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Few therapeutic alternatives exist for patients with a failing single ventricle 

physiology. To address this need, this thesis project investigated two new therapeutic 

alternatives, which sought to positively augment the Fontan hemodynamics. The first 

modality introduced a non-invasive method of external pressure application to the lower 

extremities. A clinical study (n=2) was conducted, and results indicated an increase in flow 

as a consequence to an increase in transmural pressure in the lower extremities. The second 

modality investigated a minimally invasive blood pump. Numerical analyses of the pump 
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were performed to examine hydraulic performance under physiologic conditions. The 

pump produced pressure rises of 1 to 25 mmHg over flows of 1 to 4 LPM, has a blood 

damage index less than 1% and was also found to successfully augment the hydraulic 

energy of the Fontan physiology. This work resulted in substantial progress to develop 

both modalities and address a significant human health problem. This document was 

created using Mircosoft Word 2007. 
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CHAPTER 1 MOTIVATION AND SIGNIFICANCE 
 

1.1 Congenital Heart Defects and Diseases 
 
Congenital heart defects are abnormalities with the heart’s structure present at the time 

of birth caused by the incomplete or abnormal development of fetal heart during pregnancy 

[1, 2]. These structural defects involve the interior walls of the heart, heart valves, and 

arteries and veins providing blood perfusion to cardiac tissue. The irregular cardiac 

structure deflects normal blood flow through the heart causing flow to slow down, proceed 

in the incorrect direction or location, or be completely blocked. The severity of defects can 

range from minimal  requiring little to no corrective treatment to complex with life 

threatening symptoms requiring medical and surgical intervention and eventually a heart 

transplant [3, 4]. 

Congenital heart defects are the most common type of birth defect. According to the 

2006 March of Dimes study, each year approximately 8 million children are born 

worldwide with serious, life-threatening heart defects which necessitate corrective surgery 

[5]. The United States alone accounts for about 1 million of these children born with 

congenital heart defects with 40,000 requiring immediate surgical intervention [5,6]. 

Specific conditions include: 

1. Septal Defects – holes in the wall which separates the left side of the heart from the 

right side of the heart allowing mixing of oxygenated and deoxygenated blood. 
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Septal defects can occur in the atria as atrial septal defects (ASD) or in the ventricle 

as ventricular sepatal defects (VSD). In general, a VSD is more severe and can 

require surgical intervention dependent on the magnitude of the defect [6-8].  

2. Valve Defects – structural abnormalities of valves which control blood flow 

throughout the heart and to the body and lungs. Valve defects include (a) stenosis, 

thickening of valve flaps preventing the valve from fully opening, (b) atresia, 

atypical formation of the valve lacking a passage for blood flow, and (c) 

regurgitation, incomplete closure of the valve causing retrograde backflow of 

blood. Common examples of valve defects include aortic stenosis, pulmonary 

stenosis, pulmonary atresia, and tricuspid atresia [6, 8]. 

3. Coarctation of the Aorta (COA) – narrowing of a region within the aorta resulting 

in a significant decrease of blood flow to the lower body [6, 7].  

4. Hypoplastic Left Heart Syndrome - underdeveloped structures of the left, or 

systemic side of the heart causing life threatening inadequate blood flow to the 

body. Within the first few days of the life the baby is diagnosed critically ill and 

requires immediate surgical intervention [2, 6, 7] 

5. Patent Ductus Arteriosus (PDA) – incomplete or no closure of the ductus arteriosus 

(DA) blood vessel which shunts blood away from the lungs redirecting to the body. 

The condition causes excessive blood flow to the newborn’s lungs. PDA commonly 

occurs in premature births [6-8] 
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6. Tetralogy of Fallot (TOF) – complex defect resulting from a combination of four 

heart defects: pulmonary stenosis, VSD, right ventricular hypertrophy, and aortic 

dysfunction receiving blood from both left and right ventricles [6]. 

7. Transposition of the Great Arteries – transposition of the pulmonary artery and 

aorta resulting in delivery of deoxygenated blood from the right ventricle to the 

body and redelivery of oxygenated blood to the lungs from the left ventricle [6, 8] 

 

The most serious and life threatening congenital heart defects are those which involve 

multiple and significant malformations of the heart chambers and vasculature. 

Cardiovascular malformations attribute to 6-10% of all infant deaths [1, 2]. These defects 

represent one of the two leading causes of neonatal death and have an occurrence of 

approximately 1- 8 in 1000 live births with incidence of 1 in 6 infants born preterm [2]. 

Cardiovascular malformations have also been found to contribute to sudden infant death. 

Conditions such as tricuspid artresia and hypoplastic left heart syndrome prompt single 

ventricle anomalies, or the contingency of only one functional ventricle. The only chance 

of survival for these patients is a staged surgical palliation commonly known as Fontan 

completion [4, 9]. 

 

1.2 Fontan Physiology 
 
Clinical interventions prior to the Fontan operative procedure involved aortopulmonary 

shunts and pulmonary artery bands, designed to moderate hypoxemia and congestive heart 
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failure. These interventions, however, cause volume and pressure overloads, often leading 

to chronic ventricular hypertrophy and subendocardial ischemia [10].  

Repair of univentricular physiologies through the Fontan conversion is a staged 

surgical palliation procedure. The first stage, known as the Norwood, occurs within the 

first two weeks of life and provides blood flow to the lungs through a pulmonary arterial 

shunt [11]. Figure 1 illustrates the Norwood repair.   

 

 

Figure 1:  Norwood surgical intervention for 
single ventricle physiologies. A shunt is placed 
between aorta and pulmonary arteries to reduce 
blood oxygen desaturation and promote development 
of the pulmonary vasculature. 

 
 

 

Once the risk of elevated pulmonary vascular resistance in the pulmonary beds has 

decreased the second stage, known as the Glenn, disconnects the Norwood shunt and 

directly connects the superior vena cava (SVC) to pulmonary circulation.  

 

 
Figure 2: Glenn surgical palliative procedure 
providing a direct connection from the superior 
vena cava to pulmonary circulation. The second 
staged surgical palliation, referred to as the Glenn 
procedure, often performed after six weeks and 
directly connects the SVC to the pulmonary 
arteries.  
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The Glenn procedure usually occurs six weeks after birth, followed by the Fontan 

conversion which usually occurs between the ages of 3-5 years, although each patient is 

unique and surgical teams complete the third stage on a case by case basis. Figure 2 shows 

the Glenn surgical configuration. Surgeons may decide, based on the patient’s 

hemodynamics and body response, to remain at the Norwood, Glenn, or Hemi-Fontan 

stage for several years. 

Figure 3: Variations of the Fontan surgical palliation procedure. (A) Intra-Atrial 
Fontan (B) Lateral Tunnel TCPC (C) Extra-Cardiac TCPC[12] 

 
 

The success rate of these high risk procedures is less than 75% [11]. Each patient 

presents a unique challenge to surgical teams resulting in numerous modifications of these 

palliative procedures such as the Hemi-Fontan, Intra-Atrial Fontan, and Extracardiac 

Fontan as a few are demonstrated in Figure 3. The total cavopulmonary connection 
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(TCPC) is an example of the extracardiac Fontan first described by de Leval et al [13]. 

This procedure connects the inferior vena cava (IVC) and superior vena cava (SVC) 

directly to the unbranched right pulmonary artery [10, 14]. TCPC creates a new “man-

made” physiology which entails systemic venous return transmitted directly to pulmonary 

circulation, formulating minimal pulsaltility of flow in pulmonary arteries [10, 15-17]. 

Thus, Fontan circulation is characterized by the absence of a pulmonary ventricle which is 

responsible for driving flow to the lungs. 

Postoperative, these patients suffer from a number of associated complications due to 

their “man-made” physiology.  Of those who survive the three staged palliation, only 85% 

survive the first month, 81% the first year, 79% the first five years, and 71% after 10 years 

[17]. Among the prevalent pathologies an increased after-load on the great veins due to 

elevated pulmonary pressures not only results in a significant reduction of preload reserve, 

but also leads to chronic conditions such as congestive heart failure and diminished 

exercise capacity. Decreased venous return, supraventricular arrhythmias, protein losing 

enteropathy, and aortopullmonary collateral vessels also plague the life-long Fontan 

patients [10, 15, 16, 18]. 

Due to the TCPC, the Fontan patient’s pulmonary perfusion is reliant upon IVC 

pressure, thus systemic pressures are elevated to provide flow. As described by West et al.  

[19] in 1964, the upright lung is classically divided into three regions of characteristic 

alveolar pressure zones secondary to gravitational forces. Each zone is described by 

comparison to arterial and venous pressures. The superior zone demonstrates alveolar 

pressures greater than both arterial and venous pressures, the middle zone with alveolar 
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pressures less than arterial yet greater than venous pressure, and zone 3 with alveolar 

pressure less than both arterial and venous pressure. As can be assumed, zone 3 facilitates 

maximal pulmonary perfusion. Considering their decreased pulmonary vascular 

capacitance and correlated elevated pulmonary vascular resistance, it is likely that Fontan 

patients have a reduced zone 3. 

A recent study performed by Lamour et al. [20] assessed the long term effects of age, 

diagnosis, and previous surgery in both adult and pediatric patients who underwent heart 

transplant for congenital heart disease (CHD). The multi-institutional study merged the 

registries from the Pediatric Heart Transplant Study (PHTS) and Cardiac Transplant 

Research Database (CTRD) to generate a combined dataset of patients receiving a heart 

transplant secondary to CHD. CTRD collected information from patients >18 years of age 

at the time of transplant and PHTS collected from those <18 years of age. Of the 488 CHD 

patients (121 from CTRD and 367 from PHTS) the last major surgical operation performed 

prior to transplant was the Fontan in 22% of patients and Norwood or variants of the Glenn 

in 21% of patients. Post transplant, patients with a previous Fontan had an 8.6-fold 

increase risk of death as compared to all other CHD patients. The survival rates in Fontan 

patients was 71% after the first year and 60% five years post transplant [20]. 

 
1.3 Pediatric Mechanical Circulatory Support 

 
Improved management strategies could reduce the risk of developing late stage, or 

chronic, Fontan induced pathologies [4, 17, 18, 21, 22]. Current research indicates that by 

improving ventricular-vascular interactions, after-load reducing agents can improve Fontan 
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hemodynamics [23-26]. Several surgical interventions have been introduced to improve the 

quality of life, increase the time to full cardiac transplant, and raise the overall odds of 

survival [17, 21, 27]. Mechanical circulatory support devices have become an increasingly 

popular treatment option for single ventricular assistance. Historically, preference was 

placed on extracorporeal membrane oxygenation (ECMO) as the fundamental form of 

mechanical circulation in pediatrics. However, efforts have been made towards the use of 

ventricular assist devices (VADs) to extend the time to Fontan failure necessitating full 

cardiac transplantation. Statistically, VADs have been reported as improving the hospital 

survival rate to 89% [9, 27, 28]. Surgical re-interventions to mediate failing Fontans 

include interjection of baffle fenstrations, atrioventricular valve repairs, hepatic vein 

reinclusions, pacemaker placement, prior to full heart transplantation [21]. The incidence 

for ultimate full cardiac transplantation is high, though the waiting time for a donor organ 

can be extensive and the resulting operative mortality rate of 44% [21]. Mechanical 

circulatory support is critical as a bridge-to-transplant, increasing the likelihood of survival 

while waiting for a donor heart.  

 
1.3.1 Extracorporeal Membrane Oxygenation (ECMO) 

 
Extracorporeal membrane oxygenation (ECMO) is the most common resource utilized 

for newborn and pediatric cardiopulmonary support for patients with low refractory cardiac 

output, arrhythmias, cardiac arrest, persistent hypoxemia or inadequate detachment from 

cardiopulmonary bypass [29-33]. Primary use of ECMO is to temporarily replace lung 

function, heat function, or both allowing recovery of a patient’s cardiopulmonary system 
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from an acute reversible insult or injury. Numerous studies and patient reports have been 

published reporting the successful use of ECMO as a bridge-to-transplant and bridge-to-

surgical intervention in addition to recovery [27, 30, 34, 35].  The first successful use of 

ECMO for cardio pulmonary bypass was reported in 1975. Since this time, the 

Extracorporeal Life Support Organization, a coalition founded in 1989 to study the clinical 

use of ECMO, has maintained a registry of more than 30,000 patients, a majority of which 

were neonates presenting with respiratory failure [36, 37] . Neonates and newborns present 

with much higher survival rates as compared to pediatric and adult patients. This is 

attributed to the reversibility of the disease and absence of chronic lung and heart 

conditions [38, 39].  

ECMO systems are complex and integrate several mechanical components [28, 39]. A 

sample ECMO circuit from researchers at the Congenital Heart Institute of Florida [35] is 

illustrated in Figure 4.  System components include a roller pump, ECMO bladder, silicone 

membrane or hollow fiber oxygenator, heat exchanger, a centrifugal or roller pump, and IV 

pumps for ultrafiltrate and replacement fluid.  
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Figure 4: Schematic of a typical ECMO loop. ECMO provides hemodynamic and 
pulmonary support.[35] 

 

The accumulation of numerous instruments leads the way to several possible complications 

and creates challenges for patients and hospital staff. An air embolism may form and could 

enter the arterial blood causing systemic embolization. Bubble detectors integrated into the 

system provide early warnings and allow hospital staff to bridge bubbles to the bladder for 

aspiration. Clot formations and plasma protein buildup can occur in the oxygenator 

membrane reducing the surface contact area for blood and gas. Additional technical 

failures include oxygenator failure, failure of heat exchanger, pump failure, and tube 

rupture [34, 35, 40].  
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Heparin must be continuously infused to maintain ACT between 180 to 220 seconds 

with calcium added to reverse CPD-A anticoagulation effects [30]. Heparin excretion is 

part metabolized and part intact in urine, therefore urine production has a considerable 

effect on apparent heparin utilization rate. The half-life of heparin in neonates on ECMO is 

45 to 70 minutes. Heparin levels must be checked every morning by performing a heparin 

assay. Side effects from heparin include intracranial bleeding and bleeding at the cannula 

site [30, 41, 42].  

 Patients on ECMO are immobile and must remain under supervision due to the 

bulky complex system and propensity of complications. Average time for extubation is 24 

to 48 hours and supplemental oxygen is required for the first week [40, 43, 44].  Though 

the oxygenator, coating material of the circuit internal surface, and blood flow controller in 

ECMO systems have been refined and modernized since the systems first introduction in 

the late 1970s,  survival rates post hospital discharge in pediatric patients is approximately 

50% [30, 35, 45-47] . Single ventricle physiologies have been hypothesized as one cause 

for high mortality rates [30, 34]. 

 

1.3.2 Ventricular Assist Devices (VADs) 
 
While many heart pumps or ventricular assist devices (VADs) are being developed 

and in various stages of clinical testing, all of these blood pumps generate pressures in far 

excess of the desired range for cavopulmonary support. Progress in the development of 

pediatric VADs has achieved new milestones and continues to quickly evolve; a majority 

of these more compact, pediatric VADs, however, have been designed to support the 
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systemic circulation in a normal biventricular physiology, not to support a cavopulmonary 

circulation [21, 36, 48]. All of these mechanical blood pumps were designed and 

developed for adult or pediatric patients with congestive heart failure (CHF) and to support 

the systemic circulation, not the unique anatomic physiology of the cavopulmonary 

connection [26]. These devices produce pressures that exceed the desired range to be used 

for cavopulmonary support.  Researchers theorize that a pressure boost of only 2 to 5 

mmHg may be sufficient to unload the cavopulmonary circulation in adolescent and adult 

patients who have a failing single ventricle [49]. The rising need for alternative therapeutic 

options for Fontan patients created the motivation for the development of an intravascular 

cavopulmonary assist device. 

 

1.3.3 Cavopulmonary Assist Devices  
 
Several institutions have begun to pursue research and development of 

cavopulmonary assist devices. Rodefeld and colleagues [22] have successfully 

demonstrated the use of the axial flow Hemopump to assist cavopulmonary flow in 

animals. This research group is also developing an innovative percutaneously-implantable, 

expandable propeller blood pump as a cavopulmonary assist device [22]. Limitations of 

this design include a wide distance between the rotor and blade-tip, increasing shear 

stresses, and an extremely short contact time with the thin propeller blades, preventing 

flow control downstream. Riemer et al. [50] at the Stanford University have used a sheep 

model of the total cavopulmonary connection to test the response to the Thoratec 

HeartMate II axial flow blood pump (Thoratec Corporation, Pleasanton, CA). These 
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studies demonstrated a baseline return of cardiac output, inferior vena caval flow, and 

arterial pressures. Similarly, the research team at the University of Colorado has made 

steady progress through numerical and in vitro studies on the development of an axial flow 

pump for proposed use in the IVC only [26].  

The Division of Cardiac Surgery and Department of Pediatrics at the University of 

Maryland Medical Center in Baltimore, MD recently published a case study on the use of 

the  Berlin Heart for the failing Fontan, providing more evidence for the continued 

research and development of a VAD for single ventricle physiologies [51]. An 18-month 

old patient was placed on cardiac support for 179 days, at which time the VAD was 

removed to optimize her general status. The patient expired 55 days post-VAD removal; a 

dislodged tracheostomy tube was claimed the probable cause of death.  

Another recent case study was performed by the Department of Cardiopulmonary 

Transplantation at the Texas Heart Institute at St. Luke’s Episcopal Hospital involving a 

14-year old male Fontan patient implanted with a left ventricular assist device as BBT. The 

HeartMate implantable pneumatic left ventricular assist system (IP LVAS) was implanted 

after the patient was placed on cardiopulmonary bypass during the operative procedure. 

The HeartMate IP LVAS proved full circulatory support for 45 days at which point a donor 

heart was available and implanted. The cardiac transplantation was a success, and the 

patient has remained health for more than 2 years post-transplant [52]. 

As proven by these research and clinical teams, the standard axial flow pump 

design has suitable characteristics for cavopulmonary assist. The aforementioned blood 
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pump designs, however, may be obstructive to flow in the event of rotational failure, and 

implantation requires invasive surgery.  

 

1.4 Noninvasive Counterpulsation and Minimally-Invasive Intravascular Assist 
 

In further support of this effort to develop alternative therapeutic options for Fontan 

patients, we are developing two modalities as a bridge-to-transplant, bridge-to-

hemodynamic stability, bridge-to-surgical reconstruction or long-term support alternative 

for these patients. The first modality is an external counterpulsation system as a long-term 

clinical management strategy. This technology involves using commercially-available, 

medical anti-shock trousers on single ventricle patients. The inflation and deflation of these 

trousers applies circumferential pressure to the lower extremities which translates into an 

increase in venous return pressure and cardiac output. We speculate that this 

counterpulsation system will improve functional and exercise capacity in these patients. 

  The second modality is a collapsible, percutaneously-placed, axial flow blood 

pump to support the cavopulmonary circulation. Mechanical pressure augmentation of 

blood flow in the cavopulmonary circulation would decrease elevated systemic venous 

pressure and increase ventricular preload. This type of blood pump, which is specifically 

designed to support the unique anatomic and physiologic conditions of the univentricular 

circulation, has never been developed.  

The intravascular, axial flow blood pump with a magnetically levitated rotor and a 

uniquely shaped protective cage. Figure 5 illustrates the conceptual design of the blood 

pump. The intravascular axial flow pump is designed for percutaneous positioning in the 
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inferior vena cava (IVC). The outer protective cage has radially arranged filaments that 

serve as touchdown surfaces to protect the vessel wall from the rotating components. Each 

filament is hydrodynamically designed to reduce drag and to maximize energy production 

from the rotating, engineered impeller blades. Currently the rotating pump consists of an 

impeller with four uniquely designed and helically wrapped blades to maximize energy 

transfer. Pump rotation is induced through a motor-magnetic bearing suspension, which 

levitate and rotate the impeller within the protective cage of filaments. An outlet nose is 

also located at the outflow of the pump to physically limit the axial movement of the 

impeller, to connect the cage filaments, and to house bearings which support the impeller 

during operation. The blade tip-to-tip diameter of the first generation design is 14 mm in 

the fully open configuration. In this study, for the purposes of measuring hydraulic 

performance, the pump prototype was mounted to a drive-shaft that was supported by 

mechanical bearings. The target design for the intravascular pump is to generate flow rates 

of 0.5 to 4 L/min with pressure rises of 2 to 25 mmHg for rotational speeds of 3000 to 6000 

RPM.  
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Figure 5: Conceptual Design of the Axial Flow Blood Pump.  (A) The device consists 
of a protective sheath with cage filaments, a rotating shaft and catheter, an impeller blades, 
diffuser region, and inlet and outlet sections. (B) Position of the cavopulmonary assist 
device in the IVC of the TCPC for Fontan patients. It is designed to augment pressure and 
thus flow in IVC and subsequently drive blood into the left and right pulmonary arteries 
(LPA and RPA) while supporting the incoming flow from the superior vena cava (SVC). 

 

 

1.5 Project Goal and Objectives 
 

 The goals of research for this M.S. thesis included the design, development, and 

evaluation of two modalities augment Fontan circulatory hemodynamics and cardiac 

function. A dual methodical approach to improving Fontan function was determined by the 

need for both preventative hemodynamic assistance and mechanical assistance to provide a 

bridge-to-transplant, bridge-to-surgical reconstruction, or bridge-to-recovery. The 

following are the objectives of this research:  

1. Obtain a thorough understanding of the unique anatomy and physiology of the Fontan 

surgical intervention and circulatory impact 
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2. Determine the parameters and engineering design specifications for circulatory 

augmentation of Fontan hemodynamics. 

3. Design and retrofit adult and pediatric size external pressure garment for a noninvasive, 

preventative approach for hemodynamic support for Fontan patients. 

4. Contrive and compose pressure garment protocols and obtain IRB approval for MAST 

clinical trials.  

5. Conduct MAST clinical trials on two patients during cardiac catheterizations at the 

Medical College of Virginia. 

6. Design and conduct numerical analyses on an intravascular, axial flow blood pump for 

minimally invasive mechanical circulatory support for Failing Fontan physiology 

to serve as a bridge-to-transplant, bridge-to-surgical intervention, or bridge-to-

recovery.  

7. Generate computational models for the total cavopulmonary connection (TCPC) 

Fontan including idealized configurations and patient specific configurations 

derived from MRI images.  

8. Conduct computational fluid dynamics (CFD) analyses on TCPC models with 

intravascular blood pump mechanical support.  

9. Perform the following analyses: pressure-flow, blood damage, shear stress, quasi-

steady state, and energy loss calculations.  

This thesis project provided insights into two forms of therapeutic treatments for Fontan 

patients. Achievement of these objectives resulted in substantial progress in the 

development of both modalities to address a significant human health problem.  
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1.6 Thesis Outline 

 
  This thesis reports two methods of circulatory augmentation for Fontan patients. 

The design and development of two mechanical modalities is detailed in subsequent 

chapters. Chapter 2 reports the construction of a noninvasive mechanical circulatory 

augmentation garment designed improve hemodynamics by reducing the workload of the 

systemic ventricle and providing increased pressure and blood flow to the lungs. The goal 

of the external circulatory augmentation garment is to provide patients with a therapeutic 

medical device for use at home to alleviate some cardiac workload thus providing a 

preventative approach to combat the ensuing Failing Fontan physiology.   

Chapter 3 reports the design and development of an intravascular, axial flow blood 

pump intended as a minimally invasive approach for mechanical circulatory augmentation 

of the Failing Fontan physiology. Computational fluid dynamic (CFD) analyses were 

performed with the pump placed in idealized and patient specific TCPC models. The 

results from both the counterpulsation studies and numerical simulations are reported in 

Chapter 4. Chapter 5 discusses the success and usefulness of both devices and indications 

for clinical use. Conclusions and future research expectations and goals are detailed in 

Chapter 6. 
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CHAPTER 2 METHODS AND MATERIALS: 
COUNTERPULSATION 

 

2.1 Theory of External Circulatory Augmentation 

Traditionally mechanical cardiovascular assist devices are invasive and designed 

specifically for adult patients suffering from congestive heart failure. The success of these 

devices in adults with CHF is well reported and discussed in earlier sections. Though these 

traditional mechanical circulatory support devices have been shown to mediate the failing 

Fontan physiology prior to full transplant, current research indicates device success as only 

a short term bridge to transplant, not for use over an extensive period of time [21, 23, 27, 

48]. Additionally, these devices require an invasive procedure for implementation and no 

clinically available device to date has been designed to specifically augment the unique 

circulatory demands of a Fontan.  

The theory of external circulatory augmentation can be contrived from studying 

skeletal musculature during exercise. The extension and contraction of skeletal muscle 

during exercise is shown to augment blood flow through a pumping action generated by 

the propulsion of blood forward upon muscular contraction. By applying external pressure 

to the extremities it is possible to mimic this pumping action.  

In an attempt to achieve the goals of mechanical circulatory assistance while 

reducing the surgical risk and cost to patients, we venture to apply external pressure to the 
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lower limbs as a preventative measure and long-term clinical treatment for Fontan patients. 

In the future we plan to employ external pressure to the lower limbs from a novel medical 

device designed to augment venous return for patient use at home. This device will assist 

patients through the augmentation of systemic blood flow to the pulmonary arteries, thus 

reducing ventricular workload, increasing venous return and pulmonary perfusion, and 

reducing cardiac afterload. Our review of literature and preliminary studies provide a 

proof-of-concept [53-56]. Two available technologies fit the criteria for obtaining relevant 

data for our intended contrivance: clinical application of Medical Anti-Shock Trousers 

(MAS trousers) and enhanced external counterpulsation (EECP). 

 

2.2 Historical Predecessors 

2.2.1 Military/Medical Anti-Shock Trousers 

The origin of MAS trousers dates back to 1903, when the developer, George Crile, 

discovered the concept of counterpressure for treatment of hypotension associated with 

surgical procedures [57]. Crile developed and constructed the first counterpressure medical 

device as a pneumatic double layered rubber suit designed exerted uniform pressure upon 

inflation. Since Crile’s time, MAS trousers have been updated and are part of protocol for 

every ambulance to use in situations of urgent assistance to patients suffering hypovolemic 

shock [58].  MAS trousers apply a fixed external pressure through pneumatic means to 

maintain a systolic pressure of 100 mmHg through increasing impedance of blood flow to 

the lower extremeties.  
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2.2.2 Enhanced External Counterpulsation 

      In contrast to MAS trousers, enhanced external counterpulsation (EECP) is a non-

invasive counterpulsation technique designed as a therapeutic alternative for adult patients 

suffering from ischemic heart diseases. Approved by the Food and Drug Administration 

(FDA) in 1995, EECP has been demonstrated as safe and effective in the treatment of 

angina.  A Multicenter Study conducted by Werner et al. of more than 5000 patients from 

over 100 centers concluded that EECP decreases angina episodes and extends the time to 

an exercise-induced angina episode [56]. 

 EECP is an electrocardiogram-triggered inflation and deflation of pressure cuffs 

wrapped around a patient’s lower extremities. The cuffs are inflated and deflated 

sequentially and circumferentially, resulting in the propulsion of retrograde blood flow 

through the arteries thus increasing coronary perfusion during diastole (ventricular filling).  

Figure 6 illustrates the inflation-deflation pattern timed with the cardiac cycle.  
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Figure 6: Electrocardiogram-trigged EECP.  External pressure applied to the lower 
limbs is triggered by the cardiac cycle. Diastolic inflation promotes retrograde flow to the 
coronary arteries[59]. 
 

In 2002, Ma et al. [53] performed a clinical trial on 10 pediatric patients to assess the 

usefulness of using external counterpulsation early postoperatively after the Fontan 

conversion at the Childern’s Medical Center in Dallas, TX. The study focused on the 

benefits of counterpulsation when applied to patients immediately postoperative for 10 

minutes. Though the authors state success with safe application to pediatric patients and an 

increased in cardiac index, no further trials were published.  

 

2.2.3 Application of Pulsation Technology to Fontan Patients 

Due to the extensive demonstration of success in adult CHF patients, it is expected that 

EECP or a similar technology (i.e. retrofitted MAS trouser configuration) would have 

superior results on pediatric CHD patients. This assumption is based on the symptomatic 

and physiological similarities between these two categorical patients. Their pathological 
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conditions arise from the common source of poor myocardial functionality. 

Counterpulsation therapy delivered with cardiac synchronization has consistently 

demonstrated immediate improvement in exercise tolerance, myocardial perfusion, venous 

return, and cardiac output, with several long-term benefits such as improved endothelial 

function, increased peripheral oxygen uptake, and augmented ventricular systolic and 

diastolic function [54, 56]. By focusing on the benefits derived from pulsation in 

conjunction with simplification of the device, it is possible to develop a noninvasive, 

external pulsation device for at home therapeutic use without the need for outpatient 

expenditures. 

Therefore, we executed a clinical study using commercially available MAS trousers on 

Fontan patients. We hypothesized that routinely administered, non-invasive, external 

counterpulsation will: 1) enhance flow from the great veins through the lungs, and 2) will 

improve functional and exercise capacity in these patients with single ventricle physiology. 

We propose to initially evaluate this hypothesis by performing a feasibility study on 

pediatric patients and young adults (ages of 10 to 45) with congenital heart disease. This 

study measured the increase in venous pressures and cardiac output with circumferentially 

applied, external pressures on the lower extremities using commercially available medical 

anti-shock trousers. Figure 7 below illustrates the location of external pressure application 

via MAS trousers.  
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Figure 7: External pressure application to lower limbs and abdomen using MAS 
trousers. Hypothesized forward propulsion of blood, illustrated as a bolus in the mid-thigh 
above, due to external pressure to augment Fontan circulatory hemodynamic.  

 

 

2.3 New Pulsation Device      

Two sets of MAS trousers (David Clark Company Incorporated, Worcester, MA, U.S. 

Patent No. 3933150) were procured and retrofitted for the counterpulsation studies: an 

adult size and a pediatric size. The adult and pediatric size differed in length of lower 

extremity cuffs, width of the abdominal cuff, and circumferential length of the abdominal 

cuff. The pressure compartments on these MAS trousers were individual such that the 

abdominal sections were interchangeable as well as the lower extremity sections. This 
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provided allowance for some degree of personalized fit for the patients involved in the 

study. For example a tall slender subject could use the adult size lower extremity sections 

in conjunction with the pediatric size abdominal section.  

System pressure application was provided via two means of airflow, coarse and fine 

adjustments, laid in series to the pressure garment. Bulk airflow to generate pressures 

accurate within approximately 10 mmHg originated from a standard air pump (Intertek 

Listed, Model: HB-505B). The air pump provided the coarse pressure adjustment to 

quickly elevate the pant pressure application to the patient to the desired level. A hand 

pump found on most sphygmomanometers was utilized for fine adjustments, elevating and 

relieving pressures within approximately 1 mmHg accuracy. In conjunction, the coarse and 

fine pressure applicators were capable of providing the external pressure application for the 

clinical trials.  

The pressure gage was added to the system in parallel to airflow through the trousers 

compartments, downstream of the pump and upstream of the patient. A standard dial 

pressure gage found on most sphygmomanometers was used to detect and approximate 

trouser pressure. Figure 8 below demonstrates the design and layout of the retrofitted 

MAS-trousers.  
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Figure 8:  Schematic of retrofitted MAS trousers used for counterpulsation clinical 
trials.   

 

 

2.4 Clinical Study 

VCU Investigational Review Board (IRB) approval was obtained for this study (HM 

#11906). The study population consisted of volunteer subjects aged 10 to 45 years who are 

recruited by staff and participating personnel. All subjects had a previously scheduled, 

dual-sided, cardiac catheterization. To-date, two subjects have been recruited.  

The subjects were examined prior to enrollment. The exclusion criteria are as follows: 

recent surgery or Fontan conversion within one year or less, cognitive impairment, 

uncontrolled arrhythmias, history of pulmonary embolism or deep vein thrombosis, 



27 

Exclusion Criteria 
1. Uncontrolled Arrhythmias 
2. Nonsustained ventricular tachycardia (NSVT) 
3. Recent Pulmonary Edema 
4. Recent prognosis of Deep Vein Thrombosis 
5. Uncontrolled Hypertension 
6. Abdominal Aortic Aneurysm  > 4.0 cm 
7. Uncontrolled Congenital Heart Failure 
8. Acute Myocardial Infarction 
9. Aortic Insufficiency 
10. Mitral or Aortic Stenosis 
11. Excessive Tachycardia 
12. Marked Bradycardia 
13. Bleeding Diathesis 
14. Symptomatic peripheral vascular disease 
15. Unsuitable deformity in lower extremity anatomy 
 

uncontrolled hypertension, uncontrolled congestive heart failure, clinically significant 

valvular disease (e.g. aortic regurgitation), acute myocardial infarction, excessive 

tachycardia or marked bradycardia, bleeding diathesis, absent pedal pulses, lower 

extremity and pulmonary edema, aortic aneurysm, and diaphragmatic hernia [54]. Table 1 

summarizes these exclusion criteria. Neither of the participating subjects met any of these 

criteria. 

Table 1: Exclusion Criteria for clinical trial. 
 

 

 

 

 

 

 

After obtaining informed consent, the patient was prepped for the previously scheduled 

cardiac catheterization. The subjects were placed in the supine position with the MAST 

garment applied but not inflated. A blood pressure cuff was wrapped around the patient’s 

arm for routine measurements; a pulse oximeter was placed on the patient’s index finger to 

measure oxygen saturation and heart rate during the study. Standard electrocardiogram 

leads were also appropriately located. A catheter was then inserted into the femoral vein 

and/or artery after the site had been cleansed and numbed with a local anesthetic, and 

according to the VCU standard protocol for cardiac catheterization. 
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Baseline measurements of blood pressure, cardiac output, respirations, right atrial 

pressure / central venous pressure, and pulmonary capillary wedge pressure, O2 sat, and 

heart rate were taken. Based on the patient’s diastolic pressure, we determined three 

separate pressure intervals to evaluate, up to 20 mmHg above their diastolic pressure.  

 After a first set of vital signs were obtained, the first pressure level was administered. 

The MAS trousers were inflated and a circumferential pressure was applied to the lower 

extremities similar to a blood pressure cuff. This pressure was held for 20 to 40 seconds 

and then released for 10 seconds. The pressure was applied again. These intermittently 

applied pressures at the first interval occurred for 3 to 5 minutes. Clinical measurements 

were ongoing. 

At the conclusion of this 3 to 5 minute first test period, the patient’s vital signs 

were reassessed and the MAS trousers were deflated. The patient rested for 3-5 minutes. 

Then, the second pressure level was tested, which is slightly higher than the first interval. 

The MAS trousers were inflated and a circumferential pressure was applied to the lower 

extremities. This second interval pressure was held for 20 to 40 seconds and then released 

for 10 seconds. The pressure was then applied again. These intermittently applied 

pressures at the second interval occurred for 3 to 5 minutes. Clinical measurements were 

ongoing. 

 At the conclusion of this 3 to 5 minute second test period, the patient’s vital signs were 

again reassessed and the MAS trousers were deflated. The patient rested for 3-5 minutes.  

Finally, the third and last pressure level was evaluated. This third interval pressure was 

held for 20 to 40 seconds and then released for 10 seconds. The pressure was then applied 
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again. These intermittently applied pressures at the third interval occurred for 3 to 5 

minutes. Clinical measurements of aortic systolic and diastolic pressures, pulmonary 

pressures, and TCPC pressure were ongoing. Upon completion, a final set of vital signs 

was reassessed and the MAS trousers were deflated. The patient was able to rest for 3 to 5 

minutes. After 5 minutes, a final set of baseline vitals was obtained. 

Deflation of the anti-shock trousers was carefully completed in order to maintain 

cardiac stabilization. We ensured that the subjects were not exhibiting any signs of shock 

and that they had a stable, strong, and regular heart rate, respirations, and blood pressure. 

Vital signs were carefully monitored during the deflation process. 

All measurements were recorded in manner that is in compliance with IRB rules 

and HIPPA regulations. The subsequent table is a sample spreadsheet as indicative of the 

data recorded for each study.  
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Table 2: Sample data spreadsheet for clinical trials.  

 

2.5 Chapter Summary 

 Counterpulsation has been shown to improve cardiovascular hemodynamics and 

provide symptomatic relief in adult patients suffering from CHF. Inferring from the 

similarities in symptoms between adult CHF patients and patients with failing Fontan 

physiology it was hypothesized that external pressure augmentation to the lower limbs of 

Fontan patients would provide them hemodynamic relief and reduce cardiac workload.  An 

 
Study Number:         Age/Sex    Diagnosis   
        
  Baseline Measurements 

Recording Time BP HR Resp. O2 sat. Left atrial / CVP Pulmon. Cap. Wedge 
1              
2               
3               
4               
5               

  Applied External Pressure of _________ 

 Time BP HR Resp. O2 sat. Left atrial / CVP Pulmon. Cap. Wedge 
1               
2               
3               
4               
5               

  Applied External Pressure of _________ 
  Time BP HR Resp. O2 sat. Left atrial / CVP Pulmon. Cap. Wedge 

1               
2               
3               
4               
5               

  Applied External Pressure of _________ 
  Time BP HR Resp. O2 sat. Left atrial / CVP Pulmon. Cap. Wedge 

1               
2               
3               
4               
5               

  Baseline Measurements 
Recording Time BP HR Resp. O2 sat. Left atrial / CVP Pulmon. Cap. Wedge 

1               
2               
3               
4               
5               
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IRB approved study was conducted over the course of Fall 2008 to Spring 2010. The 

clinical trial was conducted during prescheduled cardiac catheterizations and employed 

retro-fitted MAS trousers. Two patients were recruited and results from the clinical trials 

are provided in Chapter 4.   



32 

 

 

CHAPTER 3 METHODS AND MATERIALS: INTRAVASCULAR 
BLOOD PUMP 

 

In contrast to the completely non-invasive and external pulsation device, another 

approach to augment pressure in the total cavopulmonary connection (TCPC) of Fontan 

patients involves the use of an intravascular blood pump. This thesis evaluated the use of 

such a pump in the inferior vena cava (IVC) through numerical means. The cavopulmonary 

assist device represents a minimally-invasive technique to support Fontan patients in the 

cardiac catheterization lab. 

As discussed in previous chapters, repair of univentricular physiologies through the 

operative Fontan procedure manifests a new, “man-made” circulatory pattern for these 

patients deriving from a direct connection of the great veins to the pulmonary arteries. In 

recent years, progress in surgical advances of the TCPC has reached a plateau. Therefore, a 

rising interest in the implementation of an intravascular blood pump in the IVC has 

emerged.  

Normal cardiac anatomy utilizes the right ventricle as a pumping chamber to propel 

blood forward into pulmonary circulation. Due to their univentricular physiology, Fontan 

patients have passive blood flow to the lungs. The use of an axial flow blood pump in the 

IVC would compensate for the loss of energy from the univentricular physiology and serve 

to recoup and maintain hemodynamic stability for patients suffering from a failing Fontan. 
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3.1 Conceptual Pump Design 
 
 In order to produce a more effective and minimally invasive bridge-to-transplant, 

bridge-to-recovery, or bridge-to-surgical reconstruction, we have developed a collapsible, 

percutaneously inserted, magnetically levitated axial flow blood pump to support the total 

cavopulmonary connection (TCPC) of a failing Fontan in adolescent and adult patients. 

Our intravascular pump would provide mechanical augmentation of blood flow from the 

inferior vena cava to the lungs, thus enhancing cardiovascular hemodynamics through 

improved systemic pressure, increased ventricular filling, and augmented cardiac output. 

 The axial flow blood pump is designed with a catheter-mounted impeller, diffuser 

blades surrounding the pump hub tip, protective cage filaments and a motor for magnetic 

levitation and rotation. The impeller consisted of a hub and 3 counterclockwise oriented 

blades and the diffuser was designed with a hub and 4 clockwise oriented blades. Figure 9 

outlines the conceptual design of this pump. The development of this pump was completed 

through the use of pump design equations and computational fluid dynamics (CFD) 

analyses. One of the main objectives of this thesis was to numerically model the interactive 

fluid dynamics of the pump and the cavopulmonary circulation in an idealized TCPC 

geometry and a patient-specific TCPC geometry. 
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Figure 9: Intravascular Axial Flow Blood Pump for 
Cavopulmonary Assist. This intravascular cavopulmonary assist 
device consists of a protective sheath, cage filaments, a rotating 
shaft and catheter, impeller region and diffuser region. The axial 
flow blood pump was numerically modeled in a straight tube to 
assess hydraulic performance. Flow entered downstream of the 
pump at the inlet(8), traveled through the pump region, accelerated 
by the impeller blades(5) and exited at the outlet(9). 

 
 
3.2 Methods and Materials: Computational Fluid Dynamics 
 
3.2.1 CFD Theory 
  
 Computational fluid dynamics (CFD) has been utilized for decades to generate 

numerical models for blood flow though arteries, veins, stents, grafts, and blood pumps 

[60-63]. Numerical models serve a purpose in the design and development process by 

generating reliable predictors of pump performance and flow profiles. The CFD approach 

involves the division of a complex three-dimensional fluid domain into a congregation of 

smaller, discrete volumetric regions or mesh elements [64]. Mesh elements are linked at 

common nodes and through these connections the equations of motion can be algebraically 

solved. By characterization and analysis of fluid flow through each discrete node, the fluid 

dynamics of the entire fluid domain can be captured. Figure 10 illustrates the 
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computational model of the impeller region only, along with the computational element 

with nodal locations. 

 

Figure 10: Computational Model of Axial Flow Impeller: A. Meshed model having four regions 
– inlet pipe, spindle, impeller with 4 blades, and outlet. B. Numerical analysis involves dividing the 
complex three-dimensional fluid model into smaller volumetric regions or mesh elements with 
nodes to mathematically characterize the fluid dynamics of the pump. 
 

 
3.2.2 Software Programs 
 
 Several software programs were employed for the CFD work conducted during the 

course of this thesis: MIMICS (Materialise, Leuven, Belgium), SolidWorks (SolidWorks 

Corporation, Concord, MA), ANSYS (ANSYS Incorporated, Canonsburg, PA), Bladegen 

(ANSYS Incorporated, Cansonsburg, PA) and MatLab (The MathWorks Incorporated, 

Natick, MA).  In order to assess the interactive dynamics between the pump and the TCPC 

physiology, two numerical models were created: 1) an idealized TCPC geometry based on 

a Ryu et al. [65], and 2) three-dimensional patient-specific models that were constructed 

from magnetic resonance imaging (MRI) data of single ventricle patients. MIMICS 

software was employed to transform two-dimensional MRI images into a three-
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dimensional point cloud mesh. After numerous smoothing iterations, the three-dimensional 

point cloud mesh was imported into SolidWorks to generate a solid body model. 

SolidWorks was also utilized for the design and construction of an idealized TCPC model 

described by Ryu et al. [65] and elements of the intravascular pump including pump hub 

and protective cage. The pump impeller and diffuser blade geometries were generated 

using Bladegen.  ANSYS-CFX, a 2nd order accurate fluid solver, was employed to simulate 

flow through all of the computational models. This CFD program solves the equations for 

the conservation of mass and momentum in terms of the dependent variables, velocity and 

pressure, according to the Reynolds-Averaged Navier Stokes (RANS) method. The 

software Matlab was used to conduct a blood damage study for various pump operating 

conditions.  

 

3.2.3 Simulation Models 
 
 In order to assess the interactive dynamics between the axial flow blood pump and 

physiology numerical simulations were completed in two Fontan models: an idealized 

TCPC model generated in SolidWorks and a patient specific TCPC model generated in 

MIMICS and SolidWorks.  

 

3.2.3.1 Idealized TCPC 
 
 A numerical model of the idealized cavopulmonary connection was constructed 

with the intravascular pump integrated in the inferior vena cava (IVC). This work builds 

upon the idealized TCPC geometry as described by Ryu et al. [65] and previous studies 
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with the intravascular blood pump. The following three models were analyzed: 1) an 

idealized TCPC with a 1-diameter offset without a blood pump, 2) an idealized TCPC with 

a 1-diameter offset and an axial flow blood pump having only a 3-bladed impeller, and 3) 

an idealized TCPC with 1-diameter offset with an axial flow blood pump having a 3-

bladed impeller and 4-bladed diffuser. Pump placement for models 2 and 3 were in the 

IVC. Figure 11 illustrates the three idealized TCPC models. 

 

 
 

Figure 11: Idealized TCPC Models. Three idealized TCPC models were generated from 
geometry described by Ryu et al. IVC, SVC, LPA, and RPA vessel diameters were set to 
13.4 mm. A) Idealized TCPC with no pump. B) Position of the intravascular blood pump 
with impeller and diffuser placed in the IVC. Since the position of the intravascular blood 
pump with only the impeller is so similar to B), it has not been included. The intravascular 
blood pump is placed in the IVC for adult patients with failing single ventricle physiology. 
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3.2.3.2 Anatomical TCPC 
 
 Provided that actual Fontan patient anatomy retains vascular contours and angles 

incapable of being captured in an idealized model, patient specific computational models 

were constructed from MRI’s obtained from four Fontan patients. Patient number and 

cardiovascular anatomy are provided in Table 3.  

 
Table 3: MRI Fontan Patient 
Information. Four three-dimensional 
patient specific Fontan models were 
generated from patient MRI images. 
 
 

Eight three-dimensional models were constructed. Models 1 through 3 

demonstrated the extra-cardiac TCPC Fontan anatomy from patients 1-3 respectively. 

Models 4 through 6 demonstrated TCPC anatomies from patients 1-3 with an axial flow 

pump having a set of impeller and diffuser blades. Model 7 demonstrated a Glenn anatomy 

from patient 4, and Model 8 demonstrated a Glenn anatomy from patient 4 with an axial 

flow pump having a set of impeller and diffuser blades. Pump placement for models 1-3 

were in the IVC and for model 4 was in the SVC. Figure 12 illustrates the four patient 

specific TCPC models. Generation of the patient specific three-dimensional solid bodies is 

elucidated in Figure 13 for patient 1 corresponding to model 1 and model 5.  

Patient Number Anatomy 
1 Extra-Cardiac Fontan 
2 Extra-Cardiac Fontan 
3 Extra-Cardiac Fontan 
4 Glenn 
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Figure 12: Patient specific anatomical TCPC models. Models 1-4 correspond to patients 
1-4 respectively. Models 5-8 correspond to models 1-4 with the axial flow blood pump 
place in the IVC for models 5-7 and SVC in model 8. 
 

Figure 13: Generation of a patient specific computational model. A) Point cloud B) 3-
D suface mesh C) Solid body anatomical model with vascular extensions D) Patient 
specific model with pump placement in the IVC.   
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3.2.4 Simulation Setup 
 

For this thesis project, the interactive fluid dynamics of the pump and the 

cavopulmonary circulation were analyzed numerically an idealized TCPC geometry and 

one patient-specific TCPC geometry with the axial blood pump integrated into the IVC. 

 
3.2.4.1 Grid Generation 
 
 We employed CFD software from ANSYS Inc. to simulate flow through all 

computational models. CFX-Mesh, an ANSYS mesh generation, software was used to build 

tetrahedral element-based meshes for the CFD analyses. Grid generation was performed by 

other personnel in the research laboratory. Previous grid convergence studies provided 

insight as to appropriate regional grid densities for the computational models [25]. Grid 

density and convergence studies were completed for grid quality assurance. This process 

included incremental adjustments to grid size until the performance results deviated less 

than 2%. For each simulation, the incremental time step, or relaxation factor in a steady 

state study, was specified as 0.001 to 0.005 with a maximum criterion of normalized 

convergence residual at 1x10-3 [61, 66].  

 

3.2.4.2 Configuration and Boundary Conditions 
 

Blood flow through the pump, cage, and total cavopulmonary connections was 

defined to be steady with constant boundary conditions and velocities for these 

simulations.  The no-slip boundary condition was assigned to the stationary walls such that 

the fluid velocity values along the boundary would equal zero.  A stationary wall boundary 
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was applied to the internal housing regions of the pump.  The impeller blades and hub were 

specified as rotating walls in the counterclockwise direction in accordance with the blade 

orientation.  The protective cage filaments were modeled as stationary walls, and the 

diffuser blades and hub were modeled to be spinning at the same speed as the impeller. 

The frozen rotor interface linked regions of differing reference frames between the 

impeller domain and protective cage [67].  A uniform mass inflow rate and rotational 

speed were specified for each simulation. The outlet boundary surface was specified as an 

opening to capture any possible irregular flow conditions at the outflow. The outlet 

boundary conditions, such the left and right pulmonary arteries, were defined to have static 

pressures of 10, 14, 18, 22 and 26 mmHg. All of the vessel walls for the IVC, SVC, and 

pulmonary arteries are modeled as rigid tubes for this initial interactive assessment. 

 

3.2.4.3 Turbulence Model 
 

After successful mesh generation and boundary condition specification, the 

computational flow model was then implemented in the 2nd order accurate fluid solver, 

ANSYS-CFX.  This program solves the equations for the conservation of mass and 

momentum in terms of the dependent variables, velocity and pressure, according to the 

Reynolds-Averaged Navier Stokes (RANS) method.  The RANS method is used to 

simulate the entire flow field with acceptable averaged quantities for the mean flow and 

fluctuating flow values. Details of the conservation of mass, Navier-Stokes equation of 

motion, and Reynold-Averaging procedure are outlined below.  

Law of Conservation of Mass 
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 The differential form of the continuity equation or conservation of mass is derived 

by the Eulerian method of analyzing the mass flow into and out of a control volume of 

infinitesimal size. As defined using Einstein summation convention the law of 

conservation of mass is [68, 69]: 
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where t represents time, ρ is the fluid density, and Ui is the 
three-dimensional velocity vector components of flow summed 
over the index i. 
 

 
Navier-Stokes Equation of Motions 
 
 By applying Newton’s law of motion to an infinitesimal fluid element, the 

differential form of the law of conservation of momentum is defined in Einstein 

summation convention as follows: 
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where P signifies pressure, τij  is the stress tensor, xi 
represent spatial variables, and fi is the body force vector.  
 

 
Neglecting the body force due to gravity, the stress tensor for a Newtonian fluid is: 
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 where µv is the dynamic viscosity, µb = is the bulk viscosity (=2µv, 
/3), and δij is the Kronecker delta, a symmetric identity matrix 
(when i=j, then δij =1, and δij =0 for i≠j). 

 
 
Reynolds-Averaging Procedure 
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The value of scalar variables fluctuate in turbulent flow conditions therefore the 

instantaneous value of a scalar quantity is calculated as the sum of mean and fluctuating 

components. Using Reynolds-Averaging, ANSYS-CFX expresses the instantaneous scalar 

quantities in terms of mean values, neglecting the fluctuating component [68].  For any 

arbitrary quantity θθ  the instantaneous scalar value is: 

'
__

φθθ +=               [4] 
where θ  is instantaneous scalar value, θ  is the scalar’s mean 
component, and φ' represents the scalar’s fluctuating component. 

 
θ , the time-average of scalar’s mean component and φ', the time-average of fluctuating 

components are defined as below: 
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As observed in equation 6 the mean of individual fluctuating components is zero, but the 

product of fluctuating components is non-zero. For incompressible flows, the 

conservation of mean momentum is derived as below in Reynolds-Averaging form: 
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Averaging the left side of the equations using the nonlinear convection term results in the 

Reynolds stress tensor ''
jiuuρ . Eddy viscosity approximations are used to relate Reynolds 

stress and turbulent fluctuating terms to mean flow variables resulting in the following 

equation: 
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where µt is the turbulent viscosity and k is the turbulent kinetic energy term. 
 

The Reynolds-Averaged viscous stress tensor below is defined for incompressible, 

Newtonian fluids: 
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 The major drawback to Reynolds-averaging is the occurrence of higher order correlations 

between the mean and turbulent flow equations thus requiring a ‘closure scheme’ for these 

correlations or unknown turbulent stresses. Reynolds stress scheme, turbulent diffusion 

model, and two equation models are examples of the numerous closure models utilized for 

the RANS approach to model turbulent flow. Turbulence models in CFD codes solve the 

nonlinear Reynolds stress tensor in the Navier-Stokes equation by approximating turbulent 

flow conditions for the viscous dissipation and kinetic energy transfer. Turbulent viscosity, 
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µt, and turbulence kinetic energy, k, are be estimated by electing a turbulence model 

suitable for the defined conditions of the numerical simulations. 

 ANSYS-CFX has a number of different turbulence models, such as the k-ε 

turbulence model. The k-ε turbulence model solves the equations for k, the turbulent 

kinetic energy, and ε, the dissipation rate of k.  The dissipation rate of k or ε is also defined 

as the amount of k per mass and time converted to internal fluid energy by viscous motion.  

Several research groups have used the k-ε turbulence model for CFD simulations to design 

their artificial heart pumps [60, 62, 63].  Along with the k-ε model, we selected a scalable 

wall function to characterize and resolve wall flow conditions. 

 
3.2.4.4 Blood Properties 
 
 Constant viscosity values were defined for each simulation. The pump model and 

patient specific models were held at a constant viscosity value of 0.0035 kg/m*s 

corresponding to a hematocrit of approximately 33%, which reasonably represents 

pediatric patients suffering from congenital heart disease [70].  Hematocrit influence 

studies were conducted on the idealized TCPC model for three blood viscosities: 0.0035 

kg/m*s, 0.005 kg/m*s and 0.0065 kg/m*s corresponding to a hematocrit of 33%, 45% and 

55% respectively [62, 71]. A constant fluid density of 1050 kg/m3 was also applied to all 

simulations.  

The behavior of the blood in these simulations was assumed to be Newtonian [69]. 

At a constant viscosity Newtonian fluids demonstrate a linear relationship between shear 

stress and shear strain rate while non-Newtonian fluids exhibit a nonlinear relationship 
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between shear stress and shear strain rate. Though the heterogeneous composition of blood 

insinuates non-Newtonian behavior, Merrill et al. [72] experimentally found blood plasma 

to behave with Newtonian characteristics at a viscosity of approximately 1.2cP. Cokelet et 

al. [73, 74] experimentally determined that low hematocrit levels, approximately less than 

50%, blood plasma demonstrates a linear relationship between shear stress and shear strain 

rate, thus supporting Merrill et al. and confirming the assumption of Newtonian behavior 

as acceptable.  

 
3.2.5 Blood Damage Analysis 
 

A blood damage analysis was performed to consider the potential for hemolysis 

and thrombosis for this blood-contacting intravascular blood pump.  This blood damage 

model has been widely employed as a predictive tool in the development of several rotary 

blood pumps [71, 75, 76]. We used a blood damage technique that considers the three-

dimensional flow field and calculates a scalar stress (σ), which includes the six 

components of the stress tensor and represents the level of stress experienced by the blood 

[77]: 

 

( )
2/1

22

6
1







 +−= ∑ ∑ ijjjii σσσσ                 [10] 

 

We utilized a maximum stress value of 425 Pa for 600 milliseconds as the design criterion 

in the development of axial flow VADs [25, 61, 62, 75]. We also examined fluid 

streamlines as indicative of numerically predicted fluid residence times within this 
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intravascular blood pump. Using a power law relationship between the scalar stress level 

and the exposure time, a blood damage index was estimated for the selected models [76], 

according to:  

 

βασ TCHbdHb ⋅⋅=/                 [11] 

 

where Hb is the hemoglobin content, dHb signifies the change in hemoglobin content due 

to blood trauma, σ corresponds to the scalar stress, T is the exposure time to the scalar 

stress levels, and C, α, and β reflect proportionality constants that are obtained by 

regressing experimental data.  The accumulation of stress and exposure time was summed 

along the streamlines. This approach provides a statistical estimate of damage to blood 

cells traveling through this blood pump, according to the following power law equation: 

∑ ∆⋅⋅= −
outlet

inlet
txD 765.0991.16108.1 σ                [12] 

where D represents the blood damage index and indicates a ‘probability’ of damage to red 

blood cells; t corresponds to the stress exposure time; and inlet and outlet symbolize the 

entrance and exit faces in the CFD model, respectively. This model only examined the 

relationship between scalar stress and exposure time to the level of stress for each particle; 

the analysis incorporated adiabatic and isothermal conditions.  To incorporate the stress 

history of the particles (cells), a Lagrangian tracking method was used.  The particle 

displacement was calculated using forward integration of the particle velocity over the time 

step (δt): 
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where x signifies the displacement and the superscripts o and n correspond to old and new 

values, respectively, as the analysis moves forward along the streamlines.  The numerical 

constants in Equation 3, relating the stress to the exposure time, were obtained by 

regression of experimental data in a Couette viscometer with an exposure time of 0.0034 to 

0.6 seconds for fluid stresses of 40 to 700 Pa [76, 78].  This range of investigation is 

comparable to the flow conditions and stress levels found in blood pumps [76, 78]. We 

seek a blood damage index below 2% for our target design [79]. Table 4 lists the details of 

this damage analysis, including the case number, number of particles released at the inlet 

port and operating conditions. 

 

Table 4: Blood Damage Operational Conditions. Blood damage analyses were 
performed on the idealized TCPC model.  

 

Normalized Index of Hemolysis: 

Koller and Hawrylenko [80] developed an equation that is routinely used to express 

blood damage in the experimental setting as a normalized index of hemolysis (N.I.H): 

Blood Damage Cases Flow Rate (LPM) Rotational Speed (RPM) Fluid Viscosity (cP) Number of Particles 

Case 1 3.5 5000 5 350 

Case 2 3.5 5000 3.5 350 

Case 3 3.5 4000 3.5 350 
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where fHb∆  is the measured increase in plasma free Hb concentration (g/L) during the test 

period, ∆t represents the duration of the test period (min), Ht denotes the hematocrit (%), V 

corresponds to the blood volume in the test circuit (L), and Q signifies the flow rate 

(L/min).  This equation is employed in designing heart pumps as well as other blood-

contacting medical devices [81, 82]. The in vitro N.I.H values can be related to the blood 

damage index according to the following equation [83].   

))(00015.0(.. DHIN =                       [15] 

We utilized this empirical relationship to estimate the normalized index of hemolysis in the 

computational models that were analyzed in this study and to compare these calculated 

N.I.H values to clinically used pumps. 

 

3.2.6 Energy Loss Calculations 
 

To assess the impact of the blood pump in the IVC on the total energy of the 

cavopulmonary flow conditions, we used the simplified control volume approach to 

calculate the energy losses through TCPC configuration with and without the pump [65]. 

As a common approach used when considering surgical optimization of the TCPC, this 

analysis allowed for the estimation of the energy loss or gain in the cavopulmonary 

configuration, according to the following equation: 

( ) ( )∑ ∑ ∑−=+−= outletouttotalinletintotaliiikkstaticloss QPQPAnuuuPE __)5.0( ρ     [16] 
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where  iistatictotal uuPP ρ5.0+=       [17] 

                                                                                                        [18]                                        

In the aforementioned equations, ρ corresponds to the fluid density, Pstatic is the static fluid 

pressure, ui symbolizes the components of the velocity vector, ni is the components of the 

outward surface normal vector of the control surfaces, Eloss represents the rate of energy 

consumption within the control volume, Ptotal is the total pressure including the static 

pressure component in addition to the kinetic energy component, and Qi is the flow rate at 

an inlet or outlet. A model of the TCPC alone with no pump in the IVC was created to 

directly compare the energy calculations to the model of the TCPC with a blood pump 

(impeller and diffuser) in the IVC. 

 
3.2.7 Simulation Execution 
 
 Steady state simulations were completed on the idealized TCPC model and patient 

specific TCPC model with and without the axial flow blood pump inserted into the IVC.   

 
3.2.7.1 Steady State Simulations 

 Over 900 numerical simulations were performed as part of this thesis project. Three 

main categories of operating conditions were investigated for both the idealized and patient 

specific TCPC models: blood flow rate, pulmonary arterial pressure, and pump rotational 

speed.  

 Blood flow rate considerations are critical to the development of any cardiovascular 

assist device.  The average resting cardiac output (CO) for pediatric and adult patients 

ranges from 1 to 8 liters per minute (LPM) [12, 61, 65]. Venous return (VR), or the flow of 

iii AuQ =
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deoxygenated blood from the body back to the heart, emerges to the cardiac musculature 

via two great caval veins: the superior vena cava (SVC) and the inferior vena cava (IVC). 

The superior vena cava returns deoxygenated blood from the head and upper body and the 

inferior vena cava returns deoxygenated blood from the torso and lower body. Under 

steady-state conditions VR equals CO where VR is the sum of SVC and IVC flows.  

Deriving from anatomical characteristics, VR is dominated by IVC flow for pediatric and 

adult patients and almost equally shared by IVC and SVC flows for newborns and infants.  

For infants IVC:SVC flow is approximately 50:50 and for pediatric and adults IVC:SVC 

flow is approximately 60:40 to 70:30 [12, 65]. The axial flow blood pump simulated for 

this thesis work is designed to augment venous return of pediatric and adult Fontan 

patients and consequently numerical simulations were conducted for flow rates of 1 to 8 

LPM distributed 60% IVC flow and 40% SVC flow.  

 Pulmonary arterial pressure considerations were also essential to accurate 

numerical modeling of the Failing Fontan physiology. On account of the Fontan single 

ventricle driving systemic blood flow, VR is transmitted directly to pulmonary circulation. 

Considering the cardiovascular system as a closed system, IVC and SVC flow must 

overcome pulmonary vascular resistance resulting in an increased after-load on the great 

veins whereas in normal biventricular circulation mean caval pressures are less than 10 

mmHg and mean arterial pressures are at least 15mmHg [12]. This thesis blood pump is 

designed to provide an after-load reducing agent to improve the Failing Fontan 

hemodynamics and therefore must be numerical simulated under elevated pulmonary 
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resistance conditions. Numerical simulations were conducted for the pressure range 10 

mmHg to 26 mmHg in the left pulmonary artery (LPA) and right pulmonary artery (RPA). 

 The third major operational condition investigated was the axial flow blood pump 

rotational speeds. Pump rotation is used to impart kinetic energy on blood flow and is 

influential to the pump’s ability to alleviate the poor hemodynamics of the Fontan 

physiology. Pump performance to augment venous return is a function of rotational speed 

and must be considered over a range of pressures and flow rates. Optimization of pump 

design with regard to implementation of diffuser blades and diffuser bladed orientation 

were also determined in part by rotational speed influence. Numerical simulations were 

conducted for rotational speeds of 1000 to 8000 RPM. 

 In order to determine the effect of blood viscosity on pump performance, steady 

state numerical simulations completed on the idealized TCPC model were performed with 

3 blood viscosities: 3.5cP, 5.0 cP, and 6.5 cP corresponding to hematocrits of 33%, 45%, 

and 55% respectively [70]. Parameters included all three major operational conditions as 

disclosed in the preceding paragraphs.   

 Fluid particle streamlines and scalar stress values were examined to predict the 

potential of hemolysis and thrombosis due to blood contact with the pump. 350 fluid 

particles were released at the IVC inlet of the idealized TCPC model for each of 3 blood 

damage cases aforementioned in Table 5. Of the 3 damage cases reviewed, 1 was at the 

pump design point (Case II) and 2 were off-design point (Case I, III). Off-design point 

damage indices were examined since the pump will often be operating off-design. Particle 
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residence time on the streamline and scalar stress exposure during contact with the pump 

and irregular flow patterns were used for the damage index calculations.   

 Energy gain calculations for both the idealized TCPC model and the patient 

specific TCPC model were completed by conducting simulations on the TCPC models 

without the axial flow blood pump. Parameters for the model simulations without pump 

included pulmonary arterial pressures of 14 mmHg, fluid viscosity of 3.5 cP, and flow 

rates of 1 to 4 LPM in the SVC and IVC. 

 
 
3.2.7.2 Quasi-Steady State Studies 
 
 A quasi-steady state study was performed on the idealized TCPC model with the 3-

bladed impeller and 4-bladed diffuser axial flow blood pump. The purpose of this study 

was to determine the optimal position for the diffuser blades to maximize pressure 

generation and to reduce flow vorticity at the outlet. The diffuser blades were 

incrementally rotated by 3° and a new grid was created for the diffuser blades at each 

rotational position. The new grid at each rotation increment was of the same size (within 

1%) and of the same grid quality as compared with the original diffuser model. The new 

meshes for the diffuser at each degree increment were then incorporated into the overall 

model and a new simulation was completed. Due to the four bladed geometry of the 

diffuser region, the achievement of a 90° incremental rotation captures the quasi-steady 

performance of the blades. Additional rotations above 90° would be unnecessary given the 

symmetry of the diffuser region. The boundary conditions in these simulations remained 

the same as for all other simulations conducted during this thesis. 30 different rotational 
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geometries and meshes were generated and evaluated for the diffuser region. The 

numerical simulations was conducted on the idealized TCPC model with a flow rate of 2 

LPM, pulmonary arterial pressures of 14 mmHg, pump rotational speed of 5000 RPM, and 

blood viscosity of 3.5 cP correlating to a hematocrit of 33%. 

 

3.2.7.3 Simulations Completed 

 Numerical simulations completed for pump performance in the idealized TCPC 

model and patient specific TCPC model are summarized in Table 5, 6 and 7 below. 

 

Table 5: Summary of steady state numerical simulations. 

Fontan Model Pump Rotational Speed LPA/RPA Pressure Flow Rate Blood Viscosity 

Idealized TCPC 1000 -8000 RPM 10 – 26 mmHg 1 – 8 LPM 3.5cP, 5cP, 6.5cP 

Patient Specific TCPC 1000 – 5000 RPM 14 – 22 mmHg 1 -5 LPM 3.5cP 

 

Table 6: Summary of quasi-steady state numerical simulations. Simulations were 
completed with the idealized TCPC model. 

Parameter Value 

Impeller Region 3 Blades 

Diffuser Region 4 Blades 

Rotational Increments 3o 

Flow Rate 2 LPM 

LPA/RPA Pressures 14 mmHg 

Pump Rotational Speed 5000 RPM 

Blood Viscosity 3.5 cP 
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Table 7: Summary of blood damage analyses numerical simulations. Simulations were 
completed with the idealized TCPC model at steady state.  

 

3.3 Chapter Summary 

 This chapter discussed the software employed to design and conduct numerical 

analyses on a minimally invasive approach for providing hemodynamic relief and a bridge-

to-recovery, -transplant, or -surgical reconstruction to patients with Fontan physiology. 

The axial flow blood pump was numerically simulated in an idealized TCPC model and 

patient specific TCPC model for performance evaluation under varying physiologic 

conditions and pump rotational speeds. Tablatures of all completed simulations were 

provided. The subsequent chapter provides results for both modalities investigated for this 

thesis work.   

Blood Damage Cases Flow Rate  Rotational Speed  Fluid Viscosity  Number of Particles 

Case 1 3.5 LPM 5000 RPM 5 cP 350 

Case 2 3.5 LPM 5000 RPM 3.5 cP 350 

Case 3 3.5 LPM 4000 RPM 3.5 cP 350 
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CHAPTER 4 RESULTS 
 

 

4.1 MAST Clinical Trial Results 

Results from this clinical trial with two patients (n=2) agree with literature in that 

MAS trousers successfully augmented venous return, systemic pressure, cardiac output, 

and blood pressure [55, 57, 84, 85]. Both patients demonstrated significant augmentation 

in pressure levels during external pressure application. Common trends with both patients 

included an increase in cardiac pressure during inflation holds and return to baseline during 

deflation holds. The cyclic inflation/deflation cycles are clearly visible for patient 1; 

patient 2 data reflected the cyclic inflation/deflation during the upper range of external 

pressure application. This discontinuity between patient cardiac reactions is discussed in 

full in the discussion section.  

4.1.1 Pressure Augmentation 

 The three external pressures were applied to the lower limbs of both patients and 

abdominal section of patient 1 were determined based upon mean baseline calculations. 

Mean baseline diastolic pressure for patient 1 was 47 mmHg; external pressure application 

consisted of cyclic inflation/deflation at 37 mmHg, 47 mmHg, and 57 mmHg with 

rudimentary rest periods between each level. Patient 2 had a mean baseline diastolic 

pressure of 79 mmHg and the external application was cycled at 69 mmHg, 79 mmHg, and 
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89 mmHg with similar rests periods between each level. Table 8 below outlines patients’ 

baseline measurements and applied external pressure levels.  

Table 8: Patient baseline and applied external application data. 

Patient Age Gender Cardiac Anatomy 
Baseline Aortic Pressures (mmHg) 1st Pressure 

Cycle 
(mmHg) 

2nd Pressure 
Cycle 

(mmHg) 

3rd Pressure 
Cycle 

(mmHg) 
Systolic 

BP Diastolic BP MAP 

1 37 female Extra-Cardiac Fontan 94 47 63 37 47 57 

2 24 male Intra-Atrial Fontan 117 79 92 69 79 89 
 

Patient 1 developed measurable pressure augmentations during all three external 

pressure levels; increase in cardiac pressure ranged from approximately 9-15 mmHg in 

systolic blood pressure, 4-10 mmHg in diastolic blood pressure, and 5-11 mmHg in 

calculated VMAP. Average hemodynamic improvements to patient 1as determined by 

pressure increase ranged from 10% during the first cycle at 37 mmHg external pressure to 

20% during the third cycle conducted at 57 mmHg external pressure. Figure 12 illustrates 

average pressure augmentation measured at the aortic arch as a function of external 

pressure application.  

 

Figure 14: Patient 1 
aortic augmentation to 
baseline pressures as a 
function of applied 
external pressure.  
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Patient 2 also developed detectable pressure rises during cycles of external pressure 

application demonstrating systolic pressure augmentation of approximately 10 -13 mmHg, 

diastolic increase of 5-7.5 mmHg and improvements to calculated VMAP of 3 – 9 mmHg. 

Patient 2 reported lower levels of hemodynamic improvement with dynamic 

inconsistencies and unexpected trends discussed further in Chapter 5. Figure 13 illustrates 

the average increase in blood pressure as a function of the external pressure application. 

Table 9 below outlines the average pressure augmentation for both patients as compared to 

the initial baseline measurements.  

 

 
 

 
 
 
 
 
 

Figure 15: Patient 2 aortic augmentation to baseline pressures as a function of 
applied external pressure.  
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Table 9: Average augmentation to systolic, diastolic, and calculated VMAP blood 
pressures of patient 1 and patient 2 as compared to baseline measurements. Tabulated 
pressures reflect measured quantities obtained at aortic arch of both patients. 

 

Cycle 
Number 

External 
Pressure 

Application 
(mmHg) 

Systolic 
BP 

(mmHg) 

Systolic 
Augmentation 

(mmHg) 

Systolic 
Augmentation 

(%) 

Diastolic 
BP 

(mmHg) 

Diastolic 
Augmentation 

(mmHg) 

Diastolic 
Augmentation 

(%) 

MAP 
(mmHg) 

MAP 
Augmentation 

(mmHg) 

MAP 
Augmentation 

(%) 

Pa
tie

nt
 1

 Baseline 0 82 -- -- 47 -- -- 59 -- -- 
1 37 91.6 9.6 11.7 51.1 4.1 8.7 64.6 5.6 9.5 
2 47 94.9 12.9 15.7 54.2 7.2 15.3 67.8 8.8 14.9 
3 57 97.3 15.3 18.7 57.1 10.1 21.5 70.5 11.5 19.5 

Pa
tie

nt
 2

 Baseline 0 117 -- -- 79 -- -- 92 -- -- 
1 69 127.2 10.2 8.7 84.5 5.5 7.0 98.7 6.7 7.3 
2 79 130.1 13.1 11.2 86.5 7.5 9.5 101 9 9.8 
3 89 127 10 8.5 85.6 6.6 8.4 98.9 6.9 7.5 

 

 

All systolic and diastolic pressures are functions of aortic pressure obtained from a 

catheter mounted pressure transducer placed in the aortic arch of both patients. Increases in 

aortic pressures were noticeable in patient pressure waveforms generated from the pressure 

transducer floating in the aorta. Figure 16 illustrates the increase in aortic pressures due to 

external pressure application for patient 1 and patient 2 during a selected inflation cycles. 

Figure 17 illustrates the calculated aortic MAP augmentation during 1 inflation/deflation 

cycle for patient 2. 
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Figure 16: Sample pressure data from external pressure augmentation obtained 
during cardiac catheterization. A) Patient 1 during upstroke of external pressure 
application at 47 mmHg. B) Patient 2 during upstroke of external pressure application at 69 
mmHg.  
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Figure 17: Aortic MAP augmentation during 1 cycle for patient 2. 
 

 

4.2 Numerical Simulation Results 

 Figure 18 illustrates the percutaneous, magnetically levitated and rotated axial flow 

blood pump designed as the minimally invasive approach for augmentation of Failing 

Fontan hemodynamics. Over 900 numerical simulations were completed to optimize pump 

design and test pump performance, quantifying its effectiveness at augmenting flow and 

providing hemodynamic relief to Fontan patients. Simulations were conducted in 2 extra-

cardiac three dimensional models, an idealized TCPC and a patient specific TCPC 

generated from MRI data, investigating multifarious physiologic conditions including 
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combined IVC and SVC flow rates of 1 to 7.5 LPM, pulmonary arterial pressures (LPA 

and RPA) of 10 to 26 mmHg, and blood viscosities of 3.5cP, 5.0 cP, and 6.5cP. The follow 

sections detail the results from these simulations.  

 
Figure 18: Intravascular, magnetically levitated and rotated, axial flow blood pump. 
Pump is designed to provide a minimally invasive method to alleviate poor hemodynamic 
associated with Failing Fontan physiology.  
 
  

4.2.1 Pump Pressure Curves 

The pressure generation across the intravascular blood pump in the idealized TCPC 

model was determined for flow rates of 1 to 7.5 LPM and pump rotational speeds of 3000 

to 8000 RPM.  Figure 19 illustrates the hydraulic performance of the idealized TCPC 

model. Each data point is indicative of a steady state simulation at a specific flow rate and 

rotational speed. The pump delivered a range of pressure rises from 2 to 26 mmHg for 

these operating conditions. Additionally, pressure rise across the pump increased with an 

increase in rotational speed and decreased with an increase in flow rate, as to be expected. 

The pressure curves demonstrate the axial flow pump’s capabilities to provide acceptable 

pressure generation for the physiologic conditions.  
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Figure 20 compares the axial flow blood pump design with and without a set of 

diffuser blades located at the pump head.  The model with diffuser blades operated at 

reduced rotational speeds and generated more than twice as much pressure head across the 

pump. The pump with diffuser blades outperformed the pump without diffuser blades over 

both investigated units (flow rate and rotational speed) thus demonstrating an improvement 

to previous pump design work.  

Figure 19. CFD predictions of the hydraulic performance of the blood 
pump in the Idealized TCPC model. Pressure generation across the axial 
flow blood pump with impeller and diffuser blades. Simulations were 
completed with flow rates of 1 to 7.5 LPM, rotational speeds of 3000 to 
8000 RPM, and pulmonary arterial pressure set at 14 mmHg. 
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The diffuser blades increased pressure rise across the pump by reducing the fluid 

velocity thus transferring energy to pressure as in accordance with conversation laws. 

Figure 21 below illustrates the reduction in fluid velocity of blood flow exiting the 

impeller region and associated total pressure contour across the pump. Fluid velocity 

augmented by rotating impeller blades was reduced by the counter orientated rotating 

diffuser blades, transferring the velocity augmentation to pressure augmentation.  

Figure 20: CFD predictions of the hydraulic performance of the blood pump in 
the Idealized TCPC model. Two blood pump designs were considered. One model 
had the protective cage, catheter, and an impeller blade set only. The other model 
included a set of diffuser blades at the outflow of the pump. Flow rates of 1 to 6.5 
LPM were simulated for a wide range of rotational speeds of 4000 to 12,000 RPM.  
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Figure 22 illustrates pressure rise across the pump and pressure decrease at the IVC 

inlet as a function of pump rotational speed for the idealized TCPC.  Conditions for the 

comparison included flow rates of 1 to 4 LPM for rotational speeds of 2000 to 6000 RPM 

and pulmonary pressures of 10 to 26 mmHg. The IVC pressure is decreased as the pump is 

rotated faster, as would be expected. Additionally, higher arterial pressures lead to higher 

IVC pressures. 

 

 
Figure 22: Pressure rise across the axial blood pump in the idealized TCPC model and the 
IVC pressure as a function of increasing rotational speed. (A) This graph illustrates the trends 
of the pressure rise across the pump to increase with increasing rotational speeds, as would be 
expected. In addition, the pressure rise is lower for a higher flow rate at a given rotational speed, 
as would theoretically be expected. (B) This graph shows the impact of the blood pump on the 
IVC pressure on the inlet side of the pump as a function of increasing rotational speed and 
pulmonary arterial pressures at a blood flow rate of 5 LPM.  

 
 

Figure 21: Diffuser blades reduce fluid velocity and increase pressure.  
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The pressure generation across the intravascular blood pump in the anatomical 

patient specific TCPC model was determined for flow rates of 1 to 5 LPM and pump 

rotational speeds of 2000 to 5000 RPM.  Figure 23 illustrates the hydraulic performance of 

the anatomical TCPC model. The pump delivered a range of pressure rises from 1 to 7 

mmHg for these operating conditions. As observed in the idealized TCPC model, pressure 

rise across the pump increased with an increase in rotational speed and decreased with an 

increase in flow rate.  

 

 

 

Figure 24 demonstrates the influence of pump rotational speed on IVC inlet 

pressure for the anatomical TCPC model. As expected, pressure at the IVC inlet decreased 

as a function of increased pump rotational speeds. Parameters for these results included 

Figure 23: CFD predictions of 
the hydraulic performance of 
the blood pump in the Patient 
Specific TCPC model. Pressure 
generation across the axial flow 
blood pump with impeller and 
diffuser regions. Data represents 
simulations conducted at 
LPA=RPA=14 mmHg for flow 
rates of 1 to 5 LPM and pump 
rotational speeds of 2000 to 5000 
RPM. 
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flow rates of 1 to 5 LPM, pump rotational speeds of 2000 to 5000 RPM and 

LPA=RPA=14mmHg.  

 

 

  

 

 

4.2.2 Flow Profile 

 Careful analysis of flow fields are critical to the development of a axial flow pump 

designed for augmentation of the cardiovascular system. Irregular flow patterns such as 

vortices, eddies, and flow stagnation could increase blood exposure to high levels of shear 

stress activating thrombolytic factors or erythrocyte hemolysis. Figure 25 below illustrates 

the flow profiles for the axial flow blood pump with and without diffuser blades. The 

streamlines for both pump models were generated at a fluid flow rate of 3.5 LPM and 

pump rotational speeds of 5000 RPM. The inclusion of the diffuser blades accomplished a 

reduction in swirling and vortices at the pump outlet, but did not complete eliminate the 

irregular flow. Additionally the streamlines of the pump model with a diffuser exhibit 

Figure 24: Pressure rise across the axial blood pump in the patient specific TCPC model and the 
IVC pressure as a function of increasing rotational speed. (A) Pressure rise across the pump to 
increases with increasing rotational speeds, as would be expected. Pulmonary arterial pressures were set 
to 14mmHg for these comparisons. (B) This graph shows the impact of the blood pump on the IVC 
pressure on the inlet side of the pump as a function of increasing rotational speed and pulmonary arterial 
pressures at a blood flow rate of 5 LPM. 

 



68 

lower particle velocities at the outlet as compared to the pump model without a diffuser, 

indicating a reduction in fluid velocity and thus an increase in pressure as confirmed in the 

previous section.  

 
Figure 25: Reduction in Vorticity due to diffuser blades. The diffuser blades are able to 
redirect flow at the outlet and reduce the outflow vorticity, however not able to eliminate 
the flow swirl as intended.  
 

Fluid streamlines through the idealized TCPC are displayed in Figure 26 and 

anatomical patient specific TCPC model 1 with and without the intravascular blood pump 

are displayed in Figure 27.  The fluid streamlines correspond to operating conditions of 

pulmonary pressures of 14 mmHg, blood flow rate of 3.5 LPM, and pump rotational speed 

of 5000 RPM. Strong rotational flows were found at the outlet of both pump models, 

dissipating some through the pulmonary arteries. 
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Figure 26: Fluid streamlines for the idealized TCPC model with and without the 
intravascular pump. Idealized model streamlines without pump (A) display high velocity 
turns at the outer boundaries of caval veins and pulmonary arteries connection points. (B) 
Velocity increases at IVC outlet due to axial flow pump. 

 

 

Figure 27: (A) Fluid streamlines for patient specific TCPC model without the 
intravascular blood pump. Lowest fluid velocities are observed at the inner boundaries of 
the TCPC. (B) Increased fluid particle velocities observed due to axial flow blood pump.  
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4.2.3 Scalar Stress Distributions 

Scalar Stress represents a calculated weighted average of the shear and normal 

stresses and is useful for determining the level of blood trauma during pump operation. 

Figure 28 displays the scalar stress distribution through the intravascular cavopulmonary 

pump model along the rotor hub. At the design point, the highest fluid stresses of 125 Pa 

were estimated to exist along a small regional surface area at the leading edge of the 

impeller blades and more substantially along the impeller blade tips.  

 

Similarly, Figure 29 illustrates the scalar stress levels along the surfaces of the 

protective cage of filaments. The magnitude of the scalar stress remained below 120 Pa 

with the highest stress regions in closer proximity to impeller blade tips. These regions of 

high scalar stress are attributed to the interaction between the impeller blade and cage 

filaments.  

Figure 28: Scalar stress estimations on 
the impeller and diffuser hub surfaces. 
The magnitude of the scalar stress 
remained below 125 Pa with the highest 
stress regions along the impeller blade tip 
surface. Higher stresses were predicted at 
the blade tip when in closer proximity to 
the protective cage filaments. 
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4.2.4 Blood Viscosity Effects 

In consideration of the target patient population and their varying blood viscosity 

values, Figure 30 illustrates the results of the viscosity study performed on the Idealized TCPC 

model and the impact on pump performance. It was determined that IVC pressure varied little 

for higher viscosity values at lower rotational speeds. This sensitivity appeared to increase to 

approximately 8.5% at 5000 RPM. The pressure rise across the pump was also not sensitive to 

increasing viscosity values at all rotational speeds with a deviation averaging 4.6%. 

Figure 29: Scalar stress estimations on 
the cage filament surfaces. The 
magnitude of the scalar stress remained 
below 120 Pa with the highest stress 
regions of closer proximity to impeller 
blade tips.  
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4.2.5 Quasi-Steady State Study 

In order to detect the optimal axial rotational orientation of the impeller and 

diffuser blades a quasi-steady state study was performed for the cavopulmonary blood 

pump. Figure 31 illustrates the computational predictions from the quasi-steady analysis of 

the diffuser blades and their impact on pressure generation as a function of rotation 

position. Thirty simulations were completed for rotational increments of 3 degree. This 

study was performed at 5000 RPM and 2 LPM. According to the numerical findings, the 

Figure 30: Effect of Blood 
Viscosity on Pressure in the 
IVC and Pressure Rise across 
the Pump as a function of 
pump rotational speed. (A) 
Adjustments to IVC pressure due 
to the pump rotational speeds 
varied little for higher fluid 
viscosity values, indicating the 
versatility of the pump to 
accommodate a range of possible 
patient conditions. (B) Pressure 
rise across the pump was 
maintained over all rotational 
speeds without reduction or 
measurable change due to 
increasing viscosity. 
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diffuser blades having a rotational position of 12 degree produced the largest pressure 

generation across the pump. The predicted improvement in pressure rise was found to be 

6%.  The diffuser blades having a rotational position of 57 degree generated the lowest 

pressure across the blood pump. A pressure reduction at the 57 degree position was found 

as compared to all other rotational positions. In comparison of the pressure generation at 

the initial design position at 0 degree (10 mmHg), the 57 degree rotation of the diffuser 

blades resulted in a pressure generation decrease of 37% (6.3 mmHg). 

 
 

4.2.6 Blood Damage Analysis 

In addition to the quasi-steady study, a blood damage analysis was conducted to 

consider the potential for hemolysis from blood contacting the pump. This approach 

releases massless, inert particles at the inlet and tracks using streamlines their exposure 

time to fluid stresses. It uses a power law relationship between the scalar stress values and 

the exposure time to estimate an accumulated blood damage index for each particle. The 

blood damage analysis was completed on the idealized TCPC model to approximate the 

level hemolytic and thrombotic factors incurred due to blood contact with the intravascular 

Figure 31:  Quasi-steady study of the 
rotational impact for the diffuser 
blades. This study was performed at 
5000 RPM and 2 LPM. The diffuser 
blades having a rotational position of 
12 degree produced the largest 
pressure generation across the pump. 
The diffuser blades having a rotational 
position of 57 degree generated the 
lowest pressure across the blood pump. 

12o 

57o 
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blood pump. Figure 32 displays the results of the numerical blood damage analysis. Three 

cases with a pump flow rate of 3.5 L/min were considered in this analysis: 1) a fluid viscosity 

of 5 cP and rotational speed of 5000 RPM, 2) a fluid viscosity of 3.5 cP and rotational speed of 

5000 RPM, and 3) a fluid viscosity of 3.5 cP and rotational speed of 4000 RPM. Table 10 lists 

these cases and their corresponding results, as discussed in the subsequent sections. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 32: Blood damage indices and particle residence times for the idealized TCPC 
model. Intravascular blood pump operating conditions, fluid viscosities, and LPA/RPA 
arterial pressures as specified in Table 4. (A) Case I, (B) Case II and (C) Case III results.  
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Table 10:  Blood damage analysis details and finding for the Intravascular 
Axial flow blood pump and the Idealized TCPC model.   

 
 
4.2.7 Energy Gain 

In addition to the blood damage analyses, energy losses due to the cavopulmonary 

connection are of general concern due to associated pathophysiologies deriving from the 

loss of the pulmonary ventricle. A simplified control volume approach was used to 

calculate the hydraulic energy of the both TCPC models with and without the axial flow 

blood pump placed in the IVC. Figure 33 demonstrates the energy gain due to mechanical 

assistance of the idealized TCPC with the pump design having an impeller and diffuser 

blade set. These simulations occurred at an operating condition with left and right 

pulmonary arterial pressures of 14 mmHg, a fluid viscosity of 3.5 cP, a range of flow rates 

from 1 to 3.5 L/min, and two rotational speeds of 4000 and 5000 RPM. In comparison to 

the energy loss associated with the idealized TCPC without mechanical support, the 

predictions indicated that the use of the pump to mechanically augment pressure in the 

IVC increases the hydraulic energy of the TCPC as a function of both increasing rotational 

speed and flow rate.  

Blood Damage 
Case Number 

Flow 
Rate 
(LPM) 

Rotational 
Speed 
(RPM) 

Fluid 
Viscosity 
(cP) 

Number 
of 
Particles 

Mean 
Damage 
Index 

Maximum 
Damage 
Index 

Mean 
Residence 
Time(sec) 

Maximum 
Residence 
Time(sec) 

 
Case 1 
 

 
3.5 

 
5000 

 
5 
 

 
350 

 
0.110% 

 
0.990% 

 
0.2724 

 
0.3740 

 
Case 2 

 
3.5 

 
5000 

 
3.5 
 

 
350 

 
0.130% 

 
0. 800% 

 
0.3754 

 
0.3990 

 
Case 3 
 

 
3.5 

 
4000 

 
3.5 

 
350 

 
0.0549% 

 
0.280% 

 
0.4222 

 
0.5160 
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Figure 33: Energy Gain due to mechanical assistance of the idealized TCPC with a 
blood pump in the IVC. Mechanical assistance of the IVC pressure enhanced the 
hydraulic energy within the TCPC as compared to conditions without pump support. 

 

Figure 34 demonstrates the energy gained due to mechanical assistance with the 

pump as compared to the energy lost due anatomy and physiology in the patient specific 

TCPC model. These calculations were made for the following operating conditions: left 

and right pulmonary arteries at 14mmHg, flow rates from 1 to 4 LPM, and pump rotation 

speed of 5000 RPM. As observed in the idealized energy calculations, the introduction of a 

circulatory assist device to the Fontan anatomy significantly increases the hydraulic energy 

of blood flow thus mitigating the loss from a lack of pulmonary ventricle. 
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Figure 34. Energy Gain due to mechanical assistance of the patient specific TCPC with a 
blood pump in the IVC. Mechanical assistance of the IVC pressure enhanced the hydraulic 
energy within the patient specific TCPC as compared to conditions without pump support. 

 

 

4.3 Chapter Summary 

 Based upon the results of numerical simulations of the two pump models and two 

extra-cardiac Fontan models, the intravascular axial flow blood pump was optimized in 

design as follows: an impeller with 3 counterclockwise helically wrapped blades, a diffuser 

region with 4 clockwise helically wrapped blades at a 12o offset to the impeller, and 

protective cage with 5 filaments. The optimized pump generates pressure rises of 2 to 25 

mmHg for flow rates of 1 to 7.5 LPM and rotational speeds of 2000 to 8000 RPM, reduces 

irregular flow perturbations at the pump outlet, and demonstrates low probabilities for 
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erythrocyte damage. Table 11 outlines the design specifications and numerical results of 

the optimized intravascular, axial flow blood pump.   

Table 11: Summary of Axial Flow Blood Pump Design Specifications and Results   
Design Specifications and Investigations Numerical Results 

Impeller Blade Count 3 

Impeller Blade Orientation Counter-clockwise 

Diffuser Blade Count 4 

Diffuser Blade Orientation Clockwise 

Impeller-Diffuser Optimal Rotational Offset 12o 

Axial Flow Blood Pump Pressure Generation 1 - 26 mmHg 

Blood Flow Rates 1 - 7.5 LPM 

Pulmonary Arterial Pressure 10 -26 mmHg 

Pump Rotational Speed 1000 - 8000 RPM 

Maximum Scalar Stress 125 Pa 

Maximum Blood Damage Index 0.99% 

Mean Blood Damage Index 0.10% 

Maximum Residence Time 0.516 sec 

Mean Residence Time 0.35667 sec 

Maximum Energy Gain (Idealized) 45 mW 

Maximum Energy Gain (Patient Specific) 27 mW 
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CHAPTER 5 DISCUSSION 
 

Fontan and Baudet introduced the total right heart bypass in 1968 [86, 87]. Decades 

prior to their original description, at least 40 different experimental procedures to bypass 

the right heart provided evidence that venous pressure alone could act as the driving force 

for blood flow into pulmonary circulation. The current treatment paradigm for patients 

with univentricular physiology is a staged surgical palliation, leading to a Fontan 

conversion. Several modifications to the Fontan have developed over time with the TCPC 

providing a direct connection from the superior and inferior vena cava to the pulmonary 

arteries. In the absence of a pulmonary ventricle, the blood traveling through the Fontan 

circulation experiences a loss of energy with minimal to no pulsatility as it flows through 

the pulmonary circulation [1-4, 10, 11, 15, 65, 88]. Secondary pathologies due to the new 

“man-made” physiology include reduced preload, diminished exercise capacity, 

supraventricular arrhythmias, protein losing enteropathy, aortopulmonary and veno-veno 

collateral vessels. It has been theorized that the long-term effects of the Fontan paradox 

(caval hypertension and relative pulmonary hypotension) can be reversed through 

mechanical support [22, 49, 61].  

This thesis documented the methods, materials, and results for two mechanical 

cardiovascular assist devices designed to augment the hemodynamics of adolescent and 

adult Fontan patients. A non-invasive method for circulatory support provided via 
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counterpulsation external pressure technology was described in Chapter 2 and the results 

were outlined is Chapter 4. Likewise, the minimally invasive method using an 

intravascular axial flow blood pump inserted into the IVC was described in Chapter 3 with 

numerical simulation results outlined in Chapter 4. Discussions for each method of 

mechanical cardiovascular assist are in the sections below. 

 
5.1 Non-invasive External Pressure Augmentation 
 

The goal of the non-invasive cardiovascular assist modality was to develop and 

design an innovative non-invasive medical device for the prevention and/or treatment of 

pathological implications in postoperative Fontan patients adjusting to their new “man-

made” physiology. This device would provide cardiovascular assistance to patients through 

the augmentation of systemic blood flow to the pulmonary arteries, thus increasing venous 

return and pulmonary perfusion, and reducing cardiac afterload. The device operates 

through the medium of external pressure application to the lower limbs and abdomen, 

forcing forward propulsion of blood towards the heart and pulmonary circulation, 

analogous to muscular contractions during exercise. For this thesis clinical trials were 

completed utilizing retrofitted MAS trousers as the channel for external pressure 

augmentation. Positive results from the clinical trials serve as the clinical feasibility study 

for development of a novel external cardiovascular assist device for patient use at home.  

Subject recruitment began immediately after we received Virginia Commonwealth 

University IRB approval in January 11, 2009 (VCU IRB #HM11906).   
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 Two patient trials were completed during the first year of the IRB approved clinical 

investigation. Clinical trial subject population was limited due to exclusion criteria and 

reduced qualified candidate pool of a unique cohort of cardiovascular defects. The first 

clinical trial occurred February 19, 2009 with Dr. William Moskowitz conducting the 

cardiac catheterization on a 37 year old female single ventricle patient with a TCPC extra-

cardiac Fontan anatomy. Results indicated an increase in pressure of approximately 4 -15 

mmHg for systolic and diastolic pressure measured in the aortic arch. As illustrated in 

Figure 14, trends in patient 1 data demonstrate almost a linear correlation with increases in 

external pressure application providing evidence that the application of external pressure 

increased venous pressures which translated to an increased of blood flow to pulmonary 

circulation and subsequently the aortic arch.  

 In contrast to patient 1, patient 2 did not demonstrate the expected linear correlation 

between the external pressure application and resulting influence in aortic blood pressure. 

Several considerations and speculations can be offered as explanation for the unexpected 

trends exhibited by patient 2. The second clinical trial occurred on October 6, 2009 with 

Dr. William Moskowitz conducting the cardiac catheterization on a 24 year old male single 

ventricle patient with a classical Fontan with the right atrium is preserved, also known as 

an intra-atrial Fontan. During the clinical trial, the abdominal section was neglected due to 

the patient’s medical history of sleep apnea posing as exclusion criteria for any external 

pressure application with possible respiratory constriction affects.  Hepatic vessel 

compliance during pressure application to the lower limbs may account for a portion of the 

pressure dissipation downstream of the heart. The patient’s Fontan anatomy may have also 
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contributed to the reduced response of external pressure application due to compliance of 

the intact right atrium expanding to accommodate the increased volumetric blood flow. 

Additionally during the catheterization, observations were made with patient respirations 

and correlations to patient pulmonary arterial pressures. During deep sleep it was noted 

that the patient’s inspiration and expiration had discernable affects on pulmonary arterial 

pressures, thus insinuating observed pressure augmentation to aortic blood pressure may 

not be independent of respiratory cycle. 

 
 
5.2 Minimally Invasive Intravascular Blood Pump 
 

In support of the development of a minimally invasive cavopulmonary assist 

device, this thesis outlined the results of numerical analyses on an intravascular blood 

pump placed in Fontan TCPC models. The mechanical circulatory device is a collapsible, 

percutaneously inserted, axial flow blood pump designed to function as a bridge-to-

transplant or bridge-to-recovery for adult Fontan patients. Description and placement of 

the pump can be found in Figures 9 with a full detail presented in previous chapters.  

Extensive numerical studies were conducted to test pump performance in an 

idealized TCPC model and a patient specific TCPC model. Left and right pulmonary 

arterial pressures were examined at five pressure points from 10 mmHg to 26 mmHg, blood 

viscosities from 3.5cP to 6.5 cP, and pump rotational speeds from 1000 RPM to 8000 

RPM. The pump demonstrated hydraulic performance as quantified by pressure 

generations of 1 to 25 mmHg over flow rates of 1 to 7.5 LPM. This range of pressure rises 
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and flow rates is sufficient to support an adolescent and adult Fontan patient. Hydraulic 

performance curves were characteristically consistent for varying rotational speeds.  

Fluid viscosity influences were found to be minimal with greater effects found at 

higher rotational speeds as demonstrated in Figure 30 in chapter 4. The low influence of 

higher fluid viscosities on pump performance is important since a majority of Fontan 

patients are polycythemic, thus having a wide range of blood hematocrits. A versatile 

pump design that is not subject to performance losses over a range of blood hematocrits is 

advantageous for Fontan patients. 

Blood damage analyses were performed on three cases, all of which resulted in a 

maximum damage index of less than 1% and maximum residence time of less than 0.52 

seconds indicating a low probability of blood damage due to interaction with the pump. 

Two cases were performed off design point of the pump reflecting the position that the 

pump will often function off ideal design parameters. The majority of tracked particles 

indicated an even lower probability of damage as demonstrated in Figure 32 and Table 10 

in Chapter 4. The maximum blood damage indices also predict a very low N.I.H for these 

operating conditions examined. Blood pumps are designed to maintain an N.I.H level 

below 0.005 g/100L for clinical use. The predicted N.I.H values remained one to two 

orders of magnitude lower than the cutoff limit for clinical use. Table 12 below outlines 

the results from the blood damage analyses as compared to selected clinically available 

adult rotary blood pumps. Estimations indicate that centrifugal blood pumps have damage 

indices of 4% to 6% [79] and axial blood pumps have higher indices, ranging from 19% to 

40% [61].  Based on this comparison and the number of particles used in this study, these 
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results suggest that a majority of the tracked particles have a low probability of damage, 

however blood bag experimentation must be performed to quantify the levels of hemolysis 

for this intravascular blood pump.  

  

 
Table 12: The comparison of blood damage indices and N.I.H values for selected 
adult rotary blood pumps.[51, 61, 89-92]  

Pump Type N.I.H. (g/100L) Damage Index (%) 

Valvo Pump Axial 0.030 200 
MicroMed-DeBakey Axial 0.0028 19 
Biomedicus BP-80 Centrifugal 0.0007 5 
Berlin Incor I Axial 0.006 40 
HeartMate II Axial 0.005 33 
Intravascular Pump* Axial --- 1 

 
 

To analyze the interactive dynamics between the pump and the TCPC, we 

calculated the energy of the total system using a simplified control volume approach.  This 

technique has been commonly used by researchers and clinicians to maximize surgical 

optimization of the TCPC and elucidate new surgical strategies to mitigate hydraulic 

energy losses [65]. Under conditions where no artificial right ventricle or subpulmonary 

power source exists, such as those present in the Fontan physiology, energy losses 

invariably occur with blood flow in the TCPC and subsequent flow into the LPA and RPA.  

Previous studies found the energy losses (i.e. power loss) in the TCPC to increase due to 

higher flow rates, lower limb exercise, dramatic changes in the geometry of the 

anatosmoses, and lack of caval offset [93].  By incorporating a blood pump into the IVC, 

energy augmentation is observed, rather than hydraulic losses. This positive augmentation 

of energy due to the pump in the IVC is the intended result and may translate into an 

improvement in venous return and cardiac output for Fontan patients.  In conjunction with 
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surgical optimization of the TCPC, the introduction of periodic or short-term 

cavopulmonary assist may serve as a viable, long-term, clinical management strategy for 

Fontan patients.  

Figure 33 in Chapter 4 illustrates the energy losses of the idealized TCPC without a 

pump in the IVC in comparison to the energy gains of the idealized TCPC with the 

intravascular pump (impeller and diffuser blade set) in the IVC. Pump rotational speeds of 

4000 RPM and 5000 RPM were examined to determine the energy augmentation in the 

idealized TCPC.  A steady increase in energy as a function of flow is observed from 1 to 

3.5 L/min for the 4000 RPM operating conditions.  Upon reaching 4 L/min, the energy 

performance curve at 4000 RPM ceases to increase in slope; the inherent hydraulic losses 

from this higher flow rate through the idealized TCPC and the lower head produced by the 

pump begin to inhibit energy augmentation.  For the 5000 RPM operating condition, the 

pump is able to continuously improve energy gains over the entire 1 to 4 L/min flow range.  

Similar trends were observed for the patient specific TCPC Fontan model. The energy gain 

from the pump in the patient specific TCPC model peaked under 30mV with similar linear 

trends indicating that increase in flow rates at give pump RPM would result in increased 

energy gain.  

In examining the outflow conditions of the pump, a rotational component of the 

flow was predicted by the computational analysis. The introduction of a diffuser region 

consisting of a hub with 4 clockwise helically wrapped blades demonstrated a reduction in 

vorticity at the outlet of the pump as compared to previous models without a diffuser 

region. Figure 25 illustrates the diminution of rotational fluid flow at the outlet region of 



86 

the pump. Complete elimination of irregular flow patterns were not achieved thereby 

requiring the above discussed analyses of energy gain and blood damage indices. Despite 

the rotational flow component, power or energy enhancement was achieved, and low blood 

damage indices were predicted. Additional design work will be performed to minimize this 

flow rotational and straighten the blood flow leaving the pump. 
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CHAPTER 6 FUTURE WORK AND CONCLUSIONS 
  
 
6.1 Limitations and Future Work 

 Previous chapters discussed two novel approaches for the development of 

mechanical circulatory devices for Fontan patients. A non-invasive method using external 

pressure augmentation to the lower limbs demonstrated notable increases in systolic and 

diastolic blood pressures for in two patients. A minimally invasive method using a 

percutaneously inserted, intravascular blood pump computationally demonstrated 

acceptable pressure generations to augment the Failing Fontan hemodynamic. Both 

modalities show promise in the clinical support and treatment of Fontan patients: the 

pressure pants as long-term preventative support and axial flow blood pump for short term 

bridge support. Study limitations are discussed in this chapter along with issues to be 

addressed in future work.  

6.1.1 Pressure Garment 

 A considerable limitation to thesis work with regard to the pressure garment 

clinical trials was the lack of test subject population. During the year and a half time frame 

of the VCU IRB approved clinical trials, only two patients successfully met the criteria and 

participated in the study. Factors influencing the deficiency in subject population include 

the diminutive single ventricle Fontan cohort perpetuated by a single intuitional 

investigation and extensive exclusion criteria inclusive of several secondary pathological 
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conditions common to Fontan patients. Future clinical studies for continued development 

of the pressure garment will address these limitations by seeking multi-institutional clinical 

trials. 

During development of the clinical external pressure augmentation protocol several 

inflation/deflation intervals and timings were considered. Interval cycles excogitated for 

the clinical trial included cardiac cycle synchronization, respiratory cycle synchronization 

and constant interval based. Research indicates that the majority of clinical external 

pressure pulsation devices are synchronized to the patient’s cardiac cycle thus requiring 

more advanced technology and a nurse or technician to monitor and operate the device for 

proper synchronization. Having stated our predispositions of EECP delivery with 

accordance to synchronization protocol in Chapter 2, it was inferred that counterpulsasive 

therapy less synchronization will also demonstrate beneficial results. This assumption was 

strongly supported by the results this study in addition to the reviewed literature. 

Discrepancies arise, however, when attempting to decipher the degree of assistance 

provided by counterpulsation administered at a basal rate unlinked to a patient’s cardiac 

cycle. If future work includes investigation of cardiac synchronization, it is expected that 

cardiac synchronization is significant to the level of augmentation provided by 

counterpulsation, however the occurrence of such augmentation is independent of 

synchronization.  

Respiratory cycle synchronization was also considered. Chest wall expansion during 

inhalation and subsequent depression during exhalation influence cardiac filling and 

ejection. Upon deep inhalation, the second heart sound can split providing audible 
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evidence of a delay between the closing of the pulmonary and aortic valves. Though 

respiratory synchronization effects would have been interesting to investigate, it was not 

included due to the overall goal of developing a therapeutic device for patients to use at 

home, thus requiring a simpler model. However, due to correlating respiration cycle and 

pulmonary arterial pressures observations made during the second patient’s clinical trial, 

continued development of an external mechanical cardiac assist device would include 

respiratory cycle synchronization analyses.  

 Based upon the need for a simple device designed to augment venous flow a 

constant interval cycle was determined to be the favorable timing for pressure garment 

inflation and deflation. The constant interval cycle was conducted as a square wave, with 

inflation demonstrated as the highpoint when the pressure is applied and deflation as the 

lowpoint when the pressure is removed. An ideal square wave interval cycle would 

demonstrate precision in holding the pressure at a specific target and instantaneous 

inflation and deflation. Though based on the ideal, the clinical trial conducted with 

retrofitted medical anti-shock trousers resembled more of a trapezoidal wave with sloping 

increases and decreases in pressure during cycles.  Additionally, during the inflation hold 

periods loss of pressure may be exhibited do to leaks within the pressure pant system. With 

these limitations considered, it was determined that for the purpose of augmenting venous 

blood flow to the heart, slight fluctuations in external pressure are inconsequential and thus 

do not contravene the use of a constant interval cycle nor discount the integrity of trial 

results. However future work with the pressure garment will not only reconsider the before 
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mentioned synchronization affects but also reduce pressure loses during inflation holds by 

identifying and subsequently rectifying system leaks.    

The VCU/MCV catheterization laboratory employs SIEMENS (Siemens 

Corporation, New York, NY) technology. The current software package conducts real-time 

analyses and stores user defined values or pressure waveform moments at a defined time. 

Continual recording of pressures for analysis at a later time is outside the software 

capabilities thus limiting the view of external pressure augmentation influence on patient 

hemodynamics. Additionally, the software is confined to output averaged pressures for 

selected waves and incapable of outputting discrete data, greatly influencing the accuracy 

of data analyses.  

 

6.1.2 Intravascular Blood Pump 

This thesis work on the intravascular blood pump has a number of limitations that 

must be addressed during the next stage of development. The boundary conditions as 

specified are for steady flow analyses; transient flow simulations and fluid structure 

interaction (FSI) studies with varying inlet and outlet impedances, vessel compliance, and 

lung compliance would provide more accurate information about the interactive dynamics 

between the physiology and the blood pump. A detailed turbulence model study would 

also generate valuable insight into the fluid dynamics.  

The manufacturing of three-dimensional models of the idealized Fontan TCPC 

anatomy and patient specific TCPC anatomy with inclusion of the pump prototype in the 

IVC is currently underway. These models will allow for laser flow measurements and 



91 

hydraulic performance testing to take place and to validate numerical predictions from this 

thesis.  

The blood damage analyses conducted with the idealized TCPC model did not 

consider heat transfer, platelet activation, and transient effects in the fluid stresses due to 

blade rotation. Additionally, the blood damage analysis uses a power law equation 

generating overestimations in the levels of hemolysis. The overestimation, however, allows 

pump design to err on the side of caution. Hemolysis testing using physical prototypes 

would provide more realistic confirmation of actual trauma levels. 

 

6.2 Conclusions from Research 

This thesis presented two novel approaches for the development of a mechanical 

cardiovascular assist device for patients with Fontan physiology. The first approach 

suggested the design of a noninvasive mechanical device which would augment Fontan 

hemodynamics via external pressure application to the lower limbs and abdomen. This 

thesis presented the results of a VCU IRB approved clinical trial for feasibility studies and 

provided proof of concept for the design of a novel pressure garment. The pressure 

garment is intended for patient use at home at their convenience to alleviate cardiac 

workload providing hemodynamic relief. Results from patient trials indicate external 

application to the lower limbs and abdomen of as little as 10 mmHg below baseline 

diastolic may be enough to augment Fontan pressures and improve hemodynamics 

functioning in a preventative and sustaining manner.  
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The second approach involved the design of a minimally invasive, percutaneously 

inserted, intravascular blood pump design for placement in the IVC. This collapsible axial 

flow blood pump is designed with a 3-bladed impeller, 4-bladed diffuser, and radially 

arranged cage filaments serving as touchdown surfaces to protect the vessel wall from 

rotating components.  This thesis presented the numerical analyses of the interactive fluid 

dynamics between the cavopulmonary connection and a mechanical blood pump. The 

pump would serve as a bridge-to-transplant, bridge-to-recovery, or bridge-to-surgical 

reconstruction. A pressure augmentation of as little as 2 to 5 mmHg may be sufficient to 

stabilize and reverse hemodynamic deterioration in Fontan patients. Computational 

predictions indicate the blood pump would augment pressure acceptably in both the 

idealized TCPC and patient specific TCPC models and result in a hydraulic energy boost 

or gain for a range of viscosity values, LPA and RPA pressures, flow rates, and pump 

rotational speeds. These results support the continued design and development of this 

cavopulmonary assist device, building upon previous numerical work and future 

experimental testing.  

Both modalities that were evaluated in this thesis project showed tremendous 

promise to potentially support Fontan patients in the acute and long-term clinical setting. 

The designs of both modalities will evolve over time, ultimately leading to two viable 

therapeutic options for Fontan patients and addressing a significant human health problem. 
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APPENDIX A: MAST STUDY PROTOCOL 
 

MAST Study Protocol: 
 

1. After obtaining consent, place patient supine in MAST garment. MAST are not 
inflated. 

2. Place blood pressure cuff, pulse oximeter, standard ECG leads on patient. Insert 
catheter according to VCU protocol for cardiac catherization.  

3. Obtain and record baseline measurements onto data sheet. Based upon the patient’s 
diastolic pressure, determine three pressure levels to evaluate: 

1st Pressure level = (Diastolic BP) – 10 mmHg 
2nd Pressure level = (Diastolic BP) 
3rd Pressure level = (Diastolic BP) + 10 mmHg 

4. Administer the first pressure level with the following procedure: 
* Note: Clinical Measurements should be ongoing during this time. 

1. Use pump to inflate MAST garment to 1st pressure level. 
2. Hold pressure for 10 – 15 seconds. 
3. Release pressure valve and deflate pants.  
4. Hold deflated for 10 – 15 seconds.  
5. Repeat cycle 5 times. 
6. During the 5th cycle, reassess patient’s vital signs prior to 

deflation.  
7. Conclude after 5 minutes of Counterpulsation cycles.  
8. Allow patient to rest for 3-5 minutes.  

5. Administer the second pressure level with the following procedure: 
* Note: Clinical Measurements should be ongoing during this time. 

1. Use pump to inflate MAST garment to 1st pressure level. 
2. Hold pressure for 10 – 15 seconds. 
3. Release pressure valve and deflate pants.  
4. Hold deflated for 10 – 15 seconds.  
5. Repeat cycle 5 times. 
6. During the 5th cycle, reassess patient’s vital signs prior to 

deflation.  
7. Conclude after 5 minutes of Counterpulsation cycles.  
8. Allow patient to rest for 3-5 minutes.  

6. Administer the third pressure level with the following procedure: 
* Note: Clinical Measurements should be ongoing during this time. 

1. Use pump to inflate MAST garment to 1st pressure level. 
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2. Hold pressure for 10 – 15 seconds. 
3. Release pressure valve and deflate pants.  
4. Hold deflated for 10 – 15 seconds.  
5. Repeat cycle 5 times. 
6. During the 5th cycle, reassess patient’s vital signs prior to 

deflation.  
7. Conclude after 5 minutes of Counterpulsation cycles.  
8. Allow patient to rest for 3-5 minutes.  

7. After the patient rests for 5 minutes, reevaluate baseline vital signs.  
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APPENDIX B: RESEARCH SUBJECT CONSENT FORM  
 

 

RESEARCH SUBJECT INFORMATION AND CONSENT FORM 
 
 

TITLE OF RESEARCH: Clinical Measurement of Pressure Augmentation in the 
Systemic Venous Circulation using Medical Anti-Shock Trousers 
 
 
VCU IRB PROTOCOL NUMBER: 
 
 
INVESTIGATORS:  
Principal Investigator: Amy Throckmorton, Ph.D. 
Sub/Co-Investigator: William B. Moskowitz, M.D. 
Sub/Co-Investigator: Scott D. Gullquist, M.D. 
Student: Sonya Bhavsar, B.S. 
 
In ordinance with Federal Regulations for the Protection of Human Subjects section 
§46.116, “An investigator shall seek…consent only under circumstances that provide the 
prospective subject or the representative sufficient opportunity to consider whether or not 
to participate and that minimize the possibility of coercion or undue influence.” After 
carefully reading and understanding the information listed below, if you would like to 
participate in this research study please sign this consent form indicating your 
consent.  
 
This consent form may contain words or information that you do not understand.  Please 
ask one of the investigators to explain any words or information that you do not 
understand.  You may take home an unsigned copy of this consent form to think about or 
discuss with family or friends before making your decision. 
 
 
PURPOSE OF THE RESEARCH STUDY: 
The purpose of this research study is the test the effectiveness of routinely administered, 
non-invasive, external couterpulsation therapy via Medical Anti-Shock Trousers (MAS 
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trousers).  MAS trousers are pants that have an air filled gap inside of them; they function 
similar to blood pressure cuffs and can be inflated, only around the lower extremities or 
legs, as opposed to the upper arm. We will have you slip on the pants and then, using air, 
inflate these trousers. This will apply an external pressure to your legs in the form of light 
compression. In doing so, we will measure how this externally applied pressure may 
modify blood flow conditions in the circulation on the right side of your heart.  
 
You are being invited participate in this study because you have been diagnosed with 
single ventricle physiology or a closely related congenital heart defect and have already 
scheduled to receive an evaluative cardiac catheterization. Therefore, we can perform this 
study right before your cardiac catheterization in a safe and efficient manner. 
 
 
WHAT YOU WILL DO IN THE STUDY: 
Your participation in this study will last approximately 20 minutes  per session. We will 
acquire baseline vitals (blood pressure, heart rate, O2 saturation, respirations, right atrial 
pressure/central venous pressure, and pulmonary capillary wedge pressure) prior to 
inflating the pants with air, followed by three 3-5 minute sessions of incrementally 
increasing inflation levels. Your vital signs will be monitored throughout the session and 
again approximately 5 minutes after completion to obtain a second set of baseline vitals.  
 

Sample Procedural Timeline: 
 
1.) You will be placed in laying down, flat on your back. The MAS trousers will be 

applied.   
2.) We will apply a blood pressure cuff, pulse oximeter, and ECG leads. A catheter 

will be inserted into your femoral vein after the site has been numbed with local 
anesthetic.   

3.) Your first set of vital signs will be obtained. We will determine the three 
pressure intervals based upon your diastolic blood pressure.  

4.) The first pressure level will be administered. The MAS trousers will inflate and 
you will feel circumferential pressure applied to your lower extremities similar 
to a blood pressure cuff.  

5.) Your vital signs will be reassessed and the MAS trousers will deflate. You will 
rest for 3-5 minutes.  

6.) The second pressure level will be applied which is slightly higher than the 
previous.  

7.) Your vital signs will again be reassessed and the MAS trousers will deflate. 
You will rest for 3-5 minutes.  

8.) The third and final pressure level will be applied, your vital signs will be 
assessed and the MAS trousers will deflate.  

9.) After 5 minutes a second set of baseline vitals will be obtained.  
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Your participation in this study will last approximately 20 minutes. Approximately 10 
subjects will participate in this study.  
 
 
RISKS AND RISK REDUCTION: 
Prior to your enrollment in the study, an exclusion criteria was established to minimize any 
potential risks. Because you have been invited to participate in this study, you were 
determined to be at little to no risk.  
 
Due to the short time period of external pressure application, there is minimal to no risk.  
Deflation of the MAS trousers will be done methodically in order to maintain cardiac 
stabilization. Your vital signs will be carefully monitored and adjustments will be made as 
necessary. 
 
You will also be carefully monitored for any sign or symptoms of shock, which will be 
highly unlikely given the short duration (1-2 minutes) of externally applied pressure.  
Significant concern would arise if the duration of applied pressure exceeded 20 minutes, 
and the pressure was rapidly released, which will not occur during this study. Investigators 
and a full clinical staff in the cardiac catheterization lab will be present to ensure that the 
protocol will not be violated. 
 
During the procedure, we will determine whether positive results are being observed. If the 
observed results are not compliant with the hypothesized results, the procedure and study 
will be immediately terminated.  
 
All key personnel and resources normally found in the cardiac catheterization lab will be 
present and attentive during the course of procedure.  
 
 
BENEFITS TO YOU AND OTHERS: 
There is no guarantee that you will receive any medical benefits from being in this study. 
 
This is not a treatment study, and you may not receive any direct medical benefits from 
your participation. The information from this research study may lead to better treatment in 
the future for patients with single ventricle physiology or a closely related congenital heart 
defect.  
 
COMPENSATION: 
No compensation will be provided for this study. The knowledge gained from this study 
will be used to develop new MAS trousers or counterpulsation technology as a clinical 
management tool for patients with single ventricle physiology or a closely related 
congenital heart defect similar to yours.  
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CONFIDENTIALITY  
Adhering to IRB and Federal HIPPA regulations, only nonspecific information will be 
recorded during this study. This information includes patient age, sex, and diagnosis. 
 
Data being collected is for research purposes only. Your data will be identified by ID 
numbers, NOT names, and stored separately from medical records in a secured spreadsheet 
with the principle investigator.  
 
Access to all data will be limited to study personnel. A data and safety monitoring plan is 
established with accordance to IRB and Federal HIPPA regulations.  
 
 
COMPENSATION FOR INJURY: 
Virginia Commonwealth University and the VCU Health System have no plan for 
providing long-term care or compensation in the event that you suffer injury as a result of 
your participation in this research study. 
 
If you are injured or if you become ill as a result of your participation in this study, contact 
one of your investigators immediately. Your investigator will arrange for short-term 
emergency care or referral if it is needed. 
 
Fees for such treatment may be billed to you or to appropriate third party insurance.  Your 
health insurance company may or may not pay for treatment of injuries as a result of your 
participation in this study. 
 
 
VOLUNTARY PARTICIPATION AND WITHDRAWAL: 
Your participation in this study is voluntary. If you decide to not participate in this study, 
you will not suffer any penalty or loss of benefits to which you are otherwise entitled.  If 
you do participate, you are free to withdraw at any time.  Your decision to withdraw will 
involve no penalty or loss of benefits to which you are otherwise entitled. 
 
Your principle investigator, co-investigators, or student investigator can stop your 
involvement in the study at anytime without your consent. This could occur due to: 

1.) The investigators believe it to be necessary for your health or safety 
2.)  You failed to comply with study instructions 
3.)  Administrative reasons requiring your withdrawal 

 
 
QUESTIONS: 
If you have any questions about this study, contact: 
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Amy L. Throckmorton, Ph.D. 

Assistant Professor  

Department of Mechanical Engineering 

Virginia Commonwealth University 

VCU Box # 843015 

Office (804)-827-2278 

Fax (804)-827-7030 

althrock@vcu.edu 

 

 

William B. Moskowitz, M.D. 

Professor, Pediatrics and Medicine 

Interim Chair, Department of Pediatrics 

Chairman, Division of Pediatric Cardiology 

VCU/Medical College of Virginia  

VCU Box #980646 

Office (804)-828-9143 

wmoskowitz@mcvh-vcu.edu 

 

 

Scott D. Gullquist, M.D. 

Associate Professor, Pediatric Cardiology 

Department of Pediatrics 

VCU/Medical College of Virginia 

VCU Box #980646 

Office (804)-828-5745 

sgullquist@mcvh-vcu.edu 

 

 

mailto:althrock@vcu.edu�
mailto:wmoskowitz@mcvh-vcu.edu�
mailto:sgullquist@mcvh-vcu.edu�
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Sonya Bhavsar, B.S. 

Graduate Student Research Assistant 

Department of Mechanical Engineering 

Virginia Commonwealth University 

Mobile (540)-915-1248 

bhavsarss@vcu.edu 

 
 
If you have questions about your rights as a research subject, you may contact: 
 
Office of Research 
Virginia Commonwealth University 
800 East Leigh Street, Suite 113 
PO Box 980568 
Richmond, VA  23298 
(804) 827-2157 

mailto:bhavsarss@vcu.edu�
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Do not sign this assent/consent form unless you have had a chance to ask questions 
and have received satisfactory answers to all of your questions.  Additional information 
about participation in research studies can be found at: 
http://www.research.vcu.edu/irb/volunteers.htm 
 

ASSENT for a patient between the ages of 7 and 12 
 
I agree to be in a study that uses MAS trousers (pants that inflate with air like a blood 
pressure cuff) to determine changes in blood flow to the heart. This study was explained to 
me by my parent/guardian and the doctor.  They said that I could be in it. The only people 
who will know about my results will be the people in charge of the study.  
 
In this study I will put on a pair of pants that inflate with air like blood pressure cuffs. I 
will be lying on my back. The doctor, nurses, and people in charge will be watching me 
closely to make sure I am ok during the study. The pants will inflate and squeeze lightly on 
both of my legs three times. It will only take about 20 minutes. If I ever feel 
uncomfortable, I will tell the doctor and he will stop the study.  
 
Writing my name below means that this page was read by me or to me and that I agree to 
be in this study. I know what will happen to me during the study. If I decide to quit the 
study, all I have to do is tell the person in charge.  
 
 
__________________________________________ __________________ 
Child's Signature                  Date 

 
 
________________________________________              
Name of Person Conducting Informed Assent                                                    

 
  

__________________________________________            __________________ 
Signature of Person Conducting Informed Assent                                    Date 

 
 
__________________________________________ __________________ 
Signature of Investigator (if different from above)                                            Date  
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ASSENT for a patient between the ages of 13 and 17 
 

“I have read the description of the study titled Clinical Measurement of Pressure 
Augmentation in the Systemic Venous Circulation using Medical Anti-Shock Trousers 
which is printed above.  I understand the procedures and what will happen to me in the 
study. I have received permission from my parent(s) to participate in the study, and I agree 
to participate in it. I know that I can quit the study at any time.” 
 
 
 
________________________________   ____________________ 
Signature of Child                                                                                                   Date 

 

 

CONSENT  
 
I have been provided with an opportunity to read this consent form carefully.  All of the 
questions that I wish to raise concerning this study have been answered.   
 
By signing this consent form, I have not waived any of the legal rights or benefits, to 
which I otherwise would be entitled.  My signature indicates that I freely consent to 
participate in this research study.  I will receive a copy of the consent form once I have 
agreed to participate. 
 
Please read if you are the Parent/Legal Guardian of a patient participating in this study:  
You are making the decision to allow your child to participate in this study. Your signature 
below indicates that you have read the information provided above and have decided to 
allow him or her to participate in this study. If your child is between the ages of 7 and 12, 
your signature below indicates that you have talked with your child about the study and 
believe he or she fully understands what will happen during the study. If you later decide 
that you wish to withdraw your permission for your child to participate in the study, simply 
tell an investigator or the doctor. You may discontinue his or her participation at any time. 
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________________________________________________ 
Subject Name, printed 
 
 
________________________________________________ ________________ 
Subject Signature                                                                                            Date 
       
 
_______________________________________________  
Name of Parent or Legal Guardian 
(Printed)    
 
 
_______________________________________________ ________________ 
Parent or Legal Guardian Signature      Date 
 
 
________________________________________________ 
Name of Person Conducting Informed Assent/Consent  
Discussion / Witness  
(Printed) 
 
________________________________________________ ________________ 
Signature of Person Conducting Informed Assent/Consent   Date 
Discussion / Witness  
 
 
________________________________________________ ________________ 
Investigator Signature (if different from above)                                       Date 
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a citizen of the United States of America. She graduated from Hidden Valley High School 

in Roanoke, Virginia in 2004 and received her Bachelor of Science in Biomedical 

Engineering from Virginia Commonwealth University in Richmond, Virginia in 2008. 

During her undergraduate education Sonya worked as a research assistant at the Massey 

Cancer Center in the Molecular Cancer Therapeutics Programs in 2006 and the VCU/MCV 

Nursing School PRO Study in 2007.  

In the fall of 2008, Sonya entered her Masters program in Mechanical Engineering 

at Virginia Commonwealth University. She worked as a research assistant in the BioCirc 

Laboratory under the direction of Dr. Amy Throckmorton. Sonya also worked as a 

teaching assistant and part time as an Orthopedic Care Partner at the Medical College of 

Virginia. She served as the president of the Society of Women Engineers and founding 

member and president of American Society of Artificial Internal Organs:fyi student 

chapter. Sonya also volunteered her time to the community as an Emergency Medical 

Technician at Lakeside Volunteer Rescue Squad where she is the chief financial officer, 

board member, and squad leader.  
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During her graduate work, Sonya was honored as the recipient of the 2009 

Biomedical Engineering Graduate Student award at the 5th International Conference of 

Pediatric Mechanical Circulatory Support Systems and Pediatric Cardiopulmonary 

Perfusion Conference. She was also honored as a 2010 VCU I-GEEAR GAAN fellow and 

recipient of the 2010 Susan E. Kennedy Scholarship.  Sonya was co-author on several 
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