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Abstract 

Chromodomain Helicase DNA-Binding Protein 4 (CHD4) is an ATPase that alters the 

phasing of nucleosomes on DNA and has recently been implicated in DNA double stranded 

break (DSB) repair. Here, we show that depletion of CHD4 in Acute Myeloid Leukemia 

(AML) blasts induces a global relaxation of chromatin that renders cells more susceptible 

to DSB formation, while concurrently impeding their repair. Furthermore, CHD4 depletion 

renders AML blasts more sensitive both in vitro and in vivo to genotoxic agents used in 

clinical therapy: daunorubicin (DNR) and cytarabine (ara-C).  Sensitization to DNR and ara-

C is mediated in part by activation of the ATM pathway, which is preliminarily activated by 

a Tip60-dependent mechanism in response to chromatin relaxation and further activated 

by genotoxic-agent induced DSBs. This sensitization preferentially affects AML cells, as 

CHD4 depletion in normal CD34+ hematopoetic progenitors does not increase their 

susceptibility to DNR or ara-C. Unexpectedly, we found that CHD4 is necessary for 

maintaining the tumor formatting behavior of AML cells, as CHD4 depletion severely 

restricted the ability of AML cells to form xenografts in mice and colonies in soft agar.  

Taken together, these results provide evidence for CHD4 as a novel therapeutic target 

whose inhibition has the potential to enhance the effectiveness of genotoxic agents used in 

AML therapy.  
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Chapter 1: Introduction 

Part 1: Background 

Hematopoiesis 

 Blood is among the most highly regenerative tissues in the human body, with an 

average adult generating approximately one trillion (1x1012) new cells in the bone marrow 

each day. At the core of this regenerative capacity is a common hematopoietic stem cell 

(HSC).  In humans, HSCs are extremely rare, an estimated 1 in 106 cells in the bone marrow, 

and often reside in a quiescent state, doubling an estimated once every 175-300 days.1 

These cells are defined by their unique ability for self-renewal and capacity to differentiate 

into all of the mature blood cell types.  During self-renewal, the HSCs replicate and create 

additional identical daughter HSCs. Conversely, HSCs can differentiate to give rise to a 

complex cellular hierarchy of progenitor intermediates that become increasingly more 

restricted in their fated lineages and ultimately assume mature blood cell identities.  

Once committed to differentiation, a human HSC first becomes a multipotent 

progenitor (MPP).  MPPs are similar to HSCs in that they are capable of differentiating into 

any mature blood cell, but differ in that they are not capable of self-renewal.2 Upon further 

differentiation, MPPs experience the first major lineage commitment: the myelo-lymphoid 

split.  An MPP can differentiate into either a Common Myeloid Progenitor (CMP), which is 

committed to a myeloid lineage, or a Common Lymphoid Progenitor (CLP). CMPs undergo 

further commitments to become either Granulocyte-Macrophage Progenitors (GMPs) 

which give rise to basophils, eosinophils, monocytes, and neutrophils, or megakaryocyte-

erythroid progenitors (MEPs) which give rise to megakaryocytes and erythrocytes.  CLPs 

also undergo further commitments to give rise to T, B, and NK-cells.  
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The balance between self-renewal and differentiation is tightly regulated in order to 

maintain self-sustainable pools of HSCs and adequate production of mature blood cells.  At 

the molecular level, this balance is driven largely by gene expression alterations of 

transcription factors induced by epigenetic changes in gene regulatory regions of the 

genome. For instance, increasing the expression of the transcription factors HoxB4, Bmi1, 

HLF, and HES1 have been shown to tilt the balance towards self-renewal and expands the 

pool of HSCs1. Conversely, upregulation of MYC and IKZF1 are associated with increasing 

the differentiation of HSCs into MPPs.3 Disruptions in the balance between self-renewal and 

differentiation are associated with hematopoietic failure and leukemic transformation.  
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Figure 1. Current Model of Human Hematopoiesis. Model illustrating the differentiation of 

hematopoietic stem cells (HSC) into terminally differentiated blood cells. Note that the first major 

lineage commitment occurs at the multipotent progenitor (MPP), at which point the cells become 

committed to a myeloid or lymphoid lineage. Image used with license from Doulatov et al. Cell 

Stem Cell (2012) 
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Acute Myeloid Leukemia 

Acute Myeloid Leukemia (AML) is a malignancy that arises when myeloid 

committed progenitors acquire oncogenic mutations that impede their normal 

differentiation. Unable to properly differentiate, these immature myeloid progenitors, 

termed blasts, clonally proliferate within the marrow and suppress the function of the 

other normal HSCs and progenitors, thus leading to complications associated with bone 

marrow failure, including: anemia, thrombocytopenia, and neutropenia. Although AML can 

occur at any age, this is typically a disease of older people, with a median age of diagnosis of 

67. In 2015, it is estimated that 21,000 new diagnoses of AML will be made and an 

estimated 10,500 will die of the disease.  Due to low remission and high relapse rates in 

older patients and those with complex tumor genotypes, the over-all 5 year survival is only 

24%.4  

By comparison to other malignancies, AML cells harbor relatively few genetic 

abnormalities (Fig 2). A recent study of 200 patients with de novo AML identified an 

average of 13 coding mutations in each genome, of which only 5 were recurrently mutated 

in AML.  This study identified at least one potential driver mutation in nearly every AML 

sample with mutations commonly occurring in signaling genes (59% of cases), DNA-

methylation related genes (44%), chromatin-modifying genes (30%), the gene NPM1 

(27%), myeloid transcription-factor genes (22%), transcription-factor fusions (18%), 

tumor-suppressor genes (16%), spliceosome-complex genes (14%), and cohesion-complex 

genes (13%).  The individual genes most commonly found to be mutated included: FLT3 

(28%), NPM1 (27%), DNMT3A (26%), IDH1 or IDH2 (20%), NRAS or KRAS (12%), RUNX1 

(10%), TET2 (8%), and TP53 (8%).5   
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Figure 2. Genetics of AML. (A) Significantly mutated genes found in an analysis of 200 de novo 

AML patients.  (B) Comparison of tier 1 (coding) mutations found in 5 tumor types published in 

The Cancer Genome Atlas. Note that AML has significantly less coding mutations than any of the 

other cancer types analyzed. Images are reproduced with permission from Cancer Genome Atlas 

Research Network N. Engl. J. Med. (2013), Copyright Massachusetts Medical Society  
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Management of AML  

Current AML management begins with an initial course of highly intensive 

chemotherapy to induce a complete clinical remission.  This so called “remission induction 

therapy” generally consists of cytarabine (ara-C), supplemented with an anthracycline, 

such as daunorubicin (DNR). Combined DNR/ara-C regimens are highly toxic, primarily to 

the hematopoietic and gastrointestinal systems, but effective, achieving complete 

remission (CR) rates of approximately 53-58%.6 Despite numerous attempts at 

improvement, this combination therapy has been relatively unchanged since its inception 

in the mid-1980s;6 however, a recent set of trials suggest that increasing the DNR dose may 

yield tangible benefits to the CR rates and survival of a subset of patients.7,8 It should be 

noted, however, that the maximum lifetime dose of any anthracycline, including DNR,  is 

severely limited by a cumulative, dose-dependent cardiotoxicity.9 Thus, strategies for 

further improvement based on additional increases to the dose of DNR are not viable. 

Once a CR is achieved, additional post-remission therapy is needed to maintain the 

remission since nearly every patient will relapse within a median of four to eight months 

without additional therapy.10 This second round of therapy is targeted at the blasts that 

survived the initial induction therapy, but are undetectable by standard clinical tests. These 

post-remission therapies consist mainly of either additional high dose cytarabine or 

hematopoietic cell transplantation (autologous or allogeneic). 

Approximately 10-40% of patients present with primary refractory disease, 

meaning that they are unable to achieve a CR with 1-2 rounds of standard induction 

therapy.11 Additionally, the majority of patients who achieve a CR will recur within 3 years 

of diagnosis.12  Both patients with primary refractory and relapsed disease have 
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significantly poorer prognoses and are best treated with an allogeneic hematopoietic cell 

transplant.  Prior to transplant, these patients are often treated with additional 

chemotherapy to reduce the tumor burden. Regimens containing various combinations of 

anthracyclines and high-dose ara-C form the foundation of these salvage therapies, 

including ICE (idarabucin, high-dose cytarabine, etoposide) and FLAG-IDA (fludarabine, 

high-dose cytabine, idarubicin, granulocyte colony-stimulating factor) .13,14  

Thus, in the clinical management of AML, combinations of anthracyclines and 

cytarabine form the core of chemotherapy regiments utilized in induction, consolidation, 

and salvage therapies.  

 

DNA damage and repair 

The anthracycline DNR is a topoisomerase inhibitor that induces DNA double-

stranded breaks (DSB), which are highly cytotoxic.15 Similarly, the nucleoside analog ara-C 

also induces DNA damage, including DSBs, during DNA synthesis through inhibition of DNA 

polymerase and incorporation into DNA.16,17 Both normal and leukemic cells can evade cell 

death following chemotherapy-induced DSBs by repairing damage through numerous 

repair mechanisms, including homologous recombination (HR) or non-homologous end 

joining (NHEJ). However, malignant cells tend to be more susceptible to DSB insults due to 

their rapid proliferation, deregulated cell cycle checkpoints, and inactive DNA repair 

machinery.18 For HR, DSBs are first identified by the human single-stranded binding 

protein 1 (hSSB1), which recruits MRN (Mre-11-Rad50-NBS1) complex.  The MRN complex 

resects the ends of the DNA and then recruits and activates the Ataxia telangiectasia 

mutated (ATM) protein. The ATM kinase begins a complex cell-signaling cascade that 
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results in the triggering of cell-cycle checkpoints, phosphorylation of downstream targets, 

and in some cases apoptosis.  Final repair of the DNA is mediated by the DNA recombinase 

Rad51, which allows for the strand invasion of the sister chromatid.  In NHEJ, the Ku60/70 

heterodimer binds to the DSB and recruits DNA-PKcs.  The DNA-PKcs regulate processing 

of the DNA ends such that the DNA ligase IV-XRCC4-XLF complex can physically rejoin the 

ends.18 
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Figure 3. DSB Repair. (A) Schematic of Homologous Recombination. (B) Schematic of Non-

Homologous End Joining. Image adapted with permission from Jekimovs et al. Font. Oncol. (2014).  
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Part 2. Epigenetics 
 
Overview 

 Although every cell within an organism contains exactly the same genomic DNA 

sequence, multicellular organisms are comprised of numerous distinct cell types and 

tissues that perform a variety of specialized functions and contain substantially different 

gene expression profiles that are maintained in each somatic tissue. Epigenetics, officially 

defined as the heritable changes in genome function that occur without alterations to the 

DNA sequence,19,20 provides numerous mechanisms to account for this broad diversity, 

including: DNA methylation, small interfering RNAs, histone variants, histone post-

translational modifications, chromatin remodeling, and nucleosome positioning.  

 

Chromatin 

 In eukaryotes, genomic DNA is organized into highly complex and dynamic 

structures termed chromatin. This organization allows the DNA, all 1.8 linear meters, to be 

packaged into a more compact form in order to fit into each cell nucleus and protects the 

DNA from damage. The nucleosome is the most basic unit of chromatin, comprised of 145-

147 base pairs of DNA wrapped around a histone octamer core, which itself is comprised of 

two copies of the histone proteins H2A, H2B, H3, and H4. Each nucleosome is linked to its 

adjacent nucleosome by short DNA linker to form nucleosome arrays.  Short range 

interactions between arrays provide further organization to create 30nm fibers, which in 

turn are then capable of organizing into higher-order structures.21   

Local chromatin structures inhibit access to the underlying DNA and hence have 

profound effects on almost all DNA-related processes.22 In terms of transcription, 
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nucleosomes form a strong barrier to transcription factor binding and Pol II transcription 

initiation.  Thus, sites of active transcription tend to occur within regions of chromatin that 

are less condensed, termed euchromatin, and DNA sites that are refectory to transcription 

initiation tend to occur within regions of chromatin that are more compact, termed 

heterochromatin.  Similarly, the chromatin structure surrounding DNA damage has 

emerged as a key determinant of the kinetics and mechanism of repair since the compact 

nature of chromatin within regions of heterochromatin impairs the activation of the DNA 

repair machinery.23–26 Therefore, enzymes capable of altering local chromatin 

environments can have large impacts on transcription, recombination, DNA repair, and 

replication.19,27–30 

  

DNA Methylation 

 The most prominent epigenetic mark is the methylation of the 5th position carbon in 

cytosines (5mC) found in cytosine-guanine (CpG) dinucleotides, with approximately 4% of 

all cytosines in the human genome being methylated.31 Importantly, DNA methylation is a 

stable source of epigenetic information, as it is heritably maintained during replication.  

This heritability is attributed to the preference of methylation to occur symmetrically over 

a CpG dinucleotide, meaning that both strands of DNA contain the methylation mark. 

Following DNA replication, daughter strands of DNA are hemimethylated at CpGs, where 

the enzyme DNA (Cytosine-5)-Methyltransferase 1 (DNMT 1) methylates the nascent 

strands. However, DNA methylation is not an entirely static epigenetic mark, as new 

methylation patterns can be established by the DNMT3 class of enzymes during 

development and differentiation.  



 

 18 

The distribution of CpG dinucleotides is not homogenous throughout the genome; 

rather, they tend to cluster into small regions of DNA, termed “CpG islands”, generally 

found within the promoters at 5’ regulatory regions of genes.32 An estimated 60% of genes 

transcribed by RNA polymerase II contain CpG islands within their promoter.33 In normal 

cells, 80 percent of CpGs found outside of CpG islands are heavily methylated; however, the 

majority found within CpG islands are unmethylated, especially if the island is within a 

gene’s promoter region.20 Methylation of gene promotor CpG islands is classically 

considered to be incompatible with active transcription, as 5mC itself can prevent the 

binding of transcription factors or act as a docking site for co-repressor complexes.31,34 In 

contrast, certain CpG islands are regularly methylated and are utilized for the 

transcriptional silencing associated with gene imprinting, X-chromosome inactivation, and 

repetitive elements.35  

 

Histones 

 The histones are a family of highly basic proteins that, as previously mentioned, 

form the core of the nucleosome. In terms of epigenetics, these proteins are interesting 

because some (H3 and H4) contain basic N-terminal “tails” that protrude from the 

nucleosome and are prone to a wide variety of post-translational covalent modifications 

(PTMs), including: methylation, acetylation, phosphorylation, and ubiquination. These 

PTMs are hypothesized to create a “histone code” that is readable by other proteins to 

bring about specific down-stream events, including the regulation of gene expression.36 

This histone code is highly dynamic, with numerous enzymes capable of adding new 

modifications (“writers”) and removing modifications (“erasers”).37  
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 Acetylation of the lysine residues on histones was the first identified PTM.38 This 

process is highly dynamic and regulated by two opposing classes of enzymes, the Histone 

Acetyl-Transferases (HATs) and the Histone Deacetylases (HDACs). There are numerous 

lysines on the histones that have the potential to be acetylated, including: Histone H3 

Lysine 9 (H3K9), H3K14, H3K18, H4K5, H4K8, H4K12, and H4K16. Acetylation of the lysine 

residues is thought to reduce the effective positive charge of the histones, thereby 

loosening the electrostatic interaction between the histone and the DNA in order to grant 

other proteins access to the DNA.37 Thus, histone acetylation is generally associated with 

euchromatin environments and transcriptionally active regions of the genome.  

 In contrast to histone acetylation which is always associated with transcriptional 

activation, histone methylation is more complex and can be associated with transcriptional 

silencing or activation, depending on the specific residue that is being methylated.39 

Histone methylation occurs on lysine and arginine residues and 1-3 methyl groups can be 

added to form mono-, di-, or tri-methylation. Since methylation does not alter the 

electrostatic interaction between the DNA and the histones, the resulting effect of the 

methylation is directly related to the “reader” protein that is capable of binding to the 

methylated histone tail.  For example, the H3K9me3 mark is bound by HP1, which forms 

one of the key structural components of repressive heterochromatin.  Alternatively, the 

H3K4me3 mark is associated with actively transcribed chromatin since it is bound by the 

ING family of proteins, which are themselves associated with HAT proteins.37 
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Figure 4. The Nucleosome. (A) The basic unit of chromatin is the nucleosome, which is 

comprised of a histone octamer wrapped in DNA. (B) The tails of histone proteins are subjected 

to a variety of post-translational modifications that make up the “histone code”.  Image is 

reproduced with permission from Dawson et al. N. Engl. J. Med. (2012), Copyright Massachusetts 

Medical Society.  
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Epigenetics in Cancer 

 Classically, cancer has been viewed as a disease that results from the successive 

accumulation of mutations in tumor suppressor genes and oncogenes, leading to 

uncontrolled growth and survival. However, epigenetic studies of numerous cancer types 

are challenging this traditional view by indicating that an intricate interplay exists between 

classical genetic mutations and aberrant epigenetic mechanisms that induce and promote 

carcinogenesis.39 

 Since the early 1980s, researchers have known that malignant cells contain 

abnormal patterns of DNA methylation compared to their normal counterparts.40 These 

profiles are characterized by a seemingly paradoxical global hypomethylation of a 

malignant cell’s genome in conjunction with hypermethylation of CpG islands located in 

gene promoter regions. Hypomethylation of the malignant genome is hypothesized to relax 

the transcriptional repression of viral genes, repetitive elements, and imprinted genes, all 

of which are normally silenced through DNA methylation.  Additionally, hypomethylation is 

thought to contribute to the genomic instability in transforming cells, as hypomethylation 

can promote the formation of deletions, translocations, and chromosomal rearrangements. 

Interestingly, the degree of hypomethylation of genomic DNA has been found to increase as 

a tumor progresses from a benign lesion to a malignant cancer.41 Paradoxically, within the 

background of global hypomethylation, the CpG islands located within tumor-suppressor 

genes’ promoters tend to be hypermethylated. This abnormal promoter hypermethylation 

is associated with transcriptional silencing and can provide a mechanism for malignant 

cells to inactivate tumor-suppressor genes. It is not uncommon for hypermethylation to 

provide the “second hit” in the Knudson’s two-hit model of cancer development, with a 
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coding-region mutation providing the “first-hit”. Classic tumor suppressor genes such as 

Rb, VHL, p16INK4a, hMLH1, and BRCA1 have all been shown to be inactivated by 

hypermethylation.42 However, hypermethylation appears to be specific to a cancer type 

and specific mechanisms to explain why certain genes are hypermethylated in one cancer 

type, but are not hypermethylated in another type have yet to be elucidated. 

 In addition to DNA methylation alterations, the epigenetic profiles of cancer cells are 

characterized by the hypoacetlyation of histones. Hypoacetylation occurs early in the 

process of transformation and occurs predominantly on H4K16 and H4K20.43 This 

hypoacetylation is catalyzed by the Histone Deacetylase (HDAC) class of enzymes, which 

are often overexpressed in many tumor types.44–46 Hypoacetylation is thought to work in 

cooperation with aberrant DNA hypermethylation to repress the transcription of tumor-

suppressor genes. 

 In contrast to genetic mutations, epigenetic changes are readily reversible and have 

the potential for profound antitumor effects through the re-expression of tumor-

suppressor genes. Two classes of epigenetically modulating drugs are currently used in the 

clinic: DNA-demethylating drugs and HDAC inhibitors. DNA-demethylating drugs such as 5-

azacytidine and decitabine are cytosine analogs that have a modified 5-carbon position that 

are unable to be methylated.  These drugs incorporate into a replicating genome and inhibit 

the DNMT enzymes, thus leading to a loss of methylation and the restored expression of 

silenced genes. Currently, these drugs are approved for the treatment of myelodysplastic 

syndrome and leukemia, but their use is greatly limited due to systemic toxicities including 

myelosuppressoin, potentially due to non-specific effects. HDAC inhibitors have been 

demonstrated to be effective at inducing differentiation, cell-cycle arrest, and apoptosis in 
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vitro.42 In contrast to the DNA demethylating agents, HDAC inhibitors are associated with a 

lower incidence of severe side-effects. However, the effectiveness of HDAC inhibition 

appears to be secondary to DNA demethylation, as inhibition of HDACs only restores the 

expression of genes that do not possess a hypermethylated promoter.20,47 Given that 

epigenetics regulate a wide range of genes in malignant cells, targeting the epigenome 

could produce unintended consequences, such as promoting the growth of tumors.  

Therefore, recent research has been directed towards targeting more specific transcription 

factors and machinery involved in the regulation of the epigenome in malignant cells. 

  



 

 24 

 

Figure 5. Epigenetic Alterations in Tumor Progression. During the development of a tumor, 

several changes occur to the epigenetic profile of the transforming cells. First, the net DNA 

methylation of the cells decreases. Most of this demethylation occurs in the regions of DNA 

outside of CpG islands. Paradoxically, CpG islands become more methylated as the tumor 

progresses.  Additionally, the histone code becomes more deregulated as the tumor progresses. 

Image is reproduced with permission from Esteller et al. N. Engl. J. Med. (2008), Copyright 

Massachusetts Medical Society. 
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Part 3. Methyl-CpG Binding Domain proteins and the Nucleosome Remodeling and 

Deacetylase Complex 

Methyl-CpG Binding Domain proteins 

 Methylated CpG islands serve as binding targets for the Methyl-CpG-Binding Domain 
(MBD) family of proteins, which are widely thought to translate the DNA methylation signal 
into transcriptional silencing through their interactions with chromatin remodeling 
enzymes.20,48–518 
7 
 These enzymes alter chromatin structure through repositioning, ejecting, or covalently 

modifying histones or modifying the composition of the nucleosome with substitution of 

various histone variants.23 For most genes, the chromatin near the transcription start site 

(TSS) of a gene is organized in a regular pattern: an unusually large ~140 bp linker region 

known as the nucleosome free region (NFR) precedes the TSS and is flanked by two well 

positioned (phased) nucleosomes labeled +1 and -1. This NFR provides various 

transcription factors access to the DNA and assembly of the transcription machinery.29 

Additionally, the amino-terminal histone 'tails' that protrude past the DNA are subject to 

covalent modifications as previously mentioned. Modifications to the positioning of 

nucleosomes surrounding the TSS or to the histone tails regulate the accessibility of the 

chromatin structure to transcriptional machinery and hence provide a clear mechanism of 

epigenetic control on gene expression.20,29  

Members of the MBD family of proteins include MeCP2 and MBD1 through MBD4 

and share a common ~60 amino acid methyl-CpG binding fold. Within this MBD family, 

only MeCP2, MBD1, and MBD2 are capable of repressing transcription of genes with 

methylated promoters, since they each contain a transcription repression domain that 

associates with a co-repressor complex.52,53 MBD2 is unique among the other MBD proteins 

in that it binds to methylated CpGs with the greatest affinity.54,55  
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The Nucleosome Remodeling and Deacetylase Complex 

The Nucleosome Remodeling and Deacetylase (NuRD) complex is an abundant co-

repressor complex with a variable subunit composition that comprises of at least one copy 

of six core proteins: a MBD (MBD2 or MBD3), a retinoblastoma-associated protein (RBBP4 

or 7), a Chromodomain Helicase DNA Binding Protein (CHD3, 4, or 5), a p66 (α or β), a 

histone deacetylase (HDAC 1 or 2), and a metastasis associated protein (MTA 1-3). 

Traditionally, NuRD has been associated with transcriptional repression.24 However, given 

the wide variability in NuRD complex components and the combinatorial assembly of the 

complex, different NuRD complexes are capable of performing various functions within a 

cell. For instance, since MBD3 cannot bind to methylated DNA55, only NuRD complexes 

containing MBD2 are thought to play a role in methylation-dependent transcriptional 

silencing. CHD4-containing NuRD complexes have been shown to facilitate DSB DNA 

repair56–58, whereas CHD3-containg NuRD complexes have been shown to hinder repair.59 

Only MTA3 containing complexes have been shown to repress the expression of plasma 

cell-specific genes in germinal centers.60 Therefore, it is not surprising that NuRD has been 

implicated in a wide variety of cell functions, including transcription regulation, chromatin 

assembly, cell cycle progression, and genomic stability.48 

Among chromatin-remodeling complexes, the NuRD complex is unique since it 

contains two subunits with enzymatic activity capable of modifying chromatin structure: 

CHD3/4 and HDAC 1/2. As described below, CHD4 is an ATPase that is capable of 

rearranging the position of histone octamers61,62, whereas HDAC 1 and 2 are enzymes 

capable of deacetylating histone tails.63  Therefore, NuRD has two enzymatic activities that 
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promote the formation of heterochromatin and repress transcription. Previous work has 

shown that depletion of NuRD components alters gene expression in cells.  For instance, 

depletion of MBD2 was shown to re-express methylated tumor suppressor genes in various 

cancers.42,49,64–66 Additionally, depletion of CHD4 and MBD2 resulted in the restored 

expression of methylated fetal Υ-globin in erythroid lineage cells.67–69   
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Figure 6. Model of the Nucleosome Remodeling and Deacetylase Complex (NuRD). (A) 

Diagram of identified domains in NuRD subunits. (B) Current model of the assembly of NuRD. 

Note that the complex can be split into a HDAC core complex that contains HDAC enzymatic 

activity and a chromatin remodeling sub-complex that contains the nucleosome repositioning 

activity. Image courtesy of David Williams. 
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Chromodomain Helicase DNA Binding Protein 4 

Chromodomain Helicase DNA Binding Protein 4 (CHD4) was originally identified as 

an autoantigen in patients with the connective-tissue disorder dermatomyositis.48 CHD4 is 

a widely conserved (among plant and animal kingdoms, but absent in yeast24) member of 

the SNF2 superfamily of chromatin remodeling ATPases that is capable of altering the 

phasing of nucleosomes on DNA.70–74 This protein is comprised of several highly-conserved 

domains (Figure 6A): two tandem plant homeodomain (PHD) fingers, two chromodomains 

(CDs), a SWI2/SNF2-type ATPase/helicase domain, two domains of unknown function 

(DUFs), and a C-terminal domain (CTD).62 The PHD finger domains distinguish CHD3 and 

CHD4 from the rest of the CHD family and have been shown to bind to the tails of histone 

H3, with a strong preference for those containing an unmodified or methylated H3K4 

modification, but an inability to bind acetylated H3K4.75 Interestingly, a short ~70Å linker 

exists in between the tandem PHD domains has been hypothesized to allow both PHD 

fingers from a single CHD4 protein to bind to both H3 tails in a nucleosome octamer 

simultaneously.76 In contrast, the CDs of CHD4 are thought to both bind to DNA77 and form 

a large interface with ATPase/helicase domain of CHD4. This interface has been suggested 

to form a regulatory mechanism for CHD4 enzymatic activity through the CDs sterically 

blocking access of DNA and ATP to the ATPase/helicase domain until the PHD and CD 

release the ATPase/helicase domain by binding to histone tails and DNA, respectively.78 

The ATPase/helicase domain, as its name implies, couples the energy from the hydrolysis 

of ATP to mechanically slide or displace nucleosomes. Given the intricate nature of the 

regulation of the ATPase/helicase domain, both PHD and both CD domains are required for 

the function of the enzyme, as an inactivating mutation in any one of these domains can 
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disrupt the enzymatic activity of CHD4 and the ability of CHD4-containing NuRD complex 

to repress transcription.62 The CTD is not necessary for the interaction of CHD4 with 

chromatin, but is necessary for transcriptional repression of NuRD complexes. Thus, the 

CTD is hypothesized to bind to co-repressors and/or other NuRD components.62 

Although CHD3 and CHD4 are both widely expressed, CHD4 forms the predominant 

Chromodomain Helicase DNA Binding Protein component of the NuRD complex.75 

However, recent studies have hinted that CHD4 may possess roles outside of the NuRD 

complex.67,79,80 For instance, one study described a possible new chromatin remodeling 

complex that consisted of CHD4 interacting with the histone acetyltransferase p300 and 

the E box binding protein HEB to regulate the expression of CD4 in T-cell development.79 

In addition to its role in transcriptional regulation, recent studies have implicated 

CHD4 in the DNA Double Stranded Break (DSB) repair response.56–58,81,82 As mentioned 

previously, compact chromatin is refractory to the initiation of the DSB repair process and 

significant evidence implicates the role of chromatin remodeling complexes in relieving 

this inhibition.23,24 Multiple studies have demonstrated that CHD4 is rapidly recruited to 

sites of DSB through two distinct mechanisms of recruitment.56,58 First, CHD4 was 

described to be recruited to sites of DSBs through a Poly(ADP-Ribose) Polymerase PARP-

dependent mechanism, in which CHD4 directly bound the PAR-chains.56 Alternatively, 

CHD4 has been described to be recruited to sites of DSBs through an interaction with the 

E3 ubiquitin ligase RING finger protein (RNF) 8.58 Once recruited to a DSB site, CHD4 is 

hypothesized to relax the chromatin in order to facilitate the recruitment of other repair 

proteins, such as BRCA1, BRCA2, RAD51, and RPA, thus leading to the efficient repair of the 

break.58,83 Highlighting its importance in the DSB repair pathway, depletion of CHD4 has 
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been shown to sensitize U2OS cells to ionizing radiation.57,81 Additionally, depletion of 

CHD4 leads to increased loads of spontaneous DNA damage, indicating that CHD4 may also 

play a role in genomic maintenance.82,84 
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Figure 7. Model of CHD4 in the repair of DNA double strand breaks (DSB). (A) The first 

model indicates that CHD4 is recruited to DSB sites by PAR chains created by the enzyme PARP. 

(B) The second model indicates that CHD4 is recruited to sites of DSBs by the ubiquitin ligase 

RNF8.  In both models, CHD4 and its associated NuRD complex alter the chromatin environment 

surrounding the break to promote the recruitment of other repair factors including MCPH1 and 

BRCA1. Image used with license from Stanley et al. Mutat. Res. 2013. 
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Interestingly, the most current studies on CHD4 have implicated it in the 

maintenance of cancer stem cells.85,86 The first study to make this observation found that 

the transcription factor ZFHX4 utilizes CHD4/NuRD to alter gene expression programs 

required for the maintenance of the self-renewing, multipotent tumor-initiating cells (TICs) 

in glioblastoma.  Furthermore, they demonstrated that depletion of CHD4 and other NuRD 

components resulted in the differentiation of glioblastoma TICs.85 The second study found 

that CHD4 expression was significantly upregulated in EpCAM+ hepatocellular carcinoma 

stem cells and that high levels of CHD4 expression in patient samples of HCC correlated 

with a poorly differentiated morphology, a larger tumor size, increased marks of 

hepatocellular carcinoma stem cells, and worse survival compared to patients with low 

levels of CHD4 expression. 86  

Given its diverse roles in transcription regulation, DSB repair, and maintenance of 

cancer stem cells, CHD4 has been suggested as a drug target for various solid cancer types. 

83,85,86 In this dissertation, I will discuss the functionality of CHD4 within the context of 

AML.  My data shows that CHD4 is necessary for the efficient repair of DSBs within AML 

cells and that AML cells partially depleted of CHD4 are more susceptible to clinically used 

DNA damaging agents, such as DNR and ara-C, both in vitro and in vivo.   Additionally, I will 

demonstrate that the depletion of CHD4 in AML cells reduces their potential to form mouse 

xenografts and markedly inhibits their ability to generate colonies. Both of these 

phenotypes are consistent with gene expression alterations resulting from CHD4 depletion. 

Importantly, all of these events occur preferentially in AML cells, as similar depletion of 

CHD4 in normal CD34+ hematopoietic progenitor cells does not result in similar 
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phenotypes.  Taken together, the present findings from our studies highlight for the first 

time the therapeutic potential of targeting CHD4 in AML. 
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Chapter 2: Depletion of CHD4 sensitizes AML cells but not normal CD34+ progenitors 

to genotoxic agents by relaxing chromatin and impairing DSB repair. 

 

Rationale 

CHD4 is a chromatin remodeling ATPase that has been previously shown to play a 

significant role in the repair of DNA DSBs. As the foundation of standard AML therapy is 

based upon agents that derive their therapeutic potential from the induction of DSBs, we 

hypothesized that inhibition of CHD4 could sensitize AML cells to genotoxic agents used in 

standard therapy. 

 

Results 

CHD4 is necessary for maintaining heterochromatin in AML blasts. As CHD4 is a 

chromatin-remodeling ATPase,70–73 we investigated the effect of CHD4 depletion on the 

overall chromatin structure of AML cells. Integration of a CHD4-targeting short-hairpin 

RNA (shCHD4-1) into the AML cell lines U937, MV4-11, and AML-3 by a lentiviral vector 

resulted in the robust depletion of the CHD4 protein (Figure 8).   
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Figure 8. Depletion of CHD4. Western blot analysis to determine the extent of CHD4 

protein depletion in response to shRNA expression in the human AML cell lines (A) U937, 

(B) MV4-11, (C) AML-3, (D) the primary AML sample 098-8712-3A, and (E) normal 

CD34+ hematopoietic progenitors. U937 was added to the CD34+ blot to highlight the 

difference in endogenous CHD4 between normal CD34+ cells and AML blasts. Scramble is 

the non-targeting control construct. shCHD4-1/2 are the independent CHD4-targeting 

constructs. Densitometry was used to quantify each band and α-Tubulin was used to 

normalize. 
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When compared to control cells in which a scrambled, non-targeting shRNA was 

integrated, cells depleted of CHD4 were found to have a global increase in the euchromatin-

associated acetylation of Histone H3 Lysine 9 and Histone H4 Lysine 8 (Figure 9A) and 

disruption of heterochromatin-associated trimethyl-Histone H3 Lysine 9 foci (Figure 9B). 

These results indicate that inhibition of CHD4 function induces a global relaxation of the 

chromatin structure in AML blasts. 

 

Depletion of CHD4 renders AML blasts more sensitive to DSB damage and impairs 

the repair of DSBs. Because chromatin remodeling enzymes have been found to play key 

roles in mediating the repair of DSBs,23,26 we investigated if CHD4 is involved in DSB repair 

in AML blasts. We subjected U937 cells to 6Gy of radiation and detected DSBs using a 

neutral comet assay over a 4-hour time course (Figure 9C). CHD4-depleted cells 

demonstrated significantly more evidence of DSBs 1 hour after radiation exposure, 

suggesting that inhibition of CHD4 rendered the cells more susceptible to the formation of 

DSBs.  The tail moment of control cells returned to baseline after just 2 hours, indicating 

that cells expressing wild-type levels of CHD4 are capable of rapidly repairing radiation-

induced DSBs to levels below the detection limits of the assay (~50 DSBs per cell). 

However, the tail moment of the CHD4 depleted cells remained elevated throughout the 4-

hour course of the experiment, indicating that CHD4 is required for the efficient repair of 

DSBs in AML cells.  

To confirm our observations from the neutral comet assay, we performed 

immunostaining for γH2A.X foci, a histone marker of DSBs, over the 4-hour time course 
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(Figure 9D and9E).  Cells depleted of CHD4 contained a significant increase in γH2A.X foci 

at 0.5 hours post radiation exposure and the number of foci remained elevated above that 

in control cells over the 4-hour time course.  Similar results were obtained for MV4-11 and 

AML-3 (Figure 10). 

We then confirmed that the DSBs observed over the 4-hour time course were not 

the result of apoptosis, as PARP or caspase-3 cleavage did not occur throughout the 4-hour 

time course (Figure 11). Thus, in AML cells, inhibition of CHD4 impedes the repair of DSBs 

and increases susceptibility to their formation.  
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Figure 9. CHD4 is necessary for the maintenance of heterochromatin and the efficient 

repair of DNA DSBs in AML blasts. AML cell lines were infected by lentivirus to integrate 

either a non-targeting, scrambled (Sc) shRNA or a CHD4-targeting shRNA. (A) Depletion of 

CHD4 leads to a global increase in euchromatin-associated histone H3K9 and H4K8 

acetylation.  (B) Depletion of CHD4 also results in a disruption of heterochromatin-

associated Histone H3K9me3 foci in U937 cells as shown by staining with anti-H3K9me3 

antibody. (C) U937 cells were exposed to 6 Gy of radiation to induce DNA DSBs. DSB 

formation and repair was monitored over a 4-hour time course using a neutral comet assay. 

CHD4-depleted cells displayed significantly more evidence of DSBs and were delayed in 

their repair. (n>50 comets) (D) The results of the comet assay were confirmed by staining 

for Υ-H2A.X foci and calculating the fluorescent intensity per nucleus. (n>60 cells per time 

point) (E) Representative images of the Υ-H2A.X stain. * indicates p<0.05 
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Figure 10. CHD4 is necessary for the efficient repair of DNA DSBs in AML blasts. 

Similar to the U937 cells in Figure 1, MV4-11 (A) and AML-3 (B) cell lines were exposed to 6 

Gy of radiation to induce DNA DSBs. DSB formation was detected by staining for Υ-H2A.X 

foci and calculating the fluorescent intensity per nucleus (n>60 cells per time point). Cells 

depleted of CHD4 displayed significantly elevated evidence of DSB formation (* indicates 

p<0.05). Representative images of the Υ-H2A.X stain for MV4-11 (C) and AML-3 (D). 
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Figure 11. Lack of increased markers of apoptosis shortly following radiation 

exposure. No evidence of PARP or caspase-3 cleavage was found during the 4-hour time 

course upon exposing U937 cells to 6 Gy of radiation as described in Figures 1C and 1D.  

This confirms that the increased evidence of DSBs in the comet assay and the γH2A.X stain 

was not due to induction of apoptotic mechanisms. 
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Inhibition of CHD4 renders AML blasts more sensitive to DNR and ara-C in vitro. 

Having determined that CHD4 affects the formation and repair of DSB in AML cells, we 

hypothesized that AML cells depleted of CHD4 would be more sensitive to the DSB-

inducing agents DNR and ara-C. To test this hypothesis, we incubated the AML cells for 24 

hours with clinically relevant concentrations of either DNR (Figure 12A) or ara-C (Figure 

12B) and the assessed their viability with 7AAD (7-Aminoactinomycin D) staining. At all 

DNR and ara-C concentrations tested, significantly more cell death was observed in the 

AML cells depleted of CHD4, with some concentrations resulting in as much as a 5-fold 

increase in cell death. Similar results were obtained when we depleted CHD4 in a primary 

AML sample (098-8712-3A).  
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Figure 12. Inhibition of CHD4 renders AML blasts more sensitive to DNR and ara-C in 

vitro. U937, MV4-11, and AML-3 human AML cell lines and a primary AML sample were 

incubated with various concentrations of (A) DNR or (B) ara-C for 24 hours in vitro. Cell 

viability was assayed using a 7AAD stain and quantified by flow cytometry.  For all AML 

cells and concentrations of DNR/ara-C tested, AML cells depleted of CHD4 displayed 

significantly more cell death compared to controls. p<0.05 for every data point tested. n=3 

biological replicates for each data point. 
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To confirm that the increase in sensitivity to DNR and ara-C was not the result of an off-

target effect of the shRNA construct used, a second CHD4-targeted shRNA construct 

(shCHD4-2, Figure 8) was tested and induced a similar increase in sensitivity to DNR 

(Figure 13). Thus, knockdown of CHD4 with two independent shRNA constructs enhanced 

the in vitro sensitivity of AML cells to DNR and ara-C.  

Figure 13. Depletion of CHD4 with a second shRNA construct renders AML blasts 

more sensitive to DNR. To confirm that the observations found in Figure 2 was not the 

result of off-target effects of shRNA construct 1, we depleted CHD4 using a second shRNA 

(shCHD4-2). Upon incubation with DNR for 24 hours, we observed a similar increase in 

both (A) U937 and (B) MV4-11 cell sensitivity as the result of CHD4 depletion. (n = 3 

biological repeats, * indicates p<0.05) 
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As DNR is a fluorescent intercalating agent87 and CHD4 depletion induces a global 

relaxation of chromatin in AML blasts, we tested whether CHD4-depleted cells were more 

susceptible to DNR intercalation.  Incubation of U937 cells for 2 hours with 200 ng/mL of 

DNR resulted in significantly more DNR fluorescent signal inside the nuclei of CHD4-

depleted cells (Figure 14).  This finding is consistent with increased DNR intercalation 

within CHD4 depleted cells. 
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Figure 14. CHD4 depletion increases the intercalation of DNR. U937 cells were 

incubated with 200 ng/mL of DNR for 2 hours. DNR fluorescence within the cells was 

detected by measuring the emissions at 580 nm. The increased DNR fluorescent signal in 

CHD4-depleted cells is consistent with increased DNR intercalation. (* indicates p<0.01) 
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 To gain insight into what cell cycle checkpoints the DNR-induced DNA damage was 

activating, we performed a cell cycle analysis using propidium iodide (PI) stain on treated 

U937 cells. Based on this analysis, we saw that DNR induces an intra-S phase checkpoint as 

the percentage of cells in S phase increased in a DNR dose-dependent manner (Figure 15). 

Interestingly, we found that cells depleted of CHD4 activated the checkpoint at lower doses 

of DNR than control cells, as evident at the 50 ng/mL concentration. This finding is 

consistent with CHD4 depleted cells being more prone to the induction of DNA DSBs due to 

treatment with DNR. 
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Figure 15. CHD4 depleted cells are more prone to DNR-induced S-phase checkpoint 

activation. U937 cells were treated with the indicated doses of DNR for 24 hours.  Cell 

cycle was analyzed using a PI stain.  DNR was found to activate an S-phase cell cycle 

checkpoint and activated the checkpoint more readily in CHD4 depleted cells at lower 

concentrations of DNR. Note that cells found in the “P2” category are apoptotic.  
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Inhibition of CHD4 does not sensitize normal CD34+ progenitor cells to DNR and ara-

C. We next investigated if the increased sensitivity to DNR and ara-C induced by CHD4 

inhibition occurs preferentially in AML blasts. We depleted CHD4 in CD34+ hematopoietic 

progenitor cells isolated from the mobilized blood of 3 normal donors (Figure 8E).  

Following incubation for 24 hours with DNR and ara-C, CD34+ cells did not display a 

significant increase in sensitivity to DNR (Figure 16A) or ara-C (Figure 16B). 

To gain insight into how CHD4 depletion might preferentially sensitize leukemic 

cells, we compared the total endogenous CHD4 protein levels in CD34+ cells from the 3 

normal donors to that in 3 AML cell lines (U937, MV4-11, AML-3) and blasts isolated from 

the bone marrow of 3 different AML patients whose marrow contained >90% blasts. AML 

cell lines and primary AML blasts contained on average ~50% less CHD4 total protein than 

CD34+ cells (Figure 8E and 16C). Surprisingly, AML cell lines and primary AML samples did 

not have significantly different amounts of CHD4 mRNA compared to the normal CD34+ 

progenitors, suggesting that post-transcriptional alterations could account for the 

discrepancy in the observed amount of CHD4 protein. 
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Figure 16. Inhibition of CHD4 does not sensitize normal CD34+ progenitor cells to 

DNR and ara-C. CD34+ hematopoietic progenitors were isolated from the 3 normal donors. 

Depletion of CHD4 did not significantly increase the sensitivity of the CD34+ cells to either 

(A) DNR or (B) ara-C. (C) The CD34+ cells were found to contain significantly more 

endogenous CHD4 protein than the AML cell lines (U937, MV4-11, AML-3) and primary 

AML blasts isolated from the bone marrow of 3 patients. Interestingly, there was no 

difference in CHD4 mRNA between the CD34+ and AML cells. * indicates p<0.05 Note: RNA 

was normalized to GAPDH and protein was normalized to tubulin. 
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Inhibition of CHD4 sensitizes AML blasts to DNR and ara-C in a xenograft model. 

Having demonstrated that depletion of CHD4 preferentially increases the sensitivity of 

AML cells to DNR and ara-C in vitro, we tested the effect of CHD4 depletion in AML cells in 

vivo. To this end, we utilized a previously described mouse xenograft model of the human 

“7+3” induction regimen88,89 that consists of 5 continuous days of ara-C treatment and 

doxorubicin co-administered on days 1 through 3.  In this model, the anthracycline 

doxorubicin is substituted for the anthracycline DNR used in humans due to the systemic 

toxicity of the latter in mice.88 Luciferase expressing U937 cells were systemically 

engrafted by tail vein injection into NSG mice (n=3 mice per condition) and disease 

progression was monitored by total radiance (measured in photons/second/cm2/sr) 

generated within each mouse upon subcutaneous administration of luciferin. 

The treatment regimen was initiated once a systemic xenograft was confirmed and 

mice were re-imaged 7 days later, a time we had previously observed to yield the 

maximum drug-induced anti-tumor effect.  Post-treatment, mice engrafted with control 

cells displayed on average 43% of their total pre-treatment radiance.  However, mice 

engrafted with CHD4 depleted cells displayed only 20% of their pretreatment radiance 

(Figure 17A), indicating that AML blasts depleted of CHD4 are indeed more sensitive to 

DNR and ara-C treatment in vivo.  

Mice were then followed for survival, until a humane endpoint was reached (Figure 

17B).  Untreated mice engrafted with CHD4 depleted cells survived significantly longer 

than those engrafted with control cells. The survival of the mice engrafted with CHD4-

depleted cells further improved with the addition of the drug regimen.  Once the mice 

reached their humane endpoints, bone marrow was collected and analyzed. In the marrow 
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of mice that received the shCHD4-depleted cells, the AML cells retained ~75% knockdown 

of CHD4 mRNA compared to cells from the bone marrow of mice containing the control 

shRNA (data not shown). 
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Figure 17. Inhibition of CHD4 sensitizes AML blasts to DNR and ara-C in a xenograft 

model. Equal numbers of luciferase-expressing Scramble and shCHD4 U937 cells were 

engrafted into NSG mice by tail-vein injection and tumor burden was non-invasively 

monitored by measuring the total radiance generated upon subcutaneous administration of 

luciferin. (A) Once a tumor was well established (as seen in the pretreatment panels), the 

mice were treated with 5 continuous days of ara-C, with concurrent doxorubicin on days 1 

through 3. Post-treatment, mice engrafted with control cells were found to possess 43% of 

their pretreatment radiance, whereas mice engrafted with CHD4-depleted cells possessed 

20% (p<0.001). (B) The mice were followed for survival. CHD4-depletion alone, resulted in 

a 7-day improvement in mouse survival. Treatment with Doxorubicin/ara-C improved the 

survival of the mice engrafted with CHD4-depleted cells by an additional 4 days. * indicates 

p<0.05  
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Inhibition of CHD4 activates the ATM signaling pathway to induce apoptosis.  As AML 

cells depleted of CHD4 are more sensitive to DSB inducing agents, we investigated the role 

of the ataxia-telangiectasia mutated (ATM) pathway. The serine/threonine kinase ATM is a 

master regulator of the DSB repair response and is classically activated by auto-

phosphorylation of serine 1981 in response to dsDNA breaks.18,90 Recently, the protein 

acetyl-transferase Tip60 was found to activate ATM in response to chromatin relaxation.91 

Because depletion of CHD4 led to a global relaxation of the chromatin structure of AML 

cells, we hypothesized that depletion of CHD4 would induce a Tip60 dependent activation 

of ATM. Accordingly, a 10-fold increase in the phosphorylation of S1981 on ATM in U937 

cells was observed upon the depletion of CHD4. However, the phosphorylation of ATM 

remained at control levels upon concomitant depletion of Tip60 in CHD4 depleted cells 

(Figure 18A).  This observation indicates that inhibition of CHD4 does induce a Tip60-

dependent activation of ATM.  

We next sought to investigate the ATM pathway in AML cells in response to DNR.  As 

expected, ATM is auto-phosphorylated in a dose-dependent manner in both control and 

shCHD4 cells. However, a significant increase in the amount of phosphorylated-ATM was 

detected at each DNR concentration tested in CHD4 depleted cells (Figure 18B). 

Interestingly, depletion of CHD4 also increased the level of total ATM by 3-fold. Once active, 

ATM induces numerous downstream phosphorylation events that signal for cell survival by 

initiating the repair of DSBs or it can trigger apoptosis.18,92 E2F1 is a pro-apoptotic 

transcription factor that is stabilized by ATM through phosphorylation of Serine-31.93 E2F1 

is stabilized in U937 cells in a DNR dose-dependent manner in control cells; however, 

significantly more E2F1 is stabilized in response to DNR in cells partially depleted of CHD4.  
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E2F1 did not undergo a DNR dose-dependent stabilization when the ATM inhibitor 

KU60019 was added, indicating that the observed dose-dependent stabilization requires 

ATM (Figure 18C-E).  Ultimately, the increased activation of ATM and the subsequently 

increased downstream pro-apoptotic signaling in response to DNR in CHD4-depleted cells 

resulted in increased apoptosis compared to control cells (Figure 18F).  
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Figure 18. Inhibition of CHD4 activates the ATM signaling pathway to induce 

increased apoptosis. (A) Depletion of CHD4 in U937 cells induces a significant activation 

of ATM, which is blocked by the concurrent depletion of Tip60. (B) Upon addition of DNR, 

ATM is activated in a concentration-dependent manner, with significantly more activation 

in the CHD4-depleted cells. (C) Once active, ATM acts on its downstream targets, including 

stabilizing the pro-apoptotic transcription factor E2F1. E2F1 is stabilized in a DNR 

concentration-dependent manner, (D) with significantly more being stabilized in the CHD4- 

depleted cells. (E) This stabilization is diminished upon the addition of the ATM inhibitor 

KU60019. (F) Ultimately, in response to the DNR, CHD4-depleted AML cells display 

elevated markers of apoptosis, including PARP and Caspase-3 cleavage. 
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Inhibition of CHD4 inactivates the Chk2 pathway. Since we found that DNR induces an S 

phase checkpoint (Figure 15) and CHD4 depletion activates ATM (Figure 18), we 

investigated the effect of CHD4 depletion on the Checkpoint kinase (Chk) 2 pathway. Chk2 

is a serine/threonine kinase that is phosphorylated on threonine-68 by ATM in reaction to 

DSBs. Once activated, Chk2 homodimerizes, autophosphorylates on serine-516, and then 

targets >20 downstream targets for phosphorylation to induce a wide range of responses 

to the DNA damage, which include cell cycle checkpoint activation and DNA repair, 

apoptosis, or senescence.94 Among these substrates are the proteins Cell Division Cycle 

(Cdc) 25A and 25C.  When active, Chk2 phosphorylates CdC25A and Cdc25C to signal for 

their degradation and results in arrest of the cell cycle. Both p53 and E2F1 are also targets 

of Chk2 and have the potential to induce apoptosis.  

As previously mentioned, DNR-induced DSBs activate ATM (Figure 18B) and lead to 

the phosphorylation of Chk2 at Threonine-68 (Figure 19). However, U937cells depleted of 

CHD4 are deficient in their ability to activate Chk2 as seen by the decreased amount of p-

Chk2 at serine-516 following phosphorylation by ATM. Interestingly, it appears that cells 

depleted of CHD4 contain less total Chk2 than control cells, despite roughly equivalent 

amounts of Chk2 mRNA. Previous reports indicate that Chk2 protein is degraded following 

the repair of DSBs95,96, indicating that the decrease in total Chk2 in CHD4 depleted cells 

may be due to the increased susceptibility of these cells to the formation of DSBs, both 

spontaneous (as seen in the decreased total Chk2 in untreated cells) and DNR-induced (as 

seen in the further reduction in treated cells).  However, Chk2 degradation is not consistent 

among all studies97 and may indicate a cell line/genotoxic agent specific effect. Consistent 

with an inactive Chk2 pathway, CHD4 depleted cells do not phosphorylate and 
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subsequently degrade Cdc25A/C.  This could lead to a failure to properly activate a cell 

cycle checkpoint, despite the presence of DNR-induced DSBs, and may result in apoptosis. 

Additionally, Chk2 does not phosphorylate the proapoptotic transcription factor E2F1 in 

CHD4 depleted cells. However, total E2F1 is stabilized in CHD4 depleted cells in a DNR-

dose dependent manner, possibly due to (as previously seen in Figure 18) phosphorylation 

of E2F1 by ATM at a second site. Both the failure to activate the cell cycle checkpoint and 

the stabilization of E2F1 can lead to apoptosis, indicating another potential mechanism for 

how CHD4 depletion sensitizes AML cells to DNR. Note: p53 was not assessed in these 

studies due to the p53-/- status of U937. 
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Figure 19. Inhibition of CHD4 inactivates the Chk2 pathway. Depletion of CHD4 leads to 

an activation of ATM, but inhibits the activation of Chk2.  As a result, cells depleted of CHD4 

may fail to activate the cell cycle checkpoint, leading to apoptosis. Included is a quantitative 

comparison of Chk2, pChk2 (T68), and pChk2 (S516) protein based on densitometry 

analysis of the shown westerns and mRNA differences between scramble U937 cells (blue) 

and CHD4 depleted cells (red). 
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CHD4 depletion alters the expression of genes involved in Leukemic Cell Death. Since 

CHD4/NuRD has best been described as a transcriptional regulation complex, we 

performed microarrays to investigate if the transcriptional alterations that result from the 

depletion of CHD4 could contribute to the increased sensitization of the AML cells to the 

genotoxic agents.  Probe sets were considered to be differentially expressed if the false 

discovery rate (FDR) was less than 0.05, which resulted in 1,320 and 675 differentially 

expressed genes in U937 and MV4-11, respectively.  We then utilized a Downstream Effects 

Analysis in the Ingenuity Pathway Analysis (IPA) software to interpret the biological 

implications of gene expression alterations (Figure 20). According to this analysis, CHD4 

depletion resulted in a net increase in the expression of genes previously reported to 

induce cell death of leukemic cells and concomitantly reduced the expression of genes 

previously reported to prevent cell death of leukemic cells. Taken together, this analysis 

indicates that the transcriptional alterations associated with CHD4 depletion may 

contribute to the increased sensitization to genotoxic agents.  However, validation by 

western blots did not result in significant changes to protein concentrations of promising 

gene targets (Bik, BCL2, ERK, MCL1) found in this analysis. 
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Figure 20. Depletion of CHD4 may increase cell death in leukemic cells through gene 

expression alterations. Microarray arrays were performed to determine the gene 

expression alterations associated with CHD4-depletion.  Setting a cutoff of an FDR to less 

than 0.05 resulted in 1320 significantly differentially expressed genes in U937 and 675 in 

MV4-11, with 410 overlapping genes.   The Ingenuity Pathway Analysis software was used 

to make biological predictions based on the differentially expressed genes. This analysis 

predicted a significant increase in cell death of leukemic cells (Activation Z-score of 2.039 

and 2.569 for U937 and MV4-11, respectively).  
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Discussion 

CHD4 and its associated NuRD complex have emerged as key mediators of the 

double-stranded DNA damage repair pathway23,24 and gene expression, most notably 

repression of hyper-methylated tumor suppressor genes in cancer.48,64 Here, we describe 

the first study that examines the interplay of CHD4’s dual functionality in AML. We 

observed that the partial depletion of CHD4 in AML cells induces a global relaxation of the 

chromatin structure (Figure 9A-B), which is similar to previous reports in Ramos84 and 

HeLa98 cell lines. CHD4 depleted AML cells were also found to be more susceptible to the 

formation of DSBs (Figure 9C-E, 10), consistent with evidence that CHD4 protects U2OS 

osteosarcoma cells from ionizing radiation56,57,81 and that relaxed chromatin is more 

susceptible to the formation of DSBs than condensed chromatin99,100. In addition, our 

results show that the DNA of CHD4-depleted cells was more exposed to intercalation by 

DNR (Figure 14), consistent with the greater capacity of anthracyclines to bind 

nucleosome-free DNA101.  CHD4-depleted AML cells also failed to efficiently repair the 

resulting genotoxic agent-induced DSBs (Figure 9C-E, 10). Probing ATM pathway 

components in CHD4 depleted AML cells revealed a Tip60-mediated activation of ATM 

prior to DNA damage as well as an ATM-dependent stabilization of the pro-apoptotic 

transcription factor E2F1 upon induction of DSBs (Figure 18).  Additionally, depletion of 

CHD4 was found to deregulate the Chk2 pathway (Figure 19) and altered gene expression 

to induce cell death of leukemic cells (Figure 20). Taken together, these results indicate 

that targeting CHD4 could increase the sensitivity of AML cells to genotoxic agents 

commonly used in therapy through a combination of increased susceptibility to the 

formation of DSBs and inhibition of their repair (Figure 21).   
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Figure 21. Model of CHD4 enhancement of genotoxic agent-induced apoptosis 

through DSB repair inhibition and chromatin relaxation. In AML blasts, depletion of 

CHD4 relaxes the chromatin, resulting in the activation of ATM through Tip60 and thereby 

primes the cells for apoptotic signaling. Moreover, the relaxed chromatin is more 

susceptible to genotoxic agent-induced DSBs. Additionally, CHD4 deficient blasts have 

impaired DSB repair, resulting in the accumulation of more DSBs and further activation of 

ATM through the classical Mre11, Rad50, NBs1 (MRN) complex.  The net activation of ATM 

in CHD4-depleted cells increases its downstream pro-apoptotic signaling cascade, thereby 

resulting in apoptotic cell death. 
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Depletion of CHD4 in three AML cell lines and a primary AML patient sample 

increased the in vitro sensitivity to clinically relevant concentrations of single agent DNR 

and ara-C (Figure 12,13). Importantly, the increased sensitivity to DNR and ara-C occurred 

preferentially in AML cells, as normal CD34+ hematopoietic progenitors partially depleted 

of CHD4 did not demonstrate a similar increase in susceptibility (Figure 16A-B). We 

hypothesize that the preferential sensitivity of AML cells to CHD4 depletion may reflect 

disparate levels of endogenous CHD4 between normal CD34+ cells and AML cells, as AML 

cell lines and primary AML cells appear to contain significantly less total endogenous CHD4 

protein compared to normal CD34+ progenitor cells (Figure 16C). It remains uncertain 

whether the diminished levels of CHD4 protein in AML cells reflects the normal 

differentiation of myeloid lineage cells or is associated in a yet to be determined way with 

the tumorigenic capacity of AML.  Consistent with our findings, differences in CHD4 protein 

levels between tumors and normal tissue have been recently reported, but do not point to a 

conclusive trend. For example, decreased expression of CHD4 in ovarian tumors correlates 

with decreased progression-free and overall survival.102 In contrast, increased expression 

of CHD4 in hepatocellular carcinoma was found to be associated with poor prognoses.86 

Therefore, differences in CHD4 protein levels between normal and malignant cells may be 

tissue specific. In any case, these findings argue that a threshold level of CHD4 may be 

required for efficient DSB repair, implying that leukemia cells containing less endogenous 

CHD4 may be more vulnerable to CHD4 inhibition than their normal counterparts. 

As combinations of anthracyclines and high-dose ara-C form the foundation of both 

AML induction and salvage therapy, inhibiting CHD4 might enhance the efficacy of current 

regimens without increasing the required doses of these agents. This would be of particular 
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interest for anthracycline based-regimens, as the maximum lifetime dose of anthracyclines 

is severely limited by a cumulative, dose-dependent cardiotoxicity,9 although study of 

CHD4 inhibition in cardiac tissue is needed to corroborate this. Furthermore, the 

chromatin-relaxation effect of CHD4 inhibition may have additional implications for 

anthracycline-based therapy, as anthracyclines have been found to displace nucleosomes 

from transcription start sites of genes located in regions of relaxed chromatin which 

deregulates the transcriptome and drives apoptosis in AML cells103. Thus, inhibition of 

CHD4 may also potentiate DNA damage-independent mechanisms of anthracycline-

mediated anti-leukemic activities.   
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Chapter 3: Depletion of CHD4 modulates expression of AML cell genes that regulate 

tumor formation in vivo and colony formation in vitro. 

 

Rationale 

CHD4 is a core component of the NuRD complex, which is best known for its ability 

to epigenetically regulate gene expression. As previously mentioned, within the context of 

cancer, NuRD is known to repress the expression of tumor suppressor genes.48 Our lab 

previously determined that the inhibition of the NuRD component MBD2 can lead to the 

restored expression of some of these repressed tumor suppressor genes in a breast cancer 

model, which results in a severe decrease in tumor cell proliferation both in vitro and in 

mice xenografts.49 Furthermore, studies in our lab found that inhibition of CHD4 potentially 

has a significantly larger effect on NuRD-dependent gene regulation when compared to 

inhibition of MBD2.67 Therefore, we hypothesized that inhibition of CHD4 would decrease 

AML cell proliferation due to the restored expression of NuRD-depended repressed tumor 

suppressor genes in AML.  

  

Results 
 
 

Inhibition of CHD4 improves survival in mice.  As seen in Figure 17 (and repeated 

experiments shown in Figure 22), mice engrafted with CHD4 depleted cells harbored 

significantly lower tumor burden than mice engrafted with control cells, despite injection 

with equivalent numbers of viable leukemic cells at the same time.   
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Given that depletion of other NuRD components has been shown to decrease the 

proliferation of tumor cells both in vitro and in vivo,49 we first investigated if CHD4 

depletion altered the proliferation rate of AML cells. CHD4 depletion did not significantly 

alter the in vitro (Figure 23) or in vivo (Figure 24) proliferation rate, nor did it alter the cell 

cycle distribution of the tested AML cell lines (Figure 25).  Therefore, proliferative 

alterations are unlikely to account for the discrepancy in the tumor burden between mice 

engrafted with control versus CHD4-depleted cells.  

Figure 22. Mice engrafted with CHD4 depleted AML cells harbored significantly lower 

tumor burden than controls. Despite injection with equivalent numbers of viable 

leukemic cells at the same time, mice engrafted with CHD4-depleted AML cells continuously 

harbored significantly lower tumor burdens than mice engrafted with control cells.  Shown 

in this figure are the time points when mice engrafted control cells reached their humane 

endpoints. (A) Shown is day 16 post engraftment with 5x106 U937 cells by tail-vein 

injection. For this replicate, mice engrafted with CHD4 depleted cells did not reach their 

humane endpoint until ~26 days post engraftment. (B) Shown is day 25 post engraftment 

with 5x106 MV4-11 cells by tail-vein injection. For this replicate, mice engrafted with CHD4 

depleted cells did not reach their humane endpoint until ~31 days post engraftment. 
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Figure 23. CHD4 depletion does not alter in vitro proliferation rate of AML cells. (A) 

U937, (B) MV4-11, and (C) AML-3 cells were seeded at a density of 150,000 cells/mL and 

the cell density was measured every 24 hours.  CHD4 depletion did not alter the 

proliferation rate. 
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Figure 24. CHD4 depletion does not alter in vivo proliferation rate of U937 cells. The 

total radiance of untreated NSG mice engrafted with the same number of viable, luciferase-

expressing U937 cells was measured over time.  The radiance of mice engrafted with CHD4-

depleted cells increased at a similar rate to that of mice engrafted with control cells, 

indicating that the in vivo growth rate of CHD4-depleted cells is similar to that of controls. 

However, the difference in the total flux between mice engrafted with CHD4-depleted cells 

and controls at early time points suggests that fewer CHD4-depleted cells are capable of 

engrafting.   
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An alternative explanation for the decrease in tumor burden is that CHD4 depletion 

reduces the tumor forming capacity of the leukemic cells. We performed soft agar colony 

forming assays, as leukemic cells capable of forming colonies in soft agar have been shown 

to possess the ability to initiate disease in vivo.104 Indeed, CHD4 depletion sharply reduced 

the formation of AML colonies in soft agar (Figure 26, Figure 27), suggesting that CHD4 is 

required to maintain the full tumor forming ability of these cells. Of interest, we replicated 

the colony formation assays utilizing methylcellulose (Figure 28) and found similar results 

to the soft agar. Additionally, depletion of another NuRD component MBD2 resulted in a 

similar decrease of colony forming potential in the methylcellulose, albeit a lesser extent 

than what was achieved with the depletion of CHD4. This finding provides evidence that 

CHD4 may be acting through the NuRD complex to regulate colony formation. 

 

 

Figure 25. CHD4 depletion does not alter the cell cycle distribution of AML cells. (A) 

U937, (B) MV4-11, and (C) AML-3 cells were stained with PI and analyzed using flow 

cytometry. CHD4 depletion did not significantly alter the cell cycle distribution of the cells. 
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Figure 26. CHD4-depletion sharply decreases the colony formation potential of AML 

cells in soft agar. CHD4-depleted cells were inhibited in their ability to engraft into the 

NSG mice. CHD4-depletion severely reduced the ability of U937 and MV4-11 cell lines to 

form colonies in soft agar. (A) 20x representative images of colonies. (B) Quantitation of 

AML colonies (* indicates p<0.05, n=3)  
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Figure 27. CHD4 depletion in AML3 cells restricts colony formation in soft agar. (A) 

40x representative images of colony formation assay using AML3 cells. (B) 200x images of 

selected colonies shown in A.  (C) 200x GFP fluorescent images of colonies shown in B. 

Since the vector used to express the shRNAs co-expressed GFP, the low expression of GFP in 

the few remaining colonies in the CHD4-depleted AML3 cells may indicate that the colonies 

formed due to insufficient CHD4 depletion.  
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Figure 28. CHD4 depletion restricts colony formation in methylcellulose.  We replicated 

the colony formation assays in methylcellulose and found, similar to the assays performed in 

soft agar, that CHD4 depletion decreases the number of colonies recovered. Additionally, we 

found that depletion of another NuRD component MBD2 resulted in a similar, albeit to a lesser 

extent. Shown are representative images of the colonies and their quantification. 
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CHD4 depletion alters the expression of genes involved in tumor formation. To gain 

insight into the molecular basis for this loss of colony forming potential, we reevaluated 

data from our previously mentioned microarray experiment. In addition to predicting an 

increase in cell death of leukemic cells, the IPA analysis indicated that CHD4 depletion 

results in a net decrease in the expression of genes previously reported to increase the 

colony-forming potential of tumor cells and concomitantly induces the expression of genes 

previously reported to decrease the colony forming potential of tumor cells (Figure 29). 

Taken together, the IPA analysis predicted a significant decrease in the colony formation 

potential of both U937 and MV4-11 cells.  
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Figure 29. CHD4 depletion alters expression of genes involved in tumor formation. 

Microarray arrays were performed to determine the gene expression alterations associated 

with CHD4-depletion.  The Ingenuity Pathway Analysis software was used to interpret the 

data and predicted a significant decrease in the colony forming potential in both U937 and 

MV4-11 (Activation Z-score of -2.044 and -2.002, respectively).  
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We then utilized quantitative PCR to validate the expression alterations of several 

genes whose differential expression has previously been shown to significantly alter the 

colony formation of AML and hematopoietic stem cells, including Myc and PCGF2.105,106107 

Consistent with the microarray data, Myc was found to be down regulated and PCGF2 was 

found to be upregulated in the CHD4-depleted AML cells (Figure 30). An additional 7 genes 

known to play a role in the pathogenesis of AML were also validated in CHD4-depleted AML 

cells (Figure 31).2,108–114 In conjunction with the IPA analysis, these results indicate that 

transcriptional alterations induced by the depletion of CHD4 can at least partially explain 

the decrease in colony forming potential in AML cells. 
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Figure 30. Quantitative PCR validation of c-Myc and PCGF2. Consistent with the 

microarray results, c-Myc was found to be down regulated and PCGF2 was found to be 

upregulated in the CHD4-depleted AML cells. However, CHD4 depletion in CD34+ 

hematopoietic progenitors did not significantly alter the expression of these genes. Values 

are expressed as fold change from control values in log2. 
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Figure 31. Microarray Validation. In addition to Myc and PCGF2, we validated 7 other 

genes included in the Ingenuity Pathway Analysis prediction by quantitative PCR.  All 7 

genes validated in MV4-11 and AML-3 cell lines, but only 5 validated in U937. 
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In contrast to the findings in AML cells, depletion of CHD4 did not significantly alter 

the colony forming potential of CD34+ cells isolated from normal donors (Figure 32).  

Consistent with this observation, the expression of neither Myc nor PCGF2 was significantly 

altered in the CHD4-depleted CD34+ cells (Figure 30). 
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Figure 32. CHD4-depletion did not significantly alter the colony forming potential of 

CD34+ cells. (A) Depletion of CHD4 in CD34+ hematopoietic progenitors isolated from 3 

normal donors did not result in a significant decrease in colony formation in 

methylcellulose. (B) Representative images of CD34+ colonies. 100X Images of colonies 

from CD34+ cells.  Fluorescent images confirm that the colonies were indeed infected with 

the lentiviral vector containing the shRNA. 

 

B. 

A. 
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Discussion 
 
 In a clinically relevant mouse model of induction therapy, NSG mice engrafted with 

CHD4 depleted U937 cells displayed increased drug sensitivity and survival (Figure 17). An 

unexpected and important finding was that depletion of CHD4 significantly reduced the 

tumor burden of the xenografts, which resulted in an additional treatment-independent 

increase in survival. 

 Since our lab has previously shown that inhibition of the NuRD component MBD2 

can sharply reduce breast cancer cell proliferation in vitro and xenograft formation in 

vivo,49 we assessed the proliferative capacity of AML cells depleted of CHD4.  In contrast to 

the breast cancer cells, we found that CHD4 depletion did not alter the in vitro or in vivo 

proliferative capacity of the 3 AML cells lines tested, nor did it alter the cell cycle 

distribution of these cells (Figure 23-25). Thus, we turned to investigating the tumor 

initiation properties of the CHD4 depleted cells. We observed that depletion of CHD4 

sharply reduces the growth of AML colonies in soft agar (Figure 26, Figure 27) and 

methylcellulose (Figure 28), but not the growth of normal donor CD34+ hematopoietic 

progenitor colonies (Figure 32).  This finding suggests that a minimal level of CHD4 is 

necessary for the maintenance of tumor forming behavior of leukemic cells and would lead 

us to hypothesize that a further depletion or knockout of CHD4 in the CD34+ cells would 

eventually result in a loss of colony formation potential of these cells.  

 We then investigated the molecular basis for the loss of colony formation using a 

microarray analysis (Figure 29).  Based on the net gene expression changes induced by 

CHD4 depletion in U937 and MV4-11 cells, the Ingenuity Pathway Analysis software was 

able to successfully predict the observed reduction in colony formation. We then validated 
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a subset of the expression changes found in the prediction that have been previously 

associated with the pathogenesis of AML by means of quantitative PCR (Figure 30, Figure 

31). Through this validation, we confirmed the majority of gene expression alterations 

found in the microarray.  Although we focused our analysis on a subset of 9 genes, we do 

not believe that the alterations to these genes alone yield the observed reduction in colony 

formation.  Rather, we believe that the observed phenotype is the result of the entirety of 

expression alterations induced by CHD4 depletion and that the subset of genes we focused 

on are merely the largest and easiest to detect alterations. Interestingly, we found that 

CHD4 depletion in CD34 cells did not result in the same gene expression changes to Myc 

and PCGF2 seen in the AML cells, which correlates with the observed colony forming 

assays.   

 AML cells that are capable of forming colonies have previously been defined as 

leukemic stem cells and are thought to be the cells that are capable of forming de novo  and 

recurrent tumors in vivo.104 Therefore, our findings suggest that a potential inhibitor of 

CHD4 would have a profound effect on inhibiting AML stem cells, although strong debate 

remains as to whether cell lines, such as the ones used in these studies, contain true, 

bonafide “leukemic stem cells”. Future studies on the colony formation potential of primary 

AML cells depleted of CHD4 are needed to confirm our assertion. However, our finding that 

CHD4 depletion reduces colony and xenograft formation is consistent with evidence in the 

literature that implicates CHD4 and its associated NuRD complex in the maintenance of 

embryonic115,116, myeloid117, and tumor85,86 stem cells. Although we attribute this decrease 

in colony formation to expression changes induced by CHD4 depletion, it should be noted 

that another group has reported that minimal amounts of DNA damage can impede 
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leukemic self-renewal and malignant hematopoiesis by inducing differentiation of leukemic 

stem cells.118 Therefore, given that CHD4 plays a role in maintaining genomic integrity and 

the DSB repair pathway, the expression alterations from CHD4 depletion may not solely be 

responsible for the reduction in xenograft engraftment and colony formation. 
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Chapter 4: CHD4 as a therapeutic target in AML. 

Rationale 

 We have identified that inhibition of CHD4 could increase the sensitivity of AML 

cells to standard genotoxic agents and reduce the tumor forming capacity of AML cells. 

Importantly, these effects are not seen in normal CD34+ hematopoietic progenitors. Based 

on this evidence, we believe that CHD4 is a promising therapeutic target for the 

management of AML. 

 

Results 

 

Depletion of CHD4 renders AML blasts more sensitive to the HDAC inhibitor 

Vorinostat. Since we have already established that CHD4 depletion sensitizes AML cells to 

the DNA-damaging agents DNR and araC, we next sought to determine if CHD4 depletion 

could sensitize AML cells to other agents. We decided to try the HDAC inhibitor Vorinostat 

(suberanilohydroxamic acid, SAHA) since CHD4 and HDAC 1/2 provide the chromatin 

remodeling activities of the NuRD complex. Consistent with our findings using DNR and 

araC, depletion of CHD4 does sensitize AML cells, but not normal CD34+ hematopoietic 

progenitors, to SAHA (Figure 33).  
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Figure 33. CHD4 inhibition sensitized AML, but not normal CD34+ cells to the HDAC 

inhibitor vorinostat. U937, MV4-11, and normal CD34+ hematopoietic progenitors were 

incubated with SAHA for 24 hours, after which a 7AAD stain was used to determine cell 

viability. CHD4 depletion (red) sensitized the AML cells to SAHA, but not the CD34+ cells.  

Shown are markers of apoptosis for U937 cells treated with SAHA. 

 



 

 94 

Peptide inhibitor of CHD4. Previous studies determined that the transcriptional 

repression activity of the NuRD complex is dependent on the interaction of the tandem 

PHD domains of CHD4 to histone H3 tails on nucleosomes.76 Functionally, the PHD domain 

of CHD4 was determined to allosterically regulate its own ATPase domain.119 Therefore, a 

peptide inhibitor of CHD4 was designed to competitively inhibit the interaction of CHD4’s 

PHD domains with the histone H3 tails (Figure 34A).  This inhibitor consists of the first 12 

amino acids of histone H3 with a trimethylation modification on K9, which was previously 

shown to increase the binding affinity.76 To facilitate the entry of the peptide into cells, an 

F4R8 cell penetration tag (shown in grey) was added to the C terminus.120  This F4R8 tag 

was made retro-inverso with D-isomers of amino acids to increase resistance to photolytic 

degradation.121 To confirm that the peptide inhibitor binds to the PhD domains of CHD4, 

we generated a Heteronuclear Single Quantum Coherence (HSQC) spectrum by NMR on a 

purified sample of the second PHD domain of CHD4 (Figure 34B).  We then titrated in our 

peptide inhibitor and tracked the peak shifts, until saturation was reached (Figure 34C) 

and calculated the binding affinity (KD) of CHD4’s PHD2 domain for our peptide to be 

~16µM (Figure 34D).   
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Figure 34. Peptide inhibitor of CHD4. CHD4 contains two tandem PHD finger domains 

that bind to Histone H3 tails.  (A) Schematic of our retro-inverso peptide inhibitor. (B) 

HSQC spectra of PHD2 domain of CHD4.  (C) Shown is the shift of the peak highlighted in 

red in the HSQC as the peptide was titrated in.  Peaks traveled in the direction of the arrow. 

(D) The KD of PHD2 for the peptide inhibitor was ~16µM. 
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Next, we wanted to confirm that the peptide inhibitor was able to gain entry into cells. The 

inhibitor was fluorescently labeled by adding a Hylite-488 fluorophore to the N-terminus.  

MDA-MB-435 cells were adhered to a glass bottom culture dish and treated with 10μM of 

fluorescently labeled inhibitor in serum containing media.  Intracellular fluorescent 

intensity was monitored by time lapse confocal microscopy.  Fluorescent images shown 

depict a representative of one of six fields observed immediately following (Figure 35A) 

and 30 minutes post treatment (Figure 35B).  Similar to findings of Takayama et al., the 

influx of peptide into the cell tended to occur at specific locations, rather than across the 

entire plasma membrane.  Additionally, we detected not only the presence of inhibitor 

within every cell observed, but also a presence within the nucleus.  To confirm that the 

inhibitor could gain entry into hematopoietic cells, isolated CD34+ hematopoietic cells 

were incubated for 30 minutes with 10μM fluorescently labeled inhibitor in serum 

containing media.  The cells were then washed repetitively with PBS and treated with 

trypsin to digest surface-bound peptide.  Fluorescence microscopy was used to detect the 

presence of inhibitor within the cells (Figure 35C). CID cells, mouse hematopoietic cells 

that model human globin expression, were then treated with PBS control, 10μM control 

peptide, or 10μM inhibitor once a day for 48 hours to determine biological activity of the 

peptide.  Expression of γ-globin, a gene known to be repressed by the NuRD complex, was 

determined to be higher in cells treated with the inhibitor compared to the control peptide 

(Figure 35D). Note, Figure 35D is a combination of results for the first 2 experiments 

performed; however, further replications were extremely inconsistent.  Additionally, many 

proteins are capable of binding to H3K9me3 histone tails. Therefore, we are unsure if the 

reported increase in Υ-globin was actually caused by the peptide inhibiting CHD4.   
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Figure 35. Peptide inhibitor of CHD4 inside cells. The inhibitor was labeled with a Hylite-488 

fluorophore and placed onto MDA-MB-435 cells. Confocal microscopy was used to follow the peptide as it 

penetrated the cells. Shown are representative images immediately following the addition of the peptide 

to the cells (A) and 30 minutes later (B). Interestingly, the peptide penetrated the nucleus and nucleolus.  

(C) Human CD34+ cells were incubated with the peptide for 30 minutes and then treated with trypsin to 

demonstrate that the peptide would penetrate hematopoietic cells. (D) The peptide was placed onto CID 

cells where it induced the expression of Υ-globin, presumably by inhibiting CHD4/NuRD. 
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Discussion  

While AML responses to single agent HDAC inhibitors have been modest at most, 

numerous preclinical studies are finding more synergy between HDAC inhibitors and other 

compounds, including inhibitors to Cyclin-dependent kinases, tyrosine kinases, cell cycle 

checkpoints, and the proteasome.122  Therefore, we continued our work on CHD4-

dependent sensitization of AML cells and found that CHD4 depletion also sensitizes AML 

cells to the HDAC inhibitor SAHA.  We hypothesize that this sensitization to HDAC 

inhibitors may be induced by a further inhibition to the enzymatic functions of the NuRD 

complex, as CHD4 and HDAC 1 or 2 provide the known chromatin remodeling activity of 

NuRD. However, SAHA and other HDAC inhibitors have previously been reported to induce 

DSBs123, indicating that a similar mechanism of sensitization as was found for DNR and 

araC could be responsible for the sensitization of SAHA. Further studies on the synergy 

between additional HDAC inhibitors and CHD4 inhibitors need to be performed.  

Regardless of the exact mechanism of sensitization, a potential CHD4 inhibitor could be 

used to potentiate the effects of HDAC inhibitors in AML. 

Given the numerous domains required for the enzymatic function of CHD4, 

numerous opportunities and strategies exist for targeting CHD4. As a proof of principle, we 

developed a peptide that targets the PHD domains of CHD4.  We showed that this peptide 

binds to the second PHD domain of CHD4 with a KD of ~16µM and that the peptide can 

penetrate a cell membrane to gain access to the nucleus of tumor cells. We have not yet 

conclusively shown that this peptide can inhibit the function of CHD4, as nucleosome 

repositioning assays are required to demonstrate this, nor have we demonstrated any kind 

of specificity of our peptide for CHD4. However, future developments of CHD4 inhibitors 
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could take the form of peptides that target the PHD domains’ interactions with histone tails, 

stabilize the chromo domains interaction with the ATPase-helicase domains, or even 

disrupt the interaction that CHD4 makes with the rest of the NuRD complex. Additionally, 

small molecule inhibitors could be screened to inhibit the ATPase-helicase domain directly. 
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Summary 

The role of CHD4 in AML appears to be quite complex, as it exhibits a pro-oncogenic 

function through its role in tumor formation, but concurrently displays a tumor suppressor 

function in its facilitation of DSB repair. We attribute this apparent discrepancy to the 

diverse roles that CHD4 fulfills within a cell, including regulating gene expression and 

facilitating DNA repair. This exhibition of both pro-oncogenic and tumor-suppressor 

properties is shared with other chromatin modifiers such as HDAC1124 and EZH2125,126 and 

may reflect a general property of epigenetic regulators. Regardless, the data presented in 

these studies suggest that CHD4 represents a plausible, new therapeutic target in AML. 

Interestingly, this assertion was recently corroborated by a screening study performed in a 

mouse model of AML that identified the ATPase/helicase domain of CHD4 as a potential 

therapeutic target.127   

Our work found that depletion of CHD4 sensitizes AML cells to DNA damage induced 

by the clinically used agents DNR and araC, both in vitro and in vivo. This sensitization is 

driven at least in part by the increased susceptibility of cells depleted of CHD4 to form 

DSBs and their impaired ability to repair such damage.  Consistent with these findings, we 

observed that CHD4 depletion alters the important DSB repair pathways of ATM and Chk2. 

Additionally; we found that CHD4 depletion induces transcriptional alterations that may 

prime the cells for apoptosis before any treatment is administered. Therefore, we would 

expect a potential inhibitor of CHD4 to have a clear therapeutic benefit by enhancing the 

efficacy of current chemotherapeutic regimens without increasing the required doses of 

these agents. If true, a CHD4 inhibitor would be of particular interest for anthracycline 

based-regimens, which form the foundation of induction, consolidation, and salvage AML 



 

 101 

therapies, as these regiments are severely limited by maximum lifetime doses of 

anthracyclines due to severe side-effects.  

Unexpectedly, we also found that depletion of CHD4 significantly impedes the 

colony formation capacity and the subsequent xenograft engraftment of AML cells. We 

attribute this finding to the overall expression alterations induced by depletion of CHD4.  

Given that cells capable of forming colonies are thought to be the cells that are capable 

forming de novo and recurrent tumors in vivo,104 a potential CHD4 inhibitor could also have 

broad implications for preventing tumor relapse. 

Importantly, CHD4 depletion does not appear to sensitize normal CD34+ 

hematopoietic cells to DSB inducing agents, nor does it disrupt their colony forming 

potential. We attribute this discrepancy to the increased levels of endogenous CHD4 found 

in the CD34+ cells compared to AML cells.  This difference in protein is important because 

it indicates that a potential inhibitor of CHD4 could have a “therapeutic window”, in which 

a dose could be effective at achieving the desired effects in AML cells, while leaving the 

normal CD34+ cells in the bone marrow relatively untouched. This finding could have 

implications in terms of potential side-effects associated with a combination therapy of 

araC/DNR with a CHD4 inhibitor. 

Given the numerous domains required for the enzymatic function of CHD4, 

numerous opportunities and strategies exist for targeting CHD4. Primarily, future 

developments of CHD4 inhibitors could take the form of peptides that target the PHD 

domains’ interactions with histone tails, stabilize the chromo domains interaction with the 

ATPase-helicase domains, or even disrupt the interaction that CHD4 makes with the rest of 
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the NuRD complex. Additionally, small molecule inhibitors could be screened to inhibit the 

ATPase-helicase domain directly. 

In conclusion, we have identified that CHD4 is a unique drug target in that a 

potential inhibitor would not only favorably alter the gene expression of tumor cells, but 

also would inhibit the DSB repair pathways of the cells. We therefore predict that an 

inhibitor to CHD4 could function through multiple mechanisms to yield an increase in 

patient survival.  
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Methods 

 

Cells. Human AML U937 and MV4-11 cells were described previously.128 OCI-AML3 cells 

were purchased from DSMZ (Braunschweig, Germany). Cells were cultured in RPMI-1640 

(Gibco) supplemented with 10% Fetal Bovine Serum (Atlas), and 2% 

penicillin/streptomycin. Cell numbers were measured by a Cellometer Auto T4 (Nexcelom 

Bioscience). 

 

Isolation of primary cells. This study was approved by the Virginia Commonwealth 

University Investigational Review Board and samples were collected with patient consent. 

Bone marrow was collected from AML patients with high disease load (>90% blasts in the 

marrow) and mononuclear cells were isolated by Ficoll-Hypaque gradient separation as 

described previously.128 Normal CD34+ hematopoietic progenitor cells were isolated from 

de-identified apheresis units discarded by the VCU Bone Marrow Transplant unit as 

described previously.67 All primary cells were cultured in StemSpan SFEM medium with 1× 

CC100 cytokine mix (StemCell Technologies) and 2% penicillin/streptomycin. 

 

shRNA constructs were created as described previously.67 Briefly, CHD4 target sequences 

(shCHD4-1: CGGTGAGATCATCCTGTGTGATA; shCHD4-2: 

GGACCTGAATGATGAGAAACAGA) and the Tip60 target sequence 

(CCTCAATCTCATCAACTACTA)129 were cloned into a GFP-expressing pRRL.H1.shRNA 

vector and packaged into a lentivirus through calcium phosphate transfections in 293T 

cells.  Infection efficiency was monitored by GFP on flow cytometry using a BD Caliper Flow 
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Cytometer.  Cells were only used if the >90% of cells were GFP+ and the mean GFP 

intensity was between 100 and 500 units using the protocol described below. 

 

 Note: below 100 GFP units, the knockdown efficiency is too low and above 500 units, the 
cells would undergo apoptosis 7-9 days post infection due to over infection. 
 

Note: all experiments began at least 6 days post infection with a lentivirus to give sufficient 
time for the protein knockdown and subsequent expression alterations to occur. 
 

Flow Cytometry. GFP intensity was assessed on a BD Caliper Flow Cytometer at a flow rate 

of ~500 events per second with the following settings: 

Parameter Detector Voltage Amp Mode 

P1 FSC E-1 6.72 lin 

P2 SSC 287 3.12 lin 

P3 FL1 339 
 

log 

P4 FL2 414 
 

log 

P5 FL3 535 
 

log 

Compensation: 

FL1-LF2 0% 

FL2-FL1 3.60% 

FL2-FL3 0% 

FL3-FL2 5% 

 

All other flow cytometry was performed on a BD FACSCanto II Flow Cytometer. 

 

Immunoblotting was performed as described previously.130,131Blots were imaged and 

quantitated using a Li-Cor Odyssey Fc Imager. Primary antibodies for the antigens studied 

were from several sources: H3K9ac, H3, H4K8ac, H4, cleaved-caspase 3, p-ATM (S1981), 

and ATM, all from Cell Signaling, CHD4 from Millipore, Poly(ADP-ribose) 
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Polymerase(PARP) from Biomol Research Laboratories, E2F1 from Santa Cruz, α-tubulin 

from Calbiochem. 

 

Confocal Microscopy was performed on a Zeis 720 Meta microscope as previously 

described.132 Primary antibodies used were against H3K9me3 and γ-H2A.X (Millipore).  

Images were quantified using the Velocity Image Analysis software (PerkinElmer). 

1. To affix AML cells to the chamber slides (8 well, Nunc Lab-Tek II Chamber 
Slide w/cover, ThermoFisher) 

 
a.    Add 250µL 1% Aqueous Alcian Blue (Electron Microscopy 

Sciences) and incubate at room temp for 30 min. 
 
b. Remove the Alcian Blue and rinse 4x with 500µL dH2O. Do not 

let the slides dry out. 
 
c. Harvest cells and wash 2X with PBS (to remove serum). 

Resuspend cells at 5x105 cells/mL and add 200µL cells per well 
of Alcian Blue pretreated slide. 

 
d. Tape slides to a 96-well centrifuge adapter and spin at 500 

RPM for 1 min (or slowest setting on centrifuge). 
 

 2. Wash wells 1x with PBS for 5 min 
  
 3. Fix the cells in 4% paraformaldehyde for 15 min. 
 
 4. Wash 2x with PBS for 5 min 
 
 5. Permeabilize the cells with 0.5% triton for 10 min 
 
 6. Wash 2x with PBS for 5 min 
 
 7. Block with 1% goat serum for 1 hr. 
 
 8. Add primary antibody and rock overnight at 4°C. 
   Note: dilution for H3K9me3 antibody was 1:200 
 
 9. Wash 4x with PBS for 5 min 
 
 10. Add secondary antibody for 2.5 hours at room temp 
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 11. Wash 4x with PBS for 5 min and protect from light. 
  
 

Comet Assays were performed under neutral conditions using the Trevigen Comet Assay 

kit with modifications described below.  

 1. Prepare:  
Lysis Solution 

   40mL of Trevigen lysis solution 
   4mL of DMSO 
   Cool to 4°C 
  Neutral Electrophoresis buffer 
   Prepare a 10X stock: 
    60.57g  Tris Base 
    204.12g  Sodium Acetate 
    450mL dH2O 

Adjust pH to 9.0 with glacial acetic acid. Adjust to final volume of 
500mL. Sterile filter and store stock at room temp. Dilute 100mL 10X 
stock into 900mL dH2O to prep 1L of 1X working buffer and cool to 
4°C. 

  DNA Precipitation Solution 
   Prepare a 10mL stock solution of 7.5M Ammonium Acetate 
    5.78g  NH4Ac 
    10mL  dH2O 
   After the Ammonium Acetate dissolves, combine: 
    6.7 mL  7.5M NH4Ac 
    43.3 mL 95%EtOH 
  SYBR Green Gold Solution 
    1µL  10,000X SYBR Gold in DMSO 
    30mL  TE Buffer, pH 7.5 
   TE buffer  
    10mM  Tris-HCl 
    1mM  EDTA 
    pH to 7.5 
   Diluted solution is stable for several weeks at 4°C in the dark 
  
    
 

2. Melt LMAgarose in a beaker of boiling water for 5 min, with the cap loosened, 
then cool in a 37°C water bath for 30 min. Warm CometSlides at 37°C for 30 
min as well. 
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3. Harvest AML cells by centrifugation, wash 1x in ice cold CA++/Mg++ free PBS, 
and then suspend cells at 1x105 cell/mL in ice cold CA++/Mg++ free PBS. 

   
4. Combine 10µL of cells (diluted to 1x105 cell/mL) with 90µL of 37°C 

LMAgaros, mix gently, and immediately pipet 50µL of mixture onto the 
prewarmed CometSlide. Spread the mixture out evenly on the sample area of 
the slide with the pipet tip. 

  
4. Incubate slides on a level surface at 4°C in the dark for 30 min. 
 
5. Incubate slides in 4°C Lysis solution for 1 hour (or overnight) at 4°C in the 

dark. 
 
6. Equilibrate slides in 4°C 1X Neutral Electrophoresis buffer for 30 min at 4°C 

in the dark. 
 
7. Place slides into the center of a DNA gel electrophoresis unit and align 

equidistant from electrodes.  Insure each slide is facing the same direction. 
Add 4°C 1X Neutral Electrophoresis buffer, ensure buffer is not more than 0.5 
cm above the slides. Apply voltage at 1V per cm of the electrophoresis unit 
(measured from electrode to electrode) for 1 hr. 

 
8. Immerse slides in DNA Precipitation Solution for 30 min at room temp. 
 
9. Immerse slides in 70% EtOH for 30 min at room temp. 
 
10.  Dry samples at 37°C for 15 minutes. Store slides in desiccant if necessary. 
 
11. For analysis, stain each circle on the slides with 100µL of diluted SYBR Green 

Gold Solution for 30 min.  Tap to remove excess solution and wash briefly in 
dH2O. Allow slides to dry completely at 37°C (~15 min) before using 
fluorescent microscopy to detect comets 

  Note:  Max excitation/emission of SYBR Green Gold is 496/522 nm 
Note: To facilitate analysis, you ideally only want 1-2 comets per 

image taken. Be sure to capture the ENTIRE tail and that all 
tails are oriented in the same direction on each image. 

 
Comets were quantitated by the CASPLab Comet Assay software133 with the following 
values: 

Head Center Threshold 0.8 

Use Comet Threshold no 

Tail Threshold 0.05 

Head Threshold 0.15 

Tail Cluster Profile 1 
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Cell Sensitivity Assay. Cells were incubated with DNR (Sigma), ara-C (Sigma), or SAHA 

(Sigma) for 24 hours and stained with 7-Aminoactinomycin D (Sigma). Stain intensity was 

read by a BD FACSCanto Cell Analyzer to determine cell viability.  

 1. Prepare 7AAD 
Add 500µL DMSO to 1mg 7AAD. Make 25µL aliquots in black 
eppendorf tubes and store at -20°C. For working solutions, add 975µL 
PBS to the 25µL aliquot of 7AAD, store at 4°C for up to 2 weeks. 

 
2. Add 4µL of working solution 7AAD to 1 mL of suspension cells (in 5mL flow 

tubes). Votex gently and incubate at 37°C for 15 min. Protect cells from light. 
 
3. Staining was quantitated using a BD FACSCanto Flow Cytometer with the 

following settings: 
 

Parameters Type Voltage Log 

FSC A 170 off 

SSC A 286 on 

Green A 373 on 

Orange A 325 on 

PE-Texas Red A 400 on 

488-670LP A 400 on 

 
               Compensation 

Fluorochrome Value (%) 

Orange - Green 40.00 

PE-Texas Red - Green 8.00 

488-670LP - Green 2.10 

Green - orange 9.00 

488-670LP - orange 100.00 

PE-Texas Red - 488-670LP 16.00 

 
 Note: the 488-orange compensation is so high so as to remove the effects of DNR. 

Cell Cycle Analysis was performed using the FxCyclePI/RNAse kit (ThermoFisher). 

 1. Harvest cells and wash in PBS 

 2. Resuspend 1x106 cells into 1mL PBS. 

3. Cool on ice and add 3mL cold (-20°C) 200 proof EtOH. Incubate for at least 
1hr (can do over-night) at -20°C.  
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4. Pellet cells and remove buffer 
 
5. Resuspend in 0.5mL of FxCyclePI/RNAse solution. Incubate for 30 min at 

room temp in the dark. 
 
6. Analyze using 488/585 nm excitation/emission filter of flow. 

  

 

In vivo studies were approved by the VCU Institutional Animal Care and Use Committee 

and animals were treated humanely. Female NOD scid gamma mice (NSG, Jackson 

Laboratories) were engrafted intravenously via the tail vein with 5x106 luciferase-

expressing U937 cells. Tumor progression was monitored by the total radiance generated 

within each mouse upon subcutaneous administration of luciferin as measured by the IVIS 

200 imaging system (Xenogen Corporation). Once tumor engraftment was confirmed, the 

mice were treated with a previously described model of the human “7+3” induction 

therapy.88,89 Briefly, this regimen consisted of 3 consecutive days of Doxorubicin (100 

mg/kg, Selleck Chemicals) and ara-C (33 mg/kg. Selleck Chemicals) given intravenously by 

tail-vein injection, followed by 2 additional days of ara-C (33 mg/kg) given by intra-

peritoneal injection.  

 

Colony Forming Assays were performed as previously described.130 For AML cell lines, 

5,000 cells were suspended in 1mL of 1x RPMI supplemented with 0.35% agarose (Difco), 

10% FBS, and 2% penicillin/streptomycin and plated into a well of a 12-well plate. 5mL of 

water was placed in between the wells to prevent the agar from becoming too dry. Cells 

were allowed to grow for 14 days and colonies were identified as having >50 cells.  
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1. Melt 0.7% DNA grade agarose in microwave in sterile H2O.  Place in a 40°C 
water bath for at least 30 min to cool. It is important to insure that the 
agarose is not >40°C, otherwise the cells will be killed. 

 
2. Prepare 2mL aliquots of 2X RPMI + 20% FPS + 2X Pen/Strep in 15mL tubes 

for each condition. Warm to 37°C 
 
3. Dilute cells of interest to 2x105 cells/mL. 
 
4. Add 2mL of the melted 0.7% agar and 100µL of diluted cells to a tube 

containing the 2X RMPI. Vortex gently to mix and plate 1mL into 3 wells of a 
12 well plate. 

 
5. Let the plate incubate at room temperature for 15 minutes to allow the agar 

to solidify, then add 5mL sterile H2O in between wells to prevent the agar 
from becoming too dry. 

 
6.  Incubate the plates for 10-14 days at 37°C.  Count colonies that contain >50 

cells. 
 
Note: It is important to perform step 4 quickly, as the agar will begin to solidify soon 

after being removed from the 40°C bath. 
 

For CD34+ cells, the Methocult H4434 Classic kit (Stem Cell Technologies) was used per 

manufacture’s protocol.  The soft-agar colony formation assays were replicated in the 

Methocult H4434 Classic kit as well for the AML cell lines. 

 

Microarray analysis was performed using HG-U133Ax2 GeneChips (Affymetrix). Quality 

of the hybridization was assessed by examining the average background, scaling factor, 

percent of probe sets called present by the detection call algorithm, and the 3’:5’ ratio for 

GAPDH and ACTIN. Each GeneChip was independently normalized using quantile 

normalization and the robust multi-array average method was applied to probe set 

expression summaries.134 For each probe set, a moderated t-test was used to make 

comparisons using the limma Bioconductor package135,136 in the R programming 

environment.137 The p-values were used in estimating the false discovery rate using the 
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Benjamini and Hochberg method138 and probe sets having an FDR<0.05 were considered 

significant. Pathway analysis of the significant probe sets was performed using the 

Ingenuity Pathway Analysis software (Qiagen). 

 

Quantitative PCR was performed on an Applied Biosystem 7500 Fast Real-Time PCR 

system. RNA was extracted in 1mL TRIzol (Life Technologies) and converted to cDNA with 

an iScript cDNA Synthesis Kit (Biorad).  

 RNA Extraction 

1. Add 200µL of chloroform to 1mL of cells thoroughly dissolved in 
TRIzol. Shake for 15 sec and incubate at room temp for 2 min. 

 
2. Centrifuge at 12,000g for 15 min at 4°C. Remove 500µL of the top 

layer and save in a new tube. To this top layer, add (in order): 
  1µL  glycogen 
  0.4mL  Isopropanol 
 Invert 6x to mix and incubate for 10 min at room temp. 
 
3. Centrifuge at 12,000g for 10 min at 4°C. Discard the supernatant after 

confirming presence of pellet. 
 
4. Wash with 1mL of 4°C 75% EtOH and vortex gently. 
 
5. Centrifuge at 7,500g for 5 min. Remove EtOH, zip spin tube and 

remove as much remaining EtOH, then air dry pellet for 5 min until it 
become slightly translucent. Add 20µL dH2O and incubate on ice for 
10 min. 

 
6. Quantitate RNA concentration on nanodrop and dilute to 200 ng/µL. 
 
7. DNase treat the cells: 
  10µL  RNA 
  0.5µL  DNase I 
  0.5µL  Super RNase Inhibitor 
  2µL  DNase Buffer 
  7µL  ultra-pure H2O 
 Incubate at 37°C for 30 min, heat inactivate at 97°C for 10 min. 
 
8. Synthesize cDNA 
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  5µL  DNase treated RNA 
  0.5µL  RTase 
  2µL  RT mix 
  2.5µL  ultra-pure H2O 
 
9. Quantitative PCR 
  12.5µL  FastStart SYBR Green Reaction Mix (Rox) 
  7.5µL  primer mix (0.1µM Forward and Reverse) 
  5µL  cDNA 

 
All primers were designed using the IDTdna website to have a Tm of 60°C. All results were 
normalized to GAPDH. 
 
qPCR Primers 
 
   

Gene Forward Reverse 

CD44 TACATCCTCACATCCAACACC GTGCCATCACGGTTAACAATAG 

CHD4 AGTGCTGCAACCCATACCTCT ATGCCCACCCTCCTTAAGGTTCTT 

Chk2 GCGCCTGAAGTTCTTGTTTC GTCCTATGCTCAGAGAAAGGTG 

GAPDH TCGACAGTCAGCCGCATCTTCTTT ACCAAATCCGTTGACTCCGACCTT 

IFI16 AAGTTCCGAGGTGATGCTG CTTTCTTGATAGGGCTGGTCC 

JAK2 AGATGGAAACTGTTCGCTCAG TAGGCCTCTGTAATGTTGGTG 

Myc TTCGGGTAGTGGAAAACCAG AGTAGAAATACGGCTGCACC 

PCGF2 GACGAGCCACTGAAGGAATAC GCTGGACACGGTACTTGAG 

SATB1 CTTTAAAACACTCGGGCCATC CCTTTCTCACCAGCACAAATTC 

SOD1 TGGCCGATGTGTCTATTGAAG GCGTTTCCTGTCTTTGTACTTTC 

SPARC ATGACAAGTACATCGCCCTG GAGAATCCGGTACTGTGGAAG 

VEGFA CATCACCATGCAGATTATGCG CCTTTCCCTTTCCTCGAACTG 
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