
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

2015

Discrete Nonlinear Planar Systems and
Applications to Biological Population Models
Shushan Lazaryan
Virginia Commonwealth University, lazaryans@vcu.edu

Nika LAzaryan
Virginia Commonwealth University

Nika Lazaryan
Federal Reserve Bank of Richmond, nika.lazaryan@rich.frb.org

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Dynamical Systems Commons, and the Non-linear Dynamics Commons

© The Author

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses
and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/4025

CORE Metadata, citation and similar papers at core.ac.uk

Provided by VCU Scholars Compass

https://core.ac.uk/display/51293188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F4025&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F4025&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F4025&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F4025&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F4025&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F4025&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/179?utm_source=scholarscompass.vcu.edu%2Fetd%2F4025&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/118?utm_source=scholarscompass.vcu.edu%2Fetd%2F4025&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/4025?utm_source=scholarscompass.vcu.edu%2Fetd%2F4025&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


Discrete Nonlinear Planar Systems and
Applications to Biological Population Models

by

Nika Lazaryan

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Systems Modeling and Analysis

Departments of Mathematics, Statistical Sciences and Operations Research
in Virginia Commonwealth University

2015

Doctoral Committee:

Professor Hassan Sedaghat, Chair
Associate Professor Norma Ortiz-Robinson
Associate Professor Rebecca Segal
Associate Professor Edward Boone
Associate Professor Oleg Korenok



c© Nika Lazaryan 2015

All Rights Reserved



Dedicated to the memory of my father, Levon Lazaryan

ii



ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Hassan Sedaghat for being the best men-

tor an aspiring mathematician can wish for. I am honored to be his student and

doubly honored to have had the opportunity to work alongside him as a colleague.

His guidance, constant encouragement, patience and care have been paramount to

my research, and his invaluable advice will continue to help me in my personal and

professional life.

I would also like to thank my committee members, Drs. Norma Ortiz-Robinson,

Rebecca Segal, Ed Boone and Oleg Korenok for many comments and suggestions that

have greatly helped my research at various stages of progress.

I am grateful to the faculty members of Virginia Commonwealth University, who

at various times of my tenure as a student, have inspired and encouraged me. Special

thanks to Dr. Robert Reilly for instilling in me the love for mathematics and intro-

ducing me to difference equations, and to Dr. Oleg Korenok for his priceless advice to

never stop following my curiosity. I am indebted to Drs. Ghidewon Abay-Asmerom

and Candace Kent for their guidance and support during the early stages of my stud-

ies in mathematics. Many thanks to Drs. Marco Aldi, Richard Hammack, Dewey

Taylor, Ed Boone and Paul Brooks for helpful and lively discussions and practical

advice. I would also like to thank my friends Drs. Wes Cain and Joseph Flenner for

their good humor and moral support that have helped me tremendously during times

iii



of self-doubt.

My studies and research would not have been possible without the generous finan-

cial assistance from my employer, the Federal Reserve Bank of Richmond. I would

like to thank my supervisor, Dr. Urvi Neelakantan, for supporting me throughout

this process and giving me the flexibility to finish the program while working full time.

And finally, I am indebted to my family, Rick and Copernicus, for their undying

love, patience and support, and forever grateful to my mother and my brother for

being my constant sources of love and inspiration.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER

I. Introduction and Preliminaries . . . . . . . . . . . . . . . . . . . 1

1.1 Difference equations and maps . . . . . . . . . . . . . . . . . 5
1.2 First order autonomous difference equations . . . . . . . . . . 6
1.3 Systems of difference equations . . . . . . . . . . . . . . . . . 9
1.4 Higher order scalar difference equations . . . . . . . . . . . . 12
1.5 Folding of planar systems into equations . . . . . . . . . . . . 14
1.6 Second order difference equations . . . . . . . . . . . . . . . . 21

II. Dynamics of a Second Order Rational Difference Equation . 25

2.1 Existence and boundedness of solutions . . . . . . . . . . . . 26
2.2 Existence and local stability of a unique positive fixed point . 29
2.3 Global stability and convergence of solutions . . . . . . . . . 35
2.4 Periodic solutions . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.1 Prime period two solutions . . . . . . . . . . . . . . 44
2.5 Concluding remarks and further considerations . . . . . . . . 53

III. Dynamics of a Second Order Exponential Difference Equation 54

3.1 General results . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1.1 Boundedness and global convergence to zero . . . . 55
3.1.2 Reduction of order . . . . . . . . . . . . . . . . . . . 56

3.2 Autonomous equation: the case when p = 1 . . . . . . . . . . 59

v



3.2.1 Fixed points, global stability . . . . . . . . . . . . . 59
3.2.2 Complex multistable behavior . . . . . . . . . . . . 60
3.2.3 Convergence to two-cycles . . . . . . . . . . . . . . 70
3.2.4 A concluding remark on multistability . . . . . . . . 76

3.3 Periodic coefficients: the case where p > 1 . . . . . . . . . . . 77
3.3.1 The odd period case . . . . . . . . . . . . . . . . . . 82
3.3.2 The even period case . . . . . . . . . . . . . . . . . 86

3.4 Concluding remarks, open problems and conjectures . . . . . 90

IV. Folding of a Rational Planar System . . . . . . . . . . . . . . . 93

4.1 Folding the system . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2 Uniform boundedness and convergence to zero . . . . . . . . . 99

4.2.1 Uniform boundedness of the system’s orbits . . . . . 99
4.2.2 Uniform boundedness of the folding’s solutions . . . 104
4.2.3 Global exponential stability of the zero solution . . 107

4.3 Folding to an autonomous equation . . . . . . . . . . . . . . . 112
4.3.1 Fixed points in the positive quadrant . . . . . . . . 114

4.4 Non-existence of repellers . . . . . . . . . . . . . . . . . . . . 118
4.5 Global stability and periodic solutions . . . . . . . . . . . . . 122
4.6 Cycles and chaos in the positive quadrant . . . . . . . . . . . 125
4.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 129

V. Applications to Biological Models of Species Populations . . 131

5.1 Uniform boundedness of orbits . . . . . . . . . . . . . . . . . 136
5.2 Global attractivity of the origin . . . . . . . . . . . . . . . . . 139

5.2.1 General results . . . . . . . . . . . . . . . . . . . . . 139
5.2.2 Folding the system . . . . . . . . . . . . . . . . . . 144
5.2.3 Global convergence to zero with periodic parameters 145

5.3 Dynamics of a Beverton-Holt type rational system . . . . . . 153
5.3.1 Uniform boundedness and extinction . . . . . . . . 154
5.3.2 Persistence and the role of competiton . . . . . . . . 158

5.4 Dynamics of a Ricker-type exponential system . . . . . . . . . 167
5.4.1 Uniform boundedness and extinction . . . . . . . . 169
5.4.2 Complex multistable behavior . . . . . . . . . . . . 171

5.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 178

VI. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

vi



LIST OF FIGURES

Figure

3.1 Bifurcation of multiple stable solutions in the state-space . . . . . . 61

3.2 Occurrence of period three for the associated interval map . . . . . 70

5.1 Compensatory and overcompensatory recruitment functions . . . . . 134

5.2 Orbits illustrating period two oscillations and the saddle point. . . . 168

5.3 Periodic solutions for sufficiently small parameter values dn. . . . . 178

5.4 Dependence of solutions on initial values. . . . . . . . . . . . . . . . 179

5.5 Complex behavior with sufficiently large values of dn. . . . . . . . . 180

5.6 Period three solution of the odd terms for the case p = 2 for suffi-
ciently large values of dn. . . . . . . . . . . . . . . . . . . . . . . . . 181

vii



ABSTRACT

Discrete Nonlinear Planar Systems and Applications to Biological Population
Models

by

Nika Lazaryan

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University

Chair: Dr. Hassan Sedaghat

We study planar systems of difference equations and their applications to biolog-

ical models of species populations. Central to the analysis of this study is the idea of

folding - the method of transforming systems of difference equations into higher order

scalar difference equations. For example, a planar system is transformed into a core

second order difference equation and a passive non-dynamic equation. Two classes of

second order equations are studied in detail: quadratic fractional and exponential.

In the study of the quadratic fractional equation, we investigate the boundedness

and persistence of solutions, the global stability of the positive fixed point and the oc-

currence of periodic solutions with non-negative parameters and initial values. These

results are then applied to a class of linear/rational systems of difference equations

that can be transformed into a quadratic fractional second order difference equation
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via folding. These results apply to systems with negative parameters, instances not

commonly considered in previous studies. Using the idea of folding, we also identify

ranges of parameter values that provide sufficient conditions on existence of chaotic,

as well as multiple stable orbits of different periods for the planar system.

We also study a second order exponential difference equation with time varying

parameters. We obtain sufficient conditions for boundedness of solutions and global

convergence to zero. For the special, autonomous case (with constant parameters), we

show occurrence of multistable periodic and nonperiodic orbits. For the case where

parameters are periodic, we show that the nature of the solutions differs significantly

depending on whether the period of the parameters is even or odd.

The above results are applied to biological models of populations. We investigate

a broad class of planar systems that arise in the study of so-called stage-structured

(adult-juvenile) single species populations, with and without time-varying parame-

ters. In some cases, these systems are of the rational sort (e.g. the Beverton-Holt

type), while in other cases the systems involve the exponential (or Ricker) function. In

biological contexts, these results include conditions that imply extinction or survival

of the species in some balanced form, as well as possible occurrence of complex and

chaotic behavior. Special rational and exponential cases of the model are considered

where we explore the role of inter-stage competition, restocking strategies, as well as

seasonal fluctuations in the vital rates.
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CHAPTER I

Introduction and Preliminaries

Difference equations, in the form of recursions and finite differences have appeared

in variety of contexts from early days of mathematics, one such instance being the

Fibonacci numbers. The development of differential and integral calculus was made

possible with the concept of limits of finite differences and sums. In numerical anal-

ysis, finite differences have been used for obtaining numerical solutions to differential

equations. Difference equations often appear as discrete analogs of differential equa-

tions and have many applications in natural and social sciences.

In the last few decades, difference equations have gained increasing interest on

their own and have been studied as an independent field. Current studies of differ-

ence equations concern not only topological properties and asymptotic behavior of

the solutions, but also rigorous treatment of these equations as objects or constructs

of their own merit (for example, see [83]). Advances in difference equations have led

to the development of a variety methods and techniques concerning the analysis of

scalar as well as higher dimensional systems of difference equations (see [33], [81]).

In this thesis, we study certain broad classes of planar systems with applications

to biological models of species populations. Central to the analysis of these systems
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is the idea of folding - a procedure that relates the study of planar systems to cor-

responding second order equations. A standard technique for analyzing kth order

difference (and differential) equations is to “unfold” the equation into k first order

equations and study the resulting system. For certain systems, one may also apply

the reverse process, by “folding” them into higher order scalar equations. While this

method has not been widely applied to the study of difference equations, it has been

used before, under different names, in applications. For example, folding linear sys-

tems in both continuous and discrete time is seen in control theory (see for example

[8], [33], [55]). In this framework, the controllability canonical form is the folding:

using standard algebraic methods, a completely controllable system is found to be

equivalent to a linear equation whose order equals the rank of the controllability

matrix. In addition, this method is used in [31] and [66] in a study of a variety of

nonlinear differential systems displaying chaotic behavior. Here these systems are

studied and classified by converting them to ordinary differential equations of order

3 that are defined by jerk functions. Among those are the well-known systems of

Lorenz ([70]) and Rossler ([78]).

More recently, the ideas found in control theory and chaotic differential systems

have been generalized in a systematic study of the folding of systems in [80], [87].

The work in [80] and [87] extends the method in a more general sense by developing

an explicit algorithm that folds systems into equations. This is done by starting with

a system and deriving a higher order equation through a sequence of inversions and

substitutions together with index shifts for difference equations or higher derivatives

for differential ones. The algorithmic approach allows one to apply the method to

both difference and differential systems, whether they are autonomous or not. One

possible advantage of the folding lies in the fact that in many instances, the folding

can reduce the underlying system into a higher order equation that is more tractable
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or has been previously well explored. Hence the potential applicability of the method

is manifold and can be employed in variety of mathematical, biological, physical sys-

tems, and other areas, such as probability, finance and economics.

We apply the method of folding to rational and exponential planar systems and

study these systems through resulting scalar second order rational and exponential

difference equations. The choice of these systems is twofold. First, rational and ex-

ponential systems and equations have gained great interest in the field of difference

equations and have generated numerous studies (see [4], [5], [6], [9], [15], [17], [51],

[79], [84] and references thereof). Second, these systems appear in applications to

biological models of species populations (for example, see [3], [40], [45], [46], [75],

[92]). Difference equations have been used in increasing frequency in biological mod-

els, since discrete systems may be more convenient in modeling biological phenomena,

as they are computationally efficient (see, for example, [67], [89] and [91]). Systems

of difference equations are used to model interactions of species, as seen in predator-

prey, cooperative or competitive models, which are captured by systems of higher

dimensions ([44], [88], [90]). Among many known discrete population models are

Beverton-Holt ([12]), Pielou ([75]) and Ricker ([77]) equations. More recent examples

of population models can be found in [20], [36] and [49].

The current work is organized as follows. In the rest of this chapter, we introduce

the method of folding, together with preliminary concepts, definitions and results rel-

evant to the study of difference equations. Since our study of planar systems relies, to

a great extent, on an underlying second order difference equation, Chapters 2 and 3

investigate certain classes of rational and exponential second order equations. Besides

their applicability to planar systems, the results of these chapters are self-contained

and in the context of higher order scalar equations are of mathematical interest in

3



their own right.

In Chapter 2, we study a second order quadratic fractional difference equation.

We establish existence and boundedness of solutions, local and global stability of fixed

points as well as occurrence of periodic orbits under relatively standard assumptions

on parameter values. The results obtained in Chapter 2 are then applied to the study

of a class of linear/rational planar systems considered in Chapter 4, many special

cases of which can be found in a number of population models in biology. Folding

also helps extend the results obtained in Chapter 2 to cases of the linear rational

system where some of the parameters are allowed to be negative. Using the fold-

ing, we then identify a different set of parameter ranges and cases where the system

exhibits chaotic behavior. The significance of these findings is twofold: Studies of

planar systems are typically limited to assuming nonnegative parameter values, since

in the presence of negative values for (some) parameters, issues such as existence of

iterates become a nontrivial matter. Furthermore, prior studies of linear-fractional

equations and systems have not been focused on demonstrating the occurrence of

chaos or coexisting cycles.

In Chapter 3, a second order exponential equation in studied. Several sufficient

conditions are obtained for boundedness and convergence of solutions to zero for the

general nonautonomous equation. Occurrence of multistable periodic and chaotic so-

lutions of the equations is explored for special cases with constant, as well as periodic

parameters.

The results obtained in Chapters 2 and 3 are then applied to the study of bio-

logical models considered in Chapter 5. We begin with a general matrix model of

stage-structured populations, where the members of a population are differentiated

4



by age, between adult (reproducing) and juvenile (non-reproducing) members. Sev-

eral results are derived that relate to the extinction of species both for autonomous

and nonautonomous, as well as density dependent matrix models. Special cases of the

model are then considered, to explore the role of intra-species competition, restocking

strategies, as well as periodic or seasonal variations in vital rates.

1.1 Difference equations and maps

In the following sections, we introduce some preliminary concepts, definitions and

results related to the study of difference equations. Unless otherwise indicated, these

results are drawn from texts of [32], [33] and [81].

A k-th order difference equation on a metric space (X, d) is defined by

xn+1 = F (n, xn, xn−1, · · · , xn−k+1) (1.1)

where F : N×D → X is a given function, N is the set of non-negative integers, X is

a set and D ⊆ X × X × · · · × X = Xk. The solution of (1.1) obtained from initial

point (x0, x−1, · · · , x−k+1) is a sequence {xn} ∈ X such that xn satisfies (1.1) for all

n > 0. An initial point (x0, x−1, · · · , x−k+1) generates a (forward) solution {xn} by

iteration of the function

(n, xn, xn−1, · · · xn−k+1)→ F (n, xn, xn−1, · · ·xn−k+1) : N×D → X.

so long as each iterate xn stays in D. When the function F does not depend on the

index n, the difference equation in (1.1) is autonomous, i.e.

xn = F (xn, xn−1, · · · xn−k+1) (1.2)
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Otherwise, it is nonautonomous. Solutions of (1.1) or (1.2) are also called orbits

or trajectories.

1.2 First order autonomous difference equations

The equation

xn+1 = F (xn) (1.3)

is an example of a first order difference equation, where F : D → X is a map from a

subset D ⊆ X of a metric space X. The solutions of (1.3) from initial point x0 ∈ D

are generated by

xn = F n(x0) for n > 0

where F n = F ◦ F ◦ · · · ◦ F is the composition of F with itself n times.

Definition 1.1. The set S ⊂ D is called an invariant set if F (S) ⊆ S, i.e. for all

initial values x0 ∈ S, xn = F n(x0) ∈ S for all n > 0.

Definition 1.2. A point x̄ ∈ D is an equilibrium point of (1.3) if it is a fixed point

of F , i.e.

x̄ = F (x̄) (1.4)

In other words, xn = x̄ for all n ≥ 0, or x̄ is a constant solution of (1.3) .

Definition 1.3. A fixed point x̄ of (1.3) is stable, if given ε > 0, there exists a δ > 0

such that for initial point x0 ∈ D

d(F n(x0), x̄) < ε for all n > 0 whenever d(x0, x̄) < δ

6



The fixed point x̄ is unstable if it is not stable.

Intuitively, if a fixed point is stable, then the iterates obtained from initial points

that are close enough to the fixed point will stay sufficiently close to it.

Definition 1.4. The fixed point x̄ of (1.3) is attracting if there is a set S ⊆ D such

that for all initial points x0 ∈ S

lim
n→∞

xn = x̄

If S = D, then x̄ is globally attracting.

Definition 1.5. The difference equation in (1.3) has a periodic solution of period p,

if there is a positive integer p such that

xn+p = xn for all n ≥ 0

A solution {xn} ∈ X of (1.3) is periodic with prime period p, if it is periodic with

period p and p is the least integer for which xn+p = xn for all n ≥ 0. A point s ∈ D

is a p-periodic point of the map F if there is a positive integer p such that F p(s) = s.

The orbit of a p-periodic point s of F is the set {s, F (s), · · · , F p−1(s)}, also referred

to as a p-cycle of F . A point y ∈ D is eventually p-periodic, if there exists a positive

integer k such that F k(y) = s and F k+np(y) = s for all n ≥ 0.

The stability of a p-periodic solution, or a p-cycle, can then be determined via the

composite map F p. We say that the solutions of (1.3) converge to a p-cycle, if F p has

a fixed point that is attracting.

We next define several concepts, in order to characterize maps that are referred

to as ”chaotic.” These are maps whose iterates behave in an unpredictable manner.

Several definitions of chaos exist in literature. We discuss two of these definitions

(see [28] and [65]). A more familiar definition of chaos in literature, in the sense of

Li-Yorke ([65]), can be given as follows:

7



Definition 1.6. (Li-Yorke chaos) Let Fn : (X, d) → (X, d) be functions on a metric

space and define F n
0 = Fn◦Fn−1◦· · ·◦F0, i.e. the composition of maps F0 through Fn.

The nonautonomous system (X,Fn) is chaotic if there is an uncountable set S ⊂ X

(the scrambled set) such that for every pair of points x, y ∈ S

lim sup
n→∞

d(F n
0 (x), F n

0 (y)) > 0 and lim inf
n→∞

d(F n
0 (x), F n

0 (y)) = 0

Theorem 1.7. (Li-Yorke) Let I be an interval and let the map F : I → I be

continuous. Assume that there is a point a ∈ I for which the points b = F (a),

c = F 2(a) and d = F 3(a) satisfy

d ≤ a < b < c or d ≥ a > b > c

Then

1. for every integer k ≥ 0, there is a periodic point in I having period k.

2. there is an uncountable set S ⊂ I, containing no periodic points, which satisfies

the following conditions:

(i) For every x, y ∈ S with x 6= y

lim sup
n→∞

d(F n
0 (x), F n

0 (y)) > 0 and lim inf
n→∞

d(F n
0 (x), F n

0 (y)) = 0

(ii) For every x ∈ S and periodic point p ∈ I

lim sup
n→∞

d(F n
0 (x), F n

0 (p)) > 0

The above definition implies that if the interval map F has a periodic point with

period 3, then the hypothesis of the theorem are satisfied and the map F is chaotic.1

1This has warranted the title of the paper “Period Three Implies Chaos” in [65].
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Theorem 1.7, however, pertains to interval maps (or first order scalar equations)

only, and generally does not apply to systems of two or higher dimensions or to scalar

equations of higher order. Sufficient conditions for existence of chaotic orbits in more

general sense are discussed in the next section. Alternative definition of chaos in the

sense of Devaney, can be given as follows:

Definition 1.8. (Devaney chaos) The map F on a metric space (X, d) is said to be

chaotic if

(i) F is transitive, i.e for any pair of nonempty sets U and V of X, there exists a

positive integer k such that

F k(U) ∩ V 6= ∅

(ii) the set of periodic points P of F is dense in X.

(iii) F has sensitive dependence on initial conditions, i.e. there exists an ε > 0 such

that for any x0 ∈ X and any open set U with x0 ∈ U , there exists a y0 ∈ U and

a positive integer k such that

d(F k(x0), F k(y0)) > ε

1.3 Systems of difference equations

In many instances and applications, the set X is assumed to be a subset of Rm, in

which case the equations in (1.1) and (1.2) represent systems of m nonautonomous

or autonomous difference equations of k-th order. In this case, the mapping F in

component form can be given as F = [f1, f2, · · · fm]. A commonly used metric is

defined in the usual way by the Euclidean norm
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||x|| =

[
m∑
i=1

r2
i

]1/2

where x = [r1, r2, · · · , rm] in component form and the metric can be defined in the

usual way as d(x, y) = ||x− y||. If m = 2, the systems defined by (1.1) and (1.2) with

the usual topology are called planar systems.

In subsequent chapters we will study first order planar systems of type

xn+1 = F (n, xn) or xn+1 = F (xn)

where in component form

x = [r1, r2], F = [f1, f2], F : N× Rm → Rm

If the map F (x) = Ax is linear where x ∈ D and A is an m×m matrix with real

entries, then (1.1) and (1.2) are called linear systems, otherwise they are nonlinear

systems.

Theorem 1.9. (Linear Maps) Let A be an m × m matrix with real entries. For

the linear map L(x) = Ax, the origin is an asymptotically stable fixed point if the

modulus of the largest eigenvalue of A, or its spectral radius ρ(A), is less than one.

The origin is unstable if ρ(A) > 1.

Now let F : D → Rm, where D ⊆ Rm and assume F ∈ C1(D,Rm). The derivative

DF (x) of F , commonly referred to as the Jacobian, is an m×m matrix with entries

defined by

[µi,j] =
∂fi
∂rj

(x) i, j = 1, 2, · · ·m

where x = [r1, r2, · · · , rm] and F = [f1, f2, · · · , fm].
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Definition 1.10. A fixed point x̄ of a map F ∈ C1(D,Rm) is hyperbolic, if no

eigenvalue of DF (x̄) has modulus equal to one. Otherwise x̄ is nonhyperbolic.

Theorem 1.11. (Linearlized Stability) Let x̄ be a fixed point of a map F ∈ C1(Bε(x̄),Rm)

for some ε > 0. Assume that x̄ is hyperbolic and DF (x̄) is invertible. If ρ(DF (x̄)) < 1

(or respectively, ρ(DF (x̄)) > 1), then x̄ is asympotically stable (or respectively, un-

stable).

Definition 1.12. F ∈ C1(D,R)m where D ⊆ Rm and Bε(x̄) ⊂ D be the closed ball,

where x̄ is a fixed point of F and ε > 0. If for every x ∈ Bε(x̄), all the eigenvalues

of the Jacobian DF (s) have magnitude greater than 1, then x̄ is an expanding fixed

point. If in addition there is an x0 ∈ Bε(x̄) such that

(i) x0 6= x̄

(ii) there is a positive integer k such that F k(x0) = x̄

(iii) det[DF k(x0)] 6= 0

then the expanding fixed point x̄ is a snap-back repeller.

The next result establishes the connection between snap-back repellers and occur-

rence of chaotic behavior (see [72], [71]).

Theorem 1.13. (Marotto) Let F ∈ C1(D,Rm) where D ⊆ Rm. If F possesses a

snap-back repeller, then the equation defined by

xn+1 = F (xn)

is chaotic, i.e. there exists

1. a positive integer N such that F has a point of period p for every positive integer

p ≥ N .
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2. a“scrambled set” of F , i.e. an uncountable set S containing no periodic points

of F such that

(i) F (S) ⊂ S and there are no periodic points of F in S.

(ii) for every x, y ∈ S, with x 6= y

lim sup
n→∞

d(F n(x)− F n(y)) > 0

(iii) for every x ∈ S and each periodic point y of F

lim sup
n→∞

d(F n(x)− F n(y)) > 0

3. an uncountable subset S0 of S such that for every x, y ∈ S0

lim inf
n→∞

d(F n(x)− F n(y)) = 0

Notice that unlike Theorem 1.7, Marotto’s result is more general, as it applies to

both scalar equations of any order, as well as to systems of higher dimensions.

1.4 Higher order scalar difference equations

A scalar difference equation of order k is defined as

xn+1 = f(xn, xn−1, · · · , xn−k+1) (1.5)

where f : Ik → I is a continuous function and I ⊂ R is an interval of the real line.

Given the set of k initial values x0, x−1, · · · , x−k+1 ∈ I, one may recursively generate

the solution {xn}, n ≥ 1 of (1.5).

A standard technique for analyzing kth order scalar difference equations is to

12



“unfold” the equation into k first order equations and study the resulting system.

The equation in (1.5) may be converted to a system as follows:

Let y1,n = xn−k+1. y2,n = xn−k+2, · · · , yk,n = xn. Then (1.5) can be written as

yn+1 = F (yn) (1.6)

where

yn = [y1,n, y2,n, · · · , yk,n]T

and

F (yn) = [y2,n, y3,n, · · · , yk,n, f(yk,n, yk−1,n, · · · , y1,n)]T

We may also write

F = [F1, F2, · · ·Fk]T where F1(y1) = y2, F2(y2) = y3, · · · , Fk(yk) = f(yk, · · · , y1).

Then the properties, definitions and concepts pertaining to the solutions of (1.5) can

be stated in terms of (1.6), as defined in Sections 1.2 and 1.3. Hence, the results

for the higher order scalar equations can always be extended to an associated higher

dimensional system. However, since systems of difference equations may not always

be convertible to scalar difference equations, results obtained for systems may not

always apply to scalar equations. In the next section we outline a general procedure

for certain types of systems that may be converted into higher order scalar equations.

This procedure also allows to extend the results obtained for higher order equations to

much broader classes of systems besides the ones obtained by the standard unfolding

discussed above.
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1.5 Folding of planar systems into equations

Consider a second order difference equation

sn+2 = φ(n, sn+1, sn) (1.7)

where φ : N0 × D′ → S is a function and D′ ⊂ S × S. As outlined in the previous

section, a standard way of ”unfolding” the second order equation in (1.7) to a system

in (1.13) can be done as 
sn+1 = tn

tn+1 = φ(n, sn, tn)

(1.8)

Here the second order term (the temporal delay) in (1.7) is converted to a new

variable in the state space. All solutions of (1.7) are reproduced from the solutions in

(1.8) by (sn, sn+1) = (sn, tn). However, (1.7) may be unfolded in different ways into

systems of two equations, so (1.8) is not unique.

One may also apply the reverse process to systems, by “folding” them into higher

order scalar equations. The method, in general form, is described in [80], [87] as an

algorithm that folds systems into equations. This is done by starting with a system

and deriving a higher order equation through a sequence of inversions, substitutions

and index shifts

We demonstrate the idea of the folding on an example of a planar system as

follows.

Example 1.14. Consider the following planar system:

xn+1 = axn + byn (1.9a)

yn+1 =
xn

1 + cyn + dxn
(1.9b)
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Assuming that b 6= 0, from (1.9a) we can obtain an explicit expression for yn given

by

yn =
1

b
(xn+1 − axn) (1.10)

Next, we substitute (1.10) into (1.9b) to obtain

yn+1 =
xn

1 + dxn + c
b
(xn+1 − axn)

(1.11)

Finally, shifting the index of (1.9a) we get

xn+2 = axn+1 + byn+1 = axn+1 +
bxn

1 + dxn + c
b
(xn+1 − axn)

which can be further simplified to

xn+2 = axn+1 +
b2xn

cxn+1 + (db− ac)xn + b
(1.12)

The equation in (1.12) is a special case of a quadratic fractional second order difference

equation which will be studied in the next chapter.

The idea shown in the above example can be formalized as follows. Consider a

general, nonautonomous planar system given by


xn+1 = f(n, xn, yn)

yn+1 = g(n, xn, yn)

(1.13)

where n = 0, 1, 2, ..., f, g : N0 × D → S are given functions, N0 is the set of non-

negative integers, S is a non-empty set and D ⊂ S × S.

Definition 1.15. Let S be a nonempty set and consider a function f : N0 ×D → S

where D ⊂ S × S. Then f is semi-invertible (or partially invertible) if there are sets
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M ⊂ D,M ′ ⊂ S × S and a function h : N0 ×M ′ → S such that for all (u, v) ∈ M if

w = f(n, u, v), then (u, v) ∈M ′ and v = h(n, u, w) for all n ∈ N0.

Semi-inversion refers to the solvability of the equation w − f(n, u, v) = 0 for v

via the implicit function theorem. (see [80]). On the other hand, the function f is

semi-invertible, if it is separable, which we define as follows:

Definition 1.16. Let (G, ∗) be a nontrivial group and let f : N0 × G × G → G. If

there are functions f1, f2 : N0 ×G→ G such that

f(n, u, v) = f1(n, u) ∗ f2(n, v)

for all u, v ∈ G and n ≥ 1, then f is said to be separable on G and is given by

f = f1 ∗ f2.

For example, an affine function f(n, u, v) = anu+ bnv+ cn where an, bn, cn are real

parameters, is separable on R with addition for all n with f1(n, v) = anu, f2(n, v) =

bnv+ cn. Similarly, f(n, u, v) = an
u
v

is separable on R \{0} relative to multiplication.

Now, suppose that f2(n, .) is a bijection for every n and f−1
2 (n, .) is its inverse, i.e.

f2(n, f−1
2 (nv)) = v and f−1

2 (n, f2(n, v)) = v for all v. Then a separable function f is

semi-invertible if f2(n, .) is a bijection for each fixed n, since for every u, v, w ∈ G

w = f1(n, u) ∗ f2(n, v)⇒ v = f−1
2 (n, [f1(n, v)]−1 ∗ w)

where the map inversion and group inversion (denoted by −1) are distinguished from

the context. In this case, one may obtain an explicit expression for the semi-inversion

h by

h(n, u, w) = f−1
2 (n, [f1(n, u)]−1 ∗ w) (1.14)

with M = M ′ = G×G. This observation is summarized as follows:
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Theorem 1.17. Let (G, ∗) be a nontrivial group and f = f1 ∗ f2 be separable. If

f2(n, .) is a bijection for each n, then f is semi-invertible on G × G with a semi-

inversion uniquely defined by (1.14).

Now, suppose that {(xn, yn} is an orbit of (1.13) in D. If one of the functions

in (1.13), say f , is semi-invertible, then by Definition 1.15 there is a set M ⊂ D, a

set M ′ ⊂ S × S and a function h : N0 ×M ′ → S such that if (xn, yn) ∈ M , then

(xn, xn+1) = (fn, f(n, xn, yn)) ∈M ′ and yn = h(n, xn, xn+1). Therefore

xn+2 = f(n+ 1, xn+1, yn+1) = f(n+ 1, xn+1, g(n, xn, yn))

= f(n+ 1, xn+1, g(n, xn, h(n, xn, xn+1))) (1.15)

and the function

φ(n, u, w) = f(n+ 1, w, g(n, u, h(n, u, w))) (1.16)

is defined on N0 × M ′. If {sn} is a solution to (1.7) with initial conditions s0 =

x0, s1 = x1 = f(0, x0, y0), and φ is defined by (1.16) then

s2 = f(1, s1, g(0, s0, h(0, s0, s1)))

= f(1, x1, g(0, x0, h(0, x0, x1))) = f(1, x1, g(0, x0, y0)) = x2

Continuing this way inductively, we obtain sn = xn and thus

h(n, sn, sn+1) = h(n, xn, xn+1) = yn

and therefore

(xn, yn) = (sn, h(n, sn, sn+1)) (1.17)
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which implies that the solution {(xn, yn)} may be obtained from a solution {sn} via

(1.17). The above can be summarized in the following theorem.

Theorem 1.18. Suppose that f in (1.13) is semi-invertible with M,M ′ and h given

by Definition 1.15. Then each orbit of (1.13) in M may be derived from a solution of

(1.7) via (1.17) with φ given by (1.16).

Thus, we define the folding as follows:

Definition 1.19. (Folding) The pair of equations

sn+2 = φ(n, sn, sn+1) (core) (1.18)

yn = h(n, xn, xn+1) (passive) (1.19)

where φ is defined by (1.16) is a folding of the system in (1.13). The initial values

of the core equation are determined from the initial point (x0, y0) as s0 = x0, s1 =

f(0, x0, y0).

The equation in (1.19) is called passive since it simply evaluates the function h

on a solution of the core equation (1.18) without any iterations involved, i.e. it is

nondynamic. On the other hand, (1.13) can be thought of as a nonstandard the

unfolding of the second order equation (1.18) that is generally not equivalent to the

standard unfolding (1.8).

In many instances, the folding can reduce the underlying system into a higher

order equation that is more tractable or has been previously well explored. However,

the folding method does not always guarantee that the resulting equation will have

the aforementioned properties. Therefore, for practical reasons, it is important to

identify systems that do fold into known and tractable equations, which is done by

what [80] and [87] describe as the inverse problem. The idea behind this for planar

systems is as follows: We start with one of the two equations of the system, say
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the one given by f and a known function φ that defines a second-order equation

with desired properties. Then a function g is determined so that the system with

components f and g folds into a second order equation defined by φ. More formally,

the inverse problem can be described as follows:

Suppose that a function f satisfies Definition 1.15. Then by (1.16)

f(n+ 1, w, g(n, u, h(n, u, w))) = φ(n, u, w)

is a function of n, u, w. Since f is semi-invertible, then by Definition 1.15 we obtain

g(n, u, h(n, u, w)) = h(n+ 1, w, φ(n, u, w)) (1.20)

Now, suppose that φ(n, u, w) is prescribed on a set N0 ×M ′ where M ′ ⊂ S × S

and we need to find g that satisfies (1.20). Assume that a subset M ⊂ D exists with

the property that f(N0 ×M)× φ(N0 ×M ′) ⊂M ′. For (n, u, v) ∈ N0 ×M define

g(n, u, v) = h(n+ 1, f(n, u, v), φ(n, u, f(n, u, v))) (1.21)

In particular, if v ∈ h(N0 ×M ′), then g above satisfies (1.21). Then

Theorem 1.20. Let f be a semi-invertible function with h given by Definition 1.15.

Further, let φ be a given function on N0×M ′. If g is given by (1.21) then (1.13) folds

to the difference equation

sn+2 = φ(n, sn, sn+1)

together with a passive equation.

We demonstrate the usefulness of the method on the following example:

Example 1.21. Consider the second-order rational difference equation
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xn+2 =
αxn+1

Bxn + C

Under the change of variable xn = C
B
zn, the above equation can be written as

zn+2 =
pzn+1

1 + zn
(1.22)

where p = α
B

. The equation in (1.22) is known as Pielou’s difference equation (see [75],

[76]), which is a discrete analogue of the delay logistic equation used as a prototype of

modelling single-species dynamics. The study of dynamical properties of (1.22) can

be found in [51] and [54].

The system

xn+1 = 2yn + 1 (1.23a)

yn+1 =
−0.25xn + 0.8yn + 0.2

0.5xn + 0.4
(1.23b)

has the folding

xn+2 =
0.8xn+1

0.5xn + 0.4
(1.24)

which by the change of variables described above can be converted to (1.22).

On the other hand, the system

xn+1 = 2yn + 1 (1.25a)

yn+1 =
−0.26xn + 0.8yn + 0.2

0.5xn + 0.4
(1.25b)

has the folding

xn+2 =
0.8xn+1 − 0.02xn

0.5xn + 0.4
(1.26)

is of different functional form than that of (1.24), even though the systems in (1.23)

and (1.25) are nearly identical. Moreover, the solutions of (1.24) from positive initial
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values will always be defined, whereas it may not be the case for those of (1.26).

These distinctions would not be obvious by simply looking at the systems alone.

1.6 Second order difference equations

In previous sections, we showed the connection between systems of difference

equations and higher order scalar equations, both via folding and unfolding. The

method of folding allows one to study planar systems by means of the core second

order difference equation obtained from the folding, which, in some instances, may

be more tractable to rigorous analysis, especially in light of the fact that a number

of results on local and global behavior of the solutions of second order difference

equations are known in the literature. In the final section of this chapter, we state

several of these results (see [51] and references thereof).

Consider a second order autonomous difference equation

xn+1 = f(xn, xn−1) n = 0, 1, · · · (1.27)

where I is an interval of the real line and f : I × I → I is a map. Define

p =
∂f

∂u
(x̄, x̄) and q =

∂f

∂u
(x̄, x̄)

as partial derivatives of f(u, v) evaluated at the fixed point x̄. Then the equation

xn+1 = pxn + qxn−1 (1.28)

is called the linearization equation associated with (1.27) around the fixed point x̄

and the quadratic equation

λ2 − pλ− q = 0 (1.29)
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is the characteristic equation associated with the linearization of (1.27) around the

fixed point.

Theorem 1.22. (Linearized Stability) Let (1.28) be the linearization of (1.27) around

a fixed point x̄.

(i) If both roots of the characteristic equation (1.29) lie in an open disk |λ| < 1,

then the fixed point of (1.27) is locally asymptotically stable.

(ii) If at least one of the roots of (1.29) has modulus greater than one, then the

fixed point x̄ of (1.27) is unstable.

(iii) If one of the roots of (1.29) has modulus greater than one and the other root

has modulus smaller than one, then the fixed point x̄ is a saddle.

(iv) If both roots of (1.29) have moduli greater than one, then the fixed point x̄ is a

repeller.

The next results pertain to global attractivity of the fixed point.

Theorem 1.23. (Stability Trichotomy) Assume

f ∈ C1[[0,∞)× [0,∞), [0,∞)]

is such that

u

∣∣∣∣∂f∂u
∣∣∣∣+ v

∣∣∣∣∂f∂v
∣∣∣∣ < f(u, v) for all u, v ∈ (0,∞)

Then the difference equation in (1.27) has stability trichotomy, that is exactly one

of the following three cases holds for all solutions of (1.27):

(i) limn→∞ xn =∞ for all (x−1, x0) 6= (0, 0).
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(ii) limn→∞ xn = 0 for all initial points and 0 is the only equilibrium of (1.27).

(iii) limn→∞ xn = x̄ for all (x−1, x0) 6= (0, 0) and x̄ is the only positive equilibrium

of (1.27).

The final set of results are known in literature as M & m theorems (see [51] and

[52]), and rely on the assumption that the function f(u, v) defining the second order

difference equation is monotone in its arguments.

Theorem 1.24. Let [a, b] be an interval of real numbers and assume that

f : [a, b]× [a, b]→ [a, b]

is a continuous function with the following properties:

(i) f(x, y) is non-decreasing in x ∈ [a, b] for each y ∈ [a, b], and f(x, y) is non-

increasing in y ∈ [a, b] for each x ∈ [a, b];

(ii) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

f(m,M) = m f(M,m) = M

then m = M .

Then (1.27) has a unique fixed point x̄ ∈ [a, b] and every solution of (1.27) con-

verges to x̄.

Theorem 1.25. Let [a, b] be an interval of real numbers and assume that

f : [a, b]× [a, b]→ [a, b]

is a continuous function with the following properties:
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(i) f(x, y) is non-increasing in x ∈ [a, b] for each y ∈ [a, b], and f(x, y) is non-

decreasing in y ∈ [a, b] for each x ∈ [a, b];

(ii) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

f(M,m) = m f(m,M) = M

then m = M , i.e. the difference equation (1.27) has no solution of prime period

two in [a, b].

Then (1.27) has a unique fixed point x̄ ∈ [a, b] and every solution of (1.27) con-

verges to x̄.

Theorem 1.26. Let [a, b] be an interval of real numbers and assume that

f : [a, b]× [a, b]→ [a, b]

is a continuous function with the following properties:

(i) f(x, y) is non-increasing in each of its arguments.

(ii) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

f(m,m) = M f(M,M) = m

them m = M

Then (1.27) has a unique fixed point x̄ ∈ [a, b] and every solution of (1.27) converges

to x̄.
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CHAPTER II

Dynamics of a Second Order Rational Difference

Equation

In this chapter, we study the dynamics of the second-order equation

xn+1 = axn +
αxn + βxn−1 + γ

Axn +Bxn−1 + C
(2.1)

where

0 ≤ a < 1, α, β, γ, A,B ≥ 0, α + β + γ,A+B,C > 0 (2.2)

We investigate the boundedness and persistence of solutions, the global stability

of the positive fixed point and the occurrence of periodic solutions.1

Equation (2.1) is a quadratic-fractional equation since it can be written as

xn+1 =
aAx2

n + aBxnxn−1 + (aC + α)xn + βxn−1 + γ

Axn +Bxn−1 + C
(2.3)

and (2.3) is a special case of the equation

xn+1 =
px2

n + qxnxn−1 + δx2
n−1 + c1xn + c2xn−1 + c3

Axn +Bxn−1 + C
(2.4)

1The content of this chapter, unless otherwise indicated, is from [58].
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which includes rational equations that are the sum of linear equation and a lin-

ear/linear rational equation mentioned in [25]:

xn+1 = axn + bxn−1 +
αxn + βxn−1 + γ

Axn +Bxn−1 + C

When a = 0, the equation in (2.1) reduces to linear/linear case that has been

studied extensively together with its sub-cases in [51], [4], [5], [10], as well as [16],

[38], [53] and references thereof. More recently, second order linear/linear rational

equations have appeared in [7]- [10].

The study of rational equations with quadratic terms has been less systematic,

although the equation in (2.4) has been studied in [25], [26] and in more general cases

in [47] and [48].

In particular, in [25] it has been shown that depending on the values of parameters

and initial conditions, the equation in (2.4) can exhibit a wide variety of dynamic be-

haviors, including coexisting periodic solutions and chaotic trajectories. In contrast,

we show that when (2.2) holds, the trajectories of (2.1) are relatively well behaved:

when the function

f(u, v) = au+
αu+ βv + γ

Au+Bv + C

is monotone in its arguments, (2.1) cannot have periodic solution of period greater

than two. Moreover, we show that if (2.1) has no prime or minimal period two

solutions then the trajectories of (2.1) converge to the unique positive fixed point. We

further demonstrate how these results can be applied to the study of linear-rational

planar systems.

2.1 Existence and boundedness of solutions

When (2.2) holds we may assume that C = 1 in (2.1) without loss of generality by

dividing the numerator and denominator of the fractional part by C and relabeling
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the parameters. Thus we consider

xn+1 = axn +
αxn + βxn−1 + γ

Axn +Bxn−1 + 1
(2.5)

Note that the underlying function

f(u, v) = au+
αu+ βv + γ

Au+Bv + 1

is continuous on R+ = [0,∞). The next result gives sufficient conditions for the

positive solutions of (2.5) to be uniformly bounded from above and below by positive

bounds.

Theorem 2.1. Let (2.2) hold and assume further that

α = 0 if A = 0 and β = 0 if B = 0. (2.6)

Then the following are true:

(a) Every solution {xn} of (2.5) with non-negative intial values is uniformly

bounded from above, i.e. there is a number M > 0 such that xn ≤ M for all n

sufficiently large.

(b) If γ > 0 then there is L ∈ (0,M) such that L ≤ xn ≤ M for all large n.

Moreover, [L,M ] is an invariant interval for (2.5).

Proof. (a) Let

ρ1 =

 α/A if A > 0

0 if A = 0
ρ2 =

 β/B if B > 0

0 if B = 0

27



By (2.2), δ = ρ1 + ρ2 + γ > 0 and for all n ≥ 0

xn+1 = axn +
αxn + βxn−1 + γ

Axn +Bxn−1 + 1
≤ axn + ρ1 + ρ2 + γ = axn + δ

Let N be an integer. Then

xN+1 ≤ axN + δ

xN+2 ≤ axN+1 + δ ≤ a2xN + δ(1 + a)

Proceeding this way inductively, we obtain for all n > N

xn ≤ an−N−1xN+1 + δ(1 + a+ . . .+ an−N−2) ≤ δ

1− a
+ an−N−1

[
x0 −

δ

1− a

]

As n→∞, the second term on the right hand side of the above equation approaches

zero. In particular, for all n sufficiently large

an−N−1

[
x0 −

δ

1− a

]
≤ a

1− a

Therefore, for all n sufficiently large

xn ≤
δ

1− a
+

a

1− a
=
δ + a

1− a
:= M

(b) Suppose that γ > 0. Then for all n ≥ 1

xn ≥
γ

(A+B)M + 1
:= L

To verify that L < M we observe that

M ≥ (1− a)M = a+ δ ≥ a+ γ > a+ L ≥ L.

28



Finally, we establish that f(u, v) ∈ [L,M ] for all u, v ∈ [L,M ]. If u, v ∈ [L,M ] then

f(u, v) ≤ aM + δ =
aδ + a2

1− a
+ δ =

δ + a2

1− a
≤ δ + a

1− a
= M

Further,

f(u, v) ≥ γ

(A+B)M + 1
= L for all 0 ≤ u, v ≤M

and the proof is complete.

We emphasize that conditions (2.6) allow A > 0 with α = 0 and B > 0 with

β = 0. More instances of invariant intervals for the special case a = 0 can be found

in [51].

Remark 2.2. If a ≥ 1 then the solutions of (2.5) may not be uniformly bounded.

In fact, all non-trivial solutions of (2.5) are unbounded since xn+1 ≥ axn for all n

if a > 1. When a = 1 solutions may still be unbounded as is readily seen in the

following, first-order special case:

xn+1 = xn +
αxn

Axn + 1

2.2 Existence and local stability of a unique positive fixed

point

The fixed point of (2.5) must satisfy the following equation:

x = ax+
αx+ βx+ γ

Ax+Bx+ 1

Combining and rearranging terms yields

(1− a)(A+B)x2 − [α + β − (1− a)]x− γ = 0
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i.e. the fixed points must be the roots of the quadratic equation

S(t) = d1t
2 − d2t− d3 (2.7)

where

d1 = (1− a)(A+B), d2 = α + β − (1− a), d3 = γ

If (2.2) holds then d1 > 0 and d3 ≥ 0. There are two more cases to consider.

Case 1 : If d2 = 0 then (2.7) has two roots given by

t± = ±
√
d3

d1

Thus if γ > 0 then the unique positive fixed point of (2.5) is

x̄ =

√
γ

(1− a)(A+B)

Case 2 : When d2 6= 0 then the roots of (2.7) are given by

t± =
α + β − (1− a)±

√
[α + β − (1− a)]2 + 4(1− a)(A+B)γ

2(1− a)(A+B)

In particular, if γ > 0 then the unique positive fixed point of (2.5) is

x̄ =
α + β − (1− a) +

√
[α + β − (1− a)]2 + 4(1− a)(A+B)γ

2(1− a)(A+B)
(2.8)

The above discussions imply the following.

Lemma 2.3. If (2.2) holds and γ > 0 then (2.5) has a positive fixed point x̄ that is

uniquely given by (2.8).

We now consider the local stability of x̄ under the hypotheses of the above lemma.

The characteristic equation associated with the linearization of (2.5) at the point x̄
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is given by

λ2 − fu(x̄, x̄)λ− fv(x̄, x̄) = 0 (2.9)

where

f(u, v) = au+
αu+ βv + γ

Au+Bv + 1
.

Now,

fu = a+
α(Au+Bv + 1)− A(αu+ βv + γ)

(Au+Bv + 1)2
= a+

(Bα− Aβ)v + α− Aγ
(Au+Bv + 1)2

Similarly

fv =
β(Au+Bv + 1)−B(αu+ βv + γ)

(Au+Bv + 1)2
=

(Aβ −Bα)u+ β −Bγ
(Au+Bv + 1)2

Alternatively we can express fu in terms of f as

fu = a+
α− A(f(u, v)− au)

Au+Bv + 1
(2.10)

and likewise,

fv =
β −B(f(u, v)− au)

Au+Bv + 1
(2.11)

Define

fu(x̄, x̄) = a+
α− (1− a)Ax̄

(A+B)x̄+ 1
:= p

fv(x̄, x̄) =
β − (1− a)Bx̄

(A+B)x̄+ 1
:= q

and note that the fixed point x̄ is locally asymptotically stable if both roots of (2.9),

namely,

λ1 =
p−

√
p2 + 4q

2
and λ2 =

p+
√
p2 + 4q

2
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are inside the unit disk of the complex plain. Both roots are complex if and only if

p2 +4q < 0 or q < −(p/2)2. In this case, |λ1| = |λ2| = −q so both roots have modulus

less than 1 if and only if q > −1 or equivalently, q + 1 > 0, i.e.,

β − (1− a)Bx̄+ (A+B)x̄+ 1 > 0

(A+ aB)x̄+ β + 1 > 0

This is clearly true if (2.2) holds. So if (2.2) holds and γ > 0 and if −1 < q < −p2/4

then x̄ is locally asymptotically stable with complex roots or eigenvalues.

Now suppose that q ≥ −p2/4 and the eigenvalues are real. A routine calculation

shows that λ2 < 1 if and only if q < 1− p or equivalently,

[(2a− 1)A+ aB]x̄+ α− (A+B)x̄− (1− a) + β − (1− a)Bx̄ < 0

2(1− a)(A+B)x̄ > α + β − (1− a) (2.12)

which is true if (2.2) holds and γ > 0; see (2.8). Note that (2.12) is equivalent to

p+ q < 1.

Next, λ2 > −1 if and only if

p+
√
p2 + 4q > −2 (2.13)

If p > −2 then (2.13) holds trivially. On the other hand, if p ≤ −2 or p+ 2 ≤ 0 then

(2 + a)[(A+B)x̄+ 1] + α− (1− a)Ax̄ ≤ 0

(1 + 2a)Ax̄+ (2 + a)(Bx̄+ 1) + α ≤ 0
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which is not possible if (2.2) holds. It follows that |λ2| < 1 if (2.2) holds and γ > 0.

Next, consider λ1 and note that λ1 < 1 if and only if p −
√
p2 + 4q < 2. This is

clearly true if p < 2 which is in fact the case. To see why, note that p− 2 < 0 if and

only if

α− (1− a)Ax̄− (2− a)[(A+B)x̄+ 1] < 0 (2.14)

Since by (2.12)

(2− a)(A+B)x̄ = 2(1− a)(A+B)x̄+ a(A+B)x̄

> α + β − (1− a) + a(A+B)x̄

it follows that

α− (1− a)Ax̄− (2− a)[(A+B)x̄+ 1] = −(1− a)Ax̄− (2− a) + α− (2− a)(A+B)x̄

< −(1− a)Ax̄− (2− a)− β + (1− a)− a(A+B)x̄

= −(1− a)Ax̄− 1− β − a(A+B)x̄

< 0

This proves that (2.14) is true and we conclude that λ1 < 1 if (2.2) holds and γ > 0.

Next, λ1 > −1 if and only if

p−
√
p2 + 4q > −2.

This requires that p > −2 which is true if (2.2) holds and γ > 0. Now the above

inequality reduces to p+ 1 > q or

β − (1− a)Bx̄− a[(A+B)x̄+ 1]− α + (1− a)Ax̄ < (A+B)x̄+ 1

β − α− (1 + a) < 2(aA+B)x̄ (2.15)
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We also note that if the reverse of the above inequality holds, i.e.,

2(Aa+B)x̄ < β − α− (1 + a). (2.16)

then the above calculation show that λ1 < −1 while |λ2| < 1. Therefore in this case

x̄ is a saddle point. If β − α− (1 + a) ≤ 0 then (2.16) does not hold and x̄ is locally

asymptotically stable.

The preceding calculations in particular prove the following.

Lemma 2.4. Let (2.2) hold and γ > 0. Then the positive fixed point x̄ of (2.5) is

locally asymptotically stable if and only if (2.15) holds and a saddle point if and only

if (2.16) holds.

Since x̄ is non-hyperbolic if neither (2.15) nor (2.16) holds, Lemma 2.4 gives a

complete picture of the local stability of x̄ under its stated hypotheses.

Remark 2.5. For x̄ to be a saddle point it is necessary that β − α− (1 + a) > 0, i.e.

β > 1 + a+ α ≥ 1. (2.17)

To get a more detailed picture, we insert the value of x̄ in (2.16) and obtain, after

some routine calculations, the following equivalent version of (2.16)

(µ2−1)(β−1)2−2(1+θµ)(α+a)(β−1)+(θ2−1)(α+a) > 4(1−a)(A+B)γ (2.18)

where, assuming that a > 0 or B > 0,

µ =
1− ρ
aA+B

, θ =
1 + ρ

aA+B
, ρ =

aA+B

(1− a)(A+B)
.
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In light of (2.17) the inequality in (2.18) is more likely to hold if µ > 1, i.e. if

1− aA+B

(1− a)(A+B)
> aA+B

or equivalently,

aA+B <
A+B

A+B + 1/(1− a)
.

It is clear that this is not possible if a is sufficiently close to 1, indicating that

increasing the value of a (other parameters being fixed) is likely to stabilize the fixed

point x̄.

2.3 Global stability and convergence of solutions

We next discuss global convergence results, one of which needs the following fa-

miliar result from [41].

Lemma 2.6. Let I be an open interval of real numbers and suppose that f ∈ C(Im,R)

is nondecreasing in each coordinate. Let x̄ ∈ I be a fixed point of the difference

equation

xn+1 = f(xn, xn−1, . . . , xn−m+1) (2.19)

and assume that the function h(t) = f(t, . . . , t) satisfies the conditions

h(t) > t if t < x̄ and h(t) < t if t > x̄, t ∈ I. (2.20)

Then I is an invariant interval of (2.19) and x̄ attracts all solutions with initial values

in I.

We now use the preceding result to obtain sufficient conditions for the global

attractivity of the positive fixed point.
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Theorem 2.7. Assume that (2.2) holds with γ > 0 and suppose that f(u, v) is non-

decreasing in both arguments. Then (2.5) has a unique fixed point x̄ > 0 that is

asymptotically stable and attracts all positive solutions of (2.5).

Proof. The existence and uniqueness of x̄ > 0 follows from Lemma 2.3. Next, the

function h in (2.20) takes the form

h(t) = at+
(α + β)t+ γ

(A+B)t+ 1
.

Note that the fixed point x̄ of (2.5) is a solution of the equation h(t) = t so we

verify that conditions (2.20) hold. For t > 0 the function h may be written as

h(t) = φ(t)t, where φ(t) = a+
α + β + γ/t

(A+B)t+ 1
.

Note that φ(x̄) = h(x̄)/x̄ = 1. Further,

φ′(t) =
−[(A+B)t+ 1]γ/t2 − (A+B)[α + β + γ/t]

[(A+B)t+ 1]2

so φ is decreasing (strictly) for all t > 0. Therefore,

t < x̄ implies h(t) = φ(t)t > φ(x̄)t = t,

t > x̄ implies h(t) = φ(t)t < φ(x̄)t = t.

Now by Lemma 2.6 x̄ attracts all positive solutions of (2.5). In particular, x̄ is not a

saddle point so by Lemma 2.4 it is asymptotically stable.

The following is a corollary of the above result.

Corollary 2.8. Assume that (2.2) holds with γ > 0 and the following inequalities are

satisfied:

Bα ≤ Aβ ≤ Bα + 2aB, Aγ ≤ a+ α, Bγ ≤ β. (2.21)
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Then (2.5) has a unique fixed point x̄ > 0 that is asymptotically stable and attracts

all positive solutions of (2.5).

Proof. We show that if the inequalities (2.21) hold then the function

f(u, v) = au+
αu+ βv + γ

Au+Bv + 1

is nondecreasing in each of its two coordinates u, v. This is demonstrated by computing

the partial derivatives fu and fv to show that fu ≥ 0 and fv ≥ 0. By direct calculation

fu ≥ 0 iff

a(Au+Bv)2 + 2aAu+ (2aB +Bα− Aβ)v + a+ α− Aγ ≥ 0.

The above inequality holds for all u, v > 0 if

2aB +Bα− Aβ ≥ 0, Aγ ≤ a+ α. (2.22)

Similarly, fv ≥ 0 iff

(Aβ −Bα)u+ β −Bγ ≥ 0

which is true for all u, v > 0 if

Aβ −Bα ≥ 0, Bγ ≤ β (2.23)

By the inequalities (2.22) and (2.23), conditions (2.21) are sufficient for f to be

nondecreasing in each of its coordinates. The rest of the result follows from Theorem

2.7.

The next result pertains to the case when the function f(u, v) is nonincreasing in

both of its arguments. We use the Stability Trichotomy Theorem 1.23:
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Theorem 2.9. Assume that (2.2) holds with γ > 0 and f(u, v) is nonincreasing in

both arguments. Then (2.5) has a unique fixed point x̄ > 0 that is asymptotically

stable and attracts all positive solutions of (2.5).

Proof. Since f(u, v) is nonincreasing in both arguments, then fu, fv ≤ 0 for all u, v ≥

0. By (2.10) and (2.11) we have

u|fu|+ v|fv| = u

[
−a− α− A(f(u, v)− au)

Au+Bv + 1

]
+ v

[
B(f(u, v)− au)− β

Au+Bv + 1

]
= −au+

(f(u, v)− au)(Au+Bv)

Au+Bv + 1
− αu+ βv

Au+Bv + 1

< f(u, v)− au < f(u, v) for all u, v ∈ (0,∞). (2.24)

The rest follows from Theorem 1.23, in light of the fact that the solutions to (2.5) are

bounded by Theorem 2.1 and that x̄ is the unique positive fixed point in [0,∞).

Remark 2.10. When (2.2) holds, finding parameter values that ensure fu ≤ 0 is a

nontrivial task. It is possible for the special case a = 0 and we refer the readers to

[51] for more details. For the case when a > 0, in lieu of a corollary we pose the

following open problems.

Problem 2.11. Assume that parameters of (2.5) satisfy (2.2). Find parameter values

so that fu ≤ 0 for all u, v ≥ 0. In addition, find parameter values that ensure that (i)

fu ≤ 0, fv ≤ 0, and (ii) fu ≤ 0, fv ≥ 0 for all u, v ≥ 0.

Problem 2.12. Assume that parameters of (2.5) satisfy (2.2). Find invariant inter-

vals where (i) f(u, v) is nonincreasing in both arguments; (ii) f(u, v) is nonincreasing

in u and nondecreasing in v, for all u, v ≥ 0.

Next, we consider the case where f(u, v) is nondecreasing in u and nonincreasing

in v which involves application of Theorem (1.24.
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Theorem 2.13. Let (2.2) hold with γ > 0 and further assume that

α = 0 if A = 0.

If f(u, v) is nondecreasing in u and nonincreasing in v, then (2.5) has a positive fixed

point x̄ that attracts every solutions with non-negative initial values.

Proof. Note that by hypothesis fv ≤ 0 and this implies that β = 0 if B = 0. Now

Theorem 2.1 implies that for arbitrary positive initial values there are real numbers

L0,M0 > 0 and a positive integer N such that xn ∈ [L0,M0] for n ≥ N . Therefore, to

prove the global attractivity of x̄ we need only show that the hypotheses of Lemma

1.24 are satisfied with [a, b] = [L0,M0].

Next, consider the system

f(m,M) = m and f(M,m) = M.

Clearly, m = M = x̄ is a solution to the above system. If we assume that m 6= M ,

then the above system will have a positive solution if m,M > 0 and satisfy the

following equations:

m = am+
αm+ βM + γ

Am+BM + 1
(2.25a)

M = aM +
αM + βm+ γ

AM +Bm+ 1
. (2.25b)

From (2.25a) we get

(1− a)(Am2 +BMm+m) = αm+ βM + γ. (2.26)
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Similarly, from (2.25b) we get

(1− a)(AM2 +BMm+M) = αM + βm+ γ. (2.27)

Taking the difference of both sides of the above two equations in (2.26) and (2.27)

yields

(1− a)[A(M2 −m2) + (M −m)] = α(M −m) + β(m−M)

(1− a)(M −m)(A(m+M) + 1) = (M −m)(α− β).

When A = α = 0, then the last expression implies that the system f(m,M) =

m f(M,m) = M has no positive solution besides M = m = x̄ and we are done. We

next assume that A > 0. Since M 6= m we get

(1− a)A(m+M) = α− β − (1− a). (2.28)

From (2.28) we infer that α− β − (1− a)C > 0, or stated differently, when α− β −

(1 − a) ≤ 0, then the above system has no positive solution besides m = M = x̄.

Next, we sum the equations in (2.26) and (2.27) to get

(1− a)A(m2 +M2) + 2(1− a)BMm = (α + β − (1− a))(M +m) + 2γ.

Adding and subtracting 2A(1− a)Mm from the right hand side of the above yields

(1− a)A(m+M)2 + 2(1− a)(B − A)Mm = (α + β − (1− a))(M +m) + 2γ.
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Thus

2(1− a)(B − A)Mm = (M +m) [(α + β − (1− a)− (1− a)A(M +m)] + 2γ

= (M +m) [(α + β − (1− a)− α + β + (1− a)] + 2γ

=
2β(α + β − (1− a))

(1− a)A
+ 2γ

i.e.

(1− a)(B − A)Mm =
β[α + β − (1− a)]

(1− a)A
+ γ

from which we infer that B − A > 0, since the right hand side of (2.29) is positive.

Stated differently, this implies that when B < A, the above system has no positive

solution besides m = M = x̄.

Now, let

m+M =
α− β − (1− a)

(1− a)A
:= P

and

Mm =
β(α + β − (1− a))

(1− a)2A(B − A)
+

γ

(1− a)(B − A)
:= Q.

Then m = P −M and M(P −M) = Q. Similarly, M = P −M and m(P −m) = Q.

Thus M and m must be the roots of the quadratic equation

S(t) = t2 − Pt+Q

therefore, for the roots of S(t) to be real, we require that P 2 − 4Q > 0, i.e.

[α− β − (1− a)]2

(1− a)2A2
− 4β[α− β − (1− a)]

(1− a)2A(B − A)
− 4γ

(1− a)(B − A)
> 0
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which is equivalent to

4γ(1− a)

B − A
<
α− β − (1− a)

A

[
α− β − (1− a)

A
− 4β

B − A

]
. (2.29)

Now

α− β − (1− a)

A
− 4β

B − A
=

(B − A)(α− β − (1− a)− 4Aβ

A(B − A)

and

(B − A)[α− β − (1− a)]− 4Aβ = (B − A)(α− β − (1− a)]− 4Aβ

+ A[α− β − (1− a)]− A[α− β − (1− a)]

= (A+B)[α− β − (1− a)]− 2A[α + β − (1− a)].

Thus the inequality in (2.29) becomes

4γ(1− a)

B − A
<
α− β − (1− a)

A

[
α− β − (1− a)

A
− 4β

B − A

]
=
α− β − (1− a)

A2(B − A)
[(A+B)[α− β − (1− a)]− 2A[α + β − (1− a)]] .

Multiplying both sides by (B − A)(A+B) yields

4γ(1−a)(A+B) <
(A+B)2

A2
[α−β−(1−a)]2−2(A+B)

A
[α+β−(1−a)][α−β−(1−a)].
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Adding [α + β − (1− a)]2 to both sides we get

[α + β − (1− a)]2 + 4γ(1− a)(A+B)

< [α + β − (1− a)]2 − 2(A+B)

A
[α + β − (1− a)][α− β − (1− a)]

+
(A+B)2

A2
[α− β − (1− a)]2

= [α + β − (1− a)− A+B

A
(α− β − (1− a))]2

< [α + β − (1− a)− (α− β − (1− a)]2 = 4β2

which implies that

[α + β − (1− a)]2 + 4γ(1− a)(A+B)− 4β2 < 0. (2.30)

But since for the above system to have a solution, α−β−(1−a) > 0, then α−(1−a) >

β. This implies that the inequality in (2.30) is false (i.e. the roots of S(t) cannot be

real), as

[α + β − (1− a)]2 + 4γ(1− a)(A+B)− 4β2 > (2β)2 + 4γ(1− a)(A+B)− 4β2

= 4γ(1− a)(A+B) > 0.

Thus the system f(m,M) = m, f(M,m) = M has no positive solution where m 6= M .

Theorem 2.1 implies that for arbitrary positive initial values, there is an integer N

such that xn ∈ [L,M ] for n > N , so with [a, b] = [L,M ] and xN and xN+1 as initial

values, xn must converge to x̄ by Lemma 1.24.

Corollary 2.14. Assume that (2.2) holds with γ,A,B > 0 and the following condi-

tions hold:

α

A
≥ γ ≥ β

B
. (2.31)
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Then (2.5) has a unique positive fixed point x̄ that is asymptotically stable and attracts

all solutions of (2.5).

Proof. The condition in (2.31) are sufficient to ensure that fu ≥ 0 and fv ≤ 0 for all

u, v ≥ 0, and the result follows from Theorem 2.13.

The case when f(u, v) is nonincreasing in the first argument and nondecreasing in

the second argument is considered in one of the following sections, where we discuss

periodic solutions.

2.4 Periodic solutions

We consider some conditions that lead to the occurrence of periodic solutions of

(2.5). In this section, we explicitly assume that Aa+B > 0. By assumption in (2.2),

Aa+B = 0 implies that a = B = 0, which reduces (2.5) to the second-order rational

equation

xn+1 =
αxn + βxn−1 + γ

Axn + 1
(2.32)

which has been studied in [51], p. 167. In particular, it was shown that when

β = α + 1

then every solution of (2.32) converges to a period-two solution. For Aa + B > 0,

we show that when the function f is monotone in its arguments, then (2.5) does not

have periodic solutions of prime period greater than two.

2.4.1 Prime period two solutions

The equation

xn+1 = axn +
αxn + βxn−1 + γ

Axn +Bxn−1 + 1
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has a positive prime period two solution if there exist real numbers m,M > 0, with

m 6= M , such that

m = aM +
αM + βm+ γ

AM +Bm+ 1
and M = am+

αm+ βM + γ

Am+BM + 1
. (2.33)

From (2.33) we obtain

(m− aM)(AM +Bm+ 1) = αM + βm+ γ (2.34)

(M − am)(Am+BM + 1) = αm+ βM + γ. (2.35)

Taking the difference of right and left hand sides of (2.34) and (2.35) and rearranging

the terms yields

(Aa+B)(m−M)(m+M) = (m−M)(β − α− (1 + a))

or

m+M =
β − α− (1 + a)

Aa+B
. (2.36)

Since Aa + B > 0, we infer from (2.36) that β − α − C(1 + a) > 0 is a necessary

condition for existence of positive period two solutions. Similarly, adding the right

and left hand sides of (2.34) and (2.35) and rearranging the terms yields

2(A− aB)Mm = (α + β − (1− a))(M +m) + (Aa−B)(m2 +M2) + 2γ.

Adding an subtracting 2(Aa−B) yields

2(1 + a)(A−B)Mm = (m+M) [(α + β − (1− a)) + (Aa−B)(m+M)] + 2γ.
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Inserting from (2.36) the expression for m+M inside the square bracket yields

2(1 + a)(A−B)Mm = (M +m)

[
(α + β − (1− a)) +

Aa−B
Aa+B

(β − α− C(1 + a))

]
+ 2γ

=
2(M +m)

Aa+B
[Aa(β − 1) +B(α + a)] + 2γ.

Thus

(1 + a)(A−B)Mm =

[
β − α− (1 + a)

(Aa+B)2

]
[Aa(β − 1) +B(α + a)] + γ. (2.37)

Since from (2.36) we have β − α − (1 + a) > 0, then β − 1 > 0. Thus the right

hand side of (2.37) is positive and therefore, A−B > 0 is another necessary condition

for existence of positive period two solution and

Mm =
1

(1 + a)(A−B)

[ [
β − α− (1 + a)

(Aa+B)2

]
[Aa(β − 1) +B(α + a)] + γ

]
. (2.38)

Let

P =
β − α− (1 + a)

Aa+B

and

K =
1

(1 + a)(A−B)

[[
β − α− (1 + a)

(Aa+B)2

]
[Aa(β − 1) +B(α + a)] + γ

]

with P,K > 0. From (2.36) we obtain

m =
β − α− (1 + a)

Aa+B
−M = P −M.

Inserting the above into (2.38) yields

M(P −M) = K or M2 − PM +K = 0. (2.39)
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Similarly, an identical expression can be obtained for m, i.e.

m2 − Pm+K = 0. (2.40)

Thus M and m must be the real and positive roots of the quadratic equation

Q(t) = t2 − Pt+K

with

t =
P ±
√
P 2 − 4K

2

which will be the case if and only if

P 2 − 4K > 0

or equivalently,

4γ

(1 + a)(A−B)
<

[
β − α− (1 + a)

Aa+B

] [
β − α− (1 + a)

Aa+B
− 4 [Aa(β − 1) +B(α + a)]

(1 + a)(A−B)(Aa+B)

]
.

(2.41)

We summarize the above results as follows:

Theorem 2.15. Assume that (2.2) holds with γ,Aa + B > 0. Then (2.5) has a

positive prime period two solution if and only if the following conditions are satisfied:

1. β − α− (1 + a) > 0

2. A−B > 0

3. 4γ
(1+a)(A−B)

<
[
β−α−(1+a)
Aa+B

] [
β−α−(1+a)
Aa+B

− 4[Aa(β−1)+B(α+a)]
(1+a)(A−B)(Aa+B)

]
.

The next results pertain to the case when f(u, v) is monotone in its arguments

and this holds for any difference equation of second-order.
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Theorem 2.16. Let D be a subset of real numbers and assume that

f : D ×D → D

is non-decreasing in x ∈ D for each y ∈ D and non-increasing in y ∈ D for each

x ∈ D. Then the difference equation

xn+1 = f(xn, xn−1)

has no prime period two solution.

Proof. Assume that the above difference equation has prime period two solution.

Then there exist real numbers m and M , such that

f(m,M) = M and f(M,m) = m.

When m = M , we’re done. So assume that m 6= M .

If m < M , then by the hypothesis

f(m,M) ≤ f(M,M) ≤ f(M,m)

which implies that M ≤ m, which is a contradiction. Similarly, if m > M , then by

the hypothesis

f(M,m) ≤ f(M,M) ≤ f(m,M)

which implies that m ≥M , which is also a contradiction.

Remark 2.17. If (2.2) holds and γ,Aa+B > 0, we observe the following:

(a) When f(u, v) is nondecreasing in both arguments, then by Theorem 2.7, the

fixed point x̄ is globally asymptotically stable, so no periodic solutions exist.
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(b) When f(u, v) is nonincreasing in both arguments, then by Theorem 2.9, the

fixed point x̄ is globally asymptotically stable, so no periodic solutions exist.

(c) When f(u, v) is nondecreasing in u and nonincreasing in v, then by Theo-

rem 2.16 no period two solution exists. Moreover, by Theorem 2.13 x̄ is globally

asymptotically stable, so no periodic solutions of other periods exist.

(d) From (a)-(c) we conclude that the only case that periodic solutions may exist

is when f(u, v) is nonincreasing in u and nondecreasing in v (or f is non-monotone).

In addition, all the conditions in Theorem 2.15 must also be satisfied.

Theorem 2.18. Let (2.2) hold with γ,Aa + B > 0 and assume that f(u, v) is non-

increasing in u and nondecreasing in v. Then (2.5) has a positive fixed point x̄ that

attracts every solution of (2.5) if either of the conditions below fails:

1. β − α− (1 + a) > 0

2. A−B > 0

3. 4γ
(1+a)(A−B)

<
[
β−α−(1+a)
Aa+B

] [
β−α−(1+a)
Aa+B

− 4[Aa(β−1)+B(α+a)]
(1+a)(A−B)(Aa+B

]
.

Proof. The failure of either of the above conditions implies that (2.5) has no positive

prime period two solution. Theorem 1 implies that for arbitrary positive initial values,

there is an integer N such that xn ∈ [L,M ] for n > N so with [a, b] = [L,M ] and xN

and xN+1 as initial values, xn must converge to x̄ by Lemma 1.25.

Our final result of this section establishes the connection between existence of

prime period two solution and the stability of the fixed point.

Theorem 2.19. Let(2.2) holds with γ,Aa+B > 0. Then (2.5) has a positive prime

period two solution if and only it x̄ is a saddle.
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Proof. First, when α + β − (1 − a) = 0, then the fixed point x̄ is given by x̄ =√
γ

(1−a)(A+B)
. This implies that

β − α− (1 + a) < 0

and on the one hand, x̄ must be stable and more importantly, (2.5) has no prime

period two solution and there is nothing further to consider for this case.

Now assume that α + β − (1− a) 6= 0. Then the fixed point is given by

x̄ =
α + β − (1− a) +

√
(α + β − (1− a))2 + 4(1− a)(A+B)γ

2(1− a)(A+B)
.

By Lemma 2.4, x̄ is a saddle if and only if

x̄ <
β − α− (1 + a)

2(Aa+B)

which implies that β − α− (1 + a) > 0.

Now

x̄ <
β − α− (1 + a)

2(Aa+B)

iff

α + β − (1− a) +
√

(α + β − (1− a))2 + 4(1− a)(A+B)γ

2(1− a)(A+B)
<
β − α− (1 + a)

2(Aa+B)

iff

√
(α + β − (1− a))2 + 4(1− a)(A+B)γ

(1− a)(A+B)
<
β − α− (1 + a)

(Aa+B)
− α + β − (1− a)

(1− a)(A+B)
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iff

√
(α + β − (1− a))2 + 4(1− a)(A+B)γ <

(1− a)(A+B)(β − α− (1− a)

Aa+B

− [α + β − (1− a)]

iff

(α + β − (1− a))2 + 4(1− a)(A+B)γ <
(1− a)2(A+B)2(β − β − (1 + a)2

(Aa+B)2

− 2(1− a)(A+B)(α + β − (1− a))(β − α− (1 + a)

Aa+B

+ (α + β − (1− a))2

iff

4(1− a)(A+B)γ <
(1− a)2(A+B)2(β − β − (1 + a)2

(Aa+B)2

− 2(1− a)(A+B)(α + β − (1− a))(β − α− (1 + a))

Aa+B

iff

4γ <
(1− a)(A+B)(β − α− (1 + a))

(Aa+B)2
− 2(α + β − (1− a))(β − α− (1 + a))

Aa+B

=
(β − α− (1 + a))

Aa+B

[
(1− a)(A+B)(β − α− (1 + a))

Aa+B
− 2(α + β − (1− a))

]
=

(β − α− (1 + a))

Aa+B

[
(1− a)(A+B)(β − α− (1 + a))− 2(Aa+B)(α + β − (1− a))

Aa+B

]
.

Adding and subtracting (1+a)(A−B)[β−α−(1+a)] to the numerator of the second
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fraction in previous equation yields

(1− a)(A+B)(β−α− (1 + a))− 2(Aa+B)(α + β − (1− a))

= (1 + a)(A−B)[β − α− (1 + a)]− 4Aa(β − 1)− 4B(α + a).

Thus we have

4γ <
β − α− (1 + a)

Aa+B

[
(1 + a)(A−B)(β − α− (1 + a))− 4 [Aa(β − 1) +B(α + a)]

Aa+B

]
.

Note that since γ > 0, it must be the case that the right hand side of the last

expression is positive, which implies that A−B > 0. Dividing both sides of the above

expression by (1 + a)(A−B) then yields:

4γ

(1 + a)(Aa+B)
<
β − α− (1 + a)

Aa+B

[
(β − α− (1 + a))

Aa+B
− 4 [Aa(β − 1) +B(α + a)]

(Aa+B)(1 + a)(A−B)

]

and the proof is complete, since the conditions Theorem 2.15 are satisfied.

We end our discussion with the following corollaries that immediately follow from

the results discussed in previous sections.

Corollary 2.20. Let (2.2) hold with γ,Aa + B > 0. If f(u, v) is monotone in its

arguments, then (2.5) has no periodic solution of period greater than two.

Corollary 2.21. Let (2.2) hold with γ,Aa + B > 0. If f(u, v) is monotone in its

arguments and if (2.5) has no period two solution, then all solutions of (2.5) converge

to x̄ > 0.

The above results give partial answers to two conjectures posed by [51] in their

monograph for the special case a = 0.
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2.5 Concluding remarks and further considerations

We studied the dynamics of a second order quadratic fractional difference equa-

tion with non-negative parameters and initial values. We showed that under the

above assumptions, the equation typically does not have periodic solutions of period

greater than two. Further, we showed that if period two cycles do not occur then

the solutions converge to the unique positive fixed point. When aA + B, γ > 0 we

obtained necessary and sufficient conditions for the occurrence of periodic solutions

and in particular proved that such solutions may appear if and only if the positive

fixed point is a saddle.

The results establishing convergence to the positive fixed point essentially require

the function defining the second order equation to be monotone. Instances when this

hypothesis fails were not addressed and could be investigated next.

A natural extension for future research involves addition of a linear delay term to

the above equation, i.e. the study of

xn+1 = axn + bxn−1 +
αxn + βxn−1 + γ

Axn +Bxn−1 + C
(2.42)

as well as the more general case given by

xn+1 =
px2

n + qxnxn−1 + δx2
n−1 + c1xn + c2xn−1 + c3

Axn +Bxn−1 + C
(2.43)

Possible generalizations could include instances where quadratic terms also appear

in the denominator.
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CHAPTER III

Dynamics of a Second Order Exponential

Difference Equation

In this chapter, we study the nonautonomous second order difference equation

given by

rn+1 = µnrn−1e
−rn−1−rn (3.1)

where coefficients {µn} are assumed to be a sequence of positive real numbers.1 The

equation in (3.1) can be written as

rn+1 = rn−1e
an−rn−1−rn (3.2)

where an = lnµn may not always be positive. We prove general results on bounded-

ness and convergence of solutions of (3.2) to zero for arbitrary sequence of coefficients

{an}. We then examine the equation in (3.2) where the sequence {an} is assumed

to be periodic with period p ≥ 1. When p = 1, an are constant, in which case (3.2)

reduces to an autonomous second order difference equation. For this case, we estab-

lish that the solutions of (3.2) can exhibit complex and multistable behavior. We

then examine cases where p > 1 and show that the nature of the solutions of (3.2) is

1The content of this chapter, unless otherwise noted, is from [57] and [59].
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qualitatively different depending on whether p is even or odd. In both cases, we show

that the solutions of (3.2) can exhibit periodic and non-periodic multistable behavior.

3.1 General results

We first establish several general results that apply to (3.2) where {an} is assumed

to be an arbitrary sequence. We look at boundedness of solutions, as well as conditions

under which solutions converge to zero. We then consider the reduction of order of

(3.2) by semiconjugate factorization that significantly facilitates further analysis (see

[83] for further details).

3.1.1 Boundedness and global convergence to zero

Theorem 3.1. Let {an} be a sequence of real numbers satisfying

sup
n≥0

an = a <∞ (3.3)

Then the solutions of (3.2) from initial values r0, r−1 ≥ 0 are uniformly bounded by

ea−1.

Proof. Clearly, for r0, r−1 ≥ 0, rn ≥ 0 for all n > 0. Next

rn+1 = rn−1e
an−rn−1−rn

≤ eanrn−1e
−rn−1

≤ ean−1 ≤ ea−1 <∞

as the function xe−x attains a maximum at e−1. Thus 0 ≤ rn ≤ L for all n > 0 and

the proof is complete.

Theorem 3.2. Assume {an} is a sequence of real numbers satisfying
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lim sup
n→∞

an < 0 (3.4)

Then the solutions of (3.2) from initial values r0, r−1 > 0 converge to 0.

Proof. Given initial values r0, r−1 ≥ 0, we have

0 ≤ r1 = r−1e
a0−r−1−r0 ≤ ea0r−1

0 ≤ r2 = r0e
a1−r0−r1 ≤ ea1r0

0 ≤ r3 = r1e
a2−r1−r2 ≤ ea2r1 ≤ ea0ea2r−1

0 ≤ r4 = r2e
a3−r2−r3 ≤ ea3r2 ≤ ea3ea1r0

Continuing this way inductively, one may show that for all n ≥ 0

0 ≤ r2n+1 ≤ r−1

n∏
j=0

ea2j

0 ≤ r2n+2 ≤ r0

n∏
j=0

ea2j+1

Since by hypothesis ean < 1 for infinitely many n, then rn → 0 as n → ∞, which

completes the proof.

3.1.2 Reduction of order

The study of (3.2) is facilitated by the fact that it admits a semiconjugate factor-

ization that splits it into two equations of order one. Following [83], we define

tn =
rn

rn−1e−rn−1
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for each n ≥ 1 and note that

tn+1tn =
rn+1

rne−rn
rn

rn−1e−rn−1
=

rn+1

rn−1e−rn−1−rn
= ean

or equivalently,

tn+1 =
ean

tn
. (3.5)

Now

rn+1 = eanrn−1e
−rn−1e−rn = ean

rn
tn
e−rn =

ean

tn
rne
−rn = tn+1rne

−rn (3.6)

The pair of equations (3.5) and (3.6) constitute the semiconjugate factorization

of (3.2):

tn+1 =
ean

tn
, t0 =

r0

r−1e−r−1
(3.7)

rn+1 = tn+1rne
−rn (3.8)

Every solution {rn} of (3.2) is generated by a solution of the system (3.7)-(3.8).

Using the initial values r−1, r0 we obtain a solution {tn} of the first-order equation

(3.7), called the factor equation. This solution is then used to obtain a solution of

the cofactor equation (3.8) and thus also of (3.2).

For an arbitrary sequence {an} and a given t0 6= 0 by iterating (3.7) we obtain

t1 =
ea0

t0
, t2 =

ea1

t1
= t0e

−a0+a1 , t3 =
ea2

t2
=

1

t0
ea0−a1+a2 , t4 =

ea3

t3
= t0e

−a0+a1−a2+a3 , · · ·

This pattern of development implies the following result.

Lemma 3.3. Let {an} be an arbitrary sequence of real numbers and t0 6= 0. The
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general solution of (3.7) is given by

tn = t
(−1)n

0 e(−1)nsn , n = 1, 2, ... (3.9)

where

sn =
n∑
j=1

(−1)jaj−1 (3.10)

Proof. For n = 1, (3.9) yields

t1 = t−1
0 e−s1 =

1

t0
e−(−a0) =

ea0

t0

which is true. Suppose that (3.9) is true for n ≤ k. Then by (3.9) and (3.10)

tk+1 = t
(−1)k+1

0 e(−1)k+1sk+1 =
1

t
(−1)k

0 e(−1)ksk
e(−1)2k+2ak =

eak

tk

which is again true and the proof is now complete by induction.

Note that the solution {tn} of (3.7) in the preceding lemma need not be bounded

even if {an} is a bounded sequence.

From the cofactor equation (3.8) we obtain

r2n+2 = t2n+2r2n+1e
−r2n+1 = t2n+2t2n+1r2n exp(−r2n − t2n+1r2ne

−r2n)

r2n+1 = t2n+1r2ne
−r2n = t2n+1t2nr2n−1 exp

(
−r2n−1 − t2nr2n−1e

−r2n−1
)

For every solution {tn} of (3.7), tn+1tn = ean for all n, so the even terms of the

sequence {rn} are

r2n+2 = r2n exp
(
a2n+1 − r2n − t2n+1r2ne

−r2n
)

(3.11)
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and the odd terms are

r2n+1 = r2n−1 exp
(
a2n − r2n−1 − t2nr2n−1e

−r2n−1
)

(3.12)

In the next sections, we explore the behavior of {rn} when the sequence {an} is

periodic with minimal period p ≥ 1. We start with the case when p = 1, which

reduces the equation in (3.2) into an autonomous equation. We then consider the

case when the period p is odd, followed by the case when the period p is even.

3.2 Autonomous equation: the case when p = 1

When the sequence {an} is constant, i.e. an = a for n ≥ 0, the equation in (3.2)

reduces to the autonomous case given by

rn+1 = rn−1e
a−rn−1−rn (3.13)

The boundedness of the solutions of (3.13) follows as a consequence of Theorem

3.1, which we state as a corollary below:

Corollary 3.4. Let a be a real number. Then the solutions of (3.13) from initial

values of r0, r−1 > 0 are uniformly bounded.

All solutions of the factor equation in (3.7) with constant an = a and t0 6= ea/2

are periodic with period 2:

{
t0,

ea

t0

}
=

{
r0

r−1e−r−1
,
r−1e

a−r−1

r0

}
.

3.2.1 Fixed points, global stability

It is useful to begin the study of (3.13) by examining the fixed points, which must

satisfy the equation
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r = rea−2r

Theorem 3.5. Assume that a < 0. Then

(a) The equation in (3.13) has a unique fixed point at 0 that is locally asymptotically

stable.

(b) All solutions from nonnegative initial values r0, r−1 converge to 0.

Proof. Clearly, 0 is the fixed point of (3.13) and when a < 0, 0 is the only fixed point.

It is straightforward to check that the eigenvalues of the linearization of (3.13) at 0

are given by ±ea/2 which proves part (a). Part(b) follows from Theorem 3.2.

If a > 0, then (3.13) has two fixed points: 0 and a positive fixed point r̄ = a/2. In

this case, the eigenvalues of the linearization at 0 are greater than 1 in modulus, hence

0 is an unstable fixed point. On the other hand, the eigenvalues of the linearization

of (3.13) are −1 and a/2, showing that r̄ is nonhyperbolic.

The next result is proved in [37].

Theorem 3.6. If a ∈ (0, 1] then every non-constant, positive solution of (3.13) con-

verges to a 2-cycle whose consecutive points satisfy rn + rn+1 = a, i.e. the mean value

of the limit cycle is the fixed point r̄ = a/2.

The two-cycle in Theorem 3.6 is not unique–it is determined by the initial values.

In the next section, we derive the precise mechanism that explains this, and much

more complex behavior below. In particular, we extend Theorem 3.6 by showing that

it holds for a ∈ (0, 2].

3.2.2 Complex multistable behavior

The behavior of solutions of (3.13) is sufficiently unusual that we use the numerical

simulation depicted in Figure 3.1 to motivate the subsequent discussion.
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Figure 3.1: Bifurcation of multiple stable solutions in the state-space

In Figure 3.1, a = 4.5, r−1 = a/2 = 2.25 is fixed and r0 ∈ (0,∞) acts as a

bifurcation parameter. The changing values of r0 are shown on the horizontal axis in

the range 2.5 to 6.5. For every grid value of r0 in the indicated range, 300 points of the

corresponding solution {rn} are plotted vertically. In this figure, coexisting solutions

with periods 2, 4, 8 and 16 are easily identified. The solutions shown in Figure 3.1

are stable since they are generated by numerical simulation, so that qualitatively

different, stable solutions exist for (3.13) for different initial values. In the remainder

of this section we explain this abundance of multistable solutions for (3.13) using the

reduction (3.7)-(3.8).

Since the solutions of (3.7) with constant an = a and t0 6= ea/2 are periodic with

period 2, the orbit of each nontrivial solution {rn} of (3.13) in its state-space, namely,

the (rn, rn+1)-plane, is restricted to the class of curve-pairs

g0(r, t0) = t0re
−r and g1(r, t0) = t1re

−r, t1 =
ea

t0
(3.14)

These one-dimensional mappings form the building blocks of the two-dimensional,
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standard state-space map F of (3.13), i.e.

F (u, r) = (r, uea−u−r).

There are, of course, an infinite number of initial value-dependent curve-pairs for the

map F.

The next result indicates the specific mechanism for generating the solutions of

(3.13) from its semiconjugate factorization.

Lemma 3.7. Let a > 0 and let {rn} be a solution of (3.13) with initial values r−1, r0 >

0.

(a) For k = 0, 1, 2, . . . and t0 as defined in (3.7)

r2k+1 = g1 ◦ g0(r2k−1, t0), r2k+2 = g0 ◦ g1(r2k, t0)

Thus, the odd terms of every solution of (3.13) are generated by the class of one-

dimensional maps g1 ◦ g0 and the even terms by g0 ◦ g1;

(b) If the initial values r−1, r0 satisfy

r0 = r−1e
a/2−r−1 (3.15)

then g0(r, t0) = g1(r, t0) = rea/2−r; i.e. the two curves g0 and g1 coincide with the

curve

g(r)
.
= rea/2−r

The trace of g contains the fixed point (r̄, r̄) in the state-space and is invariant

under F.
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Proof. (a) For k = 0, 1, 2, . . . (3.8) implies that

r2k+1 = t2k+1r2ke
−r2k = t1r2ke

−r2k = g1(r2k, t0)

r2k = t2kr2k−1e
−r2k−1 = t0r2k−1e

−r2k−1 = g0(r2k−1, t0)

Therefore,

r2k+1 = g1(g0(r2k−1, t0), t0) = g1 ◦ g0(r2k−1, t0)

A similar calculation shows that

r2k+2 = g0(g1(r2k, t0), t0) = g0 ◦ g1(r2k, t0)

and the proof of (a) is complete.

(b) Note that g(r̄) = r̄ea/2−r̄ = r̄ so the trace of g contains (r̄, r̄). The curves g0, g1

coincide if t0 = ea/t0, i.e. t0 = ea/2. This happens if the initial values r−1, r0 satisfy

(3.15). In this case, (r−1, r0) is clearly on the trace of g and by (3.8)

r1 = t1r0e
−r0 =

ea

t0
r0e
−r0 = t0r0e

−r0 = g(r0)

Therefore, the point (r0, r1) is also on the trace of g. Since tn = t0 for all n if

t0 = ea/2 the same argument applies to (rn, rn+1) for all n and completes the proof

by induction.

Note that the invariant curve g does not depend on initial values. There is also

the following useful fact about g.

Lemma 3.8. The mapping g has a period-three point for a ≥ 6.26.

Proof. Let d = a/2. The third iterate of g is

g3(r) = r exp(3d− r − 2red−r + ed−re
d−r

)
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In particular,

g3(1) < exp(3d− 1− ed−1)
.
= h(d)

Solving h(d) = 1 numerically yields the estimate d ≈ 3.12. Since h(d) is decreasing

if d > 2.1 it follows that h(d) < 1 if d ≥ 3.13. Therefore, g3(1) < 1 for a ≥ 6.26.

Further, for ε ∈ (0, d)

g3(d− ε) > (d− ε) exp
[
2d+ ε− 2(d− ε)eε + ed(1−eε)]

> (d− ε) exp[e−d(eε−1) − 2d(eε − 1)]

For sufficiently small ε the exponent is positive so we may assert that

g3(1) < 1 < d− ε < g3(d− ε)

Hence, there is a root of g3(r), or a period-three point of g in the interval (1, a) if

d ≥ 3.13, i.e. a ≥ 6.26.

The function compositions in Lemma 3.7 are specifically the following mappings:

g1 ◦ g0(r, t0) = rea−r−t0re
−r
,

g0 ◦ g1(r, t0) = rea−r−t1re
−r
, t1 =

ea

t0
.

To simplify our notation, for each t ∈ (0,∞) define the class of functions ft :

(0,∞)→ (0,∞) as

ft(r) = rea−r−tre
−r
.

We also abbreviate ft0 as f0, ft1 as f1, g0(·, t0) as g0 and g1(·, t0) as g1. Then we see

from the preceding discussion that

g1 ◦ g0 = f0, g0 ◦ g1 = f1. (3.16)
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According to Lemma 3.7, iterations of f0 generate the odd-indexed terms of a

solution of (3.13) and iterations of f1 generate the even-indexed terms.

The next result furnishes a relationship between fi and gi for i = 0, 1.

Lemma 3.9. Let t0 ∈ (0,∞) be fixed and t1 = ea/t0. Then

f1 ◦ g0 = g0 ◦ f0 and f0 ◦ g1 = g1 ◦ f1. (3.17)

Proof. This may be established by straightforward calculation using the definitions

of the various functions, or alternatively, using (3.16) to obtain

f1 ◦ g0 = (g0 ◦ g1) ◦ g0 = g0 ◦ (g1 ◦ g0) = g0 ◦ f0

This proves the first equality in (3.17) and the second equality is proved similarly.

The equalities in (3.17) are not conjugacies since g0 and g1 are not one-to-one.

However, the following is implied.

Lemma 3.10. (a) If {s1, s2, . . . , sq} is a q-cycle of f0, i.e. a solution (listed in the

order of iteration) of

sn+1 = f0(sn) = sne
a−sn−t0sne−sn (3.18)

with minimal (or prime) period q ≥ 1 then {g0(s1), g0(s2), . . . , g0(sq)} is a q-cycle of

f1, i.e. a solution of

un+1 = f1(un) = une
a−un−t1une−un (3.19)

with period q (listed in the order of iteration). Similarly, if {u1, u2, . . . , uq} is a q-cycle

of f1, i.e. a solution of (3.19) with minimal period q ≥ 1 then {g1(u1), g1(u2), . . . , g1(uq)}

is a q-cycle of f0, i.e. solution of (3.18) with period q.

(b) If {sn} is a non-periodic solution of (3.18) then {g0(sn)} is a non-periodic

solution of (3.19). Similarly, if {un} is a non-periodic solution of (3.19) then {g1(un)}
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is a non-periodic solution of (3.18).

Proof. (a) By the hypothesis, f0(sn+q) = sn for all n and in the order of iteration

f0(sk) = sk+1 for k = 1, . . . , q − 1 and f0(sq) = s1.

By Lemma 3.9,

f1(g0(sn+q)) = g0(f0(sn+q)) = g0(sn)

and also

f1(g0(sk)) = g0(f0(sk)) = g0(sk+1) for k = 1, . . . , q − 1,

f1(g0(sq)) = g0(f0(sq)) = g0(s1)

It follows that {g0(s1), g0(s2), . . . , g0(sq)} is a periodic solution of (3.19) with period

q, listed in the order of iteration. The rest of (a) is proved similarly.

(b) Let {sn} be a solution of (3.18) such that {g0(sn)} is a periodic solution of

(3.19). Then {g1(g0(sn))} is a periodic solution of (3.18) by (a). Since g1(g0(sn)) =

f0(sn) by (3.16) we may conclude that there is a positive integer q such that f q0 (sn) =

f0(sn) = sn+1 for all n. Thus sn+1 = f q−1
0 (sn+1) for all n and it follows that {sn} is a

periodic solution of (3.18). This proves the first assertion in (b); the second assertion

is proved similarly.

The next result concerns the local stability of the periodic solutions of (3.18) and

(3.19).

Lemma 3.11. If {s1, s2, . . . , sq} is a periodic solution of (3.18) with minimal period

q such that sk 6= 1 for k = 1, 2, . . . , q and

q∏
k=1

f ′0(sk) < 1 (3.20)
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then {g0(s1), . . . , g0(sq)} is a solution of (3.19) of period q with
q∏

k=1

f ′1(g0(sk)) < 1.

Similarly, if {u1, u2, . . . , uq} is a periodic solution of (3.19) with uk 6= 1 for k =

1, 2, . . . , q and
q∏

k=1

f ′1(uk) < 1

then {g1(u1), g1(u2), . . . , g1(uq)} is a solution of (3.18) of period q with
q∏

k=1

f ′0(g1(uk)) <

1.

Proof. By Lemma 3.9 and the chain rule

f ′1(g0(r))g′0(r) = g′0(f0(r))f ′0(r)

Now g′0(r) = (1− r)t0e−r 6= 0 if r 6= 1. Thus if sk 6= 1 for k = 1, 2, . . . , q then

q∏
k=1

f ′1(g0(sk)) =
g′0(f0(s1))f ′0(s1)

g′0(s1)

g′0(f0(s2))f ′0(s2)

g′0(s2)
· · · g

′
0(f0(sq))f

′
0(sq)

g′0(sq)

=
g′0(s2)f ′0(s1)

g′0(s1)

g′0(s3)f ′0(s2)

g′0(s2)
· · · g

′
0(s1)f ′0(sq)

g′0(sq)

=

q∏
k=1

f ′0(sk) < 1

The second assertion is proved similarly.

We are now ready to explain some of what appears in Figure 3.1.

Theorem 3.12. Let a > 0.

(a) Except among solutions whose initial values satisfy (3.15) there are no positive

solutions of (3.13) that are periodic with an odd period.

(b) If a ≥ 6.26 and (3.15) holds, then (3.13) has periodic solutions of all possible

periods, including odd periods, as well as chaotic solutions in the sense of Li and

Yorke.
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(c) Let r−1, r0 > 0 be given initial values and define t0 by (3.7). Assume that

t0 6= ea/2 and the sequence of iterates {fn0 (r−1)} of the map f0 converges to a minimal

q-cycle {s1, . . . , sq}. Then the corresponding solution {rn} of (3.13) converges to the

cycle {s1, g0(s1), . . . , sq, g0(sq)} of minimal period 2q in the sense that

lim
k→∞
|r2(k+j)−1 − sj| = lim

k→∞
|r2(k+j) − g0(sj)| = 0 for j = 1, . . . , q (3.21)

(d) If {s1, . . . , sq} in (c) satisfies (3.20) and sj 6= 1 for j = 1, . . . , q then for intial

values r′−1 > 0 and r′0 = g0(r′−1) where |r′−1 − r−1| is sufficiently small, the sequence

{fn0 (r′−1)} converges to {s1, . . . , sq} and (3.21) holds.

(e) Let r−1, r0 > 0 be given initial values and define t0 by (3.7). If the sequence

of iterates {fn0 (r−1)} of the map f0 is non-periodic then (3.13) has a non-periodic

solution.

Proof. (a) This statement is an immediate consequence of Lemma 3.7 since the num-

ber of points in a cycle must divide two, i.e. the number of curves g0, g1. An exception

occurs when (3.15) holds and the curves g0, g1 coincide.

(b) Suppose that the initial values r−1, r0 satisfy (3.15). Then g0 = g1 = g

and the trace of g contains the orbits of (3.13) since the trace of g is invariant by

Lemma 3.7. By Lemma 3.8 g has a period-three point if a ≥ 6.26 and in this case,

(3.13) has solutions with all possible periods in the state-space, including odd periods.

In addition, iterates of g also exhibit chaos in the sense of [65]. For (3.13) this is

manifested in the state-space on the trace of g if the initial point (r−1, r0) is on the

trace of g. For arbitrary initial values, odd periods do not occur by (a) and chaotic

behavior generally occurs on the pair of curves g0, g1; see the Remark following this

proof.

(c) This is an immediate consequence of Lemmas 3.7 and 3.10.

(d) If |r′−1 − r−1| is sufficiently small then Lemma 3.11 implies that the sequence
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{fn0 (r′−1)} converges to {s1, . . . , sq}. Now, if r′0 = g0(r′−1) then r′0/r
′
−1e

r′−1 = t0 and

thus, (3.21) holds by Part (c).

(e) This is clear from Lemmas 3.7 and 3.10.

Remark 3.13. 1. Theorem 3.12 explains how qualitatively different solutions in Figure

3.1 are generated by different initial values. Changes in the initial value r0 of (3.13)

while r−1 is fixed result, by (3.7) in changes in the parameter value t0 in the mapping

f0. The one-dimensional map f0 generates different types of orbits with different

values of t0 in the conventional way that is explained by the basic theory. All of these

orbits, combined with the iterates of the shadow map f1 appear in the state-space of

(3.13) as points on the aforementioned pair of curves.

2. Part (d) of Theorem 3.12 explains the sense in which the solutions of (3.13)

are stable and therefore appear as shown in Figure 3.1. This is not local or linearized

stability since if r′0 6= g0(r′−1) then

t′0 =
r′0

r′−1e
−r′−1

6= t0

and with the different parameter value t′0, {fn0 (r′−1)} may not converge to {s1, . . . , sq}

even if |r′−1 − r−1| is small enough to imply local convergence for the iterates of f0

defined with the original value t0.

3. In Parts (a) and (b) of Theorem 3.12 if the initial point is not on the trace of

g then the occurrence of all possible even periods and chaotic behavior is observed

for smaller values of a. In fact, since g involves a/2 but f0 involves a it follows that

f0 actually has period 3 points for a ≥ 3.13 if the initial values yield a sufficiently

small value of t0. In Figure 3.2 a stable three-cycle is identified for a = 3.6 and initial

values satisfying r0 = r−1e
−r−1 (so that t0 = 1). Odd periods do not occur for (3.13)

in this case but all possible even periods, as well as chaotic behavior (on curve-pairs)

do occur.
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Figure 3.2: Occurrence of period three for the associated interval map

3.2.3 Convergence to two-cycles

The preceding results indicate that the solutions of (3.18) and (3.19) determine

the solutions of (3.13). From Theorem 3.12 it is evident that complex behavior tends

to occur when a is sufficiently large. Otherwise, the solutions of (3.13) tend to behave

more simply as noted in Theorem 3.6. We now consider the occurrence of two-cycles

for a range of values of a that are not too large but extend the range in Theorem 3.6,

by examining the following first-order difference equation that is derived from (3.18)

and (3.19)

rn+1 = rne
a−rn−γrne−rn , γ > 0 (3.22)

Lemma 3.14. If 0 < a ≤ 2 then (3.22) has a unique positive fixed point x̄.

Proof. Existence: Let η(x) = a− x− γxe−x. The nonzero fixed points of (3.22) must

satisfy eη(x) = 1, i.e. η(x) = 0. Since η(0) = a > 0 and η(a) = −γae−a < 0 there is a

real number x̄ ∈ (0, a) such that η(x̄) = 0. This proves existence.

Uniqueness: Note that η′(x) = −1− γe−x + γxe−x.
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Case 1 : γ ≤ e; The function xe−x is maximized on (0,∞) at h(1) = e−1 so

η′(x) = −1− γe−x + γxe−x ≤ −1 + 1− γe−x = −γe−x < 0

It follows that η(x) is decreasing on (0,∞) for this case and has a unique zero that

occurs at x̄.

Case 2 : e < γ < e2; Consider the function p(x) = x+ γxe−x. Now

p′(x) = 1 + γe−x − γxe−x = e−x(ex + γ − γx)

The function q(x) = ex + γ − γx attains a minimum value at x = ln(γ) since q′(x) =

ex − γ. Furthermore,

q(ln(γ)) = 2γ − γ ln(γ) = γ(2− ln(γ)) > 0

for γ < e2. This implies that p′(x) > 0 on (0,∞) and therefore p(x) is increasing

on (0,∞). Since η(x) = a − p(x), this implies that η(x) is decreasing on (0,∞) and

therefore it has a unique zero that occurs at x̄.

Case 3 : γ > e2; In this case, we know that η(x) is decreasing on [0, 1] and η(x) < 0

for x ∈ [d,∞). Thus it remains to establish that η(x) < 0 on (1, a).

η(x) = a− x− γxe−x < a− 1− e2−x < a− 2 ≤ 0

Thus η(x) has a unique zero that occurs at x̄ and this completes the proof for all the

above cases.

The above observations also indicate that η(x) > 0 for x ∈ (0, x̄) and η(x) < 0 for

x ∈ (x̄,∞), which we will use in our further analysis. Before examining the stability

profile of x̄, we need to explore the properties of the function f(x).
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Since f(x) = xea−x−γxe
−x

= xeη(x), then f ′(x) = eη(x) + xη′(x)eη(x). By direct

calculations, f ′(x) can be written as

f ′(x) = eη(x)(1− x)(1− γxe−x)

It follows that f has critical points when x = 1 and 1 − γxe−x = 0. Now we

consider the function φ(x) = 1 − γxe−x, which has a critical point at x = 1, since

φ′(x) = γe−x(1 − x). Hence it is decreasing on (0, 1) and increasing on (1,∞) and

φ(1) = 1− γ
e

is the minimum of the function.

(i) When γ < e, then φ(1) > 0, so φ(x) > 0 on (0,∞), hence f(x) has only one

critical point at x = 1. When γ = e, φ(1) = 0, and again, the only critical point of

f(x) occurs at x = 1. We further break down the case of γ ≤ e into the following

subcases:

a. When a < 1+γ
e
, η(1) = a−1−γ

e
< 0, thus x̄ < 1. Moreover, f(1) = a−1−γ

e
< 1,

which lets us conclude that f(x) < 1 for all x ∈ (0,∞).

b. When a ≥ 1 + γ
e
, η(1) = a − 1 − γ

e
≥ 0. This implies that x̄ > 1 if a > 1 + γ

e

and x̄ = 1 if a = 1 + γ
e
.

(ii) When γ > e, φ(1) < 0, so f(x) has three critical points at x′ < 1, x′ = 1, x′′ > 1.

On (0, x′), 1 − x > 0 and φ(x) > 0, so f is increasing. On (x′, 1), 1 − x > 0 and

φ(x) < 0, so f is decreasing. On (1, x′′), 1 − x < 0 and φ(x) < 0, so f is increasing.

On (x′′,∞), 1 − x < 0 and φ(x) > 0, so f is decreasing. By the above observations,

it follows that x′, x′′ are local maxima and 1 is a minimum point. Next observe that

f(1) = ea−1− γ
e < 1
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Given that γx′e−x
′
= γx′′e−x

′′
= 1,

f(x′) = x′ea−x
′−γx′e−x′ = x′ea−x

′−1 < x′e2−x′−1 = x′e1−x′

Similarly, f(x′′) < x′′e1−x′′ . Now, the function s(x) = xe1−x attains its maximum at

x = 1, since s′(x) = (1 − x)e1−x. Since s(1) = 1, s(x) < 1 for all x 6= 1, x > 0. This

implies that f(x′), f(x′′) < 1 as well, thus for this case f(x) < 1 for all x ∈ (0,∞).

Now we establish the global stability of x̄.

Lemma 3.15. If 0 < a ≤ 2 then every solution to (3.22) from positive initial values

converges to x̄.

Proof. We establish convergence to x̄ by showing that |f(x)− x̄| < |x− x̄| for x 6= x̄.

This is equivalent to

x < f(x) < 2x̄− x for x < x̄ (3.23a)

x > f(x) > 2x̄− x for x > x̄ (3.23b)

The first inequalities in (3.23a-3.23b) are straightforward to establish: since η(x) > 0

for x < x̄ and η(x) < 0 for x > x̄, then f(x) = xeη(x) > x if x < x̄ and f(x) =

xeη(x) < x if x > x̄.

To establish the second inequalities in (3.23a)-(3.23b), let

t(x) = f(x) + x− 2x̄

Notice that t(0) = −2x̄ < 0 and t(x̄) = 0. We now show that the inequalities

f(x) < 2x̄ − x for x < x̄ and f(x) > 2x̄ − x for x > x̄ are equivalent to t(x) < 0 for

x < x̄ and t(x) > 0 for x > x̄, respectively. We establish this by showing that t(x) is
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strictly increasing on (0,∞), i.e.

t′(x) = f ′(x) + 1 > 0 for x > 0

We consider two cases: Case 1 : γ ≤ e; recall that f(x) is maximized at the unique

critical point x = 1. Thus f ′(x) > 0 for x < 1 and f ′(x) < 0 for x > 1. We also

showed that 1− γxe−x > 0 for x > 0. Thus for all x > 1, since d ≤ 2

|f ′(x)| ≤ e2−x−γxe−x(x− 1)(1− γxe−x)

= (x− 1)e1−xe1−γxe−x(1− γxe−x)

< e−1e1−γxe−x(1− γxe−x)

= e−γxe
−x

(1− γxe−x) < 1

i.e. t′(x) > 0 for x > 0 and inequalities in (3.23a)-(3.23b) follow.

Case 2 : γ > e; in this case, f(x) has three critical points occurring at x′ < 1, 1

and x′′ > 1, where x′ and x′′ are maxima and 1 is a minimum. Thus

f ′(x) > 0 and 1− γxe−x > 0 for x ∈ (0, x′)

f ′(x) < 0 and 1− γxe−x < 0 for x ∈ (x′, 1)

f ′(x) > 0 and 1− γxe−x < 0 for x ∈ (1, x′′)

f ′(x) < 0 and 1− γxe−x > 0 for x ∈ (x′′,∞)

Thus f ′(x) < 0 if either x < 1 and 1− γxe−x < 0 or x > 1 and 1− γxe−x > 0. If
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x < 1 and 1− γxe−x < 0, then

|f ′(x)| ≤ e2−x−γxe−x(1− x)(γxe−x − 1)

= (γxe−x − 1)e1−γxe−xe1−x(1− x)

< e−1e1−x(1− x)

= e−x(1− x) < 1

If x > 1 and 1− γxe−x > 0, then

|f ′(x)| ≤ e2−x−γxe−x(x− 1)(1− γxe−x)

= (x− 1)e1−x(1− γxe−x)e1−γxe−x

< e−1e1−γxe−x(1− γxe−x)

= e−γxe
−x

(1− γxe−x) < 1

In either case, if f(x) is decreasing then −1 < f ′(x) < 0, thus t′(x) = f ′(x)+1 > 0,

thus t(x) is increasing for x > 0, from which the second inequalities in (3.23a)-(3.23b)

follow.

By Lemmas 3.7 and 3.15, the even and odd terms of (3.13) converge to M = x̄t0 >

0 and m = x̄t1 > 0, proving the existence and stability of a two-cycle in the sense

described in Theorem 3.12(c). Since M and m must satisfy

m = Mea−M−m and M = med−m−M

and

Mm = mMe2a−2(M+m) i.e. e2a−2(M+m) = 1

we conclude that M+m = a. Thus the following extension of Theorem 3.6 is obtained.

Theorem 3.16. Let 0 < a ≤ 2. Then every non-constant, positive solution of (3.13)
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converges, in the sense of Theorem 3.12(c), to a two-cycle {ρ1, ρ2} that satisfy ρ1 +

ρ2 = a, i.e. the mean value of the limit cycle is the fixed point r̄ = a/2.

3.2.4 A concluding remark on multistability

We finally mention a feature of (3.13) that may make its multistable nature less

surprising. Consider the following class of nonautonomous first-order equations

xn+1 = xne
γn−θnxn

where γn, θn are given sequences of period 2 with θn > 0 for all n. The change of

variable un = θnxn reduces this equation to

un+1 = une
cn−un , cn = γn + ln

θn+1

θn
(3.24)

This equation can be written as

un+1 = un−1e
cn−1+cn−un−1−un

Since cn has period 2, the sum cn−1 + cn = a is a constant and (3.13) is obtained.

If r−1 = u0 and r0 = u1 = u0e
c0−u0 then the corresponding solution of (3.13) is

the solution of (3.24) with the arbitrary initial value u0. Therefore, all solutions of

(3.24) appear among the solutions of (3.13) but not conversely. In fact, if c′n is any

other sequence of period 2 such that c′n + c′n−1 = d then while

un+1 = une
c′n−un

is a different equation than (3.24), it yields exactly the same second-order equation

(3.13). Hence, the following assertion is justified:
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Proposition 3.17. The solutions of (3.13) include the solutions of all first-order

equations of type (3.24) with cn + cn−1 = a.

The coexistence of solutions of so many different first-order equations among the

solutions of (3.13) is a further indication of the diversity of solutions that the latter

may exhibit.

3.3 Periodic coefficients: the case where p > 1

In this section, we assume that the coefficients {an} in

rn+1 = rn−1e
an−rn−1−rn (3.25)

are periodic with minimal period p > 1.

As might be expected, (3.25) has periodic solutions, which we establish below.

But the range of variation, or amplitude of an, as well as whether the period of an

is even or odd also play decisive roles. If the values of an are sufficiently large then

(3.25) has both periodic and non-periodic solutions that are stable in a sense to be

described below. Equation (3.25) thus has an abundance of qualitatively different,

multistable solutions if an has a sufficiently large amplitude. We also show that the

two cases where sequence {an} has even period or odd lead to fundamentally different

types of behaviors for the solutions of (3.25).

Recall from the previous section that (3.25) admits a semiconjugate factorization

given by

tn+1 =
ean

tn
, t0 =

r0

r−1e−r−1
(3.26)

rn+1 = tn+1rne
−rn (3.27)
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and that for arbitrary sequence of real numbers {an} and t0 6= 0, the general solution

of (3.26) is given by

tn = t
(−1)n

0 e(−1)nsn , n = 1, 2, ... (3.28)

where

sn =
n∑
j=1

(−1)jaj−1 (3.29)

For every solution {tn} of (3.26), tn+1tn = ean for all n, so the even terms of the

sequence {rn} are

r2n+2 = r2n exp
(
a2n+1 − r2n − t2n+1r2ne

−r2n
)

(3.30)

and the odd terms are

r2n+1 = r2n−1 exp
(
a2n − r2n−1 − t2nr2n−1e

−r2n−1
)

(3.31)

Following the definition in (3.29) we let

σ = sp =

p∑
j=1

(−1)jaj−1 (3.32)

Our next result lists a special case for σ in the equation (3.32) that makes the

sequence {tn} in (3.9) periodic.

Lemma 3.18. Let σ be defined by (3.32) and assume that {an} is periodic with

minimal period p. If σ = 0 and t0 = 1, then {tn} is periodic with period p.

Proof. If σ = 0, then by (3.9) and (3.10) in Lemma 3.3 we have:

tp = t
(−1)p

0 e(−1)psp = e(−1)pσ = 1 = t0
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and

tn+p = t
(−1)n+p

0 e(−1)n+psn+p .

Now

sn+p =

n+p∑
j=1

(−1)jaj−1 =

p∑
j=1

(−1)jaj−1 +

n+p∑
j=p+1

(−1)jaj−1 = σ +

n+p∑
j=p+1

(−1)jaj−1

If p is even, then

n+p∑
j=p+1

(−1)jaj−1 = −ap+ap+1 + · · ·+(−1)n+pan+p−1 = −a0 +a1 + · · ·+(−1)nan−1 = sn

so

tn+p = t
(−1)n+p

0 e(−1)n+psn+p = t
(−1)n

0 e(−1)nsn = tn.

If p is odd, then

n+p∑
j=p+1

(−1)jaj−1 = ap− ap+1 + · · ·+ (−1)n+pan+p−1 = a0− a1 + · · · − (−1)nan−1 = −sn

so

tn+p = t
(−1)n+p

0 e(−1)n+psn+p = t
(−1)n

0 e−(−1)n(−sn) = t
(−1)n

0 e(−1)nsn = tn.

and the proof is complete.

The next result is based on an assumption that the sequence {tn} is periodic. We

use the cofactor equation (3.27) to establish the following.
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Lemma 3.19. Let {rn} be a solution of (3.25) with initial values r−1, r0 > 0 and

assume that {tn} given by (3.9)-(3.10) is periodic with period q ≥ 1.Define

gk(r) = tkre
−r, k = 0, 1, . . . , q − 1

Also define

hk = gk ◦ gk−1 ◦ · · · ◦ g0, k = 0, 1, . . . , q − 1

f = hq−1 = gq−1 ◦ gq−2 ◦ · · · ◦ g1 ◦ g0

Then {rn} is determined by the q sequences

rqm+k = hk ◦ fm(r−1), k = 0, 1, . . . , q − 1 (3.33)

that are obtained by iterations of one-dimensional maps of the interval (0,∞), with

f 0 being the identity map.

Proof. Given the initial values r−1, r0 > 0 the definition of t0 and (3.27) imply that

r0 = t0r−1e
−r−1 = g0(r−1) = h0(r−1)

r1 = t1r0e
−r0 = g1(r0) = g1 ◦ g0(r−1) = h1(r−1)

and so on:

rk = hk(r−1), k = 0, 1, . . . , q − 2

Thus (3.33) holds for m = 0. Further, rq−1 = hq−1(r−1) = f(r−1). Inductively, we

suppose that (3.33) holds for some m ≥ 0 and note that for k = 0, 1, . . . , q − 2

hk+1 = gk+1 ◦ gk ◦ · · · ◦ g0 = gk+1 ◦ hk
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Now since {tn} is periodic and by (3.27), we have

rq(m+1)−1 = tqm+q−1rqm+q−2e
−rqm+q−2

= tq−1hq−2 ◦ fm(r−1)e−hq−2◦fm(r−1)

= gq−1 ◦ hq−2 ◦ fm(r−1)

= hq−1 ◦ fm(r−1)

= fm+1(r−1)

So (3.33) holds for k = q − 1 by induction. Further, again by (3.27), the preceding

equality and periodicity of {tn} imply that

rq(m+1) = tqm+qrqm+q−1e
−rqm+q−1

= t0f
m+1(r−1)e−f

m+1(r−1)

= g0 ◦ fm+1(r−1)

= h0 ◦ fm+1(r−1)

Similarly,

rq(m+1)+1 = tq(m+1)+1rq(m+1)e
−rq(m+1)

= t1h0 ◦ fm+1(r−1)e−h0◦f
m+1(r−1)

= g1 ◦ h0 ◦ fm+1(r−1)

= h1 ◦ fm+1(r−1)

Repeating this calculation q− 2 times establishes (3.33) and completes the induc-

tion step and the proof.

Lemma 3.20. Suppose that {tn} is periodic with period q ≥ 1.

(a) If the map f in Lemma 3.19 has a periodic point of minimal period r then
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there is a solution of (3.25) with period rq.

(b) If the map f in Lemma 3.19 has a non-periodic point then (3.25) has a non-

periodic solution.

Proof. (a) By hypothesis, there is a number s ∈ (0,∞) such that fn+r(s) = fn(s)

for all n ≥ 0. We may assume that the number t0 is fired since f is defined on the

basis of the numbers tk for k = 0, 1, . . . , q − 1. Let r−1 = s and define r0 = h0(s).

By Lemma 3.19 the solution rn corresponding to these initial values follows the track

shown below:

r−1 = s→ r0 = h0(s)→ · · · → rq−2 = hq−2(s)→

rq−1 = hq−1(s) = f(s)→ rq = h0(f(s))→ · · · → r2q−2 = hq−2(f(s))→

r2q−1 = hq−1(f(s)) = f 2(s)→ r2q = h0(f 2(s))→ · · · → r3q−2 = hq−2(f 2(s))→
...

...
...

...

rrq−1 = hq−1(f r−1(s)) = f r(s) = s→ rrq = h0(s)→ · · · → rq(r+1)−2 = hq−2(s)→ · · ·

The pattern in above list evidently repeats after rq entries. So rrq+n = rn for

n ≥ 0 and it follows that the solution {rn} of (3.25) has period rq.

(b) Suppose that {fn(r−1)} is a non-periodic sequence for some r−1 > 0. Then by

Lemma 3.19 the solution {rn} of (3.25) with initial values r−1 and r0 = g0(r−1) has

the non-periodic subsequence

rqn−1 = fn(r−1)

It follows that {rn} is non-periodic.

3.3.1 The odd period case

When {an} is periodic with minimal odd period, the sequence {tn} itself is peri-

odic, as we show in the next lemma.

Lemma 3.21. Suppose that {an} is sequence of real numbers with minimal odd period
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p ≥ 1 and let {tn} be a solution of (3.5). Then {tn} has period 2p with a complete

cycle {t0, t1, . . . , t2p−1} where tk is given by (3.9) with

sk =


∑k

j=1(−1)jaj−1, if 1 ≤ k ≤ p∑2p−1
j=k (−1)jaj−p, if p+ 1 ≤ k ≤ 2p− 1

(3.34)

Proof. Let {a0, a1, . . . , ap−1} be a full cycle of an and define σ as in (3.32) to be

σ =

p∑
j=1

(−1)jaj−1 = −a0 + a1 − a2 + . . .− ap−1

Since a full cycle of an has an odd number of terms, expanding sn in (3.10) yields

a sequence with alternating signs in terms of σ

sn = σ − σ + · · ·+ (−1)m−1σ + (−1)m
i∑

j=1

(−1)jaj−1

for integers i,m such that n = pm + i, m ≥ 0 and 1 ≤ i ≤ p. If m is even then for

i = 1, 2, . . . , p

sn =
i∑

j=1

(−1)jaj−1 =



−a0 n = pm+ 1 (odd)

−a0 + a1 n = pm+ 2 (even)

...
...

−a0 + a1 . . .− ap−1 n = pm+ p (odd)

Similarly, if m is odd then for i = 1, 2, . . . , p

sn = σ −
i∑

j=0

(−1)jaj =



σ + a0 n = pm+ 1 (even)

σ + a0 − a1 n = pm+ 2 (odd)

...
...

σ + a0 − a1 + . . .− ap−1 n = pm+ p (even)
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The above list repeats for every consecutive pair of values of m and indicates a

complete cycle for {sn}. In particular, for m = 0 we obtain for i = 1, 2, . . . , p

sn =
i∑

j=1

(−1)jaj−1 =



−a0 n = 1

−a0 + a1 n = 2

...
...

−a0 + a1 . . .− ap−1 n = p

and for m = 1 we obtain for i = 1, 2, . . . , p− 1

sn = σ −
i∑

j=0

(−1)jaj =



a1 − a2 + . . .− ap−1 n = p+ 1

−a2 + . . .− ap−1 n = p+ 2

...
...

−ap−1 n = 2p− 1

=

2p−1∑
j=p+1

(−1)jaj−p

This proves the validity of (3.34) and shows that the sequence {sn} has period 2p.

Now (3.9) implies that {tn} also has period 2p and the proof is complete.

For p = 1, Lemma 3.21 implies that {tn} is the two-cycle that we encountered

before: {
t0,

ea

t0

}
where a is the constant value of the sequence {an}. For p = 3, {tn} is the six-cycle

{
t0,

ea0

t0
, t0e

a1−a0 ,
ea2−a1+a0

t0
, t0e

a1−a2 ,
ea2

t0

}
.

The next result establishes a special case where {tn} is periodic with odd period

p.
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Lemma 3.22. Let {an} be periodic with minimal odd period p and let σ be defined

as in (3.32). If σ 6= 0 and t0 = e−σ/2, then {tn} is periodic with period p.

Proof. If σ 6= 0 and p is odd, then

tp = t
(−1)p

0 e(−1)psp = eσ/2−σ = e−σ/2 = t0

and since in Lemma 3.18 it was shown that sn+p = σ − sn, then

tn+p = t
(−1)n+p

0 e(−1)n+psn+p

= e(−1)nσ/2e−(−1)n(σ−sn)

= e(−1)nσ/2+(−1)nsn = t
(−1)n

0 e(−1)nsn = tn

Theorem 3.23. Suppose that {an} is periodic with minimal odd period p ≥ 1 and let

f be the interval map in Lemma 3.19 where t0 > 0 is a fixed real number and tk is

given by (3.9)-(3.10) for k ≥ 1.

(a) If s is a periodic point of f with period q then all solutions of (3.25) with

initial values r−1 = s and r0 = t0se
−s (i.e. (r−1, r0) is on the curve g0) have period

2pq.

(b) If σ = 0, t0 = 1 and s is a periodic point of f with period q, then all solutions

of (3.25) with initial values r−1 = s and r0 = t0se
−s have period pq.

(c) If σ 6= 0, t0 = eσ/2 and s is a periodic point of f with period q, then all

solutions of (3.25) with initial values r−1 = s and r0 = t0se
−s have period pq.

(d) If the map f has a non-periodic point, then (3.25) has a non-periodic solution.

(e) If f has a period-three point then (3.25) has periodic solutions of period 2pn

for all positive integers n as well as chaotic solutions in the sense of Li-Yorke [65].
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Proof. Parts (a)-(d) follow directly by Lemma 3.20 combined with Lemmas 3.18, 3.22

and 3.21.

(e) By [65], if f has a period three point, then f has periodic points of every period

n > 0, as well as aperiodic, chaotic solutions in the sense of Li-Yorke. Therefore, by

parts (a) and (b), (3.25) has periodic solutions of period 2pn, as well as chaotic

solutions.

3.3.2 The even period case

When {an} periodic with minimal even period p the next result shows that the

sequence {tn} is not periodic with the exception of a boundary case. Once again, for

convenience we define the quantity σ by (3.32).

Lemma 3.24. Suppose that {an} is a sequence of real numbers with minimal even

period p ≥ 2 and let {tn} be a solution of (3.5). Then

tn =
(
t0e

dnσ+γn
)(−1)n

(3.35)

where the integer divisor dn = [n− n(mod p)]/p is uniquely defined by each n and

γn =


∑n(mod p)

j=1 (−1)jaj−1 if n(mod p) 6= 0

0 if n(mod p) = 0
(3.36)

In particular, {tn} is periodic with period p iff σ = 0, i.e.

a0 + a2 + · · · ap = a1 + a3 + · · ·+ ap−1. (3.37)

Proof. Let {a0, a1, . . . , ap−1} be a full cycle of an with an even number of terms. Since
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n = pdn + n(mod p) for n ≥ 1, expand sn in (3.10) to obtain

sn = dnσ +

n(mod p)∑
j=1

(−1)jaj−1

if n(mod p) 6= 0. If p divides n so that n(mod p) = 0 then we assume that the sum is

0 and sn = dnσ. Thus sn = dnσ + γn where γn is as defined in (3.36).

The σ terms have uniform signs in this case since there are an even number of

terms in each full cycle of an. Now (3.9) yields

tn = t
(−1)n

0 e(−1)nsn = t
(−1)n

0 e(−1)n(dnσ+γn)

which is the same as (3.35).

Next, if σ 6= 0 then dnσ is unbounded as n increases without bound so {tn} is not

periodic. But if σ = 0 then (3.35) reduces to

tn = (t0e
γn)(−1)n (3.38)

Since the sequence γn has period p, the expression on the right hand side of (3.38)

has period p with a full cycle

t1 =
ea0

t0
, t2 = t0e

−a0+a1 , t3 =
ea0−a1+a2

t0
, . . . , tp = t0e

−a0+a1+···+(−1)pap−1 = t0.

By the preceding result,

t2m = t0e
γ2med2mσ if n = 2m is even

t2m+1 =
1

t0
e−γ2m+1e−d2m+1σ if n = 2m+ 1 is odd
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Suppose that σ 6= 0. If σ > 0 then since limn→∞ dn = ∞ it follows that t2m is

unbounded but t2m+1 converges to 0, and the reverse is true if σ < 0. Therefore,

lim
m→∞

t2m =∞, lim
m→∞

t2m+1 = 0, if σ > 0, (3.39)

lim
m→∞

t2m = 0, lim
m→∞

t2m+1 =∞, if σ < 0. (3.40)

Lemma 3.25. Suppose that {an} is a sequence of real numbers with minimal even

period p ≥ 2 and let {rn} be a solution of (3.25) with initial values r−1, r0 > 0. Then

limn→∞ r2n+1 = 0 if σ > 0 and limn→∞ r2n = 0 if σ < 0.

Proof. Assume first that σ > 0 but limn→∞ r2n+1 6= 0 for some choice of initial values

r−1, r0 > 0. Then by (3.31) there is a number c > 0 and a subsequence rnk such that

for all k = 1, 2, 3, . . .

r2nk−1 exp
(
a2nk − r2nk−1 − t2nkr2nk−1e

−r2nk−1
)

= r2nn+1 ≥ c > 0 (3.41)

We show that this inequality leads to a contradiction. By Theorem 3.1 and the

boundedness of a2nk there is M > 0 such that 0 < r2nk−1 exp(a2nk) ≤ M for all k.

Thus, by (3.41)

r2nk−1 exp
(
a2nk) exp(−r2nk−1 − t2nkr2nk−1e

−r2nk−1
)
≥ c

exp(−r2nk−1) exp(−t2nkr2nk−1e
−r2nk−1) ≥ c

M

exp(−t2nkr2nk−1e
−r2nk−1) >

c

M

Further, ue−u ≤ 1/e for all u ≥ 0 so that

exp

(
−t2nk
e

)
≥ exp(−t2nkr2nk−1e

−r2nk−1) >
c

M
> 0

However, by (3.39) limn→∞ t2nk =∞ so the left hand side of the above chain converges
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to zero and we arrive at a contradiction. Hence, limn→∞ r2n+1 = 0 if σ > 0 as claimed.

If σ < 0 then a similar argument using (3.30) and (3.40) yields limn→∞ r2n = 0 to

complete the proof.

Lemma 3.25 clearly indicates a marked difference between the case where an has

an even period and the case where it has an odd period. Unlike the odd period case,

half of the terms of every solution {rn} of (3.25) converge to 0 in the even period case

if σ 6= 0. We now examine the other half of the terms of each solution {rn} of (3.25).

If σ > 0 then limn→∞ t2n+1 = 0 by (3.39) and (3.30) reduces to the equation

u2n+2 = u2ne
a2n+1−u2n (3.42)

If σ < 0 then limn→∞ t2n = 0 by (3.40) and (3.31) reduces to

u2n+1 = u2n−1e
a2n−u2n−1 (3.43)

Remark 3.26. Lemma 3.25 and equations (3.42), (3.43) indicate another significant

difference between the odd and even period cases in the behaviors of solutions of

(3.25). Specifically, if σ 6= 0 then the asymptotic behavior in the even period

case does not depend on the initial values. Because tn tends to either 0 or ∞,

the number t0 and thus the initial values, do not affect the limit set of the solution.

If σ = 0, the sequence {tn} is periodic, so the behavior of the iterates of (3.25)

is similar to the case when p is odd. Similar to the odd case, we state the following

result:

Theorem 3.27. Suppose that {an} is periodic with minimal even period p > 1 and

let f be the interval map in Lemma 3.19 where t0 > 0 is a fixed real number and tk

is given by (3.9)-(3.10) for k ≥ 1. Further assume that σ = 0.
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(a) If s is a periodic point of f with period q, then all solutions of (3.25) with

initial values r−1 = s, r0 = t0se
−s have period pq.

(b) If the map f has a non-periodic point, then (3.25) has a non-periodic solution.

(c) If f has a period-three point, the (3.25) has periodic solutions of period pn for all

n > 0, as well as chaotic solutions in the sense of Li and Yorke.

Proof. The proof is similar to that of Theorem 3.23.

3.4 Concluding remarks, open problems and conjectures

The results obtained for the nonautonomous equation (3.25) with periodic coef-

ficients {an} show substantial differences of the behavior of the solutions depending

on whether the period p is even or odd. In particular, the solutions of (3.25) exhibit

dependence on initial conditions when p is odd, whereas it is not seen for the case

when p is even, unless σ = 0. In previous sections we derived the mechanism that

demonstrates why this is the case. Nonetheless, a number of questions remain to

fully explain the behavior of the solutions of (3.25) with periodic coefficients. We

conclude this chapter with the following open problems and conjectures that we leave

for future research.

Conjecture 3.28. Let {an} be periodic with minimal period p and assume that {tn}

is periodic with period q. If 0 < an < 2, then the solution of (3.25) from initial values

r−1, r0 > 0 converges to some s-cycle Γ, where s is the least common multiple of p

and q. Further, if r′0, r
′
−1 > 0 and

r′0
r′−1e

−r′−1
=

r0

r−1e−r−1

then the solution of (3.25) corresponding to r′0, r
′
−1 converges to the same s-cycle Γ.

90



If the above conjecture is true, then the following can be shown for the case when

p is odd.

Conjecture 3.29. Let {an} be periodic with minimal odd period p and further assume

that 0 < ai < 2 for 0 ≤ i = 0 ≤ p− 1. Then for each pair of initial values r−1, r0 > 0,

(a) the solution of (3.25) converge to a cycle Γ with length 2p that is determined

by the values of r−1, r0 > 0 as stated in Conjecture 3.28.

(b) Furthermore, if either

σ = 0, t0 = 1 or σ 6= 0, t0 = e−
σ
2

then Γ is also a periodic cycle with period p.

A similar result can be shown for the case when p is even, and σ = 0.

Conjecture 3.30. Suppose {an} is periodic with minimal even period p ≥ 2 and σ =

0. If 0 < an < 2, then each solution of (3.25) from initial values r−1, r0 > 0 converges

to a cycle of length p that is determined by r−1, r0 > 0 as stated in Conjecture 3.28.

Conjecture 3.31. Let {an} be periodic with minimal even period p ≥ 2. If σ 6= 0,

then (3.25) has a globally attracting periodic solution {r̄n} with period p (i.e. the

p-cycle is not dependent on initial values).

Problem 3.32. Explore the behavior of the solutions of (3.25) when an are outside

the range (0,2).

In particular,

Conjecture 3.33. Let {an} be periodic with minimal period p > 1. Show that for cer-

tain values of {an} outside the range (0, 2), the equation (3.25) has chaotic solutions

in the sense of Li and Yorke.

Problem 3.34. What specific results are possible in answering Problem 3.32 and

Conjecture 3.33 if p = 2 so that (3.30) and (3.31) is autonomous in each case?
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A generalization of (3.2) given by

xn+1 = xn−1e
an−bnxn−cnxn−1 where bn 6= cn (3.44)

is a natural choice for future studies. In addition, exponential equation of the type

xn+1 = xne
an−bnxn−cnxn−1 (3.45)

has not been well-explored and may be of interest for future investigation. Since

equations in (3.44) and (3.45) do not admit semiconjugate factorization and monotone

function techniques generally do not apply, their study will involve alternative and

possibly new methods of analysis.
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CHAPTER IV

Folding of a Rational Planar System

In this chapter, we use the folding method to study the linear-rational planar

system given by

xn+1 = anxn + bnyn + cn (4.1a)

yn+1 =
a′nxn + b′nyn + c′n
a′′nxn + b′′nyn + c′′n

(4.1b)

where all parameters are sequences of real numbers.1 The system in (4.1) is a natural

choice for application of the folding method, since one of the equations in the system

is linear and the non-linearity is confined solely in the second equation that is in

linear-fractional form. The autonomous case of the system in (4.1) given by

xn+1 = axn + byn + c (4.2a)

yn+1 =
a′xn + b′yn + c′

a′′xn + b′′yn + c′′
(4.2b)

and is a special case of the system initiated by [17] where both equations in (4.2) are

of the form given in (4.2b).

1The content of this chapter, unless otherwise noted, is from [61] and [56].
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We derive general conditions for uniform boundedness and convergence of solu-

tions of (4.1) to the origin. We next study the autonomous case of (4.2) where the

parameters are assumed to be constant. We investigate conditions on parameter

values that guarantee the existence and uniqueness of a fixed point in the positive

quadrant and show that under several broad assumptions on parameter values, this

fixed point is a non-repeller. Using the folding equation, we then derive sufficient

conditions for global convergence of the solutions of (4.2) to the fixed point, as well

as occurrence of periodic solutions.

We then find special cases of (4.2) via its folding with some negative parameter

values that exhibit chaos in the sense of Li-Yorke within the positive quadrant of the

plane.The occurrence of chaotic orbits for (4.2) is far from obvious. It is well-known

that a system of linear difference equations with constant coefficients does not have

chaotic orbits. On the other hand, if one of the equations of the system is a polynomial

of degree greater than 1 then the system may possess chaotic orbits within a bounded

invariant set, as in the case of the familiar logistic map on the real line or the Henon

map in the plane; see, e.g., [30], [33].

Prior studies of linear-fractional equations and systems (see [51] and references

therein) have not been focused on demonstrating the occurrence of chaos or coexisting

cycles and recent works [43], [73] that investigate homogeneous rational systems did

not consider chaotic behavior. Studies of chaos in rational or planar systems generally

do exist in the literature as indicated in the references below; see, e.g. [13]-[14] and

[87]. In particular, in [87] the occurrence of chaos in homogeneous rational systems

in the plane is established.

Since (4.2b) is discontinuous on the plane (unlike polynomial equations) the ex-

istence of solutions is guaranteed for (4.2) only if division by zero is avoided at every

step of the iteration. In typical studies of rational systems it is generally assumed

that all nine parameters and the initial values are non-negative (we refer to this as
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the positive case) to avoid possible occurrence of singularities in the positive quadrant

(0,∞)2 = (0,∞)×(0,∞) of the plane. This quadrant is also the part of the plane that

is naturally of greatest interest in modeling applications such as the aforementioned

adult-juvenile model. But the type of nonlinearity exhibited by linear-fractional equa-

tions is of a particular kind that tends to be mild in nature away from singularities.

This may be one reason for the relatively well-behaved orbits in the positive case

rather than complex orbits that tend to be associated with rapid rates of change.

To be more precise, we show that in the positive case any fixed point (x̄, ȳ) of

(4.2) in the positive quadrant (x̄, ȳ > 0) must be non-repelling, i.e., it is not true that

both of the eigenvalues of the system’s linearization at (x̄, ȳ) have modulus greater

than 1. This implies that (x̄, ȳ) is not a snap-back repeller for this case.

We then consider cases where some of the 9 system parameters are negative and

allow singularities to occur in the positive quadrant (0,∞)2. For instance, if a′′b′′ < 0

then the straight line a′′x+b′′y+c′′ = 0 which is part of the singularity or forbidden set

of the system in this case, crosses the positive quadrant so if any point (xn, yn) of an

orbit of (4.2) falls on this line then division by zero occurs. With negative parameters

it is necessary to either determine the forbidden sets or find a way of avoiding them.

Determination of forbidden sets has been done for some higher order equations; see,

e.g., [27], [74], [82]. But this is a difficult task for systems like (4.2). To identify

special cases of (4.2) where orbits avoid such singularities we fold the system, i.e.,

transform it into a second-order quadratic-fractional equation and then find special

cases in which the occurrence of Li-Yorke type chaos can be established in the positive

quadrant. As a bonus, we find special cases of (4.2) that have periodic solutions of

all possible periods in the positive quadrant. Obtaining these results would be quite

difficult without folding.
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4.1 Folding the system

Assuming that bn 6= 0 for all n ≥ 0 we solve (4.2a) for yn to obtain

yn =
1

bn
(xn+1 − anxn − cn) (4.3)

To avoid reductions to linear systems or to triangular systems, we may assume

that for all n ≥ 0

bn 6= 0, |a′n|+ |a′′n|, |a′′n|+ |b′′n|, |a′n|+ |b′n|+ |c′n| > 0. (4.4)

We fold the above system as follows:

xn+2 = an+1xn+1 + bn+1yn+1 + cn+1 = cn+1 + an+1xn+1 +
bn+1(a′nxn + b′nyn + c′n)

a′′nxn + b′′nyn + c′′n

Using (4.1b) and (4.3) to eliminate yn yields

xn+2 = cn+1 + an+1xn+1 +
bn+1[a′nxn + (b′n/bn)(xn+1 − anxn − cn) + c′n]

a′′nxn + (b′′n/bn)(xn+1 − anxn − cn) + c′′n

Combining terms and simplifying we obtain the rational, second-order equation

xn+2 = an+1xn+1 +
σ1,nxn+1 + σ2,nxn + σ3,n

b′′nxn+1 +D′′ab,nxn +D′′cb,n
(4.5)

σ1,n = bn+1b
′
n + cn+1b

′′
n, σ2,n = bn+1D

′
ab,n + cn+1D

′′
ab,n

σ3,n = bn+1D
′
cb,n + cn+1D

′′
cb,n

where

D′ab,n = a′nbn−anb′n, D′′ab,n = a′′nbn−anb′′n, D′cb,n = bnc
′
n−b′ncn, D′′cb,n = bnc

′′
n−b′′ncn

(4.6)
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The pair of equations (4.3) and (4.5) constitute a folding of (4.1). If (x0, y0) is an

initial point for an orbit of (4.1) then the corresponding solution of the core equation

(4.5) with initial values

x0 and x1 = a0x0 + b0y0 + c0 (4.7)

yields the x-component of the orbit {(xn, yn)} and the y-component is given (pas-

sively) by (4.3). Orbits of (4.1) are related to the solutions of (4.5), as seen next.

Theorem 4.1. (a) Let {xn} be a solution of (4.5) with initial values (4.7). If {yn}

is given by (4.3) then the sequence {(xn, yn)} is an orbit of (4.1).

(b) Let {(xn, yn)} be an orbit of (4.1) from an initial point (x0, y0). Then {xn} is

a solution of (4.5).

Proof. (a) Assume {xn} is a solution of (4.5) with initial values (4.7). Then by (4.3)

yn+1 =
1

bn+1

(xn+2 − an+1xn+1 − cn+1) (4.8)

Substituting the expression from (4.5) into (4.8) yields

yn+1 =
1

bn+1

(xn+2 − an+1xn+1 − cn+1)

=
σ1,nxn+1 + σ2,nxn + σ3,n

bn+1(b′′nxn+1 +D′′ab,nxn +D′′cb,n)
− cn+1

bn+1

=
σ1,nxn+1 + σ2,nxn + σ3,n − cn+1(b′′nxn+1 +D′′ab,nxn +D′′cb,n)

bn+1(b′′nxn+1 +D′′ab,nxn +D′′cb,n)

=
(σ1,n − cn+1b

′′
n)xn+1 + (σ2,n − cn+1D

′′
ab,n)xn + σ3,n − cn+1D

′′
cb,n

bn+1(b′′nxn+1 +D′′ab,nxn +D′′cb,n)

Expanding the terms for σ1,n, σ2,n, σ3,n and simplifying reduces the above to

yn+1 =
b′nxn+1 +D′ab,nxn +D′cb,n
b′′nxn+1 +D′′ab,nxn +D′′cb,n
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On the other hand, since

a′nxn + b′nyn + c′n
a′′nxn + b′′nyn + c′′n

=
a′nxn + b′n(xn+1 − anxn − cn)/bn + c′n
a′′nxn + b′′n(xn+1 − anxn − cn)/bn + c′′n

=
b′nxn+1 + a′nbnxn − anb′nxn − b′ncn + bnc

′
n

b′′nxn+1 + a′′nbnxn − anb′′nxn − b′′ncn + bnc′′n

=
b′nxn+1 +D′ab,nxn +D′cb,n
b′′nxn+1 +D′′ab,nxn +D′′cb,n

= yn+1

the proof of (a) is complete.

(b) Assume {(xn, yn)} is an orbit of (4.1) with initial point (x0, y0). Then by (4.1a)

xn+2 = an+1xn+1 + bn+1yn+1 + cn+1 (4.9)

and it is necessary to show that the right hand side of the above equality matches

that in (4.5). By (4.1b) and above calculations

bn+1yn+1 + cn+1 = bn+1
a′nxn + b′nyn + c′n
a′′nxn + b′′nyn + c′′n

+ cn+1

= bn+1

b′nxn+1 +D′ab,nxn +D′cb,n
b′′nxn+1 +D′′ab,nxn +D′′cb,n

+ cn+1

=
bn+1(b′nxn+1 +D′ab,nxn +D′cb,n) + cn+1(b′′nxn+1 +D′′ab,nxn +D′′cb,n)

b′′nxn+1 +D′′ab,nxn +D′′cb,n

=
(bn+1b

′
n + cn+1b

′′
n)xn+1 + (bn+1D

′
ab,n + cn+1D

′′
ab,n)xn + bn+1D

′
cb,n + cn+1D

′′
cb,n

b′′nxn+1 +D′′ab,nxn +D′′cb,n

=
σ1,nxn+1 + σ2,nxn + σ3,n

b′′nxn+1 +D′′ab,nxn +D′′cb,n
= xn+2 − an+1xn+1

Therefore, (4.9) implies (4.5) and the proof is complete.

Even when all the parameter sequences in (4.1) are non-negative the coefficients in

(4.5) may be negative. Similarly, the coefficients in (4.5) may be positive even when

some of the system parameters are negative. So the next result is worth highlighting.
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Theorem 4.2. (a) Assume that all the parameter sequences in (4.1) are non-negative

with a′′n, b
′′
n, c
′′
n not simultaneously zero for every n. Then every orbit of (4.2) with

x0, y0 > 0 is well-defined and in the positive quadrant so every solution of (4.5) with

initial values x0 > 0 and x1 = a0x0 + b0y0 + c0 is well-defined and positive.

(b) Assume that all the coefficients in (4.5) are non-negative with b′′n, D
′′
ab,n, D

′′
cb,n

not simultaneously zero for every n. Then every solution of (4.5) with initial values

x0, x1 > 0 is well-defined and positive so every orbit of (4.1) with x0 > 0 and y0 =

(x1 − a0x0 − c0)/b0 is well-defined and lies in the right half-plane.

4.2 Uniform boundedness and convergence to zero

In this section we obtain sufficient conditions for the uniform boundedness and

permanence of the system (4.1) and for its folding (4.5). We also derive sufficient

conditions for the global convergence of all non-negative solutions of (4.5) to its zero

solution and the implication of this for the system.

4.2.1 Uniform boundedness of the system’s orbits

In this section we assume that all parameters in (4.1) are non-negative. It is clear

that in this case orbits {(xn, yn)} of (4.2) whose initial points (x0, y0) in the positive

quadrant [0,∞)2 remain there, i.e., [0,∞)2 is an invariant set of the system. We

are interested in conditions that imply the uniform boundedness of all orbits in the

positive quadrant.

Theorem 4.3. Assume that all parameters in (4.2) are non-negative, let {bn} and

{cn} be bounded sequences and c′′n > 0 for all n ≥ 0.

(a) Suppose that lim supn→∞ an < 1 and there is M > 0 such that for all n ≥ 0

a′n ≤Ma′′n, b′n ≤Mb′′n, c′n ≤Mc′′n. (4.10)
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Then each orbit {(xn, yn)} of (4.1) with initial point (x0, y0) ∈ [0,∞)2 is uniformly

bounded from above.

(b) If in addition to the hypotheses in (a), lim infn→∞ bn > 0 and there is L ∈

(0,M) such that

a′n ≥ La′′n, b′n ≥ Lb′′n, c′n ≥ Lc′′n (4.11)

then there are L′,M ′ > 0 such that for all sufficiently large n, (xn, yn) ∈ [L′,M ′] ×

[L,M ] for each orbit of (4.1) with initial point (x0, y0) ∈ [0,∞)2.

Proof. Since c′′n > 0 it follows that yn is defined for all n ≥ 0. By (4.10) for all n ≥ 0,

yn+1 =
a′nxn + b′nyn + c′n
a′′nxn + b′′nyn + c′′n

≤ Ma′′nxn +Mb′′nyn +Mc′′n
a′′nxn + b′′nyn + c′′n

= M

Hence the y-component is bounded. If lim supn→∞ an < 1 then there is a ∈ (0, 1)

such that an ≤ a for all sufficiently large values of n. Also {bn} and {cn} are bounded

so there is µ > 0 such that bn, cn ≤ µ for all n. Therefore, for n large enough,

xn+1 ≤ axn + bnM + cn ≤ axn + µ(M + 1) (4.12)

If N is a positive integer such that (4.12) holds for n ≥ N then in particular, xN+1 ≤

axN + µ(M + 1) and

xN+2 ≤ axN+1 + µ(M + 1) ≤ a2xN + µ(M + 1)(1 + a)

Proceeding this way inductively we obtain

xn+N ≤ an−1xN + µ(M + 1)(1 + a+ · · ·+ an−1) =
µ(1 +M)

1− a
+ an

[
xN −

µ(1 +M)

1− a

]

As n → ∞ the last term of the above expression approaches zero; in particular, for
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all n sufficiently large

an−1

[
xN −

µ(1 +M)

1− a

]
≤ a

1− a
.

Therefore, for all n sufficiently large

xn ≤
µ(1 +M)

1− a
+

a

1− a
=
µ(1 +M) + a

1− a
. (4.13)

(b) By (4.11) for all n ≥ 0,

yn+1 ≥
La′′nxn + Lb′′nyn + Lc′′n
a′′nxn + b′′nyn + c′′n

= L

Hence, L ≤ yn ≤M for all n ≥ 0. Since lim infn→∞ bn > 0 there is b > 0 such that

bn ≥ b for all large n so

xn+1 ≥ axn + bnL+ cn ≥ axn + bL (4.14)

If N is a positive integer such that (4.14) holds for n ≥ N then in particular, xN+1 ≥

axN + bL and

xN+2 ≥ axN+1 + bL ≥ a2xN + bL(1 + a)

Proceeding this way inductively we obtain

xn+N ≥ an−1xN + bL(1 + a+ · · ·+ an−1) =
bL

1− a
+ an

[
xN −

bL

1− a

]

It follows that for all large n

xn ≥
bL+ a

1− a
(4.15)

Define M ′ to be the right hand side of (4.13) and L′ to be the right hand side of
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(4.15). Then

0 < L′ <
bM + a

1− a
≤ µM + a

1− a
< M ′

and the proof is complete.

The next consequence of Theorem 4.3 also applies to the autonomous version of

(4.1) where all sequences are constants.

Corollary 4.4. Assume that {bn}, {cn}, {a′n}, {b′n}, {c′n} be bounded sequences of

non-negative real numbers. If a′′, b′′, c′′ > 0 and lim supn→∞ an < 1 then there are

M,M ′ > 0, such that for all sufficiently large n, (xn, yn) ∈ [0,M ′] × [0,M ] for each

orbit of the following system

xn+1 = anxn + bnyn + cn (4.16a)

yn+1 =
a′nxn + b′nyn + c′n
a′′xn + b′′yn + c′′

(4.16b)

with initial point (x0, y0) ∈ [0,∞)2.

Proof. If we define

M = max

{
1

a′′
sup
n≥0

a′n,
1

b′′
sup
n≥0

b′n,
1

c′′
sup
n≥0

c′n,

}

then (4.10) holds and the proof is concluded by applying Part (a) of Theorem 4.3.

Corollary 4.5. Let 0 ≤ a < 1, c ≥ 0 and b, a′, b′, c′, a′′, b′′, c′′ > 0. Then there are

Mi, Li, i = 1, 2 such that 0 < Li < Mi and for all sufficiently large n, (xn, yn) ∈

[L1,M1]× [L2,M2] for each orbit of the autonomous system

xn+1 = axn + byn + c (4.17a)

yn+1 =
a′xn + b′yn + c′

a′′xn + b′′yn + c′′
(4.17b)
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with initial point (x0, y0) ∈ [0,∞)2.

Proof. The existence of M1,M2 is established in Corollary 4.4 with all sequences being

constants. Further, if

L = min

{
a′

a′′
,
b′

b′′
,
c′

c′′

}
.

then (4.11) holds and the proof is conlcuded by applying Theorem 4.3 and defining

L1 = L′, M1 = M ′, L2 = L, M2 = M .

The condition c′′n > 0 ensures the existence of solutions (lim infn→∞ c
′′
n = 0 is ad-

missible). It can be replaced by a number of other conditions that we will not discuss.

The next result applies to certain systems that do not satisfy some the hypotheses of

Theorem 4.3 or its corollaries. In particular, the parameter b′′n is arbitrary.

Theorem 4.6. Assume that all parameters in (4.1) are non-negative, let {bn} and

{cn} be bounded sequences and c′′n > 0 for all n ≥ 0. Also suppose that there is M > 0

such that a′n ≤Ma′′n, c′n ≤Mc′′n for all n ≥ 0.If

lim sup
n→∞

an < 1, lim sup
n→∞

b′n
c′′n
< 1

then each orbit {(xn, yn)} of (4.1) with initial point (x0, y0) ∈ [0,∞)2 is uniformly

bounded from above.

Proof. By the hypotheses, there is ρ ∈ (0, 1) such that b′n/c
′′
n ≤ ρ for all sufficiently

large n. Thus,

yn+1 =
a′nxn + b′nyn + c′n
a′′nxn + b′′nyn + c′′n

≤ b′nyn +Ma′′nxn +Mc′′n
a′′nxn + c′′n

≤ b′n
c′′n
yn +M ≤ ρyn +M

Using an argument similar to that in the proof of Part (a) of Theorem 4.3 we conclude

that for all large n

yn ≤
M + ρ

1− ρ
.
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Since this proves that the y-component is bounded, again following the line of rea-

soning in the proof of Theorem 4.3 the proof is concluded.

Corollary 4.7. Let 0 ≤ a < 1, c, a′, b′, c′, a′′ ≥ 0 and b, c′′, a′ + b′ + c′ > 0. If

b′/c′′ < 1Then there are M,M ′ > 0 such that for all sufficiently large n, (xn, yn) ∈

[0,M ′]× [0,M ] for each orbit of the autonomous system

xn+1 = axn + byn + c

yn+1 =
a′xn + b′yn + c′

a′′xn + c′′

with initial point (x0, y0) ∈ [0,∞)2.

4.2.2 Uniform boundedness of the folding’s solutions

The results in the preceding section establish the boundedness of solutions when

the system parameters are non-negative even when certain folding parameters are

negative. In this section, we study the boundedness of solutions when the folding

parameters are non-negative even when certain system parameters are negative.

The following is a general result on the uniform boundedness of all solutions of

(4.5).

Theorem 4.8. Assume that b′′n, D
′′
ab,n ≥ 0 and D′′cb,n > 0 for all n ≥ 0, let L,M be

real numbers such that 0 ≤ L < M and for all n ≥ 0

Lb′′n ≤ σ1,n ≤Mb′′n, LD
′′
ab,n ≤ σ2,n ≤MD′′ab,n, LD

′′
cb,n ≤ σ3,n ≤MD′′cb,n. (4.18)

If lim supn→∞ an < 1 then for all n sufficiently large, L ≤ xn ≤ (M + a)/(1 − a)

for every solution {xn} of (4.5) with non-negative initial values.
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Proof. If (4.18) holds then σi,n ≥ 0 for all n. In particular,

x2 = a1x1 +
σ1,0x1 + σ2,0x0 + σ3,0

b′′0x1 +D′′ab,0x0 +D′′cb,0
≥ 0.

By induction it follows that xn ≥ 0 for all n. Further, by (4.18)

xn+2 ≤ an+1xn+1 +
b′′nMxn+1 +D′′ab,nMxn +D′′cb,nM

b′′nxn+1 +D′′ab,nxn +D′′cb,n
≤ an+1xn+1 +M (4.19)

If lim supn→∞ an < 1 then there is a ∈ (0, 1) such that an ≤ a for all sufficiently large

values of n. If N is an integer large enough that (4.19) holds for n ≥ N then

xN+2 ≤ axN+1 +M

It follows that

xN+3 ≤ axN+2 +M ≤ a2xN+1 +M(1 + a)

Proceeding this way inductively we obtain for n > N

xn ≤ an−N−1xN+1 +M(1 + a+ · · ·+ an−N−2) =
M

1− a
+ an−N−1

[
x1 −

M

1− a

]

As n → ∞ the last term of the above expression approaches zero; in particular, for

all n sufficiently large

an−N−1

[
x1 −

M

1− a

]
≤ a

1− a
.

Therefore, for all n sufficiently large

xn ≤
M

1− a
+

a

1− a
=
M + a

1− a
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Finally, the proof is completed by observing that for all n

xn+2 ≥
σ1,nxn+1 + σ2,nxn + σ3,n

b′′nxn+1 +D′′ab,nxn +D′′cb,n
≥
Lb′′nxn+1 + LD′′ab,nxn + LD′′cb,n
b′′nxn+1 +D′′ab,nxn +D′′cb,n

≥ L.

The preceding result implies that (4.5) is permanent if L > 0; i.e., every solution

is bounded and has no subsequence that converges to zero. The next result applies

Theorem 4.8 to the original system.

Theorem 4.9. Assume that (4.18) holds and |cn| ≤ δ|bn| for some δ > 0 and all

n ≥ 0. Then each orbit of (4.2) with x0 > 0 and a0x0 + b0y0 + c0 > 0 is bounded and

contained in the right half-plane. Further, if L > 0 then no such solution approaches

a point on the y-axis.

Proof. By Theorem 4.8 and (4.3),

|yn| ≤
∣∣∣∣xn+1 − anxn − cn

bn

∣∣∣∣ ≤ xn+1 + anxn
b

+

∣∣∣∣cnbn
∣∣∣∣ ≤ (1 + a)(M + a)

b(1− a)
+ δ.

The first conclusion now follows. If L > 0 then by Theorem 4.8 xn ≥ L so the second

conclusion also follows.

The next result, in which the parameters are constants (independent of n) also

follows from Theorem 4.8.

Corollary 4.10. Assume 0 ≤ a < 1, b′′, D′′ab, D
′′
cb > 0, σ1 + σ2 + σ3 > 0. Then all

solutions of the autonomous equation

xn+2 = axn+1 +
σ1xn+1 + σ2xn + σ3

b′′xn+1 +D′′abxn +D′′cb

with x0, x1 ≥ 0 are uniformly bounded. If in addition, σ1, σ2, σ3 > 0 then all such

solutions are bounded from below by a positive number.
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Proof. Define

M = max

{
σ1

b′′
,
σ2

D′′ab
,
σ3

D′′cb

}
> 0.

Then the upper bound inequalities in (4.18) hold and Theorem 4.8 may be applied

to conclude the proof. If additionally, all three parameters σ1, σ2, σ3 are positive then

define

L = min

{
σ1

b′′
,
σ2

D′′ab
,
σ3

D′′cb

}
> 0

to satisfy the lower bound inequalities in (4.18) and apply Theorem 4.8 again to

complete the proof.

4.2.3 Global exponential stability of the zero solution

In this section we discuss conditions that lead to the exponential convergence of

all non-negative solutions of (4.5) to the zero solution and what this means for the

system. We assume that σ3,n = 0 for all n in this section so that (4.5) reduces to

xn+2 = an+1xn+1 +
σ1,nxn+1 + σ2,nxn

b′′nxn+1 +D′′ab,nxn +D′′cb,n
(4.20)

All parameters in the above equation are assumed to be non-negative. If D′′cb,n > 0

for all n then the above equation has a zero solution xn = 0. Under certain conditions,

this trivial solution is exponentially stable and attracts all non-negative solutions. To

prove the main result of this section we need a general result from [85] that we state

as a lemma.

Lemma 4.11. Let α ∈ (0, 1) and assume that the functions fn : Rk+1 → R satisfy

the inequality

|fn(u0, . . . , uk)| ≤ αmax{|u0|, . . . , |uk|} (4.21)
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for all n ≥ 0. Then for every solution {xn} of

xn+1 = fn(xn, xn−1, . . . , xn−k) (4.22)

the following is true

|xn| ≤ αn/(k+1) max{|x0|, |x−1| . . . , |x−k|}. (4.23)

We note that (4.21) implies that xn = 0 is a constant solution of (4.22) and further,

(4.23) implies that this solution is stable.

Theorem 4.12. Assume that all parameters in (4.20) are non-negative and D′′cb,n > 0

for all n ≥ 0. If lim supn→∞ an < 1 and there is µ ∈ (0, 1) such that for all large

values of n

σ1,n + σ2,n ≤ (µ− an+1)D′′cb,n (4.24)

then every solution of (4.20) with initial values x0, x1 ≥ 0 converges to zero exponen-

tially.

Proof. Define

fn(u0, u1) = an+1u0 +
σ1,nu0 + σ2,nu1

b′′nu0 +D′′ab,nu1 +D′′cb,n

Then

fn(u0, u1) ≤ an+1u0 +
σ1,nu0 + σ2,nu1

D′′cb,n

≤

(
an+1 +

σ1,n + σ2,n

D′′cb,n

)
max{u0, u1}

By hypothesis lim supn→∞ an < 1 so there is δ ∈ (0, 1) such that an < δ for all large
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n. If (4.24) holds and we define α = max{µ, δ} then for all large n

σ1,n + σ2,n ≤ (α− an+1)D′′cb,n

which may be written as

an+1 +
σ1,n + σ2,n

D′′cb,n
≤ α.

Thus (4.21) holds and the proof concludes by applying Lemma 4.11.

The following is the special case of Theorem 4.12 for the autonomous equation

xn+2 = axn+1 +
σ1xn+1 + σ2xn

b′′xn+1 +D′′abxn +D′′cb
(4.25)

Corollary 4.13. Assume that all parameters in (4.25) are non-negative and D′′cb > 0.

If a < 1 and

σ1 + σ2 < (1− a)D′′cb (4.26)

then (4.25) has no positive fixed points and 0 is globally exponentially stable with

respect to [0,∞).

Proof. First, note that if (4.26) holds and we define

µ = a+
σ1 + σ2

D′′cb
=
σ1 + σ2 + aD′′cb

D′′cb
< 1

then µ ∈ (a, 1) and σ1 + σ2 ≤ (µ − a)D′′cb. Thus, in light of Theorem 4.12 it only

remains to show that (4.25) has no positive fixed points. A fixed point x̄ of (4.25)

satisfies the equation

x̄ = ax̄+
σ1x̄+ σ2x̄

b′′x̄+D′′abx̄+D′′cb
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So if x̄ 6= 0 then the above equality yields

(1− a)(b′′ +D′′ab)x̄ = σ1 + σ2 − (1− a)D′′cb

Since (1− a)(b′′ +D′′ab) ≥ 0 if (4.26) holds then σ1 + σ2 − (1− a)D′′cb < 0 so x̄ cannot

be positive.

The next result applies Theorem 4.12 to the system (4.2).

Corollary 4.14. Assume that the hypotheses of Theorem 4.12 are true with σ3,n = 0

for all n.

(a) Every orbit of (4.2) with x0 > 0 and ax0+b0y0+c0 > 0 is in the right half-plane

x > 0 and converges to the sequence {(0,−cn/bn)}.

(b) If bn = b 6= 0 and cn = c are constants then the orbit {(xn, yn)} of (4.2) in (a)

lies in the right half-plane above the line ax + by + c = 0 as it converges to the fixed

point (0,−c/b) of (4.2) on the y-axis.

Inequality (4.24) may hold when all folding parameters are non-negative but does

it hold also when all system parameters in (4.2) are non-negative? To answer this

question note that

σ1 + σ2 − (1− a)D′′cb = bb′ + cb′′ + bD′ab + cD′′ab − (1− a)(bc′′ − b′′c)

= bb′ + cb′′ + b(a′b− ab′) + c(a′′b− ab′′)− (1− a)bc′′ + (1− a)b′′c

= (1− a)bb′ + a′b2 + a′′bc+ 2(1− a)b′′c− (1− a)bc′′

We assume that 0 ≤ a < 1 and b > 0. Then the last inequality above may be negative

only if c′′ > 0. Now, σ3 = bD′cb + cD′′cb = 0 implies

c > 0⇒ bc′′ = b′′c+ bb′ − b2c′

c
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which yields

σ1 + σ2 − (1− a)D′′cb = (1− a)bb′ + a′b2 + a′′bc+ 2(1− a)b′′c− (1− a)

(
b′′c+ bb′ − b2c′

c

)
= a′b2 + a′′bc+ (1− a)

(
b′′c+

b2c′

c

)
> 0

Hence, (4.24) does not hold if c > 0. Assume that c = 0. Then σ3 = 0 implies that

b2c′ = 0 so c′ = 0 and

σ1 + σ2 − (1− a)D′′cb = (1− a)bb′ + a′b2 − (1− a)bc′′

To satisfy (4.24) we set the above quantity to be negative and obtain

(1− a)b′ + a′b− (1− a)c′′ < 0

(1− a)(b′ − c′′) + a′b < 0

This leads to the following consequence of Corollary 4.13 for the system.

Corollary 4.15. In (4.2) assume that c = c′ = 0, 0 ≤ a < 1, a′′, b′′ ≥ 0 and

a′, b, c′′ > 0. If

a′b < (1− a)(c′′ − b′)

then every orbit of (4.2) with initial point in [0,∞)2 converges to the origin; i.e., the

origin is a global attractor of all orbits in [0,∞)2.
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4.3 Folding to an autonomous equation

Suppose that there are constants a,A,B,C, σ1, σ2, σ3 such that for all n ≥ 0

an = a, b′′n = A, D′′ab,n = B, D′′cb,n = C (4.27a)

bn+1b
′
n + cn+1b

′′
n = σ1, (4.27b)

bn+1D
′
ab,n + cn+1D

′′
ab,n = σ2, (4.27c)

bn+1D
′
cb,n + cn+1D

′′
cb,n = σ3, (4.27d)

The above conditions trivially hold if (4.2) is autonomous; however, they also hold

for many types of nonautonomous systems. If (4.27) holds then (4.5) reduces to the

autonomous equation

xn+2 = axn+1 +
σ1xn+1 + σ2xn + σ3

Axn+1 +Bxn + C
(4.28)

The 7 equations in (4.27) determine as many of the 9 system parameters. The

following leaves two of the system parameters arbitrary and gives the values of the

remaining parameters in terms of these two.

Theorem 4.16. Suppose that (4.62) and (4.27) hold. Then:

(a) |A|+ |B| > 0; i.e., A and B are not both zeros.

(b) If {bn} and {cn} are arbitrary sequences such that bn 6= 0 for all n ≥ 0 then

a′′n =
B + Aa

bn
, c′′n =

C + Acn
bn

, a′n =
σ2 + σ1a− (B + Aa)cn+1

bnbn+1

b′n =
σ1 − Acn+1

bn+1

, c′n =
σ3 + σ1cn − (Acn + C)cn+1

bnbn+1

Proof. (a) If A 6= 0 then we are done. Suppose that A = 0, i.e., b′′n = 0 for all n. Then

by (4.27a) and (4.6), a′′nbn = B. If B = 0 then a′′n = 0 for all n since by (4.62), bn 6= 0

for all n. But now |a′′n| + |b′′n| = 0 which contradicts a hypothesis in (4.62). Hence,
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B 6= 0 and (a) follows.

(b) From (4.27a) and (4.6) we obtain

B = a′′nbn − anb′′n = a′′nbn − aA, C = c′′nbn − cnb′′n = c′′nbn − cnA

Solving these equations for a′′n and c′′n, respectively, yields the stated results. Next,

from (4.27b) we have

σ1 = bn+1b
′
n + cn+1b

′′
n = bn+1b

′
n + cn+1A

which may be solved for b′n to yield the stated result. Similarly, (4.27c) yields

σ2 = bn+1D
′
ab,n + cn+1D

′′
ab,n = bn+1(a′nbn − ab′n) + cn+1B

= bnbn+1a
′
n − a(σ1 − Acn+1) + cn+1B

which we can solve for a′n. Finally, (4.27d) implies

σ3 = bn+1D
′
cb + cn+1D

′′
cb = bn+1(bnc

′
n − b′ncn) + cn+1C

= bn+1bnc
′
n − (σ1 − Acn+1)cn + cn+1C

which can be solved for c′n to yield the stated result.

Although in dealing with (4.28) we usually assume that its parameters are all

non-negative, the next result shows that solutions may be non-negative even when a

parameter is negative.

Theorem 4.17. Let A,B,C, σ2, σ3 ≥ 0 in (4.28). If

σ1 > −
(
Ca+ 2

√
Aaσ3

)
(4.29)
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then xn > 0 for all n if x0, x1 > 0.

Proof. If (4.29) holds then since A+B > 0 by Theorem 4.16,

x2 ≥ ax1 +
σ1x1 + σ2x0 + σ3

Ax1 +Bx0 + C
≥ Aax2

1 + (Ca+ σ1)x1 + σ3

Ax1 +Bx0 + C
>

(
√
Aax1 −

√
σ3)2

Ax1 +Bx0 + C
≥ 0.

It follows that by induction that xn > 0 for all n.

4.3.1 Fixed points in the positive quadrant

The fixed points of (4.2) satisfy the following equations:

x̄ = ax̄+ bȳ + c (4.30a)

ȳ =
a′x̄+ b′ȳ + c′

a′′x̄+ b′′ȳ + c′′
(4.30b)

From (4.30a),

ȳ =
(1− a)x̄− c

b
(4.31)

Before calculating the values of the x- and y-components we note the following facts

about the solutions of the system (4.2).

Lemma 4.18. Assume that all system parameters are non-negative and satisfy (4.62),

i.e.,

b > 0, a′ + a′′, a′′ + b′′, a′ + b′ + c′ > 0. (4.32)

(a) If there is a fixed point (x̄, ȳ) of the system in the positive quadrant (i.e., x̄, ȳ > 0)

then 0 ≤ a < 1 and x̄ > c/(1− a).

(b) If a > 1 then every orbit of (4.2) in the positive quadrant is unbounded.

Proof. (a) Let (x̄, ȳ) be a fixed point of the system in the positive quadrant. Then
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by (4.30a)

(1− a)x̄ = bȳ + c > c ≥ 0 (4.33)

since b, ȳ > 0 by hypothesis and (4.32). Since x̄ > 0 it follows that 1−a > 0 or a < 1.

(b) From (4.2a) it follows that for all n

xn+1 = axn + byn + c ≥ axn

By induction, xn ≥ anx0 for all n and it follows that the orbit is unbounded if

x0 > 0.

Now, to calculate the fixed points, from (4.31) and (4.30b) we obtain

(1− a)x̄− c
b

=
a′x̄+ b′[(1− a)x̄− c]/b+ c′

a′′x̄+ b′′[(1− a)x̄− c]/b+ c′′

=
a′bx̄+ b′(1− a)x̄− b′c+ bc′

a′′bx̄+ b′′(1− a)x̄− b′′c+ bc′′

=
(D′ab + b′)x̄+D′cb
(D′′ab + b′′)x̄+D′′cb

Multiplying and rearranging the terms yields a quadratic equation in x̄ given by

d1x̄
2 − d2x̄− d3 = 0 (4.34)

where

d1 = (1− a)(b′′ +D′′ab)

d2 = b(D′ab + b′) + c(D′′ab + b′′)− (1− a)D′′cb = σ1 + σ2 − (1− a)D′′cb

d3 = bD′cb + cD′′cb = σ3

Depending on whether some of the last 3 parameters are zeros or not, a number

of possibilities for fixed points occur. Since we are only interested in the fixed points
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in the positive quadrant, it is relevant to point out that

b′′ +D′′ab = b′′ + a′′b− ab′′ = a′′b+ (1− a)b′′ > 0 by (4.32)

so by Lemma 4.18 d1 > 0. Assuming that

d2
2 + 4d1d3 ≥ 0 (4.35)

to ensure the existence of real solutions for (4.34), we calculate the roots:

x̄ =
d2 ±

√
d2

2 + 4d1d3

2d1

=
b(D′′ab + b′) + c(D′′ab + b′′)− (1− a)D′′cb

2(1− a)(D′′ab + b′′)
±√

[(b(D′′ab + b′) + c(D′′ab + b′′)− (1− a)D′′cb]
2 + 4(1− a)(D′′ab + b′′)(cD′′cb + bD′cb)

2(1− a)(D′′ab + b′′)

These roots can be expressed more succinctly using the parameters of the folding.

We use the notation x̄ for the root with the positive sign

x̄ =
σ1 + σ2 − (1− a)D′′cb +

√
[σ1 + σ2 − (1− a)D′′cb]

2 + 4(1− a)(b′′ +D′′ab)σ3

2(1− a)(b′′ +D′′ab)

(4.37)

with ȳ given by (4.31) and use x̃ to denote the root with the negative sign

x̃ =
σ1 + σ2 − (1− a)D′′cb −

√
[σ1 + σ2 − (1− a)D′′cb]

2 + 4(1− a)(b′′ +D′′ab)σ3

2(1− a)(b′′ +D′′ab)

(4.38)

with ỹ again given by (4.31). It is an interesting fact that of the two fixed points

above only one of them can be in the positive quadrant.

Lemma 4.19. Let all system parameters in (4.2) be non-negative and satisfy (4.32).

If (4.2) has a fixed point in (0,∞)2 then that fixed point is (x̄, ȳ) and it is unique with
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x̄ given by (4.37) and ȳ given by (4.31).

Proof. Lemma 4.18 and the above discussion indicate that a necessary condition for

the existence of fixed points in the positive quadrant is that 0 ≤ a < 1 holds. We

found two possible fixed points given by (4.37) and (4.38) plus (4.31). Both of these

are well defined if and only if (4.35) holds. Now, again by Lemma 4.18 the fixed point

(x̄, ȳ) is in the positive quadrant if x̄ > c/(1− a), i.e.,

d2 +
√
d2

2 + 4d1d3 >
2cd1

1− a√
d2

2 + 4(1− a)(b′′ +D′′ab)σ3 > 2c(b′′ +D′′ab)− d2

(1− a)σ3 > c2(b′′ +D′′ab)− cd2 (4.39)

Similarly for x̃ it is required that

d2 −
√
d2

2 + 4d1d3 >
2cd1

1− a√
d2

2 + 4(1− a)(b′′ +D′′ab)σ3 < d2 − 2c(b′′ +D′′ab)

(1− a)σ3 < c2(b′′ +D′′ab)− cd2. (4.40)

The preceding covers all possible fixed points in the first quadrant under the

hypotheses of the lemma. We now show that (4.40) cannot hold, thus leaving (x̄, ȳ)

as the only possible fixed point in the first quadrant. Note that

cd2 − c2(b′′ +D′′ab) = c[σ1 + σ2 − (1− a)D′′cb]− c2b′′ − c2D′′ab

= c[bb′ + b′′c+ b(a′b− ab′) + cD′′ab − (1− a)D′′cb]− c2b′′ − c2D′′ab

= (1− a)bb′c+ a′b2c− c(1− a)D′′cb
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Therefore,

(1− a)σ3 + cd2 − c2(b′′ +D′′ab) = (1− a)bD′cb + (1− a)bb′c+ a′b2c

= (1− a)b(c′b− b′c) + (1− a)bb′c+ a′b2c

= (1− a)b2c′ + a′b2c

Since the last quantity is non-negative under the hypotheses, it follows that (4.40)

does not hold and the proof is complete.

4.4 Non-existence of repellers

We see in the proof of Lemma 4.19 that (x̄, ȳ) exists in the positive quadrant

if (4.35) and (4.39) both hold. Of particular interest to us is whether (x̄, ȳ) can be

repelling under the hypotheses of Lemma 4.19. We recall that a fixed point is repelling

if all eigenvalues of the linearization of the system at that point have modulus greater

than 1.

Theorem 4.20. Let all system parameters in (4.2) be non-negative and satisfy (4.32).

If (4.2) has a fixed point in (0,∞)2 then it is uniquely (x̄, ȳ) and this is not a repelling

fixed point.

Proof. The first assertion follows from Lemma 4.19. To show that (x̄, ȳ) is not re-

pelling we examine the eigenvalues of the linearization of (4.2) at (x̄, ȳ). The Jacobian

matrix of (4.2) evaluated at the fixed point (x̄, ȳ) is

J(x̄, ȳ) =

 a b

p q


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where

p =
a′(a′′x̄+ b′′ȳ + c′′)− a′′(a′x̄+ b′ȳ + c′)

(a′′x̄+ b′′ȳ + c′′)2
,

q =
b′(a′′x̄+ b′′ȳ + c′′)− b′′(a′x̄+ b′ȳ + c′)

(a′′x̄+ b′′ȳ + c′′)2

Since by (4.30b)

a′x̄+ b′ȳ + c′ = ȳ(a′′x̄+ b′′ȳ + c′′) (4.41)

the above expressions for p and q reduce to

p =
a′ − a′′ȳ

a′′x̄+ b′′ȳ + c′′
, q =

b′ − b′′ȳ
a′′x̄+ b′′ȳ + c′′

. (4.42)

The characteristic equation of the above Jacobian is

λ2 − (a+ q)λ− (bp− aq) = 0 (4.43)

where

a+ q = a+
b′ − b′′ȳ

a′′x̄+ b′′ȳ + c′′
=
aa′′x̄− (1− a)b′′ȳ + ac′′ + b′

a′′x̄+ b′′ȳ + c′′
(4.44)

and

bp− aq =
a′b− a′′bȳ − ab′ + ab′′ȳ

a′′x̄+ b′′ȳ + c′′
=

D′ab −D′′abȳ
a′′x̄+ b′′ȳ + c′′

(4.45)

Let

α = a+ q, β = bp− aq

and write (4.43) as

λ2 − αλ− β = 0. (4.46)
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The roots of (4.46) are the eigenvalues, i.e.,

λ1 =
α−

√
α2 + 4β

2
, λ2 =

α +
√
α2 + 4β

2
.

When α2 + 4β < 0 (or β < −α2/4) the eigenvalues λ1, λ2 are complex and their

common modulus is −β. So both eigenvalues have modulus greater than 1 if and

only if

β < −1. (4.47)

If α2 + 4β ≥ 0 then both eigenvalues are real with λ1 ≤ α/2 ≤ λ2. By considering the

3 possible cases

λ1, λ2 < −1, λ1, λ2 > 1 or λ1 < −1, λ2 > 1

routine calculations show that both eigenvalues have modulus greater than 1 if and

only if

2 < |α| < 1− β or β > 1 + |α|. (4.48)

With regard to (4.47) note that by (4.31) x̄− bȳ = ax̄+ c so

β + 1 =
D′ab −D′′abȳ + a′′x̄+ b′′ȳ + c′′

a′′x̄+ b′′ȳ + c′′

=
a′b− ab′ + a′′(x̄− bȳ) + ab′′ȳ + b′′ȳ + c′′

a′′x̄+ b′′ȳ + c′′

=
a′b− ab′ + a′′c+ a(a′′x̄+ b′′ȳ) + b′′ȳ + c′′

a′′x̄+ b′′ȳ + c′′

By (4.41)

a′′x̄+ b′′ȳ =
a′x̄+ b′ȳ + c′

ȳ
− c′′ = a′x̄+ c′

ȳ
+ b′ − c′′

so

β + 1 =
a′b+ a′′c+ a(a′x̄+ c′)/ȳ + (1− a)c′′ + b′′ȳ

a′′x̄+ b′′ȳ + c′′
≥ 0.
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It follows that (4.47) does not hold and further, 1 − β ≤ 2 so that the first of the

inequalities in (4.48) also does not hold. To check the remaining inequality β > 1+|α|

it is more convenient if we rewrite the expressions for α, β in terms of the folding

parameters, using (4.31) to eliminate ȳ

α =
[(2a− 1)b′′ + aD′′ab]x̄+ σ1 + aD′′cb

(b′′ +D′′ab)x̄+D′′cb
(4.49)

β =
σ2 − (1− a)D′′abx̄

(b′′ +D′′ab)x̄+D′′cb
(4.50)

Note that

(b′′ +D′′ab)x̄+D′′cb >
c[a′′b+ (1− a)b′′]

1− a
+ bc′′ − b′′c

=
a′′bc+ (1− a)b′′c+ (1− a)(bc′′ − b′′c)

1− a

=
a′′bc+ (1− a)bc′′

1− a
≥ 0

so β > 1− α if and only if

[(2a− 1)b′′ + aD′′ab]x̄+ σ1 + aD′′cb > D′′cb + (b′′ +D′′ab)x̄− σ2 + (1− a)D′′abx̄

which reduces to

2(1− a)(b′′ +D′′ab)x̄ < σ1 + σ2 − (1− a)D′′cb (4.51)

However, (4.37) implies that

2(1− a)(b′′ +D′′ab)x̄ ≥ σ1 + σ2 − (1− a)D′′cb.

So (4.51) is false and thus, α ≤ 1 − β, or equivalently, β ≤ 1 − α ≤ 1 + |α|. Hence,

(x̄, ȳ) is not repelling in the positive quadrant.
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The above theorem shows that any fixed point of the system in the positive quad-

rant is non-repelling if all system parameters are non-negative; in particular, there

are no snap-back repellers in the positive case (though unstable saddle fixed points

exist for some parameter values).

4.5 Global stability and periodic solutions

In this section, we obtain several sufficient conditions for convergence of the solu-

tions of (4.2) to the positive fixed point x̄. Notice that the results obtained in Chapter

2 are directly applicable for this case, so the results below follow as corollaries.

Corollary 4.21. Let the parameters of (4.2) satisfy

0 ≤ a < 1 b > 0, c,b′′ ≥ 0, bb′ > −cb′′ (4.52a)

a′b > ab′ a′′b > ab′′, c′b > cb′ c′′b > cb′′ (4.52b)

Then the system in (4.2) has a unique fixed point (x̄, ȳ) ∈ (0,∞)2 where x̄ is given by

(4.37) and

ȳ =
(1− a)x̄

b
(4.53)

Proof. The conditions in (4.52) are sufficient to ensure that the parameters in the

folding (4.5) as defined by (4.27) satisfy the conditions (2.2) in Chapter 2which implies

that x̄ given by (4.37) and ȳ given by (4.53) are strictly positive.

Corollary 4.22. Let (4.52) hold. If the parameters of (4.2) satisfy either of the

conditions below:
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(i)

D′′ab(bb
′ + cb′′ ≤ b′′(bD′ab + cD′′ab) + 2aD′′ab

b′′(bD′cb + cD′′cb) ≤ a+ bb′ + cb′′

D′′(bD′cb + cD′′cb) ≤ bD′ab + cD′′ab

(ii)

1

b′′
(bb′ + cb′′) ≥ bD′cb + cD′′acb ≥

1

D′′cb
(bD′ab + cD′′ab)

then all solutions of (4.2) from initial values (x0, y0) ∈ [0,∞)2 converge to (x̄, ȳ) ∈

(0,∞)2.

Proof. The conditions in (4.52) are sufficient to ensure that the parameters in the

folding (4.5) as defined by (4.27) satisfy the conditions (2.2) in Chapter 2 and that

if x0, y0 ≥ 0, then x0, x1 = ax0 + by0 + c ≥ 0. Conditions in (i) and (ii) satisfy the

hypotheses of Corollaries 2.8 and 2.17 in Chapter 2 from which the result follows.

Example 4.23. Consider the following system

xn+1 = 0.2xn + yn + 1 (4.54a)

yn+1 =
1.2xn + yn + 2

xn + 0.8yn + 1
(4.54b)

The system in (4.54) folds into

yn = xn+1 − 0.2xn − 1 (4.55a)

xn+2 = 0.2xn+1 +
2xn+1 + 1.8xn + 2

xn+1 + 0.8xn + 1
(4.55b)

Routine calculations show that the parameters of (4.54) satisfy the conditions (ii)
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in Corollary 4.52, which implies that all solutions of (4.54) from nonnegative initial

values converge to the fixed point in the positive quadrant.

Corollary 4.24. Let (4.52) hold. Then (4.2) has a prime period two solution in

[0,∞)2 if and only if

2a′′x̄ < a′b+ a′′c− ac′′ − (1 + a)(b′′ + c′′) (4.56)

Proof. The conditions in (4.52) are sufficient to ensure that the parameters in the

folding (4.5) as defined by (4.27) satisfy (2.2) in Chapter 2 and that if x0, y0 ≥ 0,

then x0, x1 = ax0 + by0 + c ≥ 0. Straightforward algebraic calculations show that the

condition in (2.16) can be expressed with respect to parameters of (4.2) as (4.56).

By Lemma 2.4 the fixed point (x̄, ȳ) is a saddle and the proof follows from Theorem

2.22.

Example 4.25. Consider the system

xn+1 = 0.01xn + yn + 0.1 (4.57a)

yn+1 =
5xn + 2yn + 1

0.1xn + yn + 1
(4.57b)

The system in (4.57) folds into

yn = xn+1 − 0.01xn − 0.1 (4.58a)

xn+2 = 0.01xn+1 +
2.1xn+1 + 4.989xn + 0.89

xn+1 + 0.09xn + 0.9
(4.58b)

Routine calculations show that the system in (4.57) satisfies the conditions in Corol-

lary (4.24), which lets us conclude that (4.57) has a prime period two solution.

Example 4.26. Consider the following system
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xn+1 = 0.6xn + 0.1yn + 0.2 (4.59a)

yn+1 =
−0.1xn − 0.1yn + 0.1

xn + 0.05yn + 2
(4.59b)

The system in (4.59) folds into

yn = 10xn+1 − 6xn − 2 (4.60a)

xn+2 = 0.6xn+1 +
0.019xn + 0.041

0.05xn+1 + 0.07xn + 0.19
(4.60b)

By routine calculations, one may further show that the parameters in (4.59) satisfy

the conditions (ii) in Corollary (4.22) which lets us conclude that all solutions from

nonnegative initial values (x0, y0) converge to the positive fixed point in the first

quadrant.

4.6 Cycles and chaos in the positive quadrant

If a = 0 then (4.5) reduces to the linear-fractional equation

xn+2 =
σ1xn+1 + σ2xn + σ3

b′′xn+1 +D′′abxn +D′′cb
(4.61)

This type of linear-fractional equation has been studied extensively under the assump-

tion of non-negative parameters; see, e.g., [51]. Although many questions remain to

be answered about (4.61), chaotic solutions for it have not been found. To assure the

occurrence of limit cycles and chaos and to avoid reductions to linear systems or to

triangular systems where one of the equations is single-variable, we assume that

a, b, a′, b′′ 6= 0. (4.62)
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If some of the parameters in (4.5) are negative then even the existence and bound-

edness of solutions are nontrivial issues. Our aim here is to show that special cases of

(4.5) with some negative coefficients exhibit Li-Yorke chaos in the positive quadrant.

We note that (4.5) reduces to a first-order difference equation if

D′ab = D′′ab = 0. (4.63)

In this case, we define rn = xn+1 and r0 = x1 = ax0 + by0 + c to obtain

rn+1 = arn +
σ1rn + σ3

b′′rn +D′′cb
(4.64)

The theory of one-dimensional maps may be applied to (4.64). To simplify calcu-

lations we assume in addition to (4.63) that

D′′cb = 0, D′cb 6= 0 (4.65)

which reduce (4.64) to

rn+1 = arn + q +
s

rn
, (4.66)

where q = c+
bb′

b′′
, s =

bD′cb
b′′

Note that if D′cb = 0 also then (4.66) is affine and as such, it does not have chaotic

solutions.

A comprehensive study of Equation (4.66) appears in [25]. The following is a

consequence of the results in [25]. We point out that if p is the minimal period of a

solution {rn} of (4.66) with r0 > 0 then the sequence {xn} also has minimal period

p and by (4.3) {yn} has period p. It follows that the orbit {(xn, yn)} has minimal

period p.
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Theorem 4.27. Assume that conditions (4.62), (4.63) and (4.65) hold with the (nor-

malized) values a = 1, b′′ = bD′cb and define q = c+ bb′/b′′.

(a) If −2 < q < 0 then all orbits of (4.2) with x0 + by0 + c > 0 are well-defined

and bounded. If also b′/b′′ > 0 then these orbits are contained in (0,∞)2.

(b) If −
√

2 < q < 0 then all orbits of (4.2) with x0 + by0 + c > 0 converge to the

unique fixed point (x̄, ȳ) = (−1/q,−c/b) of (4.2).

(c) If −
√

5/2 < q < −
√

2 then (4.2) has an asymptotically stable 2-cycle {(x1, y1), (x2, y2)}

where yi is given by (4.3) and

x1 =
−q −

√
q2 − 2

2
, x2 =

−q +
√
q2 − 2

2

(d) If q = −
√

3 and x0 + by0 + c = 2 (1 + cos π/9) /
√

3 then the points (xi, yi),

i = 1, 2, 3 constitute a stable orbit of period 3 for (4.2) where yi is given by (4.3) and

x1 =
2√
3

(
1 + cos

π

9

)
, x2 = x1 −

√
3 +

1

x1

, x3 = x2 −
√

3 +
1

x2

(e) If −2 < q ≤ −
√

3 then orbits of (4.2) with x0 + by0 + c > 0 include cycles of

all possible periods.

(f) For −2 < q < −
√

3 orbits of (4.2) with x0 + by0 + c > 0 are bounded and

exhibit chaotic behavior.

Proof. Statements (a)-(f) follow largely from Theorems 4-6 in [25]. It only remains to

show that orbits whose initial points satisfy x0 + by0 + c > 0 are contained in (0,∞)2

and to determine the unique fixed point. Since xn = rn−1 > 0 for all n ≥ 1, (4.3) and
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(4.66) imply under the assumptions in (a) that

yn =
1

b
(rn − arn−1 − c)

= −c
b

+
1

b

(
q +

1

rn−1

)
= −c

b
+
c

b
+
b′

b′′
+

1

brn−1

=
b′

b′′

(
1 +

1

rn−1

)

If b′/b′′ > 0 then it follows that yn > 0 for all n ≥ 1 and the proof of (a) is complete.

Finally, in (b) we see that the fixed point of (4.2) when a = 1 is determined from

(4.30), (4.63) and (4.65) as

(
−b′′

bb′ + b′′c
,−c

b

)
=

(
−1

q
,−c

b

)

which is in the positive quadrant if q, c/b < 0.

Example 4.28. To illustrate Theorem 4.27, consider the following special case of

(4.2)

xn+1 = xn + 2yn − 2

yn+1 =
0.75xn + 1.5yn
3xn + 6yn − 6

which satisfies Part (c) of Theorem 4.27 (q = −1.5) and there exists an asymptotically

stable 2-cycle {(1, 0.75), (0.5, 1.25)} (a limit cycle) for this system. Different parame-

ter values yield the following system which satisfies Parts (e) and (f) of Theorem 4.27
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with q ≈ −1.83

xn+1 = xn + 2yn − 2

yn+1 =
0.25xn + 0.5yn + 1

3xn + 6yn − 6

This special case of (4.2) has periodic orbits of all periods (depending on initial

points) and exhibits Li-Yorke type chaos. This fact is far from obvious and even the

existence of cycles in the first quadrant for these equations is quite difficult to prove

without folding.

We also mention that b′/b′′ > 0 in both of the above systems so every orbit whose

initial point (x0, y0) satisfies x0 + by0 + c > 0 is contained in the positive quadrant

(0,∞)2.

The hypotheses of Theorem 4.27 are sufficient but not necessary for the occurrence

of complex behavior in the positive quadrant. In fact, due to the continuity of rational

expressions in terms of their parameters, the conclusions of Theorem 4.27 hold if

the quantities D′ab, D
′′
ab, D

′′
cb are sufficiently small but not necessarily zero. Numerical

simulations indicate Li-Yorke chaos persists in the positive quadrant if the parameters

in the last system above are slightly perturbed. Caution is needed though because if

we deviate too much from the conditions of Theorem 4.27 then the nontrivial nature

of the singularity set must be taken into account before a claim of the occurrence of

chaos can be verified.

4.7 Concluding remarks

In this chapter, we studied the dynamics of a linear-rational planar system and

derived general conditions for uniform boundedness and convergence of solutions to

the origin for the general, nonautonomous case. By folding the system into a second
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order quadratic rational equation, we derived several sufficient conditions for global

convergence of the solutions to the positive fixed point, as well as occurrence of period

two solutions. We showed that these conditions can hold for broader nonautonomous

cases that fold into an equation with constant coefficients. In addition, we showed

that these results can hold even if some of the parameters in the system are negative.

We then used the folding to find special cases with some negative parameter values

where the system has chaotic solutions within the positive quadrant of the plane.

Our use of the folding method is not standard in the published literature and leads

to results that would have otherwise been difficult to establish. Since this method has

not been systematically used in the study of systems (both in continuous and discrete

time), further exploration of the method and its applicability is of great interest.

In particular, the question of whether there are certain patterns or regularities in

foldability of systems and their subsequent foldings are worth investigating.
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CHAPTER V

Applications to Biological Models of Species

Populations

Difference equations have been increasingly used in the study of species popula-

tions in biology, as seen in [89]. Systems of difference equations are used to capture

interactions of two or more species, or of a single species where the members of popu-

lation are differentiated by age or gender. Models with differentiation between adult

(reproducing) and juvenile (nonreproducing) members are also known as stage- or

age-structured models. In this chapter, we study the dynamics of a planar system

that generalizes many common stage-structured population models in discrete time.1

Discrete time stage-structured models of single-species populations with lowest

dimension are expressed as planar systems of difference equations. For a general

expression of these models consider the system

A(t+ 1) = s1(t)σ1(c11(t)J(t), c12(t)A(t))J(t) + s2(t)σ2(c21(t)J(t), c22(t)A(t))A(t)

(5.1a)

J(t+ 1) = b(t)φ(c1(t)J(t), c2(t)A(t))A(t) (5.1b)

from [21] in which J(t) and A(t) are numbers (or densities) of juveniles and adults,

1The content of this chapter, unless otherwise indicated, is from [57] and [60].
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respectively, remaining after t (juvenile) periods. The vital rates si and b (survival

and inherent fertility rates) as well as the competition coefficients ci and cij in (5.1)

may be density dependent, i.e. they may depend on J and A and also explicitly on

time, i.e. the system may be non-autonomous.

The models such as (5.1) are known as matrix models, in the sense that they can

be expressed as

z(t+ 1) = P (t, z(t))z(t)

where z(t) = [A(t), J(t)]′ and P (t, z(t)) is the projection matrix of vital rates that

may or may not be time or density dependent. Early examples of matrix models used

to model species population dynamics can be found in [11],[62], [63], [64] and their

comprehensive treatment is provided in [18].

Under certain constraints on the various functions, including periodic vital rates

and competition coefficients having the same common period p, sufficient conditions

for global convergence to zero (extinction) as well as the existence of periodic orbits

for (5.1) are established in [21]. If µ is the mean fertility rate (the mean value of b(t)

above) then it is also shown that orbits of period p appear when µ exceeds a critical

value µc while global convergence to the origin, or extinction occurs when µ < µc. On

the other hand, conditions under which the species survives (i.e. permanence) were

studied in [19] and [50].

In this chapter we study the following abstraction of the matrix model (5.1):

xn+1 = σ1,n(xn, yn)yn + σ2,n(xn, yn)xn (5.2a)

yn+1 = φn(xn, yn)xn (5.2b)

where for each time period n ≥ 0 the functions σ1,n, σ2,n, φn : [0,∞)2 → [0,∞) are

bounded on the compact sets in [0,∞)2. This feature allows for (0,0) to be a fixed
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point of the system and it is true if, e.g. σ1,n, σ2,n, φn are continuous functions for

every n. Under biological constraints on the parameters, we may think of xn = A(n)

and yn = J(n) as in (5.1).

System (5.2) includes typical stage-structured models in the literature. For in-

stance, the tadpole-adult model for the green tree frog Hyla cinerea population that

is proposed in [2] may be expressed as

xn =
yn

a+ k1yn
+

xn
c+ k2xn

(5.3a)

yn = bnxn (5.3b)

This is a system of type (5.2) with Beverton-Holt type functions σ1 and σ2. Com-

petition in (5.3) occurs separately among juveniles and adults but not between the

two classes, as they feed on separate resources; thus σ1 and σ2 do not depend on

both juvenile and adult numbers and φ is independent of both numbers. Two cases

are analyzed in [2]: (i) continuous breeding with constant bn = b so that (5.3) is au-

tonomous, and (ii) seasonal breeding where bn is periodic. In addition to considering

extinction and survival in the autonomous case, it is shown that seasonal breeding

may be deleterious (relative to continuous breeding) for populations with high birth

rates, but it can be beneficial with low birth rates.

Another system of type (5.2) is the autonomous stage-structured model with har-

vesting that is discussed in [68] and [92], which may be written as

xn+1 = (1− hj)sjyn + (1− ha)saxn (5.4a)

yn+1 = xnf((1− ha)xn) (5.4b)

The numbers hj, ha ∈ [0, 1] denote the harvest rates of juveniles and adults, re-

spectively. The stock-recruitment function f : [0,∞)→ [0,∞) may be compensatory
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(e.g. Beverton-Holt [12]) or overcompensatory (e.g. Ricker [77]). Compensatory

recruitment is used in populations where recruitment increases with increase in den-

sities before reaching an asymptote, while in overcompensatory models recruitment

declines as density increases as shown in Figure 5.1 (see [92] and [35]). A thorough

analysis of the dynamics of (5.4) with the Ricker function appears in [68]. The results

in [68] and [92] clarify many issues with regard to the effects of harvesting in stage-

structured models. These results include global convergence to zero and the existence

of a stable survival equilibrium, as well as the so-called hydra effect for different har-

vesting scenarios and with different recruitment functions. The latter refers to the

counter-intuitive situation where an increase in the harvest or mortality rate results

in a corresponding increase in the total population (for example, see [1], [42], [69]).

Figure 5.1: Compensatory and overcompensatory recruitment functions

Also studied in [68] is the occurrence of periodic and non-periodic attractors and

chaotic behavior for certain parameter ranges.
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Next, the model in [39] studies the harvesting and predation of sex and age

structured populations. Although the added stage for two sexes results in a three-

dimensional model, the existence of an attracting, invariant planar manifold reduces

the study of the asymptotic behavior of the system to that of the planar system

xn+1 = psY yn + sxn (5.5a)

yn+1 = xnf(yn + xn/p) (5.5b)

where the density-dependent per capita reproductive rate f may be compensatory or

overcompensatory (e.g. Beverton-Holt or Ricker), similarly to f in (5.4b). Here xn

is the number of females and yn is the number of juveniles (the male population is a

fixed proportion of the females).

We also mention the adult-juvenile model

xn+1 = s1yn (5.6a)

yn+1 = xnf(xn, yn) (5.6b)

in which all adults are removed through harvesting, predation, migration or just dying

after one period, as in the case of semelparous species, i.e. organisms that reproduce

only once before death. In [37] conditions for the global attractivity of the positive

fixed point and the occurrence of two-cycles for (5.6) are obtained. A significant

difference between (5.5) and (5.6) and the systems (5.3) and (5.4) is that yn+1 in

(5.5b) or in (5.6b) may depend on both xn and yn.

We study the qualitative properties of the orbits of (5.2) such as uniform bound-

edness and global convergence to the origin under minimal restrictions on time-

dependent parameters. Biological constraints may be readily imposed to obtain spe-

cial cases relevant to population models.

We also investigate convergence to zero with periodic parameters (extinction in a
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periodic environment). In particular, we show that convergence to zero occurs even

if the mean value of σ2,n exceeds 1, a situation that cannot occur if σ2,n is constant

in n; see Remark 5.16 below.

In the final sections we study the dynamics of two special cases of (5.2) given

by rational (Beverton-Holt) and exponential (Ricker) functions. Sufficient conditions

for the global asymptotic stability of a fixed point in the positive quadrant [0,∞)2

are obtained, as well as conditions for the occurrence of orbits of prime period two.

For the Beverton-Holt case, we establish that a sufficiently high level of interspecies

competition tends to destabilize the survival fixed point and result in periodic oscil-

lations. The dynamics of the Ricker case include examples of chaotic behavior that

occurs in a variety of scenarios. In particular, chaotic behavior can occur both when

the vital rates are constant, as well as periodic. In biological contexts, the periodicity

can be thought of as seasonal fluctuations in vital rates.

5.1 Uniform boundedness of orbits

Conditions under which the orbits of (5.2) are bounded are not transparent. In

this section we obtain general results about the uniform boundedness of orbits of (5.2)

in the positive quadrant [0,∞)2. We begin with a simple, yet useful lemma.

Lemma 5.1. Let α > 0, 0 < β < 1 and x0 ≥ 0. If for all n ≥ 0

xn+1 ≤ α + βxn (5.7)

then for every ε > 0 and all sufficiently large values of n

xn ≤
α

1− β
+ ε.

Proof. Let u0 = x0 and note that every solution of the linear, first-order equation
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un+1 = α + βun converges to its fixed point α/(1− β). Further,

x1 ≤ α + βx0 = α + βu0 = u1

x2 ≤ α + βx1 ≤ α + βu1 = u2

and by induction, xn ≤ un. Since un → α/(1− β) for every ε > 0 and all sufficiently

large n

xn ≤ un ≤
α

1− β
+ ε.

Theorem 5.2. Let σ1,n, σ2,n, φn be bounded on the compact sets in [0,∞)2 for each

n = 0, 1, 2, . . . and suppose that for some r,M > 0

sup
(u,v)∈[0,r]2

σ2,n(u, v) ≤M for all n ≥ 0 (5.8)

i.e. the sequence of functions {σ2,n} is uniformly bounded on the square [0, r]2. If

there are numbers M0,M1 > 0 and σ̄ ∈ (0, 1) such that uniformly for all n

uφn(u, v) ≤M0 if (u, v) ∈ [0,∞)2, (5.9)

σ1,n(u, v) ≤M1 if (u, v) ∈ [0,∞)× [0,M0], (5.10)

σ2,n(u, v) ≤ σ̄ if (u, v) ∈ (r,∞)× [0,M0], (5.11)

then all orbits of (5.2) are uniformly bounded and for all sufficiently large values of n

0 ≤ xn ≤
M0M1 + rM + σ̄

1− σ̄
, yn ≤M0. (5.12)

Proof. By (5.2b) and (5.9) yn ≤M0 for n ≥ 1 so by (5.2a) and (5.10)

0 ≤ xn+1 ≤M0M1 + σ2,n(u, v)xn.
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By (5.8) and (5.11)

0 ≤ xn+1 ≤M0M1 + max{σ̄xn,Mr} ≤ σ̄xn +M0M1 + rM

Next, applying Lemma 5.1 with ε = σ̄/(1− σ̄) we obtain for all (large) n

0 ≤ xn ≤
M0M1 + rM

1− σ̄
+ ε =

M0M1 + rM + σ̄

1− σ̄

as stated.

Corollary 5.3. For functions σ1,n, σ2,n, φn defined on [0,∞)2 for n = 0, 1, 2, . . . as-

sume that there are numbers M0,M1 > 0 and σ̄ ∈ (0, 1) such that for all (u, v) ∈

[0,∞)2

uφn(u, v) ≤M0, σ1,n(u, v) ≤M1, σ2,n(u, v) ≤ σ̄

uniformly all n. Then all orbits of (5.2) are uniformly bounded and for all sufficiently

large values of n

0 ≤ xn ≤
M0M1 + σ̄

1− σ̄
, yn ≤M0.

Theorem 5.2 is more general than the preceding corollary. For instance, Corollary

5.3 does not apply to the system

xn+1 = axn +
by2
n

1 + cxn

yn+1 =
αxn

1 + βxn + γyn

However, if a ∈ (0, 1), b, α, β > 0 and c, γ ≥ 0 then all orbits of this system with

initial values in [0,∞)2 are uniformly bounded by Theorem 5.2.
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5.2 Global attractivity of the origin

In this section we obtain general sufficient conditions for the convergence of all

orbits of the system to (0,0). For population models these yield conditions that imply

the extinction of species.

5.2.1 General results

Throughout this section we assume that σi,n, φn are all bounded functions for

i = 1, 2 and every n = 0, 1, 2, . . . Then the following are well-defined sequences of real

numbers

σ̄i,n = sup
u,v≥0

σi,n(u, v), φ̄n = sup
u,v≥0

φn(u, v). (5.13)

Theorem 5.4. If the following inequality holds

lim sup
n→∞

(σ̄1,nφ̄n−1 + σ̄2,n) < 1 (5.14)

then limn→∞ xn = 0 for every orbit {(xn, yn)} of the planar system (5.2) in the pos-

itive quadrant [0,∞)2. If also either the sequence {φ̄n} is bounded, or the following

inequality holds

lim inf
n→∞

σ̄1,n > 0, (5.15)

then every orbit of (5.2) converges to (0,0).

Proof. By (5.14) there is δ ∈ (0, 1) such that σ̄1,nφ̄n−1 + σ̄2,n ≤ δ for all (large) n.

From (5.2a)

yn ≤ φ̄n−1xn−1

so for all (large) n (5.2b) yields

xn+1 ≤ φ̄n−1σ̄1,nxn−1 + σ̄2,nxn ≤
(
σ̄1,nφ̄n−1 + σ̄2,n

)
max{xn, xn−1} ≤ δmax{xn, xn−1}
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Lemma 4.11 now implies that limn→∞ xn = 0. Further, by hypothesis either there

is a positive number µ such that φ̄n ≤ µ or by (5.15) there is a positive number ρ

such that σ̄1,n ≥ ρ for all (large) n so that

φ̄n−1 ≤
δ − σ̄2,n

σ̄1,n

≤ δ

ρ

for all sufficiently large values of n. Now, if M = µ or M = δ/ρ as the case may be,

then from (5.2b) in the planar system we see that

lim
n→∞

yn ≤ lim
n→∞

φ̄n−1xn−1 ≤M lim
n→∞

xn−1 = 0

and the proof is complete.

Remark 5.5. 1. Theorem 5.4 is valid even if the separate sequences {σ1,n} or {φ̄n}

are not bounded by 1 as long as for all n large enough, σ̄1,nφ̄n−1 ≤ δ − σ̄2,n.

2. If (5.14) is satisfied but {φ̄n} is unbounded and {σ̄1,n} does not satisfy (5.15)

then yn may not converge to 0; see the example following Corollary 5.18 below.

We consider an application of Theorem 5.4 to “noisy” autonomous system next.

Let εn, εi,n, i = 1, 2 be bounded sequences of real numbers and let

ε̄ = sup
n≥1

εn, ε̄i = sup
n≥1

εi,n, i = 1, 2

Also let σ1, σ2, φ : [0,∞)2 → [0,∞) be bounded functions and denote their supremums

over [0,∞)2 by σ̄1, σ̄2, φ̄, respectively. If in (5.2) we have

φn(xn, yn) = φ(xn, yn) + εn, σi,n(xn, yn) = σi(xn, yn) + εi,n, i = 1, 2

then we refer to (5.2) as an autonomous system with low-amplitude disturbances

or fluctuations in the rates σ1, σ2, φ, assuming that all three of these are positive
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functions and for all u, v ≥ 0

|ε̄| ≤ φ(u, v), |ε̄i| ≤ σi(u, v), i = 1, 2.

These inequalities ensure that the functions φn and σi,n are positive, as required for

(5.2).

Corollary 5.6. Suppose that (5.2) is an autonomous system with low-amplitude dis-

turbances or fluctuations in the above sense. If

(σ̄1 + ε̄1)(φ̄+ ε̄) + σ̄2 + ε̄2 < 1 (5.16)

then the origin is the unique, globally asymptotically stable fixed point of (5.2) relative

to the positive quadrant [0,∞).

Note that (5.16) holds for nontrivial sequences εn, εi,n of real numbers if σ̄1φ̄+ σ̄2 < 1.

Remark 5.7. Since in the above discussion the sequences εn, εi,n, i = 1, 2 are arbitrary

bounded sequences, they can also be sequences of random variables that are drawn

from distributions with finite support. For example, εn, εi,n can be drawn from a

uniform distribution on some interval [0, θ]. So long as

(σ̄1 + θ)(φ̄+ θ) + σ̄2 + θ < 1

Corollary 5.6 will hold, implying that the origin is globally attracting even in the

presence of noise.

In the autonomous case where the three parameter functions σ1,n, σ2,n, φn do not

depend on n at all, we have the following planar system

xn+1 = σ1(xn, yn)yn + σ2(xn, yn)xn (5.17a)

yn+1 = φ(xn, yn)xn (5.17b)
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If in Corollary 5.6 we set ε̄i, ε̄ = 0 in (5.16) then we obtain the following result for

the above autonomous system.

Corollary 5.8. Assume that σ1, σ2, φ : [0,∞)2 → [0,∞) are bounded functions and

the following inequality holds

σ̄1φ̄+ σ̄2 < 1 (5.18)

then the origin is the unique, globally asymptotically stable fixed point of (5.17) relative

to the positive quadrant [0,∞)2.

Remark 5.9. For the autonomous system given by

xn+1 = σ1yn + σ2xn

yn+1 = φ(xn, yn)xn

the equation (5.14) reduces to

φ(xn, yn)
σ1

1− σ2

< 1

The left hand side of the above equation corresponds to the density-dependent net

reproductive rate R0 described in [24] and [22]. General autonomous stage-structured

matrix models can be written as

zn+1 = Pzn

where zn is a vector of m stages of the species. If the projection matrix P = F + T

is additively decomposed to the matrix F = [fi,j] of birth processes and the matrix

T = [ti,j] of transition probabilities from one stage to another, the net reproductive

rate can be defined, as in [22], as
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R0 =
m∑
i=1

f1,j

i−1∏
j=0

tj,j−1

1− tj,j

In [22] it was shown that the species population growth rate r and the net reproductive

rate R0 are on the same side of 1. While for nonautonomous matrix systems, the

definition of R0 is not straightforward (see, for example, [23] for the case where the

matrix P is periodically forced), the quantity

φ̄n−1
σ̄1,n

1− σ̄2,n

can be thought of as the net reproductive rate at each period n. Since this implies that

the population growth rate at each period is less than one, the biological interpretation

of the result in Theorem 5.4 is not surprising.

Inequality (5.18) may be explicitly related to the local asymptotic stability of the

origin for (5.17) when the functions σ1, σ2, φ are smooth. Consider the associated

mapping

F (u, v) = (uσ(u, v) + vσ1(u, v), uφ(u, v))

whose linearization at (0,0) has eigenvalues

λ± =
σ2(0, 0)±

√
σ2(0, 0)2 + 4σ1(0, 0)φ(0, 0)

2

These are real and a routine calculation shows that |λ±| < 1 if

σ1(0, 0)φ(0, 0) + σ2(0, 0) < 1.

Under suitable differentiability hypotheses, this inequality is implied by (5.18),

and is equivalent to it if the suprema of σ2 and σ1φ occur at (0,0).
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5.2.2 Folding the system

In the next, and later sections it will be convenient to fold the system (5.2) to a

second order equation. System (5.2) in general folds as follows: Substitute for yn+1

from (5.2b) into (5.2a) to obtain

xn+2 = σ1,n+1(xn+1, φn(xn, hn(xn, xn+1))xn)φn(xn, hn(xn, xn+1))xn+ (5.19)

σ2,n+1(xn+1, φn(xn, hn(xn, xn+1))xn)xn+1

where

hn(xn, xn+1) = yn (5.20)

is derived by solving (5.2a) for yn. Although an explicit formula for hn is not feasible in

general, it is readily obtained in typical cases; for instance, suppose that σ2,n(u, v) =

σ2,n(u) and σ1,n(u, v) = σ1,n(u) are both independent of (or constant in) v for all n;

note that the systems (5.3), (5.4), (5.5) and (5.6) are all of this type. In this case it

is clear that

yn = hn(xn, xn+1) =
xn+1 − σ2,n(xn)xn

σ1,n(xn)
(5.21)

and further, (5.19) reduces to

xn+2 = σ1,n+1(xn+1)φn

(
xn,

xn+1 − σ2,n(xn)xn
σ1,n(xn)

)
xn + σ2,n+1(xn+1)xn+1 (5.22)

The pair of first-order equations (5.21) and (5.22) represent a folding of (5.2).

Note that with positive parameter functions, each pair x0, y0 ≥ 0 generates an orbit

{(xn, yn)} of (5.2) that is in [0,∞)2 for all n. So we have xn+1, xn ≥ 0 and also by

(5.20) hn(xn, xn+1) ≥ 0 so φn(xn, hn(xn, xn+1)) is well defined for every such orbit of

(5.2).

Remark 5.10. An even simpler reduction than the above is possible if φn(u, v) = φn(u)
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is independent of (or constant in) v. In this case,

xn+2 = σ1,n+1(xn+1, φn(xn)xn)φn(xn)xn + σ2,n+1(xn+1, φn(xn)xn)xn+1 (5.23)

and it is not necessary to solve (5.2a) for yn implicitly (i.e. the system folds without

inversions). Special cases of this type include systems (5.3) and (5.4).

5.2.3 Global convergence to zero with periodic parameters

The results in this section show that global convergence to zero may occur even if

(5.14) does not hold; see Remark 5.16 below. Recall from the proof of Theorem 5.4

that

xn+1 ≤ σ1,nφ̄n−1xn−1 + σ̄2,nxn. (5.24)

The right hand side of the above inequality is a linear expression. Consider the

linear difference equation

un+1 = anun + bnun−1, an+p1 = an, bn+p2 = bn (5.25)

where the coefficients an, bn are non-negative and their periods p1, p2 are positive

integers with least common multiple p = lcm(p1, p2); we say that the linear difference

equation (5.25) is periodic with period p. In this study we assume that

an, bn ≥ 0, n = 0, 1, 2, . . . (5.26)

By Lemma 4.11 every solution of (5.25) converges to zero if an + bn < 1 for all n.

However, it is known that convergence to zero may occur even when an + bn exceeds

1 (for infinitely many n in the periodic case). We use the approach in [86] to examine

the consequences of this issue when the planar system has periodic parameters. The

following result is an immediate consequence of Theorem 13 in [86].

145



Lemma 5.11. Assume that αj, βj for j = 1, 2, . . . , p are obtained by iteration from

(5.25) from the real initial values

α0 = 0, α1 = 1; β0 = 1, β1 = 0 (5.27)

Suppose that the quadratic polynomial

αpr
2 + (βp − αp+1)r − βp+1 = 0 (5.28)

is proper, i.e. not 0 = 0 and has a real root r1 6= 0. If the recurrence

rn+1 = an +
bn
rn

(5.29)

generates nonzero real numbers r2, . . . , rp then {rn}∞n=1 is periodic with preiod p and

yields a triangular system of first order equations that is equivalent to (5.25) as fol-

lows:

tn+1 = −bn
rn
tn, t1 = u1 − r1u0 (5.30)

un+1 = rn+1un + tn+1. (5.31)

The system (5.30)-(5.31) is also known as a semiconjugate factorization of (5.25);

see [83] for an introduction to this concept. The sequence {rn} that is generated by

(5.29) is said to be a (unitary) eigensequence of (5.25). Eigenvalues are essentially

constant eigensequences for if p = 1 in Lemma 5.11 then Equation (5.28) reduces to

α1r
2 + (β1 − α2)r − β2 = 0

r2 − a1r − b1 = 0
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and the latter equation is the standard characteristic equation of (5.25) with constant

coefficients; see [86] for more details on the semiconjugate factorization of linear

difference equations.

Each of the equations (5.30) and (5.31) readily yields a solution by iteration as

follows

tn = t1(−1)n−1

(
b1b2 · · · bn−1

r1r2 · · · rn−1

)
, (5.32)

un = rnrn−1 · · · r2u1 + rnrn−1 · · · r3t2 + · · · rntn−1 + tn

= rnrn−1 · · · r2r1u0 +
n−1∑
i=1

rnrn−1 · · · ri+1ti + tn (5.33)

Lemma 5.12. Suppose that the numbers αn and βn are defined as in Lemma 5.11

though we do not assume that (5.25) is periodic here. Then

(a) βn = 0 for all n ≥ 2 if and only if b1 = 0.

(b) If (5.26) holds then for all n ≥ 2

αn ≥ a1a2 · · · an−1, βn ≥ b1a2 · · · an−1 (5.34)

α2n−1 ≥ b2b4 · · · b2n−2, β2n ≥ b1b3 · · · b2n−1 (5.35)

Proof. (a) Let b1 = 0. Then β2 = b1 = 0 and since β1 = 0 by definition it follows that

β3 = 0. Induction completes the proof that βn = 0 if n ≥ 2. The converse is obvious

since b1 = β2.

(b) Since α2 = a1 and β2 = b1 the stated inequalities hold for n = 2. If (5.34) is

true for some k ≥ 2 then

αk+1 = akαk + bkαk−1 ≥ akαk ≥ a1a2 · · · ak−1ak

βk+1 = akβk + bkβk−1 ≥ akβk ≥ b1a2 · · · ak−1ak

147



Now, the proof is completed by induction. The proof of (5.35) is similar since

α3 = a2α2 + b2α1 ≥ b2 and β4 = a3β3 + b3β2 ≥ b3b1

and if (5.35) holds for some k ≥ 2 then

α2k+1 ≥ b2kα2k−1 ≥ b2b4 · · · b2k−2b2k

β2k+2 ≥ b2k+1β2k ≥ b1b3 · · · b2k−1b2k+1

which establishes the induction step.

Lemma 5.13. Assume that (5.26) holds with ai > 0 for i = 1, . . . , p and (5.25) is

periodic with period p ≥ 2. Then

(a) Equation (5.25) has a positive (hence unitary) eigensequence {rn} of period p.

(b) If bi > 0 for i = 1, . . . , p then

r1r2 · · · rp =
1

2

(
αp+1 + βp +

√
(αp+1 − βp)2 + 4αpβp+1

)
(5.36)

Hence, r1r2 · · · rp < 1 if

αpβp+1 < (1− αp+1)(1− βp) (5.37)

(c) If bi < 1 for i = 1, . . . , p then r1r2 · · · rp > b1b2 · · · bp.

Proof. (a) Lemma 5.12 shows that αi > 0 for i = 2, . . . , p+ 1. Now, either (i) b1 > 0

or (ii) b1 = 0. In case (i), the root r+ of the quadratic polynomial (5.28) is positive

since by Lemma 5.12 βp+1 > 0 and thus

r+ =
αp+1 − βp +

√
(αp+1 − βp)2 + 4αpβp+1

2αp
>
αp+1 − βp + |αp+1 − βp|

2αp
≥ 0.
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If r1 = r+ then from (5.29) ri = ai−1 + bi−1/ri−1 ≥ ai−1 > 0 for i = 2, . . . , p + 1.

Thus by Lemma 5.11, (5.25) has a unitary (in fact, positive) eigensequence of period

p. If b1 = 0 then by Lemma 5.12 βp = βp+1 = 0 and (5.28) reduces to

αpr
2 − αp+1r = 0

which has a root r+ = αp+1/αp > 0. As in the previous case it follows that (5.25) has

a positive eigensequence of period p.

(b) To estalish (5.36), let r1 = r+ and note that (5.28) can be written as

r1 =
αp+1r1 + βp+1

αpr1 + βp
(5.38)

Since {rn} has period p, rp+1 = r1 so from (5.29) and the definition of the numbers

αn and βn it follows that

ap +
bp
rp

= rp+1 =
αp+1r1 + βp+1

αpr1 + βp
=

(apαp + bpαp−1)r1 + apβp + bpβp−1

αpr1 + βp

=
ap(αpr1 + βp) + bp(αp−1r1 + βp−1)

αpr1 + βp

= ap +
bp

(αpr1 + βp)/(αp−1r1 + βp−1)

Since bp 6= 0 it follows that

rp =
αpr1 + βp

αp−1r1 + βp−1

We claim that if bi 6= 0 for i = 1, . . . , p then

rp−j =
αp−jr1 + βp−j

αp−j−1r1 + βp−j−1

, j = 0, 1, . . . , p− 2 (5.39)

This claim is easily seen to be true by induction; we showed that it is true for

149



j = 0 and if (5.39) holds for some j then by (5.29)

ap−j−1 +
bp−j−1

rp−j−1

= rp−j =
(ap−j−1αp−j−1 + bp−j−1αp−j−2)r1 + (ap−j−1βp−j−1 + bp−j−1βp−j−2)

αp−j−1r1 + βp−j−1

=
ap−j−1(αp−j−1r1 + βp−j−1) + bp−j−1(αp−j−2r1 + βp−j−2)

αp−j−1r1 + βp−j−1

= ap−j−1 +
bp−j−1(αp−j−2r1 + βp−j−2)

αp−j−1r1 + βp−j−1

from which it follows that

rp−j−1 =
αp−j−1r1 + βp−j−1

αp−j−2r1 + βp−j−2

and the induction argument is complete. Now, using (5.39) we obtain

rprp−1 · · · r2r1 =
αpr1 + βp

αp−1r1 + βp−1

αp−1r1 + βp−1

αp−2r1 + βp−2

· · · α2r1 + β2

α1r1 + β1

r1 = αpr1 + βp (5.40)

Given that r1 = r+ (5.40) implies that

r1r2 · · · rp = αp
αp+1 − βp +

√
(αp+1 − βp)2 + 4αpβp+1

2αp
+ βp

=
1

2

(
αp+1 + βp +

√
(αp+1 − βp)2 + 4αpβp+1

)

and (5.36) is obtained. Hence, r1r2 · · · rp < 1 if

αp+1 + βp +
√

(αp+1 − βp)2 + 4αpβp+1 < 2

Upon rearranging terms and squaring:

(αp+1 − βp)2 + 4αpβp+1 < 4− 4(αp+1 + βp) + (αp+1 + βp)
2

which reduces to (5.37) after straightforward algebraic manipulations.
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(c) First, assume that p is odd. Then by (5.35)

αpβp+1 = (b2b4 · · · bp−1)(b1b3 · · · bp) = b1b2 · · · bp

so from (5.36)

r1r2 · · · rp >
√
αpβp+1 =

√
b1b2 · · · bp

If bi < 1 for i = 1, . . . , p then b1b2 · · · bp < 1 so
√
b1b2 · · · bp > b1b2 · · · bp as required.

Now let p be even. Then from (5.36) and (5.35)

r1r2 · · · rp >
αp+1 + βp

2
≥ b2b4 · · · bp + b1b3 · · · bp−1

2

If bi < 1 for i = 1, . . . , p then b2b4 · · · bp ≥ b1b2 · · · bp and b1b3 · · · bp−1 ≥ b1b2 · · · bp

and the proof is complete.

Some of the numbers ai may exceed 1 in Lemma 5.13 without affecting the con-

clusions of the lemma. Also not all the conditions in Lemma 5.13 are necessary. For

instance, if b1 = 0 then Lemma 5.13(c) holds trivially. Also, by Lemma 5.12(a) βn = 0

for n ≥ 2 so the following equality must hold instead of (5.36):

r1r2 · · · rp = αp+1

This is in fact true because r1 = r+ = αp+1/αp so, repeating the argument in the

proof of Lemma 5.13(b) yields rp−j = αp−j/αp−j−1 for j = 0, 1, . . . , p− 2. Hence

rprp−1 · · · r2r1 =
αp
αp−1

αp−1

αp−2

· · · α2

α1

αp+1

αp
= αp+1

as claimed. These observations establish the following version of Lemma 5.13.

Lemma 5.14. Let ai > 0 and bi ≥ 0 for i = 1, . . . , p with b1 = 0. Then the linear

151



equation (5.25) has a positive (hence unitary) eigensequence {rn} of period p given

by

r1 =
αp+1

αp
, rj =

αj
αj−1

, j = 2, . . . , p

and 0 = b1b2 · · · bp < r1r2 · · · rp < 1 if αp+1 < 1.

In Lemma 5.14 some of the numbers ai or bi may exceed 1 without affecting the

conclusions of the lemma.

Theorem 5.15. Assume that (5.15) holds and the sequences and {σ̄1,nφ̄n−1} and

{σ̄2,n} have period p with σ̄2,i > 0 and σ̄1,iφ̄i−1 ≥ 0 for i = 1, . . . , p. Also let the

numbers αn, βn be as previously defined with an = σ̄2,n and bn = σ̄1,nφ̄n−1. All non-

negative orbits of the planar system converge to (0,0) if either one of the following

hold:

(a) 0 < σ̄1,iφ̄i−1 < 1 and (5.37) holds;

(b) σ̄1,1φ̄0 = 0 and αp+1 < 1.

Proof. Let {un} be a solution of the linear equation (5.25) with an = σ̄2,n, bn =

σ̄1,nφ̄n−1, u0 = x0 and u1 = x1. Then by (5.24)

x2 ≤ σ̄1,1φ̄0x0 + σ̄2,1x1 = σ̄1,1φ̄0u0 + σ̄2,1u1 = u2

x3 ≤ σ̄1,2φ̄2x2 + σ̄2,2x2 ≤ σ̄1,2φ̄1u1 + σ̄2,2u2 = u3

By induction it follows that xn ≤ un. If (5.37) holds then by Lemma 5.13, limn→∞ un =

0 so {xn} converges to 0. Further, limn→∞ yn = 0 as in the proof of Theorem 5.4 and

the proof is complete.

Remark 5.16. In Theorem 5.15 the individual sequences σ̄1,n, φ̄n need not be periodic

or even bounded. Therefore, the theorem applies to (5.2a)-(5.2b) even if the system

itself is not periodic as long as the combination σ̄1,nφ̄n−1 of parameters is periodic

along with σ̄2,n.
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5.2.3.1 Stocking strategies that do not prevent extinction

Condition (5.37) involves the numbers αj, βj rather than the coefficients of (5.25)

directly. In the case of period p = 2 the role of ai and bi is more apparent. Inequality

(5.37) in this case is

α2β3 < (1− α3)(1− β2)

a1a2b1 < (1− b2 − a1a2)(1− b1)

and simple manipulations reduce the last inequality to

a1a2 < (1− b1)(1− b2). (5.41)

Inequality (5.41) holds even if a1 > 1 or a2 > 1 thus showing how global conver-

gence to (0,0) my occur when (5.14) does not hold. Further, it is possible that (5.41)

holds together with

a1 + a2

2
> 1 (5.42)

Note that (5.41) holds even with arbitrarily large mean value in (5.42) if, say

a1 → 0 as a2 → ∞. In population models this implies that if (5.41) holds with

an = σ̄2,n and bn = σ̄1,nφ̄n−1 then extinction may still occur after restocking the adult

population to raise the mean value of the composite parameter σ̄2,n above 1 by a wide

margin.

5.3 Dynamics of a Beverton-Holt type rational system

In this section we apply some of the preceding results and obtain some new ones

to study boundedness, extinction and modes of survival in some rational special cases

of (5.2). In population models these types of systems include the Beverton-Holt type
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interactions. Specifically, we consider the following non-autonomous system and some

of its special cases

xn+1 =
α1,nyn

1 + β1,nxn + γ1,nyn
+

α2,nxn
1 + β2,nxn + γ2,nyn

(5.43a)

yn+1 =
bnxn

1 + c1,nxn + c2,nyn
(5.43b)

where we assume that for all n ≥ 0 and i = 1, 2

α1,n > 0, bn, α2,n, βi,n, γi,n, ci,n ≥ 0 (5.44)

bn > 0 for infinitely many n

For example, if we think of αi as the natural survival rates then the population

model (5.3) is a special case of (5.43). If we allow αi to include additional factors such

as harvesting rates then (5.43) is an extension of the model in [92] (with a Beverton-

Holt recruitment function) in the sense that the competition coefficients βi,n, γi,n, ci,n

may be nonzero as well as time-dependent.

5.3.1 Uniform boundedness and extinction

We now examine boundedness and global convergence to 0 (extinction) in (5.43).

The next result is in part a consequence of Corollary 5.3.

Corollary 5.17. Assume that (5.44) holds.

(a) Let the sequence {α1,n} be bounded and lim supn→∞ α2,n < 1. If there is M0 > 0

such that bn ≤ M0c1,n for all n larger than a given positive integer then all orbits of

(5.43) are uniformly bounded.

(b) Let the sequence {bn} be bounded and suppose that there is M > 0 such that

α1,n ≤Mγ1,n, α2,n ≤Mβ2,n (5.45)
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for all n larger than a given positive integer. Then all orbits of (5.43) are uniformly

bounded.

Proof. (a) By hypothesis, for all (large) n

bnxn
1 + c1,nxn + c2,nyn

≤ M0c1,nxn
1 + c1,nxn + c2,nyn

< M0

Next, let

σ1,n(u, v) =
α1,n

1 + β1,nu+ γ1,nv
, σ2,n(u, v) =

α2,n

1 + β2,nu+ γ2,nv
.

By hypothesis, there is M1 > 0 and δ ∈ (0, 1) such that for all u, v ≥ 0 and all

sufficiently large values of n

σ1,n(u, v) ≤ α1,n ≤M1, σ2,n(u, v) ≤ α2,n ≤ δ.

Now an application of Corollary 5.3 completes the proof of (a).

(b) By (5.45) for all large n it follows that

α1,nyn
1 + β1,nxn + γ1,nyn

≤ Mγ1,nyn
1 + β1,nxn + γ1,nyn

< M

and likewise,

α2,nxn
1 + β2,nxn + γ2,nyn

≤ Mβ2,nxn
1 + β2,nxn + γ2,nyn

< M

for all large n. Therefore, xn ≤ 2M . Next, if {bn} is bounded then yn ≤ 2Mbn is also

bounded and the proof is complete.

The next result follows readily from Theorem 5.4.

155



Corollary 5.18. The origin (0,0) attracts every orbit of (5.43) in [0,∞)2 if

lim sup
n→∞

(α1,nbn−1 + α2,n) < 1 (5.46)

and either bn is bounded or lim infn→∞ α1,n > 0.

The above corollary is false when (5.46) holds if bn is unbounded and thus, α1,n

has a subsequence that converges to 0.

Example 5.19. Consider the system

xn+1 = α−nyn + sxn

yn+1 =
βαnxn
1 + cxn

where α > 1, β > 0, 0 ≤ s < 1, c ≥ 0, σ1,n = α−n and bn = βαn. Then (5.46) is

satisfied, so limn→∞ xn = 0. But yn does not approach 0 for large enough α; this may

be inferred from Lemma 4.11 which shows that xn converges to 0 at an exponential

rate δn/2 where δ = s+ β/α ∈ (0, 1). Thus

yn =
1

α−n
(xn+1 − sxn) = αn(xn+1 − sxn)

will not converge to 0 if α is sufficiently large.

Corollary 5.17 takes a simpler form for the autonomous special case of (5.43),

namely,

xn+1 =
α1yn

1 + β1xn + γ1yn
+

α2xn
1 + β2xn + γ2yn

(5.47a)

yn+1 =
bxn

1 + c1xn + c2yn
(5.47b)
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with constant parameters

α1, b > 0, α2, βi, γi, ci ≥ 0. (5.48)

The following result is applicable to (5.3) as well as special cases of (5.4) and (5.5)

with rational f.

Corollary 5.20. Assume that (5.48) holds. All orbits of (5.47) in [0,∞)2 are uni-

formly bounded if either one of the following conditions hold:

(a) α2 < 1, c1 > 0;

(b) γ1, β2 > 0.

It is noteworthy that if in Part (a) above c1 = 0 then (5.47) may have unbounded

solutions, as in, e.g. the system

xn+1 = α1yn

yn+1 =
bxn

1 + c2yn

where α2 = c1 = 0 and the remaining parameters are positive. This system folds to

the second-order rational equation

xn+2 =
α2

1bxn
α1 + c2xn+1

which is known to have unbounded solutions if α1b > 1; see [51].

Corollary (5.18) likewise simplifies in the autonomous case.

Corollary 5.21. Assume that (5.48) holds with α1b+ α2 < 1. Then the origin (0,0)

is the globally asymptotically stable fixed point of (5.47) relative to [0,∞)2.
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5.3.2 Persistence and the role of competiton

We now explore the effects of competition in the autonomous system (5.47). There

are 6 different competition coefficients and to reduce the number of different cases,

we focus on the special case below where βi, γi = 0

xn+1 = α1yn + α2xn (5.49)

yn+1 =
bxn

1 + c1xn + c2yn
(5.50)

If αi define the natural survival rates si, then this system is complementary to

(5.3) and (5.4) in the sense that in both of those systems c2 = 0.

By the last two corollaries, all orbits of the rational system (5.49)-(5.50) in [0,∞)2

are uniformly bounded if c1 > 0 and α2 < 1 and they converge to the origin if

α1b + α2 < 1. We now examine this rational system in more detail using its folding,

namely, the second-order rational equation

xn+2 = axn+1 +
σxn

1 + Axn+1 +Bxn
(5.51)

where

a = α2, σ = α1b, A =
c2

α1

, B =
1

α1

(α1c1 − α2c2) (5.52)

See (5.22); the y-component is given by (5.21), or calculated directly using (5.49)

as

yn =
1

α1

(xn+1 − α2xn). (5.53)

With initial values x0 and x1 = α1y0 + α2x0 derived from (x0, y0) ∈ [0,∞)2, the

x-component of the orbits {(xn, yn)} of the system is obtained by iterating (5.51).

The equation in (5.53) is passive in the sense that after the x-component of the orbit

is generated by the core equation (5.51), the y-component is derived from (5.53)
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without any further iterations. This observation also establishes the nontrivial fact

that solutions of (5.51) that correspond to the orbits of the system in [0,∞)2 are

non-negative and well-defined, even for B < 0.

If α1b + α2 < 1, i.e. σ < 1 − a, then zero is the only fixed point of (5.51).

Corollary 5.21 establishes that in this case, zero is globally asymptotically stable

relative to [0,∞). On the other hand, when α1b+α2 > 1, i.e. σ > 1− a, then 0 is no

longer a stable fixed point of (5.51). By routine calculations, one can show that zero

is a saddle point when 1− a < σ < 1 + a and if σ > 1 + a then zero is a repeller.

In addition, when σ > 1− a and a = α2 < 1, the system (5.49)-(5.50) also has a

fixed point in (0,∞)2 given by

x̄ =
σ − (1− a)

(1− a)(A+B)
=

α1(α1b+ α2 − 1)

(1− α2)[α1c1 + (1− α2)c2]
, ȳ =

(1− α2)

α1

x̄ (5.54)

We note that x̄ is also a positive fixed point of the folding (5.51). Under certain

conditions, x̄ attracts all solutions of (5.51) with positive initial values, and it is thus

a survival equilibrium.

Theorem 5.22. Let a < 1 < a+ σ, i.e., α2 < 1 < α1b+ α2. If the function

f(u, v) = au+
σv

Au+Bv + 1

is nondecreasing in both arguments, then the fixed point x̄ attracts all solutions of

(5.51) with initial values in (0,∞).

Proof. If we let

h(t) = at+
σt

1 + (A+B)t

then the fixed point x̄ is the solution of h(t) = t. For t > 0, we may write h(t) = φ(t)t

where

φ(t) = a+
σ

1 + (A+B)t
with φ(x̄) =

h(x̄)

x̄
= 1
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Now,

φ′(t) = − σ(A+B)

(1 + (A+B)t)2
< 0

for all t > 0, so φ(t) is strictly decreasing for all t > 0. Therefore,

t < x̄ implies that h(t) = φ(t)t > φ(x̄)t = t,

t > x̄ implies that h(t) = φ(t)t < φ(x̄)t = t

The rest of the proof follows from Lemma 2.6.

Note that

fu = a− Aσv

(Au+Bv + 1)2
and fv =

σ(Au+ 1)

(Au+Bv + 1)2
> 0

If α1b+α2 > 1 and c2 = 0 then A = 0, so both fu, fv > 0. Therefore, by Theorem 5.22

x̄ is globally asymptotically stable. However, if c2 > 0 then fu may not be positive,

so the results of Theorem 5.22 may not apply to this case. The next result shows

that orbits of the system may converge to x̄ if c2 > 0 but not too large.

Theorem 5.23. Let c1 > 0 and a < 1 < a + σ, i.e., α2 < 1 < α1b + α2. Then there

exists c > 0 such that for c2 ∈ [0, c] the fixed point x̄ of (5.51) is globally asymptotically

stable relative to (0,∞).

Proof. Since

fu = a− Aσv

(Au+Bv + 1)2
=
a(Au+Bv)2 + 2Aau+ a+ (2aB − Aσ)v

(Au+Bv + 1)2

to ensure that fu ≥ 0 it suffices for 2aB − Aσ ≥ 0, i.e.

2α2(α1c1 − α2c2)− c2α1b ≥ 0
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which is equivalent to

c2 ≤
2α1α2c1

α1b+ 2α2
2

.
= c

and the proof is complete.

If c2 is sufficiently large then fu is not positive on (0,∞). Furthermore, x̄ also

becomes unstable for large enough c2, which we establish next by examining the

linearization of (5.51) around x̄.

The characteristic equation associated with the linearization of (5.51) at x̄ is given

by

λ2 − pλ− q = 0 (5.55)

where

p = fu(x̄, x̄) = a− (1− a)Ax̄

1 + (A+B)x̄
and q = fv(x̄, x̄) =

σ − (1− a)Bx̄

1 + (A+B)x̄

The roots of (5.55) are given by

λ1 =
p−

√
p2 + 4q

2
, λ2 =

p+
√
p2 + 4q

2

Since fv(u, v) > 0 for all u, v ∈ (0,∞) it follows that q > 0 and both roots are real

with λ1 < 0 and λ2 > 0. Further, λ2 < 1 if

p+
√
p2 + 4q

2
< 1 i.e. q < 1− p

which is equivalent to

2(1− a)(A+B)x̄ > σ − (1− a)

This inequality holds, since x̄ > 0 under our assumptions on the parameters. There-
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fore, λ2 < 1. On the other hand, λ1 > −1 if and only if

p−
√
p2 + 4q

2
> −1 i.e. p+ 1 > q

which is equivalent to

2(Aa+B)x̄ > σ − (1 + a) (5.56)

Note that when (1−a) < σ < (1+a) this is trivially the case since x̄ > 0 under our

assumptions on the parameters. Thus, x̄ is locally asymptotically stable if σ < 1 + a.

Next, λ1 < −1 if σ > 1 + a and

2(Aa+B)x̄ < σ − (1 + a) (5.57)

We summarize the above results in the following lemma.

Lemma 5.24. Let a < 1 < a+ σ, i.e., α2 < 1 < α1b+ α2. Then the fixed point x̄ of

(5.51) is:

(a) locally asymptotically stable if and only if (5.56) holds. In particular, this is

true if

1− a < σ < 1 + a, i.e. 1− α2 < α1b < 1 + α2.

(b) a saddle point if and only if (5.57) holds with σ > 1 + a, i.e. α1b > 1 + α2.

The inequality (5.57) implies a range for c2 that we now determine. Let

k =
σ − (1 + a)

σ − (1− a)
< 1.

Then k ∈ (0, 1) if σ > 1 + a

2(Aa+B)x̄ < σ − (1 + a)⇒ 2(Aa+B)

A+B
<
σ − (1 + a)

σ − (1− a)
(1− a) = (1− a)k (5.58)
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Since

2(Aa+B) =
2

α1

(c2α2 + c1α1 − c2α2) = 2c1 and:

A+B =
1

α1

[c1α1 + (1− α2)c2]

(5.58) is equivalent to

2c1α1

c1α1 + (1− α2)c2

< (1− a)k = (1− α2)k

From the above inequality we obtain

c2 >
α1c1[2− (1− α2)k]

(1− α2)2k
.
= c̄

Thus if c2 > c̄ then x̄ is a saddle point and in particular, the fixed point (x̄, ȳ)

is unstable. These observations lead to the following that may be compared with

Theorem 5.23.

Corollary 5.25. Assume that (5.48) holds for the system (5.49)-(5.50) and α2 <

1 < α1b+ α2. Then the fixed point (x̄, ȳ) is unstable if c2 > c̄.

Our final result establishes that when c2 > 0 is sufficiently large the system (5.49)-

(5.50) can have a prime period two orbit which occurs as x̄ becomes unstable. Exis-

tence of periodic orbits is established via the folding in (5.51).

The difference equation in (5.51) has a positive prime period two solution if there

exist real numbers m,M > 0,m 6= M , such that

m = f(M,m) and M = f(m,M)

i.e.

m = aM +
σm

AM +Bm+ 1
and M = am+

σM

Am+BM + 1
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from which we get

(m− aM)(AM +Bm+ 1) = σm and (M − am)(Am+BM + 1) = σM

i.e.

AmM +Bm2 +m− AaM2 − aBMm− aM = σm (5.59)

and

AmM +BM2 +M − Aam2 − aBMm− am = σM (5.60)

Taking the difference of the right and left sides of (5.59) and (5.60) yields

B(m2 −M2) + (m−M)− Aa(M2 −m2)− (M −m) = σ(m−M)

(B + Aa)(m−M)(m+M) = (σ − (1 + a))(m−M)

When m 6= M , we get

(B + Aa)(m+M) = σ − (1 + a)

and since the left side of the last equation is positive, this implies that σ−(1+a) > 0.

Or stated differently, if σ − (1 + a) < 0, then (5.51) cannot have a positive prime

period two solution.

Similarly, taking the sum of the right and left sides of (5.59) and (5.60) yields

2AmM+B(m2 +M2)+(m+M)−Aa(m2 +M2)−2aBMm−a(m+M) = σ(m+M)

Adding and subtracting 2(B − Aa) to the LHS of the last expression yields

2(A− aB −B + Aa)Mm+ (B − Aa)(m+M)2 = (σ − (1− a))(m+M)

164



i.e.

2(1 + a)(A−B)Mm = (σ − (1− a))(m+M)− (B − Aa)(m+M)2

= (m+M)(σ − (1− a)− (B − Aa)(m+M))

= (m+M)(σ − (1− a)− (B − Aa)(σ − (1 + a))

B + Aa

=
m+M

Aa+B
[(B + Aa)(σ − (1− a))− (B − Aa)(σ − (1 + a))]

Simplifying the right hand side, it follows that

(1 + a)(A−B)Mm =
σ − (1 + a)

(Aa+B)2
[Aa(σ − 1) + aB] (5.61)

Now, since we are assuming that σ− (1 + a) > 0, then σ− 1 > 0, so the right side

of (5.61) is positive, which implies that A−B > 0. Stated differently, if A < B, then

(5.51) has no positive prime period two solution.

From (5.61) we get

Mm =
[σ − (1 + a)] [Aa(σ − 1) + aBc]

(1 + a)(A−B)(Aa+B)2
:= Q

and let m+M = P , from which we obtain that M = P −m and m = P −M . This

means that

m(P −m) = Q and M(P −M) = Q

i.e. m and M are the roots of the quadratic

S(t) = t2 − Pt+Q

where P,Q > 0 and

t± =
P ±

√
P 2 − 4Q

2
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To ensure that m and M are real, the roots of S(t) must be real, which is the case if

and only if P 2 − 4Q > 0, i.e.

[σ − (1 + a)]

[
(σ − (1 + a)− 4(Aa(σ − 1) + aB)

(1 + a)(A−B)

]
> 0

We summarize the above results as follows.

Theorem 5.26. The second order difference equation in (5.51) has a positive prime

period two solution if and only if all of the following conditions are satisfied:

(a) σ − (1 + a) > 0

(b) A−B > 0

(c) (σ − (1 + a))
[
(σ − (1 + a)− 4(Aa(σ−1)+aB)

(1+a)(A−B)

]
> 0

The next result shows that a solution of period two appears when x̄ loses its

stability.

Corollary 5.27. The second order difference equation in (5.51) has a positive prime

period two solution if and only if x̄ is a saddle point.

Proof. Suppose x̄ is a saddle point. Then by Theorem 5.24(b), 2(Aa+B)x̄ < σ−(1+a)

from which we infer that σ − (1 + a) > 0.

Now 2(Aa+B)x̄ < σ − (1 + a) implies that

2(Aa+B)

(1− a)(A+B)
(σ − (1− a)) < σ − (1 + a)

which is true if and only if

2(Aa+B)(σ − (1− a)) < (1− a)(A+B)(σ − (1 + a))

Adding and subtracting (1 + a)(A − B)(σ − (1 + a)) from the right side of the last
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expression yields:

(1 + a)(A−B)(σ − (1 + a)) + (σ − (1 + a))((1− a)(A+B)− (1 + a)(A−B)

= (1 + a)(A−B)(σ − (1 + a)) + (σ − (1 + a))(2B − 2Aa)

Therefore,

2(Aa+B)(σ − (1− a)) + 2(Aa−B)(σ − (1 + a)) < (1 + a)(A−B)(σ − (1 + a))

4(Aa(σ − 1) + aB) < (1 + a)(A−B)(σ − (1 + a))

i.e.

(1 + a)(A−B)(σ − (1 + a))− 4(Aa(σ − 1) + aB) > 0

from which we infer that A− B > 0 and the roots of S(t) are guaranteed to be real

and positive. This satisfies all the conditions of Theorem 5.26 which completes the

proof.

Corollary 5.28. Assume that (5.48) holds and further, α2 < 1 < α1b+α2 and c2 > c̄.

Then the system (5.49)-(5.50) has a cycle of period two in (0,∞)2.

Figure 5.2 shows two orbits of the system (5.49)-(5.50) from initial points (x0, y0) =

(2.3, 1) and (x0, y0) = (0.0001, 0.0001). Although both orbits converge to the period

two cycle, a shadow of the stable manifold of the fixed point is also seen in the initial

segments of the two orbits. If the initial points start exactly on the stable manifold

of x̄ then the solutions converge to x̄.

5.4 Dynamics of a Ricker-type exponential system

The question of whether complex behavior occurs in stage-structured models is a

pertinent one which has been discussed in the literature. We supplement the results
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Figure 5.2: Orbits illustrating period two oscillations and the saddle point.

in [68] for (5.2) by examining cases not considered in [68] or elsewhere, that exhibits

complex multistable behavior. Our results in this section complement the existing

literature, e.g. [2], [39], [68] and [92].

To start, we consider the following non-autonomous system with a Ricker-type

function for the juvenile fertility rate:

xn+1 = σ1,nyn + σ2,nxn (5.62a)

yn+1 = βnxne
αn−c1,nxn−c2,nyn (5.62b)

where αn, βn, σi,n, ci,n are non-negative numbers for i = 1, 2 and n ≥ 0. This system

has been used to model single-species, two-stage populations (e.g. juvenile and adult);

see [21], [22], [24], [23], [29], [34], [35], [39], [68] and [92]. The exponential function that

defines the time and density dependent fertility rate classifies the above system as a

Ricker model. The coefficients σi,n are typically composed of the natural survival rates

si and possibly other factors. For example, they may include harvesting parameters,
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as in [68] and [92]:

σi = (1− hi)si, β = (1− h1)b, c1 = (1− h1)γ, c2 = 0 (5.63)

All parameters in (5.63) are assumed to be independent of n. In this case, hi, si ∈

[0, 1], i = 1, 2 denote harvest rates and natural survival rates, respectively. The study

in [68] shows that the system (5.62a)-(5.62b) under (5.63) generates a wide range of

different behaviors: the occurrence of periodic and chaotic behavior and phenomena

such as bubbles and the counter-intuitive “hydra effect” (an increase in harvesing

yields an increase in the over-all population) are established for the autonomous

system

xn+1 = (1− h1)s1yn + (1− h2)s2xn

yn+1 = (1− h1)bxne
α−(1−h1)γxn .

5.4.1 Uniform boundedness and extinction

We start with the following consequence of Corollary 5.3 and Theorem 5.14:

Corollary 5.29. Assumed that σ1,n > 0, σ2,n, αn, βn, c1,n, c2,n ≥ 0 and βn > 0 for

inifinitely many n, and further let αn be bounded and lim supn→∞ σ2,n < 1, Then

(a) If σ1,n is bounded and there is M > 0 such that βn ≤ Mc1,n for all n ≥ 0, then

every orbit of (5.62) in [0,∞)2 is uniformly bounded.

(b) If βn is bounded and

lim sup
n→∞

(σ1,nβne
an) < 1

then all orbits of (5.62) in [0,∞)2 converge to (0, 0).

Proof. (a) For u, v ≥ 0, and all n ≥ 0, define
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φn(u, v) = βne
αn−c1,nu−c2,nv

If c1,n 6= 0, for some n, then routine calculations yield

uφn(u, v) ≤ uφn(
1

c1,n

, 0) =
βn
c1,n

ean−1

If c1,n = 0 for some n, then βn ≤Mc1,n and φn(u, v) = 0 for such n.

Next, by hypotheses, there are also numbers M1,M2 > 0 and σ̄ ∈ (0, 1) such that

for all sufficiently large n

σ1,n ≤M1, αn ≤M2, σ2,n ≤ σ̄

Since βn ≤Mc1,n it follows that for all n

uφn(u, v) ≤MeM2−1

and the hypotheses of Corollary 5.3 are satisfied. Uniform boundedness follows.

(b) Let φn be as defined in (a) above. By hypotheses, the sequence

φ̄n = sup
u,v≥0

φn(u, v) = βne
αn

is bounded so by Theorem 5.14, all orbits of (5.62) in [0,∞) converge to (0, 0).

Remark 5.30. In Part (a) of the above corollary, it is less essential that βn be bounded

than to have c1,n 6= 0. Indeed, unbounded solutions occur in the following autonomous

linear system
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xn+1 = σ1yn + σ2xn

yn+1 = βeαxn

When folded to

xn+2 = σ1βe
αxn + σ2xn+1

it is easy to see that unbounded solutions exist unless σ1βe
αxn ≤ 1 − σ2. This is a

severe restriction resembling that in Part (b) of the above corollary.

5.4.2 Complex multistable behavior

To rigorously establish the occurrence of multiple stable orbits within the same

state-space, we consider the reduced system

xn+1 = σ1,nyn (5.64)

yn+1 = βnxne
αn−c1,nxn−c2,nyn (5.65)

where we assume that

σ1,n, c1,n, c2,n, βn > 0, αn ≥ 0. (5.66)

In the context of stage-structured models the assumption σ2,n = 0 applies in

particular, to the case of a semelparous species, i.e. an organism that reproduces

only once before death. Additional interpretations in terms of harvesting, migrations

or other factors may be possible if σ2,n includes additional factors beyond the natural

adult survival rate.

The system (5.64)-(5.65) with c2,n = 0 has been studied in the literature; for
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instance, an autonomous version is discussed in [68] and [92]. The assumption c2,n >

0, which adds greater inter-species competition into the stage-structured model, leads

to theoretical issues that are not well-understood. We proceed by folding the system

(5.64)-(5.65) to a second-order difference equation.

From (5.64) we obtain yn = xn+1/σ1,n. Now using (5.64) and (5.65) we obtain:

xn+2 = σ1,n+1βnxne
αn−c1,nxn−c2,nyn = σ1,nβnxne

αn−c1,nxn−(c2,n/σ1,n)xn+1

This can be written more succinctly as

xn+1 = xn−1e
an−c1,nxn−1−(c2,n/σ1,n)xn (5.67)

where

an = αn + ln(βnσ1,n+1).

5.4.2.1 Fixed points, global stability

It is useful to start by examining the fixed points of (5.67) when all parameters

are constants, i.e. if (5.64)-(5.65) is an autonomous system. Then (5.67) takes the

form of the autonomous difference equation:

xn+1 = xn−1e
a−c1xn−1−(c2/σ1)xn (5.68)

This equation clearly has a fixed point at 0. The following is consequence of

Corollary 5.29(b).

Corollary 5.31. Assume that the system (5.64)-(5.65) is autonomous, i.e. αn = α,

βn = β, σ1,n = σ1, c1,n = c1 and c2,n = c2 are constants for all n.

(a) If a = α+ ln(βσ1) < 0 then 0 is the unique fixed point of (5.68) in [0,∞) and

all positive solutions of (5.68) converge to zero.
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(b) The eigenvalues of the linearization of (5.68) at 0 are ±ea/2; thus, 0 is locally

asymptotically stable if a < 0.

If a > 0 then (5.68) has exactly two fixed points: 0 and a positive fixed point

x̄ =
aσ1

c1σ1 + c2

.

Substituting rn = c1xn in (5.68) yields

rn+1 = rn−1e
a−rn−1−brn , b =

c2

σ1c1

(5.69)

The positive fixed point of this equation is

r̄ =
a

1 + b
= c1x̄.

The next result is proved in [37] and can be stated in terms of the parameters in

the reduced system in (5.64)-(5.65) and the equation in (5.69) as follows:

Theorem 5.32. Let a ∈ (0, 1] (i.e. 0 < α + ln(βσ1) < 1). If b ∈ (0, 1) (i.e.

c2 < σ1c1) then the positive fixed point r̄ of (5.69) is a global attractor of all of its

positive solutions.

Our last set of results pertain to the special case of the nonautonomous equation

rn+1 = rn−1e
an−rn−1−bnrn (5.70)

and its autonomous counterpart in (5.69) where the coefficient bn = c2,n
σ1,nc1,2

= 1,.i.e.

c2,n = σ1,nc1,n n = 0, 1, 2, . . . (5.71)

The semiconjugate factorization method that we used in Chapter 3 also applies

to (5.70) if (5.71) holds. In this case, we substitute rn = c1,nxn in (5.67) to obtain
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rn+1 =
c1,n+1

c1,n−1

rn−1e
an−rn−1−rn

which can be written as

rn+1 = rn−1e
dn−rn−1−rn (5.72)

dn = an + ln[c1,n+1/c1,n−1].

Note that if c1,n has period 2 or is constant then c1,n+1 = c1,n−1 so dn = an. In any

case, a solution xn = rn/c1,n of (5.67) is derived in terms of a solution of (5.72) when

(5.71) holds.

Equation (5.72) admits a semiconjugate factorization that splits it into two equa-

tions of order one.

tn+1 =
edn

tn
, t0 =

r0

r−1e−r−1
(5.73)

rn+1 = tn+1rne
−rn (5.74)

The results in Chapter 3 apply directly to the study of the system in (5.64)-(5.65),

where some of the parameters are assumed to be constant, i.e.

σ1,n = σ1, βn = β, αn = α (5.75)

Recall, that in Chapter 3, we showed that when dn = d is constant and 0 <

d ≤ 2, then every non-constant solution of (5.72) corresponding to a given pair

of initial values r−1, r0 > 0 converges to some two-cycle {ρ1, ρ2}, where ρ1 + ρ2 = d.

Furthermore, we also showed that this cycle is dependent of initial values: if a different

set of initial values r′−1, r
′
0 satisfies
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r′0
r′−1e

−r′−1
=

r0

r−1e−r−1

then the solution corresponding to r′−1, r
′
0 converges to the same two-cycle. We can

now state the same result with respect to the system (5.64)-(5.65):

Theorem 5.33. Assume that the parameters of (5.64)-(5.65) satisfy (5.66) and

(5.75) and c2, n = σ1c1, n for all n > 0, where c1,n has period two with c1,2k−1 = ξ1

and c1,2k = ξ2, with ξ1, ξ2 > 0. If α + ln(σ1β) ∈ (0, 2], then

(a) Every orbit {(xn, yn)} is determined as

xn =
rn
c1,n

, yn =
rn+1

σ1c1,n+1

where {rn} is the solution of (5.72).

(b) The solution corresponding to the pair of initial values (x0, y0) converges to a

two-cycle Γ {(
ρ1

ξ1

,
ρ2

σ1ξ2

)
,

(
ρ2

ξ2

,
ρ1

σ1ξ1

)}
where ρi = limk→∞ r2k−i for i = 1, 2 and ρ1 + ρ2 = α + ln(σ1β).

(c) If (x′0, y
′
0) are such that

y0

x0e−x0
=

y′0
x′0e
−x′0

then the solution corresponding to (x′0, y
′
0) converges to the same two-cycle Γ as in

(b).

Theorem 5.34. Assume that the parameters of (5.64)-(5.65) satisfy (5.66) and

(5.75) and c2, n = σ1c1, n for all n > 0, where c1,n > 0 has period two. If a =

α + ln(βσ) ≥ 6.26 and the initial values x0, y0 > 0 satisfy

y0

x0e−c1x0
= ea
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then (5.64)-(5.65) has periodic solutions of all possible periods, including odd periods,

as well as chaotic solutions in the sense of Li and Yorke.

Notice that the results of the above theorem depends on initial values x0, y0, i.e.

these initial values must be ordered pairs on the curve y0 = x0e
a−c1x0 . While this

assumption may be too restrictive from a biological standpoint, it does demonstrate

possible periodic and chaotic behavior in species dynamics for infinitely many initial

values x0, y0.

5.4.2.2 Oscillatory and complex behavior with periodic parameters

In the final section of this chapter, we turn our attention to the case where the

vital rates of the system in (5.64)-(5.65) exhibit periodic fluctuations. In particular,

we are interested in scenarios where the composite parameter

dn = αn + ln(βnσ1,n) + ln[c1,n+1/c1,n−1]

is periodic. This assumption is broad enough that not all of the above parameters

need to be periodic or be periodic of the same period. For example, one may allow

for seasonal fluctuations in the fertility parameter αn to account for high and low

fertilities during warm and cold seasons of the year, while the rest of the parameters

remain constant, in which case dn will be of the same period of αn. Alternatively, the

period dn may be determined by the common period of fluctuations of parameters

that are periodic. Finally, time variant coefficients may not be periodic at all, but

yield periodic fluctuations in dn.

In Chapter 3, we showed a number of preliminary results for the equation in (5.72)

with periodic dn for the case when c2,n = σ1c1, n for all n > 0. We ended Chapter

3 with a number of conjectures and open problems for future research. Given these
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conjectures, we turn to numerical simulations of the equation (5.72) to further show

possible behavior of the dynamics in the species population in periodic environments.

Figure 5.3 shows convergence of solutions to cycles of periods six, three and four

for cases where dn ∈ (0, 2) is periodic with period p = 3 and p = 4. Figure 5.4

demonstrates the phenomenon of multistability, i.e. the dependence of cycles on

initial values established for cases when p is odd, and when p ≥ 2 is even with

σ =

p∑
j=1

(−1)jdj−1 = 0.

In each of these cases, the periodic nature of solutions of (5.72) is expected. In

contrast, Figure 5.5 shows the behavior for cases p = 3 and p = 4 when values of dn

are outside of the range (0, 2). The top left panel of Figure 5.5 shows a twelve-cycle,

suggesting a possibility of period-doubling bifurcations that occur when values of dn

are sufficiently large. The behavior of the iterates in the top right panel is more

unpredictable. In the latter case, values of all dn are outside of the aforementioned

range, whereas in the former case, only some of the dn’s are allowed to exceed 2.

Similarly, the bottom two panels in Figure 5.5 show the behavior of the iterates for

the case then p = 4. Unpredictable behavior is shown in the bottom left panel, where

all of the dns exceed 2. In the case where some of the dn’s are less than two, we

observe a stable four-cycle.

Finally, for the special case where p = 2, Figure 5.6 shows the behavior of the

iterates, together with the orbits of even and odd indexed terms. In particular, the

odd terms of the sequence {rn} are periodic with period 3, suggesting that (5.72) can

have periodic solutions of all even periods.

In all of the above examples, numerical results demonstrate the complexity and

the diversity of behavior that can occur in population dynamics. This behavior can

depend on values and fluctuations of the vital rates, as well as on initial densities of
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adults and juveniles.

Figure 5.3: Periodic solutions for sufficiently small parameter values dn.

5.5 Concluding remarks

We studied the dynamics of a general planar system that includes many common

stage-structured population models that evolve in discrete time. We derived sev-

eral results pertaining to extinction of the species for both autonomous and nonau-

tonomous, as well as density dependent matrix models. These hypotheses are more

general than what is typically assumed in population models and give us broader

understanding of the mathematical properties of the system. Special cases of the

model of Beverton-Holt and Ricker type were then considered to explore the role of
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Figure 5.4: Dependence of solutions on initial values.
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Figure 5.5: Complex behavior with sufficiently large values of dn.
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Figure 5.6: Period three solution of the odd terms for the case p = 2 for sufficiently
large values of dn.
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intra-species competition, restocking strategies, as well as seasonal variations in the

vital rates. For the system with Beverton-Holt type recruitment, we showed that

sufficiently high level of competition can have destabilizing effect on the persistence

equilibrium and lead to period-two oscillations. For the system with Ricker type re-

cruitment, we showed occurrence of multistable periodic, as well as chaotic behavior.

Instance of chaotic behavior were obtained for the autonomous system

xn+1 = σ1,nyn (5.76)

yn+1 = βnxne
αn−c1,nxn−c2,nyn (5.77)

under the assumption that c2,n = σ1,nc1,n. The case where c2,n 6= σ1,nc1,n can be

studied next. In particular, the case where (5.76)-(5.77) can be folded into the the

autonomous equation

rn+1 = rn−1e
d−brn−1−crn (5.78)

where b, c > 0, b 6= c is of particular interest. In particular, we expect that mulitstable

orbits will not occur although complex behavior is possible. There is currently no

comprehensive study of the dynamics of (5.78) that we are aware of so obtaining

significant details on the dynamics of this equation would be desirable.
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CHAPTER VI

Conclusion

In this thesis, we studied planar systems of difference equations and their appli-

cations to biological models of species populations. These systems were studied via

folding - the method of transforming systems of difference equations into a higher

order scalar difference equations. When applicable, this method reduces systems of

difference equations to scalar equations of higher order. For example, the planar

system is transformed into a core second order difference equation and a passive non-

dynamic equation.

We studied two classes of second order equations: quadratic fractional and ex-

ponential. These systems fold into second order quadratic fractional and exponen-

tial difference equations respectively. Besides being of great interest in the field of

difference equations, rational and exponential equations have been widely used in

applications to biological systems in general and in modeling species populations in

particular.

In the study of the quadratic fractional equation

xn+1 = axn +
αxn + βxn−1 + γ

Axn +Bxn−1 + C
(6.1)
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we investigated the boundedness and persistence of solutions, uniqueness and the

global stability of the positive fixed point and the occurrence of periodic solutions

with non-negative parameters and initial values. We showed that when the function

defining the difference equation is monotone in its arguments, the equation does not

have any periodic solutions of period greater than two. In addition, we also estab-

lished that under the above assumptions, in the absence of two-cycles, the solutions

converge to the unique positive fixed point.

The above results were applied to the study of linear/rational systems of differ-

ence equations. Under common assumptions on initial values values and parameters,

we derived several results on boundedness, global convergence to an equilibrium and

the existence, or absence, of orbits with period two. These results allow some of the

system parameters to be negative, instances not commonly considered in previous

studies. Using the idea of folding, we also identified ranges of parameter values that

provide sufficient conditions on existence of chaotic, as well as multiple stable orbits

of different periods for the planar system.

We then studied the exponential difference equations with time varying parameters

given by

xn+1 = xn−1e
an−xn−xn−1 (6.2)

We obtained sufficient conditions for boundedness of solutions and global convergence

to zero for a general nonautonomous case. We studied the special, autonomous case

and showed occurrence of multistable periodic and nonperiodic orbits. For the nonau-

tonomous case of periodic parameters, we showed that the nature of the solutions is

qualitatively different depending on whether the period of the parameters is even or

odd. In particular, cycles that occur when parameters are periodic with odd period
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are not unique, i.e. they are determined by the values of the initial conditions. This

phenomenon, except for a limited special case, is absent when the period of the pa-

rameters is even.

The above results were then applied to the study of biological models of popula-

tions. Using various methods of analysis including folding, we investigated a broad

class of planar systems that arise in the study of so-called stage-structured (adult-

juvenile) single species populations, with and without time-varying parameters. In

some cases, these systems are of the rational sort (e.g. the Beverton-Holt type), while

in other cases the systems involve the exponential or Ricker function. In biological

contexts, these results include conditions that imply extinction or survival of the

species in some balanced form, as well as possible occurrence of complex and chaotic

behavior, when a certain type of adult harvesting is implemented. We derived suffi-

cient conditions for convergence of solutions to zero (species extinction) that are more

general than what was considered in prior research, but can have an intuitive biolog-

ical interpretation. We then considered special cases of the model to explore the role

of inter-stage competition, restocking strategies, as well as seasonal fluctuations in the

vital rates. We showed that in certain scenarios extinction may still occur even when

restocking is present. In the rational special case of the system with Beverton-Holt

type interactions, we showed that the persistence equilibrium in the positive quadrant

may be globally attracting even in the presence of inter-stage competition. However,

we also showed that with a sufficiently high level of competition, the persistence equi-

librium becomes unstable and the system exhibits period-two oscillations. We then

studied special cases of autonomous and nonautonomouse systems with Ricker type

interactions to show the occurrence of chaotic and periodic solutions that vary greatly

based on the amplitude and periodicity of the vital rates.
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At the end of each chapter, we outlined open problems and conjectures for possi-

ble future research. In the study of the quadratic-rational second order equation in

(6.1) we showed several sufficient conditions for convergence of solutions to a positive

fixed point. These conditions require the function defining the second order equation

to be monotone. Instances when this hypothesis fails were not addressed and could

be investigated next.

Several open problems and conjectures were posed for the second order exponential

equation (6.2) where parameters {an} are periodic. A generalization of (6.2) given by

xn+1 = xn−1e
an−bnxn−cnxn−1 where bn 6= cn (6.3)

is a natural choice for future studies. In addition, exponential equation of the type

xn+1 = xne
an−bnxn−cnxn−1 (6.4)

has not been well-explored and may be of interest for future investigation. Since

equations in (6.3) and (6.4) do not admit semiconjugate factorization and monotone

function techniques generally do not apply, their study will involve alternative and

possibly new methods of analysis.

Finally, further exploration of the method of folding is also of interest. In this

work we demonstrated how the folding method can greatly facilitate the analysis

of planar systems. Since this method has not been used in a systematic study of

higher dimensional systems, further identification of systems that could be analysed

via folding may be of practical value. In addition, the question of whether there are

certain patterns or regularities in foldability of systems and their subsequent foldings

are worth investigating.
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baseline survey data in Georgia and Armenia. 
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Publications in mathematical journals 
 
“Periodic and chaotic orbits of a discrete rational system,” with H. Sedaghat, Discrete Dynamics in Nature 
and Society, vol. 2015, Article ID 519598, 2015, doi: 10/1155/2015/519598.  
 
“Dynamics of planar systems that model stage-structured populations,” with H. Sedaghat. Discrete 
Dynamics in Nature and Society, Special Issue Biological Models and Synchronization of Discrete Systems, 
vol. 2015, Article ID 137182, 2015. doi: 10.1155/2015/137182.  
 
“Extinction, periodicity and multistability in a Ricker model of stage-structured populations,” with 
H. Sedaghat. Journal of Difference Equations and Applications, to appear.  
 
 
Federal Reserve publications 
 
“The Prevalence of Apprenticeships in Germany and the US,” with U. Neelakantan and D. Price, Economic 
Brief, Federal Reserve Bank of Richmond, 2014, 14-08. 
 
“Foreclosure Crisis and Response: How Homeowners Fared in Reaching Out for Mortgage Assistance,” 
with S. McKay and U. Neelakantan. Community Scope, Federal Reserve Bank of Richmond, 2013, 3(2). 
 
Work in progress 
 
Mathematics 
 
“Global Stability and Periodic Solutions for a Second Order Rational Equation.” with H. Sedaghat. 
International Journal of Difference Equations. Under review. 
 
“Complex Orbits and Multistability in a Ricker Model of Stage-Structured Populations,” with H. Sedaghat. 
In progress.  
 
“Uniform Boundedness and Global Convergence in Higher Order Fractional Difference Equations” with H. 
Sedaghat. Working paper.  
 
Economics and Statistics 
 
“Portfolio Choice in a Two-Person Household,” with U. Neelakantan, A. Lyons and C. Nelson. Economic 
Inquiry. Under review.  
 
“Monetary Incentives and Mortgage Renegotiation Outcomes,” with U. Neelakantan. In preparation. 
 
“Using Regional Surveys to Gauge the National Economy” with S. Pinto. Working paper.  
 
“The Impact of Foreclosure on Homelessness: Evidence from Greater Richmond Area,” with U. 
Neelakantan and M. Ackermann. Unpublished manuscript. 
 
“Nonlinear Dynamics in a Search and Matching Model,” with T. Lubik, A. Wolman and T. Hursey. 
Working paper.  
 
“Estimating Transition Rates in a Markov Model with Cross-sectional Data,” with S. Hays. 
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Participation in conferences and seminars 
 
Jan. 2016 “Periodic and chaotic orbits of a Ricker Model with Periodic Coefficients” Invited talk 

at Joint Mathematics Meeting, Special Session on Difference Equations, to occur.  
 
Oct. 2015 “Extinction, Periodicity and Multistability in a Ricker Model of Stage-structured 

Populations” Invited talk at AMS Fall Southeastern Sectional Meeting, Special Session 
on Difference Equations.  

 
Jun. 2015 “Global Stability and Periodic Solutions of a Second Order Rational Equation with 

Applications.” Invited talk at Progress on Difference Equations, Covilha, Portugal. 
 
Mar. 2015  “Global Dynamics and Periodic Solutions of a Quadratic-fractional Second Order 

Rational Difference Equation.” Invited talk at AMS Spring Southeastern Sectional 
Meeting, Washington, D.C.  

 
Nov. 2014 “The Dynamics of a Planar System.” Invited talk at AMS Fall Southeastern Sectional 

Meeting, Greensboro, NC. 
 
Sep. 2013 “Does Foreclosure Increase the Likelihood of Homelessness? Evidence from Greater 

Richmond Area.” Contributing talk at Collaborative Impact: The Case for Ending 
Homelessness, Federal Reserve of Richmond.  

 
Apr. 2013 “The Impact of Foreclosure on Homelessness: Evidence from Greater Richmond Area.” 

Seminar presentation at the VCU Economics Department, Richmond VA.  
 
Apr. 2013 “The Impact of Foreclosure on Homelessness: Evidence from Greater Richmond Area.” 

Poster presentation at 2013 Federal Reserve System Community Development Research 
Conference, Washington, DC. 

 
Apr. 2010 “The Impact of Foreign Aid on Infant Mortality,” Presentation at the Virginia Association 

of Economists 37th Annual Meeting, Lynchburg, Virginia. 
 
 
Memberships 
 
American Mathematical Society 
Phi Kappa Phi Honor Society 
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