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Gastrointestinal (GI) smooth muscle possesses distinct regional and functional properties 

that distinguish it from other types of visceral and vascular smooth muscle.  On the basis of 

electrical properties and contractile phenotype, GI smooth muscles have been classified into 

phasic (non-sphinteric) and tonic (sphinteric) smooth muscles. The biochemical basis of phasic 

and tonic phenotypes of smooth muscle is not clear and is the major question of inquiry of the 

present study.  Phosphorylation of Ser
19

 on the 20 kDa myosin light chain (MLC) is essential for 

acto-myosin interaction and contraction in both phasic and tonic muscles.  The levels of MLC20 
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phosphorylation are regulated by Ca
2+

/calmodulin-dependent MLC kinase (MLCK) and MLC 

phosphatase (MLCP), and the activity of these enzymes are in turn regulated by various signaling 

molecules whose expression and activity are important in determining the strength and duration 

of their activity.  The signaling proteins are AMP kinase (MLCK activity), Rho kinase, zipper-

interacting protein kinase (ZIPK), CPI-17 and telokin (MLCP activity), phosphodiesterase 5 

(PDE5) and multi-drug resistance protein 5 (MRP5).  The overarching goal of the dissertation is 

to identify the differences in the signaling pathways that regulate MLCK and MLCP activities, 

and thus MLC20 phosphorylation and muscle function.  Using biochemical, molecular and 

functional approaches, and antrum (distal stomach) and fundus (proximal stomach) of rabbit 

stomach as models of phasic and tonic smooth muscles, respectively, the present study 

characterized important differences in the signaling pathways that highly correlate with the 

contractile phenotype.  These include: 1) tissue-specific expression of contractile proteins such as 

myosin heavy chain isoforms, actin,  caldesmon, calponin, - and β-tropomyosin, smoothelin-A 

and -B; 2) higher expression of AMPK, selective feedback inhibition of MLCK activity via 

AMPK-mediated phosphorylation, and higher expression of telokin and activation of MLCP 

correlate with the rapid cyclical contractile function in phasic muscle; 3) higher expression and 

activation of Rho kinase/ZIPK/MYPT1 and PKC/CPI-17 pathways, preferential inhibition of 

MLCP activity, and sustained phosphorylation of MLC20 correlate with the sustained contraction 

in tonic muscle; and 4) rapid termination of cGMP signal and muscle relaxation by preferential 

degradation and efflux of cGMP via higher expression of PDE5 and MRP5, respectively, 

correlate with the brief relaxation and rapid restoration of contraction in tonic muscle. It is 

anticipated that these findings could be important in providing the underlying mechanisms 

involved in the pathophysiology of smooth muscle function and new insights for the development 

of therapeutic agents that should act on smooth muscle in the gut to treat motility disorders as 
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well as in other regions such as airways and vascular smooth muscle where similar intracellular 

mechanisms may prevail. 



CHAPTER 1  

INTRODUCTION AND BACKGROUND 

1 

 

  

1.1       Introduction 

The gastrointestinal (GI) tract is a complex multi-organ system with tissues that differ 

structurally and functionally. The dynamic interactions between the neuronal, muscular, immune, 

and glandular tissues allow the GI tract to perform its main physiological functions, which 

include digestion, absorption, excretion, and protection. Normal gut motility provides for the 

mixing and propulsion of intraluminal contents to enable efficient digestion of food, progressive 

absorption of nutrients, and evacuation of residues. These fine and delicate GI tract movements 

are generated by a highly-regulated interaction between an intricate network of neurons located 

within the wall of the alimentary canal (i.e., the enteric nervous system), an intrinsic pacemaker 

system (i.e., interstitial cells of Cajal or ICC) and the final effector cells (i.e., smooth muscle 

cells).  

1.2       GI tract wall 

GI tract wall is composed of four layers that have morphological and functional 

differences. The four layers, from inside of the gut tube to outside, are the mucosa, the 

submucosa, the muscularis propia and the serosa. The smooth muscle of muscularis propia of the 

gut consists of a thin, outer longitudinal layer and a thick, densely innervated circular layer (and 

another oblique layer in the stomach); the layers derive their names from the orientation of the 



2 

long axis of muscle cells in them. The muscle cells are separated by laminar septa into bundles 

that are embedded in a connective tissue matrix. The muscle layers are separated by neurons, 

glial cells, fibroblasts, and interstitial cells of Cajal (ICC)
1
. 

1.3       GI tract smooth muscle 

GI tract smooth muscle possesses distinct regional and functional properties that 

distinguish it from other types of visceral and vascular smooth muscle. Gut smooth muscles 

contract spontaneously in the absence of neural, humoral, or hormonal stimuli and in response to 

stretch. They contract as a syncytium (i.e., contract in unison) and therefore classified as unitary-

type smooth muscle
2
.  

In general, smooth muscle cells are spindle-shaped of about 400µm in length and 5 to 15 

µm wide. They lack the visible cross-striations seen in other muscle types.  Their plasma 

membranes consist of two specialized structures known as caveolae and dense bands. The 

caveolae are clusters of basket-shaped invaginations of the membrane, the bases of which are 

surrounded by the endoplasmic reticulum (called sarcoplasmic reticulum in smooth muscle).  

Different caveolin proteins bind to a variety of signaling molecules and act as scaffolds to 

facilitate signaling. Clusters of caveolae are separated from each other by electron-dense 

structures called dense bands; the site of attachment of thin actin filaments to transmembrane 

integrins
2
. 

Two types of coupling connect neighboring smooth muscle cells; mechanical coupling 

which is provided by the intermediate junctions - formed by the juxtaposed dense bands from 

adjacent cells, and electrical coupling which is provided by gap junctions (or nexuses). Gap 

junctions are patches of the closely opposed plasma membranes of adjacent cells, the space of 

which is bridged by intercellular channels though which intracellular regulatory molecules like 

Ca
2+

 and cyclic nucleotides are capable of movement between neighboring cells
2
.  
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Dense bodies are Z-lines-like structures, from which actin thin filaments emerge and 

interdigitate with myosin thick filaments. Most of the interior space of muscle cell is occupied by 

the contractile filaments and dense bodies while the remainder is occupied by the various 

organelles
2
.  Sarcoplasmic reticulum is located immediately beneath and parallel to plasma 

membrane, and is the site of Ca
2+

 uptake and release
3
. 

1.4       Contractile apparatus; thin and thick filaments 

Three types of filaments can be distinguished in smooth muscle cells: thin actin filaments, 

thick myosin filaments, and intermediate desmin filaments. Intermediate filaments link dense 

bands in the plasma membrane to dense bodies in the cytoplasm
4
. 

Thin filaments consist of actin; a ubiquitous 42 kDa globular protein (G-actin) that 

polymerizes to form 2-stranded helical filaments (F-actin). Inserted in the grooves of the actin 

helix is another protein, tropomyosin.  Thin filaments in smooth muscle have a distinct polarity, 

they insert into and emerge from the dense bodies, and they are arranged in bundles that run 

parallel to the long axis of the cells, with their free ends surrounding and interdigitating with 

thick myosin filaments.  Actin filaments are organized through attachments to the dense bodies 

that contain α-actinin, a Z-band protein in skeletal muscle
4
. 

 Thick filaments are aggregates of myosin molecules formed from the association of six 

different proteins: one pair of myosin heavy chains (MHCs) and two pairs of myosin light chains 

(MLCs). Myosin II is the molecular motor of muscle cells and the velocity of muscle contraction 

is determined by the ATPase activity of myosin as it interacts with actin
5
.   The heavy chains are 

coiled around each other to form an α-helical core or tail. Each strand of the core terminates in a 

globular head surrounded by two MLCs: a 20 kDa regulatory and phosphorylatable chain 

(MLC20) and a 17 kDa chain. Each globular head contains a binding site for actin and an actin-

activated magnesium-adenosine triphosphatase (Mg
2+

-ATP).  
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Hydrolysis of ATP is the fundamental reaction whereby chemical energy is converted into 

mechanical energy in smooth muscle. The reaction generates force or induces shortening as a 

result of the sliding of the overlapping and interdigitating thin and thick filaments. The force 

generated by crossbridge cycling depends on the number of crossbridges acting in parallel. The 

crossbridges do not cycle in unison; thus, in smooth muscle, unlike in striated muscle, both the 

number and the cycling rate of crossbridges are under regulation
6
.  

1.5       The actomyosin crossbridge cycle 

ATP, bound weakly to myosin, is hydrolyzed to ADP and inorganic phosphate (Pi). The 

products of hydrolysis remain bound to the myosin head, and the energy released is stored in the 

myosin molecule, which has a high affinity for actin in this state. The binding of myosin to actin 

can promote a major change in conformation (the power stroke), consisting of a reorientation of 

part of the myosin head distal to the actin-binding site which is accompanied by the dissociation 

of Pi. Upon release of ADP and Pi, ATP binds again to myosin, which then reverts to a state of 

low affinity for actin. Cross-bridge cycling ceases after the stimulus is withdrawn; the 

dephosphorylated myosin cross-bridges are arrested in a detached state, which is characteristic of 

relaxed muscle
7
.  

A unique pattern of crossbridge cycling is observed during sustained (tonic) contraction 

of smooth muscle, in which muscle contraction attains a peak and maintains it near steady state. 

This state has been called the “latch” state which represents a transition from a state of rapidly 

cycling crossbridges to a state of attached non-cycling or slowly cycling crossbridges.  These 

latch bridges maintain force in sustained contraction
7
.  

1.6       Neural regulation of smooth muscle contraction 

The intrinsic electrical and mechanical properties of smooth muscle are modulated by 

neurotransmitters released from neurons of the enteric nervous system, especially neurons of the 
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myenteric plexus. Myenteric plexus contains two main types of neurons: one type contains 

inhibitory neurotransmitters such as VIP or PACAP together with NO synthase (NOS), the 

enzyme responsible for synthesis of nitric oxide in the nerve terminals, while the majority of the 

neurons contain excitatory neurotransmitters, mainly acetylcholine, usually together with 

tachykinins; substance P and neurokinin A (NKA), which are released at higher frequencies of 

stimulation
8
.   

Excitatory neurotransmitters stimulate Ca
2+

 release, increase muscle tone, and depolarize 

the plasma membrane (i.e., trigger excitatory junctional potentials or EJPs). The depolarization 

can result from either a direct action of neurotransmitters on muscle cells or may be mediated 

through intramuscular ICC (ICC-IM) which are coupled electrically to muscle cells. EJPs can 

induce Ca
2+

 influx and contraction if the depolarization reaches a level at which voltage-gated 

Ca
2+

 channels open; this is likely to occur in tonic smooth muscle as the membrane potential is 

close to the Ca
2+

 threshold or in phasic smooth muscle during the peak of slow wave activity
4
.  

A large variety of receptors and receptor subtypes have been identified as capable of 

mediating smooth muscle contraction. These include receptors for peptides (e.g., tachykinins, 

endothelin, motilin), amines (histamine, 5- hydroxytryptamine), pyrimidines/purines (UTP and 

ATP), and lipids (S1P, LPA)
9
.  

M2 and m3 receptors are the main muscarinic receptor types expressed in smooth muscle.  

Acetylcholine (ACh) interaction with m3 receptor couples it to Gαq leading to activation of 

phospholipase C (PLC) and hydrolysis of phosphatidyl inositol (PI) into inositol 1, 4, 5-

trisphosphate (IP3) and DAG. IP3 binds IP3 receptors on SR and stimulates Ca
2+

 release and thus 

smooth muscle contraction. ACh interacts also with m2 receptor -the predominant (80%) receptor 

species in smooth muscle- and couples it to Gαi3 leading to inhibition of adenylate cyclase
10,11

.  
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Inhibitory neurotransmitters, on the other hand, inhibit Ca
2+

 release, decrease muscle tone 

(i.e., relax), and hyperpolarize the plasma membrane directly or indirectly via ICC-IM (i.e., 

trigger inhibitory junctional potentials or IJPs). IJPs lower the plateau potential of slow waves 

and inhibit Ca
2+

 influx and phasic contraction
4
.  

VIP or PACAP induce relaxation by interacting with VPAC2 receptors, which possess 

equal affinity for VIP and PACAP. These receptors couple to Gs and thereby lead to activation of 

adenylate cyclase (AC) which increases cAMP generation and thus PKA activation. Nitric oxide 

activates soluble guanylate cyclase (sGC) which increases cGMP formation, and thus leads to 

activation of PKG. Both kinases (PKA and PKG) act in conjunction to cause hyperpolarization 

and relaxation of smooth muscle cells
12

.  

1.7      Role of ICC in smooth muscle contraction 

ICC are mesenchymal cells, interposed between enteric nerves and smooth muscle cells, 

with small cell bodies and several elongated processes and are classified based on their location 

and distribution
13

. They express c-kit, the proto-oncogene that encodes the receptor tyrosine 

kinase, kit
14

. Myenteric ICC (ICC-MY) reside between the longitudinal and circular muscle 

layers in the myenteric region. These cells are important as pacemakers; they are spontaneously 

active and generate slow wave depolarization in different parts of the GI tract
15

. Another group of 

ICC has an intramuscular location (ICC-IM) with individual ICC being distributed in between 

smooth muscle cells. Other morphologically similar ICC are located in the deep muscular plexus 

of the small intestine (ICC-DMP). ICC-IM and ICC-DMP are found to be interposed between 

nerve terminals and smooth muscle cells and closely associated with neuronal processes
16

. In 

addition, slow waves are modified by other substances such as hormones, paracrine substances, 
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and inflammatory mediators. It is not clear yet if these substances have sites of action on ICC-

IM
17

. 

The amplitude of the slow wave and the resultant contractile force are regulated by the 

enteric nervous system. An excitatory neural input (i.e., release of acetylcholine or tachykinins) 

increases the amplitude and duration of the plateau potential of slow waves, which then increases 

Ca
2+

 entry and enhances force of contraction. Spike potentials can be superimposed on plateau 

potential and further augment intracellular Ca
2+

 level (or [Ca
2+

]i) and muscle contraction. On the 

other hand, an inhibitory neural input (i.e., release of NO, VIP, or PACAP) activates K
+
 channels 

and suppresses inward current conductance in smooth muscle cells, which thereby reduces the 

amplitude of slow waves and attenuates contractile force
18

.  

In rhythmic GI tract parts (e.g., antrum part of the stomach), slow waves -generated by 

ICC-MY- depolarize smooth muscle cells to induce the opening of voltage-dependent L-type 

Ca
2+

 channels. The electrical activity of slow waves is propagated through networks of ICC and 

conducted passively to smooth muscle cells through gap junctions. These low-resistance 

connections between ICC and smooth muscle cells facilitate the propagation of electrical events 

from one cell to another
4
.  

The regulation of muscle tone (e.g., fundus part of the stomach which is devoid of ICC-

MY), however, is not mediated by changes in smooth muscle membrane potential or slow wave 

generation but by signaling cascades initiated mainly by enteric neurotransmitters acting directly 

on smooth muscle receptors or indirectly via ICC-IM
4
.   

1.8       Peristalsis  

Peristalsis is a distinctive pattern of smooth muscle contraction that propels foodstuffs 

distally through the GI tract. It was first described by Bayliss and Starling as a type of motility 

http://www.vivo.colostate.edu/hbooks/pathphys/digestion/basics/gi_motility.html
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wholly mediated by the enteric nervous system in which there is contraction above and relaxation 

below the segment being stimulated
19

. It can be evoked by stroking, initiated by the release of 

serotonin (5-HT) from mucosal enterochromaffin cells which acts upon 5-HT receptors of enteric 

sensory nerve terminals in mucosa causing the release of the sensory neurotransmitter calcitonin 

gene-related peptide (CGRP)
20

. Peristalsis can also be elicited by radial stretch, which activates 

the intramuscular nerve terminals of extrinsic sensory neurons which have axonal projections to 

myenteric neurons
21

.  

Peristaltic reflex consists of an ascending and descending phases. During the descending 

phase, circular muscle relaxes and longitudinal muscle contracts, while during the ascending 

phase, circular muscle contracts and longitudinal muscle relaxes. This reciprocal contraction and 

relaxation of the two muscle layers maintain the dimensions of the segment. VIP, PACAP, and 

NO are released during and responsible for the descending relaxation of circular muscle, while 

acetylcholine, substance P, and NKA are released during and responsible for the ascending 

contraction of circular muscle
22

. 

1.9      Signaling for smooth muscle contraction 

An essential step in smooth muscle contraction is phosphorylation of the 20 kDa 

regulatory myosin light chain (MLC20) by a Ca
2+

/calmodulin-dependent or -independent myosin 

light chain kinase (MLCK) which transfers the phosphate group from ATP to either Ser
19

 or Thr
18

 

hydroxyl groups of MLC20. This phosphorylation activates the actin-activated myosin ATPase 

and actin-myosin interaction, which thereby initiates smooth muscle contraction.  

An increase in intracellular free Ca
2+

 concentration induces activation of Ca
2+

/CaM-

dependent MLCK and the phophorylation of MLC20 and thus muscle contraction. The decrease in 

intracellular level of Ca
2+

 induces dissociation of the Ca
2+

-CaM-MLCK complex, resulting in 
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dephosphorylation of the MLC20 by myosin light chain phosphatase (MLCP) and thus smooth 

muscle relaxation
9,23

. Thus, the phosphorylation level of MLC20 is determined by the opposing 

activities of MLCK and MLCP and both of these enzymes‟ activities are well-regulated in 

smooth muscle. 

1.9.1    MLCK regulation 

As mentioned previously, smooth muscle tone is regulated by signaling cascades initiated 

by enteric neurotransmitters acting directly on smooth muscle receptors. In circular smooth 

muscle cells, contractile agonists activate PLC-β1 via Gαq coupled receptors (e.g., muscarinic m3 

receptors) by Gαq binding to PLC-β1‟s COOH-terminal tail
24

. PLC-β1 hydrolyzes PIP2 into 

DAG and IP3. An increase in IP3 leads to the binding of IP3 to the high affinity IP3 

receptor/Ca
2+

 channel on the sarcoplasmic reticulum, resulting in the release of Ca
2+

 into the 

cytosol. Of the two IP3 receptor isoforms (IP3R-I and IP3R-III) expressed in smooth muscle 

cells, only IP3R-I mediates Ca
2+

 release
25

. 

In longitudinal smooth muscle cells, Ca
2+

 mobilization is dependent on a mandatory step 

involving Ca
2+

 influx via voltage-gated Ca
2+

 channels
25

. Upon contractile agonist stimulation, 

both Gq- and Gi-coupled receptors activate cytoplasmic PLA2 resulting in phosphatidylcholine 

hydrolysis into arachidonic acid which induces membrane depolarization and opening of voltage-

gated Ca
2+

 channels. The entry of Ca
2+

 stimulates cyclic ADP ribose formation and induces 

synergistic Ca
2+

- and cyclic ADP ribose-induced Ca
2+

 release via ryanodine receptors/Ca
2+

 

channels
26

. 

MLCK activity is strictly dependent on [Ca
2+

]i which, upon agonist stimulation, increases 

as a result of Ca
2+

 influx into the cytosol through voltage-gated channels and/or the release of 

Ca
2+

 from intracellular stores. Resting levels of [Ca
2+

]i (70-100nM) increases up to 8-fold during 

maximum contraction.  
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Four Ca
2+

 ions bind to calmodulin (CaM) cofactor which then binds to and activates 

MLCK
27

. The transient high levels of [Ca
2+

]i are then extruded from the cell and/or up taken into 

the sarcoplasmic Ca
2+

 stores. This decrease in the intracellular level of Ca
2+

 induces dissociation 

of the Ca
2+

-CaM-MLCK complex, which thereupon decreases MLCK activity. MLC20 

phosphorylation and contraction, however, are maintained by Ca
2+

-independent MLCKs and 

regulated inhibition of MLCP activity in a process called Ca
2+

 sensitization
23

.  

Moreover, MLCK activity was shown to be regulated by protein kinases that act to 

provide negative feedback mechanisms. Stull and coworkers have found that MLCK is 

phosphorylated by CaMKII, and this phosphorylation decreases the activity of MLCK by 

decreasing the affinity of the enzyme for calmodulin. It was found that [Ca
2+

]i required for the 

half-maximum activation of CaMKII equals 500 nM, whereas that for MLCK activation is only 

250 nM, suggesting a role for CaMKII in inactivation of MLCK when smooth muscle is 

hyperactivated and [Ca
2+

]i rises above some critical level
28

. A similar mechanism has been 

proposed recently with AMP kinase (AMPK) in which AMPK phosphorylates MLCK at Ser
815 

leading to decreased activity of MLCK. It was found that ablation of AMPK augmented 

contraction, suggesting rapid MLCK attenuation and suppression of contraction by AMPK
29

. In 

addition, p21-activated protein kinase 1 (PAK1) was shown to attenuate smooth muscle 

contraction by phosphorylating and inactivating MLCK
30

.  

1.9.2    MLCP regulation 

While MLCK-mediated contraction is strictly dependent on [Ca
2+

]i, agonist-induced 

MLC20 phosphorylation and contraction can be maintained even after [Ca
2+

]i returns to basal 

levels via two ways; MLC20 phosphorylation by Ca
2+

-independent MLCKs and regulated 

inhibition of MLCP.   
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An important step in maintaining contraction via MLCP inhibition involves activation of 

RhoA via a cascade leading to sequential agonist-mediated activation of Gq/Gα13 and Rho 

guanine nucleotide exchange factor (Rho-GEF) 
30,31

. Activated Rho A (Rho-GTP) is translocated 

to the plasma membrane where it activates both Rho kinase -mainly Rho kinase II, the 

predominant smooth muscle isoform- and PLD
32

. Hydrolysis of phosphatidylcholine by PLD 

yields phosphatidic acid, which is dephophorylated to diacylglycerol, resulting in sustained 

activation of Ca
2+

-dependent and -independent PKC isozymes. Rho kinase and PKC act 

concurrently and cooperatively to inhibit MLCP activity
9
. 

The same receptors that initiate Ca
2+

 mobilization and MLCK-mediated MLC20 

phosphorylation and contraction also engage a distinct G protein-dependent pathway that 

mediates Ca
2+

-independent MLC20 phosphorylation and contraction via negative regulation of 

MLCP.  Some receptors (e.g., m3 receptors) are coupled to RhoA via G13 only, whereas others 

(e.g., SIP2 and motilin receptors) are coupled to RhoA via both Gq and G13
30,33,34

. 

Structurally, MLCP holoenzyme consists of three subunits; a 37 kDa catalytic subunit of 

type 1 phosphatase (ppicδ), a 110 to 130 kDa regulatory subunit, known as myosin phosphatase 

target subunit I or MYPT1, and a 20 kDa subunit of unknown function. MYPT1 binding to the 

catalytic subunit enhances MLCP catalytic activity
35

. 

Phosphorylation of MYPT1 at Thr
696

 by Rho kinase promotes dissociation of the catalytic 

and regulatory subunits of MLCP and inhibits its catalytic activity 
36

. Rho kinase also 

phophorylates Thr
853

 within the myosin-binding domain on MYPT1 upon which the enzyme 

dissociates from myosin and decreases the efficiency of the enzyme by decreasing availabilty of 

the substrate
31

. On the other hand, phosphorylation of an adjacent Ser
695

 by cAMP- or cGMP-

dependent protein kinase (PKA and PKG, respectively) blocks the ability of Rho kinase to 

phosphorylate Thr
696

 and so restores MLCP activity 
37

. 
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PKC, mainly PKC-ε and PKC-δ, phosphorylates CPI-17, a 17 kDa endogenous inhibitor 

of MLCP, at Thr
38

 and greatly enhancing its ability to inhibit MLCP 
38

. Thus, a dual Rho-

dependent mechanism (i.e., via Rho kinase and PKC activation) causes sustained inhibition of 

MLCP. The relative involvement of Rho-mediated pathways-Rho kinase/MYPT1 and PKC/CPI-

17- in MLCP inhibition appears to be receptor-specific. Most Gq/13-coupled receptors (e.g., m3, 

S1P2, motilin) engage both pathways. ETA receptors engage only Rho kinase/MYPT1 while 

LPA3 receptors engage only PKC/CPI-17
33,34,39,40

. 

Zipper interacting protein kinase (ZIPK) was also found to inhibit MLCP. It is a 

serine/threonin kinase expressed in various tissues including smooth muscle and is a member of 

the death–associated protein kinase (DAP) family
41

. ZIPK co-localizes with MLCP and is 

phosphorylated following activation of Rho kinase-dependent pathway during carbachol 

stimulation of rabbit bladder. The phosphorylated ZIPK, in turn, phosphorylates the myosin-

binding subunit at Thr
696

, considerably faster and even more effective than Rho kinase
42,43

. Niiro 

and Ikebe, however
44

, have demonstrated that MYPT1 is a poor substrate for ZIPK, and instead, 

ZIPK acts as a Ca
2+

-independent MLCK that directly phosphorylates MLC20 at both Ser
19

 and 

Thr
18

 in absence of Ca
2+

. It has been suggested that the myofilament-bound ZIPK may mediate 

Rho kinase–dependent phosphorylation of MYPT1 and inhibition of MLCP and thus could be the 

link between the activated plasma membrane-bound Rho kinase and MYPT1. 

Integrin-linked kinase (ILK) is another myofilament-bound Ca
2+

-independent MLCK. It 

mediates MLC20 phosphorylation, at both Ser
19

 and Thr
18

, and smooth muscle contraction 

through Gi-coupled receptors. These receptors sequentially activate ILK through certain pathway 

involving PI3-kinase activation via Gβγi
45

. 

1.10     Regulation of smooth muscle contractility by thin filament-associated proteins 
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The thin filaments are defined as those filaments 6–8 nm in diameter and composed of 

filamentous actin. They are different from the intermediate filaments (10 nm), the myosin 

filaments (15-18 nm), and the microtubules (~24 nm)
46

. Some proteins have been suggested to 

bind actin and possibly regulate smooth muscle contraction. Thin filament-associated proteins 

include: Tropomyosin (Tm), caldesmon (CaD), calponin (CaP), and smoothelin. 

1.10.1  Tropomyosin (Tm) 

Tm is a coiled-coil α-helix that spans seven actin monomers. Individual molecules 

interact head to tail, thereby creating a continuous strand along the actin filament
47

. Functionally, 

X-ray and fluorescent resonance energy transfer studies have shown that activation of smooth 

muscle leads to movement and displacement of Tm away from actin monomers, i.e., exposing 

myosin-binding sites on actin for myosin binding and thus forming cross-bridges
48,49

. Moreover, 

Tm is necessary for full inhibition of actomyosin ATPase activity by CaD
50

. Two Tm isoforms 

appear to be specific to smooth muscle; α-Tm and β-Tm. PKC-mediated phosphorylation and 

displacement of TM is associated with smooth muscle contraction by enhancing the cooperative 

activation of actomyosin
51

.  

1.10.2  Calponin (CaP) 

Calponin was first found in smooth muscle cells as a striated muscle troponin-like protein 

with a proposed function in the regulation of smooth muscle contraction
52

. Calponin is now well-

known as a family of actin filament-associated proteins of 34-37 kDa expressed in both smooth 

muscle and non-muscle cells.  Three isoforms of calponin have been found in the vertebrates as 

the products of three homologous genes
53

; a basic calponin (h1-calponin), which is the chicken 

gizzard calponin ortholog, a neutral calponin (h2-calponin), and an acidic calponin (h3-calponin). 

h1-calponin is specific to differentiated smooth muscle cells and up-regulated during post-natal 

development, while both h2 and h3-calponins are expressed in both muscle and non-muscle 
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tissues
54

. There is an in vitro experimental evidence that calponin inhibits actin-activated myosin 

ATPase
55

.   

In vitro phosphorylation of CaP (most probably at Ser
175

 and Thr
184

) by several kinases 

(such as PKC-ε) resulted in the loss of its ability to bind F-actin to inhibit both actomyosin Mg
2+

-

ATPase activity
56

 and unloaded shortening velocity
57

. 

1.10.3  Caldesmon (CaD) 

Caldesmon is another actin-binding protein that is present in both smooth muscle and 

non-muscle cells. The heavier smooth muscle isoform (h-caldesmon, 87 kDa) is found in 

differentiated „contractile‟ smooth muscle cells, whereas the lighter isoform (i-caldesmon, 57 

kDa) is expressed in both non-muscle cells and „synthetic‟ smooth muscle cells
58

. Caldesmon 

binds myosin, actin, tropomyosin, and calmodulin and inhibits the actin-activated myosin 

ATPase by blocking the interaction of actin and myosin
59

 and/or inhibiting a kinetic step of the 

actomyosin ATPase cycle
60

. Inhibition of contraction by caldesmon can be released by its 

binding to Ca
2+

/calmodulin
61

 or via posttranslational phosphorylation at Ser
789 62

. 

Immunocytochemical studies of chicken gizzard smooth muscle have revealed that CaD is 

colocalized with contractile proteins, while CaP is associated with both contractile and 

cytoskeletal proteins
63

. 

1.10.4  Smoothelin 

Smoothelins are smooth muscle α actin stress fibers-binding proteins that are specifically 

and abundantly expressed in contractile smooth muscle cells, absent or limited in non-contractile 

and proliferative smooth muscle cells or cells with smooth muscle-like features, and are the only 

marker that differentiates between smooth muscle cells and myofibroblasts
64

. They are encoded 

by a single-copy gene via dual promoter system that generates two major isoforms containing a 

troponin T-like domain; A (59 kDa) and B (110 kDa) isoforms
65

. Lack of smoothelin-A, the main 
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isoform in visceral smooth muscle, decreases intestinal contractions in response to both receptor-

mediated (e.g., ACh) and non receptor-mediated contractile agonists (e.g., KCl), but the 

mechanism of regulation is yet unknown
66

.     

1.11     Signaling for relaxation 

Smooth muscle relaxation is initiated by targeting MLC20 dephosphorylation. This 

involves either MLCK inactivation and/or removal of MLCP inhibition. Most agents cause 

relaxation by stimulating the production of cAMP (e.g., VIP and its homologue PACAP) or 

cGMP (e.g., nitric oxide [NO]) leading to activation of PKA, PKG or both. Cyclic AMP-

activated PKA and cGMP-activated PKG are the main enzymes that induce relaxation in smooth 

muscle. They target different components of the contractile signaling pathways that attenuate 

MLCK activity and/or augment MLCP activity which eventually induce dephosphorylation of 

MLC20 and thus smooth muscle relaxation
9
. 

1.11.1 Cyclic nucleotide regulation: 

The levels of cAMP and cGMP in gastrointestinal smooth muscle depend on the rates of 

their synthesis by cyclases and degradation by phosphodiesterases (PDEs). Cyclic AMP, which is 

produced in ~10-fold greater amounts than cGMP, is generated from ATP via the membrane-

bound adenylate cyclase (AC) -type V and VI- and is rapidly degraded by the cAMP-preferring 

PDE3 and cAMP-specific PDE4. On the other hand, cGMP is generated from GTP via the 

soluble guanylate cyclase (sGC) and is rapidly degraded by cGMP-specific PDE5.  PKA inhibits 

AC while PKG inhibits sGC. Both PDE3 and PDE4 are activated by PKA, but only PDE3 is 

inhibited by cGMP. On the other hand, PDE5 is activated by PKG. When both cAMP and cGMP 

are present, PDE5 is also activated by PKA
67-69

. So, regulatory feedback from the protein kinases 

inhibits synthesis and accelerates degradation, and thereby maintains the levels of cyclic 

nucleotides within a narrow range.  
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Although cAMP preferentially activates PKA, it can, at higher concentrations, also cross-

reactivate PKG
70

. An increase in both cAMP and cGMP, such as that brought about by corelease 

of NO, VIP, and PACAP from the same or adjacent nerve terminals, is the physiological norm 

during nerve-induced relaxation of the gut. Inhibition of PDE3 by cGMP enhances cAMP levels, 

whereas activation of PDE5 by PKA and PKG greatly increases its affinity for the more abundant 

cAMP. Under these conditions, PKG is activated by both cGMP and cAMP 
69,71

. 

In addition to degradation by phosphodiesterases, cyclic nucleotides elimination pathways 

comprise active export into the extracellular space via members of the multidrug resistance 

protein (MRP) family (the other name is ABC transporters). MRPs bind and hydrolyze ATP, 

providing the energy to transport their substrates across membrane barriers. Among the MRP 

family membes, MRP4 and MRP5 have been shown to be competent in the transport of cAMP 

and cGMP respectively
72

. 

1.11.2  PKA and PKG targets 

PKA and PKG indirectly target MLCK inactivation by primarily decreasing [Ca
2+

]i. Both 

PKA and PKG can inhibit Ca
2+

 mobilization by inhibiting IP3 formation in circular muscle and 

arachidonic acid formation in longitudinal muscle. Inhibition of IP3 formation in circular muscle 

involves phosphorylation of RGS4, leading to more rapid degradation of Gαq-GTP and inhibition 

of PLC-β1 activity. PKG-mediated phosphorylation of SERCA2 and sarcoplasmic reticulum IP3 

receptors accelerates Ca
2+

 reuptake into the stores and inhibits IP3-induced Ca
2+

 release, 

respectively. In addition, both kinases inhibit the activity of membrane Ca
2+

 channels and 

stimulate the activity of membrane K
+
 channels, leading to hyperpolarization of the plasma 

membrane and interruption of Ca
2+

 influx into the cell, a mechanism that is important in relaxtion 

of rhythmic contraction
9
. 
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Moreover, PKG and PKA augment MLCP activity by different ways; first, they 

phosphorylate the activated form of RhoA (Rho-GTP) at Ser
188

 leading to its inactivation and 

translocation back to the cytosol 
73

. Second, both enzymes can phosphorylate MYPT1 at Ser
695

, 

preventing the inhibitory regulation of Rho kinase-mediated phosphorylation of MYPT1 at Thr
696

 

37
. Finally, both kinases are able to phosphorylate (at Ser

13
) and enhance the activity of telokin, a 

smooth muscle-specific endogenous activator of MLCP 
74

. 

1.12     Phasic and tonic smooth muscles 

Based on the membrane properties, activation speed and contractile behavior, smooth 

muscles have been classified as either phasic or tonic
23

.  Phasic muscles, like those in the distal 

stomach (or antrum), ileum, and taenia coli, generate action potentials, shorten rapidly, and 

typically produce spontaneous and rapid contractions and do not maintain force for extended 

periods of time. These muscles exhibit variable tones on which are superimposed rhythmic or 

phasic contractions driven by cycles of membrane depolarization and repolarization known as 

slow waves, which are believed to be generated by ICC. Tonic smooth muscles, on the other 

hand, do not generate action potentials or spontaneous contractions, but are specialized to 

contract slowly and maintain contractile force for long durations. Examples of tonic smooth 

muscles include proximal stomach (or fundus), sphincters, and gall bladder
9
. 

The phasic and tonic behavior of smooth muscles may also be related to differences in 

content and isoform composition of contractile proteins and intracellular signaling molecules that 

regulate the activities of myosin light chain kinase (MLCK) and myosin light chain phosphatase 

(MLCP).  For example, previous studies have shown that phasic muscle differs from the tonic 

muscle in the relative abundance of the ratio of acidic to basic isoforms of the 17 kDa essential 

light chain and the seven amino acid-inserted to non-inserted myosin heavy chain isoforms 

(SMA/SMB isoforms)
75,76

.   
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MLCK activity is stimulated by an increase in Ca
2+

 via Ca
2+

/calmodulin complex, and 

inhibited by Ca
2+

/calmodulin-dependent protein kinase II in a feedback mechanism.  Moreover, 

recent studies have shown that smooth muscle contraction is attenuated by phosphorylation and 

inactivation of MLCK via AMP-dependent kinase (AMPK).   MLCP activity is inhibited via 

PKC-mediated phosphorylation of the endogenous inhibitor CPI-17, and activated via PKA- and 

PKG-dependent phosphorylation of the endogenous activator telokin.   PKA and PKG are the two 

main kinases responsible for smooth muscle relaxation by targeting different components in the 

signaling pathways of MLCK and MLCP. They are activated by an elevation in cAMP and 

cGMP respectively, the level of which is dependent on the balance between their generation by 

cyclases and degradation by phosphodiesterases.  

It is not known, however, whether the expression and regulation of the signaling 

molecules that regulate MLCK and MLCP are different in phasic and tonic smooth muscle.  The 

purpose of our study is to comprehensively compare the content and regulation of the different 

signaling molecules that regulate MLCK and MLCP as well as highlighting the differences in the 

contractile and thin-filament associated proteins in phasic versus tonic smooth muscle of the 

gastrointestinal tract.  

1.13     Stomah”proximal vs. distal” 

The purpose of this study is to comprehensively compare the content and regulation of 

different contractile proteins and signaling pathways that regulate MLCK and MLCP activity in 

phasic versus tonic smooth muscle of the gastrointestinal tract as well as highlighting other 

aspects of general significance in smooth muscle physiology.  This thesis explores these 

differences in the antrum (represents phasic smooth muscles) versus the fundus (represents tonic 

smooth muscles) parts of the stomach, and so, I found it valuable to have some physiological 

http://www.google.com/url?sa=t&source=web&cd=2&ved=0CCYQFjAB&url=http%3A%2F%2Fmend.endojournals.org%2Fcgi%2Fcontent%2Ffull%2F14%2F9%2F1317&rct=j&q=phosphodiesterases&ei=pj3lTJn-NMGblgfhxuzDCw&usg=AFQjCNGvIqLFNlETG7PgrJ4WgpXtEMZH1g&cad=rja
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anatomy and membrane potential characteristics of the stomach and brief description of some 

gastric disorders that are related to the improper smooth muscle function in this organ. 

The main motor function of the stomach is to serve as an active reservoir that stores and 

mixes ingested food as well as modulates its rate of emptying into the duodenum. Stomach is 

divided into two major functional areas; the proximal stomach and the distal stomach. The 

proximal stomach consists of the fundus and the upper body (or corpus). The primary function of 

the proximal stomach is to accommodate ingested food. The distal stomach consists of the lower 

body and the antrum. The primary function of distal stomach is to regularly push digested food 

into the duodenum in a well-coordinated fashion
77

.  

The membrane potential of gastric smooth muscle exhibits a characteristic gradient 

decreasing from −48 mV in the fundus to −71 mV in the antrum
78

. Unlike the distal stomach, the 

proximal stomach membrane potential does not demonstrate phasic changes in potential, in other 

words it is electrically quiescent (without slow waves). Consequently, under basal conditions, the 

fundus exhibits tone rather than pulsation which, in turn, can be modulated by small changes in 

neural and hormonal inputs
79

. Fundus is suitable for receiving (i.e., vagal-mediated receptive 

relaxation) and discharging (i.e., tonic contraction) a meal upon inhibitory (hyperpolarizing) or 

stimulatory (depolarizing) inputs respectively. 

It is believed that corpus is the site of spontaneous pacemaker activity or slow wave 

generation in the stomach
80

. Slow waves originating in the corpus paropagate to and pace antral 

muscle. Unlike the fundus, the distal body of the stomach and the antrum exhibit phasic rather 

than tonic motor activity. This is often seen on endoscopy as a powerful ring-shaped peristaltic 

wave, which initiates in the mid to distal body of the stomach, picking up strength as it drives 

towards the pylorus where it abruptly terminates
81

. As contractions or electrical activity 

corresponding to contractions reach pylorus, the pylorus begins to open or relax. 
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 The frequency and direction of the phasic motor activity are tightly coupled with the 

gastric slow wave generated by phasic depolarization of the interstitial cells of Cajal
82

. A slow 

wave frequency of three cycles per minute is present during both the resting and active phases of 

gastric motor activity. Neurohumoral activators increase the slow wave amplitude and this 

initiates a coupled peristaltic response that grinds and triturates food into a fine particulate 

suspension, ready for passage into the duodenum
83

. 

In a number of disease states or conditions, these peristaltic contractions of the stomach 

and/or the opening and closing of the pylorus is irregular. Gastroparesis or delayed gastric 

emptying may result in insufficient contractions to churn food, move food through the pylorus, 

and/or open the pylorus, resulting in gastro retention of food
84

. In another motility disorder 

known as dumping syndrome, the stomach empties at an abnormally high rate into the small 

intestine causing various gastrointestinal disorders
84

. 
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Although, the initial classification was based on membrane properties and contractile 

behavior, recent studies suggests that these muscle types exhibit differences in several cellular 

properties, from membrane activation, cell signaling to the actin-myosin interaction.  Previous 

studies suggest that the phasic and tonic behavior of smooth muscles may be related to 

differences in content and isoform composition of contractile proteins.  Understanding the 

differences in the signaling pathways that regulate MLCK and MLCP activities and cGMP levels 

using biochemical, molecular and functional approaches, and antrum (distal stomach) and fundus 

(proximal stomach) of rabbit stomach as models of phasic and tonic smooth muscle, respectively, 

is the major question of inquiry of the present study.  An understanding of the mechanisms that 

regulate tone and relaxation at the intracellular levels is important in the pathophysiology and 

may provide new insights for the development of therapeutic agents that should act on smooth 

muscle in the gut to treat motility disorders as well as in other regions such as airways and 

vascular smooth muscle where similar intracellular mechanisms may prevail.  

To understand the biochemical basis of phasic and tonic contractile phenotype, I have 

undertaken a systematic analysis of signaling proteins whose expression and activity are 

important in the regulation of MLCK and MLCP activity and cGMP levels.  The signaling 
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proteins are AMPK (MLCK activity), Rho kinase, ZIP, CPI-17 and telokin (MLCP activity) and 

PDE5 and MRP5 (cGMP levels).  



HYPOTHESIS AND SPECIFIC AIMS 
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The following are the Specific Aims and underlying hypotheses. 

Specific Aim 1:  Identification of differences in the signaling pathways mediating 

termination of MLCK activity and muscle contraction. 

Hypothesis.  Expression and function of AMPK-dependent pathway involved in the 

termination of Ca
2+

/CaM-dependent MLCK activity are higher in phasic muscle than tonic 

muscle.  

Specific Aim 2:  Identification of differences in the signaling pathways mediating MLCP 

inhibition and sustained muscle contraction. 

Hypothesis.  Expression and function of Rho kinase/ZIPK/MYPT1 and PKC/CPI-17 

pathways involved in the suppression of MLCP activity are higher in tonic muscle than phasic 

muscle.  

Specific Aim 3:  Identification of differences in the signaling pathways mediating 

termination of cGMP signaling and muscle relaxation. 

Hypothesis.  Expression and function of cGMP degradation (PDE5) and efflux (MRP5) 

are higher in tonic muscle than phasic muscle. 



CHAPTER 2  

MATERIALS AND METHODS 
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2.1       Materials 

[
125

I]cGMP, [-
32

P]ATP, and [
32

P]Pi were obtained from PerkinElmer Life Sciences, 

Boston, MA; Collagenase CLS type II and soybean trypsin inhibitor were obtained from 

Worthington, Freehold, NJ; Western blotting, Dowex AG-1 X 8 resin (100-200 mesh in formate 

form), chromatography material and protein assay kit, Tris-HCl Ready Gels were obtained from 

Bio-Rad Laboratories, Hercules, CA; antibodies to MLCK, AMPK, Rho kinase II, PKC-ε, ZIPK, 

telokin, CPI-17, PDE5,  MYPT1, phospho-MLC20, α-actin, smoothelin, tropomyosin, caldesmon, 

calponin-1, and MRP5 were obtained from Santa Cruz biotechnology, Santa Cruz, CA; myelin 

basic protein (MBP) was obtained from Upstate Biotechnology; Y27632, STO609, Phorbol 12-

myristate 13-acetate (PMA), cGMP, PKI(6-22) amide  were obtained from Calbiochem, La Jolla, 

CA; RKRSRAE  was obtained from Peninsula Laboratories, Belmont, CA; RNAqueous
TM

 kit was 

obtained from Ambion, Austin, TX; Effectene Transfection Reagent, QIAEX®II Gel extraction 

Kit and QIAprep®Spin Miniprep Kit were obtained from QIAGEN Sciences, Maryland; PCR 

reagents were obtained from Applied Biosystems, Roche; SuperScript
TM

 II Reverse Transcriptese 

and TOPO TA Cloning® Kit  Dual Promoter were obtained from Invitrogen, CA; Dulbecco‟s 
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modified Eagle‟s medium (DMEM) was obtained from Fisher Scientific. All other chemicals 

were obtained from Sigma, St. Louis, MO. 

New Zealand white rabbits (weight: 4-5 lbs) were purchased from RSI Biotechnology, 

Clemmons, NC and killed by injection of euthasol (100 mg/kg), as approved by the Institutional 

Animal Care and Use Committee of the Virginia Commonwealth University. The animals were 

housed in the animal facility administered by the Division of Animal Resources, Virginia 

Commonwealth University.  All procedures were conducted in accordance with the Institutional 

Animal Care and Use Committee of the Virginia Commonwealth University.   

2.2       Methods 

2.2.1    Collection of tissue 

Rabbits were sacrificed by injection of Euthasol (100 mg/kg body weight) into the ear 

vein. The stomach was rapidly removed, emptied of its contents and placed in a cold smooth 

muscle buffer with the following composition: NaCl 120 mM, KCl 4 mM, KH2PO4 2.6 mM, 

CaCl2 2.0 mM, MgCl2 0.6 mM, HEPES (N-2-hydroxyethylpiperazine-N‟ 2-ethanesulfonic acid) 

25 mM, glucose 14 mM, and essential amino mixture 2.1% (pH 7.4)
85-87

. 

2.2.2    Preparation of dispersed gastric smooth muscle cells 

Smooth muscle cells from the circular muscle layer of the antrum and fundus were 

isolated by sequential enzymatic digestion of muscle strips, filtration, and centrifugation as 

described previously 
32,85-87

. The tissue was cut into thin slices using a Stadie-Riggs tissue slicer 

and then the slices were incubated for 30 min in a smooth muscle buffer at 31C containing 0.1% 

collagenase (300 U/ml) and 0.01% soybean trypsin inhibitor (w/v). The tissue was continuously 

gassed with 100% oxygen during the entire isolation procedure.  The partly digested tissues were 
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washed twice with 50-ml of collagenase-free smooth muscle buffer and the muscle cells were 

allowed to disperse spontaneously for 30 min in collagenase-free medium. Cells were harvested 

by filtration through 500 μm Nitex and centrifuged twice at 350 g for 10 min to eliminate broken 

cells and organelles. The cells were counted in a hemocytometer and it is estimated that 95% of 

the cells excluded trypan blue.  The experiments were done within 2-3 h of cell dispersion.  

2.2.3    Permeabilization of smooth muscle cells 

Dispersed muscle cells were permeabilized by incubation for 10 min with 35 µg/ml of 

saponin in a medium containing 20 mM NaCl, 100 mM KCl, 5 mM MgSO4, 1 mM NH2PO4, 25 

mM NaHCO3, 0.34 mM CaCl2 and 1 mM EGTA with 1% bovine serum albumin
25

. The cells 

were centrifuged at 350 g for 5 min, washed free of saponin, and resuspended in the same medium 

with 1.5 mM ATP and ATP-regenerating system (5 mM creatine phosphate and 10 U/ml creatine 

phosphokinase). 

2.2.4    Preparation of cultured gastric smooth muscle cells 

Dispersed muscle cells isolated from the antrum and fundus were resuspended in DMEM 

containing penicillin (200 U/ml), streptomycin (200 g/ml), gentamycin (100 g/ml), 

amphotericin B (2.5 g/ml) and 10% fetal bovine serum (DMEM-10).  The muscle cells were 

plated at a concentration of 5 X 10
5
 cells/ml and incubated at 37C in a CO2 incubator.  DMEM-

10 medium was replaced every three days for 2-3 weeks until confluence was attained.  The 

muscle cells in confluent primary cultures were trypsinized (0.5 mg trypsin/ml), re-plated at a 

concentration of 2.5 X 10
5
 cells/ml and cultured under the same conditions.  All experiments were 

done on cells in the first passage.  Previous studies have determined the purity of cultured muscle 
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cells with smooth muscle-specific -actin
88

. Cultured muscle cells were starved in serum-free 

medium for 24 hours before each use.  

2.2.5   Expression of MRP5, α-actin, β-actin, γ-actin, and myosin isoforms (SM1, SM2, SMA, 

SMB) by RT-PCR  

  Total RNA was isolated from freshly dispersed smooth muscle cells with TRIzol® reagent 

(Invitrogen) and cultured gastric muscle cells using ULTRASPECT
TM

 reagent from both antrum 

and fundus regions of the stomach and then treated with TURBO DNase (Ambion) . RNA from 

each preparation was reversely transcribed using the SuperScript™ II system containing 50 mM 

Tris–HCl (pH 8.3), 75 mM KCl, 3 mM MgCl2, 10 mM dithiothreitol (DTT), 0.5 mM 

deoxynucleoside triphosphates (dNTP), 2.5 μM random hexamers and 200 units of reverse 

transcriptase in a 20 μl reaction volume. The reactions were carried out at room temperature for 

10 min and at 42°C for 50 min, and terminated by heating at 70°C for 15 min. Three μl of the 

reversely transcribed cDNA was amplified in a final volume of 50 μl by PCR in standard 

conditions (2 mM MgCl2, 200 μM dNTP, 2.5 units Taq polymerase) with specific primers 

designed based on conserved sequences in human, rat and mouse cDNAs (Table 1).  PCR was 

performed for 30 cycles.  For each experiment, a parallel control without reverse transcriptase was 

processed.  The amplified PCR products were analyzed on 1.5% agarose gel containing 0.1 μg/ml 

ethidium bromide. 

2.2.6 Expression of telokin, CPI-17, α-tropomyosin, β-tropomyosin h-caldesmon, h1-

calponin, and smoothelin-A and smoothelin-B by Real Time PCR   

Real-time PCR was performed on cDNA samples synthesized from total RNA isolated 

from freshly dispersed smooth muscle cells and whole gastric tissue from antrum and fundus with 

TRIzol® reagent (Invitrogen) and from antrum and fundus cultured gastric muscle cells with the 
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StepOne™ Real-Time PCR System (Applied Biosystem, Foster city, CA) and the intercalating 

dye, SYBRgreen. Methods for total RNA isolation and cDNA synthesis were followed for the 

real-time PCR experiments. PCR conditions were optimized on the gradient thermal cycler on the 

StepOne™ Real-Time PCR System. For each cDNA sample, real-time PCR was conducted in a 

20 μl reaction volume containing Quantitect
TM 

SYBRgreen PCR Mastermix (Qiagen, 

Mississauga, ON). The following time and temperature profile was used for the real-time PCR 

reactions: 95 ˚C for 5 min; 50 cycles of a series consisting of 15 s at 94 ˚C, 30 s at 52 ˚C, 30 s at 

72 ˚C; and a final extension of 5 min at 72 ˚C. The optimal annealing temperatures were 

determined empirically for each primer set. The sequences of specific primers are listed in Table 

1. 

Real-time PCR reactions were performed in triplicate. Each primer set generated only one 

PCR product, and the identity and integrity of these products were confirmed by electrophoresis 

on 1.5% agarose gel containing 0.1 μg/ml ethidium bromide and sequencing of the individual 

bands. The fluorescent threshold value was calculated using the StepOne™ Real-Time PCR 

System software. The absence of peaks in water controls suggested a lack of primer-dimer 

formation.  

Quantification of gene expression.  Two general types of quantification strategies can be 

performed in quantitative RT-PCR (qRT-PCR). The levels of expressed genes may be measured 

by an absolute quantification or by a relative qRT-PCR. The absolute quantification approach 

relates the PCR signal to input copy number using a calibration curve
89

. 

Relative quantification relates the PCR signal of the target transcript in a treatment group 

to that of another sample such as an untreated control. Relative quantification of a target gene in 

relation to another gene (reference gene or housekeeping gene) can be calculated on the basis of 
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delta delta CT values (CT, called as well CP, is the cycle number at which the fluorescence 

generated within a reaction crosses the threshold. CT reflects the point during the reaction at 

which a sufficient number of amplicons has accumulated). There are several mathematical 

models to calculate the relative expression ratio (R), based on the comparison of the diverse cycle 

differences. Among them are the delta delta CT method 
90

 and the efficiency corrected calculation 

model
91

. In these models, the target-gene expression is normalized to the expression of one or 

more non-regulated housekeeping genes. The choice of an internal control to normalize the 

expression of the gene of interest is critical to the interpretation of experimental real-time PCR 

results. The housekeeping gene expression must not be influenced by the applied treatment
92

. 

Delta delta CT method  

ΔΔCT =
 
(C

T, Tag 
− C

T, HKG
) 

Treatment 
−

 
(C

T, Tag 
− C

T, HKG
) 

Control  

R = 2
−ΔΔCT 

 

Where, HKG is the housekeeping gene and Tag, the evaluated gene.  

Following the criteria for choosing the reference genes and delta delta method, in this study 

GAPDH was selected as reference gene. After normalization, the data for antrum were expressed 

as the fold-change in mRNA expression relative to that obtained for fundus.  

2.2.7  Transfection of dominant negative mutants and minigene constructs into cultured 

smooth muscle cells.  

Wild type telokin and phosphorylation-deficient telokin (S13A) were subcloned into the 

multiple cloning site (EcoR I) of the eukaryotic expression vector pcDNA3. Recombinant plasmid  
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Table 1. Real-time and RT-PCR primer sequences. Primers for amplification of different 

genes from smooth muscle tissue. AMPK; AMP kinase, MLCK; myosin light chain kinase, 

ZIPK; zipper interacting protein kinase, CPI-17; PKC potentiated inhibitor 17 kDa protein, 

PDE5; phosphodiesterase 5, MRP5; multi-drug resistance protein 5, Tm; tropomyosin, CaD; 

caldesmon, CaP; calponin, GAPDH; Glyceraldehyde 3-phosphate dehydrogenase, SMA/B; 

smooth muscle myosin (isoforms A and B), SM1/2; smooth muscle myosin (isoforms 1 and 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Glyceraldehyde_3-phosphate_dehydrogenase
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Primer set Forward 5’3’ Reverse 3’5’ Size (bp) 

AMPK TATGGTGGTCCACAGAGATTTGA TTTGCATTCATGTGTGCATCA 63 

MLCK GCCGAGCAGATGGATTTCC CTCTCCTCCTCAGACACAGTCTTG 71 

Rho Kinase 
CCAAACCTCTCTGGCATGTCTT TTAACATGGCATCTTCGACATTCT 

64 

ZIPK 
ATCCGCCACCCCAACAT TCAGCACCACATCTGTCTTGTTC 

64 

Telokin AACGGGCAATGCTGTGAGA GCCCTGAGATCATTGCCATAG 69 

CPI-17 GAGCAAGCTGCAGTCCCCGT GATCCACTTCTCCACGTCCA 116 

PDE5 CTATTCCCTGTTCCTTGTCTGTGA CAAAGAGGCGGCTGATAAGAA 65 

MRP5 GCAAGAGCCCTGCTGCGTCA CTGTGTGCAGGCGATGGGCA 151 

α-actin 
GTCACTTCCCTGCTCTGT GCTTTGGATAGGCATGACT 

97 

β-actin 
CCCTCCATCGTGCACCGCAA CTCGTCTCGTTTCTGCGCCGT 

100 

γ –actin ATCAGGCCCGCGACACTCGT 
GCCGCCAGTGTGCTCTAAAGGT 

70 

α-Tm 
CTGAAGCCGATGTAGCGTCTCTG ACGCTCCTGGGCACGATCCA 

75 

β-Tm 
CCTCCCTGAACCGCCGCATT TGACAAGACGCTCCTGCGCC 

67 

h-CaD 
CAGAAGGGAAGTCGGTAAATGAAA GGGCAGCTGTCTGAAGTTTATCTTCTT 

61 

h1-CaP 
GGTGAAGCCCCACGACAT CAAAGCCAGGAGGGTGGACTG 

86 

Smoothelin-A GCTGGTAAAAACCAAAAAGTCCTAA GCTTTTTGCCCATGATCATCA 107 

Smoothelin-B ATGAGGAGCGCAAGCTGATC GGCAGCCTCAATCTCCTGAGC 65 

GAPDH GCCTGGAGAAAGCTGCTAAGTATG CCTCGGATGCCTGCTTCA 60 

SMA/B 
CAGTCCATTCTCTGCACAGG TCATTCTTGACCGTCTTGGC 

197/218 

SM1/2 
TGAAGCAGAGGGACAAGAAG TTCTGGTAGGAACGAACGAG 

230/291 
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DNAs were transiently transfected into the muscle in primary culture using Effectene 

Transfection Reagent (QIAGEN) for 48 h.  Cells were co-transfected with 2 g of pcDNA3 

vector and 1 g of pGreen Lantern-1 DNA.  Transfection efficiency was monitored by the 

expression of the green fluorescent protein using FITC filters. Control cells were transfected with 

vector alone. Analysis by fluorescence microscopy showed that approximately 80% of the cells 

were transfected
30,93

. 

2.2.8    Immunokinase assay  

Activities of MLCK, AMPK, PKC, ZIPK, and Rho kinase were measured by an 

immunokinase assay as previously described
30,34,39,93-96

. Muscle cells were washed one time with 

PBS, and then were lysed with buffer containing 50 mM Tris-HCl (pH 7.5),150 mM NaCl, 0.1 % 

SDS, 0.5% sodium deoxycholate, 1% NP-40, 10 mM sodium pyrophosphate, and protease 

inhibitor cocktail (2 μl/ml, BD Biosciences). The homogenates were centrifuged at 10,000 rpm 

for 10 min at 4 C. The supernatant containing cytosolic protein was transferred to a fresh tube 

and 5 μl of the specific antibody was added to each tube and incubated for 2 h at 4 C.   

At the end of two hours, Protein A/G agarose was added to each tube and the mixture was 

reincubated at 4 C for overnight and washed 3 times with lysis buffer.  The pellets were re-

suspended in 50 μl of kinase buffer containing 100 mM Tris-HCl (pH 7.4), 1 M KCl, 50 mM 

MgCl2, 10 mM EDTA, and 1 mM DTT.  Twenty microliters of the immunoprecipitates were 

added to the reaction mixture containing 100 mM Tris-HCl (pH 7.4), 1 M KCl, 50 mM MgCl2, 1 

mM DTT, 1 mM ATP, and 10 μCi of [γ-
32

P] ATP (3,000 Ci/mol) along with 5 μg of myelin basic 

protein (for Rho kinase II, ZIPK an dPKC), or 1 µg purified recombinant MLCK (for AMPK), 

followed by incubation for 15 min at 37 C.  Phosphorylation of myelin basic protein or MLCK 
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was absorbed onto phosphocellulose disks, and free radioactivity was removed by washing 3 

times with 75 mM H3PO4.  The amount of radioactivity on the disks was measured by liquid 

scintillation. The results are expressed as counts per milligram protein per minute. 

2.2.9    Cyclic GMP-dependent protein kinase (PKG) assay 

 PKG activity was measured by the method of Jiang et al 
97

. One milliliter of cell 

suspension was incubated in HEPES medium with 8-Br-cGMP for 90 s at 31
0
C.  The reaction was 

stopped by rapid centrifugation, and the pellet was rinsed with a medium containing 50 mM Tris-

HCl (pH 7.4), 10 mM EDTA, 0.5 mM IBMX, 10 mM β-mercaptoethanol, and 100 mM NaCl and 

homogenized in 0.5 ml ice-cold medium.  The mixture was centrifuged at 48, 000 g for 15 min 

and the supernatant was used as a source of protein kinaase. PKG activity was measured in a 

volume of 60 µl containing 50 mM Tris, 10 mM MgCl2, 100 µM [
32

P]ATP, 50 µM synthetic 

heptapeptide histone H2B [Arg-Lys-Arg-Ser-Arg-Ala-Glu (RKRSRAE)], and 0.25 mg/ml of 

bovine serum albumin.  The assay was done in the presence or absence of 10 µM of cGMP and 1 

µM PKI (6-22 amide) and was initiated by the addition of 20 µl of cell supernatants (50 µg 

protein) to the reaction mixture.  PKG activity was calculated as pmoles/mg protein and expressed 

as the ratio of activity in the presence or absence of 10 µM cGMP (-cGMP/+cGMP). 

2.2.10  Western blot analysis    

Muscle cells were solubilized in Triton X-100-based lysis buffer plus protease and 

phosphatase inhibitors (100 μg/ml PMSF, 10 μg/ml aprotinin, 10 μg/ml leupeptin, 30 mM sodium 

fluoride and 3 mM sodium vanadate). After centrifugation of the lysates at 20000 g for 10 min at 

4 °C, the protein concentrations of the supernatant were determined with a Dc protein assay kit 

from Bio-Rad. Equal amounts of proteins were fractionated by SDS/PAGE, and transferred on to 
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nitrocellulose membrane. Blots were blocked in 5% (w/v) non-fat dried milk/TBS-T [tris-buffered 

saline (pH 7.6) plus 0.1% Tween-20] for 1 h and then incubated overnight at 4 °C with various 

primary antibodies in TBS-T plus 1% (w/v) non-fat dried milk (Table 2). After incubation for 1 h 

with horseradish-peroxidase-conjugated corresponding secondary antibody (1:2000; 10 μg/ml, 

Pierce) in TBS-T plus 1% (w/v) non-fat dried milk, immunoreactive proteins were visualized 

using SuperSignal Femto maximum sensitivity substrate kit (Pierce). All washing steps were 

performed with TBS-T.  The protein bands were identified by enhanced chemiluminescence 

reagent.  

Quantification of protein bands obtained on western blot was done by densitometric 

analysis of the Details view of the Odyssey software using the median method for calculation of 

background.  The average intensity obtained for each band was normalized to that of β-actin for 

the same lane.  The band intensity of each treatment was then calculated as a percent value of 

normalized value of the control lane.  The percent value of the control was used for statistical 

analysis. 

2.2.11  Radioimmunoassay for cGMP. 

            Cyclic GMP levels were measured by radioimmunoassay, as previously described 
70

. 

Suspensions of smooth muscle cells (10
6
 cells/ml) were stimulated for 1 min with GSNO in the 

presence of 100 µM IBMX, and the reaction was terminated with 10% trichloroacetic acid. 

Samples were centrifuged, and the supernatant was extracted with diethyl ether and lyophilized. 

Samples were resuspended in Na-acetate buffer (pH 6.2) followed by acetylation with 

triethylamine-acetic anhydride for 10 min. cGMP was measured in duplicate using 100-µl 

aliquots, and the results are expressed as picomoles per milligram of protein. 
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Table 2. Primary antibodies. Primary antibodies and their catalogue number, company of 

production, product size and dilution ratio. 
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Antibody Catalog # 

Product 

size 

(kDa) 

Company name Dilution 

AMPKα1 (C-20) sc-19128 63 SANTA CRUZ  1/1000 

MYLK (L-18) sc-9452 210/135 SANTA CRUZ  1/1000 

Rock-2 (H-85)  sc-5561 160 SANTA CRUZ  1/1000 

ZIP-kinase (C-19) sc-8161 52 SANTA CRUZ  1/1000 

MYPT1 (N-15)  sc-17433 130 SANTA CRUZ  1/1000 

MRCL3/MRLC2/MYL9 (FL-172) sc-15370 20 SANTA CRUZ  1/1000 

Telokin sc-22226 17 SANTA CRUZ 1/1000 

CPI-17 (N-20)  sc-17561 17 SANTA CRUZ  1/1000 

PKC ε (17) sc-56944 82 SANTA CRUZ  1/1000 

PDE5 2395 100 CELL SIGNALING 1/1000 

MRP5 (C-17) sc-5780 185 SANTA CRUZ  1/1000 

PKG 7721301  PROMEGA 1/1000 

β-actin AC1978 42 SIGMA 1/5000 

Tropomyosin (FL-284)  sc-28543 35-45 SANTA CRUZ  1/1000 

Caldesmon (H-300):  sc-15374 90-150 SANTA CRUZ  1/1000 

Calponin 1 (CALP) sc-58707 33-36 SANTA CRUZ  1/1000 
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2.2.12 Phosphorylation of MLCK and AMPK 

Phosphorylation of MLCK and AMPK was determined from the amount of 
32

P 

incorporated into the enzyme after immunoprecipitation with MLCK or AMPK antibody 

respectively. A 10 ml suspension of smooth-muscle cells (4×10
6
 cells/ml) was prelabelled with 

0.5 mCi/ml of [
32

P]Pi for 3 h. Samples (1 ml) were treated with ACh in the presence or absence 

of various agents. The reaction was terminated with an equal volume of lysis buffer, containing 

1% (v/v) Triton X-100, 0.5% SDS, 10 mM EDTA, 1 mM PMSF, 10 µg/ml leupeptin, 100 µg/ml 

aprotinin, 10 mM sodium pyrophosphate, 50 mM NaF and 0.2 mM sodium vanadate. The cell 

lysates were separated from the insoluble material by centrifugation at 13000 g for 15 min at 4 

°C, precleared with 40 µl of Protein A–Sepharose and incubated with antibody to MLCK or 

AMPK for 2 h at 4 °C. After addition of Protein A–Sepharose (40 µl), the lysates were incubated 

for 1 h. The immunoprecipitates were washed five times with 1 ml of wash buffer containing 10 

mM Tris/HCl (pH 7.4), 150 mM NaCl and 0.5% Triton X-100, and extracted with SDS sample 

buffer. The samples were resolved by SDS/PAGE and 
32

P-labelled MLCK and AMPK were 

visualized by autoradiography, and the amount of radioactivity in the bands was counted. 

2.2.13  Assay for phosphodiesterase 5 (PDE5) activity 

PDE5 activity was measured in immunoprecipitates of PDE5 by the method of Wyatt et 

al. 
98

. PDE5 was immunoprecipitated from lysates of dispersed gastric smooth-muscle cells 

(3×10
6
 cells/ml) using an anti-PDE5 antibody, and the immunoprecipitates were washed in a 

solution of 50 mM Tris/HCl (pH 7.5), 200 mM NaCl and 5 mM EDTA. The immunoprecipitates 

were then incubated for 15 min at 30 °C in a reaction mixture containing 100 mM Mes (pH 7.5), 

10 mM EDTA, 0.1 M magnesium acetate, 0.9 mg/ml BSA, 20 µM cGMP and [
3
H] cGMP. The 
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samples were boiled for 3 min, chilled for 3 min and then incubated at 30 °C for 10 min in 20 

mM Tris/HCl (pH 7.5) containing 10 µl of C. atrox snake venom (10 µg/µl). The samples were 

added to DEAE-Sephacel A-25 columns and the radioactivity in the effluent was counted. The 

results were expressed as cpm/mg of protein.  

2.2.14   Immunoblot analysis of MLC20 and CPI-17 phosphoproteins. 

 Phosphorylation of MLC20 and CPI-17 was determined by
 
immunoblot analysis with 

phosphospecific antibodies as described
 
preciously 

30
. Muscle cells were treated with ACh or 

Ca
2+

 for 30 s or 10 min and solubilized on ice in a medium containing 20 mM Tris·HCl
 
(pH 8.0), 

1 mM DTT, 100 mM NaCl, 0.5% SDS, 0.75% deoxycholate,
 
1 mM PMSF, 10 µg/ml leupeptin, 

and 100 µg/ml aprotinin.
 
The lysate proteins were resolved by SDS-PAGE and transferred

 
onto 

polyvinylidene difluoride membranes. The membranes were
 

incubated for 12 h with 

phosphospecific antibodies to MLC20
 
(Ser

19
) or CPI-17 (Thr

38
) and then incubated

 
for 1 h with 

horseradish peroxidase-conjugated secondary antibodies.
 
The bands were identified by enhanced 

chemiluminescence.  Quantification of protein bands obtained on western blot was done by 

densitometric analysis as described above. 

2.2.15  Measurement of contraction and relaxation in dispersed smooth muscle cells 

Contraction in freshly dispersed gastric circular smooth muscle cells was determined by 

scanning micrometry
93

.   An aliquot (0.4 ml) of cells containing approximately 10
4
 cells/ml was 

treated with 100 μl of medium containing acetylcholine (ACh, 0.1 µM) for 30 s or 10 min  and the 

reaction was terminated with 1% acrolein at a final concentration of 0.1%.  Acrolein kills and 

fixes cells without affecting the cell length.   The resting cell length was determined in control 

experiments in which muscle cells were incubated with 100 l of 0.1% bovine serum albumin 
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without the ACh.    The mean lengths of 50 muscle cells treated with various agonists was 

measured by scanning micrometry and compared with the mean lengths of untreated cells. The 

contractile response was expressed as the percent decrease in mean cell length from control cell 

length.   

Relaxation was measured in intact muscle cells contracted with ACh (0.1 µM).  Muscle 

cells were treated for 1 minute with GSNO followed by ACh for 30 s or 10 min. The reaction was 

terminated with 1% acrolein. The length of 50 cells treated with acetylcholine was measured in 

sequential microscopic fields by scanning micrometry. Relaxation was expressed as percent 

increase in the length of cells contracted with ACh.  

2.2.16  Transfection of cultured smooth muscle cells with MRP5 siRNA 

 Confluent smooth muscle cells in the first passage on six-well plates were transiently 

transfected with the control vector or vector encoding MRP5 siRNA using Lipofectamine 2000 

according to the manufacturer's instructions (Invitrogen). Briefly, 2 µg of the vector in 125 µl 

Opti-MEM medium were mixed with 5 µl Lipofectamine 2000 in 125 µl Opti-MEM. The mixture 

was incubated at room temperature for 20 min and added to wells containing 1.5 ml DMEM with 

10% FBS for 1 day. The medium was then replaced with DMEM with 10% FBS plus antibiotics 

for 2 days. Cells were maintained for a final 24 h in DMEM without FBS before experiments 

were started.  

2.3.      Experimental approach 

1. We have used two approaches to determine the differences in smooth muscle 

contraction and relaxation signaling pathways in antrum versus fundus parts of the stomach.  In 

the first approach, freshly dispersed muscle cells were used to examine expression of various 
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proteins by western blot, enzyme activities by immuno kinase assay, protein phosphorylation, and 

smooth muscle contraction and relaxation in response to various reagents.  In the second 

approach, cultured muscle cells in the first passage were used for various molecular and 

biochemical studies.  The purity of cultured muscle cells was determined using markers for 

smooth muscle, interstial cells of Cajal, enteric neurons and endothelial cells. Use of cultured 

muscle cells is essential for mRNA expression by RT-PCR and real time PCR and for the 

expression of phosphorylation-deficient mutants of telokin cDNAs. 

2. Permeabilized muscle cells were used to preclude the effects of 8-Br-cGMP on 

mechanisms upstream of Ca
2+

 generation. 

3.  The concentrations of inhibitors used in the present study was based on the previous 

studies in smooth muscle cells and shown to be maximally effective in eliciting an inhibitory 

response
30,32-34,93

.  
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2.4       Statistical analysis 

The results were expressed as means  S.E. of n experiments and analyzed for statistical 

significance using Student‟s t-test for paired and unpaired values.  Each experiment was 

performed on cells obtained from different animals.  Differences among multiple groups were 

tested using ANOVA and checked for significance using Fisher‟s protected least significant 

difference test.  A statistical software program was used (GraphPad software, San Diego, CA).  A 

probability of p<0.05 was considered significant. 



CHAPTER 3  

DIFFERENTIAL EXPRESSION OF PROTEINS ASSOCIATED WITH THE 

CONTRACTILE FILAMENTS IN SMOOTH MUSCLE OF ANTRUM AND FUNDUS 

42 

 

 

 

Previous studies using esophagus and lower esophageal sphincter as models of phasic and 

tonic smooth muscle, respectively, have demonstrated that the expression of various contractile 

proteins is tissue specific and related to the function of the muscle 
99,100

.  Initially, studies were 

carried out to examine whether the expression of contractile proteins is different in muscle cells 

from antrum and fundus and correlates with the phasic and tonic phenotypes of the muscle, 

respectively.   

The mRNA expression levels of various contractile proteins were analyzed using specific 

primers by both RT-PCR and qRT-PCR in cultured muscle cells in the first passage.   As shown 

previously 
101

, the use of
 
confluent cultures of smooth muscle in the first passage ensured

 
the 

absence of neural, endothelial, or interstitial cell contaminants. 

 Specific primers were designed based on known sequences in rabbit, if available, or 

based on the conserved sequences in human, rat, and mouse cDNAs (Table 1).  In an initial 

evaluation, the accuracy of the designed primers was evaluated with agarose gels followed by 

sequencing of amplicons generated with the primers. Moreover, the formation of primer-dimers 

and the PCR efficiency of the primer sets were examined. Both the size and the sequence of all 
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real time RT-PCR amplicons were confirmed. Melt curve analyses showed single peaks for all 

samples. The PCR efficiencies were calculated from standard curves.  The values of the PCR 

efficiencies were higher than 90%, and the difference among them was not greater than 5%. 

These findings validated the design of primers and satisfied the requirements for use of the 2
-ΔΔCT 

quantification method, described previously in the Materials and Methods section. 

GAPDH expression was chosen to normalize the expression of the contractile proteins. 

The GAPDH amplicon was utilized to normalize and calculate the quantitative expression of 

various genes. Thus, a quantitative comparison between antrum and fundus tissue was 

calculated with the 2
-ΔΔCT 

method by normalizing the ΔCT counts to GAPDH expression.  

3.1        Actins 

 Expression of six different isoforms of actin with similar levels of acto-myosin ATPase 

activating property has been demonstrated in smooth muscle tissues. α- and γ-actin isoforms were 

found to be located primarily within the contractile apparatus, while β-actin is a highly conserved 

protein and shown to be the cytoskeletal actin isoform. The expression of α-actin is predominant 

in vascular smooth muscles, while expression of γ-actin is predominant in visceral smooth 

muscles. The expression of α, β and γ-actin isoforms were examined in antrum and fundus 

smooth muscle using isoform-specific primers (Table 1).  A PCR product with predicted size was 

detected for α-actin (97bp), γ- actin (70bp) or β-actin (100bp) in muscle cells from both antrum 

and fundus of rabbit stomach.   The differences in the expression levels were analyzed by qRT-

PCR.  The results showed that expression of α-actin was 11-fold (p<0.001, n=3) greater in muscle 

cells from fundus compared to muscle cells from antrum, whereas the expression of γ-actin was 

~3-fold (p<0.05, n=3) greater in muscle cells from antrum than fundus (Figure 1).  There was no 
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significant difference in the expression of β-actin between muscle cells from antrum and fundus 

(Figure 1).  

3.2         Tropomyosins 

  Expression two different isoforms of tropomyosin has been demonstrated in smooth 

muscle tissues 
102

.  Expression of both -tropomyosin and β-tropomyosin was measured in 

muscle cells of antrum and fundus.  The differences in the expression levels were analyzed by 

qRT-PCR.  The results showed that expression of α-tropomyosin was 5-fold greater, and β-

tropomyosin was 2-fold greater in muscle cells from antrum compared to fundus (Figure 2).   

Expression of tropomyosin was also examined in the two regions of the stomach by 

western blot analysis using an antibody that recognizes all the isoforms of tropomyosin. Results 

showed expression of 2 protein bands with ~45 kDa in the muscle cells from antrum, but only 

one band in muscle cells from fundus.  The molecular weight of the protein bands corresponds to 

the expected molecular weight of tropomyosin isoforms (35-45 kDa).  Comparing the densities of 

protein bands in the two regions revealed higher expression in muscle cells from antrum 

compared to fundus and this is consistent with higher expression of mRNA (Figure 2). 

3.3       Calponin and Caldesmon   

Calponin and caldesmon are thin filament associated proteins that were shown to regulate 

smooth muscle contraction.  They are differentially expressed in phasic (e.g., esophagus) versus 

tonic (e.g., lower esophageal sphincter) smooth muscles
99,100

.  Expression of h-caldesmon and h1-

calponin was analyzed by qRT-PCR in muscle cells from antrum and fundus.  The results showed 

that the expression of h1-calponin was 2-fold higher and h-caldesmon was 3-fold higher (p<0.05, 

n=3) in muscle cells from antrum compared to fundus.  Western blot analysis using antibody to 

h1-calponin or h-caldesmon demonstrated expression of h1-calponin (~35 kDa) and h-caldemon 
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(~100 kDa) in both antrum and fundus, and confirmed higher expression in muscle cells from 

antrum compared to fundus (Figure 3).  

3.4        Smoothelin 

 Expression two different isoforms of smoothelin has been demonstrated in smooth 

muscle tissues 
103

.  Expression of smoothelin-A isoform was found to be predominant in visceral 

smooth muscle cells, whereas expression of smoothelin-B isoform was found to be predominant 

in vascular smooth muscle.  Expression of smoothelin-A and -B isoforms was analyzed by qRT-

PCR in muscle cells from antrum and fundus.  The results showed that expression of smoothelin-

A was 4-fold (p<0.05, n=3) higher in muscle cells from antrum compared to fundus, whereas 

expression of smoothelin-B was 3-fold higher (p<0.05, n=3) in fundus compared to antrum 

(Figure 4).  

3.5        Myosin heavy chain 

 The smooth muscle myosin is a hexamer with a pair of heavy chains (220 kDa), a pair of 

20 kDa regulatory light chains or myosin light chains (MLC20) and a pair of 17 kDa essential 

light chains.  Myosin heavy chain is encoded by a single gene, but alternative splicing at two sites 

can create four different variants of this ~ 200 kDa polypeptide (SM1, SM2, SM-A and SM-B 

isoforms).  Expression of myosin heavy chain isoforms (SM1, SM2, SM-A and SM-B) was 

determined by RT-PCR.  PCR product of expected size was obtained using specific primers for 

SM1 (330 bp) and SM2 (291 bp) only in antrum, and the expression of SM1 appears to be greater 

than SM2 (Figure 5).  However, no detectable PCR product was obtained in fundus using same 

primers for SM1 and SM2.  Expression of SM-A and SM-B was also analyzed using specific 

primers for SM-A and SM-B.   Expression of both SM-A (197 bp) and SM-B (218 bp) isoforms 

was detected in fundus, but only SM-B was detected in antrum (Figures 5).  Expression of SM-B 
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appears to be higher in muscle cells from antrum compared to fundus.  The results are consistent 

with the higher expression of SM-B isoform in phasic muscle 
75

.   

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 

Figure 1. Expression of α-, β-, and γ- actin.  Total RNA isolated from cultured (first passage) 

gastric circular muscle cells from antrum and fundus using RNAqueous prep kits (Ambion, 

Austin, Tx) was reverse transcribed using 2 µg of total RNA using qScript cDNA prep kits 

(Quanta, Gaithersburg, MD).  The cDNA was amplified with specific primers for α-, β-, and γ-

actin. PCR products of expected size (97 bp, 100 bp, and 70 bp) were obtained with α-, β-, and γ-

actin primers, respectively.  The sequences of specific primers are listed in Table 1.  Quantitative 

real-time polymerase chain reaction (qRT-PCR) was used to measure RNA levels of -actin, γ-

actin and β-actin.  For each cDNA sample, real-time PCR was conducted in a 20 μl reaction 

volume containing Quantitect
TM 

SYBRgreen PCR Mastermix (Qiagen, Mississauga, ON).  Real-

time PCR reactions were performed in triplicate. Each primer set generated only one PCR 

product, and the identity and integrity of these products were confirmed by electrophoresis in 

agarose gel in the presence of ethidium bromide and sequencing of the individual bands (inset: 

representative PCR products of -actin, γ-actin and β-actin).   Standard curves for each amplicon 

were generated from a dilution series of cDNA and results were quantified and reported using the 

2
−ΔΔCT 

method based on GAPDH amplification.  GAPDH amplicon thresholds remained constant.   

Relative quantification of a target gene in relation to reference gene was calculated on the basis of 

delta delta CT values.  Results demonstrated that α-actin mRNA levels are higher, while γ-actin 

mRNA levels are lower in fundus compared to antrum. β-actin mRNA levels were similar in 

antrum and fundus.  Values represent the means SEM of 3 separate experiments.  *p<0.05 

versus fundus; **p<0.001 versus antrum 
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Figure 1 
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Figure 2. Expression of α- and β-tropomyosin.  Total RNA was isolated from cultured (first 

passage) muscle cells from antrum and fundus using RNAqueous prep kits (Ambion, Austin, Tx) 

was reverse transcribed using 2 µg of total RNA using qScript cDNA prep kits (Quanta, 

Gaithersburg, MD).  The cDNA was amplified with specific primers for α- or β-tropomyosin.  

PCR products of expected size (75bp, and 67bp,) were obtained with α-or β-tropomyosin primers 

respectively.  The sequences of specific primers are listed in Table 1.  Quantitative real-time 

polymerase chain reaction (qRT-PCR) was used to measure RNA levels of - or β-tropomyosin.  

For each cDNA sample, real-time PCR was conducted in a 20 μl reaction volume containing 

Quantitect
TM 

SYBRgreen PCR Mastermix (Qiagen, Mississauga, ON).  Real-time PCR reactions 

were performed in triplicate. Each primer set generated only one PCR product, and the identity 

and integrity of these products were confirmed by electrophoresis in agarose gel in the presence 

of ethidium bromide and sequencing of the individual bands.   Standard curves for each amplicon 

were generated from a dilution series of cDNA and results were quantified and reported using the 

2
−ΔΔCT 

method based on GAPDH amplification.  GAPDH amplicon thresholds remained constant.   

Relative quantification of a target gene in relation to reference gene was calculated on the basis of 

delta delta CT values.  Results demonstrated that both α- and β-tropomyosin mRNA levels are 

higher in antrum compared to fundus.  Inset: Representative western blot results of tropomyosin 

expression.  Cell lysates containing equal amounts of total proteins were separated with SDS-

PAGE and expression of tropomyosin was analyzed using an antibody that recognizes all the 

isoforms of tropomyosin. Values represent the means SEM of 3 separate experiments.  *p<0.05 

versus fundus; **p<0.001 versus fundus. 
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Figure 2 
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Figure 3. Expression of h1-calponin and h-caldesmon.  Total RNA isolated from cultured (first 

passage) muscle cells from antrum and fundus was reverse transcribed using 2 µg of total RNA.  

The cDNA was amplified with specific primers for h1-clponin and h-caldesmon.  PCR products 

of expected size (86 bp and 61 bp) were obtained with h1-clponin and h-caldesmon primers 

respectively.  The sequences of specific primers are listed in Table 1.  Quantitative real-time 

polymerase chain reaction (qRT-PCR) was used to measure RNA levels of h1-clponin and h-

caldesmon.  For each cDNA sample, real-time PCR was conducted in a 20 μl reaction volume 

containing Quantitect
TM 

SYBRgreen PCR Mastermix.  Real-time PCR reactions were performed 

in triplicate. Each primer set generated only one PCR product, and the identity and integrity of 

these products were confirmed by electrophoresis in agarose gel in the presence of ethidium 

bromide and sequencing of the individual bands.   Standard curves for each amplicon were 

generated from a dilution series of cDNA and results were quantified and reported using the 

2
−ΔΔCT 

method based on GAPDH amplification.  Relative quantification of a target gene in 

relation to reference gene was calculated on the basis of delta delta CT values.  Results 

demonstrated that both h1-calponin and h-caldesmon levels are higher in antrum compared to 

fundus.  Inset: Representative western blot results of calponin and caldesmon expression.  Cell 

lysates containing equal amounts of total proteins were separated with SDS-PAGE and 

expression of calponin or caldesmon was analyzed using selective antibody. Values represent the 

means SEM of 3 separate experiments.  *p<0.05 versus fundus. 
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Figure 3 
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Figure 4. Expression of smoothelin-A and smoothelin-B.  Total RNA isolated from cultured 

(first passage) muscle cells from antrum and fundus was reverse transcribed using 2 µg of total 

RNA.  The cDNA was amplified with specific primers for smoothelin-A and smoothelin-B.  PCR 

products of expected size (107 bp and 65 bp) were obtained with smoothelin-A and smoothelin-B 

primers, respectively.  The sequences of specific primers are listed in Table 1.  Quantitative real-

time polymerase chain reaction (qRT-PCR) was used to measure RNA levels of smoothelin-A 

and smoothelin-B.  For each cDNA sample, real-time PCR was conducted in a 20 μl reaction 

volume containing Quantitect
TM 

SYBRgreen PCR Mastermix.  Real-time PCR reactions were 

performed in triplicate. Each primer set generated only one PCR product, and the identity and 

integrity of these products were confirmed by electrophoresis by electrophoresis in agarose gel in 

the presence of ethidium bromide and sequencing of the individual bands.   Standard curves for 

each amplicon were generated from a dilution series of cDNA and results were quantified and 

reported using the 2
−ΔΔCT 

method based on GAPDH amplification.  Relative quantification of a 

target gene in relation to reference gene was calculated on the basis of delta delta CT values.  

Results demonstrated that expression of smoothelin-A is higher in antrum compared to fundus, 

whereas expression of smoothelin-B is higher in fundus compared to antrum.  Values represent 

the means SEM of 3 separate experiments.  **p<0.001 versus fundus for smoothelin-A, and 

versus antrum for smoothelin-B. 
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Figure 4 
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Figure 5. Expression of myosin heavy chain isoforms (SM1/2 and SMA/B).  Total RNA 

isolated from cultured (first passage) gastric circular muscle cells from antrum and fundus was 

reverse transcribed using 2 µg of total RNA.  The cDNA was amplified with specific primers for 

SM1/2 or SM-A/SM-B. PCR products of expected size (330/291 bp and 197/218 bp) were 

obtained with SM1/2 or SM-A/SM-B primers respectively.  The sequences of specific primers are 

listed in Table 1.  Primers for SM1/2 generated two PCR products only in antrum, whereas 

primers for SM-A/SM-B generated one PCR product, corresponding to SM-B, in antrum and 2 

products corresponding to both SM-A and SM-B isoforms in fundus.   Results show 

representative PCR products of myosin heavy chain isoforms separated by electrophoresis in 

agarose gel in the presence of ethidium bromide and visualized by a ChemiImager Fluorescence 

system.   

 

 

 

 

 

 

 

 

 



56 

Figure 5 

 

 

 

 

 

 

 

 

 

 



CHAPTER 4  

DIFFERENTIAL REGULATION OF MLCK ACTIVITY AND INITIAL MUSCLE 

CONTRACTION IN ANTRUM AND FUNDUS 

 

57 

 

 

 

In gastrointestinal smooth muscle, contraction-induced by Gq-coupled receptor agonists 

(e.g., acetylcholine) consists of a transient Ca
2+

-dependent phase and reflects sequential 

activation of PLC-β1, IP3-depedent Ca
2+

 release, Ca
2+

/CaM-dependent activation of MLCK and 

phosphorylation of Ser
19

 on MLC20, leading to interaction of actin and myosin and muscle 

contraction.  The levels of MLC20 phosphorylation and contraction are dependent on relative 

activities of MLCK and MLCP.  Ca
2+

/CaM complex stimulates MLCK activity and the affinity of 

MLCK for Ca
2+

/CaM is regulated by several mechanisms.  Recent studies have demonstrated that 

agonist-induced MLCK activity is regulated by AMPK in vascular smooth muscle.  Stimulation 

of AMPK activity was mediated by an upstream Ca
2+

/CaM-dependent protein kinase kinase-β 

(CaMKK-β), which phosphorylates AMPK at Thr
172

 and thus stimulates AMPK activity
104

.  We 

postulated that the rapid termination of contraction and MLCK activity by AMPK could 

contribute to the phasic phenotype of antrum.  
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4.1       Expression and activation of AMPK   

Expression of AMPK, by both qRT-PCR and western blot, and stimulation of AMPK 

activity in response to ACh (0.1µM) and depolarizing concentrations of KCl (20 mM) were 

determined in muscle cells from antrum and fundus.  AMPK1 mRNA was expressed in muscle 

cells from both antrum and fundus and the expression was 3-fold (p<0.001, n=3) greater in 

antrum compared to fundus (figure 6).  AMPK protein expression was examined in the two 

regions of the stomach by western blot using selective antibody to AMPKα1, the smooth muscle 

predominant isoform
105

. The results confirmed the expression of AMPKα1 of predicted size (63 

kDa) in the homogenates of smooth muscle cells of both antrum and fundus. Comparing the 

densities of protein bands in the two regions revealed a ~ 6-fold higher expression of AMPK in 

antrum compared to fundus (p<0.001, n=4) and this is consistent with the higher expression of 

AMPK mRNA in antrum compared to fundus (figure 6). 

Basal and agonist-stimulated AMPK activity was measured by immunokinase assay using 

recombinant MLCK as substrate.  Although, the expression levels are different, basal AMPK 

activity was not significantly different in antrum (7561860 cpm/mg protein) and fundus 

(5741602 cpm/mg protein).  Treatment of freshly dispersed muscle cells with ACh (0.1 µM) 

significantly increased AMPK activity in antrum (56734% increase; 443573672 cpm/mg 

protein above basal level), but not in fundus (Figure 7).  The results are consistent with higher 

expression of AMPK in antrum.   

Previous studies have shown that AMPK activity is stimulated by several upstream 

kinases including CaMKK-β, LKB1, and TAK1. CaMKK-β links AMPK activity with increase 

in intracellular Ca
2+

.  Freshly dispersed smooth muscle cells from both antrum and fundus 

were treated with ACh (0.1 M) in the presence or absence of STO609 (10 µM), a selective 
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inhibitor of CaMKKβ, BAPTA (10 µM), a selective Ca
2+

 chelator, or calmidazolium (10µM), 

a selective CaM antagonist.    

The increase in ACh-induced AMPK activity was blocked by pre-treatment of cells 

with STO609 (836% inhibition, p<0.001, n=4), BAPTA (7712% inhibition), or 

calmidazolum ( 898% inhibition) (Figures 7, 8, 9).  These results suggest that stimulation of 

AMPK activity in muscle cells from antrum is mediated by CaMKKβ in a Ca
2+

/calmodulin-

dependent manner.  

To examine whether stimulation of AMPK activity can be mediated by an increase 

intracellular Ca
2+

 without receptor activation, muscle cells were treated with depolarizing 

concentrations of KCl (20 mM ) for 30 s and AMPK activity was measured.  KCl significantly 

increased AMPK activity in antrum (51326% increase; 38801 3120 cpm/mg protein above 

basal level, but not in fundus (Figure 10). The extent of stimulation in antrum was similar to 

that induced by ACh.  KCl-induced AMPK activity was blocked by pre-treatment of cells with 

BAPTA (898% inhibition, p<0.001) or calmidazolium (826% inhibition) (Figures 10 and 

11).   

Further evidence for the involvement of phosphorylation in the stimulation of AMPK 

activity was obtained by measurement of AMPK phosphorylation in cells labeled with [
32

P]Pi 

followed by immunoblot with AMPK1 antibody in both antrum and fundus.  ACh induced 

significant phosphorylation of AMPK in muscle cell from antrum (2156402 cpm/mg protein), 

but had no effect in muscle cells from fundus (Figure 12).   
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Figure 6.  Expression of AMPK1.  Total RNA isolated from cultured (first passage) muscle 

cells from antrum and fundus was reverse transcribed using 2 µg of total RNA.  The cDNA was 

amplified with specific primers for AMPKα1.  The sequences of specific primers are listed in 

Table 1.  Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure RNA 

levels of AMPK1.  For each cDNA sample, real-time PCR was conducted in a 20 μl reaction 

volume containing TaqMan Gene Expression master Mix. Real-time PCR reactions were 

performed in triplicate. Each primer set generated only one PCR product (63 bp), and the identity 

and integrity of these products were confirmed by electrophoresis in agarose gel in the presence 

of ethidium bromide and sequencing of the individual bands.     Relative quantification of a target 

gene in relation to reference gene was calculated on the basis of delta delta CT values.  Results 

demonstrated that mRNA levels of AMPK1 are higher in antrum compared to fundus.  Inset: 

Representative western blot results of AMPK1 expression.  Cell lysates containing equal 

amounts of total proteins were separated with SDS-PAGE and expression of AMPK1 was 

analyzed using selective antibody for AMPK1.  Membranes were reblotted to measure β-actin. 

Protein bands visualized with enhanced chemiluminescence, images were quantified and 

densitometric values were calculated after normalization to β-actin density.  Results are expressed 

as fold increase over the expression of AMPK1 in fundus.   Values represent the means SEM 

of 3 separate experiments.  **p<0.001 versus fundus. 

 

 

 

 



61 

Figure 6 
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Figure 7.  Stimulation of AMPK activity by ACh and sensitivity to CAMKKβ antagonist.  

One milliliter of cell suspension (2 x 10
6
 cells/ml) freshly dispersed muscle cells from antrum and 

fundus were treated with ACh (0.1 µM) for 30 s in the presence or absence of STO609 (1 µM), a 

selective inhibitor of CaMKKβ.  The cells were homogenized in the lysis buffer and the protein 

content in the supernatants was measured.  AMPK was immunoprecipitated from lysates 

containing equal amounts of protein and the activity was measured in immunoprecipitates using 

purified recombinant MLCK as substrate and [
32

P]ATP.  The amount of radioactivity absorbed 

onto phosphocellulose disks reflecting kinase activity was measured by liquid scintillation and 

the results are expressed as counts per milligram protein per minute.  ACh stimulated AMPK 

activity selectively in antrum and the stimulation was blocked by pretreatment of cells with 

STO609.  Values represent the means SEM of 4-5 separate experiments.  **p<0.001 versus 

basal activity in the absence of ACh. 
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Figure 7 
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Figure 8.  Ca
2+

-dependent stimulation of AMPK activity by ACh.  One milliliter of cell 

suspension (2 x 10
6
 cells/ml) freshly dispersed muscle cells from antrum and fundus were treated 

with ACh (0.1 µM) for 30 s in the presence or absence of BAPTA (10 µM), an intracellular Ca
2+

 

chelator.  The cells were homogenized in the lysis buffer and the protein content in the 

supernatants was measured.  AMPK was immunoprecipitated from lysates containing equal 

amounts of protein and the activity was measured in immunoprecipitates using purified 

recombinant MLCK as substrate and [
32

P]ATP.  The amount of radioactivity absorbed onto 

phosphocellulose disks reflecting kinase activity was measured by liquid scintillation and the 

results are expressed as counts per milligram protein per minute.  ACh stimulated AMPK activity 

selectively in antrum and the stimulation was blocked by pretreatment of cells with BAPTA.  

Values represent the means SEM of 4-5 separate experiments.  **p<0.001 significant increase 

above basal activity induced by ACh; ##p<0.05 significant inhibition of ACh-stimulated activity 

by BAPTA. 
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Figure 8 
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Figure 9.  Calmodulin-dependent stimulation of AMPK activity by ACh.  One milliliter of 

cell suspension (2 x 10
6
 cells/ml) freshly dispersed muscle cells from antrum and fundus were 

treated with ACh (0.1 µM) for 30 s in the presence or absence of calmidazolium (10 µM), a 

calmodulin antagonist.  The cells were homogenized in the lysis buffer and the protein content in 

the supernatants was measured.  AMPK was immunoprecipitated from lysates containing equal 

amounts of protein and the activity was measured in immunoprecipitates using purified 

recombinant MLCK as substrate and [
32

P]ATP.  The amount of radioactivity absorbed onto 

phosphocellulose disks reflecting kinase activity was measured by liquid scintillation and the 

results are expressed as counts per milligram protein per minute.  ACh stimulated AMPK activity 

selectively in antrum and the stimulation was blocked by pretreatment of cells with 

calmidazolium.  Values represent the means SEM of 4-5 separate experiments.  **p<0.001 

significant increase above basal activity induced by ACh; ##p<0.05 significant inhibition of 

ACh-stimulated activity by calmidazolium. 
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Figure 9 
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Figure 10.  Ca
2+

-dependent stimulation of AMPK activity by KCl.  One milliliter of cell 

suspension (2 x 10
6
 cells/ml) freshly dispersed muscle cells from antrum and fundus were treated 

with KCl (20 mM) for 30 s in the presence or absence of BAPTA (10 µM), an intracellular Ca
2+

 

chelator.  The cells were homogenized in the lysis buffer and the protein content in the 

supernatants was measured.  AMPK was immunoprecipitated from lysates containing equal 

amounts of protein and the activity was measured in immunoprecipitates using purified 

recombinant MLCK as substrate and [
32

P]ATP.  The amount of radioactivity absorbed onto 

phosphocellulose disks reflecting kinase activity was measured by liquid scintillation and the 

results are expressed as counts per milligram protein per minute.  KCl stimulated AMPK activity 

selectively in antrum and the stimulation was blocked by pretreatment of cells with BAPTA.  

Values represent the means SEM of 4-5 separate experiments.  **p<0.001 significant increase 

above basal activity induced by KCl; ##p<0.05 significant inhibition of KCl-stimulated activity 

by BAPTA. 
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Figure 10 
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Figure 11.  Calmodulin-dependent stimulation of AMPK activity by KCl.  One milliliter of 

cell suspension (2 x 10
6
 cells/ml) freshly dispersed muscle cells from antrum and fundus were 

treated with KCl (20 mM) for 30 s in the presence or absence of calmidazolium (10 µM), a 

calmodulin antagonist.  The cells were homogenized in the lysis buffer and the protein content in 

the supernatants was measured.  AMPK was immunoprecipitated from lysates containing equal 

amounts of protein and the activity was measured in immunoprecipitates using purified 

recombinant MLCK as substrate and [
32

P]ATP.  The amount of radioactivity absorbed onto 

phosphocellulose disks reflecting kinase activity was measured by liquid scintillation and the 

results are expressed as counts per milligram protein per minute.  KCl stimulated AMPK activity 

selectively in antrum and the stimulation was blocked by pretreatment of cells with 

calmidazolium.  Values represent the means SEM of 4-5 separate experiments.  **p<0.001 

significant increase above basal activity induced by KCl; ##p<0.05 significant inhibition of KCl-

stimulated activity by calmidazolium. 
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Figure 11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



72 

Figure 12.  Phosphorylation of AMPK by ACh.  Ten milliliter of cell suspension (2 x 10
6
 

cells/ml) freshly dispersed muscle cells from antrum and fundus were labeled with 
32

P and the 

cells were incubated with ACh for 30s.  AMPK was immunoprecipitated from the cell lysates 

containing equal amount of protein, extracted with Laemmeli buffer and separated by 

electrophoresis on SDS-PAGE.  Phosphorylated AMPK was visualized by autoradiography, and 

the amount of radioactivity in the protein band was measured. The results are expressed as counts 

per milligram protein per minute.  Values represent the means SEM of 3 separate experiments.  

**p<0.001 significant increase in phosphorylation above basal level induced by ACh. 
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Figure 12 
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4.2       Feedback inhibition of MLCK activity   

MLCK is the main enzyme responsible for MLC20 phosphorylation, and thus smooth 

muscle contraction.    Expression of MLCK, by both qRT-PCR and western blot, and stimulation 

of MLCK activity in response to ACh (0.1µM) were determined in muscle cells from antrum and 

fundus.  MLCK mRNA was expressed in muscle cells from both antrum and fundus, and the 

expression was 3-fold higher (p<0.05 n=3) in antrum compared to fundus (Figure 13).  MLCK 

protein expression was examined in the two regions of the stomach by western blot using 

selective antibody to MLCK.  Results confirmed the expression of MLCK of predicted size (135 

kDa) in the homogenates of smooth muscle cells from both antrum and fundus (Figure 13). 

Comparing the densities of protein bands in the two regions revealed that there was nearly 2-fold 

higher expression MLCK in muscle cells from antrum compared to fundus.   

Basal and agonist-stimulated MLCK activity was measured by immunokinase assay using 

MLC20 as substrate.  Basal MLCK activity was not significantly different in antrum (1249116 

cpm/mg protein) and fundus (1464236 cpm/mg protein).  Treatment of freshly dispersed muscle 

cells with ACh (0.1 µM) significantly increased MLCK activity in antrum (94356% increase, 

127211038 cpm/mg protein above basal level, p<0.001, n=4) and fundus (82156% increase; 

120451306 cpm/mg protein above basal level, p<0.001, n=4) (Figure 14).   

Despite higher expression of MLCK in antrum, agonist-stimulated MLCK activity in antrum and 

fundus was similar. This raised the possibility that MLCK activity might be negatively regulated 

in antrum via a feedback mechanism involving AMPK.  To examine this notion, ACh-stimulated 

MLCK activity was measured in the presence of STO609, an inhibitor of CaMKK/AMPK 

pathway.  ACh-stimulated MLCK activity was significantly augmented (19435% increase above 
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ACh treatment alone, p<0.001, n=4) in the presence of STO609 in muscle cells from antrum.  

STO609 had no effect on ACh-stimulated MLCK activity in muscle cells from fundus (Figure 

14).  These results suggest that MLCK activity is negatively regulated in a feedback mechanism 

via CaMKKβ/AMPK pathway in antrum, but not in fundus.  The results are consistent with the 

higher expression and activation of AMPK in antrum. 

   Further evidence for the involvement of AMPK in the regulation of MLCK activity was 

obtained by measurement of MLCK phosphorylation in cells labeled with [
32

P]Pi followed by 

immunoblot with MLCK antibody in both antrum and fundus.  ACh induced significant 

phosphorylation of MLCK in muscle cell from antrum (3562564 cpm/mg protein), but had no 

effect in muscle cells from fundus (Fig 15).   

4.3       Regulation of initial muscle contraction by CaMKKβ/AMPK pathway 

The inhibition of MLCK activity by AMPK in antrum muscle could contribute to its 

phasic phenotype.  To examine the involvement of CaMKK/AMPK pathway in the regulation of 

muscle contraction, muscle cells from antrum and fundus were treated with different 

concentrations of ACh for 30 s in the presence or absence of STO609 (10µM) and the decrease in  

cell length was measured by scanning micrometry. Previous studies in gastrointestinal smooth 

muscle have demonstrated that the contractile response at 30 s reflects Ca
2+

/CaM-depedent 

activation of MLCK.  Control cell length in muscle cells from antrum and fundus are similar 

(953 µm in antrum and 1025 µm in fundus).  ACh caused contraction that was concentration-

dependent with an EC50 of 21 nM in antrum and 32 nM in fundus and the maximal response to 

0.1 µM of ACh was similar in antrum and fundus (272% decrease in cell length in antrum and 

283% decrease in cell length in fundus) (Figure 16).  However, pretreatment of cells with 

STO609 significantly augmented ACh-induced contraction in muscle cells from antrum and 
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shifted the concentration-response curve to the left (EC50 0.090.06 nM).  In contrast, STO609 

had no effect on contraction in fundus.  The results are consistent with the selective augmentation 

of MLCK activity by STO609 in muscle cells from antrum, and further confirm the inhibitory 

regulation of MLCK activity by AMPK. 
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Figure 13.  Expression of MLCK.  Total RNA isolated from cultured (first passage) muscle 

cells from antrum and fundus was reverse transcribed using 2 µg of total RNA.  The cDNA was 

amplified with specific primers for MLCK.  The sequences of specific primers are listed in Table 

1.  Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure RNA levels 

of MLCK.  For each cDNA sample, real-time PCR was conducted in a 20 μl reaction volume 

containing TaqMan GeneExpression Master Mix.  Real-time PCR reactions were performed in 

triplicate. Each primer set generated only one PCR product (71 bp), and the identity and integrity 

of these products were confirmed by electrophoresis in agarose gel in the presence of ethidium 

bromide and sequencing of the individual bands.   Relative quantification of a target gene in 

relation to reference gene was calculated on the basis of delta delta CT values.  Results 

demonstrated that mRNA levels of MLCK are higher in antrum compared to fundus.  Inset: 

Representative western blot results of MLCK expression.  Cell lysates containing equal amounts 

of total proteins were separated with SDS-PAGE and expression of MLCK was analyzed using 

selective antibody for MLCK.  Membranes were reblotted to measure β-actin. Protein bands were 

visualized with enhanced chemiluminescence, images were quantified and densitometric values 

were calculated after normalization to β-actin density.  Results are expressed as fold increase over 

the expression of MLCK in fundus.   Values represent the means SEM of 3 separate 

experiments.  *p<0.05 versus fundus. 
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Figure 13 
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Figure 14.  Stimulation of MLCK activity by ACh and sensitivity to CAMKKβ antagonist. 

One milliliter of cell suspension (2 x 10
6
 cells/ml) freshly dispersed muscle cells from antrum and 

fundus were treated with ACh (0.1 µM) for 30 s in the presence or absence of STO609 (1 µM), a 

selective inhibitor of CaMKKβ/AMPK pathway.  The cells were homogenized in the lysis buffer 

and the protein content in the supernatants was measured.  MLCK was immunoprecipitated from 

lysates containing equal amount of protein and the activity was measured in immunoprecipitates 

using MLC20 as substrate and [
32

P] ATP.  The amount of radioactivity absorbed onto 

phosphocellulose disks reflecting kinase activity was measured by liquid scintillation and the 

results are expressed as counts per milligram protein per minute.  ACh stimulated MLCK activity 

in antrum and fundus.  Stimulation of MLCK activity was augmented in antrum by pretreatment 

of cells with STO609, suggesting feedback inhibition of MLCK activity selectively in antrum.  

Values represent the means SEM of 4-5 separate experiments.  **p<0.001 significant increase in 

activity above basal level induced by ACh; ##p<0.05 significant augmentation of ACh-stimulated 

MLCK activity by STO609. 
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Figure 14 
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Figure 15.  Phosphorylation of MLCK by ACh.  Ten milliliter of cell suspension (2 x 10
6
 

cells/ml) of freshly dispersed muscle cells from antrum and fundus were labeled with 
32

P and the 

cells were incubated with ACh for 30s.  MLCK was immunoprecipitated from the cell lysates 

containing equal amount of protein, extracted with Laemmeli buffer and separated by 

electrophoresis on SDS-PAGE.  Phosphorylated MLCK was visualized by autoradiography, and 

the amount of radioactivity in the protein band was measured. The results are expressed as counts 

per milligram protein per minute.  Values represent the means SEM of 3 separate experiments.  

**p<0.001 significant increase in phosphorylation above basal level induced by ACh. 
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Figure 15 
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Figure 16.  Effect of STO609 on ACh-induced muscle contraction.  Contraction of dispersed 

muscle cells from antrum and fundus was measured by scanning micrometry in response to 

different concentrations of ACh in the presence or absence of STO609 (10 µM).  Cells were 

treated with ACh for 30s and pretreated with STO609 for 10 min.  Contraction was expressed as 

percent decrease in cell length from control cell length: control length of muscle cells from 

antrum 953 µm; control length of muscle cells from fundus 1025 µm.  ACh caused contraction 

that was concentration-dependent in both antrum and fundus and the maximal response to 0.1 µM 

of ACh was similar in antrum and fundus (272% decrease in cell length in antrum and 283% 

decrease in cell length in fundus). STO609 significantly augmented ACh-induced contraction in 

muscle cells from antrum, but had no effect on contraction in fundus. Values represent the means 

SEM of 4 separate experiments.  *p<0.05 significant increase in contraction by STO609. 
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Figure 16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHPATER 5 

DIFFERENTIAL REGULATION OF MLCP ACTIVITY AND SUSTAINED MUSCLE 

CONTRACTION IN ANTRUM AND FUNDUS 

85 

 

 

 

 

In smooth muscle, inhibition of MLCP activity and sustained MLC20 phosphorylation by 

contractile agonists reflect activation of RhoA via G13 and/or Gq.  The pathways that lead to 

inhibition of MLCP involve phosphorylation of the regulatory subunit of MLCP (MYPT1) via 

Rho kinase and phosphorylation of CPI-17, an endogenous inhibitor of MLCP, via PKC.  A role 

for ZIPK has also been suggested in the phosphorylation of MYPT1.  We postulated that the 

higher expression and/or activation of Rho kinase/MYPT1 and PKC/CPI-17 pathways leading to 

sustained MLC20 phosphorylaiton could contribute to the tonic phenotype of fundus.     

5.1         Rho kinase expression and activity 

  Expression of Rho kinase, by both qRT-PCR and western blot, and stimulation of Rho 

kinase activity in response to ACh (0.1µM) were determined in muscle cells from antrum and 

fundus.  Rho kinase mRNA was expressed in both antrum and fundus and the expression was 3-

fold (p<0.05, n=3) greater in fundus compared to antrum (Figure 17).  Rho kinase protein 
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expression was examined in the two regions of the stomach by western blot using selective 

antibody to Rho kinase II, the smooth muscle predominant isoform 
32

.  Results confirmed the 

expression of Rho kinase of predicted size (150 kDa) in the homogenates of smooth muscle cells 

from both antrum and fundus.  Comparing the densities of protein bands in the two regions 

revealed higher expression of Rho kinase in fundus compared to antrum (p<0.001, n=4) and this 

is consistent with higher expression of Rho kinase mRNA in fundus compared to antrum (Figure 

17). 

To determine whether Rho kinase activity level correlates well with its expression profile 

and thus with the contractile phenotypes in the fundus vs. antrum, freshly dispersed smooth 

muscle cells from both parts of the stomach were treated with 0.1µM ACh, a Gαq/13-coupled 

receptor agonist, for 10 min, and basal and agonist-stimulated Rho kinase activity was measured 

by immunokinase assay using recombinant myelin basic protein as substrate.  Although, the 

expression levels are different, basal Rho kinase activity was not significantly different in antrum 

(3242367 cpm/mg protein) and fundus (4364503 cpm/mg protein).  Treatment of freshly 

dispersed muscle cells with ACh significantly increased Rho kinase activity in antrum (23815% 

increase; 7730821 cpm/mg protein above basal level, p<0.001, n=5) and fundus (36221% 

increase; 158201423 cpm/mg protein above basal level, p<0.001, n=5) (Figure 18).  Consistent 

with the greater expression of Rho kinase in fundus, agonist-stimulated Rho kinase activity was 

significantly higher in fundus compared to antrum.  Y27632, a selective blocker of Rho kinase, 

significantly inhibited stimulation of Rho kinase activity in both antrum (904% inhibition, 

p<0.001, n=5) fundus (965 % inhibition, p<0.001, n=5) (Figure 18). 
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Figure 17.  Expression of Rho kinase II. Total RNA isolated from cultured (first passage) 

muscle cells from antrum and fundus was reverse transcribed using 2 µg of total RNA.  The 

cDNA was amplified with specific primers for Rho kinase II.  The sequences of specific primers 

are listed in Table 1.  Quantitative real-time polymerase chain reaction (qRT-PCR) was used to 

measure RNA levels of Rho kinase II.  For each cDNA sample, real-time PCR was conducted in 

a 20 μl reaction volume containing Quantitect
TM 

SYBRgreen PCR Mastermix.  Real-time PCR 

reactions were performed in triplicate. Each primer set generated only one PCR product (64 bp), 

and the identity and integrity of these products were confirmed by electrophoresis in agarose gel 

in the presence of ethidium bromide and sequencing of the individual bands. Standard curves for 

each amplicon were generated from a dilution series of cDNA and results were quantified and 

reported using the 2
−ΔΔCT 

method based on GAPDH amplification.  Relative quantification of a 

target gene in relation to reference gene was calculated on the basis of delta delta CT values.  

Results demonstrated that mRNA levels of Rho kinase II are higher in fundus compared to 

antrum.  Inset: Representative western blot results of Rho kinaseII expression.  Cell lysates 

containing equal amounts of total proteins were separated with SDS-PAGE and expression of 

Rho kinase II was analyzed using selective antibody for Rho kinase II.  Membranes were 

reblotted to measure β-actin. Protein bands visualized with enhanced chemiluminescence, images 

were quantified and densitometric values were calculated after normalization to β-actin density.  

Results are expressed as fold increase over the expression of Rho kinase II in antrum.   Values 

represent the means SEM of 3 separate experiments.  **p<0.001 versus antrum. 
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Figure 17 
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Figure 18.  Stimulation of Rho kinase activity by ACh. One milliliter of cell suspension (2x 

10
6
 cells/ml) of freshly dispersed muscle cells from antrum and fundus was treated with ACh (0.1 

µM) for 10 min in the presence or absence of Y27632 (1 µM), a selective inhibitor of Rho kinase.  

The cells were homogenized in the lysis buffer and the protein content in the supernatants was 

measured.  Rho kinase II was immunoprecipitated from lysates containing equal amount of 

protein and the activity was measured in immunoprecipitates using purified recombinant myelin 

basic protein as substrate and [
32

P]ATP.  The amount of radioactivity absorbed onto 

phosphocellulose disks reflecting kinase activity was by measured by liquid scintillation and the 

results are expressed as counts per milligram protein per minute.  ACh stimulated Rho kinase II 

activity in antrum and fundus and the stimulation was higher in fundus compared to antrum. 

Y27632 blocked stimulation of Rho kinase activity in both antrum and fundus.  Values represent 

the means SEM of 5-6 separate experiments.  **p<0.001 significant increase in activity above 

basal level induced by ACh; ##p<0.05 significant increase in activity in fundus versus increase in 

antrum  
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Figure 18 
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5.2         ZIPK expression and activity 

  Zipper interacting protein kinase (ZIPK) was also shown to inhibit MLCP activity via 

phosphorylation of MYPT1 at Thr
696

.  So, it is of interest to reveal any differential expression and 

activity of this kinase in antrum versus fundus.  Expression of ZIPK, by both qRT-PCR and 

western blot, and stimulation of ZIPK activity in response to ACh (0.1µM) were determined in 

muscle cells from antrum and fundus.  ZIPK mRNA was expressed in both antrum and fundus, 

and the expression was not significantly different between fundus and antrum (Figure 19).  ZIPK 

kinase protein expression was examined in the two regions of the stomach by western blot 

analysis using selective antibody to ZIPK.  Results confirmed the expression of ZIPK of expected 

size (52 kDa) in the homogenates of smooth muscle cells from both antrum and fundus.  

Comparing the densities of protein bands in the two regions revealed no significant difference of 

ZIPK expression between fundus and antrum (figure 19). 

ZIPK activity was measured by immunokinase assay using recombinant myelin basic 

protein as substrate.  Basal ZIPK activity was not significantly different in antrum (3106308    

cpm/mg protein) and fundus (4107372 cpm/mg protein).  Treatment of freshly dispersed muscle 

cells with ACh (0.1 µM) significantly increased ZIPK activity in antrum (20511% increase; 

6375438 cpm/mg protein above basal level, p<0.001, n=5) and fundus (4418% increase; 

222571980 cpm/mg protein above basal level, p0.001, n=5) (Figure 20).   Consistent with the 

greater expression and activation of Rho kinase in fundus, ACh-stimulated ZIPK activity was 

significantly higher in fundus compared to antrum. ACh stimulated ZIPK activity was blocked by 

pretreatment of cells with Y27632 (1 µM), a selective Rho kinase inhibitor, in antrum (845% 

inhibition) and fundus (955% inhibition) (Figure 20).  These results suggest that ZIPK is a 

downstream target of Rho kinase. 
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Figure 19.  Expression of zipper interacting protein kinase.  Total RNA isolated from cultured 

(first passage) muscle cells from antrum and fundus was reverse transcribed using 2 µg of total 

RNA.  The cDNA was amplified with specific primers for ZIPK.  The sequences of specific 

primers are listed in Table 1.  Quantitative real-time polymerase chain reaction (qRT-PCR) was 

used to measure RNA levels of ZIPK.  For each cDNA sample, real-time PCR was conducted in a 

20 μl reaction volume containing Quantitect
TM 

SYBRgreen PCR Mastermix.  Real-time PCR 

reactions were performed in triplicate. Each primer set generated only one PCR product (64 bp), 

and the identity and integrity of these products were confirmed by electrophoresis in agarose gel 

in the presence of ethidium bromide and sequencing of the individual bands.   Standard curves for 

each amplicon were generated from a dilution series of cDNA and results were quantified and 

reported using the 2
−ΔΔCT

 method based on GAPDH amplification.  Relative quantification of a 

target gene in relation to reference gene was calculated on the basis of delta delta CT values.  

Results demonstrated that mRNA levels of ZIPK are not significantly different between fundus 

and antrum.  Inset: Representative western blot results of ZIPK expression.  Cell lysates 

containing equal amounts of total proteins were separated with SDS-PAGE and expression of 

ZIPK was analyzed using selective antibody for ZIPK.  Membranes were reblotted to measure β-

actin. Protein bands were visualized with enhanced chemiluminescence, images were quantified 

and densitometric values were calculated after normalization to β-actin density.  Results are 

expressed as fold increase over the expression of ZIPK in antrum.   Values represent the means 

SEM of 3 separate experiments.  
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Figure 19 
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Figure 20.  Stimulation of ZIPK by ACh and sensitivity to the Rho kinase inhibitor, Y27632.  

One milliliter of cell suspension (2x 10
6
 cells/ml) of freshly dispersed muscle cells from antrum 

and fundus was treated with ACh (0.1 µM) for 10 min in the presence or absence of Y27632 (1 

µM), a selective inhibitor of Rho kinase.  The cells were homogenized in the lysis buffer and the 

protein content in the supernatants was measured.  ZIPK was immunoprecipitated from lysates 

containing equal amount of protein and the activity was measured in immunoprecipitates using 

purified recombinant myelin basic protein as substrate and [
32

P]ATP.  The amount of 

radioactivity absorbed onto phosphocellulose disks reflecting kinase activity was measured by 

liquid scintillation and the results are expressed as counts per milligram protein per minute.  ACh 

stimulated ZIPK activity in antrum and fundus and the stimulation was higher in fundus 

compared to antrum. Y27632 blocked stimulation of ZIPK activity in both antrum and fundus.  

Values represent the means SEM of 5-6 separate experiments.  **p<0.001 significant increase in 

activity above basal level induced by ACh; ##p<0.05 significant increase in activity in fundus 

versus increase in antrum  
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Figure 20 
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5.3       Sustained contraction   

To examine the involvement of Rho kinase/ZIPK pathway in the regulation of muscle 

contraction, muscle cells from antrum and fundus were treated with different concentrations of 

ACh and contractile response at 10 min was measured by scanning micrometry. Previous studies 

in gastrointestinal smooth muscle have demonstrated that the contractile response at 10 min 

reflects activation of Rho kinase- and PKC-dependent inhibition of MLCP.  Treatment of cells 

with ACh for 10 min caused contraction that was concentration-dependent with an EC50 of 1.1  

0.3 nM in antrum and 0.70.03 nM in fundus.  The maximal response was significantly greater in 

muscle cells from fundus (262 % decrease in cell length) compared to muscle cells from antrum 

(182% decrease in cell length) (figure 21).   

5.4       CPI-17 Expression   

As described earlier, sustained MLC20 phosphorylation and muscle contraction are 

mediated by inhibition of MLCP via Rho kinase/MTPT1 and PKC/CPI-17 pathways.  Expression 

of CPI-17, by both qRT-PCR and western blot was determined in muscle cells from antrum and 

fundus.  CPI-17 mRNA was expressed in antrum and fundus and the expression was nearly 4-fold 

higher in fundus compared to antrum (figure 22).  CPI-17 protein expression was examined in the 

two regions of the stomach by western blot using selective antibody to CPI-17. Results confirmed 

the expression of CPI-17 of expected size (17 kDa) in the homogenates of smooth muscle cells 

from both antrum and fundus (Figure 22).  Comparing the densities of protein bands in the two 

regions revealed 4-fold (p<0.05) higher expression of CPI-17 in fundus compared to antrum and 

this is consistent with higher expression of CPI-17 mRNA in fundus compared to antrum. 

5.5       PMA-stimulated PKC activity and smooth muscle contraction    
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Since contractile agonists stimulate both Rho kinase and PKC activities, the singular 

contribution of PKC/CPI-17 pathway in mediating MLCP inhibition and sustained contraction 

was examined using phorbol 12-myristate 13-acetate (PMA), a selective activator of PKC.  

Treatment of cells with PMA caused contraction that was concentration-dependent with an EC50 

of 355 nM in antrum and 32 nM in fundus.  The maximal contractile response was 

significantly greater in muscle cells from fundus (292% decrease in cell length) compared to 

muscle cells from antrum (173% decrease in cell length) (figure 23A).  However, stimulation of 

PKC activity in response to PMA was similar in antrum (3245504 cpm/mg protein above the 

basal level of 523102 cpm/mg protein) and fundus (3612302 cpm/mg protein above the basal 

level 675129 cpm/mg protein) (Figure 23B).  These results suggest that greater contraction in 

fundus is not due difference in the PKC activity, but probably due to higher expression of CPI-17 

and CPI-17-mediated inhibition of MLCP activity.  
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Figure 21.  ACh-induced sustained muscle contraction.   Contraction of dispersed muscle cells 

from antrum and fundus in response to different concentrations of ACh was measured by 

scanning micrometry.  Cells were treated with ACh (0.1 µM) for 10 min and cntraction was 

expressed as percent decrease in cell length from control cell length: control length of muscle 

cells from antrum 953 µm; control length of muscle cells from fundus 1025 µm.  ACh caused 

contraction that was concentration-dependent in both antrum and fundus and the contraction was 

greater in fundus compared to antrum.  The  maximal response to 0.1 µM ACh was significantly 

greater in muscle cells from fundus (262 % decrease in cell length) compared to muscle cells 

from antrum (182% decrease in cell length).  Values represent the means SEM of 4 separate 

experiments.  *p<0.05 significant increase in contraction in fundus versus contraction in antrum. 
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Figure 21 
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Figure 22.  Expression of CPI-17.   Total RNA isolated from cultured (first passage) muscle 

cells from antrum and fundus was reverse transcribed using 2 µg of total RNA.  The cDNA was 

amplified with specific primers for CPI-17.  The sequences of specific primers are listed in Table 

1.  Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure RNA levels 

of CPI-17.  For each cDNA sample, real-time PCR was conducted in a 20 μl reaction volume 

containing Quantitect
TM 

SYBRgreen PCR Mastermix.  Real-time PCR reactions were performed 

in triplicate. Each primer set generated only one PCR product (116 bp), and the identity and 

integrity of these products were confirmed by electrophoresis in agarose gel in the presence of 

ethidium bromide and sequencing of the individual bands.   Standard curves for each amplicon 

were generated from a dilution series of cDNA and results were quantified and reported using the 

2
−ΔΔCT

 method based on GAPDH amplification.  Relative quantification of a target gene in 

relation to reference gene was calculated on the basis of delta delta CT values.  Results 

demonstrated that mRNA levels of CPI-17 are significantly higher in fundus compared to antrum.  

Inset: Representative western blot results of CPI-17 expression.  Cell lysates containing equal 

amounts of total proteins were separated with SDS-PAGE and expression of CPI-17 was 

analyzed using selective antibody for CPI-17.  Membranes were reblotted to measure β-actin. 

Protein bands visualized with enhanced chemiluminescence, images were quantified and 

densitometric values were calculated after normalization to β-actin density.  Results are expressed 

as fold increase over the expression of CPI-17 in antrum.   Values represent the means SEM of 3 

separate experiments. **p<0.05 versus antrum. 
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Figure 22 
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Figure 23.  PMA-induced sustained muscle contraction and PKC activity.  A.  Contraction of 

dispersed muscle cells from antrum and fundus in response to different concentrations of phorbol 

12-myristate 13-acetate (PMA) was measured by scanning micrometry.  Contraction was 

expressed as percent decrease in cell length from control cell length: control length of muscle 

cells from antrum 953 µm; control length of muscle cells from fundus 1025 µm.  PMA caused 

contraction that was concentration-dependent in both antrum and fundus and the contraction was 

greater in fundus compared to antrum.  The maximal response to 1 µM PMA was significantly 

greater in muscle cells from fundus (292 % decrease in cell length) compared to muscle cells 

from antrum (172% decrease in cell length).  Values represent the means SEM of 4 separate 

experiments.  *p<0.05 significant increase in contraction in fundus versus contraction in antrum.  

B.  One milliliter of cell suspension (2x 10
6
 cells/ml) of freshly dispersed muscle cells from 

antrum and fundus was treated with PMA (1 µM) for 10 min.  The cells were homogenized in the 

lysis buffer and the protein content in the supernatants was measured.  PKC was 

immunoprecipitated from lysates containing equal amount of protein with a PKC antibody and 

the activity was measured in immunoprecipitates using purified recombinant myelin basic protein 

as substrate and [
32

P]ATP.  The amount of radioactivity absorbed onto phosphocellulose disks 

reflecting kinase activity was by measured by liquid scintillation and the results are expressed as 

counts per milligram protein per minute above basal levels of 523102 cpm/mg protein in antrum 

and 675129 cpm/mg protein in fundus.  PMA stimulated PKC activity was similar in antrum 

and fundus.  Values represent the means SEM of 4 separate experiments.   
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CHAPTER 6 

DIFFERENTIAL REGULATION OF MLCP ACTIVITY AND MUSCLE RELAXATION 

IN ANTRUM AND FUNDUS 

104 

 

 

 

In gastrointestinal smooth muscle two endogenous proteins regulate MLCP activity: a 17 

kDa inhibitor (CPI-17) and a 17 kDa activator, telokin, also known as kinase-related protein.  

Telokin is a smooth muscle specific protein and is identical to the C-terminus of MLCK 

downstream from the kinase and calmodulin binding domains.  We postulated that the higher 

expression of telokin, and activation MLCP leading to MLC20 dephosphorylation could 

contribute to rapid relaxation and phasic phenotype of antrum.     

6.1       Telokin Expression   

Expression of telokin by both qRT-PCR and western blot was determined in muscle cells 

from antrum and fundus.  Telokin mRNA was expressed in both antrum and fundus and the 

expression was 6-fold higher in antrum compared to fundus (figure 24).  Telokin protein 

expression was examined in the two regions of the stomach by western blot using selective 

antibody to telokin.  Results confirmed the expression of telokin of expected size (17 kDa) in the 

homogenates of smooth muscle cells from both antrum and fundus (Figure 24). Comparing the 
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densities of protein bands in the two regions revealed 5-fold higher expression of telokin in 

antrum compared to fundus and this is consistent with higher expression of telokin mRNA in 

antrum compared to fundus. 

6.2       8-Br-cGMP-stimulated PKG activity and smooth muscle relaxation   

Since the relaxant effect of cGMP/PKG pathway on agonist-mediated (e.g., ACh) 

contraction involves both inhibition of intracellular Ca
2+

 and activation of MLCP, relaxation was 

measured as inhibition of maximal contraction in response to 0.5 µM Ca
2+

.  Under these 

experimental conditions, the effect of cGMP/PKG on Ca
2+

 is precluded and reflects stimulation 

of MLCP activity, probably via telokin.  Since termination of cGMP/PKG signaling is different in 

antrum and fundus and depends on the expression of PDE5 (see next chapter), 8-Br-cGMP, a 

non-hydrolyzable analog of cGMP, was used to induce muscle relaxation.  Treatment of 

permeabilized muscle cells with 0.5 µM Ca
2+

 caused contraction that was similar in muscle cells 

from antrum (243% decrease in cell length from a basal cell length of 853 µm) and fundus 

(262% decrease in cell length from a basal cell length of 924 µm).  Pretreatment of cells with 

8-Br-cGMP (1mM) caused relaxation (i.e., inhibition of contraction) that was concentration-

dependent (EC50: antrum, 83 µM; fundus, 124).  Relaxation was significantly higher in antrum 

compared to fundus at all concentrations of 8-Br-cGMP.  The maximal response was significantly 

greater in muscle cells from antrum (764% relaxation) compared to muscle cells from fundus 

(473% relaxation) (figure 25 A).  However, stimulation of PKG activity in response to 8-Br-

cGMP was similar in antrum (-GMP/+cGMP activity ratio, 2.40.4) and fundus (-cGMP/+cGMP 

activity ratio, 2.20.3) suggesting that lower relaxation in fundus was not due to cGMP 
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degradation via PDE5 or efflux via MRP5, and possibly reflects lower expression of telokin 

(figure 25 B).    

6.3       Telokin-dependent stimulation of MLCP activity   

Previous studies have demonstrated that PKG-mediated phosphorylation of telokin at 

Ser
13

 greatly augments the ability of telokin to stimulate MLCP activity.   We tested the role of 

telokin in cGMP/PKG-mediated relaxation by overexpressing cultured muscle cells with wild 

type or phosphorylation-deficient telokin (S13A).  Relaxation in response to 8-Br-cGMP was 

measured as decrease in Ca
2+

 (0.5 µM)-induced MLC20 phosphorylation.   Treatment of cells, 

containing either wild type or telokin S13A mutant with 0.5 µM Ca
2+ 

for 1 minute significantly 

augmented phosphorylation of MLC20 at Ser
19

.  The extent of phosphorylation was similar in 

both antrum and fundus and consistent with similar levels of contraction as described above.  

Pretreatment of cells with 8-Br-cGMP inhibited MLC20 phosphorylation in both fundus (485% 

inhibition) and antrum (786% inhibition) suggesting dephosphorylation of MLC20 due to 

activation of MLCP. The inhibitory effect 8-Br-cGMP was significantly (p<0.05, n=4) higher in 

antrum compared to fundus, and reflects higher expression of telokin in antrum compared to 

fundus (figures 26 and 27).  

The inhibitory effect of 8-Br-cGMP on MLC20 phosphorylation was significantly 

attenuated in cells expressing telokin S13A suggesting that the effect of 8-Br-cGMP was due to 

augmentation of MLCP activity via phosphorylation of telokin at Ser
13

.  Importantly, in the 

presence of telokin (S13A), the inhibitory effect of 8-Br-cGMP was not significantly different 

between antrum and fundus (figures 26 and 27).  These results provide conclusive evidence for 

the involvement of telokin in the activation of MLCP and MLC20 dephosphorylaiton.  Higher 
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expressions of telokin and MLCP activity in antrum also correlate with the phasic phenotype of 

this muscle, where rapid contractions and relaxations are needed for optimal organ function.   
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Figure 24.  Expression of telokin.  Total RNA isolated from cultured (first passage) muscle cells 

from antrum and fundus was reverse transcribed using 2 µg of total RNA.  The cDNA was 

amplified with specific primers for telokin.  The sequences of specific primers are listed in Table 

1.  Quantitative real-time polymerase chain reaction (qRT-PCR) was used measure RNA levels of 

telokin.  For each cDNA sample, real-time PCR was conducted in a 20 μl reaction volume 

containing Quantitect
TM 

SYBRgreen PCR Mastermix.  Real-time PCR reactions were performed 

in triplicate. Each primer set generated only one PCR product (69 bp), and the identity and 

integrity of these products were confirmed by electrophoresis in agarose gel in the presence of 

ethidium bromide and sequencing of the individual bands.   Standard curves for each amplicon 

were generated from a dilution series of cDNA and results were quantified and reported using the 

2
−ΔΔCT 

method based on GAPDH amplification.  Relative quantification of a target gene in 

relation to reference gene was calculated on the basis of delta delta CT values.  Results 

demonstrated that mRNA levels of telokin are significantly higher in antrum compared to fundus  

Inset: Representative western blot results of telokin  expression.  Cell lysates containing equal 

amounts of total proteins were separated with SDS-PAGE and expression of telokin was analyzed 

using selective antibody for telokin.  Membranes were reblotted to measure β-actin. Protein bands 

were visualized with enhanced chemiluminescence, images were quantified and densitometric 

values were calculated after normalization to β-actin density.  Results are expressed as fold 

increase over the expression of telokin in fundus.   Values represent the means SEM of 3 

separate experiments. **p<0.001 versus fundus. 
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Figure 24 
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Figure 25.  8-Br-cGMP-induced muscle relaxation and PKG activity.  A.  Relaxation of 

dispersed muscle cells from antrum and fundus in response to different concentrations of 8-Br-

cGMP was measured by scanning micrometry as decrease in Ca
2+

-induced contraction.  

Contraction in response to 0.5 µM Ca
2+

 was measured in permeabilized muscle cells.  

Contraction was similar in muscle cells from antrum (243% decrease in cell length from a basal 

cell length of 853 µm) and fundus (262% decrease in cell length from a basal cell length of 

924 µm).  8-Br-cGMP caused relaxation that was concentration-dependent in both antrum and 

fundus and the relaxation was greater in antrum compared to fundus.  The maximal response to 1 

mM 8-Br-cGMP that was significantly greater in antrum (764% relaxation) compared to muscle 

cells from fundus (473% relaxation).  Values represent the means SEM of 4 separate 

experiments.  *p<0.05 significant increase in relaxation in antrum versus relaxation in fundus.  B.  

One milliliter of cell suspension (2 x 10
6
 cells/ml) of freshly dispersed muscle cells from antrum 

and fundus was treated with 8-Br-cGMP (1 mM) for 10 min.  The cells were homogenized in the 

lysis buffer and the protein content in the supernatants was measured.  PKG activity was 

measured in the presence or absence of cGMP using a specific substrate RKRSRAE and 

[
32

P]ATP, and the results are expressed as the ratio of activity in the absence or presence of 

cGMP.  8-Br-cGMP-stimulated PKG activity was similar in antrum and fundus.  Values represent 

the means SEM of 3 separate experiments.   
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Figure 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



112 

Figure 26.  Inhibition of Ca
2+

-induced MLC20 phosphorylation by 8-Br-cGMP and the 

effect of telokin in muscle cells from fundus.  Cultured muscle cells from fundus 

overexpressing wild type telokin or phosphorylation-deficient telokin (telokin S13A) were 

permeabilized, pretreated with 8-Br-cGMP (1 mM) and then treated with 0.5 µM Ca
2+

.  MLC20 

phosphorylation was measured in MLC20 imunoprecipitates using antibody specific for phospho-

Ser
19

 MLC20 by immunoblot analysis. Densitometric values were calculated after normalization 

to MLC20 density and the results expressed as percent of control density.  Ca
2+

-induced MLC20 

phosphorylation was significantly inhibited in cells expressing wild type telokin, but not in cells 

expressing telokin S13A.  Values represent the means SEM of 3 separate experiments.  

**p<0.001 significant increase in MLC20 phosphorylation by Ca
2+

, ##p<0.05 significant 

inhibition of Ca
2+

-induced MLC20 phosphorylation by 8-Br-cGMP. 
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Figure 26 
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Figure 27.  Inhibition of Ca
2+

-induced MLC20 phosphorylation by 8-Br-cGMP and the 

effect of telokin in muscle cells from antrum.  Cultures muscle cells from antrum 

overexpressing wild type telokin or phosphorylation-deficient telokin (telokin S13A) were 

permeabilized, pretreated with 8-Br-cGMP (1 mM) and then treated with 0.5 µM Ca
2+

.  MLC20 

phosphorylation was measured in MLC20 imunoprecipitates using antibody specific for phospho-

Ser
19

 MLC20 by immunoblot analysis. Densitometric values were calculated after normalization 

to MLC20 density and the results expressed as percent of control density.  Ca
2+

-induced MLC20 

phosphorylation was significantly inhibited in cells expressing wild type telokin, but not in cells 

expressing telokin S13A.  The inhibition of MLC20 phosphorylation was significantly greater in 

antrum (786% inhibition) compared to fundus (485% inhibition) (compare Figs 26 and 27).  

Values represent the means SEM of 3 separate experiments.  **p<0.001 significant increase in 

MLC20 phosphorylation by Ca
2+

, ## p<0.05 significant inhibition of Ca
2+

-induced MLC20 

phosphorylation by 8-Br-cGMP. 
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Figure 27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 7 

REGULATION OF CYCLIC GMP LEVELS AND MUSCLE RELAXATION IN 

ANTRUM AND FUNDUS 

116 

 

In the gastrointestinal smooth muscle, the main inhibitory transmitters vasoactive 

intestinal peptide (VIP) and nitric oxide (NO) induce relaxation through the generation of cAMP 

and cGMP, and activation of cAMP-dependent protein kinase (PKA) and cGMP-dependent 

protein kinase (PKG).  Although generation of both nucleotides and activation of both kinases are 

the physiological norm, studies in mice lacking sGC or PKGI suggest an important role for 

sGC/cGMP/PKG pathway in smooth muscle relaxation 
106-108

. The strength and duration of 

cGMP signaling is regulated by its degradation into inactive 5′GMP via cGMP-specific PDE5, 

and efflux via ATP-dependent transporter, MRP5.  We postulated that the termination of cGMP 

effect by both PDE5 and MRP5 in tonic muscle could contribute to rapid return to tonic 

contractile phenotype following a relaxation.     

7.1       PDE5 Expression and Activity   

Expression of PDE5, by both qRT-PCR and western blot, and stimulation of PDE5 

activity in response to NO-donor, s-nitrosoglutathione (GSNO), were determined in muscle cells 

from antrum and fundus.  PDE5 mRNA was expressed in both antrum and fundus and the 

expression was 2-fold higher in fundus compared to antrum (figure 28).  PDE5 protein expression 
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was examined in the two regions of the stomach by western blot using selective antibody to 

PDE5A, the smooth muscle predominant isoform
109

.  Results confirmed the expression of PDE5 

of expected size (100 kDa) in the homogenates of smooth muscle cells from both antrum and 

fundus (figure 28). Comparing the densities of protein bands in the two regions revealed a 3-fold 

higher expression of PDE5 in fundus compared to antrum and this is consistent with the higher 

expression of PDE5 mRNA in fundus compared to antrum (Figure 28). 

Basal and GSNO-stimulated PDE5 activity was measured by ion-exchange 

chromatography using [
3
H]cGMP as substrate.  Although, the expression levels are different, 

basal PDE5 activity was not significantly different in antrum (23856 cpm/mg protein) and 

fundus (28545 cpm/mg protein).  Treatment of dispersed muscle cells with GSNO increased 

PDE5 activity in a concentration-dependent fashion in antrum and fundus.  Stimulation of PDE5 

activity was significantly higher at concentrations above 10 nM of GSNO in fundus compared to 

antrum (Figure 29A).  The maximal stimulation was also significantly higher (p<0.05, n=6) in 

fundus (3212 245 cpm/mg protein) compared to antrum (2189310 cpm/mg protein). 

Further evidence for higher PDE5 activity in fundus was obtained by measurements of 

cGMP levels in response to GSNO. GSNO increased cGMP levels in muscle cells from both 

regions in a concentration-dependent fashion. Basal levels of cGMP are similar in antrum 

(0.280.04 pmol/mg protein) and fundus (0.210.03pmol/mg protein).  However, GSNO-

stimulated cGMP levels were significantly lower in fundus compared to antrum. The maximal 

stimulation was also significantly lower in fundus (573% increase above basal levels) compared 

to antrum (764% increase above basal levels of cGMP) (Figure 29 B).  The results are consistent 

with the higher PDE5 expression and activity in fundus compared to antrum. 
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Figure 28.  Expression of PDE5A.  Total RNA isolated from cultured (first passage) muscle 

cells from antrum and fundus was reverse transcribed using 2 µg of total RNA.  The cDNA was 

amplified with specific primers for PDE5A.  The sequences of specific primers are listed in Table 

1.  Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure RNA levels 

of PDE5A.  For each cDNA sample, real-time PCR was conducted in a 20 μl reaction volume 

containing Quantitect
TM 

SYBRgreen PCR Mastermix.  Real-time PCR reactions were performed 

in triplicate. Each primer set generated only one PCR product (65bp), and the identity and 

integrity of these products were confirmed by electrophoresis in agarose gel in the presence of 

ethidium bromide and sequencing of the individual bands.   Standard curves for each amplicon 

were generated from a dilution series of cDNA and results were quantified and reported using the 

2
−ΔΔCT

 method based on GAPDH amplification.  Relative quantification of a target gene in 

relation to reference gene was calculated on the basis of delta delta CT values.  Results 

demonstrated that mRNA levels of PDE5A are significantly higher in fundus compared to 

antrum.  Inset: Representative western blot results of PDE5A expression.  Cell lysates containing 

equal amounts of total proteins were separated with SDS-PAGE and expression of PDE5A was 

analyzed using selective antibody for PDE5A.  Membranes were reblotted to measure β-actin. 

Protein bands were visualized with enhanced chemiluminescence, images were quantified and 

densitometric values were calculated after normalization to β-actin density.  Results are expressed 

as fold increase over the expression of PDE5 in antrum.   Values represent the means SEM of 3 

separate experiments. **p<0.001 versus antrum. 
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Figure 29.  Stimulation of PDE5 activity and cGMP formation by GSNO.  A.  One milliliter 

of cell suspension (2x 10
6
 cells/ml) of freshly dispersed muscle cells from antrum and fundus was 

treated with different concentrations of s-nitrosoglutathione (GSNO), an NO-donor, for 60 s.  The 

cells were homogenized in the lysis buffer and the protein content in the supernatants was 

measured.  PDE5 was immunoprecipitated from lysates containing equal amount of protein and 

the activity was measured in immunoprecipitates by liquid chromatography using [3H]cGMP as 

substrate.  The amount of radioactivity in the elutes was measured by liquid scintillation and the 

results are expressed as counts per milligram protein per minute.  GSNO stimulated PDE5 

activity in a concentration-dependent manner and the stimulation was significantly higher in 

fundus compared to antrum.  Values represent the means SEM of 5-6 separate experiments.  

*p<0.05 significant increase in PDE5 activity in fundus compared to antrum.  B.  One milliliter of 

cell suspension (2 x 10
6
 cells/ml) of freshly dispersed muscle cells from antrum and fundus was 

treated with different concentrations of s-nitrosoglutathione (GSNO) for 60 s and the reaction was 

terminated with 10% trichloroacetic acid.  Cyclic GMP was measured by radioimmuno assay 

using [
125

I]cGMP and the results were expressed as percent increase above basal levels (basal 

levels in antrum 0.280.04 pmol/mg protein; basal level in fundus 0.210.03pmol/mg protein).  

GSNO stimulated cGMP levels in a concentration-dependent manner and the stimulation was 

significantly lower in fundus compared to antrum. Values represent the means SEM of 5 

separate experiments.  *p<0.05 significant lower cGMP levels in fundus compared to antrum. 
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Figure 29 
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7.2       MRP5 Expression   

Another important mechanism in keeping intracellular cyclic nucleotides within narrow 

limits is their efflux into the extracellular space via ATP-dependent multidrug resistant proteins 

(MRPs).  MRP5 has been identified as a cGMP export pump in the heart and vasculature, but its 

expression and function in gastrointestinal smooth muscle are not known. Specific primers for 

MRP5 were designed based on corresponding conserved sequences in human, rat, and mouse 

cDNAs (Table 1).  MRP5 was detected by RT-PCR using RNA extracted from cultures of whole 

gastric smooth muscle cells in first passage.  Cloning and sequence analysis of the RT-PCR 

product of MRP5 in the stomach was 98% similar to the corresponding amino acid sequences of 

human.  Expression of MRP5 mRNA was higher in fundus compared to antrum (Figure 30). 

MRP5 protein expression was examined in the two regions of the stomach by western blot 

using selective antibody to MRP5.  Results confirmed the expression of MRP5 of expected size 

(185 kDa) in the homogenates of smooth muscle cells from both antrum and fundus. Comparing 

the densities of protein bands in the two regions revealed a 5-fold higher expression of MRP5 in 

fundus compared to antrum (Figure 30).  

7.3       cGMP efflux   

The function of MRP5 was analyzed by measuring intra- and extracellular cGMP levels in 

response to GSNO.  To exclude the involvement of PDE5 and examine the singular contribution 

of MRP5 in the regulation of intracellular cGMP levels, experiments were done in the presence of 

a non-selective PDE inhibitor, IBMX (100 µM).  Under these experimental conditions, changes 

in intracellular cGMP reflect efflux of cGMP, probably via MRP5.  GSNO caused an increase in 

both intra- (14610% increase above basal level of 0.420.05 pmol/mg protein) and extracellular 
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(655% increase above basal level of 0.160.03 pmol/mg protein) cGMP levels in antrum, and 

the increase in intracellular cGMP was greater compared to extracellular cGMP levels.  GSNO 

also caused an increase in both intra- (889 above basal level of 0.380.04 pmol/mg protein) and 

extracellular (17615% increase above basal level of 0.180.03 pmol/mg protein) cGMP levels 

in fundus, and the increase in extracellular cGMP was greater compared to intracellular cGMP 

levels (Figure 31). Moreover, GSNO-induced cGMP efflux was blocked in cultured muscle cells 

tranfected with MRP5 siRNA from both antrum and fundus (figure 32) but not in muscle cells 

tranfected with control siRNA (figure33). The results are consistent with the higher expression of 

cGMP-specific MRP5 in fundus compared to antrum and also consistent with the tonic phenotype 

of fundus muscle where rapid restoration of contractile function is required for optimal function.   

7.4       NO-induced smooth muscle relaxation   

To examine the role of PDE5 and MRP5 pathways in the regulation of muscle function, 

relaxation of muscle cells from antrum and fundus was measured by scanning micrometry.  

Muscle relaxation was measured as inhibition of ACh-induced contraction in response to GSNO 

as described previously. GSNO-induced muscle relaxation was concentration-dependent in both 

antrum and fundus (Figure 34).  Relaxation was significantly lower in fundus compared to antrum 

and the maximal response was 733% in antrum and 584% in fundus (Figure 34).  The results 

are consistent with the higher PDE5 and MRP5 functions resulting in lower intracellular cGMP 

levels in muscle cells from fundus compared to cells from antrum.   
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Figure 30.  Expression of MRP5.  A.  Total RNA isolated from cultured (first passage) muscle 

cells from antrum and fundus was reverse transcribed using 2 µg of total RNA.  The cDNA was 

amplified with specific primers for MRP5.  The sequences of specific primers are listed in Table 

1.  The primer set generated only one PCR product (151bp), and the identity and integrity of these 

products were confirmed by electrophoresis in agarose gel in the presence of ethidium bromide 

and sequencing of the individual band.   Results demonstrated that mRNA levels of MRP5 are 

higher in fundus compared to antrum.  B. Representative western blot results of MRP5 

expression.  Cell lysates containing equal amounts of total proteins were separated with SDS-

PAGE and expression of MRP5 was analyzed using selective antibody for MRP5.  Membranes 

were reblotted to measure β-actin. Protein bands were visualized with enhanced 

chemiluminescence, images were quantified and densitometric values were calculated after 

normalization to β-actin density.  Densitometric values showed that MRP5 expressin was 4-fold 

higher in fundus compared to antrum.  Values represent the means SEM of 3 separate 

experiments. **p<0.001 versus antrum. 
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Figure 30 
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Figure 31.  Stimulation of cGMP efflux by GSNO.  One milliliter of cell suspension (2 x 10
6
 

cells/ml) of freshly dispersed muscle cells from antrum and fundus was treated with GSNO for 10 

min in the presence of non-specific PDE inhibitor, 100 µM isobutylmethyl xanthine (IBMX).  

Under these experimental conditions, the effect of PDE5 on cGMP degradation was precluded.   

Cyclic GMP was measured by radioimmuno assay using [
125

I]cGMP in the cell pellet and 

supernatant to reflect intracellular and extracellular cGMP levels, respectively.   The results are 

expressed as percent increase above basal level (antrum: basal intracellular 0.420.05 pmol/mg 

protein; basal extracellular 0.160.03 pmol/mg protein; fundus: basal intracellular 0.380.04 

pmol/mg protein; basal extracellular 0.180.03 pmol/mg protein).  GSNO stimulated both intra- 

and extracellular cGMP levels in antrum and fundus.  The increase in intracellular levels was 

higher in antrum compared to extracelluar levels.  In contrast, increase in extracellular levels was 

higher in fundus compared to intracelluar levels.  Values represent the means SEM of 5 separate 

experiments.  **p<0.05 significant increase in cGMP levels by GSNO above basal levels; 

##p<0.05 significant increase in extracellular cGMP in fundus compared to antrum. 

 

 

 

 

 

 

 

 

 



127 

Figure 31 
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Figure 32.  cGMP efflux in cells transfecrted with MRP5 siRNA.  Cultures muscle cells 

transfected with MRP5 siRNA were treated with GSNO for 10 min in the presence of non-

specific PDE inhibitor, 100 µM isobutylmethyl xanthine (IBMX).  Cyclic cGMP was measured 

by radioimmuno assay using [
125

I]cGMP in the cell pellet and supernatant to reflect intracellular 

and extracellular cGMP levels, respectively.   The results are expressed as percent increase above 

basal level (antrum: basal intracellular 0.380.04 pmol/mg protein; basal extracellular 0.13 0.02 

pmol/mg protein; fundus: basal intracellular 0.35 0.04 pmol/mg protein; basal extracellular 

0.160.02 pmol/mg protein).  GSNO-stimulated extracellular cGMP levels were abolished in 

cells transfected with MRP5 siRNA in antrum and fundus.  Values represent the means SEM of 

5 separate experiments.  **p<0.001 significant increase in cGMP levels by GSNO above basal 

levels.  Left panel: MRP5 expression in cells transfected with control siRNA or MRP5siRNA 
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Figure 32 
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Figure 33.  cGMP efflux by in cells transfecrted with control siRNA.  Cultures muscle cells 

transfected with control siRNA were treated with GSNO for 10 min in the presence of non-

specific PDE inhibitor, 100 µM isobutylmethyl xanthine (IBMX).  Cyclic cGMP was measured 

by radioimmuno assay using [
125

I]cGMP in the cell pellet and supernatant to reflect intracellular 

and extracellular cGMP levels, respectively.   The results are expressed as percent increase above 

basal level (antrum: basal intracellular 0.34 0.03 pmol/mg protein; basal extracellular 0.11 0.01 

pmol/mg protein; fundus: basal intracellular 0.28 0.02 pmol/mg protein; basal extracellular 

0.140.02 pmol/mg protein).  GSNO stimulated both intra- and extracellular cGMP levels in 

antrum and fundus.  The increase in intracellular levels was higher in antrum compared to 

extracelluar levels.  In contrast, increase in extracellular levels was higher in fundus compared to 

intracelluar levels.  Values represent the means SEM of 5 separate experiments.  *p<0.05 

significant increase in cGMP levels by GSNO above basal levels; ##p<0.05 significant increase 

in extracellular cGMP in fundus compared to antrum. 
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Figure 33 
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Figure 34. GSNO-induced muscle relaxation.  Relaxation of dispersed muscle cells from 

antrum and fundus in response to different concentrations of s-nitrosoglutathione (GSNO) was 

measured by scanning micrometry as decrease in ACh-induced contraction.  Contraction was 

measured in response to maximal concentrations of ACh (0.1 m) at 30 s as decrease in muscle 

control cell length (antrum:  control cell length 983 m; fundus: control cell length 914 m).  

Contraction was similar in muscle cells from antrum (283% decrease) and fundus (292% 

decrease).  GSNO caused relaxation that was concentration-dependent in both antrum and fundus 

and the relaxation was greater in antrum compared to fundus.  The maximal response to 10 M 

GSNO was significantly greater in antrum (733% relaxation) compared to muscle cells from 

fundus (584% relaxation).  Values represent the means SEM of 4 separate experiments.  

*p<0.05 significant increase in relaxation in antrum versus relaxation in fundus.  
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Figure 34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 8 

DISCUSSION 

134 

 

 

 

Smooth muscle cells are the fundamental structural and functional units of the gastrointestinal 

system and exhibit distinct contractile phenotypes.  The underlying features of phasic muscles (e.g., 

distal stomach and intestine) are the ability to generate rhythmic contractions and relaxations, while 

tonic muscles (e.g., sphincters and proximal stomach) have sustained tone and relax transiently in 

response to relaxant transmitters.  Contractile agonists increase MLC20 phosphorylation by 

Ca
2+

/CaM-dependent stimulation of MLCK and RhoA-dependent inhibition of MLCP activity.  

Relaxant agonists decrease MLC20 phosphorylation either by decreasing Ca
2+

 levels or increasing 

MLCP activity via PKA and PKG-dependent pathways.  Although MLC20 phosphorylation is a 

prerequisite of contraction in both muscle types, the biochemical basis of phasic and tonic phenotypes 

of smooth muscle is not clear and is the major question of inquiry in the present study.  The objective 

of this project is to determine whether the expression of contractile protein isoforms, the regulation of 

Ca
2+

/calmodulin-dependent MLCK and Rho kinase/ZIPK-dependent MLCP activity, and the 

termination of cGMP signaling are different in phasic and tonic smooth muscle.  Using biochemical, 

molecular and functional approaches, and antrum (distal stomach) and fundus (proximal stomach) of 

rabbit stomach as models of phasic and tonic smooth muscle, respectively, the present study 
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characterized the differences in the signaling pathways that regulate MLCK and MLCP activities and 

cGMP levels.  Expression of contractile proteins is tissue specific with higher levels of caldesmon, 

calponin, tropomyosin and smoothelin A expression in antrum compared to fundus.  In muscle cells 

from antrum MLCK activity is under feedback negative control by higher expression and activation 

of CaMKKβ/AMPK pathway, and MLCP is positively regulated by higher expression of telokin, an 

endogenous MLCP activator.  In muscle cells from fundus, in contrast, MLCP activity is suppressed 

by higher expression and activation of Rho kinase/ZIPK/MYPT1 and PKC/CPI-17 pathways, and 

cGMP/PKG pathway is attenuated by rapid degradation and efflux of cGMP via higher expression 

PDE5 and MRP5, respectively (figure 33).  These differences in the biochemical pathways highly 

correlate with the functional phasic phenotype of antrum and tonic phenotype of fundus.  

8.1   Differences in the contractile protein content and isoforms and their associated 

proteins 

It is hypothesized that differences in the mechanical behavior between tonic and phasic 

smooth muscles could be due to differences in the contractile proteins themselves; actin, myosin 

and their associated proteins such as caldesmon and calponin. Previous studies
110,111

 have 

demonstrated that the tonic muscle myosin has a greater affinity for MgADP at low 

phosphorylation levels than the phasic myosin, a property that aids in maintaining the developed 

force in tonic muscles. In this study, we investigated the content and isoform distribution of the 

main contractile proteins; actin and myosin, and the thin filament associated proteins; 

tropomyosin, caldesom, calponin, and smoothelin in smooth muscles of the antrum and fundus.  

The results showed that the expression of contractile proteins is tissue specific with higher levels 

of caldesmon, calponin, tropomyosin and smoothelin A expression in antrum compared to 
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fundus.   These results are consistent with the results previous studies using different models of 

phasic and tonic tissues in different species
6,112,113

. 

8.1.1    Myosin isoforms   

Myosin molecule is a hexamer with 2 subunits of smooth muscle-specific myosin heavy 

chain (MHC), a pair of 17 kDa MLC and a pair 20 kDa MLC (MLC20). Alternative RNA 

processing of a single gene generates four isoforms of MHC.  Alternate splicing of a 21-

neoclutide exon at the 5‟ end of the gene results in the presence (SMB isoform) or absence (SMA 

isoform) of a seven-amino acid insert at the globular head region of the MHC molecule
114

. In 

addition, alternate splicing of a 39-neoclutide exon in the non-helical portion of the 3‟ end of the 

gene coding for 9 unique amino acids at the COOH terminus and an in-frame stop codon results 

in a molecule that is 34 amino acids shorter (SM2) than the alternately spliced isoform (SM1)
115

. 

It has been suggested that differential expression of myosin heavy chain isoforms may 

influence smooth muscle contractility
116

, Chi et al., for example, have found that ablation of 

smooth muscle myosin heavy chain SM2 increases smooth muscle contraction
117

. Others have 

found a positive correlation between SM1 myosin content and maximal velocity of muscle 

shortening (Vmax) in rat uterine smooth muscle
116

. In the present study, we could detect SM1 and 

SM2 isoforms only in antrum, and that SM1 expression was greater than SM2.  

Our results are consistent with this proposed function of these MHC isoforms in smooth 

muscle.  In antrum, higher SM1 expression might be pertinent with the rapid crossbridge cycling 

and as a result smooth muscle shortening and contraction that is needed in this region of the 

stomach which is characterized by rapid contraction and relaxation cycles.  In addition, greater 

SM2 expression in this distal part of the stomach might be of importance in preventing the 

development of any basal tone, and thus leading to rapid fade of the stimulated contraction in the 
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phasic smooth muscles of the antrum. Eddinger et al.,
75

, on the other hand, reported 

approximately equal amounts of both SM1 and SM2 MHC isoforms in all regions of the rabbit 

stomach. However, these measurements were made on tissue pieces taken from different 

locations along the greater curvature of the stomach and this expression pattern might differ at the 

cellular level. 

Regarding MHC isoforms with (SMB) and without (SMA) the seven-amino acid insert at 

the globular head region of the MHC molecule, Kelley et al. 
118

 showed that the phasic chicken 

gizzard, but not the tonic chicken aortic smooth muscle, contains myosin with the seven-amino 

acid insert and showed that the presence of SMB isoform correlates with a higher velocity of 

movement of actin filaments over myosin heads in the in vitro motility assay and a higher actin-

activated myosin ATPase activity.  Moreover, DiSanto et al., 
119

 howed that the inserted myosin 

mRNA level increases in more distal muscular arteries that show phasic contractions compared to 

aorta which primarily possesses tonic activity.  

By measuring mRNA expression levels in cultured gastric smooth muscle cells, we 

demonstrated that antrum contains greater SMB but lower SMA mRNA contents than fundus. 

This is consistent with the previous reports and with the proposed functional role of these 

isoforms with actomyosin ATPase activity and maximum shortening velocity, which are greater 

in phasic smooth muscles than in tonic ones.  Further work is needed to examine the correlation 

between protein expression of each of these different isoforms and RNA expression pattern. 

It is important to mention that other myosin II isoforms might add a complexity to the 

above mentioned differences between phasic and tonic smooth muscles. For example, it is known 

that non-muscle myosin (NMII A, B, and C) interacts with actin and converts the chemical 

energy from ATP hydrolysis to force
120

. The expression of non-muscle myosin isoforms, NMIIA 

and NMIIB, has been well documented to be different between phasic and tonic smooth muscle. 
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It has been reported that NMIIA isoform is predominating in the phasic mouse bladder muscle, 

while NMIIB is the major isoform in the tonic aorta
121

. Whether these non-muscle myosins are 

regionally distributed in the GI tract or have a functional contribution to muscle contractility is 

not known yet. 

8.1.2    Actin isoforms    

Of the thin filaments, actin stands as the major constituent and plays an important role, 

with myosin, in crossbridge formation. Three major actin isoforms are expressed in smooth 

muscle; α, β, and γ. The β -isoform is a cytoskeletal actin, whereas α and γ isoforms colocalize 

within the contractile apparatus. We found that the relative content of β-actin is similar in the 

antrum and fundus. However, muscle cells from fundus contain more α-actin but less γ-actin than 

antrum. Our results are in agreement with the early data of Fatigati and Murphy 
122

 who showed 

that α-actin is mainly found in arterial smooth muscle, whereas γ -actin usually predominates in 

visceral smooth muscle. Szymanski et al., have also reported about two to three times more α-

actin in the lower esophageal sphincter than in the esophageal body, whereas γ -actin was ~43% 

more in the esophageal body compared to lower esophageal sphincter
100

. Future functional 

studies might correlate these different regional distributions of the different actin isoforms to 

smooth muscle contractility. 

8.1.3    Caldesmon, calponin, and tropomyosin   

Besides actin, it is strongly believed now that the thin-filament-associated proteins 

regulate actomyosin ATPase activity and thus modulate the rapid cross-bridge cycling formed by 

actomyosin interaction; the essential event of muscle contraction.  In the present study, we show 

that there is a greater abundance of tropomyosin, calponin, and caldesmon in antrum compared to 

fundus.  It has been shown that caldesmon and calponin exert an inhibitory effect on actin-

activated myosin ATPase activity and suppress contraction in a Ca
2+

-regulated manner
56,59,60

. 
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Phosphorylation of caldesmon by kinases, mainly PKC and MAPK, or binding of Ca
2+

/CaM to 

caldesmon, although with low affinity, dissociates caldesmon from F-actin and thus removes the 

inhibitory effect of caldesmon on actomyosin ATPase by allowing myosin heads to interact with 

the freed actin filaments and so muscle to contract
123,124

. 

Consistent with our data, Haeberle et al., 
125

 have shown that caldesmon content is higher 

in smooth muscles from rabbit ileum, guinea pig taenia coli, and rat uterus than in muscles 

isolated from bovine aorta or porcine carotid arteries. In addition, Caldesmon level in the extreme 

example of phasic muscles, chicken gizzard smooth muscle, was reported to be about twofold 

higher than in vascular smooth muscle 
124,125

. 

Regarding calponin , the recent report of faster unloaded shortening velocity in smooth 

muscle of calponin knock-out mice is consistent with the suggested negative regulation of the 

cross bridge cycle by calponin
126

. Calponin‟s inhibitory effect on actomyosin ATPase was found 

to be removed via either phosphorylation by PKC or Ca
2+

-CaM-dependent kinase II 
56

 or binding 

to CaM
127

. 

Goyal and coworkers reported similar calponin content in both the phasic esophageal 

body and the tonic lower esophageal sphincter smooth muscles
100

. The discrepancy between this 

data and our calponin data could be simply a consequence of species and tissue differences, but 

additional work is needed to demonstrate this possibility. 

In parallel with the proposed roles for caldesmon and calponin, it was proposed that 

tropomyosin might impose an inhibitory effect on myosin ATPase activity by covering and 

spanning actin monomers. The removal of this inhibitory regulation, upon smooth muscle 

activation, displaces tropomyosin from myosin-binding sites on actin leading to cooperative 

actomyosin cross-bridge formation and muscle contraction
48

. Our data, which shows higher 

contents of caldesmon, calponin and tropomyosin in antrum might fit with the suggested roles for 
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these thin filament-associated proteins in facilitating the accelerated relaxation and preventing the 

generation of basal tone in phasic smooth muscle.  

8.1.4    Smoothelin  

Smoothelin is another α-actin-binding protein and is a constituent of the cytoskeleton 

which is specific for smooth muscle cells in a broad range of species. It is encoded by a single-

copy gene via dual promoter system that generates two major isoforms; A (59 kDa) and B (110 

kDa) 
128

. Although our knowledge about its function is still incomplete, previous embryological 

129
 and knock-out 

66
 studies have revealed that lack of smoothelin leads to a decreased contractile 

potential of smooth muscle.  It was proposed that smoothelin A isoform is predominantly 

expressed in visceral tissues while B isoform is the vascular isoform of smoothelin, although not 

all vascular smooth muscle cells in arterial media express smoothelin. For example, in elastic 

arteries, such as the aorta, the percentage of smoothelin-expressing smooth muscle is lower than 

in muscular arteries, such as the femoral artery 
64

. Consistent with those previous reports, we 

found that mRNA levels of smoothelin A are greater in antrum while smoothelin B mRNA levels 

are higher in fundus. More research on other different types of phasic and tonic smooth muscle 

tissues is needed to flourish literature in this aspect. In addition, better understanding of 

smoothelin function might be the link to its differential expression in various smooth muscle 

types. 

8.2     Differences in the regulation of MLCK activity 

The major mechanism responsible for contraction in smooth muscle is the 

phosphorylation of MLC20 by MLCK. Phosphorylation of MLC20 removes its inhibitory effect on 

actomyosin ATPase and increases cross-bridge cycling that eventually leads to muscle 
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contraction 
23,31,130,131

. It is now well-established that MLCK interacts with Ca
2+

/CaM with a very 

high affinity, and then the formed Ca
2+

/CaM-MLCK complex phosphorylates MLC20. 

Our results show that both mRNA and protein expression levels of MLCK are higher in 

antrum compared to fundus of rabbit stomach. Our results seem to be in parallel with the results 

of Szymanski et al., who found that MLCK content in esophageal body was approximately 

threefold higher and phosphorylation of MLC20 was approximately fivefold faster than in lower 

esophageal sphincter
99

. However, in spite of greater MLCK expression in antrum, ACh-

stimulated activity of MLCK was similar in both regions. Moreover, contraction of permeabilized 

muscle in response to 0.5µM Ca
2+

 was similar in cells from the two regions, suggesting that Ca
2+

-

dependent MLCK activity is similar in both regions. These results raise the possibility that 

MLCK activity may be selectively suppressed in antrum via negative feedback mechanisms 

involving other kinases such as AMPK. 

It is important to note that changes in [Ca
2+

]i do not always lead to proportional increases 

in MLCK activation. At longer time after initiation of neural stimulation, there is an apparent 

desensitization of the kinase to Ca
2+

. This desensitization occurs when MLCK is phosphorylated 

at the C terminus of its CaM-binding sequence that would decrease the affinity of the kinase for 

Ca
2+

/CaM. This phosphorylation was shown previously to be Ca
2+

-dependent 
131

. Recent 

evidence indicates that it is mediated by Ca
2+

-dependent activation of CaM-dependent protein 

kinase kinase-β, CaMKK-β, via Gq-coupled receptors
104

. CaMKK-β in turn phosphorylates and 

activates AMPK. Although MLC20 is not a direct downstream physiological substrate of AMPK 

132
 but still it desensitizes smooth muscle by phosphorylating MLCK at Ser

815
 and thus leading to 

its inhibition
29

. Moreover, if the concentration of AMP increases sufficiently in the contracting 

muscle, AMP can also directly activate AMPK. So, both Ca
2+

-dependent and AMP-stimulated 

feedback mechanisms would thus diminish MLCK activity. 
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AMP-activated protein kinase (AMPK) is a Ser/Thr kinase heterotrimer consisting of a 

catalytic α-subunit and two regulatory subunits, β and γ. It acts as an energy sensor at both 

cellular and systemic levels in mammals
133,134

. Phosphorylation of Thr
172

 in the activation loop of 

the catalytic α-subunit 
134

 by upstream kinases (e.g., CaMKK-β) activates AMPK which in turn 

decreases ATP consumption and stimulates ATP-producing processes 
133

. AMPK is 

dephosphorylated and deactivated by protein phosphatase-2C (PP2C) 
105

. 

There are multiple isoforms of AMPK that are encoded by different genes; two isoforms 

of the catalytic α subunit (α1 and α2), two isoforms of the β subunit (β1 and β2), and three 

isoforms of the γ subunit (γ1, γ2, γ3), that can lead to the formation of 12 different complexes 

with differing properties 
105

.  

α1 subunit is ubiquitously expressed and localized predominantly to the cytosol and hence 

likely to phosphorylate cytosolic and plasma membrane substrates, whereas the α2 subunit is 

expressed predominantly in skeletal muscle, liver and cardiac muscle, where it is found in both 

cytosol and nuclei 
105

. As the primary AMPK isozyme, α1 is found in pulmonary arterial smooth 

muscle 
135

, carotid smooth muscle 
136

, vascular endothelial cells and mouse aorta
137

. 

Our results showed that both protein and mRNA expression of AMPK1 was greater in 

antrum than in fundus. Functionally, ACh-stimulated AMPK activity was also greater in muscle 

cells from antrum compared to fundus. AMPK activity was measured using recombinant MLCK 

as substrate, implying that activation of AMPK might regulate MLCK in a feedback mechanism. 

To examine such a pathway, we used STO609 compound, an inhibitor of CAMKK-β, the 

upstream activator of AMPK. Our theory was that if there is a feedback inhibition of MLCK by 

AMPK, then blockade of AMPK activation by STO609 should reverse this inhibition and further 

augment the activity of MLCK. ACh-stimulated AMPK was blocked by STO609, which is 

consistent with the fact of CAMKK-β-dependent activation of AMPK. Most importantly, 
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blockade of AMPK augmented ACh-stimulated MLCK activity selectively in antrum without 

changing its activity in fundus. These results imply that in antrum muscle of the stomach, MLCK 

activity is rapidly terminated via a feedback mechanism involving phosphorylation and activation 

of the highly expressed AMPK. Furthermore, measurements of muscle cell length via scanning 

micrometry showed that contraction in response to ACh was enhanced in the presence of STO609 

in anrum, but not fundus.  This is again consistent with the augmentation of MLCK activity by 

AMPK inhibition in antrum.   

Moreover, our data clearly show that stimulation of AMPK activity is Ca
2+

/CaM-

dependent. Using either the calmodulin antagonist, calmidazolium, to inhibit the calmodulin-

regulated activity of CaMKK-β or BAPTA, to chelate intracellular Ca
2+

 abolished both ACh- and 

KCl-stimulated AMPK activity in antrum without an effect in fundus (as both ACh- and KCl-

induced AMPK activity was minimum in fundus). These results suggest that CaMKK-β is main 

upstream activator of AMPK in smooth muscles of antrum. In addition, both Ca
2+

 influx and Ca
2+ 

release from intracellular stores seem to be important for CaMKK-β-mediated AMPK activation 

as both KCl-induced membrane depolarization and ACh-stimulated m3 receptor activation 

resulted in a significant increase in AMPK activity in antrum. 

In addition, AMPK activation was found to trigger cADPR-dependent SR Ca
2+

 release via 

RyRs in isolated pulmonary arterial smooth muscle cells by yet unknown mechanism
138-140

. This 

effect might be of relevance in longitudinal smooth muscles where cADPR-dependent SR Ca
2+

 

release via RyRs seems to be important especially in the intestine
26

. 

Our MLCK activity data looks contradictory to the ones of Gong et al., in which they 

found that guinea pig ileum and portal vein smooth muscles, which represent phasic muscles, 

have approximately threefold higher activity of MLCK than rabbit femoral artery smooth 

muscles, which represents tonic muscles
141

. Knowing that other non-muscle components and 
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regulators might affect enzyme activity in the whole tissue homogenates, MLCK activity 

measured in those tissue samples could be different than our measurements in dispersed smooth 

muscle cells. In addition, differential expression and regional distribution of AMPK isoforms 

could be different in these various smooth muscle organs.  

Other signaling components might add to the above mentioned differences regarding the 

regulation of MLCK in tonic versus phasic smooth muscles. For example, CaM-dependent kinase 

II (CAMKII) protein expression was found to be higher in proximal colon, which represents 

phasic smooth muscles, than in fundus 
142

. CAMKII might regulate smooth muscle contraction by 

phosphorylating several substrates such as MLCK
143

 and phospholamban, a negative regulator of 

sarcoplasmic reticulum Ca
2+

-ATPase 
144

. CAMKII expression profile seems to be in parallel with 

the results of Goyal and his coworkers who found the total content and concentration of CaM to 

be higher in the phasic esophageal body compared to the tonic lower esophageal sphincter
99

. 

These findings might be of more relevance to other CaM-binding proteins such as caldesmon and 

calponin, which we found to be higher in antrum compared to fundus.  

In summary, higher expression of AMPK and greater AMPK-mediated inhibition of 

MLCK in antrum is correlated with rapid contraction and relaxation cycles in antrum (figure 33). 

This observation may be applicable to other phasic smooth muscles 
23,145

. Future studies should 

be directed towards identifying the relative and the regional importance of these regulatory 

pathways in smooth muscle contraction. 

8.3       Differences in the regulation of MLCP activity and muscle contraction 

Phosphorylation of MLC20 by MLCK is counterbalanced by its dephosphorylation by 

myosin light chain phosphatase (MLCP), an essential step in smooth muscle relaxation
141

. MLCP 

is a holoenzyme consisting of three subunits: a catalytic subunit that is a 38 kDa-type I-protein 
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phospatase delta isoform (PP1cδ) and two regulatory subunits consisting of a small 20 kDa 

subunit and a 110- to 130-kDa subunit (myosin phosphatase target subunit 1, MYPT1). The 

interactions of the three subunits are required to form the functional enzyme. MYPT1 subunit 

contains a PP1c-binding motif occuring at the amino acids 35-38, followed by seven NH2-

terminal ankyrin repeats. Binding of PP1Cδ with MYPT1 alters substrate specifity and enhances 

catalytic activity. 

MLCP content and activity have been reported to be higher in phasic muscles of ileum, 

portal vein, and gizzard than in tonic muscles of femoral artery and aorta 
141,146

. Others have also 

reported higher basal levels of MYPT1 in the predominantly phasic rectum smooth muscle 

compared to the internal anal sphincter 
147

. Relatively higher content and activity of MLCP in 

phasic smooth muscles may contribute to the lack of steady-state MLC20 phosphorylation and 

basal muscle tone. The lack of basal tone in these muscles might be of relevance to the proposed 

role and behavior of these smooth muscle types where accelerated rate of MLC20 

dephosphorylation and rapid initiation of relaxation is required 
23,141,145

.  

Phosphorylation of the MYPT1 is thought to regulate the activity of MLCP. The major 

regulatory phosphorylation sites of MYPT1 are Thr
696

, Thr
853

, Ser
695

. Phosphorylation of Thr
696

 

in MYPT1 by Rho kinase dissociates the enzyme from PP1cδ and inhibits the activity of the 

catalytic subunit of MLCP. Phosphorylation of Thr
853

 by Rho kinase within the myosin-binding 

domain on MYPT1 dissociates the enzyme from myosin and decreases the efficiency of the 

enzyme by decreasing availabilty of the substrate. While Rho kinse can phosphorylate both Thr
696

 

and Thr
853

, several other kinases have also been shown to phosphorylate the Thr
696

 site such as 

ZIPK.  

 In addition to the inhibitory role of MYPT1 phophorylation at the Thr
696

 and Thr
853

 sites, 

MLCP inhibition can occur via PKC- or arachidonic acid-mediated pathways. Phorbol ester- or 
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DAG-mediated activation of PKC, mainly PKC-δ and PKC-ε, 
38

 results in phosphorylation of the 

17 kDa PKC-potentiated inhibitor protein (CPI-17), at Thr
38

. This phosphorylation significantly 

increases the binding affinity of CPI-17 to the catalytic PP1cδ subunit of MLCP leading to 

dissociation of the holoenzyme and thus inhibition of the  catalytic activity 
148

. Arachidonic acid 

activates both Rho kinase and PKC,  and sphingosylphosphorylcholine (SPC) has also been 

suggested to directly activate Rho kinase
149

. MLCP inhibition by either PKC or Rho kinase is 

thought to be the general mechanism for G-protein-dependent elevation of MLC20 

phosphorylation level and thus maintaining contraction at constant [Ca
2+

]i; a process called Ca
2+

 

sensitization.  

On the other hand, phosphorylation at the Ser
695

 site of MYPT1 by PKA or PKG blocks 

the ability of Rho kinase to phosphorylate the nearby Thr
696

 and thus increases MLCP activity. 

Moreover, PKA and PKG can indirectly augment MLCP activity through phosphorylating and 

thus enhancing the acivity of telokin.  Telokin is an endogenous 17 kDa activator of MLCP.  It is 

a smooth muscle specific protein that is independently and invariably expressed in different 

smooth muscles from a promoter located within an intron of MLCK gene and is thus identical to 

the C-terminus of MLCK downstream from the kinase and calmodulin binding domains.  The 

ability of telokin to stimulate MLCP is moderately enhanced upon phosphorylation of Ser
13

 by 

PKA or PKG. 

Our results demonstrate characteristically higher levels (both protein and mRNA) of Rho 

kinase II-the most common isoform of Rho kinase involved in smooth muscle contraction
130,150

 

and CPI-17, in the smooth muscles of the fundus compared with the antrum.  Our results are 

consistent with the previous studies, which showed higher levels of RhoA/Rho kinase pathway 

and CPI-17 in the internal anal sphincter, which represents tonic smooth muscles, compared with 

the predominantly phasic rectal smooth muscle 
147

. It is of interest that Woodsome et al. 
151

 also 
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reported higher levels of CPI-17 in the tonic smooth muscle of the femoral artery than in the 

phasic smooth muscle of the vas deferens.  In addition, our data showed that both protein and 

mRNA contents of ZIPK were similar in both stomach regions.  However, stimulation of ZIPK 

activity was greater in antrum compared to fundus reflecting higher expression and activation of 

upstream kinase, Rho kinase.  

To functionally elucidate the singular contribution of CPI-17 in the muscle contraction, 

we used the PKC activator, PMA. We found that treatment of dispersed muscle cells with PMA 

caused significantly, 2 to 3 folds, greater contraction in muscle cells from fundus than in muscle 

cells from antrum.  In contrast, the extent of PKC activation by PMA was similar in muscle cells 

from both antrum and fundus.  Knowing that CPI-17 is a downstream target of PKC, these results 

correlate well with the higher expression of CPI-17 in the fundus compared to the antrum. Future 

knockout and siRNA studies might further confirm CPI-17 role in MLCP inhibition and thus 

muscle contraction in response to contractile agonist, which activate both Rho kinase/MYPT1 

and PKC/CPI-17 pathways. 

Moreover, our results demonstrated that ACh-induced stimulation of both Rho kinase and 

ZIPK was significantly higher in muscle cells from fundus compared to antrum. Data are also 

consistent with the concept that RhoA/Rho kinase components (responsible for the inhibition of 

MLCP and sustained elevated levels of p-MLC20), are higher in tonic than phasic smooth 

muscles. These results also clarify the relationship between the functional status and the levels of 

these different signal transduction proteins in the tonic versus phasic smooth muscles in their 

basal state in support of previous studies demonstrating constitutive activation of Rho kinase 

pathway in tonic muscle under physiological conditions
152-154

. 
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Low levels of RhoA/Rho kinase may unleash MLCP, causing rapid dephosphorylation of 

p-MLC20, preventing the development of any basal tone, and causing rapid fade of stimulated 

contraction in phasic smooth muscles such as the antrum 
155

. This data collectively show that 

fundus is characterized with the molecular apparatus designed to provide sustained levels of 

MLC20 phosphorylation responsible for the basal tone. 

Interestingly, upon treating muscle cells with Y27632, a selective blocker of Rho kinase, 

both Rho kinase and ZIPK activities were inhibited, suggesting that stimulation of ZIPK activity 

is dependent on and downstream of Rho kinase and this might explain the higher ZIPK activity in 

fundus in spite of similar contents in both antrum and fundus.  Although literature is rich in 

research favoring the roles of both Rho kinase and ZIPK in myosin and MYPT1 phosphorylation 

and thus smooth muscle contraction, still few studies haves considered the possibility that these 

two enzymes may in fact directly interact 
43,156,157

. 

It is now believed that both Rho kinase and ZIPK cause Ca
2+

-independnet contraction in 

smooth muscle cells. In addition, ZIPK in smooth muscle phosphorylates many of the same 

substrates as Rho kinase in vitro, including MYPT1 
43

. Moreover, both kinases show a preference 

for threonine and target similar phosphorylation site consensus sequences, i.e. 3–4 basic amino 

acids +1 or +2 N-terminal to the phosphorylation site 
156

. Consistent with our data, Borman et al., 

found that, in smooth muscle, carbachol-induced activation of ZIPK was sensitive to Y27632 

even though ZIPK is not directly inhibited by this compound in vitro 
43

. 

However, knowing that Rho kinase is largely membrane-bound upon RhoA activation, a 

question being raised is how this membrane-bound kinase can directly phosphorylate MYPT1 

and myosin
158,159

. Morgan and co-workers have shown in their studies that stimulation of isolated 

smooth muscle cells by PGF2α induces a marked change in the localization of MLCP, in which 

MYPT1 is initially phosphorylated in the cytosol and then, MLCP is translocated to the 
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membrane where the subunits are dissociated. PP1c returns to the core of the cell while MYPT1 

remains at the membrane location. The isolated PP1c reduces phosphatase activity towards 

phosphorylated myosin and thus decreases MLC20 dephosphorylation 
160

. 

Endo et al., 
157

 demonstrated that transfection of HEK293 cells with constutively active 

RhoA promoted interaction of ZIPK with MYPT1. So, it is suggested that ZIPK is a downstream 

target of both RhoA and Rho kinase signaling, forming a signal transduction module to ultimately 

regulate myosin phosphorylation in smooth muscle. Given the location of active Rho kinase at 

the plasma membrane, mechanisms must exist to translocate ZIPK to the activated Rho kinase. 

One possible mechanism might involve binding to MYPT1 where Rho kinase directly interacts 

with ZIPK via translocation of MYPT1 itself from the cytoskeleton to the plasma membrane. In 

another scenario, ZIPK might act as a soluble Rho kinase target to transduce the signal from the 

cell membrane to the actomyosin cytoskeletal elements within the cytoplasm. 

In summary, our studies identified a strong correlation between higher levels and 

activities of Rho kinase/ZIPK/MYPT1 and CPI-17/PKC pathways and tonic phenotype of fundus 

muscle.  These studies combined with the previous studies in different sphincteric muscles in 

several species suggest a pivotal role for MLCP inhibition via Rho kinase/ZIPK/MYPT1 and 

CPI-17/PKC pathways in the maintenance of MLC20 phosphorylation and muscle tone (figure 

33).  

8.4       Differences in the regulation of MLCP activity and muscle relaxation 

On the other side of MLCP regulation, telokin has been shown to activate MLCP and to 

be important for cGMP-mediated calcium desensitization and thus relaxation of smooth muscle 

tissues 
161

. Our data demonstrating higher expression of telokin in antrum compared to fundus are 

in agreement with the previous studies showing higher telokin expression in urinary bladder 
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(phasic) compared to aorta (tonic) 
162,163

. Higher expression of telokin and greater activation of 

MLCP and relaxation in antrum compared to fundus is correlated with phasic phenotype of 

antrum.  This is in contrast to the higher expression of CPI-17, an endogenous inhibitor of MLCP 

in fundus.   

To examine the role of telokin in smooth muscle relaxation, contraction was induced by 

Ca
2+

 in permeabilized muscle cells and relaxation in response to 8-Br-cGMP was measured.  This 

approach precludes the effect of 8-Br-cGMP on intracellular Ca
2+

 levels and reflects the effect on 

MLCP probably via phosphorylation of telokin at Ser
13

.  As the response to NO-donor was 

different in antrum and fundus due to differences in the expression of PDE5 and MRP5, 

relaxation in response to 8-Br-cGMP, non-hydrolyzable analog of cGMP, was measured.  Our 

results demonstrated that 8-Br-cGMP, caused significantly greater relaxation in muscle cells from 

antrum compared to fundus.  In contrast, the extent of PKG activation by 8-Br-cGMP was similar 

in muscle cells from antrum and fundus. This relaxation difference between these two muscle 

types is in parallel with the higher telokin expression in antrum.  

These findings were further strengthened by the measurements of MLC20 

dephosphorylation (i.e., MLCP activity) in cells expressing wild type telokin and 

phosphorylation-deficient telokin (telokin S13A) under conditions of where the effects of 

cGMP/PKG on Ca
2+

 levels are precluded as described above. We found that MLC20 

phosphorylation was decreased by the PKG activator 8-Br-cGMP in antrum and fundus, but with 

greater inhibition in antrum.  In addition, the effect of 8-Br-cGMP was attenuated in cells 

expressing phosphorylation-deficient telokin (S13A), and again greater attenuation was found in 

smooth muscle cells from antrum.  Similar levels of MLC20 phosphorylation and contraction in 

response to Ca
2+

 support the notion that telokin action is through the increased activity of MLCP 

rather than inhibition of MLCK activity.  It is noteworthy to mention that the functional 
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contribution of telokin to relaxation of Ca
2+

-independent contraction and MLC20 

dephosphorylation has not been determined yet. 

Taken together, our results in antrum and fundus, and those of previous studies in phasic 

visceral and tonic vascular muscle, support the hypothesis that preferential expression telokin and 

increase in MLCP activity contributes to higher relaxation in telokin-rich smooth muscle and 

correlate with the phasic phenotype of the muscle. In contrast, lower expression of MLCP 

activator, telokin, and higher expression of MLCP inhibitor, CPI-17, in tonic muscle facilitate 

greater sensitivity of contractile proteins to low Ca
2+

 levels, a well recognized, but poorly 

understood biochemical characteristic of tonic muscle.  Both mechanisms of MLCP regulation 

may operate in parallel in vivo to restrain MLCP activation and to maintain muscle tone (figure 

33). 

8.5       Differences in the regulation cGMP levels and muscle relaxation.   

The main relaxant neurotransmitters of gastrointestinal smooth muscle are nitric oxide 

(NO), vasoactive intestinal peptide (VIP), and its homologue pituitary adenylate cyclase-

activating polypeptide (PACAP).  These neurotransmitters induce relaxation through generation 

of cAMP and cGMP and activation of PKA and PKG, respectively.  These kinases, in turn, target 

different components of MLCK and MLCP signaling pathways that eventually induce and 

augment myosin light chain dephosphorylation and consequently desensitize the process of 

contraction.   Although generation of both cAMP and cGMP and activation of PKA and PKG are 

the physiological norm, studies in transgenic mice lacking nNOS, sGC, and PKG-Iα suggest that 

cGMP/PKG plays a critical role in relaxation of smooth muscle 
106-108

. 

Cyclic GMP levels in gastrointestinal smooth muscle are well-controlled by the balance 

between the synthetic activities of soluble guanylyl cyclase, and the degradative activities of 

specific PDE5, the main cGMP-specific PDE5 in smooth muscle. Soluble GC is a heterodimeric 
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enzyme made up of one α and one β subunit with α1/β1 being the most abundant and the most 

widely expressed isoform of sGC. This isoform was shown to have the most basal and NO-

stimulated activity 
164

. PDE5 is a dimer containing two allosteric cGMP-binding sites in its 

regulatory N-terminal domain and a specific cGMP-binding site in its catalytic C-terminal 

domain that hydrolyses cGMP.  An increase in cGMP levels not only stimulates PKG, but also 

augments PDE5 activity by allosteric activation via binding to its regulatory domain, and by 

PKG-mediated phosphorylation of PDE5 at a conserved serine residue in the N-terminal region.  

Beside degradation by phosphodiesterases, cyclic nucleotides elimination via MRPs-

mediated active export into the extracellular space has been found to be an important pathway in 

returning cyclic nucleotide levels back to basal state. MRP5 mRNA has been detected in various 

smooth muscle tissues with high transcript levels and has been shown to be competent in the 

transport of cGMP. This is supported by the observation that in cerebral cells and platelets, and 

after stimulation with NO, cGMP accumulation is decreased faster than it could be explained 

solely by the phosphodiesterase activity 
165

. Cyclic GMP secretion via MRP5 has been shown to 

be unidirectional and energy dependent 
72

. Studies, using immunofluorescence microscopy, have 

shown that MRP5 is co-expressed with PDE5 in smooth muscle cells, providing a strong 

evidence that these two pathways might complement with each other in keeping cGMP levels 

within a low range 
166

. Thus, the strength and duration of cGMP signaling depends on the activity 

sGC, PDE5 and MRP5.    

Our studies demonstrate higher expression of PDE5 and MRP5 in fundus compared to 

antrum.  As a result, intracellular cGMP levels and relaxation in response to NO-donors were 

attenuated more in fundus compared to antrum (figure 34).   Increased degradation and efflux of 

cGMP might play an important role in rapid termination of relaxation in fundus.   Relaxation of 

tonic smooth muscle in response to NO is transient and the muscle regains contraction to prevent 
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continuous distending forces or reflux of materials.  At the tissue level, non-muscle elements add 

more complexity to the above mentioned biochemical differences in cGMP handling between 

phasic and tonic muscles. For example, it was found that the density of eNOS positive neurons 

was scarce in fundus part of the human stomach while their density in distal part was intensive 

167
.Thus it is possible that in addition to increase in the termination of cGMP signaling, the 

mechanisms responsible for generation of cGMP such as generation of NO and activation of sGC 

are also constrained in fundus to facilitate tone and optimal organ function.  
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Figure 35. Differential expression and/or activation of signaling proteins involved in the 

regulation of MLC20 phosphorylation in antrum and fundus of stomach correlate with the 

phasic and tonic smooth muscle phenotypes, respectively. Signaling proteins shown in red 

are involved in phasic phenotype and those shown in green are involved in tonic phenotype; + 

and – signify stimulation and inhibition, respectively. 

Antrum: Higher expression of AMPK and selective feedback inhibition of MLCK activity via 

AMPK-mediated phosphorylation, and higher expression of telokin and activation of MLCP 

correlate with the rapid cyclical contractile function in phasic muscle. 

Fundus: Higher expression and activation of Rho kinase/ZIPK/MYPT1 and PKC/CPI-17 

pathways leading to preferential inhibition of MLCP activity and sustained phosphorylation of 

MLC20 correlate with the sustained contraction in tonic muscle. In addition, rapid termination of 

cGMP signal and thus, muscle relaxation by degradation and efflux of cGMP via higher 

expression of PDE5 and MRP5, respectively, facilitate rapid restoration of tone. 
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Figure 35 
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