geometry 

 
A target with a linear trajectory moves through the center area of a set of three spatially diverse 

sensors, see Fig. 6. 
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Sensor # Pos. (x,y) (km) 
1 (0,10) 

2 (10,25) 

3 (25,10) 
Table 3: Sensor Locations 

The target follows a near constant velocity model with a set start position and velocity. For the 

purposes of this simulation this is given as follows. 

Tar. Param Value 

x – start 5 km 

y – start 20 km 

x – velocity 300 m/s 

y - velocity -100 m/s 

Table 4: Target Initial State 

 

 

Figure 6: Target Trajectory 

 

7.2.3. Test Descriptions 
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Since the EKF has the ability to run at a much faster rate than the GPF, we are not as 

computationally limited and can run problems with higher sampling rates over a longer period of 

time. A scenario was performed to illustrate running the censoring scenarios with a large number 

of data points, by using a 100Hz sampling rate (this is unreasonably high, see Table 1). The 

remainder of the scenarios utilize a sampling rate of 10Hz. The test scenario for this case was run 

over the course of 50 seconds. The sensor standard deviation in range is 100m and the standard 

deviation in angle is 1 degree. This is to simulate weak non-linearity in the measurement 

distribution as seen in [25]. 

7.2.3.2. Test 2 

 In the second test, the sampling rate is reduced to 0.5 Hz, which is nominal for air traffic 

control operations in radar, see Table 1. Both the EKF and GPF algorithms are used as the GPF is 

no longer as computationally constrained. In terms of fusion, the linear equations are used in the 

EKF and GPF for models 1, 2, and 3. The sensor accuracies all remain the same. This run allows 

for a comparison of the EKF and the GPF under more linear conditions than Test 3 and enables 

the GPF to actually be run unlike in Test 1. 

7.2.3.3. Test 3 

 In the third test, all of the parameters are the same as the second test, with the exception 

that the accuracies in the sensor are changed to that of the strong non-linearity described in [25], 

in other words the range standard deviation is decreased to 10m and the bearing standard 

deviation is increased to 3 degrees. The purpose of this test is to further test the capabilities of 

the GPF, as the EKF is expected to fail due to the high degree of non-linearity.  
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7.2.3.4. Test Matrix 

Parameter Test 1 Test 2 Test 3 

Range std 100 m 100 m 10 m 

Bearing std 1 deg 1deg 3 deg 

Sampling Rate 100Hz 0.5 Hz 0.5Hz 

EKF Used? Yes Yes Yes 

GPF Used No Yes Yes 

Table 5: Test Matrix 
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Chapter VIII: Results 
 
 

Results are provided by the Root Mean Squared Error (RMSE) curves, covariance 

consistency plots, and also a chart with the percentage of unused updates. The covariance 

consistency plots were calculated using the Normalized Estimation Error Squared (NEES) 

between the actual target state and the state/covariance as described in [8]. The average NEES 

over a total of 100 Monte-Carlo runs is given in (64), where �̃� is the difference between the state 

𝐱𝑘 and the updated state estimate �̂�𝑘|𝑘 and 𝜖𝑘 is the value of the NEES, all at time 𝑘. 𝑖 indicates 

the index of the Monte-Carlo run. In ideal cases (with a linear-Gaussian assumption), the NEES 

are chi-squared distributed. This gives the 95% confidence interval, with 100 Monte-Carlo runs, 

and 4 degree of freedom in the state estimate 𝑛𝑥 as [3.46, 4.57]. In the plots, the 95% confidence 

interval is represented by two horizontal red lines. 

 
𝜖�̅� =

1

100
∑�̃�i,k|k

𝐓 𝐏i,k|k
−𝟏 �̃�i,k|k

100

i=1

 (64)  

 

There is no readily available equation that can map the J-Divergence to a level of unused 

estimates, so the J-Divergence thresholds, denoted as ξ, were empirically determined based upon 

trial and error. While the two-way communication parameter was not calculated, it can be 

inferred that Model I has additional communication savings due to the fusion center not being 

required to send estimates back to the local sensors.  
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Also for Test 3 not all of the plots could be generated due to quick divergence in 

covariance of the particle filters, leading to run-time errors due to the need to draw values from 

a random number generator. This is part of the nature of the highly non-linear model. 

8.1. Test 1: 

 
 

J-Divergence I/II/III Percentage of Unused Updates 

 Model 
I 

Model II Model III 

0/0/0 0 0 0 
0.01/2/0.01 65.05 6.83 64.83 

0.02/4/0.02 89.55 78.13 80.82 

0.03/6/0.03 93.54 89.75 86.39 

0.04/8/0.04 95.2 94.84 89.32 

0.05/10/0.05 96.17 96.14 91.15 

 

 

Table 6: Test 1 J-Divergence Unused Updates Chart 

8.1.1. Model I 

 
 

 

 

Figure 7: RMSE Position Test 1 Model I 

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

400

450

500
Model I EKF: RMSE Position

Time (s)

R
M

S
E

 P
o

s
it

io
n

 (
m

)

 

 

 = 0.00

 = 0.01

 = 0.02

 = 0.03

 = 0.04

 = 0.05



36 
 

 

 
  

Figure 8: RMSE Velocity Test 1 Model I 

  

Figure 9: Covariance Consistency Test 1 Model I 
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8.1.2. Model II 

 
 

 
Figure 10: RMSE Position Test 1 Model II 

 

Figure 11: RMSE Velocity Test 1 Model II 
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Figure 12: Covariance Consistency Test 1 Model II 

 
 

8.1.3. Model III 

 

 
Figure 13: RMSE Position Test 1 Model III 
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Figure 14: RMSE Velocity Test 1 Model III  

 

 
Figure 15: Covariance Consistency Test 1 Model III 
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8.2. Test 2 

 

8.2.1. Extended Kalman filter 

 
 

J-Divergence I/II/III Percentage of Unused Updates 

 Model I Model II Model III 

0/0/0 0 0 0 

2/10/0.5 11.29 63.53 41.88 

4/20/1.0 60.97 74.68 64.28 

6/30/1.5 75.95 81.79 73.44 

8/40/2.0 82.78 85.72 77.44 

10/50/2.5 87.42 88.42 80.33 

8.2.1.1. Model I 

 
 

 
Figure 16: RMSE Position Test 2 EKF Model I 
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Figure 17: RMSE Velocity Test 2 EKF Model I 

 
Figure 18: Covariance Consistency Test 2 EKF Model I 
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8.2.1.2. Model II 

 
Figure 19: RMSE Position Test 2 EKF Model II 

 

 
 

Figure 20: RMSE Velocity Test 2 EKF Model II 
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Figure 21: Covariance Consistency Test 2 EKF Model II 

 
 
 

8.2.1.3. Model III 

 
 

 
Figure 22: RMSE Position EKF Test 2 Model III 
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Figure 23: RMSE Velocity EKF Test 2 Model III 

 

 
Figure 24: Covariance Consistency EKF Test 2 Model III 

 
 

8.2.2. Gaussian Particle Filter 
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1/10/0.2 60.06 47.58 0.29 

2/20/0.4 83.46 63.17 32.68 

3/30/0.6 89.60 70.03 48.88 

4/40/0.8 93.125 76.01 57.79 
5/50/1.0 94.5 78.94 64.04 

Table 8: Test 2 GPF J-Divergence Unused Updates Chart 

8.2.2.1. Model I 

 
Figure 25: RMSE Position GPF Test 2 Model I 

 

 
Figure 26: RMSE Velocity GPF Test 2 Model I 
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Figure 27: Covariance Consistency GPF Test 2 Model I 

 

8.2.2.2. Model II 

 
Figure 28: RMSE Position GPF Test 2 Model II 
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Figure 29: RMSE Velocity GPF Test 2 Model II 

 

 
 

Figure 30: Covariance Consistency GPF Test 2 Model II 
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8.2.2.3. Model III 

 
Figure 31: RMSE Position GPF Test 2 Model III 

 

 
Figure 32: RMSE Velocity GPF Test 2 Model III 
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Figure 33: Covariance Consistency GPF Test 2 Model III 

 

Test 3 

8.2.3. Extended Kalman filter 
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10/2500/10 84.75 70.37 72.13 

Table 9: Test 3 EKF J-Divergence Unused Updates Chart 
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8.2.3.1. Model I 

 
Figure 34: RMSE Position EKF Test 3 Model I 

 

 
Figure 35: RMSE Velocity EKF Test 3 Model I 
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Figure 36: Covariance Consistency EKF Test 3 Model I 

 

8.2.3.2. Model II 

 
Figure 37: RMSE Position EKF Test 3 Model II 
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Figure 38: RMSE Velocity EKF Test 3 Model II 

 

 
Figure 39: Covariance Consistency EKF Test 3 Model II 
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8.2.3.3. Model III 

 

 
Figure 40: RMSE Position EKF Test 3 Model III 

 

 
Figure 41: RMSE Velocity EKF Test 3 Model III 
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Figure 42: Covariance Consistency EKF Test 3 Model III 

 

8.2.4. Gaussian Particle Filter 

 
For this case, only 4 different threshold levels could be used. A problem occurs with the 

GPF when the divergence is great due to the degree of non-linearity in the problem. Since a 
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showing as explained in the Discussion Chapter. 
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8.2.4.1. Model I 

 

 
Figure 43: RMSE Position GPF Test 3 Model I 

 

 
Figure 44: RMSE Velocity GPF Test 3 Model I 
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Figure 45: Covariance Consistency GPF Test 3 Model I 

 

8.2.4.2. Model II 

 
Figure 46: RMSE Position GPF Test 3 Model II 
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Figure 47: RMSE Velocity GPF Test 3 Model II 

 
 

 
Figure 48: Covariance Consistency GPF Test 3 Model II 
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Chapter IX: Discussion 
 

The following paragraphs include an interpretation of the results from Chapter VIII. Test 

1 is a proof of concept experiment that shows that under unrealistic ideal conditions, censoring 

is viable. In this case, while the geometry of the problem remains the same, the sensor has an 

update rate of 100 Hz, which is above and beyond any of the values shown in Table 1. As the J-

Divergence threshold is increased for all of the models, the RMSE for each case increases. Results 

from Model I show that as thresholding increase, the estimators begin to also diverge just as 

quickly. The global state estimate RMSE in Model II and Model III increase with a higher number 

of unused updates, but show convergence, unlike in Model I, due to the use of feedback. 

Feedback effectively allows for the fusion center to have control over when updates are provided 

to it. The covariance consistency curves for test 1 model 1, show an increase in the NEES when 

censoring is applied, forcing it to fall just outside of the [3.46, 4.57] 95% confidence interval. For 

models 2 and 3, the NEES values fall either inside or below the 95% confidence interval.  

Test 2 provided a more realistic variation of the original scenario as the update rate was 

decreased to 0.5 Hz and also a GPF was used in addition to the EKF. The results are similar to that 

of Test 1, however the RMSE curves appear higher with a similar degree of censoring due to the 

decreased update rate. The shape of the RMSE curves in both the GPF and the EKF in Test 2 

showed similar shapes to the corresponding curves in Test 1. The covariance consistency plots 

were also similar to those seen in Test 1, with both the GPF and EKF showing an increase in the 

NEES when censoring is applied in Model 1, and a convergence to values either within the NEES 

confidence interval or below it, for Models 2 and 3. As Test 2 is similar to Test 1, which follows a 

linear/Gaussian assumption, convergence in the NEES makes sense for the EKF.  For the GPF, 
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since the local sensors send Gaussian state estimate approximations to the fusion center this also 

makes sense due to the linear/Gaussian assumption. 

Test 3 is the same as Test 2, but is performed under highly non-linear conditions where 

the angle accuracy is low and the range accuracy is high. Model III for the EKF converged and also 

outperformed Model III for the EKF in test 2. Since the global state estimate replaces the local 

state estimates in Model III, the local sensors benefit from the spatial diversity accounted for in 

the fused estimate. In test 3, this reduces the effect of the non-linearity of the higher angle 

measurement variance on the state estimate update and allows the sensors to take advantage 

of the lower range measurement variance.  In the GPF, not all of the cases could be run. This is 

due to the Gaussian approximation of the particle density that doesn’t hold in the highly non-

linear conditions. When a new measurement comes in that is far away from the particle cloud, 

the weights of the particles from the likelihood calculation all become zero, which when 

normalized effectively breaks the filter. Due to this phenomenon, no runs could be completed 

with Model III of the GPF. A single measurement generated in the tail of the measurement 

distribution cause the associated filter to break. The EKF is not sensitive to this, because the 

covariance will simply increase when the random measurements in the tail of the measurement 

distribution appear. In test 3 for Models I and II, since the local distributions have a greater 

covariance than the global distribution, the GPF is more robust than in Model III. This is because 

the measurements that appear in the tail of the measurement distribution, are more likely to 

appear closer to the cloud of particles generated from the local prior distribution than the global 

prior distribution, since the local prior distribution particle cloud is larger. In fact for Models I and 

II, the filters would not always diverge over the course of the 100 Monte-Carlo runs, and the in 
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these cases the GPF outperformed the EKF. It should be noted that on some random occasions, 

that the measurement still did appear in the tail of the measurement distribution, causing the 

filter to diverge. This is illustrated in Model II when the threshold was 50 and it began to diverge, 

whereas with a threshold of 100, no divergence was observed. All of these assertions are further 

proven by the shape of the covariance consistency plots. For the EKF in Models I and II, the NEES 

values diverge since the linear/Gaussian assumption does not hold, but in Model III, the NEES 

values converge within or just below the expected confidence interval because the fused state 

estimates allow the linear/Gaussian assumption to hold. For the GPF, both the NEES values for 

Models I and II show instabilities during convergence on the NEES values, likely due to the 

measurements that fall far away from the particle cloud and also the fact that the GPF does not 

hold onto the Gaussian assumption during its update phase. This shows that the EKF gains an 

advantage over the GPF due to its robustness in filtering measurements that appear in the tail, 

while the GPF is able to handle the non-linearity for Models I and II.  
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Chapter X: Conclusion 
 
 Three different tests for a distributed radar-tracking scenario have been performed using 

three different levels of feedback with varying levels of censoring, and two different estimators. 

Results from the simulation show that feedback can enable the fusion center to receive state 

estimate updates from the local sensors by indicating when the sensors have enough new 

information through the J-Divergence metric. This is illustrated by the convergence of the 

covariance consistency plots for Model II and Model III in Test 1, where the NEES values fall either 

inside or below the confidence interval regardless of the number of unused updates.  Conversely 

when feedback is not applied as in Model I Test 1, the NEES values increase steadily with the 

number of unused updates. Censoring can be performed with both an Extended Kalman Filter 

and a Gaussian Particle Filter for highly non-linear cases as seen in Test 3, however the non-

linearity can also cause the EKF to diverge and the Gaussian Particle Filter to break. 

There are many potential ways in which this work can be improved. If the particle filter is 

upgraded to use non-Gaussian distributions, such as a Gaussian Mixture Model or Parzen 

Window, in local updating, fusion, and J-Divergence calculations, then this may better account 

for the measurements that appear in the tail of the measurement distribution that can break the 

GPF. In addition to stopping the GPF in Test 3 from randomly breaking, this will allow for the 

generation of plots for Model III. Also, the current tests require the J-Divergence to be modelled 

in advance in order to set a desired percentage of unused updates. It might be useful to derive 

an algorithm that provides a J-Divergence estimate for given a set covariance of the state 

estimate. This may not be an easy task, even with the Gaussian J-Divergence equation due to the 

complexity of the equation. Further tests could be performed using different types of filters such 
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as the unscented Kalman Filter, or the Daum-Huang Filter. Finally, a more complex network 

structure could be used rather than the simple tree structure that was provided in this thesis.  
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