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ABSTRACT 

 
 

Lignocellulosic materials provide a raw material source for biofuel conversion 

and offer several advantages over fossil fuels- usage of a renewable resource, reduced 

greenhouse emissions, a decreased dependence on foreign oil, and stimulation of the 

agricultural sector. However, a primary technological challenge in converting 

lignocellulosic biomass into fuel is overcoming the recalcitrance of its matrix to 

enzymatic hydrolysis. To overcome these problems for chemical processing, naturally 

occurring cellulose biomass must be pretreated before it can be further processed using 

enzymatic hydrolysis or bioconversion. 

 

The goal of this work was to develop a model that predicts the glucose yield 

(pretreatment and enzymatic digestibility) of dilute acid pretreated switchgrass as a 

function of pretreatment process conditions (acid loading, 0-1.5 vol%, temperature, 165-

195oC, and  residence time, 1-10 min). This project was the first study that used a multi-

variable design experimental series to directly compare the pretreatment effectiveness 

(product yield, biomass composition and appearance, pH, etc) of using conventional and 

microwave heated reactors.  

 

Microwave-pretreated switchgrass afforded up to a 100% higher total glucose 

yield (combined pretreatment and enzymatic-hydrolysis liquor yields) at equivalent 

pretreatment severity and at one tenth of the reaction time, relative to conventional 



 xiii  

pretreatment. Under best pretreatment conditions of 0.75 vol% acid, 195oC, 1 min 

residence time, 99% glucose yield and 99% hemicellulose removal were achieved.  

 

Kinetic parameters were estimated for the cellulose and xylan hydrolysis reactions 

in the pretreatment liquor and the solid residue. The kinetic model gave an average 

correlation coefficient of 0.93 for all reactions. In addition, the combined severity factors 

(CSF) were also determined for each experiment. Highest observed enzymatic glucose 

yield corresponded to a CSF of 1.7. 

 

A mass and energy balance, and economic analysis based on production scale was 

developed for both reactor systems. The microwave pretreatment process theoretically 

yielded 48% more ethanol relative to the conventional process. For microwave 

pretreatment to be commercially viable, two criteria must be met. One, the cost for large-

scale continuous microwave reactors would need to be significantly lower than current 

estimates. And second, higher solids content must be used (>20 wt% in the slurry) to 

maximize output. 
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1.0 BACKGROUND AND SIGNIFICANCE 

 

Gasoline is a petroleum-derived liquid mixture consisting of 5-to-12-carbon 

hydrocarbons, including parrafins, naphthenes, aromatics, olefins, and hazardous 

chemicals (5 to 35 percent by volume) such as benzene (to increase the octane rating), 

toluene, naphthalene, trimethylbenzene, and methyl tert-butyl ether (MTBE) (Kaufmann 

and Shiers, 2008). 

 

Global petroleum consumption has reached 84,035,000 barrels per day, with U.S. 

petroleum consumption at 20,802,000 barrels per day. Current U.S. motor gasoline 

consumption is 384.7 million gallons per day, or 140 billion gallons annually. The US is 

set to consume 290 billion gallons of gasoline a year in cars and trucks by 2050. Inflation 

adjusted gasoline prices have skyrocketed from $1.35 to $3.22 per gallon from 1998 to 

2008. (Energy Information Administration, 2008) 

 

Worldwide energy consumption for 2007 was approximately 5x1017 BTUs 

(British Thermal Units) according to the Energy Information Administration (Energy 

Information Administration). The US accounts for about 27% of this consumption 

(Energy Information Administration, 2008a). The agency projects global energy 

consumption to surpass 7x1017 BTUs by 2030. More than 50% of the projected increase 

in global energy demand over the next twenty years is attributed to the growing 

economies of China and India, which currently account for approximately 18% of global 
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energy consumption. This increase offsets the 17% projected decline in the US share of 

global energy consumption by 2030. (Energy Information Administration, 2008)  

 

In the long term, fossil fuels are not projected to satisfy the growing global energy 

demand. Many industry experts predict that the world will face a “peak oil” situation 

within the current century. Estimates on the data for “peak oil” vary from 2010 to 2030. 

Models by Campbell and Laherrere (1998), USGS (2000), IEA World Energy Outlook 

(Energy Information Administration, 2008), and Jackson (2007) alternatively project 

peak oil to arrive by 2010, 2023, 2030, and after 2030, respectively. Differences in the 

estimated dates for peak oil result from varying estimates of the magnitude of untapped 

reserves. Current estimates for crude oil long-term availability range from 0.8 to 2.9 

x1012 barrels (Kaufmann and Shiers, 2008). 

 

There is tremendous interest in the commercialization of alternatives to 

petroleum-derived fuels. This is a direct result of the increasing global energy demand, 

uncertainty of crude oil supplies, and environmental impacts from the use of these fossil 

fuels. In addition, there is also concern about US dependence on the use of foreign oil 

supplies and the price fluctuations caused by geo-political situations. One example is the 

1973 Arab oil embargo, which resulted in spikes in crude oil prices four times over a 12-

month period. This resulted in a US recession, and a 3% decline in the US gross domestic 

product (Hirsch, 2008). 
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Studies have shown that global climate change is a result of forced warming due 

to greenhouse-gas emissions (Hegerl et al., 2007). These greenhouse gases (i.e., carbon 

dioxide, methane, and nitrous oxide), account for more than 50% of the overall 

greenhouse effect and are liberated by fossil fuel combustion (Schnoor, 2005). Therefore, 

the projected increase in energy demand will result in an increased use of fossil fuels and 

greenhouse emissions. Carbon dioxide emissions are projected to increase from 2x1010 

tons in 1990 to over 4x1010 tons by 2030 (Energy Information Administration, 2008a). 

Sulfur and nitrous oxide emissions are other byproducts of fossil fuel combustion. These 

gases are major contributors to acid rain, which is harmful to freshwater sources, forests, 

soils, and buildings, in addition to adversely affecting human health (Demirbas, 2004). 

 

Coal and crude oil together represented over 60 percent of domestic energy 

consumption in 2007. Approximately 60% of the total crude oil in the US is refined into 

motor gasoline. Renewable energy represents less than eight percent, with only half 

obtained from biomass. However, 9.2 percent of energy usage in Europe is derived from 

renewable resources, with some countries using as much as 41 percent. (Energy.eu, 

2006). The Department of Energy (DOE) and the US Department of Agriculture (USDA) 

have both reported that over 1x1019 tons of biomass can be harvested to displace up to 30 

percent of current fossil fuel usage (Perlack et al., 2005).  

 

A comprehensive renewable energy plan is necessary to the meet the projected 

global energy usage and address environmental concerns associated with fossil fuels. 
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Renewable energy sources such as biomass, geothermal, hydroelectric, solar, and wind 

are important parts of an environmentally sustainable energy plan.  

 

Biofuels (e.g., bioethanol, biodiesel, and biobutanol) play a key role in this energy 

plan. Biofuel are produced by the process of converting organic matter into a combustible 

fuel as a replacement for fossil fuel. This replaces oil and natural gas, focusing on the use 

of organic matter in the efficient production of liquid and gaseous biofuels, which yield 

high net energy gains. This alternative fuel source can be derived from biomass, which is 

a readily renewable energy source, unlike other natural resources such as petroleum, coal, 

or nuclear fuels. They offer several advantages over fossil fuels: usage of a renewable 

resource, reduced greenhouse emissions, decreased dependence on foreign oil, and 

stimulation of the agricultural sector (Sun, 2005). These alternatives have the potential to 

replace a significant amount of gasoline in the transportation sector. 

 

1.1 Lignocellulosic biomass 

 

Biomass consists of harvested plant-derived materials that are abundant, 

inexpensive, and potentially convertible to fuel by fermentation processes. The material 

can be found as starch in corn, wheat, potatoes, cassava, and other agricultural products 

and as monomeric sugars or soluble oligomers in corn syrup, molasses, raw sugar juice, 

sulfite waste liquors. (Ng, 1983) 

 



 5

Current energy-crop production competes for fertile land with food (corn, rice, 

sugar, and wheat) and their residues (e.g., corn stover or soybean hulls). This also 

increases pollution from fertilizers and pesticides, and is harmful to the biodiversity of 

the land (Tilman, 2006). One primary objection to food-based energy crop production is 

that it could divert agricultural production away from food crops. This could lead to 

greater food shortages in both the poor and developed countries. There was a 20-million-

ton increase in world grain consumption in 2007, roughly 1%. A large component of that 

– 14 million tons – was used to fuel cars in the U.S. This leaves only six million tons to 

cover growing food needs. (US Department of Agriculture, 2007) The key to lessening 

demand for grain is to commercialize biofuel production from low-input crops such as 

lignocellulosic biomass in the form of perennial grasses, wood chips, crop residues, forest 

and mill residues, and urban refuse. (Ng, 1983). 

 

Naturally occurring lignocellulosic materials, as shown in Figure 1, have 

carbohydrate-rich cellulose and hemicellulose fibers that are surrounded by a lignin seal. 

This forms a complex structural matrix that is resistant to enzymatic hydrolysis. The 

hemicellulose fibers act like a glue that fill the voids between and around cellulose and 

hemicellulose fibers. The lignin acts as a protective sheath, thus providing the rigid 

characteristics. This structure reduces accessibility to the polysaccharide molecules. 

Hence, removal of the hemicellulose and lignin greatly enhances polysaccharide 

accessibility. The carbohydrate and lignin composition differs based on the plant species 

(Sun, 2005). 
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Figure 1: Lignocellulosic structure 

 

In addition to the lignin seal, cellulose chains are held together laterally by 

intermolecular hydrogen bonds (Fengel and Wegener 1984). These intramolecular 

hydrogen bonds form between repeating glucose units (Fengel and Wegener 1984). The 

combined effect of the bonding energies of the hydrogen bonds increases the rigidity of 

cellulose, causing further insolubility and resistance to hydrolysis. 

 

1.1.1 Cellulose 

 

Cellulose fibers are highly stable homopolymer chains of β-D-glucose units that 

are linked via β-1-4 glycosidic bonds. The basic repeat unit of cellulose is cellobiose, 

which consists of two glucose molecules. This linearity of the cellulose chains results in a 

highly ordered packing of cellulose chains that interact via inter- and intra-molecular 
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hydrogen bonds involving the hydroxyl groups and hydrogen atoms of adjacent glucose 

units. As a result, cellulose fibers contain both crystalline fibers and some amorphous 

regions. In a biomass feedstock, cellulose is the primary reservoir of glucose, the desired 

fermentation substrate. However, overcoming the crystallinity of the cellulose fibers is a 

major obstacle for efficient enzymatic hydrolysis (Fengel and Wegener 1984). 

 

 

 

Figure 2. Cellulose structure 

 

1.1.2 Hemicellulose 

 

Hemicellulose is an amorphous biopolymer. These heteropolymer fibers vary in 

structure and composition, and are composed of five-carbon sugars such as xylose and 

arabinose, and six-carbon sugars such as galactose and mannose.  Switchgrass contains 

two primary types of hemicellulose: arabinoxylan and glucomannan. Arabinoxylan, 

which consists of a xylan backbone made up of β-1,4-linked D-xylose units with frequent 

arabinose side chains, is the dominant hemicellulose component (Fengel and Wegener 

1984). The presence of arabinose side chains reduces hydrogen bonding, which 

contributes to the low crystallinity of hemicellulose. Glucomannan is the minor 
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hemicellulose component. This component is a copolymeric chain of glucose and 

mannose units. Intermittent branching in glucomannan also contributes to the low 

crystallinity (Fengel and Wegener 1984). 

 

 

Figure 3. Hemicellulose (xylan) structure 

 

1.1.3 Lignin 

 

Lignin is a stable, high-molecular-weight compound built of phenylpropane units: 

p-coumaryl alcohol, coniferyl alcohol, and synapyl alcohol. These units are referred to as 

monolignols. Lignin has a highly complex structure and is difficult to illustrate as basic 

structural units. The proportions of these components vary based on the type of 

lignocellulosic material. Switchgrass is comprised of equal portions of all three 

monolignols. There are many types of carbon-carbon and ether bonds between individual 

monolignols. As a result, a complex lignin structure consisting of dimers, trimers, and 

tetramers is formed by random linkages. The carbon-carbon bonds are the strongest, 

contributing the major part of the barrier nature of lignin (Fengel and Wegener 1984).  
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Figure 4. Lignin structure 

 

1.2 Switchgrass 

 

To be sustainable, biomass production must not interfere with existing food-crop 

production. One means of addressing this is to grow and harvest biomass must be 

harvested on marginal lands not currently in production. There are approximately 202 

million acres of agriculturally abandoned and degraded land in the U.S. that can be used 

to grow energy crops such as perennial grasses (Tilman, 2006). These grasses are 

commonly used as fodder crops, and contribute to the energy supply on farms through the 

use of draft animals (Lewandowski, 2003). Perennial grass is one energy-crop candidate 

that can be produced on most agricultural land resources, many of which are not suitable 

for row crops. These grass crops have the potential to achieve high growth rates on more 

marginally productive croplands where erosion is a concern and soil stabilization is 

needed (Tolbert, 1998) This development also has the potential for stimulating the 

agricultural sector by providing a new source of income for farmers (Alizadeh, 2005).  
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Switchgrass (Panicum virgatum, L., Poaceae), as shown in Figure 5, is a warm-

season, sod-forming, tall grass, which combines good forage attributes and soil-

conservation benefits. This North American native perennial grass belongs to the 

subfamily Panicoideae of the Gramineae family. This species is commonly associated 

with the natural vegetation of the Great Plains and the western Corn Belt and is widely 

distributed in grasslands and non-forested areas throughout North America east of the 

Rocky Mountains. This grass has been planted in pasture and range-grass mixtures for 

many years and has become increasingly important as a pasture grass because of its 

ability to be productive during the hot months of summer, when cool-season grasses are 

less productive. In southern parts of the US, switchgrass can grow to more than three 

meters tall and develop roots to a depth of more than 3.5 m (Blake, 2008). 

 

 

Figure 5. Switchgrass 

Source: (Elberson, 2009) 
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Switchgrass can be harvested in a variety of soil types. Further, it is heat and 

drought tolerant, while growing well on soils that are shallow and rocky. It is also 

tolerant to wet areas, environmental restoration, and crop-management treatments. 

Switchgrass can be easily integrated into existing farming operations because 

conventional equipment for seeding, crop management, and harvesting can be used. This 

grass can grow on sand to clay loam soils and can tolerate soils with pH values ranging 

from 4.9 to 7.6. Annual yields have been reported to be between 11.1 and 34.6 Mg dry 

mass per hectare (Lewandowski, 2003). Blake (2008) reported that switchgrass can yield 

between 500 and 1,000 gallons of ethanol per acre using existing technology. 

 

Table 1. Switchgrass forage yield cited in the literature 

Reference Region Yield, Mg ha-1 
Lewandowski et al. Texas 13.2 
Lewandowski et al. Upper South 12.1 
Lewandowski et al. Alabama 26.0-34.6 
Lewandowski et al. Britain 11.1 

 

1.3 Pretreatment 

 

A primary technological challenge in converting lignocellulosic biomass into fuel 

is overcoming the recalcitrance of its matrix to enzymatic hydrolysis. To overcome these 

problems for chemical processing, naturally occurring cellulosic biomass must be 

pretreated before it can be enzymatically hydrolyzed. Pretreatment is one of the most 

expensive and least technologically mature conversion steps in the cellulosic ethanol 

process (Laser, 2001). The purpose is to transform the lignocellulosic structure into a 

usable fermentation substrate. Economic viability of the pretreatment process depends on 
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its ability to minimize energy demands and limit costs, such as feedstock size reduction, 

materials of construction, and treatment of process residues (Mosier, 2003). 

 

To qualify as effective, a pretreatment must meet the following criteria: 1) it 

maximizes the fermentable glucose yield, 2) it minimizes the formation of fermentation 

inhibitors from sugar degradation, and 3) it is economically efficient. Principal substrate 

factors that have been correlated with pretreatment effectiveness include increased 

cellulose pore volume and hemicellulose and lignin removal. 

 

Pretreatment processes can be loosely grouped into three categories: physical, 

microbial, and chemical. Physical pretreatments, which demand large amounts of energy, 

employ purely mechanical means to reduce feedstock particle size, thus increasing 

surface area available for enzymatic hydrolysis. Examples of such processes include ball 

milling and compression milling. The primary issue associated with physical 

pretreatments is the relatively high energy cost. Microbial pretreatment uses 

microorganisms to remove lignin and improve enzymatic cellulose digestibility. An 

example of such processes is the use of the fungus Cyathus stercoreus to improve 

hydrolysis. The primary issues associated with microbial pretreatment include slow 

kinetic and high economic considerations (Hu, 2007). Chemical pretreatments use a 

variety of chemicals as pretreatment agents: water, acids, alkalis, organic solvents, 

oxidizing agents, and supercritical fluids. Dilute acid, liquid anhydrous ammonia, lime, 

and ionic solvent pretreatments have emerged as particularly effective chemical methods 

(Laser, 2001).  
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1.3.1 Chemical pretreatment 

 

 Chemical pretreatment has been a widely explored approach to overcoming the 

recalcitrance of natural biomass. Many acids, bases, and other chemicals promote 

hydrolysis and improve fermentable sugar yield through the removal of hemicellulose 

and/or lignin. An extensive array of chemical pretreatment options such as the use of 

oxidizing agents, acids, bases, and other solvents have been investigated. Oxidizing 

agents tested include alkaline peroxide, sodium and calcium hydroxide, ozone, dioxane, 

and peroxyacid (organosolv). Acids evaluated include sulfuric acid, hydrochloric acid, 

phosphoric acid, and nitric acid. Chemical solvents such as ammonia, aprotic solvents 

(i.e., DMSO), and metal complexes have been explored. These chemicals have shown 

varying degrees of effectiveness in reducing cellulose crystallinity, disrupting the lignin 

matrix, and dissolving cellulose (Hu, 2007). 

 

Reaction time, together with temperature and pH, has been reported to influence 

the pretreatment severity or harshness. Several studies expressed pretreatment severity in 

terms of a combined severity factor (CSF), that account for multiple process conditions. 

(Schell, 2003; Kabel, 2006; Chum, 1990) The CSF can be used to determine the best set 

of experimental parameters required to balance the maximization of hemicellulose and 

lignin removal with the minimization of glucose degradation, enabling further use of the 

remaining cellulose (Garrote, 1999). The proposed severity factor is based on an 

approximation to Arrhenius temperature behavior, but is not limited to first-order kinetics 
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and allows the well-known reduction in reaction rate with extent of reaction to be 

accommodated. The formalism presented here linearizes the temperature behavior for 

convenience, and is equivalent to the Arrhenius formal treatment. The CSF provides a 

method for consolidating the effects of pretreatment temperature, residence time, and 

acid concentration into a single parameter, which can be useful for analyzing results. This 

factor is dependent on process conditions, and does not reflect any physical parameter. 

CSF is calculated by equation 1: 

 

(1) pHetCSF
T

−









×=

−

75.14

100

10log  

 

where t is the reaction time in minutes, T is the reaction temperature in degrees Celsius, 

and pH is the final pH of the pretreatment liquor. This equation is based on several 

assumptions. First, the practical operating range span –4 to 3, with highest observed 

hemicellulose removal at CSF values between 1.4 and 1.7 (Schell, 2003). Low calculated 

CSF values (-4 to 0) represent less harsh conditions (i.e. relatively low temperatures, 

residence time, and acidity). High values (0 to 3) represent harsher conditions (i.e. 

relatively high temperatures, residence time, and acidity). Second, the practical 

temperature operating range is between 100 and 230oC. Temperatures exceeding 230oC 

will drive significant thermal degradation of all polysaccharides and monosaccharides, 

leaving behind mostly lignin in the product (which is not usable for microbial digestion). 

Third, since the CSF equation is based on the Arrhenius equation for acid catalysis, liquor 

pH of 7 or less can only be used. (Chum, 1990) 
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1.3.2 Acid hydrolysis 

 

There are numerous reactions that take place in aqueous sulfuric and other strong 

acid media. This includes hydrolyses, dehydrations, hydrations, isomerizations, 

electrophilic substitutions, aromatic rearrangements, carbonyl reactions, and a number of 

other reactions. (Cox, 1987)  

 

Sulfuric acid has also been added to cellulosic materials for many years, 

particularly in the pulp-and-paper manufacturing bleaching process (Root et al., 1959; 

Zeitsch, 2000). This acid has been widely used and studied for pretreatment. In this work, 

sulfuric acid was used to catalyze the hydrolysis of polysaccharides found in biomass.  

 

 The molecular mechanism of acid-catalyzed cellulose hydrolysis is represented by 

the cleavage of the β-1-4-glycosidic bond (Xiang, 2003). This is a homogeneous reaction 

in which the acid catalyzes the breakdown of cellulose to produce oligomers (cellobiose) 

and monosaccharides (glucose). The rate of thermal induced degradation is accelerated in 

the presence of water, acids and oxygen. As the temperature increase, the degree of 

polymerization of cellulose decreases further, free radicals appear and carbonyl, carboxyl 

and hydroperoxide groups are formed. This undesirable and independent reaction 

involves the breakdown of glucose to form degradation products, such as xylitol, succinic 

acid, L-lactic acid, glycerol, acetic acid, ethanol, 5-hydroxy-2-furaldehyde, and furfural 
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(Hu, 2008). Excessively severe conditions such as high acid loading or high temperatures 

can result in oxidative degradation of carbohydrates, yielding fermentation inhibitors 

(Mosier, 2003). 

 

Kinetic modeling plays a key role in the design, development, and operation of 

reactors. Kinetic data are also vital in the design and evaluation of processes to hydrolyze 

cellulosic materials to glucose for ethanol conversion (Conner, 1985). 

 

Cellulose hydrolysis depends on the reaction rates for glucose formation and 

degradation. The overall system can be modeled as two consecutive pseudo-first-order 

reactions proceeding independently. The rate constants are functions of the acid loading 

and reaction temperature (Conner, 1985). 

 

(2) CBA →→  
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Figure 6. Cellulose hydrolysis reaction 

 

where  

• A represents crystalline cellulose 

• B represents glucose monomers 

• C represents glucose degradation products  

 

The challenge arises because the processing conditions required for the breakdown of 

crystalline cellulose (A→ B) also contribute to glucose degradation (B → C) (Grethlein, 

1975). 
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1.4 Conventional heating  

 

Conventional chemical process heating is based on conduction, i.e., superficial 

heat transfer from a region of higher temperature to a region of lower temperature. An 

external heating source must be used (e.g., a Bunsen burner, electric plate heater, oil bath, 

or heating mantle). Most batch-pretreatment reactors use conduction to heat the biomass 

contents to reaction temperature. The contents are typically fed into a corrosion-resistant 

vessel (e.g., stainless steel or glass) and heated using a steam- or electrically heated 

jacket. These vessels are typically sealed, allowing for high internal pressure generation 

(Kappe, 2005). 

 

Conductive heating is reported to be a relatively slow and inefficient method for 

transferring energy into the reaction system. This process depends on convection currents 

and on the thermal conductivity of the penetrated materials. The temperature of the 

reactor is often higher than that of the contents. This process does not offer precise 

temperature control, and energy transfer is not uniform. For steam-jacketed systems, this 

creates uneven distribution. As a result, superheated steam typically collects in the upper 

portion of the jacket, with cooler condensate collecting near the bottom. Internal hot spots 

also develop around hot steam inlet nozzles, adding to the problem of uneven product 

heating. This increases the likelihood of product burn-on and local overheating. Further, a 

temperature gradient can develop within the contents. This can result in local overheating 

causing product decomposition (Kappe, 2005). 
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1.4.1 Mechanism 

 

Conduction is the transfer of heat or electricity through a substance, resulting 

from a difference in temperature between different parts of the substance, in the case of 

heat, or from a difference in electric potential, in the case of electricity. Since heat is 

energy associated with the motions of the molecules making up the substance, it is 

transferred by such motions, shifting from regions of higher temperature, where the 

particles are more energetic, to regions of lower temperature. The rate of heat flow 

between two regions is proportional to the temperature difference between them and the 

thermal conductivity of the substance. In solids, the molecules themselves are bound and 

contribute to conduction of heat mainly by vibrating against neighboring molecules; a 

more important mechanism, however, is the migration of energetic free electrons through 

the solid (The Columbia Encyclopedia, 2008). 

 

1.4.2 Pretreated switchgrass using conventionally heated reactors 

 

 There are numerous cases of conduction-heated (conventional) switchgrass 

pretreatments in the literature. For example, Alizadeh (2005) pretreated switchgrass in a 

300-mL stainless steel bench-top pressure vessel (PARR Instrument Co., IL) using liquid 

anhydrous ammonia. Different biomass moisture levels (40 to 100 weight percent), 

ammonia loading (0.8 to 1.25 kg ammonia:kg biomass), and reaction temperatures (80 to 

100oC) were investigated. The highest observed pretreatment conditions (80 weight 
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percent biomass moisture, 100°C reactor temperature, and 1:1 kg ammonia: kg 

switchgrass) resulted in up to a fivefold increase in cellulose saccharification relative to 

non-pretreated biomass. Dilute-acid pretreated switchgrass examples in the literature are 

shown in Table 2. 

 

Table 2. Conventional pretreated switchgrass in the literature 

Reference Pretreatment Condition Result 
Alizadeh 2005 Switchgrass 

Ammonia 
40-100 wt % solids 

Amm 0.8-1.25 vol.% 
80-100oC 

93% cellulose 
conversion 

Wyman 1992 Switchgrass 
Sulfuric acid 

140oC 
1 hour 

0-0.5 vol.% acid 

70% cellulose 
conversion 

Dien 2006 Switchgrass 
Sulfuric acid 

10 wt% solids 
0-2.5 vol.% acid 

150oC 

76% cellulose 
conversion 

 

 

1.5 Microwave heating 

 

Microwave irradiation is an alternative approach to conduction heating, and has 

proved to be a highly effective heating source in chemical reactions. Irradiation uses 

direct interaction between the heated object and an applied electromagnetic field to 

generate heat. This heating mechanism can accelerate the reaction rate, provide better 

yields and uniform and selective heating, and achieve greater reproducibility of reactions 

(Kappe, 2005). Other cited advantages include reduction of process-energy requirements 

and the ability to instantaneously start and stop the process (Datta, 2001; Gabriel et al., 

1998). 
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1.5.1 Mechanism 

 

Microwaves fall between the infrared and radio-frequency region of the 

electromagnetic spectrum. This region corresponds to a frequency range of 300 MHz to 

30 GHz. Most domestic and industrial microwave systems operate at either 900 MHz or 

2.45 GHz to avoid interference with RADAR transmissions and telecommunications. 

(Sridar, 1998) 

 

A microwave photon carries only 1 joule per mole of energy, which is not enough 

to induce any chemical activity in materials. As a result, microwave radiation by itself 

cannot render any significant reactions in materials. However, microwaves interact with 

polar molecules and ions in a material, causing acceleration in chemical, biological, and 

physical processes. Depending on the dipole moment, individual polar molecules will 

react differently to microwave radiation. These interactions result in both thermal and 

non-thermal effects that drive physical, chemical, or biological reactions. (Sridar, 1998) 

 

Thermal effects are driven by the oscillating nature of the microwaves. This 

causes the polar molecules to vibrate at a rapid rate (Figure 7). The molecules realign 

themselves to match that of the electric field. The repeated vibration induces friction 

between the polar molecules, and the entire system, generating heat within the system. 

The rate of change of the electric field is relatively close to the response time of the polar 

molecules at the microwave-frequency range. Polar molecules are not able to respond fast 
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enough at higher frequencies, hence no vibration or heat generation. Conversely, polar 

molecules realign themselves at a slow rate at lower frequencies, resulting in little heat 

generation. (Sridar, 1998) 

 

 

Figure 7. Molecular oscillations of polarizable substances under the influence of an 

alternating electric field. 

 

Ionic conduction is another mechanism that induces thermal effects. Ionic species 

that are dissolved in liquids or solids are excited, and orient themselves with the changing 

direction of the electric field. The ions collide with one another, generating heat within 

the system. (Sridar, 1998) 

 

Ooshima (1984) reported that cellulosic materials are heated internally upon 

microwave irradiation. The lignocellulosic structure – cellulose, hemicellulose, water, 
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and other low–molecular-weight compounds such as organic acids –absorb microwave 

radiation as kinetic energy. The polar molecules and their neighboring clusters are forced 

to orient themselves to a specific direction, followed by a shock of the polar molecules 

when the field is reversed (Ooshima, 1984). 

 

Non-thermal effects are also believed to complement the thermal effects of 

microwaves. Hu (2007) reported that microwave irradiation causes a physical 

“explosion” effect among the microfibers, causing the disintegration of the recalcitrant 

structures of the biomass. Further, the electromagnetic field used in microwaves is 

believed to produce physico-chemical effects that also accelerate the breakdown of the 

crystalline regions.  

 

Figure 8 shows a model of an inverted temperature gradient in microwave (left) 

versus oil bath (right) heating. The model assumes contents in the test tube that requires a 

target reaction temperature of 475oC. As illustrated, a temperature gradient can develop 

within the test tube and contents. Since the test tube on the left is transparent to 

microwaves, only the sample is heated, and not the test tube walls. However, the test tube 

and the sample are both directly heated in the conventional heated system (right). This is 

evident by the entire test tube showing temperatures near 500oC. This leads to high 

localized overheating (hot spots), which can cause product decomposition (Kappe, 2005). 
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Figure 8. Inverted temperature gradient in microwave (left) versus oil bath (right) heating 

(Source: Kappe, 2005) 

 

 

1.5.2 Switchgrass pretreatment using microwave reactors 

  

The first reported use of microwave pretreatment of lignocellulose was Ooshima 

et al. (1984). Ooshima showed the benefit of microwave-assisted water pretreatment of 

rice straw and bagasse relative to untreated biomass. Zhu et al (2006) investigated 

microwave-assisted stepwise alkali/acid/peroxide pretreatment of rice and wheat straw. 

However, the sugar yield based on dry weight of untreated original materials was not 

provided. Therefore, it is not possible to compare these results with other pretreatment 

methods. Zhu et al. also used an uncovered beaker to boil the straw-alkali solution in the 

microwave. Here, volume loss due to evaporation may be significant since a relatively 

long reaction time of 60 minutes was used (Hu, 2007). Table 3 summarizes microwave 

pretreated biomass reported in the literature to date. 
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Hu (2007) investigated microwave-assisted alkali pretreatment of switchgrass, 

comparing conventional and microwave heating by varying the alkali loading, but using a 

fixed temperature (190oC) and residence time (5 minutes). Therefore, the effects of 

temperature and time, and interactions thereof, were not directly compared for both 

reactors. In addition, dilute acid pretreatment has been proven to be a more effective 

method for hemicellulose removal relative to alkali pretreatment. Studies done by 

Eggeman (2005) showed xylose yields of 89.7% and 0.8% for dilute acid and alkali, 

respectively.  

 

Table 3. Microwave-pretreated switchgrass in the literature  

Reference Pretreatment Condition Result 
Ooshima 1984 Rice straw 

Sealed vessel 
Water 

5 wt% solids 
170-230oC 

Increased enzymatic 
hydrolysis by 2.3 vs. 

untreated 
Hu 2008 Switchgrass 

Sealed vessel 
Sodium hydroxide 

5 wt% solids 
 

0.05 to 0.3  
g alkali/g  

 
70-90oC 

Increased enzymatic 
hydrolysis by 5.1 vs. 

untreated 

 

A more thorough and direct comparison of conventional heated vs. microwave 

irradiated reactors would be necessary for determining the highest observed and most 

cost effective pretreatment approach. This information can be used for the development 

of a large-scale microwave-based pretreatment process. The hypothesis is that microwave 

pretreatment requires lower pretreatment severity (and energy consumption) to achieve 

comparable glucose yields relative to conventionally heated pretreatment. 
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2.0 MATERIALS AND METHODS 

 

2.1 Materials 

 

 Cellulose and lignocellulosic substrates were pretreated in conventional and 

microwave-heated reactors, using the specific materials and methods as follows. 

 

2.1.1 Substrates 

 

 Avicel® micro-crystalline cellulose (Sigma Aldrich; St Louis, MO) was used as a 

pure cellulose control. Microcrystalline cellulose is cellulose derived from high-quality 

wood pulp. While cellulose is the most abundant organic material, microcrystalline 

cellulose can only be derived from a special grade of alpha cellulose.  

 

 Whatman paper (Piscataway, NJ) was also used as a pure cellulose control. These 

cellulose filters are comprised of high-quality cotton linters that have been treated to 

achieve a minimum alpha cellulose content of 98%. The paper samples were ground to a 

powder using a household coffee grinder prior to pretreatment. 

 

Switchgrass (National Renewable Energy Laboratory, Golden, CO) was used as 

the experimental biomass. The air-dried and pre-cut switchgrass was also ground to a 

powder using a household coffee grinder prior to pretreatment. The composition of the 

switchgrass (on a dry basis) from an average of three randomly selected samples from the 
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lot was 30.1+0.4% cellulose, 29.3+0.6% xylan, and 23.8+0.8% lignin (acid soluble and 

insoluble). Figure 9 shows the untreated experimental switchgrass. 

 

Figure 9. Experimental switchgrass 

 

2.1.2 Acid 

 

Dilute sulfuric acid solutions (0, 0.75, and 1.5 vol.%) were prepared and used as 

the pretreatment catalyst.  

 

2.1.3 Cellulase Enzyme 

 

A cellulase enzyme from Trichoderma reesei organism (Sigma Aldrich; St Louis, 

MO) was used for enzymatic hydrolysis of the solid residue for glucose production.  

 

2.2 Pretreatment 

  

Conventionally and microwave heated reactors were used to pretreat the 

substrates prior to enzymatic-hydrolysis. 
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2.2.1 Conventionally heated reactor 

 

Conventional heating pretreatment was performed using a 500-mL stainless-steel 

reactor vessel (PARR® High-Temperature, High-Pressure Reactor Model 4575A; Parr 

Instrument, Moline, IL). This fixed-head reactor (Figure 10) has a 1,500-Watt / 115 V 

electric heater and is capable of heating contents up to 500oC and 5,000 psi. The head is 

equipped with a gas inlet/liquid sampling port with valves and a dip tube, pressure gauge 

(SS, 0-7,500 psi), gas-release valve, single-loop serpentine cooling coil, thermowell with 

type J thermocouple, and a footless magnetic stirrer. The reactor is constructed of 

T316SS stainless steel and has dimensions of 16.5” in width, 23.5” in diameter, and 43” 

in height. The conventionally heated reactor was charged with 4 weight-percent solids 

(10 grams of ground switchgrass immersed in 250 mL of solution). 

 

 

Figure 10. PARR® High-Temperature, High-Pressure Reactor Model 4575A 
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2.2.2 Microwave-heated reactor 

 

Microwave irradiation pretreatment was conducted using a CEM Explorer 48 

(CEM, Inc., Matthews, NC). The microwave reactor (Figure 11) contains 48 positions for 

10-mL vessels or 24 positions for 35-mL vessels. The reactor is capable of using up to 

300 Watts of power, obtaining a 300-oC maximum temperature, and a 300-psi maximum 

pressure. The biomass and contents were sealed in 35-mL glass vessels and irradiated to 

the specified process conditions. The microwave reactor was also charged with 4 weight-

percent solids (0.6 grams of ground switchgrass immersed in 15 mL of solution). 

 

 

Figure 11. CEM Explorer 48 Microwave Reactor 
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2.3 Enzyme hydrolysis 

 

In accordance with National Renewable Energy Laboratory Procedure 009 for 

“Enzymatic Saccharification of Lignocellulosic Biomass”, pretreated samples (0.1 gram 

cellulose equivalent) were hydrolyzed batchwise with 60 FPU/gram cellulose in a 

jacketed cylindrical glass vessel under agitation (150 rpm) at 50°C and at pH 4.8. 

Samples (0.5 mL) were taken continuously from the bioreactor over a three-day period at 

eight-hour intervals and the glucose concentrations determined.  

 

2.4 Analysis 

 

A High-Performance Liquid Chromatograph (HPLC; Dionex, Sunnyvale, CA) 

was used for chemical analysis. This HPLC uses a 0.005 M sulfuric acid solution as the 

mobile phase, flowing at 0.6 mL per minute at 30oC. Biomass carbohydrates, acid-soluble 

lignin, and acid-insoluble lignin were measured using the methods described in NREL 

Laboratory Analytical Procedure (LAP #002) for ‘‘Determination of Structural 

Carbohydrates and Lignin in Biomass’’. Carbohydrates (monomeric sugars) and other 

chemical species (acetic acid, 5-hydroxymethanol furfural, and furfural) in the 

pretreatment liquor were measured in accordance with NREL Laboratory Procedure 

entitled “Determination of Sugars, Byproducts, and Degradation Products in Liquid 

Fraction Process Samples”. These methods are outlined in Appendix 2. 
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A scanning electron microscope was used to assess the porosity of the samples. 

The LEO 435 Variable Pressure SEM offers high-performance with a resolution of 4 nm. 

Its 5 axis computer controlled stage is mounted in a specimen chamber measuring 300 x 

265 x 190 mm. The samples were sputter coated with gold and imaged with secondary 

electrons at 10mm working distance and 45 degrees of specimen tilt.  The beam 

conditions were 30Kv and 25 picoamps.  The original images were stored in TIFF format.  

They were converted to JPEG format and corrected for brightness, contrast, and gamma 

for electronic transmission.  No other image enhancement or modifications were applied. 
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3.0 EXPERIMENTAL PLAN 

 

The goal was to develop a model that predicts combined glucose yield 

(pretreatment and enzymatic hydrolysis) of dilute acid-pretreated switchgrass as a 

function of pretreatment process conditions. A direct comparison of the pretreatment 

effectiveness of conduction heating and microwave irradiation heating was made. 

 
Our hypothesis was that microwave pretreatment can enhance glucose yields 

relative to conventionally heated pretreatment. Previous reports in the literature suggest 

that microwave irradiation contributes to a reduction in cellulose crystallinity caused by 

more efficient heating and a physical separation between the fibers. The increased 

cellulose porosity is believed to allow for increased microbial access and digestion, 

which contributes to increased glucose yields (Hu et al. 2008, Ooshima et al. 1984).  

 
A flow diagram of the proposed pretreatment process is illustrated in Figure 12. 

Experimentally, precut switchgrass samples were pretreated followed by filtering of the 

slurry through a Whatman nylon membrane filter, separating residues and liquid. The 

filtered cakes were dried at 35oC and stored for enzymatic hydrolysis. The liquid fraction 

was collected to determine the glucose, xylose, and degradation product yields obtained 

in the conventional and microwave pretreatment process. The filtered cakes were 

digested using the cellulase enzyme to assess glucose yield. 

 

A three-variable, three-level Taguchi design experiment (Table 4) was used to 

generate experimental data, and gain an understanding of the relationships between 

reactor conditions and their responses. A total of nine runs (plus two replicates) were 
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conducted. Minitab® software (Minitab; State College, PA) was used to analyze the 

multi-variable design experiment results and make a direct comparison between the 

conventional reactor and the microwave reactor. 

 

Table 4: Pretreatment experimental design 
Condition Acid Loading 

Vol% 
Temperature 

oC 
Residence Time 

Minutes 
1 0 165 1 
2 0 180 5 
3 0 195 10 
4 0.75 165 5 
5 0.75 180 10 
6 0.75 195 1 
7 1.5 165 10 
8 1.5 180 1 
9 1.5 195 5 
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Figure 12. Process-flow diagram 

where  

• T (temperature, oC) 

• t (residence time, min) 

• A (acid loading, vol%) 
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4.0 RESULTS AND DISCUSSION 

 

 The pretreatment reactor responses (pressure, biomass composition, pretreatment 

liquor composition, and enzymatic hydrolysis glucose yield) as a function of acid 

loading, temperature, and residence time are presented for the three substrates (Avicel®, 

Whatman paper, and switchgrass) and reactor types (conventional and microwave 

reactors). 

 

4.1 Pressure 

 

The microwave reactor reached final pressures ten times faster than the 

conventionally heated reactor. This is related to the faster heat generation, which is due to 

the direct interaction between the heated object and the applied electromagnetic field as 

opposed to the gradient heating mechanism for the conventional reactor.  

 

The conventionally heated reactor vessel, which was charged with 10 grams of 

biomass and 250 mL of solution), reached 195oC and 300 psi after a 60-minute ramp 

time. The microwave reactor vessel, which was charged with 0.6 grams of switchgrass 

and 15 mL of water, reached 195oC and a 300-psi pressure after a six-minute ramp time. 

Reactor pressures as a function of temperature and ramp time are shown in Table 5 and 

illustrated in Figures A1 and A2. 
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Table 5: Final reactor pressure obtained during experimentation 

Condition Temperature 
oC 

Pressure 
psi 

Conventional 

Ramp time, 
Min 

Pressure 
Psi 

Microwave 

Ramp time, 
min 

1 165 100+5 28+1 100+5 3+1 
2 180 150+5 38+1 154+8 5+1 
3 195 200+6 49+2 240+8 7+1 
4 165 100+4 27+2 100+3 3+1 
5 180 150+6 39+1 151+7 5+1 
6 195 200+4 50+2 220+10 7+1 
7 165 100+3 30+1 100+4 3+1 
8 180 150+4 40+2 160+6 5+1 
9 195 200+5 49+2 230+5 7+1 

 

 

4.2 Biomass 

  

The biomass substrates were assessed for mass loss and discoloration due to 

pretreatment. 

 

4.2.1 Mass loss  

 

Mass loss is the ratio of the change in mass before and after pretreatment to the 

initial mass charged to the reactor. Mass loss is due to polysaccharide hydrolysis, 

decomposition, and lignin removal. Experimental results are presented in Table 6. 

 

Figures A4 through A6 display the Minitab® data means summary analysis 

output. There was no performance difference in mass loss between the two reactors. The 
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analysis shows the influence of acid loading, temperature, and residence time on mass 

loss for the three substrates and both reactors. 

  

The mass loss for all three substrates increased with acid loading and temperature 

for both reactors over the experimental range. As the acid loading and temperature 

increase, the degree of polymerization of the polysaccharides decrease further, free 

radicals appear and carbonyl, carboxyl and hydroperoxide groups are formed, thus 

resulting in more mass loss. Avicel® micro-crystalline cellulose particles are the most 

crystalline of the three substrates (Harris, 2008). As a result, this substrate requires the 

highest amount of pretreatment severity to initiate cellulose hydrolysis; the lower-

crystallinity materials require slightly less severity for cellulose hydrolysis. Switchgrass, 

which contains lower-molecular-weight polymers (hemicellulose), requiring less severity 

for hemicellulose removal.  

 

Increasing acid loading from 0 to 1.5 vol.% resulted in a significant mass loss. 

Avicel®, Whatman paper, and switchgrass lost up to 50, 75, and 90 wt% mass, 

respectively. Increasing temperature from 165 to 195oC resulted in mass loss increasing 

from 12 to 50, 25 to 50, and 50 to 80 wt% for Avicel®, Whatman paper, and switchgrass, 

respectively. 

 

The cellulose and xylan fractions in the switchgrass as a function of pretreatment 

conditions are shown in Figures A6 and A7. Experimental results are presented in Table 

7. The cellulose fraction peaks at 0.75 vol% due to complete hemicellulose removal, and 
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decreases at higher loading thereafter due to cellulose hydrolysis. There was no clear 

relationship between temperature and cellulose fraction, and residence time and cellulose 

fraction. Complete xylan removal occurs at temperatures lower than for cellulose 

removal. This is due to rapid hydrolysis of the more amorphous and lower molecular 

weight hemicellulose. Results show the xylan fraction to rapidly decreases to zero in the 

presence of acid (0.75 vol% and greater), at least 180oC and 5 min residence time.  
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Table 6: Mass loss result summary 

Condition Acid 
loading, 
Vol% 

Temperature 
oC 

Time, 
Min 

Avicel Whatman paper Switchgrass 
Mass loss, % 
Conventional 

Mass loss, % 
Microwave 

Mass loss, % 
Conventional 

Mass loss, % 
Microwave 

Mass loss, % 
Conventional 

Mass loss, % 
Microwave 

1 0 165 1 8 + 1 8 +1 4 + 1 8 + 2 37 + 2 24 + 2 
2 0 180 5 5 + 1 1 +1 11 + 2 18 + 1 34 + 2 39 + 1 
3 0 195 10 4 + 1 13 + 1 5 + 1 1 + 0 0 + 0  0 + 0 
4 0.75 165 5 16 + 1  3 +1  28 + 2 40 + 3 56 + 3 69 + 2 
5 0.75 180 10 50 + 3 47 + 3 46 + 3 56 + 2 81 + 3 59 + 1 
6 0.75 195 1 68 + 4 48 + 4 64 + 2 30 + 1 81 + 4 61 + 2 
7 1.5 165 10 21 + 3 42 + 3 45 + 3 60 + 3 71 + 3 47 + 2 
8 1.5 180 1 37 + 4 47 + 4 75 + 2 70 + 3 83 + 3 52 + 1 
9 1.5 195 5 90 + 8 95 + 8 79 + 2 68 + 3 83 + 2 99 + 1 

 

Table 7: Pretreated biomass composition result summary 

    Conventional Reactor Microwave Reactor 
Condition Acid 

loading, 
vol% 

Temp 
oC 

Time, 
Min 

Cellulose 
Wt% 

Xylan 
Wt% 

Lignin 
Wt% 

Cellulose 
Wt% 

Xylan 
Wt% 

Lignin 
Wt% 

1 0 165 1 29.3 +  0.8 39.8 + 0.5 39.1 + 1.2 32.5 + 0.9 27.5 + 0.6 26.7 + 0.6 
2 0 180 5 31.4 +  0.5 32.9 + 0.4 34.0 + 0.8 38.4 + 0.6 30.9 + 0.8 37.7 + 1.0 
3 0 195 10 84.7 + 0.3 0.0 +  0.0 19.5 + 0.2 63.6 + 1.0 0.0 +  0.0 39.3 + 0.2 
4 0.75 165 5 84.4 + 0.5 0.0 +  0.0 26.9 + 0.8 62.7 + 1.0 0.0 +  0.0 20.0 + 0.2 
5 0.75 180 10 61.4 + 0.6 0.0 +  0.0 41.0 + 1.1 65.0 + 0.9 0.0 +  0.0 41.3 + 0.3 
6 0.75 195 1 56.3 + 0.3 0.0 +  0.0 53.4 + 0.8 54.1 + 0.5 0.0 +  0.0 50.8 + 0.8 
7 1.5 165 10 64.9 + 0.8 0.0 +  0.0 36.0 + 0.9 65.0 + 1.0 0.0 +  0.0 41.0 + 0.2 
8 1.5 180 1 66.6 + 0.7 0.0 +  0.0 39.7 + 0.5 59.7 + 0.9 0.0 +  0.0 25.5 + 0.1 
9 1.5 195 5 6.6 + 0.3 0.0 +  0.0 86.7 + 1.6 0.0 +  0.0 0.0 +  0.0 91.1 + 0.8 

Unpretreated    30.1 + 0.4 29.4 + 0.6 23.8 + 0.8 30.1 + 0.4 29.37 + 0.6 23.8 + 0.8 
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Lignin removal was more difficult in the dilute-acid system due to its insolubility in 

acidic conditions. Increasing acid loading and temperature resulted in higher lignin 

percentage of lignin remaining in the pretreated solids. Since polysaccharide hydrolysis is 

acid- and temperature-driven, this leaves behind a higher portion of lignin in the 

remaining solids. No correlation was found between mass loss and residence time over 

the operating range.  

 

4.2.2 Color  

  

Color changes are a result of substrate decomposition. It is understood that 

lignicellulosic materials contain water-soluble wood extractives that oxidize (under acidic 

and high temperature conditions) and polymerize to form a brown coloration. 

Experimental findings suggest that pretreatment severity influence the final substrate 

color. Figure 13 illustrates switchgrass discoloration due to pretreatment. The color shift 

was negligible under low-severity pretreatment conditions (low ends of the acid and 

temperature experimental ranges). Moderate-severity pretreatment conditions (middle of 

the acid and temperature experimental ranges) shifted the color from natural to brown, 

while high-severity conditions (high ends of the acid and temperature experimental 

ranges) shifted the final color from natural to dark brown.  
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Figure 13. Switchgrass discoloration due to pretreatment 

 

4.2.3 Porosity 

 

 As previously stated, substrate porosity and microbial digestion are directly 

related. The goal was to visually assess the openness within the structure of the samples, 

as an indicator of porosity. A scanning electron microscope (SEM) was used to obtain 

photographs of the unpretreated, conventional, and microwave pretreated switchgrass 

(Figures 14 through 16). The same magnification was used for each sample   (with a 

3x10-5 scale). The unpretreated sample appears rigid and contains a hard, rope-like outer 

shell (Figure 14). The conventional-pretreated sample does not show a rigid outer shell, 

in which the fibers appear to have separated in one direction (Figure 15). The microwave-

pretreated sample appears to be even more open than the conventional-pretreated 

samples, with fiber separation in two different directions (Figure 16). The increased fiber 

separation within the structure can be attributed to the non-thermal effects caused by 

microwave-pretreatment. (Hu 2008, Ooshima 1984) This phenomenon should contribute 

to higher microbial digestion and glucose yield. Glucose yield results will be reported 

later in this study. 
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Figure 14: SEM photograph of unpretreated switchgrass 

 

Figure 15: SEM photograph of conventional-pretreated switchgrass 
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Figure 16: SEM photograph of microwave-pretreated switchgrass 

 

4.3 Pretreatment liquor 

  

The pretreatment liquor was characterized using measurements for pH, glucose, 

xylose, and degradation product yields. 

 

4.3.1 pH 

 

The pH of the pretreatment liquor is an indicator for the presence of sugar-

degradation products and fermentation inhibitors. Since sulfuric acid was added to the 

reactor, our objective was to observe deviations from the sulfuric-acid baseline.  

 

Figures A8 through A10 display the Minitab® data means summary analysis 

output. The analysis shows the influence of acid loading, temperature, and residence time 
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on liquor pH. A decrease in pH is usually a result of the formation of acidic degradation 

products such as succinic acid, acetic acid, lactic acid, etc.  

 
 Performance differences in pH were insignificant between the two reactors. The 

pH obviously decreased with increasing acid loading. As expected, the pH of the three 

substrate liquors significantly decreased with increasing acid loading. However, 

temperature and residence only slightly affected the liquor pH for all substrates and both 

reactors. Experimental pH results are presented in Table 8. The negative pH shift induced 

by temperature is supported by the formation of acetic acid (Figure 18A) and succinic 

acid (Figure 20A) at elevated temperature conditions. This is a result of the formation of 

free radicals, carbonyl, carboxyl, and hydroperoxide groups. 
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Table 8: pH result summary 

Condition Acid 
loading, 
Vol% 

Temperature 
oC 

Time, 
Min 

Avicel Whatman paper Switchgrass 
pH 

Conventional 
pH 

Microwave 
pH 

Conventional 
pH 

Microwave 
pH 

Conventional 
pH 

Microwave 
1 0 165 1 4.8 + 0.1 4.8 + 0.1 5.6 + 0.2 5.8 + 0.2 5.5 + 0.1 5.5 + 0.2 
2 0 180 5 4.7 + 0.2 4.8 + 0.1 3.9 + 0.2 5.0 + 0.1 5.2 + 0.1 5.0 + 0.1 
3 0 195 10 4.4 + 0.1 4.6 + 0.1 4.4 + 0.1 5.0 + 0.1 4.7 + 0.2 4.1 + 0.1 
4 0.75 160 5 1.3 + 0.1 1.0 + 0.0 1.2 + 0.1 1.0 + 0.0 1.4 + 0.0 1.0 + 0.1 
5 0.75 185 10 1.3 + 0.1 1.2 + 0.0 1.5 + 0.0 1.0 + 0.0 1.3 + 0.1 1.1 + 0.0 
6 0.75 190 1 1.3 + 0.1 0.9 + 0.0 1.6 + 0.0 0.8 + 0.0 1.3 + 0.0 1.0 + 0.0 
7 1.5 165 10 1.0 + 0.0 1.1 + 0.0 0.9 + 0.0 0.6 + 0.0 1.0 + 0.0 0.7 + 0.0 
8 1.5 180 1 1.1 + 0.0 0.9 + 0.0 1.2 + 0.0 0.5 + 0.0 1.1 + 0.0 0.9 + 0.0 
9 1.5 195 5 1.2 + 0.0 0.5 + 0.0 1.0 + 0.0 0.5 + 0.0 1.0 + 0.0 1.0 + 0.0 
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Table 9 shows the change in liquor pH as the acid loading, temperature, and residence is 

elevated from the low end to the high end of the operating range. Acid loading by far has 

the predominant effect on pH (4.0 shift), followed by temperature (0.8 shift) and 

residence time (0.8 shift). 

 

Table 9: Change in pretreatment liquor pH as a function of pretreatment parameters  

Pretreatment Liquor Acid loading 
Increasing from 
0 to 1.5 vol% 

Temperature 
Increasing from 
165 to 195oC 

Residence time 
Increasing from 

1 to 10 min 
Avicel® -4.5 -1.1 -0.9 

Whatman paper -3.5 -0.4 -0.8 
Switchgrass -4.0 -0.6 -0.6 

 

4.3.2 Glucose 

 

Glucose present in the pretreatment liquor was liberated by the acid/temperature-

catalyzed cellulose hydrolysis reaction. Experimental results are shown in Table 10. 

Figures A11 through A13 display the Minitab® data means summary analysis output. 

This analysis shows glucose yields in the pretreatment liquor as a function of acid 

loading, temperature, and residence time for the conventional and microwave reactors, 

respectively. 

 
The microwave reactor liberated more glucose in the Avicel® liquor relative to the 

conventional reactor. Because Avicel® is a pure cellulose substrate the reaction is not 

impeded by the presence of hemicellulose and lignin. Glucose in the Avicel® liquor 

increased with acid loading and temperature. The microwave reactor produced on 

average 7 g L-1 higher glucose concentrations in the liquor for all process parameters – 
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acid loading (up to 4 g L-1 higher), temperature (from 3 to 6 g L-1 higher), and residence 

time (from 3 to 7 g L-1 higher) – relative to the conventionally heated reactor. The higher 

glucose yields can be attributed to the direct interaction of microwaves with the cellulose 

and more efficient heating. 

  

 The interaction of pretreatment process conditions on glucose yield in the 

switchgrass liquor is shown in Figure A13A. The highest observed glucose yield 

occurred during combination of 0.75 vol% acid and 195oC (for both reactors), and 

combination of low residence time (1 min), 195oC, and 0.75 vol% acid. The lowest 

observed glucose yields occurred at low temperatures (165oC), and combination of 1.5 

vol% acid and 195oC (for both reactors). Higher acid loading and residence time results 

in glucose degradation.
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Table 10: Pretreatment liquor glucose result summary  

Condition Acid 
loading 

Temperature Time Avicel Whatman paper Switchgrass 
Glucose 

g L-1 
Conventional 

Glucose 
g L-1 

Microwave 

Glucose 
g L-1 

Conventional 

Glucose 
g L-1 

Microwave 

Glucose 
g L-1 

Conventional 

Glucose 
g L-1 

Microwave 
1 0 165 1 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0 
2 0 180 5 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0 0.5 + 0.0 1.0 + 0.1 
3 0 195 10 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0 
4 0.75 165 5 1.9 + 0.3 5.1 + 0.1 3.3 + 0.1 8.6 + 0.1 0.4 + 0.1 0.0 + 0.0 
5 0.75 180 10 3.9 + 0.3 12.4 + 0.1 3.3 + 0.1 8.3 + 0.1 5.7 + 0.1 0.0 + 0.0 
6 0.75 195 1 1.1 + 0.1 11.9 + 0.1 3.4 + 0.1 1.4 + 0.1 6.1 + 0.8 8.8 + 0.1 
7 1.5 165 10 2.9 + 0.1 7.6 + 0.1 3.0 + 0.1 6.9 + 0.1 2.6 + 0.1 5.5 + 0.1 
8 1.5 180 1 0.0 + 0.0 8.7 + 0.1 4.7 + 0.1 0.0 + 0.0 5.6 + 0.6 6.8 + 0.1 
9 1.5 195 5 0.0 + 0.0 3.1 + 0.1 2.3 + 0.1 3.4 + 0.1 0.8 + 0.1 1.0 + 0.1 

Table 11: Pretreatment liquor xylose result summary  

Condition Acid 
loading 

Temperature Time Avicel Whatman paper Switchgrass 
Xylose 
g L-1 

Conventional 

Xylose 
g L-1 

Microwave 

Xylose 
g L-1 

Conventional 

Xylose 
g L-1 

Microwave 

Xylose 
g L-1 

Conventional 

Xylose 
g L-1 

Microwave 
1 0 165 1 - - - - 0.9 + 0.1 2.7 + 0.1 
2 0 180 5 - - - - 1.1 + 0.1 0.9 + 0.1 
3 0 195 10 - - - - 0.0 + 0.0 0.0 + 0.0 
4 0.75 165 5 - - - - 10.3 + 0.3 4.2 + 0.3 
5 0.75 180 10 - - - - 0.0 + 0.0 6.0 + 0.7  
6 0.75 195 1 - - - - 0.0 + 0.1 0.4 + 0.0 
7 1.5 165 10 - - - - 2.9 + 0.2 0.0 + 0.0 
8 1.5 180 1 - - - - 0.1 + 0.0 0.0 + 0.0 
9 1.5 195 5 - - - - 0.0 + 0.0 0.0 + 0.0 
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The microwave reactor also liberated more glucose in the Whatman-paper liquor relative 

to the conventional reactor. Similarly to the Avicel® reactor, the reaction was not 

impeded by the presence of hemicellulose and lignin. The glucose level increased with 

rising acid loading, but averaged 2.25 and 3.25 g L-1 for the conventional and microwave 

reactors, respectively. 

 

Glucose levels in the switchgrass-pretreatment liquor were similar for both 

reactors. The relationships between glucose and pretreatment conditions were similar as 

well for both reactors. Glucose increased from 0 to 4.5 g L-1 as the acid loading was 

increased from 0 to 0.75 vol.%. However, polysaccharide degradation resulted at acid 

loading beyond 0.75 vol.%. This was evidenced by the formation of acetic acid (up to 6 g 

L-1) and furfural (up to 0.5 g L-1) in the liquor. Increasing temperature from 165 to 195o 

resulted in a positive shift in glucose yield (from 1.5 to 4.0 g L-1). No correlation between 

residence time and glucose production was found.  

   

4.3.3 Xylose 

 

Table 11 and Figure A14 shows the xylose level in the switchgrass-pretreatment 

liquor as a function of pretreatment conditions. Xylose levels in the liquor peaked at 0.75 

vol% acid loading, and decreases to zero at higher loading levels. Xylose levels 

decreased with increasing temperatures, and were non existent at 195oC. This is attributed 

to a fast xylan-hydrolysis reaction rate, in addition to degradation of the lower-molecular-

weight simple sugar at moderate and high pretreatment severity conditions. 
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4.3.4 Degradation Products 

 

 Overall, the microwave reactor yielded more degradation products relative to the 

conventional reactor. This can be attributed to the direct interaction of microwaves with 

the polysaccharides causing faster cellulose and xylan hydrolysis and degradation 

reaction rates. 

 

Hydroxy-methyl-furfual 

 

Hydroxymethylfurfual (HMF) is an aldehyde and a furan compound formed 

during the thermal decomposition of sugars and carbohydrates and is also a fermentation 

inhibitor. This compound can be used to synthesize a broad range of chemicals currently 

derived from petroleum. Liquid fuels that are potential alternatives to ethanol obtained by 

fermentation processes can also be derived from HMF using chemical processes (Su, 

2009).  

 

Experimental results of the hydroxy-methyl furfural (HMF) measured in the 

pretreatment liquor are presented in Table 12. The microwave reactor and the 

conventional reactor produced comparable amounts of HMF. Average HMF levels were 

0.37, 0.25, and 0.24 g L-1 for the Avicel®, Whatman paper, and switchgrass, respectively. 

Figures A15 through A17 show HMF levels as a function of pretreatment conditions. 
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HMF levels increased with acid loading and temperature due to an increase in thermal 

degradation rates, which drive the formation of free radicals and carbonyl groups. 

  

The interaction of pretreatment process conditions on HMF yield in the 

switchgrass liquor is shown in Figure A17A. The highest observed HMF yield occurred 

during the combination of 0.75 vol% acid and 195oC (for both reactors), and the 

combination of low residence time (1 min), 195oC, and 0.75 vol% acid. The lowest 

observed HMF yields occurred at combination low temperatures (165oC), acid, and 

residence time, and combination of 1.5 vol% acid and 195oC (for both reactors). HMF is 

degraded and totally consumed at high acidic and temperature conditions (a combination 

of 1.5 vol% and 195oC) as levulinic acid is formed.  

 

Acetic acid 

 

 Acetic acid is a weak carboxylic acid and also a fermentation inhibitor. Acetic 

acid is produced as a result of the hydrolysis of acetyl groups present in the 

hemicellulose. Gizenia et al. (2008) noted that concentrations as low as 0.25 g L−1 can 

affect microbial growth and reduce the rate of ethanol production.  

 

Experimental results of the acetic acid measured in the pretreatment liquor are 

presented in Table 13. The microwave reactor generated on average 5 g L-1 more acetic 

acid in the switchgrass liquor than the conventional reactor. Figure A18 shows acetic acid 

levels in the switchgrass liquor as a function of pretreatment conditions. The 
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conventionally and microwave-pretreated liquor yielded up to 6.4 and 59.8 g L-1 of acetic 

acid, respectively. This corresponded to pretreatment conditions of at least 0.75 vol.% 

and 180oC. The relatively high acetic acid formation yielded in the microwave reactor 

can be attributed to its higher reaction rates. 

 

Xylitol 

 

 Xylitol is a sugar polyalcohol of great interest in the food (as a sweetener), 

odontological and medical-pharmaceutical industries. At present, it is industrially 

obtained by a chemical hydrogenation of D-xylose recovered from hydrolyzates of 

lignocellulosic wastes (Sampaio, 2006).  

 

Xylitol was generated in the switchgrass-pretreatment liquor. This chemical was 

only detected in the conventional reactor. A comparison of Figures A14 and A19 shows 

the indirect relationship between xylose consumption and xylitol formation. This is 

indicative of the acid and temperature induced chemical hydrogenation of xylose. Xylitol 

levels increases with acid loading and temperature. Increasing acid from 0 to 1.5 vol.% 

resulted in up to 48 g L-1 of xylitol formation. Elevating temperature from 165 to 195oC 

also resulted in up to 48 g L-1 of xylitol formation.  
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Succinic acid 

 

 Succinic acid is a dicarboxylic acid that can be used as a precursor for many 

chemicals of industrial importance including adipic acid, 1,4-butanediol, tetrahydrofuran, 

N-methyl pyrrolidinone, 2-pyrrolidinone, succinate salts, and gamma-butyrolactone. In 

addition to applications in the agricultural, food, and pharmaceutical industries, succinic 

acid could also be used in the synthesis of biodegradable polymers such as polybutyrate 

succinate, polyamides, and various “green” solvents. Presently, succinic acid is produced 

commercially by catalytic hydrogenation of petrochemical-derived maleic 

acid or maleic anhydride, but can also be generated through carbohydrate degradation 

caused during cellulose and lignocellulose pretreatment. (Zheng, 2009)  

 

The microwave reactor produced more succinic acid relative to the conventional 

reactor. Up to 10.6 g L-1 was detected in the Avicel®-pretreatment liquor, corresponding 

to an acid loading and temperature of 0.75 vol.% and 195oC. Succinic acid was also 

detected in the switchgrass-pretreatment liquor. Figure A20 shows succinic acid levels in 

the switchgrass liquor as a function of pretreatment conditions. The conventional and 

microwave reactors yielded averages of 6 to 30 g L-1 of succinic acid, respectively. Peak 

levels (95 g L-1) corresponded to a high acid loading (1.5 vol.%), which induced rapid 

polysaccharide degradation.  
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Table 12: Pretreatment liquor hydroxy-methyl furfural (HMF) result summary  

Condition Acid 
loading 
Vol% 

Temperature 
oC 

Time 
Min 

Avicel Whatman paper Switchgrass 
HMF 
g L-1 

Conventional 

HMF 
g L-1 

Microwave 

HMF 
g L-1 

Conventional 

HMF 
g L-1 

Microwave 

HMF 
g L-1 

Conventional 

HMF 
g L-1 

Microwave 
1 0 165 1 0.03 + 0.00 0.03 + 0.00 0.03 + 0.00 0.03 + 0.00 0.03 + 0.00 0.03 + 0.00 
2 0 180 5 0.03 + 0.00 0.03 + 0.00 0.03 + 0.00 0.03 + 0.00 0.03 + 0.00 0.03 + 0.00 
3 0 195 10 0.03 + 0.00 0.03 + 0.00 0.03 + 0.00 0.03 + 0.00 0.03 + 0.00 0.03 + 0.00 
4 0.75 165 5 0.20 + 0.00 0.20 + 0.00 0.20 + 0.01 0.68 + 0.02 0.20 + 0.02 0.34 + 0.00 
5 0.75 180 10 0.03 + 0.00 0.83 + 0.00 0.83 + 0.00 0.86 + 0.00 0.41 + 0.00 0.59 + 0.01 
6 0.75 195 1 1.43 + 0.02 1.01 + 0.02 1.52 + 0.00 0.03 + 0.00 0.57 + 0.01 0.50 + 0.00 
7 1.5 165 10 0.13 + 0.00 0.30 + 0.00 0.32 + 0.00 0.44 + 0.02 0.03 + 0.00 0.35 + 0.00 
8 1.5 180 1 0.03 + 0.00 0.67 + 0.00 0.73 + 0.03 0.03 + 0.00 0.32 + 0.01 0.53 + 0.01 
9 1.5 195 5 0.03 + 0.00 0.36 + 0.00 0.97 + 0.00 0.03 + 0.00 0.26 + 0.01 0.03 + 0.00 

Table 13: Pretreatment liquor acetic acid result summary  

Condition Acid 
loading 
Vol% 

Temperature 
oC 

Time 
Min 

Avicel Whatman paper Switchgrass 
Acetic acid 

g L-1 
Conventional 

Acetic acid 
g L-1 

Microwave 

Acetic acid 
g L-1 

Conventional 

Acetic acid 
g L-1 

Microwave 

Acetic acid 
g L-1 

Conventional 

Acetic acid 
g L-1 

Microwave 
1 0 165 1 - - - - 0.14 + 0.00 0.14 + 0.00 
2 0 180 5 - - - - 0.14 + 0.00 0.14 + 0.00 
3 0 195 10 - - - - 3.45 + 0.00 0.14 + 0.00 
4 0.75 165 5 - - - - 0.14 + 0.00 0.14 + 0.00 
5 0.75 180 10 - - - - 6.40 + 0.00 12.7 + 9.83 
6 0.75 195 1 - - - - 5.93 + 0.01 4.89 + 1.63 
7 1.5 165 10 - - - - 5.85 + 0.05 12.8 + 0.07 
8 1.5 180 1 - - - - 5.68 + 0.01 5.13 + 0.17 
9 1.5 195 5 - - - - 6.40 + 0.02 7.38 + 1.16 
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4.4 Enzyme hydrolysis liquor 

 

The enzyme-hydrolysis liquor of the pretreated switchgrass was analyzed for 

glucose. Figure A21 displays the Minitab® data means summary analysis output. This 

analysis show glucose yields from enzymatic hydrolysis as function of acid loading, 

temperature, and residence time for the conventional and microwave reactors, 

respectively.  

 
 
4.4.1 Glucose yield as a function of pretreatment conditions 

 

  Glucose measured in the pretreated-switchgrass enzymatic hydrolysis liquor is 

summarized in Table 14. Microwave-pretreated switchgrass yielded more glucose in the 

enzymatic-hydrolysis liquor than the conventionally pretreated switchgrass. The 

performance advantage is likely attributed to the nonthermal effects associated with 

microwave treatment (Hu et al 2008, Ooshima 1984). This is evident in the SEM photos 

shown earlier. The average glucose yields across all acid loading were 7.0 g L-1 and 4.0 g 

L-1 for the microwave and conventionally pretreated substrates, respectively. The 

relationship between pretreatment conditions and glucose yields were similar for both 

reactors. It is well known that acid opens the biomass pores, allowing for greater 

microbial digestion. Increasing acid loading from 0 to 0.75 vol.% contributed to 

hemicellulose removal, resulting in higher cellulose content in the pretreated biomass. 

The higher cellulose loading offers more substrate for microbial digestion. Highest 

observed glucose yields (6 g L-1) were obtained at 0.75 vol.% acid loading and 
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temperatures between 180 and 195oC. However, higher acidity and temperature 

conditions drove cellulose hydrolysis, leaving higher ratios of lignin in the remaining 

solid (>71 wt%), which impedes enzymatic hydrolysis. Pretreatment residence time had 

no significance influence on glucose yield for either reactor.  

 
The interaction of pretreatment process conditions on glucose yield in the 

enzymatic hydrolysis liquor is shown in Figure A21A. Overall, moderate pretreatment 

severity, which provided the best balance between complete hemicellulose removal and 

minimal cellulose degradation, resulted in the highest observed glucose yield. This 

corresponded to a combination of 1.5 vol% acid and 180oC (for the conventional reactor), 

and combination of 0.75 vol% acid and 195oC (for the microwave reactor). The lowest 

observed glucose yields based on conventional pretreatment occurred at high acid loading 

(1.5 vol%), and a combination of high temperature (195oC) and high residence time (>5 

min). The glucose yields were decreased from its peak as the acid loading was increased. 

These conditions produced a pretreated substrate that contained low cellulose ratio. 

Hence, this was less cellulose for the microbes to digest.  

 

The interaction of pretreatment process conditions on normalized glucose yield (g 

glucose g biomass-1) in the enzymatic hydrolysis liquor is shown in Figure A22A. The 

highest observed glucose yield based on conventional pretreatment occurred during 

combination of 0.75 vol% acid and all temperatures and residence times, and 

combination of 1.5 vol% acid and 165-180oC. The highest observed glucose yield based 

on microwave pretreatment occurred during a combination of 0.75 vol% acid and 195oC, 

and a combination of 1.5 vol% acid and 165-180oC temperatures. The lowest observed 
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glucose yields based on conventional pretreatment occurred at combination of high acid 

loading (1.5 vol% acid), temperature (195oC) and residence time (>5 min). These 

conditions also produced a pretreated substrate that contained a low cellulose ratio. 

Hence, less cellulose for the microbes to digest.  

 

4.4.2 Glucose yield as a function of biomass composition 

 

Glucose yield from enzymatic hydrolysis is also dependent on the pretreated 

biomass composition: cellulose, xylan, and lignin content. The microwave reactor yielded 

up to 166 percent more glucose at equivalent cellulose and xylan portions in the 

pretreated biomass relative to conventional pretreated samples. Figures A22 and A23 

exhibit glucose yields as functions of cellulose and xylan contents for the conventional 

and microwave reactors, respectively. Higher enzymatic glucose yields were directly 

related to higher cellulose contents and lower xylan contents in the pretreated biomass. 

This is due to the fact that hemicellulose hydrolysis increases pore volume in plant cells, 

and is therefore beneficial for subsequent cellulose hydrolysis.  

 

As previously stated, unpretreated switchgrass contained 30.1 wt% cellulose, 29.3 

wt% xylan, and 23.8 wt% lignin. For the conventional reactor, a maximum glucose level 

of 6 g L-1 was found when the cellulose was greater than 70 weight percent and the xylose 

was less than 10 weight percent. For the microwave reactor, a maximum glucose level of 

10 g L-1 occurred when the cellulose was greater than 40 weight percent and the xylose 

was less than 15 weight percent.  
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The microwave reactor yielded up to 100 percent more glucose at equivalent 

cellulose and lignin portions in the pretreated biomass. Figure A25 illustrates glucose 

yields as functions of cellulose and lignin contents for the conventional and microwave 

reactors, respectively. Higher enzymatic glucose yields were directly related to higher 

cellulose contents and lower lignin fractions in the pretreated biomass. For the 

conventional reactor, a maximum glucose level of 7 g L-1 was seen when the cellulose 

was greater than 70 weight percent and the lignin was less than 10 weight percent. For 

the microwave reactor, a maximum glucose level of 10 g L-1 occurred when the cellulose 

was greater than 60 weight percent and the lignin was less than 10 weight percent.  

 



 59 

Table 14: Enzymatic hydrolysis liquor glucose result summary 

Condition Acid loading 
Vol% 

Temperature 
oC 

Time 
Min 

Conventional Reactor Microwave Reactor 
% digestion g L-1 % digestion g L-1 

1 0 165 1 16 + 0 1.8 + 0.1 50 + 1 5.6 + 0.2 
2 0 180 5 18 + 0 2.0 + 0.1 99 + 1 10.0 + 0.1 
3 0 195 10 23 + 1 2.6 + 0.1 96 + 2 10.0 + 0.2 
4 0.75 165 5 56 + 1 6.2 + 0.1 58 + 1 6.4 + 0.1 
5 0.75 180 10 60 + 1 6.7 + 0.1 63 + 1 7.0 + 0.1 
6 0.75 195 1 45 + 0 5.0 + 0.1 99 + 1 11.0 + 0.1 
7 1.5 165 10 59 + 1 6.6 + 0.1 56 + 0 6.2 + 0.0 
8 1.5 180 1 76 + 2 8.4 + 0.2 46 + 1 5.1 + 0.1 
9 1.5 195 5 4 + 1 0.4 + 0.0 0 + 0 0.0 + 0.0  

Unpretreated    21 + 1 2.3 + 0.1 21 + 1 2.3 + 0.1 
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5.0 MODEL 

 

 A model that predicts product yield was developed using calculated severity 

factors and reaction kinetics. 

 

5.1 Combined severity factor 

 

The Combined Severity Factor (CSF) was determined based on reactor 

temperature, residence time, and pretreatment liquor pH, as outlined earlier in equation 1. 

This factor is dependent on process conditions, and does not reflect any physical 

parameter.  

 

5.1.1 Combined glucose yield as a function of combined severity factor 

 

Tables 15 and 16 summarize measured glucose in pretreated switchgrass liquor 

and hydrolysis liquors, as a function of combined severity factor, respectively. 

Microwave-pretreated substrates produced higher glucose yields at comparable CSF 

values in the switchgrass-pretreatment liquor, relative to conventional pretreatment. 

Glucose increased with CSF, up to a point beyond which glucose levels eroded for both 

reactors. Highest observed CSF was between 1 and 2, resulting in a 6.3 and 8.8 g l-1 

glucose yield in the pretreatment liquor for the conventional and microwave reactors, 

respectively (Figure A24). Glucose degradation predominated when CSF exceeded 2.0. 
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Table 15: Glucose in switchgrass pretreatment-liquor as a function of combined severity 
factor 

CSF Conventional Reactor, g/L Microwave Reactor, g/L 
-3.6 0.7 + 0.0 0.0 + 0.0 
-2.0 0.5 + 0.0 1.0 + 0.1 
-0.6 0.0 + 0.0 0 + 0 
1.5 4.5 + 0.2 5.2 + 0.0 
2.1 2.6 + 0.1 5.5 + 0.1 
2.5 0.8 + 0.1 1.0 + 0.1 

 

Microwave-pretreated substrates also produced higher glucose yields at 

comparable CSF values in the switchgrass-enzymatic hydrolysis liquor, relative to 

conventional pretreatment. Highest observed CSF was between –1.0 and 2.0, resulting in 

yields of 8.0 and 12.2 g L-1 of glucose yield in the enzyme-hydrolysis liquor for the 

conventional and microwave reactors, respectively (Figure A25). The glucose yield also 

declined once CSF exceeded 2.0 due to low cellulose content in the pretreated biomass. 

 

Table 16: Glucose from switchgrass enzymatic hydrolysis as a function of combined 
severity factor 

CSF Conventional Reactor, g/L Microwave Reactor, g/L 
-3.6 1.6 + 0.1 5.0 + 0.2 
-2.0 1.8 + 0.1 10.9 + 0.1 
-0.6 2.3 + 0.1 9.6 + 0.2 
1.8 5.9 + 0.1 12.2 + 0.2 
2.1 6.0 + 0.1 6.3 + 0.0 
2.5 0.4 + 0.0 0.0 + 0.0 

 

The combined glucose yields (pretreatment plus enzymatic-hydrolysis liquor) for 

both reactors are shown in Figure A26. The glucose reported here is defined as weight of 

glucose divided by the original biomass weight. This takes into account mass loss in the 

pretreatment step. Total glucose yield for the conventional reactor is highest observed at 
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0.20 g glucose g biomass-1 (corresponding to a CSF of 1.8). This compares to a highest 

observed total glucose of 0.31 g glucose g biomass-1 (corresponding to a CSF of 1.7) for 

the microwave reactor.  

 

5.1.2 Xylose yield as a function of combined severity factor 

 

 Figure A27 exhibits xylose levels in the switchgrass-pretreatment liquor as 

functions of pretreatment conditions for both reactors. The xylan hydrolysis reaction 

requires lower activation energy relative to cellulose hydrolysis. As a result, the 

hemicellulose is easily removed. A strong relationship was not found between CSF and 

xylose yield in the pretreatment liquor. However, the peak xylose yield of 6.0 g L-1 

corresponded to a CSF between 1.5 and 2.0. CSF lower than 1.5 and greater than 2.0 

resulted in xylose yields lower than 2.0 g L-1.   

 

5.1.3 Degradation product yield as a function of combined severity factor 

 

Hydroxymethylfurfual 

 

No relationship was evident between CSF and hydroxymethylfurfual (HMF) 

levels for all three substrates (Figure A28). Peak HMF yields (up to 2.0 g L-1) 

corresponded to a CSF between 1.2 and 2.8. In contrast, the lowest HMF yield (0.25 g L-1 

or less) corresponded to a CSF lower than 1.2. 
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Acetic Acid 

 

Similarly to the hydroxy-methyl-furfual findings, no relationship was evident 

between CSF and acetic acid yield for the switchgrass liquor. Peak acetic acid yields 

(greater than 6.0 g L-1) corresponded to a CSF greater than 1.2 (Figure A29). However, 

even higher acetic acid yields resulted under certain conventional and microwave reactor 

conditions (CSF- 2.2). The lowest acetic acid yield (3.4 g L-1 less) corresponded to a CSF 

lower than 1.2. 

 

5.2 Kinetic model 

 

Development of a kinetic model for predicting the glucose yield is important for 

reactor design, understanding reaction parameters, and estimating costs.  

 

The Arrhenius relationship for general acid-base catalysis was used to determine 

the kinetic parameters and model the cellulose and xylan hydrolysis to glucose, as shown 

in equation 3:  

 

(3) [ ]( ) [ ]( )[ ] RT

E
OHHo eOHkHkkk

−
−+ ++=  
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where  

 

• ki (min-1) is the overall reaction constant 

• ko
i (min-1) is the solvent factor 

• kH
i (min-1 M) is the acid factor  

• kOH
i (min-1 M) is the base factor 

• [H+] is the molal hydrogen-ion concentration,  

• Ei (kcal / g mol) is the activation energy (energy that must be overcome in order for a 

chemical reaction to occur) 

• R is the gas constant, 1.98 cal K−1 mol−1 

• T is the reaction temperature (Kelvin) 

 

Most lignocellulosic pretreatment references in the literature have focused on 

determining only xylan-hydrolysis kinetics (Schell, 2003). Experimental mass-balance 

and chemical-composition data were used to determine the kinetic parameters for the 

cellulose and xylan hydrolysis reactions (and resulting degradation reactions). Since we 

focused here on acidic pretreatment conditions (pH <2) the hydroxyl-ion term was 

assumed to be minimal and rewritten as the hydrogen-ion concentration in terms of the 

pH. Liquor pH has been shown to be more appropriate than using the effective acid 

concentration, which could effectively be zero if there is insufficient acid. The final pH 

takes into account the absorption capacity of the substrate. (Schell, 2003) 

 

(4) ( )[ ] RT

E
pHHo ekkk

−
−+= 10  
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The rate constant represents a transformation between two states (the reaction) 

that is controlled by an intermediate high-energy excited state, it can be said that the 

activation energy (E) represents the energy difference between the initial state and the 

intermediate state (activated species). The ( )[ ]pHHo kk −+ 10 component corresponds to the 

conventionally used “pre-exponential factor”. In this case, the parameter 

( )[ ]pHHo kk −+ 10  represents the frequency of collisions between the reactants and their 

orientation. It is often taken as constant across small temperature ranges (Schwaab, 

2007).  

 

In this study, several assumptions were made. First, we assumed that the reaction 

is biphasic cellulose and hemicellulose hydrolysis, therefore focusing on the rate-limiting 

step (conversion of the slow crystalline polysaccharide). Second, we assumed that there 

was a single activation energy for the reaction. Results from this study show pre-

exponential factors as high as 1017 min-1, which represents relatively high collisions, but 

comparable to factors reported in similar and previous studies found in the literature. 

Schell (2003) reported pre exponential factors as high as 1030 min-1.  Maloney (1984) 

reported pre exponential factors as high as 1019 min-1.  

 

The model was developed using a nonlinear-regression analysis software (LAB 

Fit Curve Fitting Software; Paraiba, Brazil). 
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5.2.1 Glucose yield in the pretreatment liquor 

 

Table 17 summarizes the kinetic constants for glucose formation in the 

switchgrass-pretreatment liquor. Fitting experimental glucose yield results to equation 4 

resulted in a correlation coefficient of 0.96. The solvent factor and acid factor for the 0.75 

vol.% acid loading conditions were 4.65×1017 and 6.11x1017 min-1, and 6.26×1017 and 

7.20×1017 min-1 for the conventional and microwave reactor, respectively. The solvent 

factor and acid factor for the 1.5 vol.% acid loading conditions are 8.06×109 and 

6.54x1012 min-1, and –7.67×1010 and –3.16×1013 min-1 for the conventional and 

microwave reactors, respectively. The activation energies for the 0.75 and 1.5 vol% acid 

catalyst conditions are 35.2 and 23.5 kcal / g mol, respectively. 

 

Table 17: Kinetic constants for the glucose formation in the switchgrass pretreatment 
liquor 
 

Acid loading Reactor ko 

min-1 
kH 

min–1· M–1 
R2 

0.75 Parr 4.65x1017 6.26x1017 0.962 
0.75 CEM 6.11x1017 7.20x1017 0.963 
1.5 Parr 8.06x109 -7.67x1010 0.981 
1.5 CEM 6.54x1012 -3.16x1013 0.886 

 
 

The model suggests that the microwave reactor theoretically release glucose at a 

faster rate than the conventional reactor at comparable process conditions. This coincides 

with the reports that the kinetics of acid hydrolysis of cellulose are strongly dependent on 

the state of hydrogen bonding (Xiang, 2003). The nonthermal microwave effects provide 
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additional energy required to overcome the hydrogen bonding within the glucan chain, 

thus easier glucose release (Hu, 2007). 

 

 

5.2.2 Xylose yield in the pretreatment liquor 

 

Table 18 summarizes the kinetic constants for the xylan hydrolysis in the 

switchgrass-pretreatment liquor. Fitting experimental cellulose yield results to equation 4 

resulted in a correlation coefficient of 0.91. The solvent factor and acid factor for the 0.75 

vol.% acid loading conditions were 5.39×104 and 5.39x103 min-1, and –9.82x105 and        

–2.53x104 min-1 for the conventional and microwave reactor, respectively. The activation 

energies for the 0.75 and 1.5vol% acid catalyst conditions are 10.0 and 0 kcal / g mol 

respectively. Yat (2008) reported an activation energy of 10.0 kcal / g mol for similar 

acid catalyst to switchgrass loading. 

  

The xylan hydrolysis has a significantly lower activation energy requirement 

relative to cellulose hydrolysis, which explains its relatively easy removal from the 

biomass.  

 

Table 18: Kinetic constants for the xylose formation in the switchgrass pretreatment 
liquor 
 

Acid loading Reactor ko 

min-1 
kH 

min–1· M–1 
R2 

0.75 Parr 5.39x104 -9.82x105 0.912 
0.75 CEM 5.39x103 -2.53x104 0.924 
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5.2.3 Degradation product levels in the pretreatment liquor 

 

Hydroxymethylfurfual 

 

Table 19 summarizes the kinetic constants for hydroxymethylfurfual (HMF) 

formation in the switchgrass-pretreatment liquor. Fitting experimental HMF yield results 

to equation 4 resulted in a correlation coefficient of 0.96. The solvent factor and acid 

factor for the 0.75 vol.% acid loading conditions were 1.20x1013 and 3.85x1013 min-1, and 

–1.43x1014 and –4.19x1014 min-1 for the conventional and microwave reactor, 

respectively. The solvent factor and acid factor for the 1.5 vol.% acid loading conditions 

are 3.25x1012 and 4.91x1012 min-1, and –3.05x1013 and –2.38x1013 min-1 for the 

conventional and microwave reactors, respectively. The activation energies for the 0.75 

and 1.5 vol% acid catalyst conditions are 30.2 and 28.1 kcal / g mol, respectively. 

 

Table 19: Kinetic constants for the HMF formation in the switchgrass pretreatment liquor 
 

Acid loading Reactor ko 

min-1 
kH 

min–1· M–1 
R2 

0.75 Parr 1.21x1013 -1.43x1014 0.973 
0.75 CEM 3.85x1013 -4.19x1014 0.927 
1.5 Parr 3.25x1012 -3.05x1013 0.961 
1.5 CEM 4.91x1012 -2.38x1013 0.917 

 
 

The model suggests that the microwave reactor theoretically produced HMF at a 

faster rate than the conventional reactor at comparable process conditions. This can be 

attributed to the overall faster reaction rates associated with microwave heating.  
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Acetic acid 

 

Table 20 summarizes the kinetic constants for acetic acid formation in the 

switchgrass-pretreatment liquor. Fitting experimental acetic acid yield results to equation 

4 resulted in a correlation coefficient of 0.93. The solvent factor and acid factor for the 

0.75 vol.% acid loading conditions were 5.37×1010 and 1.98×1012 min-1, and 2.99×1012 

and –1.97×1013 min-1, for the conventional and microwave reactors, respectively. The 

solvent factor and acid factor for the 1.5 vol.% acid loading conditions were 2.88×107 and 

1.87×109 min-1, and –2.65×108 and –8.58×109 min-1 for the conventional and microwave 

reactors, respectively. The activation energies for the 0.75 and 1.5 vol% acid catalyst 

conditions are 25.0 and 17.5 kcal / g mol, respectively. 

 

Table 20: Kinetic constants for the acetic acid formation in the switchgrass pretreatment 
liquor 
 

Acid loading Reactor ko 

min-1 
kH 

min–1· M–1 
R2 

0.75 Parr 5.37x1010 -2.99x1012 0.936 
0.75 CEM 1.98x1012 -1.97x1013 0.836 
1.5 Parr 2.88x107 -2.65x108 0.991 
1.5 CEM 1.87x109 -8.58x109 0.908 

 
 

The model suggests that the microwave reactor theoretically yielded acetic acid at 

a faster rate than the conventional reactor at comparable process conditions. This can also 

be attributed to the overall faster reaction rates associated with microwave heating.  
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6.0 OVERALL MASS, ENERGY, AND ECONOMIC ANALYSES 

 

A mass-and-energy balance of the flows entering and exiting each step of the 

pretreatment process and bioreactor was conducted (Figure A30). Switchgrass, at a 100 

kg hr-1 feed basis, is delivered to the feed-handling area for storage and size reduction. 

Next, the biomass is conveyed to pretreatment and conditioning. Here, the biomass is fed 

at 4 wt% and treated with dilute sulfuric acid (0.75 vol.%) at a high temperature (195oC) 

for a very short residence time (1 minute), liberating the hemicellulose sugars and other 

compounds. Next, ion exchange and/or over-liming are required to remove compounds 

liberated in the pretreatment that will be toxic to the fermenting organism(s). The 

pretreated solids are fed to the hydrolysis step for glucose recovery and microbial 

digestion. 

 

6.1 Mass Balance 

 

 The products yielded – polysaccharides, monosaccharides, and degradation 

products – were assessed for the pretreatment liquor and the solid residue. 

Polysaccharides included cellulose and hemicellulose (xylan). Monosaccharides included 

glucose and xylose. Degradation products included xylitol, succinic acid, acetic acid, and 

hydroxymethylfurfual. Acid-soluble and -insoluble lignin were also quantified. Table 21 

summarizes the mass flows entering and exiting the pretreatment process.  
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Table 21. Mass balance for the pretreatment process 

Flow Component Mass kg hr-1 
A Raw switchgrass 100 
B Milled switchgrass 100 
C Sulfuric acid solution 2,500 
D Lime 15 
E Pretreated slurry 2,611 
F Cellulase enzyme solution 38 
H Hydrolysis solution 2,649 

 

6.2 Energy Balance 

An energy balance on the pretreatment process was conducted using equation 5: 

 

(5) skp WQEEH +=∆+∆=∆  

 

where 

 

• ∆H is the change in enthalpy 

• ∆Ek is the change in potential energy due to motion of the system 

• ∆Ep is the change in kinetic energy due to the position of the system  

• Q is the energy flow due to temperature difference 

• Ws is the energy flow due to the driving force other than temperature difference 

(force, torque, voltage, etc.) 

 

Since the process involves chemical equipment (i.e., reactor, distillation column, 

evaporator, heat exchanger, etc.), we assumed the following: 
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• Heat flow and internal energy changes (enthalpy change) are the most important; and  

• Shaft work, kinetic energy, and potential-energy changes are negligible. 

 

HQ ∆=  

TCmQ pi ∆=  

 

where 

 

• mi is mass flow rate for stream i 

• Cp is the specific heat capacity for stream i 

• ∆T is the temperature difference 

 

Table 22 summarizes the energy content for each flow, and overall energy balance 

(3.09x105 kJ hr-1). The heating value for switchgrass based on elementary composition 

was estimated to be 1.85×104 kJ kg-1. 

 

Table 22. Energy balance for the pretreatment process 

Stream Mass  
Kg hr-1 

Specific Heat 
kJ (kg K)-1 

Temperature 
K 

Q 
kJ hr-1 

A 100 1.85 298  
B 100 1.85 298 0 
C 2,481 4.18 298  
D 15 1.18 298  
E 2,611 4.06 468 1,810,271 
F 38 4.18 298  
G 2,649 4.10 323 -1,500,373 

Total    309,899 
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6.3 Economic Analysis 

 

The feasibility of new energy crops will depend largely on production costs, costs 

of converting the biomass to usable energy, and costs of competing fuels. For biomass 

crops to compete with other fuels, they must be grown in the least costly manner so 

farmers can derive a benefit equal to or greater than with food crops.  

 

An economic analysis using a 100 kg hr-1 biomass feed rate as the basis for the 

pretreatment system is presented. The cost assessment considered the following process 

steps: 

 

• Harvest 

• Delivery 

• Milling 

• Pretreatment 

• Enzymatic hydrolysis 

 

The microwave pretreatment process has a higher investment, lower operating 

cost, and higher operating income, relative to the conventional pretreatment process. The 

investment cost for the conventional-batch, conventional-continuous, microwave-batch, 

and microwave-continuous pretreatment process was estimated at $1.38, $1.53, $1,88, 

and $1.88 million dollars, respectively. The annual operating cost for the conventional-

batch, conventional-continuous, microwave-batch, and microwave-continuous 
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pretreatment process was estimated at $689,294, 576,907, $741,564, and $626,177 

respectively. The operating income for the conventional-batch, conventional-continuous, 

microwave-batch, and microwave-continuous pretreatment process was estimated at 

($465,266), ($343,668), ($405,631), and ($276,493) respectively. The operating income 

does not include co-product credits such as excess electricity, use of lignin as boiler fuel, 

use of recycle water, etc. Comprehensive investment and operating costs for both reactor 

systems are outlined in sections 6.3.1 through 6.3.7 and summarized in Figure A31. 

 

6.3.1 Harvest 

 

Maintaining high forage yields and keeping costs low results in the best economic 

returns. Switchgrass is not commonly grown as an energy crop but can be harvested in 

high yields. The seeds for switchgrass are estimated to cost $7.72 kg-1. Seed prices for 

other perennial grasses are shown in Table 23. (Hallam, 2001) 

 

Table 23. Seed price for selected perennial grasses 

 Unit $ 
Switchgrass Kg 7.72 

Sweet sorghum Kg 1.10 
Forage sorghum Kg 0.77 

Maize 100 kernels 0.90 
Big bluestem Kg 19.84 

Reed canarygrass Kg 9.92 
Alfalfa Kg 5.51 

 

The rents for grasslands and croplands were assumed to be $124 ha-1 year-1 and 

$185 ha-1 year-1, respectively. Hence, the land rents per dry Mg switchgrass used in this 
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study were $11.27 and $16.82 for grasslands and croplands, respectively, assuming a 

switchgrass-production yield of 11 dry Mg ha-1 year-1. The production costs, excluding 

the harvest and storage, for switchgrass planted in croplands and grasslands were $44.24 

dry Mg-1 and $36.83 dry Mg-1, respectively, at the same yield of 9 dry Mg ha-1 year-1. 

These production costs were then adjusted to $36.17 dry Mg-1 and $30.10 dry Mg-1, 

respectively, for the yield of 11 dry -Mg ha-1 year-1. The switchgrass harvest cost at the 

yield of 11 dry Mg ha-1 in square bales was assumed to be $24.10 dry Mg-1. This includes 

mowing, raking, baling, transporting the bales to the edge of field and stacking, etc. 

(Kumar and Sokhansanj, 2007). 

 
 
 
6.3.2 Delivery 

 

The delivered cost for switchgrass is composed of land costs (or farmer 

premium), production/farming, harvest, storage, and transportation costs. Switchgrass (at 

15 wt% moisture) is typically delivered in bales. The transportation cost is comprised of 

fixed and variable distance costs. Fixed distance cost includes the costs associated with 

loading, uploading and stacking; variable distance cost is dependent on hauling distance.  

 

. Table 24 summarizes the total costs for delivered switchgrass. The storage costs 

for switchgrass were estimated to be $8 dry Mg-1 per year assuming that the switchgrass 

is stored in dense, square bales. The fixed distance cost of transportation covering the 

costs of loading, unloading, and stacking is $3.74 dry Mg-1. The approximate total 

delivered cost is then $77.21 dry Mg-1 (Huang, 2008). 
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Table 24. Total feedstock cost 

 $ dry Mg-1 
Farmer premium/land rent 11.27 
Fertilizer cost - 
Production/farming/stumpage 30.10 
Collection/harvest 24.10 
Storage 8.0 
Grinding/chipping - 
Distance fixed cost 3.74 
Total cost 77.21 
 

6.3.3 Milling 

 

 Natural switchgrass must be milled to less than 10 mm in size for highest 

observed conversion. The finer size is necessary to maximize the surface area for 

microbial digestion. (Jannasch et al. 2001) 

 

A Schutte-Buffalo Hammer Mill Model 1320 was quoted by Schutte-Buffalo 

(Orlando, Florida). This unit can be used to mill one-meter-tall switchgrass down to 5 

mm. This unit operates on 40 HP, 3/60/460/3,600 rpm TEFC motor, direct-connected 

with guard, and is manufactured from ½” A-36 plate steel mounted on a structural steel 

sub-base. The bottom pan for connection is integrally mounted, 16” in diameter, and has 

a 3,000-CFM fan. The estimated capital cost for this equipment is $17,725. The operating 

cost for a 40-HP unit operating 24 hours per day at $0.0935 kWhr-1 is $2.71 hr-1. 
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6.3.4 Pretreatment 

 

The material costs for pretreatment are presented in Table 25. Sulfuric acid is 

used as the pretreatment catalyst for converting the hemicellulose to xylose. Lime is used 

to neutralize the pretreatment liquor. At a 100-kg hr-1 biomass feed rate, approximately 

8.2 x103 kg hr-1 of pure sulfuric acid (making a 2,500-Gallon, 0.75 vol% sulfuric acid 

solution) and 6.6 x103 kg hr-1 of calcium hydroxide is required for pretreating a 4 wt% 

biomass slurry.  

 

Table 25. Pretreatment chemical cost 

 Source Cost, $ kg-1 
Sulfuric acid (99%) 

cost, $ kg-1 
Chemical Marketing 

Reporter, 2009 
0.242 

Lime 
cost, $ kg-1 

Chemical Marketing 
Reporter, 2009 

0.154 

Water Chemical Marketing 
Reporter, 2009 

0.0004 

 

Investment and Utility Cost 

 

The lignocellulose-to-ethanol process requires electricity, steam, and a cooling-

water supply. Steam is required in the pretreatment step to deliver heat and in distillation. 

The temperature of the biomass slurry must be elevated from room temperature to the 

target temperature (195oC). Cooling and chilled water is used to adjust the temperature of 

the process streams. The pretreatment liquor can be cooled to room temperature before 

off-site separation. There are two different reactor types for consideration- batch and 

continuous. 



 78 

 

Batch vs. Continuous Reactor 

 

Continuous flow reactors are used to mix and heat ingredients continuously in a 

reactor in a single pass. In a continuous reactor, the weighing, loading, mixing, heating, 

and discharge steps occur continuously and simultaneously. Continuous heating is 

preferred for applications where:  

 

• Large quantities of a single product are to be mixed. 

• In a continuous process line requiring high production rate.  

• Strict batch integrity is not critical.  

• Smoothing out batch product variations is required. 

 

The advantages of the continuous heating operation, continuous reactor are as follows: 

 

• High Capacity - Compared to batch reactors, continuous reactors of smaller volumes 

and power can be used to produce large quantities of uniform mix. Hence for a given 

capacity they are more compact than batch reactor. 

• Lower Mixing Time - The residence time in continuous reactor is lower than in batch 

reactor. 

• Consistent Mixing Performance – With proper feeding arrangements, online 

instrumentation and operation controls, a consistent mixing performance and uniform 

product quality can be achieved 
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• Suitability for Automatic Control - Operation of continuous reactor can be automated 

using online monitoring and measuring instruments 

• Minimum Segregation – Continuous reactors can reduce and control segregation of 

products as they can be located in proximity of the next processing station. 

• Lower Cost of Mixers - Continuous reactors tend to be cheaper than the equivalent 

batch mixers because they are compact and require less space. However the cost of 

feeders for metering the product into the reactor, instrumentation and control may 

result in a higher overall cost of the system. 

• Minimum Labor – Since material feeding and discharging processes are automated, 

minimal labor is required for continuous reactions. 

(Tekchandaney, 2009) 

 

Tables 27 and 28 summarize the investment and operating utility requirements to support 

the pretreatment step for the conventional and microwave reactor systems, respectively. 

 

Conventional Reactor 

 

Investment and operating cost for conventional batch and continuous pretreatment 

are presented in Tables 26 and 27. A 1,320-Gallon, 316 stainless steel, steam jacketed 

and agitated reactor vessel can be used to react the contents in the batch reactor. This 

vessel (3 ft radius, 6 ft height, and 1 ft wall thickness) is capable of withstanding 600-psi 

internal pressure, and allows for up to 50% volume expansion. The estimated capital cost 

for this system is $500,000. A shell-tube, fixed U/large 316 stainless steel heat exchanger 
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(600-psi internal pressure) with 8,333 ft2 of heat transfer area was used for the continuous 

reactor. The estimated capital cost for this system is $649,000. A 1,000 lb. hr-1 boiler 

capable of producing 600-psi, 230oC steam was estimated at $447,000. A forced-draft 

cooling tower with a 1.7-million BTU hr-1 cooling load was estimated at $126,000. 

(Matte, 2009) 

 

Table 26- Investment and operating cost for conventional batch pretreatment 

 Specifics Capital Operating Cost 
$ yr-1 

Reactor vessel 1,320 gallon 
SS 316 
600 psi 

$500,000 - 

Boiler 1,000 lb. hr-1 
600 psi steam 

$447,000 21,725 

Cooling 1.7 million BTU hr-1 $126,000 2,540 
Electricity   453,518 
 

Table 27- Investment and operating cost for conventional continuous pretreatment 

 Specifics Capital Operating Cost 
$ yr-1 

Reactor vessel Shell-tube 8,333 ft2 
SS 316 
600 psi 

$649,000 - 

Boiler 1,000 lb hr-1 
600 psi steam 

$447,000 21,725 

Cooling 1.7 million BTU hr-1 $126,000 2,540 
Electricity   453,518 
 

Assumptions (McAloon, 2000): 

 

• Steam @ 230oC, Enthalpy 1,205 BTU lb-1 

Estimated cost $2.12 (1,000 lb)-1 



 81 

• Cooling water @ 15oC, Enthalpy 30 BTU lb-1 

Estimated cost $0.05 (1,000 lb)-1 

• Electricity cost, $0.08 per kilowatt-hour (kWh) with a 70% efficiency 

• The continuous reactor’s product throughput was estimated to be at least 50% higher 

relative to the batch reactor (Moseley, 2009). 

 

Microwave Reactor 

 

Industrial Microwave Systems (Morrisville, NC) quoted a batch and continuous 

microwave reactor. The batch reactor uses a 1,300-Gallon ceramic vessel for reacting the 

contents. The continuous reactor is based on 6-Gallon min-1 (1,308 kg hr-1) total feed rate 

system, and is one of the largest continuous microwave reactor available. Heating these 

contents to the reaction temperature (195oC) would require 250 kW. To provide 250 kW 

of absorbed microwave power, this would require three 100 kW generators.  The 

estimated price for the both systems are $650,000, which includes a control system, three 

100 kW microwave generators, three stainless steel applicators with high-pressure 2"-

diameter ceramic tubes, and a support frame. When scaling of equipment, the new cost of 

the scaled equipment can be determined according to the following scaling expression: 

 

(6) 
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where  

 

• Cnew and Co are the new cost and the original cost, respectively 

• Snew and So are the new size and the original size, respectively  

• f is the capital cost scaling factor or exponent. 

 

In this analysis f = 0.6. 

 

 

 

The investment and operating cost for the microwave batch and continuous pretreatment 

reactors are shown in Tables 28 and 29. The continuous reactor’s product throughput was 

estimated to be at least 50% higher relative to the batch reactor (Moseley, 2009). The 

microwave’s electricity is assumed to be 90%. 

 

Table 28: Investment and operating cost for microwave batch pretreatment 

 Specifics Capital Operating Cost 
$ yr-1 

Reactor vessel 1,300-Gallon 
Ceramic vessel 

$1,453,000 - 

Cooling 1.7 million BTU hr-1 $126,000 $2,540 
Electricity   $352,736 
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Table 29: Investment and operating cost for microwave continuous pretreatment 

 Specifics Capital Operating Cost 
$ yr-1 

Reactor vessel 5,000 kg hr-1 
Ceramic tube 

$1,453,000 - 

Cooling 1.7 million BTU hr-1 $126,000 $2,540 
Electricity   $352,736 
 

6.3.5 Enzymatic Hydrolysis 

 

 Cellulase enzyme is required to drive the cellulose to glucose reaction (enzymatic 

hydrolysis). The operating conditions are shown in Table 30. At a 100 kg hr-1 biomass 

feed rate, approximately 16 kg hr-1 of Trichoderma reesei cellulase is required for 

operation. The current estimate cost for cellulase ranges from 30 to 50 cents per gallon of 

ethanol produced. Research is underway with the objective of reducing cellulase cost to 

less than 5 cents per gallon of ethanol (US Department of Energy, 2005). Suszkiw (2008) 

reports that one ton of switchgrass produces approximately 90 gallons of ethanol. This 

corresponds to a long term cellulase cost of $0.0727 kg-1. 

 

Table 30: Major operating conditions for enzymatic hydrolysis 

 Condition 
Enzymatic hydrolysis Cellulase loading 60 FPU g-1 
 Initial saccharification 4% total solids 
 Temperature 323 K (50oC) 
 Total residence time 36 hours 

 

The capital cost for five 1,000-Gallon 316 stainless steel tanks is $290,000. 

(Matche, 2009) Investment and operating costs for the enzymatic hydrolysis step are 

shown in Table 31. 
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Table 31: Investment and operating cost for enzymatic hydrolysis 

 Specifics Capital  

($) 

Operating Cost 

($ yr-1) 

Hydrolysis vessels Five 1,000 gallon 
tanks 

290,000 - 

T reesei cellulase 16 kg hr-1 
 

- 26,111 

 

 
 
6.3.6 Waste-stream outlet 

 

The pretreatment liquor contains numerous constituents, such as unconverted 

polysaccharides, monosaccharides (e.g., xylose), acid-neutralization salts, and other 

byproducts. An assessment of the product separation cost, outlet opportunities, and 

product value (i.e. xylose fermentation) was performed. Table 32 summarizes the waste 

stream outlet potential. 

 

Lignin can be used for boiler fuel, in addition to conversion to a higher-value co-

product (i.e. fuel or chemical). To be beneficial, the value of the lignin-derived co-

product must be enough to cover the costs of the upgrade process and still supply revenue 

to the plant to offset the biofuel production costs (Das, 2000).  

 

The most effective approach for recovering the various lignin fractions involves 

cooling the liquor and filtering out the soluble lignin that precipitates upon cooling. This 
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accounts for approximately one-third of the total soluble lignin. The remaining lignin can 

then be removed using an adsorbent. The adsorbed lignin can be removed by treating the 

adsorbent in a furnace. This allows for recovery of the heat content of the solubilized 

lignin and regenerates the catalyst for reuse. Conventional extractive methods can be 

used to remove the adsorbed lignin compounds in a manner such that the compounds can 

eventually be upgraded to fuel components (Das, 2000).  

 

 The other constituents, such as the cell matter, xylose, xylitol, furfural, and acetic 

acid, have been identified as potential co-products of the biofuel process. Interstitial cell 

matter could be valuable, but might require significant purification. Markets for xylose 

(xylose fermentation to ethanol), furfural (petrochemical refining solvent), xylitol 

(sweetener) and acetic acid (vinegar) are in place. Traditional methods for recovering 

low-volatility acetic acid and other carboxylic acids involve formation of the insoluble 

calcium carboxylate salt (Grzenia, 2008). Succinic acid can be recovered using amine-

based extraction (Hong, 2005).  

 

 Gypsum is a very soft mineral composed of calcium sulfate dihydrate. This 

compound is formed when lime reacts with the sulfuric acid, and can be used as a finish 

for walls and ceilings, fertilizer, or soil conditioner. 
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Table 32: Waste stream potential based on a 100-kg hr-1 feed-rate plant 

By-product Potential,  

kg yr-1 

Market price $ kg-1 Potential revenue 

$ yr-1 

Lignin 210,240 Varied $126,144 

Xylose 44,676 0.08 3,574 

Xylitol - 20.6 - 

Furfural 10,249 1.70 17,424 

Acetic acid 134,116 0.90 120,704 

Gypsum 236,520 0.14 15,374 

 

6.3.7 Financial summary 

 

 The financial attractiveness of the different pretreatment projects was assessed 

using the payback period and net present value methods. 

 

The payback method of financial appraisal, used to evaluate capital projects, 

calculates the return per year from the start of the project until the accumulated returns 

are equal to the cost of the investment, at which time the investment is said to have been 

paid back. The time taken to achieve this payback is termed the payback period. Under 

this method the required payback period sets the hurdle rate (threshold barrier) for project 

acceptance. (Lefley, 1996) Equation 7 shows the payback period calculation. 

 

(7) 
savings annualNet 

required Investment
. =periodPayback  
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Here, the investment required is the capital cost differential between the proposed 

pretreatment process and the conventional-batch process. The net annual saving is the net 

cost differential between the two processes. 

 

A project’s financial benefit can also be measured by its net present value (NPV), 

which is determined by discounting all arising cash flows (at an assumed cost of capital) 

to the start time of the project. As such, the NPV can be regarded as the ‘cash equivalent’ 

of undertaking the project. (Wiesemann, 2009) Equation 8 shows the net present value 

calculation. 

 

(8) 
( )ti

NPV
+

=
1

savings) relative(or  flowcash Net t  

 

Here, t is the year, and i is the cost of capital. A six year time horizon was used 

for the net present value (NPV) analysis. We assumed that the cost savings relative to the 

conventional-batch pretreatment process to be the net cash flow, and a cost of capital of 8 

percent. (Table 33).  

 

 The detailed financial summaries for the four pretreatment processes are shown in 

Table 34. 
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Table 33: Financial summary for the pretreatment reactor systems. 
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Assumptions: 

• Feed: 4 wt% solids 

• Throughput: Continuous processes produce at 50% higher throughput relative to 

batch processes 

• Revenue: based on market price estimates for ethanol and waste stream products 

• Energy efficiency: Microwave heating processes are 90% energy efficient. 

Conventional heating processes are 70% energy efficient 

• Labor: shared labor 

• Inflation: 3% 

• Depreciation: straight line over 50 years 

 

Table 34 shows the payback period relative to the conventional-batch 

pretreatment process. Overall, the microwave pretreatment processes yielded lower 

payback periods (2.6 years average) relative to the conventional pretreatment process (4.2 

years). This is attributed to two factors: higher revenue (due to relatively higher 

glucose/ethanol throughput), and lower cost (due to microwave’s lower energy usage). A 

payback period of less than 3 years is typically the approval threshold for most industry 

capital projects. 

 

Table 34: Payback period analysis 

 
 

Payback period, 
Years 

Conventional-batch Baseline 
Conventional-continuous 4.2 
Microwave-batch 2.5 
Microwave-continuous 2.7 
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Table 35 shows the net present value relative to the conventional-batch 

pretreatment process. Overall, the microwave pretreatment process yielded higher net 

present values relative to the conventional pretreatment processes. The microwave-

continuous processes had the highest NPV of all designs ($366,941). This is attributed to 

the 50% higher throughput associated with continuous vs. batch processes, 26% higher 

glucose/ethanol yield and 20% higher energy efficiency associated with microwave vs. 

conventional processes. 

 

Table 35: Net present value analysis 

 
 

NPV 
$ 

Conventional-batch Baseline 
Conventional-continuous $55,948 
Microwave-batch $125,501 
Microwave-continuous $366,941 
 

 

6.3.8 Outlook 

The outlook and scale-up potential for microwave pretreatment is still in its 

infancy. Commercial outlook is best realized through the scale up of a continuous 

microwave reactor system. 

 

The scalability of the microwave technology has been limited. Presently, the 

manufacturers are directing their research to develop products that can increase the yield 
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volume substantially. These new products have been successful in augmenting the scale 

of reactions from the level of 0.2 mL to 1,000 mL. Design concepts, although not 

commercially available, have shown promise to achieve volumes near 1,500 kg hr-1. 

However, scalability and cost effectiveness to the level of industrial production has still 

not been achieved, which questions the commercial viability of microwave chemistry. 

 

In addition, there is a demand for a further increase in the rate of reaction. 

Consequently, instrument manufacturers are developing prototypes that will be able to 

achieve high-pressure conditions inside the reaction vessel, resulting in an increased rate 

of reaction. Other areas of research include design modifications in the existing 

equipment, to provide safer reaction conditions; and development of equipment that can 

be used for chemical analysis as well as chemical synthesis. 
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7.0 CONCLUSIONS 

 

 Switchgrass and other lignocellulosic feedstocks offer promise as a renewable 

energy source for biofuel production. However, a primary technological challenge in 

converting switchgrass into fuel is overcoming the recalcitrance of its matrix to 

enzymatic hydrolysis. To overcome these problems for chemical processing, naturally 

occurring lignocellulosic biomass must be pretreated before it can be further processed 

using enzymatic hydrolysis or bioconversion. Two pretreatment reactor types were 

evaluated for effectiveness- conventional heated and microwave radiation. 

 

Conventional chemical heating, which is based on conduction mechanisms, has 

been reported to be a slow and inefficient heating method. Microwave radiation, which is 

based on direct interaction between the heated object and an applied electromagnetic 

field, has been reported to offer more uniform heating, good temperature control, and 

better yields. This project thoroughly and directly compared the effectiveness of these 

two pretreatment reactors. A Taguchi design experiment was useful in evaluating the 

effect of process conditions (sulfuric acid loading, temperature, and residence time) on 

desirable and undesirable product yield for both reactor types. The primary conclusions 

from this study are: 

 

1. Microwave pretreatment is a more effective cellulose and switchgrass pretreatment 

technique than conventional heating chemical pretreatment due to the acceleration of 
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reactions during the pretreatment process. Target reaction temperatures were reached 

up to ten times faster than conventional heating. This offers the potential for higher 

throughput upon scale-up. 

2. Microwave pretreatment offered up 100 percent higher total glucose yield (in the 

pretreatment and enzymatic hydrolysis steps) at comparable pretreatment severity 

relative to conventional heating. This could translate into higher fuel output at lower 

power and energy requirements relative to conventional heating. 

3. Microwave’s more efficient and target heating contributed to rapid cleavage of the 

glycosidic bonds, resulting in higher glucose yield in the pretreatment step. 

4. Microwave pretreated switchgrass samples were more porous relative to conventional 

pretreated samples (as observed from SEM photographs). These findings support 

literature reported microwave induced non-thermal effects, which cause fiber 

separation and expose more accessible surface area of cellulose to cellulase. 

5. Acid loading had the greatest influence on final glucose yield, followed by 

temperature and residence time. Increasing acid loading drove polysaccharide 

hydrolysis, resulting in higher glucose yield and hemicellulose removal in the 

pretreatment step, higher cellulose ratio in pretreated samples, and the potential for 

higher degradation product yield at 1.5 vol%. Best acid loading over the experimental 

range was at 0.75 vol%. 

6. Temperature assisted the cellulose hydrolysis reaction, but also drove thermal 

degradation. High temperature (>180oC) and low residence time (1 min) was more 

effective on releasing glucose than low temperature (<180oC) and high residence time 

(>5 min).  
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The highest observed total glucose yield (99% conversion) was found under 0.75 vol% 

sulfuric acid, 195oC temperature, and 1 min residence time conditions. Based on these 

conditions, theoretical ethanol yields for microwave-pretreated switchgrass were 

calculated using NREL’s ethanol yield calculator. Theoretical ethanol yields are 50 

gallons per dry ton harvested, based on fermentation of only glucose. 

 

The models developed in this study were useful in predicting the glucose yield as 

a function of pretreatment conditions for both reactor types. The first model involved 

determining kinetic parameters for cellulose and xylan hydrolysis reactions based on the 

Arrhenius relationship and general acid-base catalysis. Correlation coefficients for this 

model type were favorable over the experimental range. The second model was based on 

determining combined severity factors. Although correlation coefficients for this model 

type were low, this model can be a supplemental method for highlighting general areas of 

interest and of concern.  

 

 Further investigation must be done to demonstrate the commercial applicability of 

microwave pretreatment. This study highlighted four opportunities for bridging the gap to 

industrial scale and potential. One, a continuous process must be employed to maximize 

throughput. Batch processes are throughput limited due to additional steps involved in the 

process. We recommend partnering with Industrial Microwave, Inc. for design and 

evaluation of a pilot-scale continuous process. Another potential partner would be 

Cambrex Corporation, who was the recipient of the Silver Innovation Award at the 2009 
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CPhI Event for its Continuous-Flow Microwave-Assisted Organic Synthesis (CFMAOS) 

technology. Their CaMWaveTM KiloLAB flow reactor is capable of manufacturing up to 

12 kg hr-1 of product based on current designs. Their technology platforms are touted as 

being more versatile, faster, cleaner, offering more reliable reactions, which can lead to 

improved productivity and lower manufacturing costs. 

 

Second, solids loading of at least 20 wt% must be demonstrated on the pilot unit. 

Bench-top units (typically 500 mL) are only able to process solids up to 10 wt% due to 

equipment constraints. Larger units must be utilized for processes higher solids loading. 

The higher solids loading is required to achieve at least break-even economics, by taking 

advantage of higher throughput and incremental energy usage relative to lower solids 

slurry. Third, a direct comparison of conventional and microwave continuous 

pretreatment processes at higher solid loading conditions would be beneficial. Fourth, an 

investigation of other energy crops, such as wheat straw, corn stover, and soybean waste 

would be valuable. 

  

The potential for obtaining an application or process patent is achievable for 

processing lignicellulosic biomass using continuous microwave technology for biofuel. 

The novelty would be a process that yields higher fuel throughput at lower energy usage. 

A comprehensive patent search rendered no patents or applications in this area. 
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APPENDIX 1 
 

 
Figure A1: PARR® reactor pressure as a function of temperature and ramp time 
 

 
Figure A2: CEM Explorer reactor pressure as a function of temperature and ramp time 



 103 

 

 
Figure A3: Avicel® mass loss fraction as a function of conventional and microwave 
pretreatment conditions- acid (vol%), temperature (oC), residence time (min) 
 
 



 104 

 

Figure A4: Whatman paper mass loss fraction as a function of conventional and 
microwave pretreatment conditions- acid (vol%), temperature (oC), residence time (min) 
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Figure A5: Switchgrass mass loss fraction as a function of conventional and microwave 
pretreatment conditions- acid (vol%), temperature (oC), residence time (min) 
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Figure A6: Switchgrass cellulose wt% as a function of conventional and microwave 
pretreatment conditions- acid (vol%), temperature (oC), residence time (min) 
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Figure A7: Switchgrass xylan wt% as a function of conventional and microwave 
pretreatment conditions- acid (vol%), temperature (oC), residence time (min) 
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Figure A8: Avicel® liquor pH as a function of conventional and microwave pretreatment 
conditions- acid (vol%), temperature (oC), residence time (min) 
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Figure A9: Whatman paper liquor pH as a function of conventional and microwave 
pretreatment conditions- acid (vol%), temperature (oC), residence time (min) 
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Figure A10: Switchgrass liquor pH as a function of conventional and microwave 
pretreatment conditions- acid (vol%), temperature (oC), residence time (min) 
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Figure A11: Glucose in Avicel® liquor (g L-1) vas a function of conventional and 
microwave pretreatment conditions- acid (vol%), temperature (oC), residence time (min) 
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Figure A12: Glucose in Whatman paper liquor (g L-1) as a function of conventional and 
microwave pretreatment conditions- acid (vol%), temperature (oC), residence time (min) 
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Figure A13: Glucose in switchgrass liquor (g L-1) as a function of conventional and 
microwave pretreatment conditions- acid (vol%), temperature (oC), residence time (min) 
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Figure A13A: Glucose in switchgrass pretreatment liquor (g L-1) as a function of 
conventional and microwave combination pretreatment conditions- Acid (vol%), Temp 
(oC), Time (min). 
 

 Acid, vol% Temp, oC Time, min 
1 0 165 1 
2 0.75 180 5 
3 1.5 195 10 
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Figure A14: Xylose (g L-1) in switchgrass liquor as a function of conventional and 
microwave pretreatment conditions- acid (vol%), temperature (oC), residence time (min) 
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Figure A15: HMF (g L-1) in Avicel® liquor as a function of conventional and microwave 
pretreatment conditions- acid (vol%), temperature (oC), residence time (min) 
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Figure A16: HMF (g L-1) in Whatman paper liquor as a function of conventional and 
microwave pretreatment conditions- acid (vol%), temperature (oC), residence time (min) 
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Figure A17: HMF (g L-1) in switchgrass liquor as a function of conventional and 
microwave pretreatment conditions- acid (vol%), temperature (oC), residence time (min) 
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Figure A17A: HMF in switchgrass pretreatment liquor (g L-1) as a function of the 
conventional and microwave combination pretreatment conditions- Acid (vol%), Temp 
(oC), Time (min). 
 

 Acid, vol% Temp, oC Time, min 
1 0 165 1 
2 0.75 180 5 
3 1.5 195 10 
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Figure A18: Acetic acid (g L-1) in switchgrass liquor as a function of conventional and 
microwave pretreatment conditions- acid (vol%), temperature (oC), residence time (min) 
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Figure A19: Xylitol (g L-1) in switchgrass liquor as a function of conventional and 
microwave pretreatment conditions- acid (vol%), temperature (oC), residence time (min) 
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Figure A20: Succinic acid (g L-1) in switchgrass liquor  as a function of conventional and 
microwave pretreatment conditions- acid (vol%), temperature (oC), residence time (min) 
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Figure A21: Glucose (g L-1) in enzymatic hydrolysis liquor as a function of conventional 
and microwave pretreatment conditions- acid (vol%), temperature (oC), residence time 
(min) 
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Figure A21A: Glucose in switchgrass enzymatic hydrolysis liquor (g L-1) as a function of 
the conventional and microwave combination pretreatment conditions- Acid (vol%), 
Temp (oC), Time (min). 
 

 Acid, vol% Temp, oC Time, min 
1 0 165 1 
2 0.75 180 5 
3 1.5 195 10 
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Figure A22A: Normalized glucose yield (g Glucose g Biomass) as a function of the 
combined conventional and microwave combination pretreatment conditions- Acid 
(vol%), Temp (oC), Time (min). 
 

 Acid, vol% Temp, oC Time, min 
1 0 165 1 
2 0.75 180 5 
3 1.5 195 10 
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Figure A22: Glucose (g L-1) in enzymatic hydrolysis liquor as a function of pretreated 
biomass cellulose and xylan fraction for conventional and microwave reactors 
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Figure A23: Glucose (g L-1) in enzymatic hydrolysis liquor as a function of pretreated 
biomass cellulose and lignin fraction for conventional and microwave reactors 
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Figure A24: Glucose (g L-1) in switchgrass-pretreatment liquor as a function of combined severity factor 
(CSF) for conventional and microwave reactors.  

 
Figure A25: Glucose (g L-1) in enzymatic hydrolysis liquor in switchgrass pretreatment liquor as a function 
of combined severity factor (CSF) for conventional and microwave reactors. 
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Figure A26: Combined glucose g g-1 (pretreatment and enzymatic hydrolysis liquors) as a 
function of combined severity factor (CSF) for conventional and microwave reactors 
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Figure A27: Xylose (g L-1) in switchgrass pretreatment liquor as a function of combined severity factor 
(CSF) for conventional and microwave reactors.  
 

 
Figure A28: HMF (g L-1)  in switchgrass pretreatment liquors as a function of combined severity factor 
(CSF) for conventional and microwave reactors.  
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Figure A29: Acetic acid (g L-1) in switchgrass pretreatment liquors as a function of 
combined severity factor (CSF) for conventional and microwave reactors.  
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Figure A30: Mass and energy balance
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APPENDIX 2 
 

Methods 
 
Determination of Carbohydrates in Biomass by High Performance Liquid 

Chromatography 

Laboratory Analytical Procedure #002 

 

1. Introduction 

1.1 The carbohydrates making up a major portion of biomass samples are 

polysaccharides composed primarily of glucose, xylose, arabinose, galactose, and 

mannose subunits. The polysaccharides present in a biomass sample can be hydrolyzed to 

their component sugar monomers by sulfuric acid in a two-stage hydrolysis process. The 

sample can then be quantified by ion-moderated partition HPLC. 

1.2 This procedure has been adopted by ASTM as the Standard Test Method for 

Determination of Carbohydrates in Biomass by High Performance Liquid 

Chromatography, E1758-95. 

 

2. Scope 

2.1 This method covers the determination of carbohydrates, expressed as the percent of 

each sugar present in a hydrolyzed biomass sample. The sample is taken through a 

primary 72% sulfuric acid hydrolysis, followed by a secondary dilute-acid hydrolysis. 

2.2 Sample material suitable for this procedure include hard and soft woods, herbaceous 

materials (such as switchgrass and sericea), agricultural residues (such as corn stover, 

wheat straw, and bagasse), waste-paper (such as office waste, boxboard, and newsprint), 

washed acid- and alkaline-pretreated biomass, and the solid fraction of fermentation 
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residues. All results are reported relative to the 105°C oven-dried weight of the sample. 

In the case of extracted materials, the results may also be reported on an extractives-free 

basis. 

2.3 All analyses shall be performed according to the guidelines established in the Ethanol 

Project Quality Assurance Plan (QAP). 

 

3. References 

3.1 Moore, W.E., and D.B. Johnson. 1967. Procedures for the Chemical Analysis of 

Wood and Wood Products. Madison, WI: U.S. Forest Products Laboratory, U.S. 

Department of Agriculture. 

3.2 Ethanol Project Laboratory Analytical Procedure #001, "Standard Method for the 

Determination of Total Solids in Biomass". 

3.3 Ethanol Project Laboratory Analytical Procedure #003, "Determination of Acid-

Insoluble Lignin in Biomass". 

3.4 NREL Ethanol Project Laboratory Analytical Procedure #004, "Determination of 

Acid-Soluble Lignin in Biomass". 

3.5 NREL Ethanol Project Laboratory Analytical Procedure #010, "Standard Method for 

the Determination of Extractives in Biomass". 

3.6 TAPPI Test Method T264 om-88, "Preparation of Wood For Chemical Analysis." In 

Tappi Test Methods. Atlanta, GA: Technical Association of the Pulp and Paper Industry. 

3.7 Vinzant, T.B., L. Ponfick, N.J. Nagle, C.I. Ehrman, J.B. Reynolds, and M.E. Himmel. 

1994. 
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"SSF Comparison of Selected Woods From Southern Sawmills." Appl. Biochem. 

Biotechnol., 45/46:611-626. 

 

4. Terminology 

4.1 Prepared Biomass - Biomass that has been prepared by lyophilization, oven drying, 

air drying, and in some instances by extraction, to reduce the moisture content of the 

sample so it is suitable for carbohydrate analysis. 

4.2 Oven-Dried Weight - The moisture-free weight of a biomass sample as determined by 

LAP-001, "Standard Method for Determination of Total Solids in Biomass". 

 

5. Significance and Use 

5.1 The percent sugar content is used in conjunction with other assays to determine the 

total composition of biomass samples. 

 

6. Interferences 

6.1 Samples with high protein content may result in percent sugar values biased low, as a 

consequence of protein binding with some of the monosaccharides. 

6.2 Test specimens not suitable for analysis by this procedure include acid- and alkaline-

pretreated biomass samples that have not been washed. Unwashed pretreated biomass 

samples containing free acid or alkali may change visibly on heating. 

 

7. Apparatus 

7.1 Hewlett Packard Model 1090 HPLC, or equivalent, with refractive index detector. 
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7.2 HPLC columns, BioRad Aminex7 HPX-87C and/or Aminex7 HPX-87P (or 

equivalent). 

7.3 Guard columns, cartridges appropriate for the column used. 

Note: Deashing guard column cartridges from BioRad, of the ionic form H+/CO3%, are 

an option when using an HPX-87P column. These cartridges have been found to be 

effective in eliminating baseline ramping. 

7.4 Analytical balance readable to 0.1 mg. 

7.5 Convection ovens with temperature control to 45 ± 3°C and 105 ± 3°C. 

7.6 Autoclave capable of maintaining 121 ± 3°C. 

7.7 Water bath set at 30 ± 3°C. 

7.8 Desiccator containing anhydrous calcium sulfate. 

 

8. Reagents and Materials 

8.1 Reagents 

8.1.1 High purity sugars for standards (98%+) - two sets of glucose, xylose, galactose, 

arabinose,and mannose from different lots or manufacturers. 

8.1.2 72% w/w H2SO4 (12.00 ± 0.02 M or specific gravity 1.6389 at 15.6 °C /15.6°C). 

8.1.3 Calcium carbonate, ACS reagent grade. 

8.1.4 Water, 18 megohm deionized. 

8.2 Materials 

8.2.1 Glass test tubes, 16x100 mm. 

8.2.2 125 mL glass serum bottles, crimp top style, with rubber stoppers and aluminum 

seals to fit. 
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8.2.3 pH paper, suitable to cover the pH range of 4 to 7. 

8.2.4 Disposable nylon syringe filters, 0.2 µm. 

8.2.5 Disposable syringes, 3 mL. 

8.2.6 Autosampler vials, with crimp top seals to fit. 

8.2.7 Erlenmeyer flasks, 50 mL. 

 

9. ES&H Considerations and Hazards 

9.1 Follow all applicable NREL Laboratory Specific Hygiene Plan guidelines. 

9.2 72% H2SO4 is very corrosive and must be handled carefully. 

9.3 Use caution when handling hot glass bottles after the autoclave step, as they may 

have become pressurized. 

 

10. Sampling, Test Specimens and Test Units 

10.1 Test specimens suitable for analysis by this procedure are as follows: 

- biomass feedstocks, dried and reduced in particle size, if necessary. 

- pretreated biomass, washed free of any residual acid or alkali. 

- the solids fraction of fermentation residues. 

10.2 The sample must not contain particles larger than 1 mm in diameter. If milling is 

required to reduce the particle size of the test specimen, a laboratory mill equipped with a 

40 mesh (or smaller) screen should be used. 

10.3 The total solids content of the "as received" test specimen (prior to any drying or 

extraction steps) must be determined by LAP-001 in parallel with the carbohydrate 

analysis. Record this value as %Tas received. 
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10.4 Material with a total solids content less than 85%, on a 105°C dry weight basis, will 

require drying by lyophilization, oven drying, or air drying prior to milling or analysis. 

The amount of moisture lost as a result of the preparation procedure must be determined. 

This moisture content is used to calculate the total solids content of the sample based on 

its preparation and is recorded as %Tprep. This value is used to correct the weight of the 

prepped material used in the carbohydrate analysis, as described in the calculations 

section. The prepared sample should be stored in a manner to ensure its moisture content 

does not change prior to analysis. 

Note: Preparing samples for analysis by oven drying can produce hard chunks of 

material. This material must then be milled to reduce the size of the large pieces to less 

then 1 mm in diameter. The sample is then redried prior to testing. 

10.5 Some samples may require extraction prior to analysis, to remove components that 

may interfere with the analysis. LAP-010, "Standard Method for the Determination of 

Extractives in Biomass", is used to prepare an extractives-free sample with a moisture 

content suitable for carbohydrate analysis. As part of this procedure, the percent 

extractives in the prepared sample, on a 105°C dry weight basis, is determined. This 

value, recorded as % extractives, can be used to convert the % sugar reported on a 

extractives-free basis to an as received (whole sample) basis. 

10.6 The test specimen shall consist of approximately 0.3 g of sample. The test specimen 

shall be obtained in such a manner to ensure that it is representative of the entire lot of 

material being tested. 
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11. Procedure 

11.1 This procedure is suitable for air-dried, lyophilized, and extracted biomass samples, 

as well as for samples that have been oven dried at a temperature of 45°C or less. It is not 

suitable for samples that have been dried at a temperature exceeding 45°C. 

Note: The total solids content of the original sample, %Tas received, must be determined 

using LAP-001, prior to any preparatory steps. The total solids content of the sample 

based on its preparation, %Tprep , must also be known. 

11.2 Determine the total solids content of the prepared or extractives-free biomass sample 

by LAP-001 and record this value as %Tfinal . 

Note: Samples for total solids determination (LAP-001) must be weighed out at the same 

time as the samples for the carbohydrate determination. If this is done later, it can 

introduce an error in the calculation because ground biomass can rapidly gain or lose 

moisture when exposed to the atmosphere. 

11.3 Weigh 0.3 ± 0.01 g of the prepared or extractives-free sample to the nearest 0.1 mg 

and place in a 16x100 mm test tube. Record as W1, the initial sample weight in grams. 

Each sample must be run in duplicate, at minimum. 

11.4 Add 3.00 ± 0.01 mL (4.92 ± 0.01 g) of 72% H2SO4 and use a glass stirring rod to 

mix for 1 minute, or until the sample is thoroughly wetted. 

11.5 Place the test tube in the water bath set at 30 ± 1°C and hydrolyze for 2 hours. 

11.6 Stir the sample every 15 minutes to assure complete mixing and wetting. 

11.7 Weigh out 0.3 ± 0.01 g of each high purity sugar (predried at 45°C) to the nearest 

0.1 mg, and place each in its own 16x100 mm glass test tube. Add acid, hydrolyze, and 

stir these sugars as described in the previous three steps. These sugar recovery standards 



 140 

(SRS) will be taken through the remaining steps in the procedure in parallel with the 

samples. The calculated recovery of the SRSs will be used to correct for losses due to the 

destruction of sugars during the hydrolysis process. It may be useful to run selected SRSs 

in duplicate, particularly if specific sugars are deemed critical. 

11.8 Prepare a method verification standard (MVS) by weighing out 0.3 ± 0.01 g of a 

well characterized standard material suitable for analysis. Add acid, hydrolyze, and stir 

the MVS as was done with the samples and SRSs (see 11.4-11.6 above). This MVS will 

be taken through the remaining steps in the procedure in parallel with the samples and the 

SRSs, and is used to test the reproducibility of the method as a whole. 

Note: A suitable method verification standard, Populus deltoides, may be obtained 

from NIST (research material #8492). 

11.9 Upon completion of the two hour hydrolysis step, transfer each hydrolyzate to its 

own serum bottle and dilute to a 4% acid concentration by adding 84.00 ± 0.04 mL 

deionized water. Be careful to transfer all residual solids along with the hydrolysis liquor. 

The total weight added to the tared bottle is 89.22 g (0.3 g sample, 4.92 g 72% H2SO4, 

and 84.00 g deionized water). Since the specific gravity of the 4% acid solution is 1.0250 

g/mL, the total volume of solution, VF , is 87.0 mL. 

11.10 Stopper each of the bottles and crimp aluminum seals into place. 

11.11 Set the autoclave to a liquid cycle to prevent loss of sample from the bottle in the 

event of a loose crimp seal. Autoclave the samples in their sealed bottles for 1 hour at 121 

± 3°C. 

11.12 After completion of the autoclave cycle, allow the samples to cool for about 20 

minutes at room temperature before removing the seals and stoppers. 
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11.13 These autoclaved solutions may also be used for the determination of acid-

insoluble residue and/or acid-soluble lignin, in parallel with this carbohydrate 

determination. 

Note: If acid-insoluble lignin and/or acid-soluble lignin determinations are to be 

conducted on a sample, the residual solids must be collected by filtering the 

hydrolyzate through an ashed and weighed filtering crucible prior to proceeding with 

the carbohydrate determination. Refer to LAP-003, "Determination of Acid- 

Insoluble Lignin in Biomass", for details. If an acid-soluble lignin determination is 

to be conducted, a portion of the filtrate must be reserved for analysis. Acid-soluble 

lignin should be analyzed within 24 hours, preferably within 6 hours of hydrolysis. 

Refer to the procedure "Determination of Acid-Soluble Lignin in Biomass" (LAP- 

004) for details. 

11.14 Transfer 20 mL aliquots of each hydrolyzate, or filtrate, to 50 mL Erlenmeyer 

flasks. 

11.15 Neutralize with calcium carbonate to a pH between 5 and 6. Do not over-

neutralize. Add the calcium carbonate slowly with frequent swirling to avoid problems 

with foaming. Monitor the pH of the solution with pH paper to avoid over-neutralization. 

11.16 Filter the neutralized hydrolyzate using a 3 mL syringe with a 0.2 µm filter 

attached. One portion of the hydrolyzate should be filtered directly into a sealable test 

tube for storage. A second portion should be filtered directly into an autosampler vial if 

the hydrolyzate is to be analyzed without dilution. If the concentration of any of the 

analytes is expected to exceed the validated linear range of the analysis, dilute the 

hydrolyzate as required and filter into an autosampler vial for analysis. 
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Note: It is advisable to determine the initial glucose concentration of the sample 

using an alternative technique, such as a YSI glucose analyzer, in order to predict 

whether or not the glucose in the sample will fall within the linear range of the 

analysis. 

11.17 The portion of the neutralized hydrolyzate filtered into the test tube should be 

securely sealed, labeled, placed in the refrigerator, and reserved in case a repeat analysis 

is required. The sample should be stored for no longer than two weeks. 

11.18 Prepare a series of sugar calibration standards in deionized water at concentrations 

appropriate for creating a calibration curve for each sugar of interest. A suggested scheme 

for the HPX-87C column is to prepare a set of multi-component standards containing 

glucose, xylose, and arabinose in the range of 0.2 -12.0 mg/mL. For the HPX-87P 

column, galactose, and mannose should be included as additional components in the 

standards. Extending the range of the calibration curves beyond 12.0 mg/mL will require 

validation. 

11.19 Prepare an independent calibration verification standard (CVS) for each set of 

calibration standards, using sugars obtained from a source other than that used in 

preparing the calibration standards. The CVS must contain precisely known amounts of 

each sugar contained in the calibration standards, at a concentration that falls in the 

middle of the validated range of the calibration curve. The CVS is to be analyzed after 

each calibration curve and at regular intervals in the HPLC sequence, bracketing groups 

of samples. The CVS is used to verify the quality of the calibration curve(s) throughout 

the HPLC run. 



 143 

11.20 Analyze the calibration standards, the CVS, the samples, the SRSs, and the MVS 

by HPLC using a Biorad Aminex7 HPX-87C or HPX-87P column for glucose, xylose, 

and arabinose. If mannose and galactose are also to be determined, a Biorad Aminex7 

HPX-87P column must be used instead. For many analyses, it is useful to run the same 

samples on both columns and compare the results. The following instrumental conditions 

are used for both the HPX-87C and the HPX-87P columns: 

Sample volume: 50 µL. 

Eluant: 0.2 µm filtered and degassed, deionized water. 

Flow rate: 0.6 mL/min. 

Column temperature: 85°C. 

Detector: refractive index. 

Run time: 20 minutes data collection plus a 15 minute post-run. 
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Procedure Title: Determination of Structural Carbohydrates and Lignin in Biomass 

 

6. Apparatus  

6.1 Analytical balance, accurate to 0.1 mg  

6.2 Convection drying oven, with temperature control of 105 ± 3oC  

6.2 Muffle furnace, equipped with a thermostat, set to 575 + 25 °C or equipped with 

optional ramping program  

6.3 Water bath, set at 30 + 3 °C  

6.4 Autoclave, suitable for autoclaving liquids, set to 121 + 3 °C  

6.5 Filtration setup, equipped with a vacuum source and vacuum adaptors for 

crucibles  

6.6 Desiccator containing desiccant  

6.7 HPLC system equipped with refractive index detector and the following columns: 

 

6.7.1 Shodex sugar SP0810 or Biorad Aminex HPX-87P column (or equivalent) with 

ionic form H+/CO3- deashing guard column  

6.7.2 Biorad Aminex HPX-87H column (or equivalent) equipped with an appropriate 

guard column  

6.8 UV-Visible spectrophotometer, diode array or single wavelength, with high purity 

quartz cuvettes of pathlength 1 cm  

6.9 Automatic burette, capable of dispensing 84.00 mL water, optional  

 



 145 

7. Reagents and materials  

7.1 Reagents  

7.1.1 Sulfuric acid, 72% w/w (specific gravity 1.6338 at 20oC)- (also commercially 

available as a reagent for the determination of fluorine, from Fluka #00647)  

7.1.2 Calcium carbonate, ACS reagent grade  

7.1.3 Water, purified, 0.2 µm filtered  

7.1.4 High purity standards : D-cellobiose, D(+)glucose, D(+)xylose, D(+)galactose, 

L(+)arabinose, and D(+)mannose  

7.1.5 Second set of high purity standards, as listed above, from a different source 

(manufacturer or lot), to be used to prepare calibration verification standards (CVS)  

7.2 Materials  

7.2.1 QA standard, well characterized, such as a National Institute of Standards and 

Technology (NIST) biomass standard or another well characterized sample of similar 

composition to the samples being analyzed  

7.2.2 Pressure tubes, minimum 90 mL capacity, glass, with screw on Teflon caps and o-

ring seals (Ace glass # 8648-30 tube with #5845-47 plug, or equivalent)  

7.2.3 Teflon stir rods sized to fit in pressure tubes and approximately 5 cm longer than 

pressure tubes  

7.2.4 Filtering crucibles, 25 mL, porcelain, medium porosity, Coors #60531 or equivalent 

7.2.5 Bottles, wide mouth, 50 mL  

7.2.6 Filtration flasks, 250 mL  

7.2.7 Erlenmeyer flasks, 50 mL  

7.2.8 Adjustable pipettors, covering ranges of 0.02 to 5.00 mL and 84.00 mL  
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7.2.9 pH paper, range 4-9  

7.2.10 Disposable syringes, 3 mL, fitted with 0.2 µm syringe filters  

7.2.11 Autosampler vials with crimp top seals to fit  

 

8. ES&H Considerations and Hazards  

8.1 Sulfuric acid is corrosive and should be handled with care.  

8.2 Use caution when handling hot pressure tubes after removal from the autoclave, as 

the pressurized tubes can cause an explosion hazard.  

8.3 When placing crucibles in a furnace or removing them, use appropriate personal 

protective equipment, including heat resistant gloves.  

8.4 Operate all equipment in accordance with the manual and NREL Safe Operating 

Procedures  

8.5 Follow all applicable NREL chemical handling procedures 

 

9. Sampling, Test Specimens and Test Units  

9.1 Care must be taken to ensure a representative sample is taken for analysis.  

9.2 LAP “Preparation of Samples of Biomass Compositional Analysis” should be 

performed prior to this analysis. Samples must have a minimum total solids content of 

85%.  

9.3 LAP “Determination of Extractives in Biomass” should be performed prior to this 

analysis if extractives are present in the sample.  

9.4 LAP “Determination of Solids in Biomass” should be performed at the same time that 

samples for this analysis are weighed out.  
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9.5 This procedure is suitable for samples that have been air dried or lyophilized. 

Samples dried at a temperature of 45°C or higher are not suitable for this procedure.  

9.6 Steps 9.2 to 9.4 should be applied to the QA standard  

 

10. Procedure  

10.1 Prepare the sample for analysis and hydrolyze  

10.1.1 Place an appropriate number of filtering crucibles in the muffle furnace at 575 +25 

°C for a minimum of four hours. Remove the crucibles from the furnace directly into a 

desiccator and cool for a specific period of time, one hour is recommended. Weigh the 

crucibles to the nearest 0.1 mg and record this weight. It is important to keep the 

crucibles in a specified order, if they are not marked with identifiers. Permanent marking 

decals are available from Wale Apparatus. Do not mark the bottom of the filtering 

crucible with a porcelain marker, as this will impede filtration.  

10.1.2 Place the crucible back into the muffle furnace at 575 ± 25 oC and ash to constant 

weight. Constant weight is defined as less than ± 0.3 mg change in the weight upon one 

hour of re-heating the crucible.  

10.1.3 Weigh 300.0 + 10.0 mg of the sample or QA standard into a tared pressure tube. 

Record the weight to the nearest 0.1 mg. Label the pressure tube with a permanent 

marker. LAP “Determination of Total Solids in Biomass” should be performed at the 

same time, to accurately measure the percent solids for correction. Each sample should be 

analyzed in duplicate, at minimum. The recommended batch size is three to six samples 

and a QA standard, all run in duplicate.  
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10.1.4 Add 3.00 + 0.01 mL (or 4.92 + 0.01 g) of 72% sulfuric acid to each pressure tube. 

Use a Teflon stir rod to mix for one minute, or until the sample is thoroughly mixed. 

10.1.5 Place the pressure tube in a water bath set at 30 + 3 °C and incubate the sample for 

60 + 5 minutes. Using the stir rod, stir the sample every five to ten minutes without 

removing the sample from the bath. Stirring is essential to ensure even acid to particle 

contact and uniform hydrolysis.  

10.1.6 Upon completion of the 60-minute hydrolysis, remove the tubes from the water 

bath. Dilute the acid to a 4% concentration by adding 84.00 + 0.04 mL deionized water 

using an automatic burette. Dilution can also be done by adding 84.00 + 0.04 g of 

purified water using a balance accurate to 0.01 g. Screw the Teflon caps on securely. Mix 

the sample by inverting the tube several times to eliminate phase separation between high 

and low concentration acid layers.  

10.1.7 Prepare a set of sugar recovery standards (SRS) that will be taken through the 

remaining hydrolysis and used to correct for losses due to destruction of sugars during 

dilute acid hydrolysis. SRS should include D-(+)glucose, D-(+)xylose, D-(+)galactose, -

L(+)arabinose,and D-(+)mannose. SRS sugar concentrations should be chosen to most 

closely resemble the concentrations of sugars in the test sample. Weigh out the required 

amounts of each sugar, to the nearest 0.1 mg, and add 10.0 mL deionized water. Add 348 

µL of 72% sulfuric acid. Transfer the SRS to a pressure tube and cap tightly.  

10.1.7.1 A fresh SRS is not required for every analysis. A large batch of sugar recovery 

standards may be produced, filtered through 0.2 µm filters, dispensed in 10.0 mL aliquots 

into sealed containers, and labeled. They may be stored in a freezer and removed when 

needed. Thaw and vortex the frozen SRS prior to use. If frozen SRS are used, the 



 149 

appropriate amount of acid must be added to the thawed sample and vortexed prior to 

transferring to a pressure tube.  

10.1.8 Place the tubes in an autoclave safe rack, and place the rack in the autoclave. 

Autoclave the sealed samples and sugar recovery standards for one hour at 121°C, 

usually the liquids setting. After completion of the autoclave cycle, allow the 

hydrolyzates to slowly cool to near room temperature before removing the caps. (If step 

10.2 is not performed, draw a 10 mL aliquot of the liquor for use in step 10.5.)  

10.2 Analyze the sample for acid insoluble lignin as follows  

10.2.1 Vacuum filter the autoclaved hydrolysis solution through one of the previously 

weighed filtering crucibles. Capture the filtrate in a filtering flask.  

10.2.2 Transfer an aliquot, approximately 50 mL, into a sample storage bottle. This 

sample will be used to determine acid soluble lignin as well as carbohydrates, and acetyl 

if necessary. Acid soluble lignin determination must be done within six hours of 

hydrolysis. If the hydrolysis liquor must be stored, it should be stored in a refrigerator for 

a maximum of two weeks. It is important to collect the liquor aliquot before proceeding 

to step 10.2.3.  

10.2.3 Use deionized water to quantatively transfer all remaining solids out of the 

pressure tube into the filtering crucible. Rinse the solids with a minimum of 50 mL fresh 

deionized water. Hot deionized water may be used in place of room temperature water to 

decrease the filtration time.  

10.2.4 Dry the crucible and acid insoluble residue at 105 + 3 °C until a constant weight is 

achieved, usually a minimum of four hours.  
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10.2.5 Remove the samples from the oven and cool in a desiccator. Record the weight of 

the crucible and dry residue to the nearest 0.1 mg.  

10.2.6 Place the crucibles and residue in the muffle furnace at 575 + 25 °C for 24 + 6 

hours.  

10.2.6.1 A furnace with temperature ramping may also be used Furnace Temperature 

Ramp Program: Ramp from room temperature to 105 °C Hold at 105°C for 12 minutes 

Ramp to 250 °C at 10°C / minute Hold at 250 °C for 30 minutes Ramp to 575 °C at 20 °C 

/ minute Hold at 575 °C for 180 minutes Allow temperature to drop to 105 °C Hold at 

105 °C until samples are removed  

10.2.7 Carefully remove the crucible from the furnace directly into a desiccator and cool 

for a specific amount of time, equal to the initial cool time of the crucibles. Weigh the 

crucibles and ash to the nearest 0.1 mg and record the weight. Place the crucibles back in 

the furnace and ash to a constant weight. (The amount of acid insoluble ash is not equal 

to the total amount of ash in the biomass sample. Refer to LAP “Determination of Ash in 

Biomass” if total ash is to be determined.)  

10.3 Analyze the sample for acid soluble lignin as follows  

10.3.1 On a UV-Visible spectrophotometer, run a background of deionized water or 4% 

sulfuric acid.  

10.3.2 Using the hydrolysis liquor aliquot obtained in step 10.2.2, measure the 

absorbance of the sample at an appropriate wavelength on a UV-Visible 

spectrophotometer. Refer to section11.3 for suggested wavelength values. Dilute the 

sample as necessary to bring the absorbance into the range of 0.7 – 1.0, recording the 

dilution. Deionized water or 4% sulfuric acid may be used to dilute the sample, but the 
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same solvent should be used as a blank. Record the absorbance to three decimal places. 

Reproducibility should be + 0.05 absorbance units. Analyze each sample in duplicate, at 

minimum. (This step must be done within six hours of hydrolysis.)  

10.3.3 Calculate the amount of acid soluble lignin present using calculation 11.3. 
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Procedure Title: Determination of Sugars, Byproducts, and Degradation Products 

in Liquid Fraction Process Samples Laboratory Analytical Procedure  

 

1. Introduction  

1.1 Carbohydrates make up a major portion of biomass samples. These carbohydrates are 

polysaccharides constructed primarily of glucose, xylose, arabinose, galactose, and 

mannose monomeric subunits. During certain pretreatments of biomass, a portion of 

these polysaccharides are hydrolyzed and soluble sugars are released into the liquid 

stream. This method is used to quantify the total amount of soluble carbohydrates 

released into solution as well as the amount of monomeric sugars released into 

solution. The soluble sugars in the liquid fraction of process samples can be 

quantified by HPLC with refractive index detection. If the sugars are present in 

oligomeric form further processing into their monomeric units is required prior to 

HPLC analysis.  

1.2 The liquid portion may also contain carbohydrate degradation products, such as HMF 

and furfural, as well as other components of interest, such as organic acids and sugar 

alcohols. This method is used to measure the level of these degradation products and 

byproducts. These components are analyzed by HPLC with refractive index detection 

to determine optimal production process parameters or to monitor ongoing processes.  

1.3 The concentrations of monomeric sugars (soluble monosaccharides) and cellobiose, 

total sugars (monosaccharides and oligosaccharides), as well as carbohydrate 

degradation products and sugar alcohols can be determined using this procedure. 

Monomeric sugars are quantified by HPLC with refractive index detection. 
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Oligomeric sugars are converted into the monomeric form using acid hydrolysis and 

quantified by HPLC with refractive index detection. Byproducts and degradation 

products are quantified by HPLC with refractive index detection. 

  

2. Scope  

2.1 This procedure is used to characterize liquid process samples, including pretreatment 

liquors, liquid fermentation samples, and liquid fractions of process solids.  

2.2 This procedure is appropriate for biomass containing the components listed 

throughout the procedure. Any biomass containing other interfering components 

(such as co-eluting constituents) must be further investigated.  

2.3 All analyses should be performed in accordance with an appropriate laboratory 

specific Quality Assurance Plan (QAP).  

 

3. Terminology  

3.1 None  

 

4. Significance and Use  

4.1 This procedure is used to determine the composition of liquid fraction process 

samples. Other optional procedures can be used in conjunction with this procedure, 

including a measure of acid soluble lignin in LAP “Determination of Structural 

Carbohydrates and Lignin in Biomass”. 4.2 This procedure is used, in conjunction 

with other procedures to determine the chemical composition of biomass samples, see 

LAP “Summative Mass Closure for Biomass Samples”.  
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5. Interferences  

5.1 When analyzing for carbohydrate degradation products and sugar alcohols, the 

following interferences should be noted:  

5.1.1 Arabitol coelutes with xylitol. If the sample is thought to contain arabitol, the 

experimentally determined xylitol concentration should be flagged as potentially 

being biased high due to the suspected arabitol component.  

5.1.2 Some samples may contain sorbitol, which elutes about a minute earlier than 

xylitol on the Aminex HPX-87H column, and will appear as a peak in between 

the xylose and arabinose peaks.  

5.1.3 Some samples may contain glycerol, which elutes at the same time as formic acid 

on the Aminex HPX-87H column.  

5.2 Certain guard columns for carbohydrate quantification may cause artifact peaks. 

Individual carbohydrates should be run on new columns and guard columns to verify 

the absence of artifact peaks.  

 

6. Apparatus  

6.1 Analytical balance, accurate to 0.1mg  

6.2 pH meter, accurate to 0.01pH unit  

6.3 Autoclave, suitable for autoclaving liquids, set to 121° + 3°C  

6.4 HPLC system equipped with refractive index detector and the following columns: 

6.4.1 Shodex sugar SP0810 or Biorad Aminex HPX-87P column (or equivalent) with 

ionic form H+/CO3- deashing guard column  
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6.4.2 Biorad Aminex HPX-87H column (or equivalent) with corresponding guard column  

 

7. Reagents and materials  

7.1 Reagents  

7.1.1 High purity standards  

7.1.1.1 D-cellobiose, D-(+)glucose, D-(+)xylose, D-(+)galactose, L-(+)arabinose, and D-

(+)mannose 7.1.1.2 Xylitol, succinic acid, L-lactic acid, glycerol, acetic acid, 

ethanol, 5-hydroxy-2-furaldehyde (HMF), and furfural  

7.1.2 Second set of high purity standards, as listed above, from a different source 

(manufacturer or lot), to be used to prepare calibration verification standards 

(CVS)  

7.1.3 Sulfuric acid, concentrated, ACS reagent grade  

7.1.4 Sulfuric acid, 72% w/w (specific gravity 1.6338 at 20oC)- (also commercially 

available as a reagent for the determination of fluorine, from Fluka #00647)  

7.1.5 Calcium carbonate, ACS reagent grade 7.1.6 Water, HPLC grade, 0.2 µm filtered 

7.2 Materials 7.2.1 Erlenmeyer flasks, 20 mL  

7.2.2 Pressure tubes, minimum 65 mL capacity, glass, with screw on Teflon caps and o-

ring seals (Ace glass # 8648-30 tube with #5845-47 plug, or equivalent) or glass bottles, 

autoclave safe, crimp to, with rubber stoppers and aluminum seals to fit  

7.2.3 pH paper (range 2-9)  

7.2.4 Disposable syringes, 3 mL, fitted with 0.2 µm syringe filters  

7.2.5 Autosampler vials with crimp top seals to fit  

7.2.6 Volumetric pipets, class A, of appropriate sizes or corresponding pipettors  
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7.2.7 Volumetric flasks, class A, of appropriate sizes for standard and CVS dilution  

7.2.8 Adjustable pipettors, covering ranges of 10 µl to 10 ml  

 

8. ES&H Considerations and Hazards  

8.1 Sulfuric acid is corrosive and should be handled with care  

8.2 Follow all applicable NREL chemical handling procedures  

 

9. Sampling, Test Specimens and Test Units  

9.1 Vigorously shake or vortex the sample to suspend any entrained solids. Samples may 

be filtered prior to analysis if entrained solids are not of interest.  

9.2 Care must be taken to ensure a representative sample is taken for analysis at each 

step. When measuring volumes for analysis, the sample should be at room 

temperature.  

9.3 Store samples in sealed containers so the volatile component concentration remains 

consistent. Samples should be stored in a refrigerator until ready to use.  

 

10. Procedure  

10.1 Measure and record the pH of each sample to the nearest 0.01 pH unit  

10.2 Analyze the sample for byproducts and degradation products as follows  

10.2.1 Prepare 0.005 M (0.01 N) sulfuric acid for use as a HPLC mobile phase. In a 2L 

volumetric flask, add 2.00 mL of standardized 10 N sulfuric acid and bring to 

volume with HPLC grade water. Filter through a 0.2 µm filter and degas before 

use. If 10N sulfuric acid is not available, concentrated sulfuric acid may also be 
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used. 278 µl concentrated sulfuric acid brought to volume in a 1L volumetric flask 

with HPLC grade water will also produce 0.005 M sulfuric acid. 10.2.2 Prepare a 

series of calibration standards containing the compounds that are to be quantified, 

referring to Table 1 for suggested concentration ranges. Use a four point 

calibration. If standards are prepared outside of the suggested ranges, the new 

range for these calibration curves must be validated. The linear range of HMF and 

furfural is limited by their solubility. Add these two components to the standards 

after the ethanol has been added to increase the HMF and furfural solubility. Filter 

the standard solutions through 0.2 µm filters into autosampler vials. Seal and label 

the vials.  

10.2.2.1 The retention times of xylitol and succinic acid are close. Test the column to 

verify adequate peak separation and quantification. If adequate separation is not 

achieved, regenerate or replace the column and confirm improved separation.  

10.2.2.2 A fresh set of standards is not required for every analysis. A large batch of 

standards may be produced, filtered through 0.2 µm filters into autosampler vials, sealed 

and labeled. The standards and CVS samples may be stored in a freezer and removed 

when needed. Thaw and vortex frozen standards prior to use. During every use, 

standards and CVS samples should be observed for unusual concentration behavior. 

Unusual concentrations may mean that the samples are compromised or volatile 

components have been lost. Assuming sufficient volume, standards and CVS samples 

should not have more than 12 injections drawn from a single vial. In a chilled 

autosampler chamber, the lifetime of standards and CVS samples is approximately seven 

days.  
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10.2.2.3 Table 1- Suggested concentration ranges for 10.2.2 calibration standards 

Component Approximate Retention time (min) Suggested concentration range (mg/ml) 

Xylitol 11.6 0.2 – 6.0 Succinic acid 12.0 0.2 – 10.0 L-Lactic acid 13.2 0.2 – 12.0 

Glycerol 14.2 0.2 – 8.0 Acetic acid 15.5 0.2 – 12.0 Ethanol 22.7 1.0 - 15.0 HMF 29.4 

0.02 – 5.0 Furfural 42.8 0.02 - 5.0 CVS - Middle of linear range 10.2.3 Prepare an 

independent calibration verification standard (CVS) for each set of calibration standards. 

Use reagents from a source or lot other than that used in preparing the calibration 

standards. Prepare the CVS at a concentration that falls in the middle of the validated 

range of the calibration curve. The CVS should be analyzed on the HPLC after each 

calibration set and at regular intervals throughout the sequence, bracketing groups of 

samples. The CVS is used to verify the quality and stability of the calibration curve(s) 

throughout the run. 10.2.4 Prepare the sample(s) for HPLC analysis by passing it through 

a 0.2 µm filter into an autosampler vial. Seal and label the vial. Prepare each sample in 

duplicate if desired. If an analyzed sample falls outside of the validated calibration range, 

dilute as needed and analyze the sample again. The concentrations should be corrected 

for dilution after running. See sections 11.1 and 11.2 for calculations.  

10.2.5 Analyze the calibration standards, CVS, and samples by HPLC using a Biorad 

Aminex HPX-87H column. HPLC conditions: Sample volume: 10 - 25 µL, dependent on 

sample concentration and detector limits Mobile phase: 0.005 M sulfuric acid, 0.2 µm 

filtered and degassed Flow rate: 0.6 mL / minute Column temperature: 55 – 65 °C 

Detector temperature: as close to column temperature as possible Detector: refractive 

index Run time: 50 minutes  

10.3 Analyze the sample for monomeric sugars and cellobiose as follows  
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10.3.1 Prepare a series of calibration standards containing the compounds that are to be 

quantified, referring to Table 2 for suggested concentration range. Use a four 

point calibration. If standards are prepared outside of the suggested ranges, the 

new range for these calibration curves must be validated.  

10.3.2 Table 2- Suggested concentration ranges for 10.3.1 calibration standards 

Component Suggested concentration range (mg/ml) D-cellobiose 1.2 – 24.0 

D(+)glucose 1.2 – 24.0 D(+)xylose 1.2 – 24.0 D(+)galactose1.2 – 24.0 

L(+)arabinose1.2 – 24.0 D(+)mannose 1.2 – 24.0 CVS Middle of linear range, 

concentration not equal to a calibration point (12.0 suggested) Note: A larger 

concentration range is possible on some HPLC instruments.  

10.3.3 A fresh set of standards is not required for every analysis. A large batch of 

standards may be produced, filtered through 0.2 µm filters into autosampler vials, 

sealed and labeled. The standards and CVS samples may be stored in a freezer 

and removed when needed. Thaw and vortex frozen standards prior to use. During 

every use, standards and CVS samples should be observed for unusual 

concentration behavior. Unusual concentrations may mean that the samples are 

compromised or volatile components have been lost. Assuming sufficient volume, 

standards and CVS samples should not have more than 12 injections drawn from 

a single vial. In a chilled autosampler chamber, the lifetime of standards and CVS 

samples is approximately three to four days.  

10.3.4 Prepare an independent calibration verification standard (CVS) for each set of 

calibration standards. Use reagents from a source or lot other than that used in 

preparing the calibration standards. Prepare the CVS at a concentration that falls 
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in the middle of the validated range of the calibration curve.. The CVS should be 

analyzed on the HPLC after each calibration set and at regular intervals 

throughout the sequence, bracketing groups of samples. The CVS is used to verify 

the quality and stability of the calibration curve(s) throughout the run.  

10.3.5 Measure and record pH or refer to step 10.1 for pH measurement. If the pH is less 

than 5, use calcium carbonate to neutralize an aliquot (10 mL is recommended) of 

each sample in an Erlenmeyer flask. Neutralize to pH 5 – 6. Avoid neutralizing to 

a pH greater that 6 by monitoring with pH paper. Add the calcium carbonate 

slowly upon reaching a pH of 4. Swirl the sample frequently. After reaching pH 5 

– 6, allow the sample to settle and decant off the clear liquid. The pH of the liquid 

after settling will be approximately 7. Samples with a pH greater than 9 cannot be 

analyzed using the HPX-87P column.  

10.3.6 Prepare the sample for HPLC analysis by passing the decanted liquid through a 

0.2 µm filter into an autosampler vial. Seal and label the vial.. Prepare each 

sample in duplicate if desired. If it is suspected that the sample concentrations 

may exceed the calibration range, dilute the samples as needed, recording the 

dilution. The concentrations should be corrected for dilution after running. If 

necessary, neutralized samples may be stored in the refrigerator for three or four 

days. After this time, the samples should be considered compromised.  

10.3.7 Analyze the calibration standards, CVS, and samples by HPLC using a Shodex 

sugar SP0810 or Biorad Aminex HPX-87P column equipped with the appropriate 

guard column. HPLC conditions: Injection volume: 10 – 50 µL, dependent on 

concentration and detector limits Mobile phase: HPLC grade water, 0.2 µm 
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filtered and degassed Flow rate: 0.6 mL / minute Column temperature: 80 - 85°C 

Detector temperature: as close to column temperature as possible Detector: 

refractive index Run time: 20 minute data collection plus 15 minute post run (with 

possible adjustment for later eluting compounds) Note: The deashing guard 

column should be placed outside of the heating unit and kept at ambient 

temperature. This will prevent artifact peaks in the chromatogram. See sections 

11.1 and 11.2 for calculations.  

10.4 Analyze the sample for total sugar content (monosaccharides and 

oligoscaaharides)  

10.4.1 Refer to steps 10.3.1 through 10.3.4 for preparation of calibration standards and 

CVS samples. It is often useful to combine the analyses from 10.3 and 10.4 into 

one HPLC sequence.  

10.4.2 Pipette duplicate representative aliquots of sample into a pressure tube, or 

autoclave safe bottle if pressure tubes are not available. Aliquots of 5.0, 10.0, or 

20.0 mL may be used, depending on available sample volume.  

10.4.3 Measure and record the pH of the sample of refer to step 10.1 for pH 

measurement. Based on sample pH, calculate the amount of 72% w/w sulfuric 

acid required to bring the acid concentration of each aliquot to 4% (refer to 

section 11.3 for example calculations and section 15.1 for a quick reference 

sheet). Add the required amount of acid while swirling the sample. Stopper the 

bottles and crimp aluminum seals into place. Using a permanent marker, label the 

aluminum seals with sample identification. Record the amount of acid added so 

the dilution of the solution can be accounted for.  
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10.4.4 Prepare a set of sugar recovery standards (SRS) that will be taken through the 

analysis and used to correct for losses due to decomposition of sugars during dilute acid 

hydrolysis. Refer to Table 3 for SRS concentration suggestions. SRS concentrations 

should be chosen to most closely resemble the concentrations of sugars in the sample. 

Weigh out the required amounts of each sugar, to the nearest 0.1 mg, and transfer to a 

crimp top bottle. Add 10.0 mL HPLC grade water.  

10.4.4 Table 3- Suggested concentrations for 10.4.4 sugar recovery standards Sugar 

concentrations (mg / mL) SRS type glucose xylose galactose arabinose mannose 

High 40 100 20 20 10 Medium 20 50 10 10 5 Low 4 10 2 2 1  

10.4.5 Add the appropriate amount of 72% sulfuric acid to each sugar recovery standard 

(refer to section 11.3 for example calculations). For a starting pH of 7, the amount 

of 72% sulfuric acid needed will be 348 µL. Stopper the bottles and crimp 

aluminum seals into place. Using a permanent marker, clearly label the aluminum 

seals with sample identification.  

10.4.6 A fresh SRS is not required for every analysis. A large batch of sugar recovery 

standards may be produced, filtered through 0.2 µm filters, dispensed in 10.0 mL 

aliquots into sealed containers, and labeled. They may be stored in a freezer and 

removed when needed. Thaw and vortex the frozen SRS prior to use. If frozen 

SRS are used, the appropriate amount of acid must be added to the thawed sample 

and vortexed prior to transferring to a glass crimp top bottle.  

10.4.7 Autoclave the sealed samples and sugar recovery standards for one hour at 121°C, 

usually the liquids setting. After completion of the autoclave cycle, allow the 
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hydrolyzates to slowly cool to near room temperature before removing the seals 

and stoppers.  

10.4.8 Use calcium carbonate to neutralize each sample to pH 5 – 6. Avoid neutralizing 

to a pH greater that 6 by monitoring with pH paper. Add the calcium carbonate 

slowly upon reaching a pH of 4. Swirl the sample frequently. After reaching pH 5 

– 6, allow the sample to settle and decant off the clear liquid. The pH of the liquid 

after settling will be approximately 7.  

10.4.10 Repeat steps 10.3.6 and 10.3.7, analyzing calibration standards, CVS, SRS, and 

samples. Refer to sections 11.1, 11.2, 11.4, and 11.5 for calculations. 10.5 Analyze the 

sample for acid soluble lignin content 10.5.1 See section 10.3 in LAP “Determination of 

Structural Carbohydrates and Lignin in Biomass” for a method for determining acid 

soluble lignin. Filter the liquor prior to this analysis if necessary.  

 

11. Calculations  

11.1 Create a calibration curve for each analyte to be quantified using linear regression. 

From these curves, determine the concentration in mg/mL of each component present in 

the samples analyzed by HPLC, correcting for dilution if required.  

11.2 Calculate and record the amount of each calibration verification standard (CVS) 

recovered following HPLC analysis. % CVS recovery = conc. detected by HPLC,mg/mL 

known conc. of standard, mg/mL x 100 
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Enzymatic Saccharification of Lignocellulosic Biomass 

Laboratory Analytical Procedure #009 

 

1. Introduction 

1.1 This procedure describes the enzymatic saccharification of cellulose from native or 

pretreated lignocellulosic biomass to glucose in order to determine the maximum 

extent of digestibility possible (a saturating level of a commercially available or in 

house produced cellulase preparation and hydrolysis times up to one week are used). 

 

2. Scope 

2.1 This procedure is appropriate for lignocellulosic biomass. If the biomass is suspected 

to have some starch content, dry weight percent cellulose calculated from total glucan 

(LAP-002) must be corrected to subtract the starch contribution to total dry weight 

percent glucose. 

2.2 All analyses shall be performed according to the guidelines established in the Ethanol 

Project Quality Assurance Plan (QAP). 

 

3. References 

3.1 Grohmann, K., Torget, R., and Himmel, M. (1986), Biotech. Bioeng. Symp. No. 17, 

135-151. 

3.2 Ghose, T.K. (1987), Pure & Appl. Chem., 59, 257-268. 

3.3 Stockton, B.C., Mitchell, D.J., Grohmann, K., and Himmel, M.E. (1991), Biotech. 

Let.,13, 57-62. 



 165 

3.4 Adney, B. and Baker, J. (1993), Ethanol Project Laboratory Analytical Procedures, 

LAP-006, National Renewable Energy Laboratory, Golden, CO, 80401. 

3.5 Ehrman, C. I. (1996), Ethnaol Project Laboratory Analytical Procedures, LAP-016, 

National Renewable Energy Laboratory, Golden, CO, 80401. 

 

4. Terminology 

4.1 Pretreated biomass - Biomass that has been subjected to milling, chemical treatment 

with water or steam, strong or dilute acid or alkali, or other physical or chemical 

methods to render the cellulose content of the material more accessible to enzymatic 

action. 

4.2 Cellulase enzyme - an enzyme preparation exhibiting all three synergistic cellulolytic 

activities: endo-1,4-β-D-glucanase, exo-1,4-β-glucosidase, or β-D-glucosidase 

activities, which are present to different extents in different cellulase preparations. 

 

5. Significance and Use 

5.1 The maximum extent of digestibility is used in conjunction with other assays to 

determine the appropriate enzyme loading for saccharification of biomass. 

 

6. Interferences 

6.1 Test specimens not suitable for analysis by this procedure include acid- and alkaline 

pretreated biomass samples that have not been washed. Unwashed pretreated biomass 

samples containing free acid or alkali may change solution pH to values outside the 

range of enzymatic activity. 
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7. Apparatus 

7.1 VWR model 1540 incubator set at 50o ± 1oC. 

7.2 Cole-Parmer model 7637-20 "Roto-Torque" Fixed Speed Rotator. 

7.3 A 24-slot large-holed test tube rack that can be attached to the "Roto-Torque" 

Rotator. 

7.4 Eppendorf model 5414 microcentrifuge. 

7.5 pH meter. 

7.6 Analytical balance, sensitive to 0.0001 g. 

7.7 Yellow Springs Instrument, Inc., Model 27 Glucose Analyzer or Model 2700 Select 

Biochemistry Analyzer. 

7.8 Drying oven adjusted to 105oC ± 2oC. 

7.9 A 200 µL and a 1000 µL Eppendorf Pipetman pipet with tips. 

 

8. Reagents and Materials 

8.1 Tetracycline (10 mg/mL in 70% ethanol). 

8.2 Cycloheximide (10 mg/mL in distilled water). 

8.3 Sodium citrate buffer (0.1M, pH 4.80). 

8.4 Cellulase enzyme of known activity, FPU/mL. 

8.5 _-glucosidase enzyme of known activity, pNPGU/mL. 

8.6 Solka Floc 200 NF, FCC (microcrystalline cellulose) from Brown Company 

with ash, moisture, and xylan contents determined (see Ethanol Project 

Laboratory Analytical Procedures, LAP-001, -002, and -005). 

8.7 Eppendorf Safe-Lock 1.5-mL microcentrifuge tubes. 
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8.8 20-mL glass scintillation vials equipped with plastic-lined caps. 

 

9. ES&H Considerations and Hazards 

9.1 Cycloheximide and tetracycline are hazardous and must be handled with appropriate 

care. 

9.2 Follow all applicable NREL Laboratory Specific Hygiene Plan guidelines. 

 

10. Procedure 

10.1 Total solids must be determined for all cellulose containing samples to be digested 

(LAP-001). 

Note: all lignocellulosic materials which have undergone some aqueous pretreatment 

must never undergo any drying whatsoever prior to enzyme digestibility, since 

irreversible pore collapse can occur in the micro-structure of the biomass leading to 

decreased enzymatic release of glucose from the cellulose. Additionally, all frozen 

lignocellulosic materials which are to be subjected to digestibility tests can not have been 

frozen for more than one month prior to analysis, since, depending on the environment, 

sublimation could have occurred, leading to possible irreversible collapse of micropores 

in the biomass. 

10.2 Weigh out a biomass sample equal to the equivalent of 0.1 g of cellulose on a 105oC 

dry weight basis (the cellulose content of the sample is initially determined as glucose 

by LAP- 002, minus the contribution of any starch present, LAP-016) and add to a 20 

mL glass scintillation vial. Also, weigh out 0.1 g of the Solka Floc MVS and add to 

another vial. 



 168 

10.3 To each vial, add 5.0 mL 0.1 M, pH 4.8 sodium citrate buffer. 

10.4 To each vial, add 40 µL (400 Fg) tetracycline and 30 µL (300 µg) cycloheximide to 

prevent the growth of organisms during the digestion. 

10.5 Calculate the amount of distilled water needed to bring the total volume in each vial 

to 10.00 mL after addition of the enzymes specified in the following step. Add the 

appropriate calculated volume of water to each vial. All solutions and the biomass are 

assumed to have a specific gravity of 1.000 g/mL. Thus, if 0.200 g of biomass is added 

to the vial, it is assumed to occupy 0.200 mL and 9.733 mL of liquid is to be added. 

10.6 Bring the contents of each vial to 50oC by warming in the incubator set at 50o ± 1oC. 

To each vial is added an appropriate volume of the cellulase enzyme preparation to 

equal approximately 60 FPU/g cellulose and the appropriate volume of β-glucosidase 

enzyme to equal 64 pNPGU/g cellulose. 

Note: If the rate of enzymatic release of glucose is to be measured, all 

contents of the vial prior to the addition of the enzyme must be at 50oC. The 

enzymes are always added last since the reaction is initiated by the addition 

of enzyme. 

10.7 Prepare a reaction blank for the substrate. The substrate blank contains buffer, water, 

and the identical amount of substrate in 10.00 mL volume. 

10.8 Prepare enzyme blanks for cellulase and β-glucosidase with buffer, water, and the 

identical amount of the enzyme. 

10.9 Close the vials tightly and place them in the "Roto-Torque" fixed speed rotator set at 

an approximate angle of 45oC that has been placed in the VWR incubator set at 50oC. 

Incubate with gentle rotation (68 RPM) for a period of 72 to 168 hours or until the 
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release of soluble sugars from the sample(s) becomes negligible when measured by 

YSI, as described in the next step. 

10.10 If the progress of the reaction is to be measured, a 0.3-0.5 mL aliquot is removed at 

each predetermined time interval after the vial contents have been well mixed by 

shaking. This is accomplished by using a 1.0-mL Eppendorf Pipetman pipet with the 

tip of the plastic 1.0-mL tip slightly cut off (to allow solids, as well as liquid, to be 

withdrawn into the orifice). The sample is expelled into a 1.5-mL microcentrifuge tube 

and centrifuged for 1.5 minutes. The supernatant is subjected to glucose analysis using 

the YSI glucose analyzer. 
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PARR Pretreatment Protocol 

 

Apparatus 

• Reaction Vessel 

• Lift 

• Clamps 

• Heater Assembly 

• Pressure Gauge 

• Motor 

• Cooling Water 

• Torque Wrench 

 

Personal Protection Equipment 

• Forearm length Kevlar® gloves 

• Safety glasses 

• Rubber apron (suggested) 

 

Procedure 

1. Ensure that the flexible gasket ring is secured in the reactor head. This will 

ensure that no vapors escape during reaction 

2. Place the slurry in the Reaction Vessel.  

Note: The working volume is 250 mL liquid and 4% solids. Do not place 

exceed this level 
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3. Place the Reaction Vessel in the Lift 

4. Raise the Reaction Vessel up to the reactor head. Ensure that the Lift 

snaps in place before releasing 

5. Place the 2 Clamps around the Reactor Vessel-Head 

6. Tighten the compression bolts in a criss-cross fashion using the torque 

wrench. 

7. Bring the Lift down 

8. Raise the Heater Assembly and secure beneath and around the Reaction 

Vessel 

9. Turn Display on I 

10. Turn Heater on II 

11. Turn Motor On for stirring (optional) 

12. Set the temperature read-out to the target temperature (optional) 

13. Starting temperature is usually 20oC 

14. Monitor the reaction. Record pressure, temperature, and time 

15. When target temperature (or pressure) is reached, turn the Cooling Water 

valve on 

16. Lower the Heater Assembly from the Reaction Vessel   

17. Allow the temperature to fall below 50oC before proceeding 

18. Place the Kevlar® gloves on 

19. Raise the Lift beneath and around the Reaction Vessel. Ensure that the Lift 

locks into place (and test) 

20. Loosen the compression bolts using the torque wrench 
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21. Remove the clamps 

22. Lower the Lift and Reaction Vessel 

23. Remove the Reaction Vessel from the Lift 

24. Empty the contents and collect sample and liquor 

25. Evaluate the condition of the flexible gasket ring 
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