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Abstract Cannabis is a complex substance that harbors
terpenoid-like compounds referred to as phytocannabinoids.
The major psychoactive phytocannabinoid found in cannabis
Δ9-tetrahydrocannabinol (THC) produces the majority of its
pharmacological effects through two cannabinoid receptors,
termed CB1 and CB2. The discovery of these receptors as linked
functionally to distinct biological effects of THC, and the sub-
sequent development of synthetic cannabinoids, precipitated
discovery of the endogenous cannabinoid (or endocannabinoid)
system. This system consists of the endogenous lipid ligands N-
arachidonoylethanolamine (anandamide; AEA) and 2-
arachidonylglycerol (2-AG), their biosynthetic and degradative
enzymes, and the CB1 and CB2 receptors that they activate.
Endocannabinoids have been identified in immune cells such
as monocytes, macrophages, basophils, lymphocytes, and den-
dritic cells and are believed to be enzymatically produced and
released “on demand” in a similar fashion as the eicosanoids. It
is now recognized that other phytocannabinoids such as
cannabidiol (CBD) and cannabinol (CBN) can alter the func-
tional activities of the immune system. This special edition of
the Journal of Neuroimmune Pharmacology (JNIP) presents a
collection of cutting edge original research and review articles
on the medical implications of phytocannabinoids and the
endocannabinoid system. The goal of this special edition is to
provide an unbiased assessment of the state of research related to
this topic from leading researchers in the field. The potential
untoward effects as well as beneficial uses of marijuana, its
phytocannabinoid composition, and synthesized cannabinoid
analogs are discussed. In addition, the role of the
endocannabinoid system and approaches to its manipulation to
treat select human disease processes are addressed.

Keywords Cannabinoids . Cannabinoid receptors .

Endocannabinoids . Immunemodulation . Neuroimmune
effects . Marijuana . Phytocannabinoids

Introduction

In this special edition of the Journal of Neuroimmune
Pharmacology, we present a collection of cutting edge articles
on the medical implications of marijuana use and the function-
ality of the endocannabinoid system. It is our goal to provide
an unbiased assessment of the state of research related to this
topic and we have solicited articles from leading researchers in
the field. The seven reviews and ten original articles in this
special themed edition of the Journal describe the role of
phytocannabinoids and the endocannabinoid system on
neuroinflammatory processes in in vitro, laboratory animal,
and human systems.

Translating in vitro and in vivo results derived from exper-
imental animals to the human condition is fraught with sub-
stantial challenges. Marijuana users may consume other drugs

that affect immune function, complicating our understanding
of the relative contribution of a distinct phytocannabinoid.
Furthermore, because marijuana contains a plethora of
phytocannabinoids and other classes of chemicals, attributing
a specified action to a single constituent is difficult. This com-
plexity is further augmented by emerging scientific data that
show that distinct phytocannabinoids may activate immune
cells by receptor-mediated as well as by non-receptor-
mediated modes. In order to garner insight into the potential
linkage between marijuana use in humans and compromised
immune function, investigators have resorted to the use of
purified synthetic phytocannabinoid preparations in cell cul-
ture models or in experimental animals.

The Diversity of Cannabinoids

The di scove ry o f the endogenous cannab ino id
(endocannabinoid) system and concomitant explosion of basic
knowledge pertaining to this system and cannabinoid pharma-
cology, combined with the controversy regarding potential
medical benefits of cannabis versus its abuse and dependence
liability, contribute to the impetus for disseminating the science
appearing in this special edition. The long history of the use of
cannabis for therapeutic and other purposes has been the sub-
ject of many reviews (Mechoulam et al. 1991; Russo 2007).
Likewise, a detailed overview communicating the components
of the endogenous cannabinoid system appears elsewhere
(Blankman and Cravatt 2013; Howlett et al. 2011). To date,
two cannabinoid-based medications have gained approval by
the Food and Drug Administration, Marinol (dronabinol or Δ9-
tetrahydrocannabinol (THC)), the primary psychoactive con-
stituent in cannabis, and Cesamet (nabilone), a synthetic can-
nabinoid (Pertwee 2009; Rahn and Hohmann 2009). These two
medications have been approved for the treatment of
chemotherapy-induced nausea and emesis. Marinol also may
be prescribed as an appetite stimulant to treat cachexia in AIDS
patients. A third medication, Sativex, consists of a sublingual
spray formation that contains equivalent concentrations of
THC and cannabidiol (CBD) that are extracted from cannabis
and has been approved inmany countries to relieve spasticity in
multiple sclerosis (MS) patients (Syed et al. 2014). In this spe-
cial issue, we describe key substances present in cannabis, their
biological properties, and mechanisms of action. We also re-
view the interdisciplinary research leading to our understanding
of cannabinoid- and endocannabinoid-mediated modulation of
immune function within the nervous system.

Cannabinoid Receptors

Cannabis is a complex substance that harbors terpenoid-like
compounds collectively referred to as phytocannabinoids. The
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primary psychoactive constituent of cannabis, THC (Gaoni
and Mechoulam 1964), produces the majority of its pharma-
cological effects through two cannabinoid receptors, termed
CB1 (Devane et al. 1988; Matsuda et al. 1990; Herkenham
et al. 1990) and CB2 (Munro et al. 1993). These two receptors
share approximately 44% amino acid homology (Munro et al.
1993). Both receptors have seven transmembrane domains,
are coupled to G-inhibitory proteins, and are linked to signal-
ing cascades that may involve adenylyl cyclase and cAMP,
mitogen-activated protein (MAP) kinase, and the regulation of
intracellular calcium (Howlett 2002). CB1 is expressed hetero-
geneously throughout the nervous system (Herkenham et al.
1991) as well as in other organ systems (Gerard et al. 1991).
CB1 is predominantly responsible for the psychoactive effects
of THC, and the stimulation of this receptor plays a role in
regulating pain, stress responses, energy regulation and lipo-
genesis, and immune function. CB2 is primarily associated
with immune function and is expressed on immune cells, in-
cluding microglial cells within the nervous system, but its
expression in the CNS is of a much smaller magnitude than
that of CB1.

Cannabinoids bind to other receptors besides CB1 and CB2

(Breivogel et al. 2001; Di Marzo et al. 2000; Jarai et al. 1999),
suggesting the existence of additional cannabinoid receptors
or simply other binding sites (i.e., “off targets”). Included
among these candidate cannabinoid receptors is GPR55, a
seven-transmembrane G protein-coupled receptor first cloned
and identified in silico from an expressed sequence tags data-
base (Baker et al. 2006; Pertwee 2007; Sawzdargo et al.
1999). GPR55 is activated by THC and CBD, certain synthet-
ic cannabinoids, and the endogenous cannabinoids N-
arachidonoylethanolamine (anandamide; AEA) and 2-
arachidonoylglycerol (2-AG) (Ryberg et al. 2007). However,
unlike CB1 and CB2, GPR55 is coupled to a G-alpha (Gα)
protein instead of a Gi/o protein (Ryberg et al. 2007), is not
activated by the synthetic cannabinoid receptor agonist WIN
55212–2, and increases intracellular calcium levels upon acti-
vation (Lauckner et al. 2008). However, to date, a novel non-
CB1, non-CB2 cannabinoid receptor that meets rigid pharma-
cological and functional criteria (i.e., is selective for cannabi-
noid ligands) has yet to be cloned and characterized at the
molecular level (Breivogel et al. 2001; Di Marzo et al. 2000;
Jarai et al. 1999; Wiley andMartin 2002; Pertwee et al. 2010).

Endogenous Cannabinoids

The discovery of cannabinoid receptors that mediate the ac-
tions of THC and synthetic cannabinoids, precipitated the
search for the endogenous ligands that bind these receptors.
AEA (Devane et al. 1992) and 2-AG (Mechoulam et al. 1995;
Sugiura et al. 1995) represent the primary endogenous ligands
that bind and activate CB1 and CB2. Endocannabinoids have

been identified in immune cells such as monocytes, macro-
phages, basophils, lymphocytes, and dendritic cells (Matias
et al. 2002). These endocannabinoids are believed to be enzy-
matically produced and released “on demand” in a similar
fashion as the eicosanoids. AEA and 2-AG are rapidly hydro-
lyzed by fatty acid amide hydrolase (FAAH; (Cravatt et al.
2001; Cravatt et al. 1996)) and monoacylglycerol lipase
(MAGL (Dinh et al. 2002a; 2002b)), their respective chief
degradative enzymes, though other enzymes play a role in
endocannabinoid metabolism (Blankman et al. 2007;
Hermanson et al. 2014). FAAH also hydrolyzes other bioac-
tive fatty acid amides (Cravatt et al. 2001), such as N-
palmitoylethanolamine and oleoylethanolamide each of
which has been reported to possess anti-inflammatory actions
through the PPARα receptor (Lo Verme et al. 2004). MAGL
hydrolysis of 2-AG also represents an important pathway in
the production of free arachidonic acid in the brain that may
play a role in neuroinflammation (Nomura et al. 2011).
Inhibitors of FAAH and MAGL as well as genetically modi-
fied mice that lack these enzymes represent useful tools to
elucidate endocannabinoid function, and as a test of proof-
of-principle of their potential as therapeutic agents.

Phytocannabinoids

Cannabis has long been used as a source of fiber for the man-
ufacture of rope and clothing, but this material contains little
THC. In contrast, illicit marijuana contains high levels of
THC, which has steadily increased from approximately 3 %
in the 1980s to 12 % in 2012 (Volkow et al. 2014). In addition
to THC, over 100 other cannabinoids have been identified in
the particulate phase of the marijuana plant (Husni et al. 2014)
and its genome has recently been described (van Bakel et al.
2011). Other cannabinoids of interest including CBD, canna-
binol (CBN), and cannabigerol (CBG) largely lack the ability
to activate cannabinoid receptors, but are biologically active
(Russo 2011). CBD has gained particular interest recently as a
constituent in the medication Sativex, which has been found to
alleviate spasticity associated with MS (Serpell et al. 2013;
Syed et al. 2014), cancer pain in opioid-treated patients
(Johnson et al. 2010), and marijuana withdrawal (Allsop
et al. 2014). Additionally, CBD is under investigation in as-
sorted clinical trials as an anti-epileptic (Devinsky et al. 2014).
Preclinical studies reported that CBD elicits anticonvulsant
(Consroe et al. 1982; Martin et al. 1987), anti-inflammatory
(Li et al. 2013; Malfait et al. 2000), and anti-tumorgenic
(McAllister et al. 2007) effects. Although its mechanism
of action remains to be elucidated, it is known to inhibit
adenosine uptake (Liou et al. 2008), down-regulate the en-
zymes FAAH and 5-lipoxygenase (Capasso et al. 2008;
Massi et al. 2008), and bind both transient receptor poten-
tial vanilloid 1 (TRPV1) (Iannotti et al. 2014) and 5-
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hydroxytryptamine (serotonin) receptor 1A (5-HT1A)
receptors (Russo et al. 2005).

Upon heating, phytocannabinoids rapidly decarboxylate
and at the temperature of pyrolysis (200o – 400 ° C) undergo
aromatization (Nahas 1993). Polycyclic aromatic hydrocar-
bons have been identified in marijuana smoke and include
higher molecular weight compounds, such as the carcinogens
benzo(α)pyrene and benz(α)anthracene. The gas phase of
marijuana smoke includes toxic substances including carbon
monoxide, hydrogen cyanide, and nitrosamines, which also
are present in equivalent concentrations in tobacco smoke
(Nahas 1993). THC and other phytocannabinoids are lipophil-
ic and sequester in liver, lung, spleen, and neutral fat (Nahas
1993). THC has an approximate half-life of 8 days in fat and
may take up to one month for complete elimination of a single
dose in humans (Nahas 1993). Furthermore, THC is a polar
compound and is metabolized slowly into more water-soluble,
nonpsychoactive metabolites. The bioavailability of inhaled
and ingested THC is 20 and 6 %, respectively (Nahas 1993).

Synthetic Cannabinoids

The purification and structural characterization of THC
(Gaoni and Mechoulam 1964) have led to the chemical syn-
thesis of various cannabinoid analogs that have been used
extensively in structure–activity relationship studies to char-
acterize cannabinoid-mediated bioactivity (e.g., Johnson and
Melvin 1986; Mechoulam et al. 1987), and these efforts con-
tributed directly to the discovery of the cannabinoid receptors
(Devane et al. 1988; Herkenham et al. 1990; Matsuda et al.
1990; Munro et al. 1993). The extensive use of synthetic can-
nabinoid ligands has increased our understanding of the func-
tional relevance and mechanism of action by which
phytocannabinoids exert their effects on the immune system.
For example, THC has been reported to suppress the antibody
response of humans and animals (Klein et al. 1998) and to
suppress a variety of activities of T lymphocytes (Kaminski
1998; Klein et al. 2004). Administration of THC to mice also
has been reported to inhibit natural killer (NK) cytolytic ac-
tivity and to reduce interferon gamma (IFNγ) levels (Massi
et al. 2000). In addition, THC has been reported to abolish the
functional activities of macrophages and macrophage-like
cells, including macrophage-mediated cell contact-dependent
cytolysis of tumor cells and the processing of antigens
(Burnette-Curley et al. 1993; Klein et al. 1991; McCoy et al.
1999). It has been reported also that THC alters the production
of chemokines and cytokines, leading to a perturbation in the
homeostatic balance between pro-inflammatory (Th1) cyto-
kines, which promote systemic inflammation, and anti-
inflammatory (Th2) cytokines such as IL-4 and IL-10 that play
an immunoregulatory role in controlling the inflammatory re-
sponse. Such a shift in the cytokine profile to a Th2 bias may

contribute to altered inflammatory responses to infection with
bacteria and viruses (Kidd 2003). It is now well recognized
that other phytocannabinoids such as CBD and CBN can also
alter the functional activities of the immune system (Cabral
et al. 2014).

Immunomodulatory Activity of Cannabinoids

It has been suggested that the CB1 has potential to serve as a
molecular target for therapeutic attenuation of cognitive im-
pairment and degeneration in select CNS disorders (Pryce
et al. 2003; Pryce and Baker 2007; Shen and Thayer 1998),
a caveat to this consideration is that activation of this receptor
also engenders psychotropic effects, dependence, and cogni-
tive impairment (Jones et al. 1976; Budney et al. 2007;
Leweke and Koethe 2008; Vandrey and Haney 2009;
Skosnik et al. 2012; Radhakrishnan et al. 2014). However,
many neuropathogenic processes are characterized by pro-
gressive decline in cognitive functions that are accompanied
by, if not caused by, inflammation. Much attention has been
focused on CB2 not only because of its expression primarily in
cells and tissues of the immune system (Munro et al. 1993),
but also because of its intricate involvement in immune func-
tion and its activation in the whole animal is largely devoid of
psychotropic effects (Malan et al. 2003; Kinsey et al. 2011).
The level of CB2 expression varies among different immune
cell populations, with B lymphocytes expressing the highest
levels followed by macrophages, monocytes, NK cells, and
polymorphonuclear cells, in that order (Galiegue et al. 1995;
Schatz et al. 1997). Early studies concluded that the distribu-
tion of CB2 was confined to peripheral non-neuronal sites.
However, it is now recognized that this receptor is expressed
by a variety of subsets of immunocompetent cells found in the
CNS (Cabral and Marciano-Cabral 2005; Carlisle et al. 2002;
Carrier et al. 2004; Fernandez-Ruiz et al. 2007; Nunez et al.
2004; Ramirez et al. 2005). Moreover, the CB2 has been re-
ported to be present also on neurons (Van Sickle et al. 2005;
Zhang et al. 2014). In general, most of the immunomodulatory
effects attributed to THC have been linked to activation of
CB2.

In this issue, Eisenstein reviews the literature which ad-
dresses the effects of cannabinoids on immune function, with
an emphasis on T-lymphocytes (Eisenstein 2015). Consistent
with the identification of high levels of CB2 on cells of the
immune system, it is indicated that most of the modulatory
effects of THC have been linked functionally to this receptor.
Accordingly, it is proposed that selective CB2 agonists possess
promise as therapeutic agents for treatment of autoimmune
diseases and for ablation of graft rejection under conditions
of decreased incidence of side effects. The potential of select
CB2 agonists to ablate graft rejection is particularly relevant to
the report by Robinson et al. that explores the mechanism by
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which agonists selective for CB2, such as O-1966, inhibit the
Mixed Lymphocyte Reaction (MLR) (Robinson et al. 2015),
an in vitro paradigm used as a correlate of organ graft rejection
that is mediated predominantly through effects on T-lympho-
cytes. These investigators observed an increase in the percent-
age of regulatory T-cells (Tregs) inMLR cultures using mouse
spleen cells. Furthermore, pretreatment with an antibody to
the anti-inflammatory cytokine IL-10 (anti-IL-10) resulted in
a partial reversal of the inhibition of proliferation and blocked
the increase of Tregs. Their results bolster the argument that
CB2-selective agonists may represent useful therapeutic
agents to prolong graft survival in transplant patients.

The expression of CB2 appears to be modulated in mono-
cytes and macrophages in response to various stimuli (Carlisle
et al. 2002). CB2 may be particularly responsive to cognate
agonists when in a responsive state, i.e., a functional state that
is associated with immune cell migratory activity (Carlisle
et al. 2002). More work on this issue is clearly needed since
the immunomodulatory activity of CB2 may be dependent on
the activation state of both the target cell population, as well as
the vascular endothelial cells at the site of inflammation. This is
particularly relevant to the report by Persidsky et al. in which
brain microvascular endothelial cells (BMVEC) and
monocyte-derived macrophages from human tissue were
employed in an in vitro paradigm to show that CB2 agonism
may represent a strategy for treatment of CNS diseases associ-
atedwith neuroinflammatory responses (Persidsky et al. 2015).
These investigators found that activation of CB2 blocks mono-
cyte migration across BMVEC monolayers, dampens LPS-
induced secretion of the pro-inflammatory cytokine tumor
necrosis-alpha (TNF-α), reduces the expression of a large pan-
el of pro-inflammatory genes activated by TNF-α in BMVEC,
and blunts LPS-induced upregulation of genes associated with
inflammation in primary human macrophages. Roth and col-
leagues macrophages report that THC inhibits the differentia-
tion of human monocytes into antigen-presenting dendritic
cells (Roth et al. 2015). These investigators report that THC
and CB2 agonists exert a robust CB2-mediated effect on den-
dritic cells that results in failure to stimulate T cell proliferation
or promote maturation into functional effector/memory Tcells.

While a large body of data from in vitro studies and animal
models indicates that the immunomodulatory activity of THC
and CB2 agonists can lead to decreased resistance to infectious
agents, a comparable linkage in humans has yet to be demon-
strated. A major challenge in resolving this issue is that indi-
viduals who use marijuana often also use other substances that
have immune-suppressing potential. In addition, individuals
who use marijuana, or cannabinoid formulations, for thera-
peutic purposes already possess underlying health conditions
that may render them immunocompromised and susceptible to
infection. Furthermore, the presence of CBD and other
phytocannabinoids in marijuana may counteract the effects
of THC and temper the overall immune functional outcome

in vitro and in experimental animals. Thus, in order to more
closely approximate the human condition, in particular to the
impact of cannabinoid exposure on infection, investigators
have resorted to the use of primate models. Molina et al. pro-
vide a comprehensive review of the consequences of chronic
THC or ethanol exposure in rhesus macaques infected with
simian immunodeficiency virus (SIV) (Molina et al. 2015) as
a model of human immunodeficiency virus (HIV) infection.
In comparison to chronic ethanol exposure that produced a
plethora of deleterious effects and accelerated progression of
end-stage disease, chronic THC exposure resulted in reduced
viral load, viral replication, and inflammation. Furthermore,
progression to end-stage disease was decreased or not affect-
ed. These results highlight the difficulty of translationally ap-
plying in vitro outcomes related to effects of cannabinoids on
immune function to those anticipated in vivo in the context of
an infectious process. Finally, Chen et al. present original re-
search showing that THC produces a modest suppression of
HIV gp120-induced IFNγ production through a CB1/ CB2

independent pathway (Chen et al. 2015). Their results indicate
that THC can modulate immune responses through non-
cannabinoid receptor targets.

Immunomodulatory Role of Endocannabinoids

It has been suggested that 2-AG is the cognate functionally-
relevant endocannabinoid for CB2 (Sugiura et al. 2000;
Parolaro et al. 2002). AEA also has been linked to modula-
tion of immune function. However, whether this linkage
involves activation of a cannabinoid receptor is uncertain.
The immunomodu l a t o r y a c t i v i t y med i a t e d by
endocannabinoids may occur in an autocrine and paracrine
fashion, impacting the functionality of immune cells in a
localized environment. Furthermore, such mediated action
may be short-lived because of the rapid degradation of
endocannabinoids in the intracellular environment. It is
now apparent that resident immune cells within the CNS
harbor a constitutive endocannabinoid system (Suarez et al.
2010). Thus, it appears that the immediate effective action
of endocannabinoids on immune function is at localized
sites in the periphery and CNS. It is speculated that, in this
context, endocannabinoids play an important role in main-
taining the overall “fine tuning” of the immune homeostatic
balance within the host.

The r e i s a l so compe l l i ng ev i dence tha t t h e
endocannabinoids may provide protective activity, particular-
ly in the brain. However, the basis for the neuroprotection
mediated by these endogenous cannabinoids is still rather
poorly defined. In this regard, Espejo-Porras et al. describe
their characterization of the endogenous cannabinoid system
in the transactive response (TAR)-DNA binding protein-43
(TDP-43) transgenic mouse model of ALS during the early
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symptomatic (70–80 days of age) and postsymptomatic (100–
110 days of age) stages (Espejo-Porras et al. 2015). TDP-43
transgenic mice exhibit motor coordination deficits that are
accompanied by a loss of motor neurons and reactive
microgliosis with increased expression of CB2 in the spinal
cord. Varied small decreases were found on FAAH expression
and increased endocannabinoid levels in spinal cord that were
sex- and age-dependent. This initial characterization of the
TDP-43 model of ALS sets the stage for testing of pharmaco-
logical agents targeting CB2, FAAH, or other components
of the endocannabinoid system. Thus, these studies may
provide the basis for developing intervention strategies for
treatment of certain neuroinflammatory diseases. One ex-
ample of this type of development is described by Mann
et al. who report the role of the fatty acyl amino acid
(FAAA) palmitoyl-serine (PalmS) in the mouse closed head
injury (CHI) model of traumatic brain injury (Mann et al.
2015). PalmS treatment improved neurobehavioral out-
come, as indicated by neurological severity score (NSS),
which examined reflexes, alertness, coordination, motor
abilities and balancing. However, PalmS treatment had no
effect on cognitive measures, rotarod performance or levels
of biomarkers of brain injury (e.g., lesion volume, edema,
or proinflammatory markers). Although PalmS does not
bind cannabinoid receptors, its beneficial effects required
the presence of CB2. These investigators concluded that the
reduction in NSS caused by PalmS is mediated by indirect
activation of CB2 and propose a model that involves recep-
tor palmitoylation, which may result in the structural stabi-
lization of the CB2 and enhance its activity.

Nevertheless, at this point the physiological activities of
the endogenous cannabinoids remain inadequately defined,
and a greater understanding of the functional activities of
these agents will be necessary in order to fully develop
effective therapeutics. In this regard, Gómez et al. describe
the effects of 2-AG on early stage oligodendrocyte progen-
itor cell (OPC) differentiation (Gomez et al. 2015). These
investigators report that basal levels of 2-AG are required to
maintain proliferation of early OPCs in vitro. Inhibition of
2-AG degradation with a MAGL inhibitor or exogenous
administration of 2-AG, as well as that elicited by selective
CB1 or CB2 agonists, further stimulated early OPC differ-
entiation. The investigators propose a novel mechanism of
action for 2-AG in oligodendrocytes coupled to Akt/mTOR
signaling, an intracellular pathway important in regulating
cell cycle. This exciting work has potential implications in
the emerging field of brain repair. Similarly, recent research
by Nass et al. shows that MAGL plays a protective role on
thermoregulation in mice following endotoxin or cold am-
bient temperature challenge (Nass et al. 2015). While
MAGL inhibition alone had no effect on body temperature
in mice, it exerted a profound reduction in core temperature
in mice challenged with LPS or cold ambient temperature.

In view of these findings, the authors hypothesize that
MAGL functions as a protective “brake” from immunolog-
ical challenges by curtailing 2-AG activation of CB1.

Cannabinoids and Development

The high incidence of cannabis use by adolescents and
young adults of childbearing age, raises the question of the
potential impact of cannabinoids on brain development.
Chronic and/or recurrent use of cannabis may alter brain
and/or immune system development and exert effects that
are less apparent in adults. A review by Zumbrun et al. in
this issue investigates the implications of marijuana use dur-
ing pregnancy on the offspring (Zumbrun et al. 2015). These
authors also address whether maternal or paternal cannabi-
noid exposure can trigger epigenetic changes, such as altered
microRNA, DNA methylation and histone modification, that
have long-term immunological implications on offspring and
can be carried across generations. Since much of the current
data have been derivative of in vivo rodent and in vitro
studies, in this review a case is made for the importance of
conducting translational research to provide insights applica-
ble to humans. However, it is clear that additional work in
this topical area will be necessary in order to develop an
understanding of the capacity of cannabis use to alter either
neuronal or immune cell development. A review by Moretti
et al. describes results of preclinical studies in which the
long-term consequences of THC exposure on adolescent
mice were examined (Moretti et al. 2015). Whereas THC
did not affect levels of brain cytokines in adult mice, it
was found to decrease those of proinflammatory cytokines
in the adolescent brain. Following a 1.5 month hiatus from
the final THC exposure, brain levels of the anti-
inflammatory cytokine IL-10 were decreased. These studies
demonstrated that chronic exposure of adolescent mice to
THC suppressed immunity immediately after treatment.
However, after a washout period, THC induced a long-
lasting opposite modulation towards a proinflammatory and
T-helper-1 phenotype in adulthood, an outcome comparable
to that reported previously to occur at peripheral sites. These
findings raise the intriguing possibility that cannabis expo-
sure in adolescents leads to increased vulnerability to im-
mune and neuroinflammatory diseases in adulthood.
Finally, the report by Cloak et al. in this issue compares
salivary cortisol levels, immunological responses (i.e., sali-
vary IL-1β, TNF-α and IL-6 levels), and psychiatric symp-
toms in adolescent marijuana users and nonusers (Cloak et
al. 2015). While cortisol and salivary cytokine levels did not
differ between the marijuana users and controls, self-
reported and clinician-rated psychiatric (particularly
anxiety-related) symptoms were increased in the marijuana
users compared with controls. The age of onset was
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negatively correlated with symptoms and the quantity of
lifetime marijuana use was correlated positively with symp-
toms, while days of abstinence were correlated negatively
with symptoms. Although levels of cortisol and cytokines
did not correlate with cannabis use or psychiatric symptoms,
this work suggests that marijuana use in adolescents may
contribute to an aberrant relationship between stress re-
sponse and psychiatric symptoms.

Clinical Implications

Cannabinoid agonists exert a variety of effects in the brain on
neuronal function and can modulate neuroinflammatory dis-
ease levels in several neurodegenerative disease states.
Because CB2 activation dampens inflammatory responses in
the absence of psychotropic effects, it has the potential to
serve as a molecular target for attenuating inflammation linked
to pathogenic disorders such as MS (Maresz et al. 2007;
Zhang et al. 2009b), ischemic/perfusion injury following an
induced stroke (Zhang et al. 2007, 2009a), rheumatoid arthri-
tis (Sumariwalla et al. 2004), inflammatory bowel disease
(Storr et al. 2008, 2009), inflammatory autoimmune diabetes
(Li et al. 2001), spinal cord injury (Adhikary et al. 2011; Baty
et al. 2008), sepsis (Tsch p et al. 2009), autoimmune
uveoretinitis (Xu et al. 2007), osteoporosis (Ofek et al.
2006), pain (Kinsey et al. 2011; Malan et al. 2001, 2003;
Quartilho et al. 2003; Anand et al. 2009; Deng et al. 2015),
hepatic ischemia-reperfusion (I/R) injury (Batkai et al. 2007),
and systemic sclerosis (Servettaz et al. 2010). Thus, it is not
entirely surprising that cannabinoids alter the antitumor im-
mune response, and McAllister et al. review literature describ-
ing the well established antitumor activity of CBD, a canna-
binoid that does not bind CB1 or CB2, in a variety of cancer
cell lines, including those derived from glioblastoma,
breast, lung, prostate and colon cancer (McAllister et
al. 2015). These authors also discuss potential targets
of this non-psychoactive phytocannabinoid, as well as
the underlying mechanisms of action for its plethora of
antitumor effects, elegantly illustrated in Table 1 of their
review (McAllister et al. 2015).

Chiurchiu et al. discuss the immunomodulatory effects of
cannabinoid signaling on immune cells in the brain (Chiurchiu
et al. 2015). The modulatory impact on brain immune re-
sponses supports the concept that select cannabinoids have
potential as therapeutic agents for management of
neuroinflammatory disorders, such as Alzheimer’s disease,
MS, Huntington’s disease, amyotrophic lateral sclerosis
(ALS), and Parkinson’s disease. The review of Pryce et al.
addresses the effects of phytocannabinoids in an experimental
autoimmune encephalomyelitis (EAE) model of MS in mice
(Pryce et al. 2015). These authors include original data indi-
cating that THC and CBD dampen the behavioral signs and

motor deficits associated with EAE. Synthetic CBD was
shown to slow down the accumulation of disability from the
inflammatory penumbra during relapsing EAE in ABH mice,
possibly through blockade of voltage-gated sodium channels.
However, while subthreshold doses of each compound given in
combination enhanced subjective clinical scores significantly,
the experimental conditions applied did not lend themselves to
classification of the nature of the drug interaction. In addition,
the investigators describe the outcome of a phase III clinical
trial aimed at testing the efficacy of oral THC in progressive
MS. Although the study did not yield a positive outcome, an a
priori analysis of a subgroup of patients who presented with
decreased disability revealed that THC reduced disease pro-
gression. In addition, CB2 agonists have recently been demon-
strated to be protective against the reinforcing effects of cocaine
in mice (Xi et al. 2011; Zhang et al. 2014). Although activation
of CB2 produces well described antinociceptive effects in pre-
clinical studies (Ibrahim et al. 2006), the general outcome of
clinical trials has been disappointing (Atwood et al. 2012;
Dhopeshwarkar and Mackie 2014).

Finally, given the continued controversy surrounding the
issue of “medical marijuana”, using the scientific process to
discern the safety and efficacy of cannabinoid-based medica-
tions remains of paramount importance. To this end, Lynch and
Ware provide an in depth analysis of recent clinical trials testing
the efficacy of endocannabinoid-based drugs in treating non-
cancer pain in humans (Lynch and Ware 2015). A variety of
cannabinoids was examined in these studies, including the
FDA-approved synthetic cannabinoid receptor agonist
nabilone, an oral mucosal cannabis spray, the FAAH inhibitor
PF-04457845, oral or inhaled cannabis extract, and smoked
cannabis. The majority of these studies revealed modest anal-
gesic effects of these formulations without serious side effects,
lending credence to the idea that cannabinoid-based medica-
tions ultimately may be a reasonable treatment option for
chronic non-cancer pain. However, on a cautionary note, these
studies generally have been conducted under conditions of
short duration, using relatively small sample sizes and modest
effect sizes.

Conclusions

The potential deleterious effects as well as beneficial uses of
cannabis, its phytocannabinoid composition, and synthetic
cannabinoid analogs are discussed in these papers. In addition,
the role of the endocannabinoid system and approaches to its
manipulation to moderate select human disease processes are
addressed. It is our aim to place the potential benefits and risks
of marijuana use in perspective. As the Guest Editors, we
believe this is an excellent opportunity to present the latest
works related to this important topic.
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