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Proteins in Escherichia coli were compared in terms of essentiality, centrality, and conservation. 

The hypotheses of this study are: for proteins in Escherichia coli, (1) there is a positive, 

measureable correlation between protein conservation and essentiality, (2) there is a positive 

relationship between conservation and degree centrality, and (3) essentiality and centrality also 

have a positive correlation. The third hypothesis was supported by a moderate correlation, the 

first with a weak correlation, and the second hypotheis was not supported. When proteins that 

did not map to orthologous groups and proteins that had no interactions were removed, the 

relationship between essentality and conservation increased to a strong relationship. This was 

due to the effect of proteins that did not map to orthologus groups and suggests that protein 

orthology represented by clusters of orthologus groups does not accurately dipict protein 

conservation among the species studied.  

 

Keywords: Essentiality, Protein Conservation, Centrality, Graph Theory, Protein-Protein 

Interaction Network, PPI, Escherichia coli, Saccharomyces cerevisiae, Baker’s Yeast, Network 

Biology, Aging, Replicative Aging, Target of Rapamycin, TOR, Interactomics 
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Introduction & Background 
 

Hypotheses and reasons for study: 
 

The hypotheses of this study are: for proteins in Escherichia coli (1) there is a positive correlation 

between protein conservation and essentiality and that this relationship is measurable, (2) that 

there is also a positive relationship between conservation and degree centrality, and (3) that 

essentiality and degree centrality are positively correlated. 

 

These questions will be addressed using bioinformatic and systems biology approaches which 

will look at the topology of protein-protein interaction networks, protein essentiality in 

Escherichia coli and conservation of those proteins in ten other species. Understanding how 

model organisms operate is an important first step towards understanding how human systems 

operate. Proteins are of particular interest because of their importance to how cells operate. The 

hypotheses will be tested by comparing data representing protein conservation, centrality, and 

essentiality. Comparisions will be evaluated using correlations which establish acceptance or 

rejection of the hypotheses. The goal is to establish if there are relationships between these 

aspects of proteins to improve understanding of how they operate. 

 

Bioinformatics and systems biology: 

 

The reductionist perspective has widely been used to study phenomena and has worked well due 

to the fact that complicated problems can be broken up into a collection of simpler problems. 

However, there are weaknesses with this method which have been addressed. Considering parts 

of a biological system individually misses how those parts are interrelated which is very 

important to understanding how such systems function. Now that large amounts of biological 

information are available, a systems biology perspective has gained popularity. Such a 

perspective incorporates the use of a holistic approach with reductionist techniques to better 

understand how these pieces are interconnected. 

 

To make sense of large amounts of data, bioinformatics has established itself as a discipline and 

as a set of techniques to assist with this task. Bioinformatics is a term used to describe the 

application of computers to address biological questions. It is an interdisciplinary approach 

incorporating aspects of statistics, mathematics, organic chemistry, engineering, computer 

science, and biology. The term was coined in the early 1970’s by Pauline Hogeweg and Ben 

Hesper who originally defined it as the study of informatics processes in biological systems 

<19>. With the flood of DNA sequence data, the term is more commonly used to describe the 

analysis of genomic data. However, the approach is used to study a wide variety of different 
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types of biological data from proteins to tree populations. An area of study that uses 

bioinformatic techniques is interactomics, which is the study of molecular interactions in cells. 

Interactomics involves the construction of biological networks and principles of graph theory are 

used for their analysis. 

 

Graph theory: 
 

Graph Theory is a branch of mathematics that utilizes interaction networks to study how pieces 

of a system are interrelated and as a tool is used to study how parts of systems interrelate. In 

these networks each object is represented by a node and each connection between nodes is an 

edge. Nodes might represent genes, proteins, people, or any other type of subject under study. 

The edges could be a wide variety of associations, such as physical interaction between proteins. 

It takes a top-down, rather than bottom-up perspective which can yield insights, such as 

identifying the best candidates for further study <15, 34>. As early as 1736 graph theory has 

been used to solve a wide variety of problems and since the 1980’s pioneering scientists have 

used networks to study biological processes <1, 3, 5, 14, 15, 46, 47>. Some of the first 

applications were in the study of social networks. It is also now widely used in the study of 

protein-protein interaction networks (PPI or PIN) <30>. 

 

Protein-protein interaction networks: 
 

The analysis of protein-protein interaction networks is one of the more frequently used methods 

in interactomics. In these networks the nodes are generally proteins, either specific to the 

organism or a member of an orthologous group and the edges of such networks can represent 

different types of interactions, such as: physical, genetic, or regulation <11, 41>. Understanding 

how proteins interrelate is critical to understanding how a cell operates and PPI networks are 

used in the study of such connections <30>. Proteins often function in complexes and or in 

concert with other proteins and because of this it is frequently very difficult to understand the 

function of a protein in isolation and without an understanding of its relationship to other proteins 

<11>. Such networks are often used as a starting point to understand how a cell operates <30>. 

Some uses of PPI networks are to predict protein function, suggest relative importance of 

interacting members, and assist in choosing the best targets for drug therapies. These studies are 

not without challenges. Just because two proteins have been shown to interact does not 

necessarily mean that they actually interact within the cell. Graph theory can be used in the study 

of and in the improvement of the quality of PPI networks <34>. 

 

Centrality and network topology: 
 

One of the techniques used in graph theory to study PPI networks is the concept of centrality. 

Centrality is a measurement that helps to establish the relative importance of nodes. There are 

several ways to calculate this. The most basic is degree centrality, which is the sum of 

connections for a node. Closeness centrality is a measure of how close a node is to every other 

node. It is determined for a node by taking the inverse of all of the shortest distances between it 

and any other node. The shortest distance between any two nodes is also called geodesic distance 

and is the smallest number of edges between two nodes. Betweenness measures how often a node 
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acts as a bridge between two other nodes. It is the ratio of the sum of all shortest paths between 

any two nodes in a network that contain a node divided by the total sum. See Figure 1 for a 

demonstration of how these values are calculated. Each of these measurements has a large 

number of applications including but not limited to: establishing essentiality, determining the 

robustness of a network, predicting protein function, and minimizing drug side-effects <1>. 

 

 

Figure 1: Centrality measurements.  This figure demonstrates how degree, 

closeness, and betweenness centrality are calculated. Each of the measurements is calculated for 

node 1. It is connected to 4 other nodes and so has a degree of 4. Node 1 has a total distance, 

measured in number of edges of 6 between it and each of the 5 different nodes. The number of 

other nodes divided by the total distance gives the closeness centrality value. For each non-

redundant path through the network between any two nodes, node 1 is part of that path 9 out of 

10 times. The number of paths divided by the number of times node 1 is part of that path gives 

the betweenness centrality score. 

 

There are a number of other ways to analyze networks. Node density, also referred to as network 

density, is the ratio of actual connections by the number of potential connections in the network. 

It is calculated by doubling the number of edges and dividing that by the number of nodes 

multiplied by the number of nodes minus one. Vertex degree range shows the range of values for 

how many edges nodes in the network possess and the mean vertex degree is the average of these 

values. Network diameter is the longest of the shortest paths between any two nodes. The average 

number of edges of the shortest paths between any two nodes is the mean node distance <3>. 

 

Networks often have nodes that are highly connected which are referred to as Hubs. In some 

cases components of a network will be unconnected to any other part, which are called Islands. 

Many networks, especially biological networks, are considered to follow a power-law 

distribution, have small-world properties, and are scale free. Power-law describes a statistic 

relationship where one value varies as a power of the other. A network can be said to have small 

world properties if the distance, in terms of edges, between nodes is smaller than one would 

expect by chance (5). Networks that have these characteristics are often referred to as scale-free 

<14>. 
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Protein essentiality and conservation: 
 

The networks in this study are networks of protein-protein interactions. Proteins are so essential, 

so central to how life operates that the primary function of DNA, the language of life, is to code 

for their assembly. As a result of their importance, there are several ways that they can be 

studied. One of those ways is the concept of essentiality. A protein is considered to be essential if 

when the gene that codes for that protein is removed, the organism survives. This is not to say 

that if a protein is non-essential that its function is not necessary for the organism’s survival. 

Often processes performed by a protein are also performed by other proteins. However 

essentiality is a good method for establishing the relative importance of proteins. 

 

One of the attributes of a protein considered in this paper is protein conservation. Orthologous 

groups are a way to compare proteins across species classifying them in terms of similar 

structure, such as clusters of orthologous groups (COG), which is a way of categorizing 

proteins. Each COG is identified by a number representing a protein that has orthologs in at 

least three different species <31>. By using these categories, proteins can be compared among 

species to determine how often similar proteins are found. If similar proteins are found in 

several species it can be said to be well conserved. 

 

Other studies comparing essentiality, centrality, and conservation: 

 

The relationships between protein essentiality, centrality, and conservation are well studied. 

Several studies have discovered a positive relationship between a protein’s essentiality and the 

number of interactions it has with other proteins <22, 25>. However other studies found this not 

to be true for binary interactions in model organisms <48, 50>. This is further complicated by 

other factors, such as the effect of non-essential promiscuous proteins <48>. Other studies 

suggest that it is not essentiality and protein connectivity but instead essentiality and pleiotropy 

that are related <50, 19>. It has been suggested that essential genes would be more conserved and 

would be under more evolutionary constraint. This has not been found to be true for several 

model organisms but may be for bacterial species <19, 23>. It is possible that this was not found 

due to conserved non-essential genes <16>. The relationship between these attributes of proteins 

is complex and depends on the function of proteins as well as differences in environment 

between organisms <27, 36, 49>. 

 

Organisms studied: 
 

In order to compare protein essentiality, centrality, and conservation Escherichia coli was chosen 

as the basis for the study. As a model organism it is a good candidate because it is so heavily 

studied. There are a large number of databases dedicated to collecting and storing information on 

this one organism alone. Two examples of such databases are EcoGene, which was used in the 

construction of the list of proteins used as a key, and EcoCyc. EcoGene provides nearly extensive 

lists of genes and proteins, along with aliases for those genes and proteins while EcoCyc contains 

metabolic and signal-transduction pathways for Escherichia coli <24, 35>. 
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There are many ways to identify a protein in Escherichia coli, some of which include B-number, 

JW number, Uniprot ID, and locus ID. When the genome of Escherichia coli was first sequenced 

the genes were assigned B-numbers in the order that they were found <4>. Uniprot ID is from 

UniProt, a database of protein sequence and functional information <13>. Both B-number and 

UniprotID are frequently used to identify proteins in Escherichia coli. 

 

Ten other bacterial species were chosen to determine protein conservation through orthology. 

Like Escherichia coli, Campylobacter jejuni and Helicobacter pylori are gram-negative bacteria 

that can live in the digestive track. The species Bacillus subtilis also can live in the digestive 

track but is gram-postive. Although these four species can exist in the gut, they each have 

complicated life-cycles and are not restricted to that environment. Two of the other species, 

Caulobacter crescentus and Synechocystis live in water with the first being gram-negative and 

the second is gram-positive. The next five species are pathogens. Streptococcus sanguinis and 

Streptococcus pneumoniae are gram-positive. One is a blood-borne disease agent; the other can 

colonize the nose and is a cause of pneumonia. Mycoplasma pneumoniae has more than half as 

many genes as Streptococcus. The last two species Treponema pallidum and Mycoplasma 

genitalium are causes of sexually-transmitted diseases and Mycoplasma is often used to study the 

minimal genome. Escherichia coli, Bacillus subtilis, Caulobacter crescentus, and Synechocystis 

have similar genome sizes, each being about 4 million base pairs. While Streptococcus 

sanguinis, Streptococcus pneumoniae, Campylobacter jejuni, Helicobacter pylori, and 

Treponema pallidum have about half that amount, between 2.4 and 1.4 million base pairs. 

Mycoplasma pneumoniae and Mycoplasma genitalium both have fewer than 1 million base pairs, 

800 kilobases and 600 kilobases respectively. The choices are intended to provide a range of 

genome sizes, large, medium, and small. See Table 1 for more information on the species 

studied. 
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Table 1: Organisms studied. This contains information for 11 species studied 

including the name of the organism, substrain, reference number in the eggNOG database, 

genome size in base pairs, number of genes, and number of COGs (clusters of orthologous 

groups, see Protein conservation section above).  

 

 

  OrganismName Substrain GenomeSize(BP) Genes COGs   

  Escherichia coli  
K-12 

(MG1655) 4.6 million 4288 917   

  Bacillus subtilis  168 4.2 million 4100 765   

  
Caulobacter 
crescentus CB15 4 million 3767 754   

  Synechocystis PCC 6803 3.6 million 3618 628   

  
Streptococcus 
sanguinis 

ATCC 
49296 2.4 million 2,274 177   

  
Campylobacter 
jejuni 

NCTC 
11168 1.6 million 1654 451   

  
Streptococcus 
pneumoniae 

ATCC 
700669 2 million 1553 335   

  
Helicobacter 
pylori 26695 1.7 million 1550 374   

  
Treponema 
pallidum Nichols 1.4 million 1041 268   

  
Mycoplasma 
pneumoniae M129 0.8 million 687 124   

  
Mycoplasma 
genitalium G37 0.6 million 390 149   
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Related Works 
 

There are three bodies of work that relate to the thesis, one of which was a study of aging using 

Saccharomyces cerevisiae as a model organism, the Aging Yeast Network study (AYN). In 

another the PPI networks of eight bacterial species were compared to determine the 

conservation of proteins and their interactions, the Bacterial protein-protein Interaction 

Conservation study (BIC). Finally a PPI meta-network was constructed from the networks of six 

bacterial species in order to illustrate and study protein conservation, which will be referred to 

as the Bacterial Meta-interactome Network study (BMN). 

 

The Aging Yeast Network Study (Introduction and Aims): 
 

The goal of the aging yeast network study was to study the interplay of networks of two cellular 

processes with a network of genes associated with aging. One of the networks, the Cellular 

Response to Heat (CRH), was chosen because it was suspected to have a link to aging and is a 

good model for how an organism deals with environmental stressors, an aspect of aging. Aging 

is often described as a limitation in the ability to handle biological stresses. The Target of 

Rapamycin (TOR) was chosen because of its well established link to aging and thus could be 

used as a control. 

 

Aging is a complex phenomenon and there are several ways to measure its effects. In unicellular 

species there are two primary ways of measuring aging: replicative and chronological. 

Chronological aging measures the length of time individual cells can live while in a non-

replicating state, while Replicative aging measures how many times a cell can replicate before 

dying. Replicative life span is generally considered to be a more applicable model to study aging 

as it relates to more complicated organisms <6>. 

 

The Aging Yeast Network Study (Methods): 
 

First a set of proteins associated with aging was collected from the literature, and supplemented 

with information from databases. The core of this list of genes is from the paper “Shortest-Path 

Network Analysis Is A Useful Approach Toward Identifying Genetic Determinants of 

Longevity” <23>. This core was expanded using yeast gene databases including; The 

Saccharomyces Genome Database (SGD), YEASTRACT, The Comprehensive Yeast Genome 

Database (CYGD), The NetAge Database, Sageweb, and AmiGO <7, 10, 18, 31, 33, 40, 42>. 

This list of proteins was reduced to only proteins associated with replicative aging. It was 



 
 

8 
 

further reduced to those in which the organism has an increase in replicative life span when not 

present. This was done because the genes that code for these proteins represent druggable 

targets. Since lifespan increases when these proteins are not present it is thought that they, or the 

genes that code for them, can be targeted to increase lifespan. The Replicative Life Span (RLS) 

list was the basis for comparison for the other two lists, the Target of Rapamycin (TOR), and the 

Cellular Response to Heat (CRH) lists. Lists of proteins for the TOR and CRH were chosen 

based on Gene Ontology (GO) terms from the AmiGO database. Proteins chosen for the TOR 

list were involved in the Target of Rapamycin pathway, while members of the CRH list were 

involved in the heat-shock response pathway. A list of all proteins from the RLS, TOR, and 

CRH was also complied, the Total protein list (TOT). The TOT list was constructed as a means 

of comparison for the other three lists. 

 

For each of the four lists of proteins, networks were constructed from a database of interacting 

proteins from yeast using the Pathway Studio software <28>. See Figure 3 for an example of 

the RLS network. In each case two networks were constructed, a Direct Connect (DC), and a 

Shortest Path (SP) network. The Direct Connect (DC) networks contained the interactions 

between proteins within their respective list, while the Shortest Path (SP) networks also 

included the interactions of the proteins in the list with their nearest neighbors. In other words 

the SP networks also included all the proteins that each protein on the DC list had an interaction 

with. In all there were eight networks; the Replicative Life Span Direct Connect (RLS DC), 

Replicative Life Span Shortest Path (RLS SP), Target of Rapamycin Direct Connect (TOR 

DC), Target of Rapamycin Shortest Path (TOR SP), Cellular Response to Heat Direct Connect 

(CRH DC), Cellular Response to Heat Shortest Path (CRH SP), Total Direct Connect (TOT 

DC), and Total Shortest Path (TOT SP). 

 

Once the interactions were collected for each of the lists, PPI networks were constructed using 

Cytoscape and Pajek <38>. Using these two software packages the networks were both 

illustrated and analyzed. Degree, Betweenness, and Closeness Centrality was calculated using 

Network Analyzer, an add-on for Cytoscape, while Eigenvector Centrality was calculated using 

Pajek <2>. See Table 2 and 3 for example values from the RLS SP and TOT DC networks 

respectively. Other network calculations were also performed using Excel. These measurements, 

along with centrality values were used to study these networks as well as their relationships to 

the other networks. 
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Figure 2: TOT network.  The total (TOT) PPI network includes the proteins of the 

Replicative Life Span (RLS) network (in Yellow), the Target of Rapamycin (TOR) network (in 

Blue), and the Cellular Response to Heat (CRH) network (Green). Each node in the network is 

a protein and is identified by name. Protein interactions are represented by lines connecting 

proteins. The protein TOR1 is shared between the RLS and TOR networks, while HOS2 is 

shared between the CRH and RLS networks. This figure was generated using Cytoscape. 
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Figure 3: RLS network. The Replicative Life Span (RLS) PPI network is composed 

of a collection of proteins that when knocked-out have the effect of increasing replicative life 

span in yeast. Proteins are classified by function and interactions are classified by type. This 

was generated using Pathway Studio. 
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Table 2: RLS SP centrality measurements samples. This table 

is a sample of the centrality measurements from the Replicative Life Span (RLS) 

network for yeast. For each listing, protein name is given followed by degree, 

betweenness, closeness, and eigenvector centrality measurements. The 

measurements for this table were calculated using Network Analyzer, an add-on for 

Cytoscape. 

  
    

TOT Centrality 

Measurements 

       

          
 

 Name   Degree   Betweenness   Closeness   Eigenvector  
 

 ASM4 0 0.00  0.00  0.00  
 

 AVO1 5 0.01  0.22  0.11  
 

 AVO2 6 0.00  0.20  0.12  
 

 BIT61 5 0.00  0.20  0.11  
 

 BOI2 5 0.03  0.19  0.01  
 

 BRE5 1 0.00  0.17  0.00  
 

 CDC25 8 0.02  0.20  0.32  
 

 CDC6 2  2.24E-03 0.16  0.01  
 

 CDC60 3 0.01  0.20  0.01  
 

 CSR2 2 0.00  0.18  0.01  
 

 CYR1 2 0.00  0.17  0.10  
 

 DEP1 5 0.00  0.21  0.02  
 

 ELP4 1  0.00 0.19  0.01  
 

 FOB1 0 0.00  0.00  0.00  
 

 FUS3 0 0.00  0.00  0.00  
 

 GCN4 2 0.00  0.20  0.01  
 

 GLE2 3 0.01  0.15   9.27E-04 
 

 GLK1 0 0.00 . 0.00  0.00  
 

 GPA2 1 0.00  0.02  1.65E-49 
 

 GPR1 0 0.00  0.00  0.00  
 

 HOG1 14 0.19  0.28  0.12  
 

 HOS2 7 0.07  0.24  0.04  
 

 HSF1 2 0.01  0.18  0.01  
 

 HSP104 8 0.05  0.23  0.32  
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Table 3: TOT DC centrality measurements samples. This table is a 

sample of the centrality measurements from the Total (TOT) network for yeast. For each 

listing, protein name is given followed by degree, betweenness, closeness, and eigenvector 

centrality measurements. These measurements were calculated using Network Analyzer, an 

add-on for Cytoscape. 

 

  

RLS SP Centrality 

Measurements 

    

     
 

Name  Degree Betweenness  Closeness  Eigenvector 
 

ACE2 4 2.38E-03  0.31 0.02 
 

APL2 3 3.26E-03  0.38 0.05 
 

ARG5,6 3 1.14E-03  0.35 0.05 
 

ARO1 9 1.92E-02  0.40 0.13 
 

ARP2 24 4.87E-02  0.41 0.29 
 

ARR4 7 0.01  0.37 0.07 
 

ARX1 4 0.00  0.31 0.03 
 

BOI1 4 4.70E-04  0.29 0.02 
 

BOI2 10 0.01  0.36 0.05 
 

BRE5 7 4.93E-03  0.38 0.09 
 

BSD2 3 3.83E-03  0.36 0.04 
 

CAF17 2 9.69E-04  0.29 0.01 
 

CBR1 3 0.00  0.32 0.03 
 

CDC25 12 0.02  0.39 0.08 
 

CDC6 9 0.01  0.37 0.06 
 

CFT1 2 1.29E-03  0.35 0.03 
 

CHS1 4 0.00  0.30 0.02 
 

CLA4 15 0.04  0.42 0.19 
 

COG5 4 0.00  0.30 0.02 
 

CSR2 5 0.01  0.38 0.05 
 

CTK2 2 0.00  0.34 0.03 
 

CYR1 14 0.03  0.39 0.08 
 

CYS4 10 0.02  0.39 0.10 
 

CYT1 2 5.81E-04  0.37 0.05 
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The Aging Yeast Network Study (Conclusions): 
 

The AYN study found that the TOR and RLS networks were well connected. It was 

determined that the TOR and CRH networks were densely connected to the RLS network. 

However there were relatively few connections between the CRH and TOR networks. It was 

discovered that there was a protein shared between the TOR and RLS networks,TOR1, and 

one shared between the CRH and RLS networks, HOS2 (Histone deacetylase). See Figure 2 

for more information on the relationships between the RLS, TOR, and CRH networks. 

 

Mean Vertex Degree (MVD) was noticeably different between the shortest-path and direct 

connect networks. It was more pronounced in the TOR network, the shortest-path MVD 

being nearly double what it was in the direct connect. This was even more noticeable between 

the total networks, which was more than double. There was a large difference in node 

densities with the shortest-path networks having ones lower than the direct connect. Between 

the RLS networks this was far less pronounced with the shortest-path having half the node 

density of the direct connect. The TOR shortest-path node density was a tenth of the direct 

connect. The network diameter was similar for the TOR direct connect and the shortest-path 

yet for the RLS and total networks the shortest-path diameter was half what it was in the 

direct connect. See Table 4 for more information on the measurements for each of the 

networks. 

 

It was expected that the TOR and RLS networks would be highly connected but it is interesting 

to note that the CRH and RLS networks were also well-connected. This suggests that cellular 

response to heat is related to the aging process and would make a good model for studying how 

a cell’s response to thermal stresses relates to aging. It was known that TOR1 has a relationship 

to aging but HOS2 would be a further candidate for study on its relationship to replicative 

aging. 
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Table 4: Network property calculations. This table contains calculations of 

several network properties from the yeast networks. RLS corresponds to the replicative life 

span network, CRH to the cellular response to heat, TOR to the target of rapamycin network, 

TOT refers to the combined networks, DC refers to the direct connect version of that network, 

and SP to the network that includes the nearest neighbors of each member. 

 
 

Network Property Calculations  

  Number of Number of 
Vertex 
Degree  Node Mean Vertex Mean Node Network  

 

 Network Nodes Edges Range  Density Degree Distance Diameter  
 

 CRH          
 

 DC 36 100 0 to 16  0.159 5.778 3.146 7  
 

 CRH SP 123 524 0 to 35  0.070 106.750 2.821 6  
 

 RLS DC 45 52 0 to 8  0.053 2.311 4.087 8  
 

 RLS SP 168 540 1 to 46  0.039 86.378 2.893 6  
 

 TOR          
 

 DC 21 51 0 to 13  0.243 4.857 2.892 7  
 

 TOR SP 332 1542 2 to 110  0.028 85.667 2.855 5  
 

 TOT          
 

 DC 100 171 0 to 14  0.035 5.780 3.804 8  
 

 TOT SP 470 2483 0 to 110  0.023 92.550 3.175 6  
 

  

 

 
 

 

Fragmentation (Direct Connection) 0.630 
  

 

   
 

     
 

 Fragmentation (Shortest Path) 0.306   
 

 Clustering Coefficient (Direct 
Connection) 

   
 

 0.151   
 

     
 

 

Clustering Coefficient (Shortest 
Path) 0.046   
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The Bacterial protein and protein Interaction Conservation Study (Introduction): 
 

The goal of the Bacterial protein and protein Interaction Conservation (BIC) study 

was to determine the degree to which proteins and the interactions between them are 

conserved between bacterial species. There were two separate comparisons as part of 

the study. In the first study four bacterial species were compared in terms of their 

protein content as well as their interactions. In the other eight, bacterial species were 

compared in terms of conservation of proteins. In both studies, bacterial species were 

chosen for which there was protein and PPI data. The data was mined from the 

literature <9, 20, 29, 32, 39, 43, 44>. Both studies found far less conservation than 

expected. 

The Bacterial protein and protein Interaction Conservation Study (Methods): 
 

The four species that were compared for the first study were: Escherichia coli, Helicobacter 

pylori, Treponema pallidum, and Streptococcus pneumoniae. Each of the bacterial species 

was compared to E. coli, which was used as a basis of comparison. Statistics were generated 

using Excel and a network was constructed using Cytoscape (see Figure 4). Proteins were 

compared using orthologous groups (OG). 

 

In the other study the species compared were: M. pneumoniae, M. genitalium, B. subtilis, S. 

sanguinis, H. pylori, C. crescentus, P. aeruginosa, and E. coli. As before, they were compared 

by assigning them to OGs. As before a network of the combined interactions of the species was 

constructed using Cytoscape (see Figure 5). They were compared using Excel and tables were 

generated showing conservation in terms of numbers and percentages. The comparison was 

performed two ways. In one, paralogous proteins were included; in the other, they were 

removed by only including unique OGs. 

 

 

 

 

 

 

Figure 4: Four species PPI. An interaction network was constructed using 

Cytoscape for the interaction data from 4 species: E. coli, H. pylori, T. pallidum, and M. 

tuberculosis.   

  



 
 

16 
 

Table 5: Shared clusters of orthologous groups (COG) among four 

species. PPI interaction data was compared for four organisms using Excel. Each organism 

was compared to E. coli. Table A indicates number of shared orthologous groups represented 

by COGs, while Table B shows number of shared protein-protein interactions. 

 

A: Shared COGs 

Organism Name E. coli H. pylori T. pallidum M. tuberculosis 

E. coli 1269 226 68 386 

H. pylori 226 917 69 290 

T. pallidum 68 69 576 78 

M. tuberculosis 386 290 78 2907 

     B: Shared Interactions 

Organism Name E. coli H. pylori T. pallidum M. tuberculosis 

E. coli 2231 3 1 16 

H. pylori 3 2154 0 6 

T. pallidum 1 0 992 2 

M. tuberculosis 16 6 2 8042 

 

Table 6: Summary statistics. Four species; E. coli, H. pylori, T. pallidum, and M. 

tuberculosis were compared in terms of shared interactions and shared COGs to study 

conservation. These values were calculated using Excel formulas. 

 

Statistics Compared to E. coli Number Percentage 

Total Number of COGs in E. coli 1269 

Number of COGs Shared by all Groups 6 0.50% 

Number of COGs Shared by Three Groups 38 3% 

Number of COGs Shared by Two Groups 123 9.70% 

Number of COGs Unique to E. coli 1146 90.30% 

  

Total Number of Interactions Present in E. coli 2231 

Number of Interactions Shared by all Groups 0 0% 

Number of Interactions Shared by Three Groups 2 0% 

Number of Interactions Shared by Two Groups 40 1.80% 

Number of Interactions Unique to E. coli 2191 98.20% 
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Table 7: Proteins shared among eight species. Section 7A shows the 

percentages of OGs shared between two of eight species, along with the total number of OGs for that 

species. Table 7B shows the counts of the OG that are shared between two species. Tables 7C and 7D 

are the same except that paralogy has been removed. One organism compared to its self shows the total 

number of proteins for that species in the dataset. The above table 7A shows percentage of proteins in 

common. The organism name to the left is the one started with and the name in the top row is the one it 

is compared to. The bottom table, 7B, shows the numbers of proteins that the species share. Tables 7C 

and 7D are the same except that paralogy has been removed. 

Table 7A: Percentages 

M.  
pneumoniae 

M. 

genitalium B. subtilis 

S. 

sanguinis H. pylori 

C. 

crescentus P. aeruginosa E. coli 

  

M.  pneumoniae 

 
86.02% 71.55% 71.05% 55.91% 63.06% 65.72% 67.89% 

M. genitalium 96.68% 
 

80.50% 79.05% 60.17% 69.09% 73.24% 73.65% 

B. subtilis 15.88% 15.46% 
 

48.67% 33.88% 51.80% 60.77% 59.86% 

S. sanguinis 26.37% 25.44% 74.22% 
 

39.41% 58.14% 65.74% 67.60% 

H. pylori 21.43% 20.75% 57.61% 43.07% 
 

62.53% 66.83% 67.71% 

C. crescentus 12.58% 12.20% 57.21% 41.21% 38.83% 
 

72.56% 66.91% 

P. aeruginosa 11.74% 11.34% 56.72% 40.75% 34.00% 62.61% 
 

69.40% 

E. coli 14.33% 13.68% 58.34% 43.21% 34.11% 58.12% 73.03% 
   

          
Table 7B: Values 

M.  
pneumoniae 

M. 

genitalium B. subtilis 

S. 

sanguinis H. pylori 

C. 

crescentus P. aeruginosa E. coli 

  

M.  pneumoniae 601 517 430 427 336 379 395 408 

M. genitalium 466 482 388 381 290 333 353 355 

B. subtilis 644 627 4056 1974 1374 2101 2465 2428 

S. sanguinis 538 519 1514 2040 804 1186 1341 1379 

H. pylori 314 304 844 631 1465 916 979 992 

C. crescentus 454 440 2064 1487 1401 3608 2618 2414 

P. aeruginosa 678 655 3275 2353 1963 3615 5774 4007 

E. coli 594 567 2418 1791 1414 2409 3027 4145 
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Table 7C: Percentages 

M.  
pneumoniae 

M. 

genitalium 

B. 

subtillis 

S. 

sanguinis H. pylori 

C. 

crescentus P. aeruginosa E. coli 

  

M.  pneumoniae 

 
69.72% 0.16% 57.07% 43.26% 49.08% 53.24% 54.08% 

M. genitalium 86.93% 
 

71.16% 69.92% 53.32% 61.00% 65.35% 65.56% 

B. subtillis 8.56% 8.46% 
 

24.21% 17.14% 25.64% 30.52% 30.23% 

S. sanguinis 16.81% 16.52% 48.14% 
 

25.49% 36.52% 42.55% 43.38% 

H. pylori 17.75% 17.54% 47.44% 35.49% 
 

48.94% 53.79% 53.65% 

C. crescentus 8.18% 8.15% 28.82% 20.65% 19.87% 
 

38.53% 34.89% 

P. aeruginosa 5.54% 5.46% 21.44% 15.03% 13.65% 24.07% 
 

28.84% 

E. coli 7.84% 7.62% 29.58% 21.35% 18.96% 30.37% 40.17% 
   

          
Table 7D: Values 

M.  
pneumoniae 

M. 

genitalium B. subtilis 

S. 

sanguinis H. pylori 

C. 

crescentus P. aeruginosa E. coli   

M.  pneumoniae 461 419 347 343 260 295 320 325   

M. genitalium   435 343 337 257 294 315 316   

B. subtilis     2582 982 695 1040 1238 1226   

S. sanguinis       1437 520 745 868 885   

H. pylori         1180 717 788 786   

C. crescentus           2231 1390 1259   

P. aeruginosa             3112 1665   

E. coli               2593   
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The Bacterial protein and protein Interaction Conservation Study (Results): 
 

Only 6 proteins out of the 1,269 OGs in E. coli (0.50%) were present in all four groups, 38 

were shared by three (3%), and 123 (9.7%) were shared by two or more. Over 90% of the 

proteins were unique to E. coli. Only interactions for which there was data was considered, and 

it is unlikely that these represent all the interactions present in each species. Thus it is also 

possible that there might be false positives, as well as false negatives. No interactions were 

shared between all four, only two were shared out of the 2231, and 40 (1.80%) were shared by 

two or more. Over 98% of the interactions were unique to E. coli. See Table 5 for shared COGs 

and Table 6 for shared interactions. It was concluded for this comparison that (1) the interaction 

networks are vastly incomplete and that (2) protein interactions in bacteria are less well 

conserved than previously thought. 

 

In the study of 8 species, it was found that species that were more similar in terms of 

evolutionary hierarchy shared more proteins. When paralogy was included M. genitalium and 

M. pneumoniae were the most similar in terms of protein content (96.68%), while P. aeruginosa 

and M. genitalium were the least similar (11.34%). When paralogy was removed this was less 

evident. M. genitalium and M. pneumoniae shared 86.93% of their proteins, while P. 

aeruginosa and M. genitalium shared only 5.46%. The results were different when paralogy was 

removed. For example, when paralogy was included M. pneumoniae and B. subtillis were 

similar (71.55%), however when it was removed they were far less so (0.16%). In fact when 

paralogy was removed M. pneumoniae and B. subtillis were in fact quite different. See Table 7 

for more information on shared proteins and interactions.  

 

The Bacterial Meta-interactome Network study: 
 

The goal of the Bacterial Meta-interactome Network (BMN) study is to identify and illustrate 

conservation between six bacterial species. For this study, the number of species was chosen for 

which there were 1,000 or more known proteins. Those species were: B. subtilis, S. sanguinis, 

H. pylori, C.crescentus, P. aeruginosa, and E. coli. A network was constructed using Cytoscape 

(see Figure 6). This study used the same source of data so the results were similar, however this 

network did not use E. coli as a basis for comparison so that conservation could be studied in 

more depth. Of the proteins in the network only 58 proteins were found to be present in all 6 

species. 
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Figure 5: Eight species protein conservation network.  

The PPI networks for eight species were integrated into a meta-interaction network. Each node represents 

a protein and each edge represents an interaction between proteins. The nodes are color-coded to 

represent their presence in a species or their conservation among species.The interaction network was 

constructed from the PPI data for eight organisms: M. pneumoniae, M. genitalium, B. subtilis, S. 

sanguinis, H. pylori, C. crescentus, P. aeruginosa, and E. coli. The network was constructed using 

Cytoscape. 
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Figure 6: Meta-interactome network. This is a meta-PPI network constructed 

from the PPI networks of 6 species: B. subtilis, S. sanguinis, H. pylori, C. crescentus, P. 

aeruginosa, and E. coli. Each node represents a protein and is color-coded to indicate which 

organism it is in as well as the degree of conservation. From this network a sub-network of 

proteins conserved in all 6 species was generated.
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Methods 
 

 

 

Data Collection: 
 

The list of proteins for Escherichia coli K-12 was collected from the EcoGene database <32>. 

The protein list contained a number of ways to identify a protein including: UniProt ID, B 

number, and gene name. A second list was generated containing all COGs in Escherichia coli 

and their corresponding B number from the eggNOG database using the flat files COG 

members and NOG members <31>. The protein list was used as a key for identifying a protein 

by name and the second was used as a key to map COGs to proteins. 

 

To represent protein conservation, information from the eggNOG database was used to select 

species from a candidate list of bacterial model organisms. Species for which there were no 

COGs were removed from the list and a table comparing protein conservation among the 

remaining species was generated. The species chosen included: Bacillus subtilis (subspecies 

168), Campylobacter jejuni (subspecies NCTC 11168), Caulobacter crescentus (subspecies 

CB15), Helicobacter pylori (subspecies 26695), Mycoplasma genitalium (subspecies G37), 

Mycoplasma pneumoniae (subspecies M129), Streptococcus pneumoniae (subspecies ATCC 

700669), Streptococcus sanguinis (subspecies ATCC 49296), Synechocystis (PCC 6803), and 

finally Treponema pallidum (subspecies Nichols). 

 

Each of the species chosen had an identifying number in the eggNOG database (for example 

Escherichia coli, subspecies K-12 is 511145). COGs were collected from the flat files “COG 

members” and “NOG members” using the species identifying numbers. Conservation was 

assigned to the proteins in the list from the EcoGene database using the list of COG to B-

Number mappings from the eggNOG data base. A number was assigned based on how many 

of the 11 organisms a COG mapping to that gene was found. If a B-Number didn’t map to a 

COG or if the COG it mapped to was not found in any of the 10 other species, a conservation 

value of 1 was assigned. Otherwise a number from 2-11 was assigned based on how many 

organisms the COG that a protein mapped to was found in. If a protein mapped to multiple 

COGs the highest value was assigned to that protein. 

 

Protein essentiality was collected from the Online Gene Essentiality (OGEE) database from a 

flat file identifying proteins by B number, which was used to map to the protein list from the 

EcoGene database <8>. Protein-protein interactions were taken from Supplementary Table 5 

from 2014 Rajagopala, et. al. which contained both interactions discovered from Y2H studies as 
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well as from a search of the literature <32>. From these interactions a Cytoscape network was 

built and the Cytoscape add on, Network Analyzer was used to calculate centrality values for 

each protein <38>. There were 27 proteins that were found in the list from 2014 Rajagopala that 

were not found in the list of proteins from EcoGene. The information for each of these proteins 

was looked up using the UniProt database and they were added to the list, along with their 

respective conservation, centrality, and essentiality values. 

 

Statistical tests: 

 

The list of proteins in Escherichia coli which contained the essentiality, conservation, and 

centrality values for each protein was used for the analysis. To avoid the complication of N/A 

values, the proteins that had not been tested for essentially were removed from the list used for 

the analysis. Each of the hypotheses was tested using correlations performed using SPSS. A 

Goodman and Kruskal's gamma measure was used in each case <17>. Each two of the three 

attributes of proteins were compared: essentiality & conservation (1), conservation & degree 

centrality (2), as well as essentiality & degree (3). To investigate the complication of proteins 

that did not map to COGs and proteins that had no known interactions a second list was 

prepared that had such proteins removed and the correlations were performed again. So the 

effect of proteins that didn’t map to COGs and proteins that had no known interactions could be 

isolated, two more lists were made and tested. In one only the proteins that didn’t map to COGs 

were removed and in the other only proteins that had no known interactions were removed. For 

each of these tests a 90% level of confidence was chosen to establish the acceptance of the 

hypotheses because the relationships between the values are complex.  

 

Escherichia coli PPI network: 
 

To visually represent the relationship between protein essentiality, conservation, and centrality 

a second Cytoscape network was built (See Figure 7). First the interactions were mapped to 

gene name using the list from EcoGene as a key. Next a list was constructed mapping 

conservation to gene name using B number as a key. This list was imported into Cytoscape and 

the essentiality values were mapped to color, red if non-essential, blue if essential, and green if 

there was no data. Another list was constructed mapping conservation to gene name and was 

mapped to node size in the network. Centrality was represented by the position of the node. The 

network was subjected to an edge-weighted spring-embedded layout. This layout uses an 

algorithm that puts nodes with more connections closer to the center <12>. Thus nodes with 

higher centrality are closer to the center of the network. 
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Figure 7: Escherichia coli network figure. This PPI network contains all of the 

proteins in Escherichia coli as well as known interactions. Essential proteins are dark blue, non-

essential are red and proteins not tested for essentiality are teal. Conservation is mapped to node 

size and the layout is such that proteins with high centrality values congregate towards the 

center. 
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Results 
 

Data collected: 
 

The list of genes in Escherichia coli, originally from the EcoGene database but supplemented 

with values from the UniProt database, contained 4,529 distinct B-Numbers. There were 917 

unique COGs for Escherichia coli from the eggNOG database. For the number of COGs in the 

other 10 species see table 8. Of the 4,529 proteins in the list for Escherichia coli 34.4% of them 

mapped to a COG and 30 B-Numbers mapped to multiple COGs. Essentiality data was 

available for 4,203 of the proteins in the list which represents 92.8% of the B-Numbers. See 

Table 8 for more information. 

 

Statistical Analysis: 
 

For the initial list of proteins for which there was essentialiy data, there was a moderate, 

positive relationship beween essentiality & conservation (1), a strong, positive relationsip for 

essentiality & degree (3), and the relationship between conservation & degree was inconclusive 

(2). For (1) the confidence was level 99.9% and was higher for (3). This was considerably more 

than the 90% chosen. However the approximate significance for (2) was 0.702. See table 9A for 

the values. 

 

In order to isolate the effect of proteins that didn’t map to COGs from the effect of proteins for 

which there was no known interactions, two more lists were made. When proteins that didn’t 

map to COGs were removed essentiality & conservation (1) and essentiality & degree (3) 

showed a strong, positive relationship, while conservation & degree (2) had a weak, positive 

relationship.  See table 9C for the values for the list where only proteins that did not map to 

COGs were removed. There was a moderate, positive relationship between essentiality & 

conservation (1) and for essentiality & degree (3). The relationship between conservation & 

degree (2) was not established because the significance was 0.828. See table 9D for the values 

for the list of proteins which had only proteins for which there were no known interactions for 

were removed. 
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Table 8: Protein content and conservation. Table 8A shows the number of 

COGs for each of the species under study diagonally, for example Campylobacter jejuni has 

451 known COGs. It also compares number of COGs in common with each other species. 

Table 8B shows the percentange of COGs shared between any two of the eleven species. 

 

 

Table 8A 
Escherichia 

coli  
Bacillus 
subtilis  

Caulobacter 
crescentus  

Synechocystis  
Campylobacter 

jejuni 
Helicobacter 

pylori  
Streptococcus 
pneumoniae  

Treponema 
pallidum  

Streptococcus 
sanguinis  

Mycoplasma 
genitalium 

Mycoplasma 
pneumoniae  

Escherichia 
coli  

917 551 531 459 380 319 255 221 136 130 104 

Bacillus 
subtilis  

  765 443 421 336 286 273 221 155 142 116 

Caulobacter 
crescentus  

    754 416 339 286 201 189 123 115 93 

Synechocystis        628 310 269 201 175 112 122 97 

Campylobacter 
jejuni 

        451 326 164 178 95 109 83 

Helicobacter 
pylori  

          374 150 170 77 104 83 

Streptococcus 
pneumoniae  

            335 130 47 106 114 

Treponema 
pallidum  

              268 66 103 80 

Streptococcus 
sanguinis  

                177 48 16 

Mycoplasma 
genitalium 

                  149 115 

Mycoplasma 
pneumoniae  

                    124 
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Table 8B 
Escherichia 

coli  
Bacillus 
subtilis  

Caulobacter 
crescentus  

Synechocystis  
Campylobacter 

jejuni 
Helicobacter 

pylori  
Streptococcus 
pneumoniae  

Treponema 
pallidum  

Streptococcus 
sanguinis  

Mycoplasma 
genitalium 

Mycoplasma 
pneumoniae  

Escherichia 
coli   

60% 58% 50% 41% 35% 28% 24% 15% 14% 11% 

Bacillus 
subtilis  72% 

 
58% 55% 44% 37% 36% 29% 20% 19% 15% 

Caulobacter 
crescentus  70% 59% 

 
55% 45% 38% 27% 25% 16% 15% 12% 

Synechocystis  73% 67% 66% 
 

49% 43% 32% 28% 18% 19% 15% 

Campylobacter 
jejuni 84% 75% 75% 69% 

 
72% 36% 39% 21% 24% 18% 

Helicobacter 
pylori  85% 76% 76% 72% 87% 

 
40% 45% 21% 28% 22% 

Streptococcus 
pneumoniae  76% 81% 60% 60% 49% 45% 

 
39% 14% 32% 34% 

Treponema 
pallidum  82% 82% 71% 65% 66% 63% 49% 

 
25% 38% 30% 

Streptococcus 
sanguinis  77% 88% 69% 63% 54% 44% 27% 37% 

 
27% 9% 

Mycoplasma 
genitalium 87% 95% 77% 82% 73% 70% 71% 69% 32% 

 
77% 

Mycoplasma 
pneumoniae  84% 94% 75% 78% 67% 67% 92% 65% 13% 93% 
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Table 9: Correlations. The correlations between essentiality & conservation (1), 

essentiality & degree centrality (3), as well as conservation & degree (2) were calculated using 

SPSS. Section 9A shows the values for the list of proteins containing all proteins from 

Escherichia coli for which essentiality had been tested. For 9B the proteins which didn’t map to 

COGs and proteins for which there were no known interactions were removed. In 9C only 

proteins that didn’t map to COGs were removed and in 9D only proteins with no known 

interactions were removed. In each Goodman and Kruskal's gamma was calculated and the 

value for the correlation given. The approximate significance, standard error, and relationship 

are shown for each. 

9A 

Essentiality& 

Conservation 
Relationship 

Moderate 

+ 
  

Essentiality& 

Degree 
Relationship 

Strong 

+ 
  

Conservation& 

Degree 
Relationship Inconclusive 

Symmetric Measures   Symmetric Measures   Symmetric Measures 

  Value 

Asymp. Std. Error Approx. 

Sig.     Value 

Asymp. Std. Error Approx. 

Sig.     Value 

Asymp. Std. Error Approx. 

Sig. 

Gamma .174 .048 .001   Gamma .337 .034 .000   Gamma .008 .022 .702 

          

9B 

Essentiality& 

Conservation 
Relationship 

Strong 

+ 
  

Essentiality& 

Degree 
Relationship 

Moderate 

+ 
  

Conservation& 

Degree 
Relationship 

Weak 

+ 

Symmetric Measures   Symmetric Measures   Symmetric Measures 

  Value 

Asymp. Std. Error Approx. 

Sig.     Value 

Asymp. Std. Error Approx. 

Sig.     Value 

Asymp. Std. Error Approx. 

Sig. 

Gamma .585 .060 .000   Gamma .268 .069 .000   Gamma .083 .034 .015 
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9C 

Essentiality& 

Conservation 
Relationship 

Strong 

+ 
  

Essentiality& 

Degree 
Relationship 

Strong 

+ 
  

Conservation& 

Degree 
Relationship 

Weak 

+ 

Symmetric Measures   Symmetric Measures   Symmetric Measures 

  Value 

Asymp. Std. Error Approx. 

Sig.     Value 

Asymp. Std. Error Approx. 

Sig.     Value 

Asymp. Std. Error Approx. 

Sig. 

Gamma .423 .054 .000   Gamma .330 .055 .000   Gamma .071 .026 .007 

          

9D 

Essentiality& 

Conservation 
Relationship 

Moderate 

+ 
  

Essentiality& 

Degree 
Relationship 

Moderate 

+ 
  

Conservation& 

Degree 
Relationship Inconclusive 

Symmetric Measures   Symmetric Measures   Symmetric Measures 

  Value 

Asymp. Std. Error Approx. 

Sig.     Value 

Asymp. Std. Error Approx. 

Sig.     Value 

Asymp. Std. Error Approx. 

Sig. 

Gamma .222 .060 .001   Gamma .285 .043 .000   Gamma .006 .029 .828 
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Discussion & Conclusion 
 

 

 

Conclusions: 
 

The hypotheses are that there is a measurable, positive correlation between conservation & 

essentiality (1) as well as that there is a positive correlation between essentiality & degree 

centrality (3). However a correlation between protein conservation & degree centrality (2) was 

not established. This was due to the influence of proteins that did not map to COGs. When those 

proteins were removed a weak, positive correlation was established with significance values 

within the accepted range. Although well within the acceptable range, the confidence was 

slightly higher for the correlation between essentiality & conservation (1) when proteins that did 

not map to COGs were removed. An explination for this influence would be that COGs do not 

accurately represent protein conservation between species. When proteins for which there were 

no known interactions were removed, the significance values were not within the accepted range 

which suggests that it was not due to the influence of proteins for which there are no known 

interactions.  

 

The link between essentiality and conservation (1) found here was expected because it is thought 

that proteins that are necessary for survival evolve slower <16>. Proteins with more connections 

are thought to be more likely to be essential so the correlation between protein essentiality and 

degree centrality (3) was also expected. Due to the relationships between (1) and (3), it was 

thought that there should also be a relationship between protein conservation & degree (2), 

however this was not found. As mentioned previously, this may be due to the methods used. It 

might also be due to the fact that the relationship between centrality and conservation is complex 

<27>. The essentiality of proteins often flips between species due to differences between the 

environments they inhabit and is dependent on function <36, 49>.  

 

Reasoning for the Hypotheses: 
 

It was originally speculated that proteins with many interactions would be more likely to be 

essential. Several studies have found such a relationship yet others did not and this has been 

investigated in more detail <19, 48, 50, 51>. Proteins with many interactions would be expected 

to have a larger effect on an organism’s metabolism than ones with fewer interactions. This 

increased importance might mean that it would be under selective pressure and thus it would be 

more conserved. However this might instead be due to a protein’s role in a complex or its 

pleiotropy <48, 50>. Not counting differences in environment, a protein with an essential 

function might be expected to be retained, thus there should also be a link between essentiality 
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and conservation. This relationship has been discovered between proteins in Saccharomyces 

cerevisiae and Caenorhabditis elegans however it should be studied across a wider range of 

organisms for confirmation and for better understanding of the phenomenon <23>. 

 

Limitations: 
 

There were aspects of the data that may have confounded the results. The most obvious is that 

not all of the proteins in Escherichia coli were tested for essentiality. A less intuitive 

complication is that the definition of essentiality defines a protein as either wholly essential or 

wholly non-essential. This is further compounded by the fact that just because a protein is non-

essential does not necessarily mean that it does not perform an essential function. The functions 

of proteins are often redundant, being performed by other proteins in the organism. It is likely 

that there are functions that might be essential in an organism’s environment yet non-essential in 

rich medium. 

 

When determining protein-protein interactions it is possible that proteins do not exist in enough 

abundance to detect an interaction which could lead to genuine interactions being missed. It is 

also possible for two proteins that would not normally come in contact in the organism to interact 

leading to false positives. Not all of the proteins in Escherichia coli have been tested for 

interactions, thus it is unlikely that the known interactions for Escherichia coli are completely 

and accurately represented. When establishing protein conservation, proteins in Escherichia coli 

were compared using COGs. Only a relatively small portion of Escherichia coli’s proteins map 

to COGs. Ten organisms were chosen as a comparison, and relative to the large amount of 

bacterial species, this represents an incredibly small portion. As more information becomes 

available more organisms will be represented and those who are represented will be more 

accurately represented. 
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