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RECEPTORS AND MATRIX METALLOPROTEINASE-1 IN THE DECIDUAL AND 
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By Anna V. Solotskaya 
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Major Director:  Dr. Scott W. Walsh 
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Neutrophils infiltrate myometrium and decidual tissue prior to parturition. 

Activated neutrophils release reactive oxygen species (ROS) and tumor necrosis factor α 

(TNFα), which might increase expression of pro-labor genes such as matrix 

metalloproteinase-1 (MMP-1), progesterone receptor (PR) A/B ratio, and cause 

demethylation of DNA. These changes might cause labor. 

Decidual tissue was obtained from consented, healthy women at term (37+ weeks 

of gestation) not in labor (no contractions, without cervical effacement), term labor and 

preterm labor (under 37 weeks of pregnancy).  Decidual and myometrial cells in culture 



xi 

 

were treated with (1) ROS, (2) TNFα, or (3) 5-aza-2’-deoxycytidine.  Total RNA was 

extracted, converted to cDNA and evaluated by qRT-PCR for MMP-1, PR-A+B and PR-

B. 

TNFα increased MMP-1 by 17 fold in decidual cells and more than 12 fold in 

myometrial cells.  PR-A/B was increased by 5.6 fold in decidua.  ROS up-regulated 

MMP-1 by 6 fold and elevated the PR-A/B ratio by 4.5 fold in decidual tissue.  DNA 

demethylation increased MMP-1 by about 4 and 11 fold in decidual and myometrium, 

respectively.  The PR-A/B ratio was increased by 4 fold in decidua and the PR-B was 

decreased by 40% in the myometrium due to DNA demethylation.  Decidual tissue in 

preterm labor showed a 7-fold increase in MMP-1 over term laboring and over a 15-fold 

increase over term not in labor tissue.   

In conclusion, MMP-1 expression and PR-A/B ratio was increased by neutrophil 

products possibly through a mechanism of DNA methylation in decidua and 

myometrium.  Preterm decidua showed a dramatic increase in MMP-1 over normal labor 

tissue.  TNFα and ROS increased expression of MMP-1 to possibly initiate parturition. 

These data might help explain mechanisms responsible for preterm labor unrelated to 

infection or premature rupture of membranes. 
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CHAPTER 1: Introduction 

 

A. General Background 

 

Normal birth takes place after the 37th week of the baby’s growth.  Preterm birth 

is defined as the delivery of a baby before 37 weeks of gestation.  According to the latest 

statistics compiled in 2006, 12.8% of all pregnancies within the United States end up with 

the baby being born premature 1.  In other words, out of a total of 4,265,555 births, 1 in 8, 

or almost 550,000 babies are born preterm 1.  Minority women are at an increased risk for 

preterm labor (PTL), with a rate of 18.5% for African Americans and 12.2% for 

Hispanics compared to 11.7% for Caucasian 2, 3.  Not only is preterm birth readily 

prevalent within the population, the percentage of babies delivered before 37 weeks has 

risen over 36% since the early 1980s and efforts to curb the rate of prematurity have been 

unsuccessful 1.  Children who are born premature are also in need of extensive post natal 

care and may suffer from a number of problems such as cognitive and behavioral 

abnormalities, cerebral palsy, problems with vision and hearing and emotional 

disturbances, among other things 4.  Additionally, over 75% of post natal deaths are the 

result of preterm delivery 4.  The toll of premature birth is both emotionally and 

financially expensive, resulting in loss of economic productivity for mothers due to bed 

rest and hospitalization, the expense in diagnosing and treating mothers and the long term 

costs associated with health care, child care and education for low birth weight children.  
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The financial costs range into billions of dollars 5.  Premature delivery is the result of 

changes in the myometrium and cervix, which allow for the expulsion of the fetus.  It is 

associated with a host of known risk factors such as tobacco and drug use, low 

socioeconomic class, inadequate access to prenatal care and poor nutrition 6.  A number 

of pathways responsible for early parturition are well studied and substantiated by clinical 

and experimental research.  These include infection and/or inflammation of the genital 

tract, urinary tract or fetal membranes, myometrial tissue and fetal membrane 

overstretching, placental abruption 7 and maternal and fetal stress 8.  Activation of such 

mechanisms may occur over months, weeks or days either individually, as with women 

carrying multiple babies, or in concert with one another, such as with unexplained 

bleeding accompanied by inflammation 7.  Predictors of preterm birth remain sparse.  

These include measurements of fibronectin levels in vaginal fluid and cervical ultrasound 

to establish cervical dilation, shortening and ripening which are sometimes useful in 

predicting who is at acute risk for PTL 7.  Women who have had prior PTL are at greatest 

risk for future preterm delivery, yet this is only a small subset of pregnancies which will 

end delivery prior to 37 weeks of gestation; a full 45% of all PTL is spontaneous and of 

an unknown etiology 9.  No tests or procedures exist for evaluating women who might be 

at risk for PTL in the future. 

As seen with the consistent rise in PTL in the United States, treatment options for 

women at risk and in the midst of early labor are limited.  Studies on the efficacy of 

tocolytic agents have shown that despite prolonging labor, neonatal outcomes have not 

improved 10.  Current tocolytic agents include prostaglandin (PG) synthetase inhibitors, 

betamimetics and calcium channel blockers.  Because a large portion of PTL is associated 
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with infection and inflammation, PG synthetase inhibitors (NSAIDs) are widely used.  

NSAIDs such as indomethacin have a low incidence of maternal side-effects but are 

associated with serious fetal and neonatal complications such as oligohydramnios and 

constriction of the ductus arteriosus which may result in hypertrophy of fetal pulmonary 

vasculature 10.  Betamimetics function by increasing myometrial concentrations of cAMP 

which in turn lowers calcium levels within the cell and also diminish actin-myosin 

sensitivity to calcium 10.  These β-adrenergic receptor agonists are associated with several 

severe maternal side effects such as pulmonary edema, arrhythmia and even death 10, 11.  

Calcium channel blockers are also increasingly used to prolong labor.  These drugs work 

by decreasing calcium influx into myometrial cells and thereby reducing smooth muscle 

tone of the tissue 12.  In most cases, all of these drugs do not prolong labor for more than 

48 hours and their extended use is associated with a much higher incidence of side 

effects, both for the mother and baby 10.  Additionally, tocolytics are counterindicated for 

many frequent PTL causes such as placental abruption, chorionamnionitis and fetal 

distress 11.  The utility of these medications lies in providing a window of opportunity to 

administer corticosteroids, to stimulate fetal lung development and to transfer the mother 

and baby to a location with a neonatal intensive care unit.   

Recently, 17 alpha-hydroxyprogesterone caproate (17P) treatment, a naturally 

occurring metabolite of the hormone progesterone has been proposed as a prophylactic 

medication in certain women who already experienced prior preterm birth 13.  

Progesterone maintains uterine quiescence by serving as a potent anti-inflammatory agent 

and inhibitor of oxytocin (OT) action by mediating both nuclear and non-genomic 

pathways 14.  17P is applied as a cream directly onto the cervix, being a highly lipid 
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soluble molecule it can therefore effect the most critical tissues involved in pregnancy, 

mainly limiting  cervical effacement and myometrial contractility 14. Additionally, a 

recent review of six studies on progesterone use to prevent PTL by Rode and colleagues 

concluded that for women with singleton pregnancy and prior preterm delivery, 

progesterone treatment lowered preterm delivery before 32 weeks, reduced postnatal 

death and diminished certain complications in infants 4.  However, further studies are 

needed to support wide spread recommendation of this therapy to more women.   

Early labor can be the result of an aberrant mechanism of parturition or activation 

of an abnormal pathway and characterized by an anomaly of uterine quiescence and/or 

the stimulation of contractile processes.  In humans, parturition can be initiated through 

functional progesterone withdraw 15, activation of inflammatory processes 16 and via 

thrombin activation of protease activated receptor – 1 (PAR1) in the myometrium 17.   

 

B. Functional Progesterone Withdraw  

 

During pregnancy, progesterone is a key element maintaining the uterus in a 

relaxed state until term 18.  It suppresses uterine contractility by decreasing the expression 

of the oxytocin and prostaglandin receptors 19.  Another key role of progesterone is to 

reduce the translocation and assembly of Connexin43 (Cx43).  Cx43 is a gap junction 

myometrial protein necessary to synchronize uterine contraction within the myometrium 

19.  Progesterone also acts to supplement the effectiveness of protein kinase A (PKA) to 

inhibit phospholipase C (PLC), and therefore limit the levels of Ca2+ available for 

contraction within the smooth muscle of the uterus 19.  Progesterone inhibits matrix 
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metalloproteinase (MMP) 1 and 3 expression in decidual cells, which are collagenases 

responsible for weakening the cervix and causing rupture of the fetal membranes.  In this 

way progesterone also protects against preterm birth 16.  Progesterone is essential for 

maintaining uterine quiescence because the drug RU486 (Mifepristone), a progesterone 

antagonist, can trigger parturition at any point during pregnancy 20.   

In humans, the placenta serves as the largest generator of progesterone while for 

other animals the corpus luteum of the ovary is the principal source of the hormone.  

Many animals experience labor with a preceeding drop in circulating progesterone levels.  

For example, some species undergo a decrease in placental progesterone secretions while 

other species rely on the regression of the corpus luteum to decrease overall progesterone 

available in the circulation and consequently the myometrial tissue 18.  In higher level 

primates and in humans, levels of progesterone remain high until the placenta is expelled.  

Therefore, labor is not initiated by a drop in circulating progesterone 18.   

One of the best-studied mechanisms to explain functional progesterone 

withdrawal in humans has been the altered expression of inhibitory receptor types, 

especially as parturition is approached and labor begins.  The progesterone receptor exists 

in two major subtypes: the inhibitory form (PR-A) and the activator of most progesterone 

response genes (PR-B).  Both receptors bind progesterone with equal affinity and 

produce two distinct mRNA transcripts 21.  PR-B is longer by 164 amino acids at its 

amino terminus and has its own, distinct promoter region and activation factors 22.  

Although PR-A is known to influence the transcription of some genes, it also functions to 

sequester available progesterone away from PR-B and even act as a trans-dominant 

inhibitor  23.   
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During normal pregnancy, the expression of PR-A is barely detectable before 

labor 24.  In order to have a significant reduction in progesterone response, the levels of 

PR-A must be much higher than that of PR-B 21.  With labor, Pieber et. al. showed that 

PR-A is found in human myometrium cells only after the onset of labor 24.  A recent 

review by Messiano and colleagues demonstrated that non-laboring samples of 

myometrial tissue showed almost a 1:1 ratio of PR-A/B 22.  The following review also 

established that during labor, this ratio can increase over 2:1 22. In a separate study, 

Messiano et. al. was able to confirm the increase in the ratio of PR-A/B associated with 

labor demonstrated an analogous increase in expression of estrogen receptor-α and the 

Homeobox gene HOXA10, both of with are normally down-regulated by progesterone in 

the myometrium22, 25.  Furthermore, equivalent changes have been observed in fetal 

membranes and decidual tissue with significant increases in PR-A over PR-B for women 

in labor compared to those not in labor 26.   

 

C. Inflammatory Processes and Labor 

 

Inflammatory processes are some of the first hallmarks of labor and may possibly 

instigate other more profound changes associated with parturition 20.  Thompson et. al. 

used immunohistochemistry to illustrate that neutrophils and macrophages are the 

predominant cells infiltrating the myometrium at term 27.  Leukocytes are also found in 

great density within decidual and fetal membrane tissue 28.  Analysis of samples from 

term in labor women has shown the presence of neutrophil specific recruitment and 

activation factors 29.  Not only are neutrophils found in great numbers in myometrial, 
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decidual and cervical tissue, but these cells are the primary source of tumor necrosis 

factor α (TNFα) and other inflammatory cytokines, such as interleukin (IL) -1β, IL-6 and 

IL-8 during spontaneous labor compared to non-laboring tissue samples 30.  Immune cells 

of women in labor also produce other inflammatory factors such as reactive oxygen 

species (ROS) which can oxidize lipids, alter protein function and change DNA by 

modifying bases, shifting the deoxyribose backbone, and cross-linking to other molecules 

and in general modify cell function 31.  As inflammation drives the production of PGs and 

their analogues, progesterone withdraw can be initiated through a mechanism of nuclear 

factor (NF) κ B regulation to increase the inhibitory form of the PR 32, 33.  Inflammatory 

cytokines have been known to induce the expression of MMP genes and proteins, serum 

PG concentrations and decrease collagen synthesis 34.  The increase of inflammatory 

cytokines with infiltrating neutrophils and in decidual tissue result in an enhanced 

inflammatory response by recruiting and activating more neutrophils, softening and 

dilation of the cervix and weakening the fetal membranes 16, 35.  Studies in women 

experiencing PTL show increased sensitivity to inflammatory signals and up-regulation 

of many pro-labor genes such as MMPs, PGs and a number of ILs 16.   

 

D. Thrombin and Preterm Labor 

 

It has long been known that placental abruption, a premature separation of the 

placenta before delivery, is associated with spontaneous labor.  Fareed et. al. first 

identified thrombin as the principal initiator of uterine contractility 17.  Thrombin is best 

known as a coagulation protein present in the blood and a key enzyme involved in 
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haemostasis 36.  It is a serine protease which is also capable of catalyzing many other 

reactions via its interaction with a set of proteinase-activated receptors (PAR) 37.  PARs 

belong to a family of membrane G-protein coupled receptors with 7 transmembrane 

domains 37.  Thrombin is capable of cleaving a specific site on the extracellular N-

terminus of the PAR, allowing the new amino terminus to act as a transactivator of the 

receptor in order to initiate numerous intracellular signaling events 38.   

In the case of smooth muscle myometrial cells, Elovitz et. al. has shown that 

thrombin is capable of eliciting phasic uterine contractions via thrombin activation of the 

phosphatidylinositol signaling pathway 36.  Once the receptor is activated, the coupled G-

protein complex stimulates phosphoinositide-specific phospholipase C (PLC) which 

hydrolyzes phosphatidylinositol 4,5-bisphosphate releasing inositol 1,4,5-trisphosphate 

(IP3) which turns on IP3 mediated channels in the endoplasmic reticulum causing a 

release of sequestered calcium stores 36.  Additional calcium can enter the cytosol via 

ryanodine receptors on the ER and L-type calcium channels 36.  Cycles of emptying and 

refilling of ER calcium stores and periodic extracellular influx of Ca2+ produces episodic 

activation of calmodulin, myosin light chain kinase (MLCK) and actin and myosin 

creating phasic uterine contractions 36.  O’Sullivan et. al. has shown that thrombin 

uterotonic effects are mediated by specific activation of PAR1 in human tissue, 

confirming earlier studies done in the rat myometrium 39, 40.  Shintani et. al. has 

demonstrated that thrombin’s enhanced effects on intracellular calcium influx in pregnant 

rats compared to non-pregnant animals is the result of PAR up-regulation in the 

myometrium 41.  Recent findings by O’Brien et. al. have confirmed the findings of 

Shintani and colleagues in human myometrial tissue samples which also demonstrated an 
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increase in PAR1 during pregnancy and even greater up-regulation of the receptor with 

labor 42.   

 

E. MMP-1 and Pregnancy 

 

A number of MMPs have been identified as instrumental in the progression of 

normal labor in order to rupture fetal membranes and ripen the cervix to allow for birth 

43.  Inflammatory cytokines, such as ILs and TNFα as well as ROS, are capable of 

enhancing MMP expression 44, 45.  MMP-1 is critical in digesting type I and III collagens 

46 and is released by many different cell types, including smooth muscle tissue 47, fetal 

membranes 44, 48, decidual tissue 35 and the placenta 49.  Over-expression of MMP-1 in 

amniotic fluid has been associated with both preterm premature rupture of membranes 

(PPROM) and PTL 43, 46.  In 2005 Boire et. al. first described that MMP-1 is capable of 

acting as a PAR1 agonist in transformed breast cancer cells 50.  This was further 

confirmed, in breast cancer cells by Yang et. al. 51, in platelets by Trivedi et. al. 52 and 

endothelial cells by Goerge and colleagues 53.  MMP-1 cleaves the N-terminus of the 

PAR1 receptor at a site two amino acids upstream of the thrombin cleavage site, 

producing a longer tether, yet one that is still able to generate a PAR1 agonist 52.  The 

resulting activated PAR1 can act through Gα/β, and in turn, Rho kinase 54.  Finally, 

Agarwal and colleagues were able to show that PAR1 cleavage by MMP-1 activates the 

same downstream effects as thrombin in tumor cells 55.  Since myometrial cells express 

PAR1, it is possible that MMP-1 might initiate labor contractions through a previously 
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unknown and unrecognized mechanism and could potentially serve as a key factor 

responsible for PTL.   

 

F. Summary 

 A number of key interactions known to cause cervical ripening, rupture of the 

fetal membranes and myometrial contractions are represented in Figure 1.  Neutrophil 

products are known to affect MMP-1 through activation of the mitogen-activated protein 

kinases (MAPK/MEK) as well as extracellular signal-regulated kinases (ERK) 56, 57.  

However these effects have not been shown in either myometrial cells or decidual cells.  

Additionally, even though PR-A/B ratio is known to increase other pro-labor genes, the 

mechanisms responsible for affecting PR expression are not known.   
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Figure 1: Neutrophil Products and PR Effects on Labor 
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G. Purpose of Study and Hypotheses 

 

The goal of our study is to show that neutrophils and neutrophil products (ROS, 

TNFα) are capable of mimicking conditions present during preterm labor in decidua and 

myometirum.  We hypothesize that: (1) MMP-1 will be up-regulated by neutrophils and 

neutrophil products in both myometrial and decidual cells; (2) The ratio of PR-A/PR-B 

will be increased by neutrophils, ROS and TNFα; (3) MMP-1 and PR-B will be 

epigenetically regulated; and (4) women in PTL will show an increase in MMP-1 

expression over those in term labor (TL) and term not in labor (TNL).   

 



13 

 

CHAPTER 2: Materials and Methods 

 

A. Chemicals 

 

Phosphate buffered saline (PBS; Invitrogen, Grand Island, NY), fetal bovine 

serum (FBS; Invitrogen, Dulbecco’s modified Eagle’s medium: nutrient mixture F-12 

(DMEM/F12; Invitrogen), antibiotic-antimycotic containing 10,000 units of penicillin, 

10,000 µg of streptomycin, and 25 µg of amphotericin B/ml utilizing penicillin G 

(sodium salt), streptomycin sulfate, and amphotericin B as Fungizone Antimycotic in 

0.85% saline (Invitrogen), Turbo DNAse (Ambion; Austin, TX), 2-mercaptoethanol (2-

ME; Fisher Scientific, Fair Lawn, NJ), arachidonic acid (Cayman Chemical Co., Ann 

Arbor, MI), granulocyte-macrophage colony-stimulating factor (GM-CSF; R&D 

Systems, Minneapolis, MN), Histopaque 10771 and 11191 (Sigma-Aldrich, St. Louis, 

MO), cDNA synthesis kit (BioRad, Hercules, CA), Hypoxanthine (HX; Sigma-Aldrich), 

Xanthine Oxidase (XO; Calbiochem, La Jolla, CA), FujiFilm RNA cell and tissue 

extraction kit (Autogen, Holliston, MA), Trypan Blue 0.4% solution (Sigma-Aldrich), 

recombinant TNFα (R&D Systems), 5-aza-2'-deoxycytidine (5-AZA; Sigma-Aldrich), 

Potassium Chloride (KCl; Sigma-Aldrich), 100% ethanol (Pharmco-AAPER, Shelbyville, 

KY), blood collection tubes with 143 USP units of sodium heparin (BD Vacutainer, 

Franklin Lakes, NJ), Laboratory designed PCR Primers (Integrated DNA 
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Technologies, IDT, San Diego, CA), PAR1 Primer Set (SA Biosciences, 

Frederick, MD), qPCR SYBR Green Master Mix (SA Biosciences).  

 

B. Equipment 

 

Nano Drop 2000 (Thermo Scientific, Madison, WI), Bambino hybridization oven 

(Boekel Scientific, Feasterville, PA), QuickGene Mini-80 (AutoGen, Holliston, MA), 

Eppendorf Mastercycler ep Realplex real time PCR system (Westbury, NY), Agilen 2100 

– Bioanalyzer (Santa Clara, CA), 96-well PCR plate (Applied Biosystems, Foster City, 

CA), PCR plate caps (Applied Biosystems). 

 

C. Isolation of Decidual Tissue Samples 

 

The placenta and accompanying fetal and maternal membranes were collected 

from PTL, TL and TNL pregnant women undergoing either vaginal or cesarean section 

deliveries at the Medical College of Virginia Hospital, Virginia Commonwealth 

University Health System.  The PTL women included in the study were in active labor, 

based on the presence of uterine contractions and cervical effacement and gave birth 

between 24-37 weeks of pregnancy.   Those in TL were experiencing active contractions 

with cervical effacement and were delivering over 37 weeks of gestation.  Those at TNL 

were not in active labor, showing no cervical dilation and no contractions.  Patients were 

excluded based on the following criteria: prior diagnosis of incompetent cervix, diabetes, 

preeclampsia, HIV or other active infection, carrying multiple fetuses, had fetuses with 
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congenital abnormalities or were under the age of 18.  Consent was obtained prior to 

delivery and the study was approved by the Virginia Commonwealth University Office of 

Research Subjects Protection (VCU IRB #: HM 10906).  Decidual tissue was collected 

by gentle scraping of the decidual cells from the chorion into a conical 50 ml tube filled 

with ice cold PBS.  After collection, cells were centrifuged at 4˚ C and 300 x g for 10 

minutes.  PBS was aspirated and the tissue was washed with 25 ml ice cold PBS, briefly 

vortexed, and re-spun at 4˚ C and 300 x g for another 10 minutes.  The remaining pellet 

contained both decidual tissue and residual erythrocytes.  Contaminating red blood cells 

were lysed with 3 ml of ice cold ddH2O followed by an addition of 1 ml of 0.6 M solution 

of KCl after 30 seconds to restore tonicity.  The remaining re-suspension of tissue was 

centrifuged at 4˚ C and 300 x g for 4 minutes.  The supernatant was removed and total 

RNA was extracted immediately. 

 

D. Cell Culture 

 

i. Myometrial Cell Line 

 

A human telomerase reverse transcriptase (hTERT) immortalized human 

myometrial cell line was provided by R. Ann Word (Southwestern Medical 

Center at Dallas; Dallas, TX) (2002 – Condon Telomerase Paper).  Cell culture 

was maintained in DMEM/F12 media containing 10% FBS, an antibiotic-

atimicotic, and incubated at 37˚ C in 95% air and 5% CO2.  Media was replaced 

every 48 hours.   
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ii. Primary Decidual Cell Culture 

 

Primary culture decidual cells were isolated with the method of Lockwood 

et. al. 58.  After decidual tissue was scraped from the maternal side of the fetal 

membranes, it was digested with a collagenase, treated with DNase three times 

and remaining cell clusters were dissociated by passing the mixture through a 25 

gauge needle.  The entire procedure was repeated twice more.  The resulting cells 

were centrifuged in two different Percoll gradients and quantified.  Cells were 

grown to confluence on culture dishes, harvested and evaluated for leukocyte 

contamination by flow cytometry with anti-CD45 and anti-CD14 antibodies.  

Cells were passaged three more times until leukocyte free (<1%).  To make sure 

that cells were purely decidual and without trophoblast contamination, purified 

samples were evaluated by immunostaining for vimentin (positive) and 

cytokeratin (negative).  All treatments were done on cells passaged a maximum of 

6 times.   

 

E. Cell Culture Treatment 

 

i. ROS Treatment 

 

Decidual cells were seeded at 250,000 per T-25 flask.  Once cells reached 

70% confluency a superoxide generating system of 0.05 mM HX and 0.003 
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units/ml XO in DMEM/F12 plus 10% FBS was added for 24 hours.  After 

treatment, the media was aspirated and the cells were washed two times with 5 ml 

PBS, scraped and total RNA was extracted. 

 

ii. TNFα treatment 

 

Myometrial and decidual cells were seeded at 250,000 cells per T-25 flask 

with DMEM/F12 medium and 10% FBS.  When cells reached about 70% 

confluency, a 1ng/ml concentration of TNFα was added with fresh media and 

10% FBS.  After 24 hours, media was removed and the cells were washed twice 

with 5 ml PBS, scraped and total RNA extracted. 

 

iii. 5-AZA-treatment 

 

Both primary culture decidual cells and hTERT myometrial cells were 

separately seeded into T-25 flasks with about 250,000 cells in each.  Once the 

cells reached 30% confluency, the DMEM/F12 media with 10% FBS was 

refreshed with 5 µM 5-AZA and allowed to grow for two days.  After 48 hours, 

the media was aspirated and the cells were washed two times with 5 ml PBS.  

Fresh media and 10% FBS was replenished and the cells were allowed to grow for 

another 24 hours before they were washed twice with 5 ml of PBS, scraped and 

collected for total RNA extraction. 
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iv. Neutrophil co-culture treatment 

 

Twenty ml of blood was obtained from consented adults into two heparin 

treated tubes.  Neutrophils were purified using the method first described by 

Boyum 59.  In brief, 10771 histopaque was layered on top of 11191 histopaque 

followed by a layer of 20 ml of whole blood in a conical tube.  The tube was 

centrifuged at 700 x g at 25˚ C for 30 minutes.  The upper layers of plasma, 

monocytes, lymphocytes and histopaque were aspirated and discarded.  The 

granulocyte layer was transferred into a new tube, washed with PBS and 

centrifuged at 300 x g at 25˚ C for 10 minutes.  The wash was then repeated.  

Remaining erythrocytes were lysed with ddH2O and followed by re-suspension in 

0.6 M KCl and the solution was centrifuged at 300 x g at 4˚ C for 4 minutes.  The 

supernatant was discarded and the cell pellet resuspended in 1 ml DMEM/F12 

media.  Cells were counted using 50 µl of cell suspension in 350 µl of trypan blue 

on a hemocytometer.  The remaining neutrophils were activated with 50 µM 

arachidonic acid and incubated for 30 minutes at 37˚ C in a bambino 

hybridization oven.  Activated neutrophils were added to previously started cell 

culture of either decidual or myometrial cells which had been growing until 70% 

confluency in DMEM/F12 media with 10% FBS.  Additionally, 5 ng/ml of GM-

CSF was added to each flask to promote neutrophil adhesion and prevent 

apoptosis, as described by Stanford et. al. 60.  After 24 hours of incubation, the 

media was removed and cells were washed two times with PBS before total RNA 

was collected. 
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F. RNA extraction 

 

Total RNA was purified using either the cell culture or tissue FujiFilm total RNA 

extraction kit and protocol on a QuickGene Mini-80 machine.  For decidual tissue, 600 µl 

of lysis buffer containing a 1% solution of 2-ME was added to a 20 mg sample.  The 

tissue was homogenized at the lowest speed for about 2-4 seconds with a rotor-stator 

homogenizer and then centrifuged at 16,000 x g for 3 minutes at room temperature.  The 

supernatant (350 µl) was removed and used for total RNA extraction.  Both myometrial 

and decidual cell culture samples were lysed in 350 µl lysis buffer and 1% 2-ME.  A 

solubilization buffer included in the kit (50 µl) was added to each sample.  The samples 

were vortexed for 15 seconds and briefly centrifuged.  Pure ethanol was added (170 µl) to 

each sample and the samples vortexed for 1 minute briefly centrifuged.  The solution was 

transferred to a sterile column and pressurized to allow the RNA to adhere to the filter.  

The samples were washed with the included wash solution (750 µl), and treated with 

Turbo DNAse for 5 minutes.  The samples were then washed twice more with 750 µl of 

wash solution.  An elution buffer included in the kit was added to the column (50 µl), left 

to incubate for 4 minutes at room temperature and eluted into sterile 1.5 ml collection 

tubes.   

 

G. Quantitative Reverse Transcriptase – Polymerase Chain Reaction (qRT-PCR) 
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RNA integrity was determined via Agilent 2100 Bioanalyzer kit to verify the 

intactness of both the 18S and 28S rRNA bands. RNA was quantified using NanoDrop 

and converted into cDNA using a reverse transcriptase kit from BioRad.  Primers of 

human PR-B and PR-A+B and the reference gene glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) were obtained from IDT, based on prior published sequences 

25, 61.  PR-B primers were targeted for the unique 164 amino acid region present only in 

PR-B.  PR A+B primers were targeted towards the common progesterone hormone 

binding site present in both PR-A and PR-B RNA.   

MMP-1 primers were designed in our lab by Renato Capello, PhD.  A 

commercially available primer for the PAR1 receptor was used.  Plates were loaded with 

10.5 µl of nuclease free water, 12.5 µl of master mix, 1 µl of diluted sample cDNA and 1 

µl of equal parts forward and reverse primers in each well.  Each sample was run in 

duplicate.  The plate was centrifuged at 1500 x g at 4˚ C for 5 minutes to remove any 

remaining bubbles.  qRT-PCR was performed by measuring SYBR green fluorescence.  

Cycling was monitored on an Eppendorf Mastercycler ep Realplex.  Cycling conditions 

were 50˚ C for 2 min, 95˚ C for 10 min, and 40 cycles of 95˚ C for 15 sec, 60˚ C for 1 

min. All primer sets were functional, producing single amplicons of the expected type, 

verified via a melting curve analysis of the PCR products run at the end of the cycles.  

Cycle threshold (Ct) values for each sample well were aligned so that the exponential 

increase in the abundance of the amplicon remained parallel for all samples.  RNA 

abundance was expressed relative to the quantity of the constitutively expressed GAPDH 

transcripts and controls based on the ΔΔCt method.  GAPDH Ct value replicates were 

averaged for each sample and subtracted from each control and experimental Ct value to 
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obtain a ΔCt.  Then, each control ΔCt value was subtracted from the experimental ΔCt 

value to obtain a ΔΔCt.  For calculating the expression of PR-A, the ∆Ct values of PR-B 

were subtracted from the ∆Ct values of PR-A+B for each control and experimental 

samples.  The subsequent new ∆Ct for PR-A was obtained.  Subsequently the control ∆Ct 

for PR-A was subtracted from the experimental treatment ∆Ct value in order to obtain a 

new ∆∆Ct value for PR-A.  The fold changes in mRNA expression were compared to the 

control value and calculated by the following formula: 

 

FOLD CHANGE = 2(-ΔΔCt) 

 

Table 1: qRT-PCR Primer sequences 
Gene Primer Sequence Genbank Reference No. 

F: 5’-AGCCCACAATACAGCTTCGAG-3’ PR A/B 
R: 5’-TTTCGACCTCCAAGGACCAT-3’ 

NM000926 

F: 5’-CCTGAAGTTTCGGCCATACCT-3’ PR B 
R: 5’-AGCAGTCCGCTGTCCTTTTCT-3’ 

NM000926 

F: 5’-GGGAGATCATCGGGACAACTC-3’ MMP-1 
R: 5’-GGGCCTGGTTCAAAAGCAT-3’ 

NM002421.2 

F: 5’-CAATGCCTCCTGCACCACCAA-3’ GAPDH 
R: 5’-GAGGCAGGGATGATGTTCTGGA-3’ 

BC 020308 

 

H. Statistical Analysis: 

 

mRNA expression for MMP-1, PR-B and PR-A+B was evaluated for decidual 

tissue, primary culture decidual cells and hTERT transformed myometrial cells. The 

sample number for each treatment and cell type represents a separate T-25 flask.  For cell 

culture analysis, statistical differences in mRNA expression were compared to an 

analogous control sample on the same PCR plate by a two tailed, unpaired t test.  For 
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decidual tissue samples from TNL, TL and PTL women, statistical variation and 

significance was evaluated using a one way ANOVA.  Statistical significance is reported 

as * p < 0.05. 
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CHAPTER 3: Results 

 

A. Neutrophils, TNFα and ROS Effect on PR, MMP-1 and PAR1 

 

TNFα is an inflammatory cytokine capable of activating mitogen-activated 

protein kinases and extracellular signal-regulated kinases 56, 57.  The ROS generating 

system used in our cell culture produces two superoxide molecules through the 

conversion of HX to xanthine and subsequently uric acid by XO.  The superoxide anion 

is then catalyzed by extracellular superoxide dismutase (EC-SOD)62 or spontaneously 

dismutates into hydrogen peroxide  which can freely cross lipid membranes and activate 

varying signaling cascades through mitogen-activated protein kinases and NFκB 63, 64 as 

well as potentially cause changes in DNA methylation 65.   

 

i. PR  

 

A significant increase in PR-A was seen with TNFα treatment (Figure 3).  

This treatment showed an average increase of 2.6 ± 0.5 fold in 8 different flasks 

(p<0.01).  The same treatment decreased the expression of PR-B by an average of 

0.5 fold ± 0.06 in 10 different flasks (p<0.0001) ( 

Figure 4).  The ratio increase in PR-A/B was 5.6-fold over normal 

controlled flasks.   
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ROS treatment in decidual cells produced an increase in the PR-A of an 

average 3.9 ± 1.3 fold in 6 flasks (p < 0.05) ( 

Figure 5).  ROS did not significantly affect the expression of PR-B, as the 

decrease was an average of only 0.8 ± 0.1 in 8 samples and (p<0.1, Figure 6).  In 

total, ROS increased the expression of the PR-A/B ratio by 4.5 fold over the 

control.  The hTERT myometrial cell line produced similar results with TNFα 

treatment with an average decrease of expression for PR-B of 50% ± 0.05 in 5 

samples, p<0.001 (Figure 7).  Pursuasant to the literature, PR-A was not 

expressed in these cells61.  Additionally, this particular cell line was extremely 

resistant to oxidative stress with concentrations as high as 1.6 mM HX and 0.01 

units/ml XO not producing any induction in oxidative stress genes in the nuclear 

transcription factor κB (NFκB) family, such as NFκB1 or RELB.  Concentrations 

of 1.9 mM HX and 0.01 units/ml XO produced cell death.   

 

 ii. MMP-1 

 

A significant increase in MMP-1 was seen with treatment by TNFα and 

ROS in decidual cells.  For TNFα 12 different flasks were treated and the mean 

fold increase was 17.0 ± 4.0, p<0.001 (Figure 8).  ROS also produced significant 

increases in the expression of the MMP-1 gene in these cells with an average 

increase of 6 ± 1.3 fold in 10 samples, p<0.01 (Figure 9).  In myometrial cells, 

similar increases with TNFα treatment were observed with an average fold 

increase of 12.4 ± 2.3, p < 0.001 (Figure 10).   
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 iii. PAR1 

hTERT myometrial cells were also screened for expression of PAR1 

(Figure 11), although the expression of the thrombin receptor did not vary as a 

result of treatment, the gene was highly expressed with an average Ct value of 

23.7.   

 

B. Effect of DNA Demethylation on PR and MMP-1  

  

 5-AZA is a hypomethylating agent.  The molecule itself is a modified cytosine 

which gets incorporated into cellular DNA upon cellular and consequently DNA 

replication 66.  The modified cytosine, prevents the action of a DNA-methyltransferase 

which inhibits methylation in previously hypermethylated regions of the DNA, making it 

easier for those DNA sequences to be transcribed 66.   

 

 i. PR 

With 5-AZA treatment PR-A was increased in decidual cells by an 

average of 1.9 ± 0.5 for 6 samples (p=0.2) (Figure 12).  PR-B was significantly 

decreased by an average of 0.5 ± 0.1, p<0.01 (Figure 13) in primary culture 

decidual cells.  In total, with 5-AZA treatment, these changes reduced the PR-

A/PR-B ratio by 4-fold compared to control.  A similar reduction in the 

expression of PR-B was also observed in myometrial cells ( 
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Figure 14) with a mean average decrease of 0.6 ± 0.2 fold in 6 treatment 

flasks (p=0.06). 

 

ii. MMP-1 

In primary culture decidual cells, 5-AZA treatment increased MMP-1 gene 

expression by an average of 3.8 ± 0.6 (p=0.0002) in 8 sample flasks (Figure 15).  

hTERT transformed myometrial cells also showed significant increase of MMP-1 

expression with an average of 11.2 ± 3.3 in a sample of 9 (p=0.007) (Figure 16).   

 

C. Decidual Tissue MMP-1 Expression 

 

Decidual tissue from TL (n=12) women compared to TNL (n=13) patients 

showed over an 8.4 ± 2.6 fold increase in MMP-1 (Figure 17).  Tissue from TL vs. PTL 

(n=10) women showed a 7 ± 3.4 fold increase in MMP-1 (Figure 17).  Finally, when PTL 

was compared to TNL samples, women who were in PTL showed a 15.4 ± 2.5 fold 

increase (Figure 17)  
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CHAPTER 4: Discussion 

 

A. Effects on PR-A and PR-B 

  

The decidua and myometrium are invaded by neutrophils during labor.  These 

white blood cells secrete a number of cytokines and signaling molecules, which could 

trigger labor.  Increasing the PR-A/B ratio is a primary way to suppress uterine 

quiescence during pregnancy 15.  There are two ways to increase this ratio, either amplify 

the expression of the inhibitory isoform of the receptor (PR-A) and/or decrease the 

expression of the functional form, PR-B.  Our experiments showed that in decidual cells 

neutrophil products (TNFα and ROS) were able to significantly magnify the ratio of  

PR-A/B.  TNFα seems to work through the mechanism of both decreasing the functional 

PR-B, and increasing PR-A while leaving the total amount of PR-A+B the same as 

control (figure not shown).  On the other hand, ROS significantly increased PR-A 

expression while leaving PR-B untouched similar to control.  Therefore, in both 

conditions the overall ratio of PR-A/B increased 5.6-fold for TNFα and 4.5-fold for ROS.  

Similar data were seen for TNFα treatments in myometrial cells, with a significant down-

regulation of the active form of the PR.  Neutrophil products could be one of the primary 

mechanisms to alter this ratio, possibly through a mechanism of DNA de-methylation 65, 

67.  Our experiments were able to show a down-regulation of PR-B in both the 

myometrium and decidua, as well as an upregulation of PR-A in the decidual.  Decidual 

cells had a total increase of the PR-A/B ratio of about 4-fold over the control, far above 
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what is seen with previously published in vivo studies showing increases of about 2-fold 

within tissue collected at labor 22.   

The alterations in the PR ratios can increase the expression of many pro-labor 

genes and likely affect a wide range of tissue types, not just decidua and myometrium.  In 

the myometrial muscle, increases in the proliferation of the oxytocin receptors, greater 

translocation and assembly of the Cx43 gap junction protein and the enhanced function of 

PLC, allowing more Ca2+ to enter cells, all serve to begin and maintain contractions of 

the uterine smooth muscle tissue.  Additionally, the decreased availability of the 

functional PR allows for an indirect increased expression of MMPs causing the cervix to 

weaken and soften, ultimately allowing the passage of the baby through the birth canal 16.  

A drop in available progesterone in the decidua has also been shown to increase the 

production of MMPs 68.  The secreted MMPs will breakdown the maternal-fetal 

membranes and cause their rupture.  Within both the decidua and myometrium, a lack of 

functional PR will cause an increased production of PGs 69.  PGs, in concert with other 

inflammatory cytokines produced within the invaded tissue by leukocytes, will promote 

inflammation and further recruitment of neutrophils, which will in turn release even more 

ROS and TNFα to accelerate and enhance the changes triggered by these cytokines.   

 Because even normal pregnancy ultimately follows inflammatory pathways, 

follow up experiments could focus on the potential of other inflammatory cytokines to 

initiate positive alterations of the PR-A/B ratio in both the decidua and myometrium.  

Finding out a more successful way to co-culture neutrophils along with both decidual and 

myometrial cells would help confirm the results observed with pure TNFα and ROS 

treatments.  These results would also be more robust if these experiments were repeated 
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with decidual and myometrial cells from other TNL women.  Further studies will also 

continue to obtain samples from TNL, TL, and PTL women to screen these samples for 

both PR-B and PR-A expression.   

 

B. Alterations in MMP-1 Production 

 

 MMP-1 has a number of known regulatory elements within the promoter region, 

many of which can be induced with ROS and TNFα treatments 56.  One of the 

mechanisms with which this could occur is through regulating DNA methylation.  As 

these experiments showed, MMP-1 is upregulated as a result of DNA de-methylation in 

both cell types studied.  The decidua is situated between the myometrial smooth muscle 

tissue on one side and the chorion on the other side.  Since MMP-1 is an extracellular 

collagenase and is a secreted molecule, by virtue of the anatomical position of the 

decidual tissue, MMP-1 is perfectly positioned to facilitate both the rupture of fetal 

membranes and the softening of the cervix, particularly because the myometrium itself is 

capable of increasing MMP-1 production.  In vivo results confirmed the fact that MMP-1 

plays a major role in PTL as we saw a tremendous up-regulation with preterm labor (15.4 

fold) and term labor (8.4 fold) compared to term not in labor tissue.  It is likely that 

neutrophil products can alter the normal expression of MMP-1 in both the decidua and 

myometrium, through known mechanisms as well as epigenetic modulation.  Also, we 

predict that in the uterus, MMP-1 has the potential to affect myometrial contractility 

through its actions on the PAR1 receptor. Additionally, because the myometrium 

expresses PAR1 receptors, it is possible that in the upper uterine segments, those most 
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responsible for phasic uterine contractions, MMP-1 could be activating contractile 

mechanisms via PAR1 receptors, utilizing methods similar to those of thrombin.  MMP-1 

activated PAR1 receptors could potentially activate PLC to increase Ca2+ within the cell.   

 This area of research is new and could prove to be the most exciting.  First, it 

would be valuable to link MMP-1 gene expression results with protein expression.  

Future work could explore whether MMP-1 can cause myometrial contraction.  MMP-1 

activation of Ca2+ enhancing mechanisms within the myometrium could also be observed 

by measuring Ca2+ influx and whether or not these results are mediated through PLC 

activation and ultimately PAR1 activation.  Further linking PTL with the state of MMP-1 

gene methylation, compared to TL and TNL, would also be an interesting avenue of 

exploration.  The confirmation of these studies in human myometrium strips and tissue 

would be crucial.   

 

C. Epigenetic Modification of MMP-1 and PR 

 

 One of the primary predictors of preterm birth is a prior history of PTL, either a 

mother’s previous preterm delivery or within the family.  Our results showed that MMP-1 

and PR are likely modified through DNA methylation in both the myometrium and the 

decidua.  These findings could have significant implications for women living in poor 

environmental conditions because DNA methylation can be modified by exposure to 

toxic chemicals, pollution, poor nutrition, drugs, tobacco and alcohol 70, 71.  An already 

existent condition of de-methylation could cause an increase in the PR-A/B ratio.  This 

would leave the woman vulnerable to further alterations within this receptor and help 
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explain some of the causes of PTL.  Additionally, the situation is similar to MMP-1, with 

an already increased expression of the gene due to DNA de-methylation could leave the 

woman vulnerable to early membrane rupture, cervical dilation and possibly increased 

preterm contractions of the uterus.  Because methylation states of the genes are inherited 

from the parents, even if a mother shows no prior risk factors for PTL, she could still be 

at potential risk for preterm parturition. Women exposed to such conditions could be 

putting their future fertility at risk and passing on their modified genes to their offspring 

because epigenetic modifications can be inherited.   

 In the future, tissue samples from women who had experienced preterm premature 

rupture of membranes could be screened for the state of DNA methylation within the 

MMP-1 and PR genes.  It is also possible that assessing the state of DNA methylation of 

the parents could one day serve as a screen for risk of PTL in pregnant mothers.   

 

D. Conclusions 

The contributions of our study are summarized in Figure 2.  We were able to 

show that MMP-1 and PR-A/B were up-regulated with two key neutrophil products 

(TNFα and ROS) in the decidua and myometrium through a possible mechanism of DNA 

demethylation.  PTL tissue showed an increase in MMP-1 and could possibly cause 

myometrial contraction through MMP-1 action on the PAR1 receptor in uterine smooth 

muscle tissue.   
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Figure 2: Neutrophil Products and DNA Methylation Effect on PR and MMP-1 
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Figure 3: Fold Changes in PR-A Due to TNFα in Primary Culture Decidual Cells 
Gene expression of PR-A increased significantly with TNFα treatment. (p<0.01, n=8, 
mean = 2.6 ± .5) 
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Figure 4: Fold Change in PR-B Due to TNFα in Primary Culture Decidual Cells 
Gene expression of PR-B decreased significantly with TNFα treatment. (p<0.0001, n=10, 
mean 0.5 ± 0.06).  As a result of TNFα treatment, the ratio of PR-A/B increased 5.6-fold. 
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Figure 5: Fold Changes in PR-A Due to ROS in Primary Culture Decidual Cells 
Gene expression of PR-A increased significantly with ROS treatment. (p<0.05, n=6, 
mean 3.9 ± 1.3). 
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Figure 6: Fold Changes in PR-B Due to ROS in Primary Culture Decidual Cells 
Gene expression of PR-B decreased with ROS treatment. (p<0.1, n=8, mean 0.8 ± 0.1).  
As a result of ROS treatment, the ratio of PR-A/B increased 4.5-fold.   
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Figure 7: Fold Changes in PR-B Due to TNFα in hTERT Myometrial Cells 
PR-B gene expression was significantly decreased by almost 50% with TNFα treatment 
in an hTERT transformed myometrial cell line.  (p < 0.001, n=5, mean=0.5 ± 0.05) 
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Figure 8: Fold Changes in MMP-1 Due to TNFα in Primary Culture Decidual Cells 
TNFα treatment significantly increased gene expression of MMP-1 by over 16 fold in 
primary culture of decidual cells.  (p < 0.001, n=12, mean=17.0 ± 4.0) 
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Figure 9: Fold Changes in MMP-1 Due to ROS in Primary Culture Decidual Cells 
ROS treatment significantly increased the gene expression of MMP-1  by over 6 fold in 
primary culture decidual cells.  (p < 0.01, n=10, mean=6.0 ± 1.3) 
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Figure 10: Fold Changes in MMP-1 Due to TNFα in hTERT Myometrial Cells 
MMP-1 gene expression significantly increased by over 11 fold with 5-AZA treatment in 
an hTERT transformed myometrial cell line.  (p < 0.001, n=7, mean=12.4 ± 2.3) 
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Figure 11: Fold Changes in PAR1 in hTERT Myometrial Cells 
None of the treatments produced a significant change over the control conditions (n=2 for 
each treatment type). 
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Figure 12: Fold Changes in PR-A Due to 5-AZA in Primary Culture Decidual Cells 
PR-A gene expression was increased by almost 2 fold with 5-AZA treatment.  (p=0.2, 
n=6, mean=1.9±.5) 
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Figure 13: Fold Changes in PR-B Due to 5-AZA in Primary Culture Decidual Cells 
Gene expression of PR-B decreased significantly with 5-AZA treatment.  (p < 0.01, n=8, 
mean=0.5 ± 0.1) 
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Figure 14: Fold Changes in PR-B Due to 5-AZA in hTERT Myometrial Cells 
5-AZA did not significantly decrease PR-B gene expression. ( p=0.06, n=6, mean=0.6 ± 
0.2) 
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Figure 15: Fold Changes in MMP-1 Due to 5-AZA in Primary Culture Decidual 
Cells 
5-AZA treatment significantly increased MMP-1 gene expression by almost 4 fold.  (p < 
0.001, n=8, mean=3.8 ± 0.6) 
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Figure 16: Fold Changes in MMP-1 Due to 5-AZA in hTERT Myometrial Cells 
MMP-1 gene expression significantly increased by over 11 fold with 5-AZA treatment in 
an hTERT transformed myometrial cell line.  (p < 0.01, n=9, mean=11.2 ± 3.3) 
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Figure 17: Fold Changes in MMP-1 in Decidual Tissue 
Changes in MMP-1 compared to TNL vs. TL vs. PTL decidual tissue samples.  TNL 
(mean=1 ± 0.05, n=13); TL (mean=8.4 ± 2.6, n=12) and PTL (mean=15.4 ± 2.5, n=10).   
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