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Abstract 

 

VITAMIN C: A POTENTIAL REGULATOR OF INFLAMMATORY RESPONSE 

By: Bassem M. Mohammed, Ph.D. 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor 

of Philosophy at Virginia Commonwealth University. 

Virginia Commonwealth University, 2015 

Major Director: Donald F. Brophy, PharmD, MS, FCCP, FASN, BCPS, Professor and 

Chairman, Department of Pharmacotherapy and Outcomes Science 

 

Introduction: Neutrophils (PMNs) and Macrophages are the first responders recruited 

consecutively to the site of injury/inflammation. PMNs’ response/fate as well as 

macrophage reprogramming ultimately determine the course of resolution of 

inflammation. Physiologic wound healing has a significant inflammatory component. An 

exaggerated inflammation however is self-defeating leading to delayed healing. 

Parenteral vitamin C (VitC) attenuated inflammation in murine sepsis models and in 

patients with sepsis. However information about the mechanisms by which VitC 

regulates these events is limited.  

Methods: Humanized mice lacking VitC synthesis capability (Gulo-/-) were used. VitC 

sufficient and deficient mice were challenged with sterile inflammation, or septic insults. 

Some VitC deficient mice received parenteral VitC (200mg/kg) following the challenge 

to give deficient + AscA mice up to 14 days. Using a murine model of excisional wound, 

two full thickness excisional wounds were created on the back of the different Gulo-/- 



 
 

 
 

mice groups. Wound tissues were excised at day 7 and 14 post-wounding for analysis. 

Cell counts, immunohistochemistry, circulating free DNA, the expression of pro- and 

anti-inflammatory proteins were investigated. Additional in vitro experiments were 

carried out using human PMN (huPMNs), THP-1 monocyte/macrophage, and neonatal 

human dermal fibroblasts (HnDF).  

Results: VitC deficiency delayed resolution of lung inflammation and led to exaggerated 

pro-inflammatory responses. PMNs from VitC deficient mice demonstrated increased 

autophagy, histone citrullination, and NFκB activation, while inhibiting apoptosis. VitC 

sufficiency/supplementation restored macrophage phenotype, as well as attenuated 

neutrophil extracellular trap (NET) formation. VitC attenuated pro-inflammatory 

responses in THP-1 macrophages. In wound healing model, wounds from VitC 

sufficient/AscA infused mice had lower gene expression of the pro-inflammatory 

mediators; higher expression of genes promoting wound healing and resolution. 

Exposure of HnDF to AscA increased their intracellular VitC levels; promoted fibroblast 

proliferation and induced expression of fibroblast self-renewal genes. 

Conclusion: Our findings identify VitC as a novel regulator of PMN and macrophage 

responses. In wound healing, VitC favorably impacted the spatiotemporal expression of 

transcripts associated with early resolution of inflammation and tissue remodeling. 

Collectively, these results substantiate the protective notion of parenteral VitC and 

support its clinical use. 
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CHAPTER 1. BACKGROUND 

1.1 Ascorbic Acid 

1.1.1 History and Discovery 

Ascorbic acid (AA or AscA) or Vitamin C (VitC) was first isolated in 1928 by the 

Hungarian scientist Albert Szent Györgyi from the adrenal cortex of animals. Györgyi 

was interested in the strong reducing properties of AscA but could not prove its 

antiscorbutic effects. The isolated molecule was first called hexuronic acid owing to its 

structure which had 6 carbon atoms and due to its acidic nature. Several years later 

(1932), a team led by Charles Gllen King at the University of Pittsburg was able to 

isolate AA. King’s team was trying to isolate the common molecule responsible for 

treating Scurvy across a number of anti-scorbutics and confirmed that the isolated 

molecule was in fact Györgyi hexuronic acid. The structure of the vitamin was then 

resolved in 1933 at the University of Brimingham, UK by Norman Haworth research 

team.(1) In 1937, Györgyi was awarded the Nobel Prize in Physiology or Medicine. In 

the same year, Haworth was also awarded the Nobel Prize in chemistry for determining 

the structure of AA.  

1.1.2 Overview 

Ascorbic acid (AA) is the reduced and most 

predominant form of vitamin C (VitC). It is a small 

organic (Carbohydrate), water soluble molecule, 

with strong anti-oxidant properties.(2, 3) Its water 

solubility enables the vitamin to contribute to the body total anti-oxidant capacity both at 

Figure 1: Ascorbic Acid 
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the plasma level, as well as at the cellular level. Thus protecting host proteins/lipids 

against oxidative modification via scavenging reactive oxygen species (ROS).  

The biological activity of VitC is limited to the more active and naturally occurring 

(L)-isomer of the vitamin (L-Ascorbic acid). Although, D-isomer has the same anti-

oxidant properties, it does not occur in nature. It (the D-isomer) can only be synthesized 

in a lab setting and does not possess the same biological activity as the L-isomer.(4) 

When involved in a redox reaction, AA is easily oxidized to the unstable 

dehydroascorbic acid (DHA).i However, DHA is not normally detected in the plasma (but 

may appear temporarily at times of stress). Data 

comparing the concentrations of “AA” and “AA + 

DHA” as total AA, showed no difference.(5) 

Along with its anti-oxidant properties, VitC is an 

essential co-factor involved in the enzymatic and 

non-enzymatic synthesis of several important bodily 

molecules. This includes: collagen (The most 

abundant protein in the human body used to make 

skin, cartilage, tendons, ligaments, and blood 

vessels), carnitine (an important metabolite needed 

for fatty acid transfer into the mitochondria for energy 

production), and neurotransmitters (such as 

catecholamines).(6) 

                                                           
i
  AA, AscA, and VitC abbreviations will be used interchangeably in the text to refer to L-Ascorbic acid 

Figure 2: Synthesis Pathway of  
L-Ascorbic acid 
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As to the vitamin sources, the vast majority of animals are able to synthesize their 

own requirement of VitC using the pathway shown in Figure 2 above. However, humans 

and few animal species (e.g. guinea pigs, bats, and other primates) have lost this 

capability. A genetic mutation developed overtime led to the loss of the enzyme L-

gulono-γ-lactone oxidase. This enzyme executes the final step of VitC biosynthetic 

pathway. Therefore, Humans and those few animal species are dependent upon 

external supply in diet to maintain their daily requirement of VitC.(2, 3) This genetic flaw 

was referred to as Hypoascorbemia and was first described by Dr. Irwin Stone late in 

the 20th century.(7) 

A severe prolonged VitC deficiency results in a pathological condition known as 

Scurvy. Scurvy is characterized by alteration of extracellular matrix leading to fatigue, 

gingivitis, bleeding gums, nose bleeds, ease of bruising, dry/splitted hair, dry/scaly and 

rough skin, and higher susceptibility to infection. Vision problems, bone fragility, and 

neurological disorder are also encountered in severe cases of scurvy. Most of the 

symptoms are due to inactivation of 2-oxoglutarate dependent dioxygenases enzymes 

as well as other AA dependent enzymes. These enzymes catalyze hydroxylation, 

desaturation, and oxidative ring-closure or expansion in various major biochemical 

pathways.(6) 

1.1.3 Pharmacokinetics (Absorption/Distribution/Metabolism/Elimination) 

As mentioned earlier, AA is the predominant form of VItC. AA is readily absorbed 

from the intestine and widely distributed into the different body tissues. The body pool of 

AA is reported to be nearly 20 mg/kg (1400 mg for 70 kg person).(8, 9) Symptoms of 
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Scurvy are evident with a body pool less than 4.3 mg/kg (< 300 mg for a 70 kg 

person).(10) Figure 3 shows AA content of plasma and several body organs.(11)  

AA is present free in the plasma; data from centrifugal ultrafilteration experiments 

showed that AA exhibits no protein binding.(5) Its oral absorption is a saturable process; 

higher doses yield lower Foral (Fraction of drug absorbed). AA administration with food or 

as a divided dose (versus single dose) improves AA Foral within a dose range of AA.  

AA absorption is an active process 

requiring transporters that are located 

primarily at the proximal part of the 

intestine. This was first pointed out with 

food studies where delaying GI emptying 

resulted in an increased Foral. Transport of 

vitamin C into tissues is achieved by two 

sodium dependent vitamin C transporters 

(SVCT1 and SVCT2). SVCT1 is the 

predominant transporter in the intestine. In 

addition to SVCT transporters which are 

involved in AA active transport, the glucose transporters GLUT1 and GLUT3 are 

involved in the transportation of the oxidized form DHA via a facilitated diffusion 

mechanism. GLUT transporters thus provide entry of DHA to cells lacking SVCT(s) such 

as RBCs.(12, 13) Older studies have reported SVCTs transporters Vmax to be 

approximately 70 uM with transporter Km of 5 -30 uM.(14)  In a more recent review, Km 

values for SVCTs were reported to range 65 – 237 uM for SVCT1; and 8 – 113 uM for 

Figure 3: Various organs and plasma AA content. 
Adapted from reference 11 
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SVCT2 in human models with SVCT1 having higher Vmax as compared to SVCT2.(13) 

SVCTs are specific for L-AA transport with very low or no affinity to other forms of the 

vitamin (eg. D-AA and DHA). SVCT 1 and 2 expressions vary across organs and 

tissues signifying no redundancy in function.(13)  

In addition to saturable absorption, AA renal clearance (CLr) is shown to follow 

nonlinear pattern with a saturable re-absorption mechanism. At lower doses (producing 

plasma AA levels below 70uM), CLr is low and the reabsorption is not saturated and 

half-life is reported to be between 8 to 40 days.(15, 16) As the doses increase beyond 

renal threshold for reabsorption, most of the AA dose is eliminated renally and the non-

renal pathways contribution diminishes (CLnr becomes negligible).(17)  

As to AA metabolism, the only detectable metabolites of ascorbic acid are 

dehydroascorbic acid (result of reversible oxidation), 2,3-diketogulonic acid, oxalate 

(inactive), saccharo-ascorbic acid and ascorbate-2-sulfate (inactive). Carbon dioxide 

was also reported as a metabolite of AA at doses > 180mg.(18) All of these compounds 

have been isolated and identified in urine. Ascorbic acid is also excreted in the bile but 

there is no evidence for enterohepatic circulation.(9) The average fecal excretion of 

ascorbic acid or its metabolites was found to be approximately 3% of the oral dose 

when given in physiological amounts. A negligible amount of labeled material (less than 

1% during 10 days) was found in the feces after intravenous injection of (l -14C) ascorbic 

acid. Thus, in humans the principal route for elimination of AA metabolic products is the 

urine via the kidneys. Daily urinary excretion consists of about 20 - 25% as unchanged 

ascorbic acid and dehydro-ascorbic acid, about 20% as diketogulonic acid and about 40 
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- 45% as oxalate. Ascorbic acid 2-sulphate and saccharo-ascorbic acid contribute only 

very small percentages.(9, 18) 

AA Plasma levels: Clinical 

pharmacokinetics showed that AA 

levels in plasma and tissues are 

tightly controlled. At an oral dose of 

> 100mg/day, the plasma 

concentration plateau between 

70uM and 80uM. Ingestion of larger 

doses has been associated with 

minimal change in these values 

(Figure 4). It is also reported that 

supplementation near the maximum 

tolerated dose (2-4gm per oral) yields a plasma level of <250 uM and more frequently 

<150uM. This ceiling effect is brought about by saturable absorption in the intestine and 

saturable renal re-absorption as mentioned earlier.(16, 19)  

The recommended daily allowance (RDA) for AAii is calculated based on the 

average daily intake needed to meet the requirement of all healthy individual. However, 

RDA is not sufficient when individuals are under the stress of a disease or injury. AA 

Pharmacokinetics studies showed that when vitamin C is taken orally, plasma and 

tissue concentrations in healthy individuals are tightly controlled by at least 3 

                                                           
ii Acceptable serum levels in mg/dl units are 0.4 to 1.5 mg/dl. In the United States, the recommended 

adult dietary allowance is 60 mg/day. This amount reportedly maintains the body pool and serum levels of 
0.75 mg/dl in normal adults.(8) 

Figure 4: Ascorbic acid dose – plasma concentration curve 
adopted from reference 19 
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mechanisms: absorption, tissue accumulation, and renal reabsorption. A more recently 

emphasized 4th mechanism is the rate of utilization which comes into play under stress 

states (e.g. disease, trauma, surgery…etc.)(19) In such cases, increased oral supply or 

parenteral administration of higher doses are deemed necessary.  

Recommended Dietary Allowances (RDAs) for Vitamin C (20) 

Age Male Female Pregnancy Lactation 

0–6 months 40 mg* 40 mg* 
  

7–12 months 50 mg* 50 mg* 
  

1–3 years 15 mg 15 mg 
  

4–8 years 25 mg 25 mg 
  

9–13 years 45 mg 45 mg 
  

14–18 years 75 mg 65 mg 80 mg 115 mg 

19+ years 90 mg 75 mg 85 mg 120 mg 

Smokers 
Individuals who smoke require 35 mg/day 

more vitamin C than nonsmokers. 

*Adequate intake 

Last, to provide perspective on AA requirements, animals that can synthesize AA 

have larger AA body pool. For examples, rats were reported to synthesize ~26 

mg/Kg/day; Dogs ~81 mg/Kg/day; Goat ~190 mg/Kg/day. The synthesized amounts are 

also significantly increased when under states of stress due to a disease or injury. A 

simple extrapolation to a 70 kg body mass showed that between 1.8 gm/day and 13.3 

gm/day will be synthesized/needed. Human RDA on the other hand is around 

100mg/day and the maximum plasma AA levels that can be reached with the oral route 

is below 240 uM which is enough to maintain a body pool of 1.4 gm/70kg.(21) Changing 

RDA will lead to minimal plasma AA changes, since as described before oral route and 

the renal elimination threshold limit further plasma AA increment beyond that achieved 

with RDA. Comparing human and animal data clearly point out what could be a 
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limitation in the human AA homeostasis preventing optimal therapeutic dosing through 

the oral route especially under conditions of stress. 

1.2 Ascorbic acid and clinical disease states 

Under stress, the affected organs/tissues concentrate AA leading to decrease 

vitamin levels in the circulation. Low/Undetectable AA levels signify a set of dynamic 

processes involving AA utilization and re-distribution. Re-distribution of AA body pool 

and high consumption occur as early as the stressful state occur and is sustained as 

long as it continues. Re-distribution takes place in a way that favors replenishing of the 

affected tissues, thus increasing their anti-oxidant capacity and preventing the 

uncoupling of the normal catabolic oxidative processes. Uncoupling of these normal 

processes is a major contributor of oxidative stress. Therefore, following the major event 

AA starts to reach a new but lower steady state in the plasma.(8, 22, 23) Dilutional 

effects associated with massive transfusion protocols used in major injuries also need to 

be considered.(24) As well, It has been found that the degree of stress and the patient’s 

initial conditions (e.g. Age, dietary intake, comorbidities) play a major role in determining 

how much of AA is needed.  

 AA concentration decreases significantly within few hours in critically ill patients 

during trauma, shock, sepsis, burns, surgery, postoperatively and with postoperative 

complications.(24, 25) These conditions are known to increase the turnover of ascorbic 

acid. Reduction in AA level was not corrected by the oral route because of limited 

absorption. Moreover, the use of low dose parenteral doses (100 – 1000 mg/day) had 

failed to restore normal vitamin levels for several days in this patient population.(8) 
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Concentrations achieved orally, in such cases, may approaches that required for 

enzyme modulation, but are not enough to scavenge superoxide anion which signifies 

the importance and advantage of the parenteral route.(26) All of these observations in 

the last century had led investigators to call for increasing AA supplementation for 

patient undergoing surgery as early as 1946.(8) Not only acute injuries but also chronic 

disease states such as diabetes and gastritis has also been associated with reduced 

plasma AA levels.(8) 

Timely achievement of AA homeostasis and the added benefits of AA 

supplementation have been reported in randomized controlled trials involving trauma 

patients, major burns, critically ill cardiac patients as well as patients with subarachnoid 

hemorrhage that employed intravenous (IV) vitamin C supplementation. Doses used 

were between 1gm every 8hours to 66mg/kg/hr (110gm/24hours for a 70kg patient). A 

significant improvement in patient outcomes was observed in these studies. There was 

a decrease in patients’ ICU length of stay, hospital length of stay, duration on 

mechanical ventilation, the inflammation marker C-reactive protein (CRP), wound 

edema, time to wound healing and an overall decrease in morbidity and mortality.(25) In 

addition, recent research in cardiac surgery has suggested that the use of Vitamin C 

decreases atrial fibrillation.(25) It is clear that an exaggerated inflammatory response 

with an oxidative stress self-perpetuating element is central to all of these insults. 

Indeed, reactive oxygen species (ROS) burst is dominant in critical illness - both acute 

and chronic - and predispose to multi-organ dysfunction syndrome (MODS), worsening 

of clinical outcomes, and death.(8)  



   
 

10 
 

The sometimes controversial clinical trial results associated with the use of AA could 

be in part due to the use of different routes of administration. Many of the studies 

reporting lack of efficacy have employed AA orally in a relatively low dose, which is 

thought to be less effective. In contrast, when administered intravenously higher plasma 

concentrations (many folds higher-milliMolar concentrations) are achievable and 

outcomes are more likely to be affected favorably. Evidence from the literature together 

with previous work in our labs have shown that there are additional pharmacological 

benefits that can be reaped when AA levels are in the low millimolar (mM) range (1-3 

mM) during periods of stress due to injury or disease. 

Lastly, a major fraction of plasma AA is redistributed to immune cells especially 

neutrophils, macrophage, and lymphocytes. These cells concentrate AA many folds 

significantly higher than plasma and are major effector cells in the inflammatory 

response that is known their high utilization of the vitamin. (27, 28) 

1.3 Ascorbic acid as a modulator of inflammation (Hands-on experience) 

In the span of the last few years, collaborative work between Dr. Natarajan and 

Fowler, and the Brophy laboratories (VCU advancement Coagulation Lab “VCAL”) have 

resulted in several in-vitro preclinical studies and a Phase I clinical trial. These series of 

studies were executed to examine the role of endogenous physiological levels of AA as 

well as verify the beneficial effect of short term parenteral high dose AA 

supplementation; explore possible mechanistic pathways regulating these effects; and 

lastly advocate the clinical usage of this intervention as an add on therapy. Following, in 

this section, is a discussion of the results of 3 in-vitro studies and the phase I clinical 

trials conducted in our Laboratories at VCU and the VCU health systems hospital.   
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Study #1: “Ascorbic acid attenuates lipopolysaccharide induced acute lung 

injury”.(29) In this study, the running hypothesis was that AA attenuate 

lipopolysaccharide (LPS)-mediated 

acute lung injury by inhibiting NFkB 

activation. The research team was able 

to show that parenteral AA and DHA 

both at a dose of 200mg/kg were able to 

prolong survival versus 100% mortality 

in mice which were only exposed to 

LPS (Figure 5). AA treatment was shown 

to preserve the lung architecture as well. 

Sequestered neutrophil in the lung 

remained limited to the capillaries with 

limited to no migration into the alveolar spaces in untreated mice. It also preserved the 

lung microvascular barrier as evident by less protein content detected in the 

bronchoalveolar lavage. AA also attenuated the exaggerated neutrophil response and 

sequestration as evident by the reducedm RNA expression of myeloperoxidase. 

Looking into the lung NFkB dependent pro-inflammatory cytokines mRNA expression, 

AA was found to attenuate the augmented increase in KC (Neutrophil chemoattractant 

factor), LIX (LPS-induced CXC chemokine), MCP-1 (Monocyte chemotactic protein-1), 

and MCP-2 (Macrophage inflammatory protein-2) expression besides attenuating NFkB 

signaling itself and diminishing its translocation into the nucleus in the lungs. 

Hematoxylin and Eosin (H&E) staining of lung sections showed that AA treatment 

Figure 5: Ascorbic acid (AscA) and dehydroascorbic 
acid (DHA) prolong survival in septic mice after 
lipopolysaccharide (LPS) administration. C57BL/6 mice 
were injected intraperitoneally with LPS (10 µg/g). AscA 
or DHA (200 mg/kg) was administered intraperitoneally 
in saline 30 mins after treatment with LPS. LPS vs. LPS 
+ AscA, p < .001, log-rank analysis; LPS vs. LPS + 
DHA, p < .001, log-rank analysis (n = 7 for each group) 
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attenuate sepsis induced coagulopathy and microvascular thrombosis. Areas of 

microthrombi formation (calculated as % of lung) were significantly reduced following 

AA or DHA treatment vs untreated lungs in LPS-induced sepsis model. Moreover, AA or 

DHA treated septic mice had prothrombin time (PT) and activated partial thromboplastin 

time (APTT) values comparable to the controls. On the contrary, untreated septic mice 

had significantly prolonged PT and APTT. These results collectively signify blood 

coagulation factors consumption within the septic mice vasculature underlying an 

ongoing disseminated intravascular coagulopathy which could be attenuated if the mice 

were rescued with either AA or DHA i.p. injections following the LPS challenge. On a 

more molecular level, tissue factor (TF) mRNA expression was also reduced following 

LPS induced sepsis in the AA or DHA treated groups versus untreated mice. Tissue 

factor expression is known to be in part regulated by NFkB activation status. Therefore, 

attenuation of TF expression could either be due to NFkB inhibition or another 

mechanistic pathway. In conclusion, AA and DHA attenuated LPS-induced lung injury 

by attenuating the inflammatory response following injury and the associated 

coagulopathies. 

Study #2: “Mechanisms of attenuation of abdominal sepsis induced acute lung 

injury by ascorbic acid”.(30) This study came as logical step after study #1. Study #1 

explored VitC supplementation in a more controlled system i.e. endotoxin induced lung 

injury. In this study, a live septic insult is employed using fecal stem solution (FIP) 

prepared from mice fecal pellets and containing live micro-organisms and their 

respective toxin products. The hypothesis was that VitC will protect lungs against 

peritonitis induced acute lung injury (ALI). VitC supplementation, at 200mg/kg following 
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sepsis challenge, is expected to restore alveolar epithelial barrier integrity and prevent 

sepsis induced coagulopathies. VitC deficient mice experiences 100% mortality within 

26 hr from the septic insult. On the contrast, animals treated with VitC rescue dose 

experienced negligible mortality. Also VitC treatment attenuated the exaggerated 

expression of pro-inflammatory chemokines KC, LIX, MPO, HMGB1. VitC was shown to 

maintain barrier function as hypothesized. In more details, VitC treated animals 

exhibited significantly lower wet/dry lung weight tissue compared to VitC deficient 

animals at 16 hour post insult. Bronchoalveolar lavage (BAL) from the treated mice 

showed lower FITC-Dextran (FD4) content compared to untreated mice. From a 

mechanistic standpoint, VitC was found to prevent sepsis mediated disassembly of the 

Na+-K+ ATPase pump in vitro. VitC treatment also induced the expression of Aqp 5 

(aquaporin 5), CFTR (cystic fibrosis transmembrane conductance regulator) and ENaC 

(Epithelial sodium channel). Similar observations were made when A549 human 

alveolar epithelial cells were treated with VitC post endotoxin challenge. Lastly in this 

work, the authors explored the coagulopathies occuring during sepsis. 

Thromoboelastography (TEG) was done to assess the blood viscoelastic properties. 

Prothrombin time (PT) and activated partial thromboplastin time (aPTT) were also 

carried out. Lung tissue expression of tissue factor, tissue factor pathway inhibitor, 

thrombomodulin, tissue plasminogen activator, and endothelial protein c receptor were 

examined. Untreated deficient mice coagulation profile parameters demonstrated a 

more procoagulant profile and showed marks of consumptive coagulopathies. On the 

other hand, septic mice treated with VitC showed clot forming parameters that were not 

different from controls on the TEG (with no indication of consumptive coagulopathies), 
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and a protein expression profile favoring an anticoagulant environment (i.e favoring less 

clot formation). 

Study #3: “Attenuation Of Sepsis Induced Organ Injury By Vitamin C”.(31) Aside 

from sepsis-induced lung injury (most frequent following sepsis), a more severe septic 

insult results in multiple organ dysfunction syndrome. Lungs, liver, and kidneys are the 

most frequent susceptible organs known to manifest sepsis-induced dysfunction. Acute 

lung injury (ALI) is considered to be the most frequent complication of sepsis followed 

by liver dysfunction. Patients with sepsis-induced acute kidney injury (AKI) also have 

much higher mortality compared to either patients with sepsis or AKI alone. In this 

study, the same animals grouping as study #2 (discussed earlier) were used. However, 

the FIP dose used to render animals septic were reduced four folds (180mg/ml to 

45mg/ml) to allow VitC deficient mice to live long enough through the experimental 

period. This also demonstrated increased deficient mice susceptibility to FIP-induced 

sepsis. Immunohistochemistry, molecular, and biochemical analyses used in the study 

were able to demonstrate several important aspects. First, the FIP model of animal 

sepsis was able to produce reproducible sepsis and sepsis-induced organ injury. 

Second, Multiple organ dysfunction (MODS) was attenuated in VitC sufficient Gulo-/- 

mice and in VitC deficient Gulo-/- mice infused with a single dose of parenteral AscA 

compared to VitC deficient Gulo-/- mice. Also deficient Gulo-/- mice developed significant 

abnormalities in the coagulation system and circulating blood cells which was again 

attenuated in with either mice VitC sufficiency status or infusion with VitC as AscA. In 

more details, septic lungs of VitC deficient Gulo-/- mice demonstrated an exaggerated 

pro-inflammatory response and expressed significantly higher mobility group box-1 



   
 

15 
 

(HMGB1), cytokine-induced neutrophil chemoattractant factor (KC), matrix 

metalloproteinase 9 (MMP9) and myeloperoxidase compared to lungs from VitC 

sufficient Gulo-/- mice subjected to FIP. Deficient septic mice also displayed pulmonary 

edema, thickened alveolar walls infiltrated with intramural PMNs, and hemorrhage 

compared to relatively normal histology with few sequestered PMNs, reduced 

pulmonary edema and an attenuated pro-inflammatory response seen in sufficient mice. 

FIP exposed VitC deficient Gulo-/- mice infused with intraperitoneal AscA also had 

significantly attenuated lung inflammation and reduced lung water compared to 

untreated deficient mice (p<0.05). With respect to sepsis-induced AKI, Kidney sections 

from VitC deficient Gulo-/- mice subjected to FIP showed mild morphological damage, 

including tubule vacuolation and occasional loss of brush border. These changes were 

observed in all FIP exposed groups. In contrast to FIP exposed VitC sufficient Gulo-/- 

mice or VitC deficient Gulo-/- mice infused with AscA, the kidneys of VitC deficient Gulo-

/- mice subjected to FIP were more pro-inflammatory (KC) and displayed increased 

expression of biomarkers of AKI including kidney injury molecule 1 (KIM1), neutrophil 

gelatinase associated lipocalin (NGAL), chitinase (ChiA), and chitinase 3-like 3 (Chi3L3) 

(Figure 3B-H). Blood urea nitrogen (BUN) and creatinine levels were reduced in FIP 

exposed VitC sufficient Gulo-/- mice and VitC deficient Gulo-/- mice infused with AscA. 

However a statistically significant difference was achieved only with the BUN levels. As 

to sepsis-induced liver injury, ALT and AST levels following FIP were elevated in the 

VitC deficient Gulo-/- mice. These were normalized in both FIP exposed VitC sufficient 

Gulo-/- mice and VitC deficient Gulo-/- mice infused with AscA In addition MMP9, a 

critical mediator of tissue injury, was elevated in the FIP exposed VitC deficient Gulo-/- 
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mice. In contrast MMP9 expression was attenuated in FIP exposed VitC sufficient Gulo-

/- mice and VitC deficient Gulo-/- mice infused with AscA. Another important piece of this 

study, was the effect of VitC sufficiency and/or infusion (in previously deficient mice) on 

the septic mice coagulation profile. The viscoelastic properties, as measured with 

thromboelastography using TEG machines, of blood from the different mice groups 

were examined. Blood from septic VitC deficient Gulo-/- mice also displayed profound 

changes in the rate and kinetics of clot formation (K and Angle). These changes were 

not evident in FIP exposed VitC sufficient Gulo-/- mice. In addition, AscA infusion 

restored hemostasis in VitC deficient Gulo-/- septic mice through the normalization of 

these viscoelastic properties and their hematocrit. The favorable changes conferred by 

VitC were also associated with a reduction in tissue factor (TF) expression and elevated 

expression of tissue factor pathway inhibitor (TFPI) and thrombomodulin (TM) in the 

lung tissues of FIP exposed VitC sufficient Gulo-/- mice and VitC deficient mice infused 

with AscA.  

 Study #4: “Phase I safety trial of intravenous ascorbic acid in patients with 

severe sepsis”.(32) This study is considered our first trial in patients with sepsis using 

VitC. The study main purpose was to verify the safety of the intervention. Moreover, 

important information collected during the study supported the protective notions of 

using AscA treatment. Important to note that although the study was not powered to 

assess efficacy, the promising results of the study together with previous in-vitro work 

fueled a now ongoing multi-center NIH-funded study evaluating the efficacy of using 

intravenous parenteral AscA as an add-on therapy for the treatment of sepsis-induced 

ALI. This study was a randomized, double blind clinical trial. Patients were randomized 
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to one of three groups: Placebo (receiving 5% dextrose), Low AscA group (receiving 

50mg/kg/day), and a high AscA 

group (receiving 200mg/kg/day). 

Daily treatments were divided into 4 

doses and treatment was continued 

for four days. AscA levels in patients 

on admission were 17.9 ± 2.4uM 

(compared to normal levels 50 – 70 

uM). Levels were not significantly 

different across the groups on 

admission. VitC levels rose 

significantly in the low and high AscA 

groups reaching 331 uM, and 3082 

uM, respectively compared to the 

placebo group which continued to 

decline by day 4 of treatment. 

Sequential organ failure assessment 

(SOFA) score across groups were 

initially the same (p>0.05, NS). Over 

the 4 days of treatment, both AscA 

groups showed significant steady 

decline in SOFA scores compared to the placebo group patients, whose score remained 

around the baseline values. Additionally, three biomarkers were screened for during the 

Figure 6: Serum C-reactive protein (CRP) and procalcitonin 
levels in septic placebo controls and ascorbic acid infused 
patients. (A) Both the Lo-AscA and the Hi-AscA dosages 
produced rapid reductions in serum CRP levels, becoming 
significantly lower than placebo (*p < 0.05 vs placebo) as 
early as 24 hours. Ascorbic acid infusion reduced CRP 
levels in both groups throughout the 4 study days (#p< 0.05 
vs 0 hr). CRP levels in placebo patients slowly fell over the 
course of the 4 day study period. (B) Patients in the Lo-AscA 
and Hi-AscA groups exhibited reduced serum PCT levels 
beginning at 12 hours. Patients in the Hi-VitC group 
exhibited further significant reduction in serum PCT 
between 36 to 48 hours (#p < 0.05 vs 0 hr). Placebo patients 
exhibited a trend towards increased PCT levels which 
declined starting at 72 hours post onset of sepsis. Placebo 
(О), Lo-AscA (▼), Hi-AscA (▲) 
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study course. C-reactive protein (CRP) and procalcitonin (PCT) were used as surrogate 

biomarkers (Figure 6) for inflammation, and thrombomodulin (TM) as a surrogate for 

endothelial injury. Both AscA groups showed a significant rapid drop in CRP at 24 hours 

and continued during the follow up 

period. PCT levels were lower in the 

AscA groups but not significant over the 

first 24 hours. PCT levels started to 

decrease in the AscA groups with the 

high AscA group being significantly 

lower than placebo past the 24 hr time 

point and throughout the rest of the 

follow up period. Low AscA group had 

lower PCT levels at each timepoint 

compared to placebo but with no enough evidence to show significance due to sample 

size and variability constrains. It is also important to note that in the placebo group PCT 

levels started to increase post the 24 hr point and remained significantly elevated till the 

72 hr time point. As to TM, it is initially expressd on endothelial cells where it binds and 

neutralizes thrombin. Higher soluble TM found in plasma is a marker of endothelial 

injury. TM levels in patients (Figure 7) randomized to placebo started to rise at 

approximately 36 hrs and continue to rise throughout the follow up period. In contrast, 

patients randomized to either doses of ascorbic acid exhibited no subsequent rise in 

plasma TM. Data spread was considerable and the difference did not reach statistical 

significance. In conclusion, using the previously described doses of AscA intravenously 

Figure 7: Plasma thrombomodulin (TM) levels measured in 
septic placebo controls and ascorbic acid infused patients. 
Plasma TM levels measured in the ascorbic acid infused 
patients exhibited no rise throughout the 4 days of study. 
Patients in the placebo group showed a trend towards 
increased plasma TM levels beginning at 36 hours, though 
it did not achieve statistical significance. Placebo (О), Lo-
AscA (▼), Hi-AscA (▲). 
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is safe; though the cohort size was small, the data suggested that AscA infusion could 

significantly attenuate inflammation and endothelial injury inflicted by sepsis.  

As mentioned earlier neutrophils, macrophages and lymphocytes and platelets 

concentrate millimolar quantities of VitC underscoring its essential metabolic role for 

normal functioning in these types of cells.  

1.4 Safety 

Short term, high dose, parenteral AA is not only successful at achieving the desired 

high plasma AA concentration but it is also better tolerated than oral route and 

associated with less discomfort.(21) In general, AA has a large safety margin and low 

toxicity profile even at higher intakes.(20, 33) 

Several online drug databases as well as the AA material safety data sheet report 

that the most common side effects associated with AA use are: nausea, diarrhea, 

gastrointestinal tract (GIT) discomfort and cramps.(21, 33, 34) These side effects are 

associated with the oral route and are believed to be the result of high osmotic pressure 

effects that is built up by unabsorbed AA in the GIT.(33, 34)  Also side effects like 

headache and fatigue have been reported. These are acute in nature and usually last 

less than one day.(21) Diuretic effects have been observed with the use of IV AA and 

patients should be observed for any signs of dehydration.(35) 

AA acidifies the urine. This combined with increased oxalate and uric acid excretion, 

products of AA and normal metabolism, has been reported to increase the probability of 

kidney stones formation. Strong evidence to support kidney stones formation with AA 

intake in the literature is lacking.(21) Intakes from as low as 30 mg and up to 10 gm/day 
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have been studies with controversial results.(20) May be the two most scientifically 

sound conclusions in this regard are: 1- AA may contribute to kidney stone formation in 

patients with an already impaired renal function and/or with pre-esxisting oxalouria; and 

2- Higher probability of kidney stones could be associated with continuous 

intake/infusion over a long period of time (days to weeks) and is limited to oxalate renal 

calculi.(36, 37) 

AA is known to enhance iron absorption. This phenomenon does not adversely 

affect healthy individuals. On the other hand, individuals with iron overload disorders 

such as hereditary hemochromatosis, Thalassemia, Sideroblastic anemia, Glucose-6-

Phosphate dehydrogenase deficiency (G6PD) and sickle cell anemia need to exercise 

caution and be screened. An exacerbated iron overload with AA intakes in such cases 

may lead to tissue damage.(20, 38) 

It is important that patients are checked for Glucose-6-phosphate dehydrogenase 

(G6PD) deficiency before starting treatment with high dose AA. Intravenous high dose 

of AA can result in hemolysis in such individuals.(39) 

Another potential concern was the hypothesized pro-oxidant property of high dose 

Vitamin C. However, evidence supporting this claim in literature is weak (except at very 

high doses of.100g/day given IV) and the antioxidant property prevails at the low 

millimolar range except with increased free iron load.(40) 

It is fortunate that the safety of the dose, route, and targeted plasma levels in our 

studies have been verified in the literature as well as in our preclinical and clinical work. 
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The general safety profile of even much higher doses has been verified in studies 

conducted in cancer patients.(41) 

To conclude, overall AA is a very safe and low risk intervention over a wide range of 

doses orally and parentrally. The parenteral route is considered most effective for 

delivery of high AA levels that bypass the GIT absorption boundaries, thus serves 

making Vitamin C a “new (emerging) drug” to be used in conjunction with current 

therapies for patients. 

1.5 Setting the stage 

This thesis work is formulated into an introduction plus five chapters. All the 

chapters collectively elaborate on the uses of AA as a modulator of inflammation in 

varying contexts while providing a mechanistic approach to such findings. Chapters 

two, three and four are already published work, and are incorporated into the thesis 

as published. Only difference between the work as presented here and the 

published version are the figures numbers and citation order. Figures’ number and 

citation throughout the thesis are flowing as a continuum throughout. Chapter five 

refers to an in-progress clinical trial [the study has been approved by the 

institutional review board (IRB), and we are currently in the process of applying for 

an indication-specific investigational new drug application (IND)]. Each of the 

chapter/papers/research protocols is divided into subcomponents (introduction, 

methods, results, and conclusion) and hence complete. Enjoy!  
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CHAPTER 2:  VITAMIN C: A NOVEL REGULATOR OF NEUTROPHIL 

EXTRACELLULAR TRAP FORMATION   

 

2.1 Introduction 

Polymorphonuclear neutrophils (PMN) play key roles in the host response to 

pathogens by regulating innate host defenses and modulating inflammation. PMN 

combat pathogens by multiple mechanisms including phagocytosis, followed by 

exposure to reactive oxygen intermediates (short-lived and long-lived) in 

phagolysosomes (42), degranulation, which involves release of anti-bacterial peptides 

and proteases to kill pathogens (43), as well as production of cytokines and other 

inflammatory mediators. Aside from these traditional mechanisms, another mechanism 

for pathogen killing, the formation of neutrophil extracellular traps (NETs) by NETosis, a 

novel cell death pathway different from apoptosis and necrosis, was recently 

identified.(44, 45) Although NETosis plays a crucial role in host defense during local 

infection by trapping and killing pathogens, excessive NET formation during systemic 

infections becomes self-defeating by promoting tissue injury and organ damage.(46)  

Sepsis, a leading cause of death with high mortality rates, is characterized by excessive 

inflammation and exuberant immune responses that lead to increased circulating PMN 

levels and extensive PMN sequestration in the lung. This massive influx of PMNs to the 

lungs often leads to acute lung injury (ALI).(47) One postulated mechanism by which 

PMNs cause ALI is NETosis.(48) In sepsis, NETs are formed in response to pro-

inflammatory stimuli such as lipopolysaccharide (LPS) and interleukin-8 (IL-8) (49, 50) 

by expulsion of genomic DNA into web-like extracellular structures that display 
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antimicrobial proteins such as histones, neutrophil elastase, and myeloperoxidase.(51) 

During NETosis, various signaling pathways lead to dissolution of nuclear envelope, 

thus allowing the mixing of nuclear chromatin with granular antimicrobial proteins from 

cytoplasmic granules, and then, by releasing the DNA into lattice-like structures, NETs 

concentrate proteases and antimicrobial proteins in the vicinity of trapped pathogens. 

However, in sepsis, exposure to NETs also produces organ injury. Indeed, Dwivedi et 

al. recently showed that NETosis, as determined by the circulating cell free DNA (cf-

DNA) content, could predict ICU mortality in severe sepsis better than existing severity 

of illness or organ dysfunction scoring systems and was also better than IL-6, thrombin, 

and protein C.(52) While effective targeting or inhibition of NET structures has been 

suggested as therapy to benefit sepsis,(49) identification of agents with the potential to 

alter NET formation remains elusive.  

Vitamin C (VitC) is an essential vitamin for humans. While its role as an endogenous 

antioxidant is well recognized, our recent research suggests that VitC beneficially 

impacts multiple pathways associated with sepsis.(29) Its pleiotropic mechanisms 

including attenuation of the pro-inflammatory response, enhancement of epithelial 

barrier function, increasing alveolar fluid clearance, and prevention of coagulation 

abnormalities constitute a primary line of defense that is protective in sepsis 

syndromes.(30) Intracellular levels of VitC in various tissues differ significantly from 

circulating plasma levels with high cellular concentrations considered to be indicative of 

essential metabolic function.(53) In particular, VitC accumulates in millimolar quantities 

in PMNs where it regulates neutrophil apoptosis.(53, 54) We recently showed that VitC 

attenuated neutrophiliccapillaritis and improved survival in murine sepsis models.(29, 
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30) However, whether VitC alters NETosis in sepsis settings remains unknown. 

Humans lack functional L-gulono-γ-lactone oxidase (Gulo), the final enzyme in the 

biosynthesis of VitC.(55) In contrast, mice express functional Gulo, resulting in tissues 

generally maintaining high levels of VitC. In order to translate data from VitC studies in 

mice to humans we have examined NETosis in septic mice lacking Gulo (Gulo−/−). Our 

studies show that VitC sufficiency attenuated NETosis in septic mice. Importantly, at a 

cellular level, we show that VitC deficient PMN were more susceptible to undergo 

NETosis through increased activation of endoplasmic reticulum (ER) stress and 

autophagy, processes considered vital for NETosis.(56) VitC deficient PMNs displayed 

increased expression of peptidylargininedeiminase 4 (PAD4), the key enzyme required 

for hypercitrullination of histones and chromatin decondensation.(57) Moreover, our 

studies show that the pro-survival transcription factor nuclear factor kappa B (NFκB) 

was augmented in the VitC deficient PMNs while apoptosis was suppressed. The 

inhibitory effect of VitC on NETosis was recapitulated in phorbolmyristate acetate (PMA) 

activated human PMN.  

2.2 Experimental Section 

2.2.1 Animals  

Gulo−/− mice were bred in-house from an established homozygous colony as 

previously described.(31) Vitamin C sufficient mice were fed ad libitum with regular 

chow and water supplemented with vitamin C (0.330 g/L) renewed twice per week. 

Vitamin C deficient mice were generated by reducing vitamin C supplementation (0.033 

g/L) for one week, followed by complete removal of dietary vitamin C for an additional 
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two weeks. Others have shown that this reduced supplementation significantly 

decreases the concentration of VitC in immune cells, plasma and organs.(58, 59)  

2.2.2 Feces Induced Peritonitis  

Polymicrobial sepsis (peritonitis) was induced by intraperitoneal (i.p.) introduction of 

fecal stem solution into the peritoneum as described previously.(30, 31) Thirty minutes 

after fecal challenge (45 mg/mL), some mice received i.p. injection of VitC as ascorbic 

acid (200 mg/kg in saline). Untreated mice received i.p. saline instead of VitC. Blood 

was collected 16 h later by cardiac puncture, and lungs harvested. Blood was allowed to 

coagulate, spun to separate serum, and stored at −80 °C for batch analysis of cell-free 

DNA (see below). All animal studies were performed in accordance to the Virginia 

Commonwealth University Animal Care and Use Committee’s approved protocols 

(Protocol # AM10100, approved 15 March, 2011).  

2.2.3 Gulo−/− Mice Were Divided into Five Groups  

(1) (+): vitamin C sufficient mice received saline alone (0.4 mL, i.p.)  

(2) FIP(+): vitamin C sufficient mice received fecal stem solution (0.4 mL, i.p.) followed 

30 min later by saline (0.1 mL, i.p.)  

(3) (−): vitamin C deficient mice received saline alone (0.4 mL, i.p.) 

(4) FIP(−): vitamin C deficient mice received fecal stem solution (0.4 mL, i.p.) followed 

30 min later by saline (0.1 mL, i.p.)  

(5) FIP(−) + AscA: vitamin C deficient mice received fecal stem solution (0.4 mL, i.p.) 

followed 30 min later by ascorbic acid (0.1 mL, i.p.)  

2.2.4 Isolation of Mouse Peritoneal Neutrophils  
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Induction of an enriched exudate of leukocytes in the peritoneal cavity of mice was 

performed by i.p. injection of 1 mL of aged, sterile 3% thioglycollate solution.(55) After 

16 h, mice were euthanized, and the peritoneal cavity was flushed with 5 mL sterile 

Hanks’ balanced salt solution containing 1% BSA (HBSS). The leukocyte pellet 

containing ~80% neutrophils and ~20% macrophages was washed with HBSS and 

resuspended in RPMI-1640 medium. Total cell counts were determined with a 

hemacytometer. Leukocyte viability was assessed by trypan blue exclusion (>99%). 

PMNs were then purified by adherence to a plastic dish as described by Tsurubuchi et 

al..(60) Briefly, cells from peritoneal exudate were plated into a 35-mm plastic dish and 

incubated at 37 °C in 5% CO2 in air for 10 min in HBSS. The cells were washed twice 

with fresh HBSS to remove non-adherent cells. Although there was loss of some PMNs, 

which did not adhere to the dish, this procedure eliminated most of the macrophages. 

Cytochemical staining of adherent cells using HARLECO® Hemacolor® Solution (EMD 

Millipore, EMD Millipore) revealed that >95% of the adherent cells were PMNs.  

2.2.5 Immunofluorescence and Differential Interference Contrast Imaging of Lung 

NETs  

Formalin fixed paraffin embedded mouse lung sections (3 μm) were rehydrated and 

heat induced antigen retrieval performed in 0.01 M citrate buffer pH 6.0 for 20 min. 

Sections were blocked with 1% normal swine serum (NSS, DAKO, Carpinteria, CA, 

USA) and incubated with primary antibody #1, rat anti-mouse CD41 (MWReg30, 

ab33661, Abcam, Cambridge, MA, USA), 1:10 diluted in 1% NSS/PBS overnight at 4 

°C. Sections were then incubated with goat anti-rat Alexa Fluor® 488 1:50 (Abcam) in 

PBS for 4 h followed by incubation with primary antibody #2, rabbit anti-
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myeloperoxidase (ab45977, Abcam) 1:10 diluted in PBS overnight at 4 °C. Sections 

were then incubated with chicken anti-rabbit Alexa Fluor® 647 (Invitrogen, Life 

Technologies, Grand Island, NY, USA) 1:50 in PBS for 4 h followed by incubation with 

primary antibody #3, mouse anti-histone H2A (L88A6, Cell Signaling, Danvers, MA, 

USA) 1:200 in PBS overnight at 4 °C, and then finally incubated with goat anti-mouse 

IgG1 Alexa Fluor® 594 (Invitrogen) 1:50 in PBS for 4 h. Nuclear counterstain was 

performed with DAPI (Invitrogen) 1:500 for 5 min and sections mounted with Slow Fade 

Gold (Invitrogen). Negative controls were run in parallel with nonspecific IgG or specific 

isotype. Confocal microscopy was performed with a Leica TCS SP2 laser scanning 

confocal microscopy system of the VCU Department of Anatomy and Neurobiology 

Microscope Facility. Separate images of optical sections were acquired with filters for 

Alexa Fluor® (AF) 488, 594, 647 and DAPI. Images were assembled with ImageJ 

software.  

2.2.6 RNA Isolation and Real-Time Quantitative PCR (QPCR) Analysis  

Isolation of total RNA and real-time QPCR analyses were performed as described 

previously.(29) Primers used for QPCR are listed in Table 1 below. 

Table 1. Murine primers used for Quantitative PCR (QPCR). 

Name  Sequence 5′ to 3′  

ATF4 forward  CCTAGGTCTCTTAGATGACTATCTGGAGG  

ATF4 reverse  CCAGGTCATCCATTCGAAACAGAGCATCG  

BiP forward  GTGCAGCAGGACATCAAGTTCTTGCC  

BiP reverse  TTCCCAAATACGCCTCAGCAGTCTCC  

CHOP forward  CACCTATATCTCATCCCCAGGAAACG  

CHOP reverse  TTCCTTGCTCTTCCTCCTCTTCCTCC  
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EDEM forward  GCCCTTTGGTGACATGACAATTGAGG  

EDEM reverse  TCATTATTGCTGTCAGGAGGAACACC  

XBP-1s forward  TGAGTCCGCAGCAGGTGC  

XBP-1s reverse  CAACTTGTCCAGAATGCCCAAAAGG  

XBP-1un forward  AAGAACACGCTTGGGAATGGACACGC  

XBP-1un reverse  ACCTGCTGCAGAGGTGCACATAGTC  

PAD4 forward  ACAGGTGAAAGCAGCCAGC  

PAD4 reverse  AGTGATGTAGATCAGGGCTTGG  

ATG3 forward  CACCACTGTCCAACATGGC  

ATG3 reverse  GTTTACACCGCTTGTAGCATGG  

ATG5 forward  ACAAGCAGCTCTGGATGGG  

ATG5 reverse  GGAGGATATTCCATGAGTTTCCG  

ATG6 forward  CACGAGCTTCAAGATCCTGG  

ATG6 reverse  TCCTGAGTTAGCCTCTTCCTCC  

ATG7 forward  ACGATGACGACACTGTTCTGG  

ATG7 reverse  AGGTTACAGGGATCGTACACACC  

ATG8 forward  ACAAAGAGTGGAAGATGTCCG  

ATG8 reverse  GGAACTTGGTCTTGTCCAGG  

TNFα forward  GATGAGAAGTTCCCAAATGGC  

TNFα reverse  TTGGTGGTTTGCTACGACG  

IL-1β forward  CTGAACTCAACTGTGAAATGCC  

IL-1β reverse  CAGGTCAAAGGTTTGGAAGC  

18S forward  GATAGCTCTTTCTCGATTCCG  

18S reverse  AGAGTCTCGTTCGTTATCGG  

 

2.2.7 Western Blot Analysis  

Neutrophil whole-cell and nuclear extracts were isolated for Western blot analysis as 

described previously.(30) Nuclear extracts were isolated using the NE-PER kit (Pierce 

Biotechnology, Rockford, IL, USA). Proteins were resolved by SDS polyacrylamide gel 
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electrophoresis (4%–20%) and electrophoretically transferred to polyvinylidene fluoride 

membranes (0.2 μm pore size). Immunodetection was performed using 

chemiluminescent detection with the Renaissance Western Blot Chemiluminescence 

Reagent Plus (Perkin Elmer Life Sciences Inc., Boston, MA, USA). Blots were stripped 

using the Restore™ Western Blot Stripping Buffer (Pierce Biotechnology Inc., Rockford, 

IL, USA) as described by the manufacturer. Purified rabbit polyclonal antibodies to 

LC3B (L7543, Sigma-Aldrich), cleaved caspase-3 (#9661, Cell Signaling), caspase-3 

(#9662, Cell Signaling), p62/SQSTM1 (NBP1-48320, Novus Biologicals), NFκB p65 (sc-

109, Santa Cruz Biotechnology), Lamin B (sc-6216, Santa Cruz Biotechnology), and 

actin (sc-1616, Santa Cruz Biotechnology) were used in this study. Optical densities of 

antibody-specific bands were determined using Quantity One acquisition and analysis 

software (Bio-Rad, Hercules, CA, USA).  

2.2.8 Isolation of Human Neutrophils and NETs Release  

Human neutrophils were isolated by density gradient centrifugation and hypotonic 

lysis.(61) Cells were adjusted to 2 × 106/mL in RPMI-1640, seeded onto 8-well IbiTreat 

μ-slides (Ibidi #80826), 0.3 mL per well, and allowed to adhere for 15 min. PMNs were 

VitC loaded by incubating for 1 h with 0.3 mM or 3 mM buffered ascorbic acid (Mylan 

Institutional LLC, Rockville, IL, USA). Neutrophils were stimulated with 50 nM PMA for 

three hours at 37 °C. Neutrophil conditioned media were centrifuged at 400× g for 5 min 

and the supernatants used for quantification of cf-DNA.(62)  

2.2.9 Immunofluorescence Staining of Human NETs  

PMNs were fixed with 4% paraformaldehyde, permeabilized with 0.15% Triton X-100 in 

PBS, and blocked with 5% normal chicken serum (Sigma) in PBS. To stain NETs, slides 



   
 

30 
 

were incubated with a mouse monoclonal anti-myeloperoxidase antibody (1:200; Santa 

Cruz sc-52707) and a secondary Alexa Fluor® 488-conjugated chicken anti-mouse IgG 

antibody (1:200; Molecular Probes A-21200). After staining of DNA with DAPI, 

neutrophil-derived NET formation was visualized by immunofluorescence microscopy 

performed on an Olympus model IX70 inverted microscope outfitted with an IX-FLA 

fluorescence observation system equipped with a FITC and DAPI filter cubes (Chroma 

Technology, Brattleboro, VT, USA) through Uplan FI objectives (20×, 60×). Images 

were captured by an Olympus XM10 digital camera using CellSens imaging software 

(Olympus America, Melville, NY, USA).  

2.2.10 Quantification of Cell Free DNA  

The levels of cf-DNA in human neutrophil supernatants and mouse serum were 

quantified using the Invitrogen Quant-iTPicoGreendsDNA assay kit according to the 

manufacturer’s instructions (Life Technologies, Grand Island, NY, USA). Fluorescence 

intensity was measured on a SpectraMax Gemini XPS microplate reader with excitation 

at 490 nm and emission at 525 nm, with a 515 nm emission cutoff filter (Molecular 

Devices, Sunnyvale, CA, USA).  

2.2.11 Statistical Analysis  

Statistical analysis was performed using SAS 9.3 and GraphPad Prism 6.0 (GraphPad 

Software, San Diego, CA, USA). Data are expressed as mean ± SE. Results were 

compared using Student-Newman-Keuls test or one-way ANOVA and the post hoc 

Tukey test to identify specific differences between groups. Statistical significance was 

confirmed at a p value of <0.05. 
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2.3 Results  

2.3.1 Vitamin C Sufficient Mice Demonstrate Reduced Lung NETs and Lower cf-DNA 

Following Peritonitis-Induced Sepsis  

We have previously shown that fecal peritonitis promotes PMN infiltration of the lungs in 

VitC deficient mice.(31) Here we used immunofluorescence staining and DIC 

microscopy to examine the extent of NETs in lungs of mice following FIP induced 

sepsis. Immuno-positive staining for platelet CD-41 (green), nuclear histones (red), and 

myeloperoxidase (grey) are visible in the lungs of saline exposed mice (Figure 8A). No 

appreciable immuno-positive staining differences were seen in the lungs of saline 

exposed VitC deficient mice (Figure 8C). FIP induced a mild increase in CD-41 immuno-

positivity as well as some cytosolic histone staining (Figure 8B). However, no significant 

histological changes were evident in the VitC sufficient septic mice. In contrast, FIP 

induced significant NETs in VitC deficient mice as evidenced by dramatically increased 

co-staining for platelet CD-41 (green), histones (red), and myeloperoxidase (grey) in the 

vascular and alveolar spaces of septic mice (arrowheads, Figure 8D). Moreover, 

extensive extra-nuclear staining of histones (arrows) is also evident in this 

representative section along with thickened alveolar walls. Importantly, FIP exposed 

vitamin C deficient mice treated with ascorbic acid exhibited significant attenuation of 

NETs (Figure 8E).  

In order to quantify NETs we determined levels of cf-DNA in the serum of VitC sufficient 

and deficient mice 16 h after sham treatment or FIP. Levels of serum cf-DNA were 

significantly elevated in the FIP exposed VitC deficient mice (Figure 8F, 5-fold, p < 

0.05). Treatment of septic VitC deficient mice with ascorbic acid significantly lowered 
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the cf-DNA values to control levels (p < 0.05). In addition peritoneal neutrophils from 

vitamin C deficient mice were more susceptible to NETosis than those from vitamin C 

deficient mice (Supplementary Material section below).  

 

Figure 8 Vitamin C sufficient Gulo−/− mice demonstrate reduced lung NETs and lower cf-DNA following 
peritonitis-induced sepsis. Representative immunofluorescence and differential interference contrast 
imaging of lung NETs (A–E): (A) VitC sufficient Gulo−/− mice (+) received saline alone (0.4 mL, i.p.); (B) FIP 
exposed VitC sufficient Gulo−/− mice [FIP(+)] received fecal stem solution (45 mg/mL, i.p.) followed 30 min 
later by saline (0.1 mL, i.p.); (C) VitC deficient Gulo−/− mice (−) received saline alone (0.4 mL, i.p.); (D) FIP 
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exposed VitC deficient Gulo−/− mice [FIP(−)] mice received fecal stem solution (45 mg/mL, i.p.) followed 30 
min later by saline (0.1 mL, i.p.). (E) AscA treated FIP exposed VitC deficient Gulo−/− mice [FIP(−) + AscA] 
mice received fecal stem solution (45 mg/mL, i.p.) followed 30 min later by AscA (200 mg/kg, i.p.). Platelet 
CD-41 (green), histones (red), and myeloperoxidase (grey) are seen in the merged images. Arrowheads 
indicate NET formation shown by co-staining for platelet CD-41 (green), histones (red), myeloperoxidase 
(grey), and DAPI (blue) in the vascular and alveolar spaces. Arrows indicate extensive extra-nuclear histones 
(red); (10× magnification, N = 3 for each group). (F) Serum levels of cf-DNA were quantified using the Quant-
iTPicoGreen dsDNA assay kit (N = 5–11 for each group, p < 0.05). 

2.3.2 Vitamin C Deficient Neutrophils Show Increased PAD4 mRNA  

Unlike apoptosis, rapid intracellular decondensation of nuclear chromatin is a hallmark 

of NETosis.(31, 63) Decondensation of nuclear chromatin requires the removal of 

positively charged arginine residues on histones by deimination or citrullination, which is 

carried out by a family of peptidylargininedeiminases (PAD). Of these, only PAD4 is 

expressed by neutrophils (64) and possesses a classical nuclear localization signal.(65) 

Importantly Wang et al. have shown that PAD4 is indispensable for NETosis.(57) 

Therefore, we examined mRNA expression of PAD4 in PMNs from VitC sufficient and 

deficient mice. As seen in Figure 9, PAD4 mRNA expression was significantly higher in 

thioglycollate elicited peritoneal PMNs from VitC deficient mice (p < 0.05).  

 

Figure 9 Vitamin C deficient neutrophils show increased PAD4 mRNA. Real time QPCR for PAD4 shows two-
fold increase in mRNA expression from peritoneal PMNs of VitC deficient Gulo−/− mice when compared to 
PMNs from VitC sufficient Gulo−/− mice (N = 6 for each group, * p < 0.05). 
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2.3.3 Autophagy Signaling Is Induced in Vitamin C Deficient Neutrophils  

Autophagy is a vital process for the catabolism of cytosolic proteins and organelles, but 

has also been shown to be required for NETosis.(56, 66) To examine whether VitC 

regulates autophagy in PMNs we assessed the expression of several autophagy genes 

in thioglycollate elicited PMNs from VitC sufficient and deficient mice. As seen in Figure 

10A, the expression of autophagy related signaling molecules (except for ATG6) were 

significantly elevated in the VitC deficient PMNs (p < 0.05). 

Activation of the autophagic process causes lipidation of ATG8/LC3B (LC3B-I to LC3B-

II conversion) and the lipid-modified LC3B-II translocates to autophagosomes. This 

LC3B-I to LC3B-II conversion is considered a critical marker of autophagy 

activation.(67) We observed significantly enhanced LC3B-I to LC3B-II conversion in cell 

lysates of VitC deficient PMNs by immunoblotting (Figure 3B, p < 0.05). 

To further investigate the regulation of autophagy signaling by VitC in PMNs, we 

examined the accumulation of p62/sequestosome I in these cell lysates. The loss of p62 

in cells is typically indicative of increased autophagic activity.(68) Detection of p62 by 

immunoblotting showed a trend towards decreases p62 levels in the VitC deficient 

PMNs (Figure 10C). However this decline did not reach statistical significance (p = 0.3). 
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Figure 10 Autophagy signaling is induced in Vitamin C deficient neutrophils. (A) Real time QPCR for ATG3, 
ATG5, ATG6, ATG7, and ATG8 mRNA from peritoneal PMNs of VitC sufficient and deficient Gulo−/− mice, (N 
= 6 for each group, * p < 0.05). (B) Representative Western blot for expression of LC3B-I and LC3B-II from 
peritoneal PMNs of VitC sufficient and deficient Gulo−/− mice. Densitometry of LC3B-II/actin from peritoneal 
PMNs of VitC sufficient and deficient Gulo−/− mice (N = 6 for each group, * p < 0.05). (C) Representative 
Western blot for expression of p62 and actin from peritoneal PMNs of VitC sufficient and deficient Gulo−/− 
mice. Densitometry of normalized p62 expression from peritoneal PMNs of VitC sufficient and deficient 
Gulo−/− mice (N = 6 for each group, ns p = 0.3). 

2.3.4 Endoplasmic Reticulum Stress Associated Gene Expression Is Up-Regulated in 

Vitamin C Deficient Neutrophils  
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Signaling initiated by the ER stress response (unfolded protein response, UPR) actively 

participates in autophagy and ultimately contributes to the cell fate decision.(69) Since 

autophagy signaling was induced in the VitC deficient PMNs, we next examined ER 

stress gene expression in the PMNs. As seen in Figure 11, all the UPR genes examined 

except for CHOP were significantly up-regulated in PMNs from VitC deficient mice (p < 

0.05).  

 

Figure 11 Endoplasmic reticulum stress associated gene expression in up-regulated in vitamin C deficient 
neutrophils. Real time QPCR for activating transcription factor 4 (ATF4), glucose-regulated protein 78 (Grp78, 
BiP), C/EBP homologous protein (CHOP), ER degradation-enhancing α-mannosidase-like protein (EDEM), X-
box binding protein-1 spliced (XBP-1s), and unspliced (XBP-1un) mRNA from peritoneal PMNs of VitC 
sufficient and deficient Gulo−/− mice, (N = 6 for each group, * p < 0.05). 

2.3.5 Vitamin C Deficient Neutrophils Undergo Attenuated Apoptosis  

To determine the extent of apoptosis in peritoneal PMNs from VitC sufficient and VitC 

deficient mice, we examined a well characterized marker of apoptosis, cleaved 

caspase-3, by immunoblotting of PMN cell lysates. As seen in Figure 12, caspase-3 

activation was significantly lower in VitC deficient PMNs (p < 0.05). 
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Figure 12 Vitamin C deficient neutrophils undergo attenuated apoptosis. Representative Western blot for 
expression of caspase-3 and cleaved caspase-3 from peritoneal PMNs of VitC sufficient and deficient 
Gulo−/− mice. Densitometry of cleaved caspase-3/caspase-3 from peritoneal PMNs of VitC sufficient and 
deficient Gulo−/− mice (N = 6 for each group, * p < 0.05). 

2.3.6 Vitamin C Deficient Neutrophils Exhibit Increased NFκB Activation  

The transcription factor NFκB modulates the expression of many immuno-regulatory 

mediators in the acute inflammatory response in sepsis. Yang et al. found that 

diminished nuclear translocation of NFκB in peripheral PMNs was associated with less 

time on the ventilator and improved survival in critically ill patients.(70) NFκB activation 

is also associated with increased ROS production and endoplasmic reticulum stress 

signaling.(71) Therefore, we examined nuclear translocation of NFκB in peritoneal 

PMNs isolated from VitC sufficient and deficient mice. As seen in Figure 13A, 

significantly increased NFκB translocation was observed in nuclei of VitC deficient 

PMNs (p < 0.05). Increased nuclear NFκB translocation was associated with induction 

of the NFκB dependent pro-inflammatory genes for TNFα and IL-1β (Figure 13B, p < 

0.05). 
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Figure 13 Vitamin C deficient neutrophils exhibit increased NFκB activation. (A) Representative Western blot 
for nuclear expression of NFκBp65 and Lamin B from peritoneal PMNs of VitC sufficient and deficient 
Gulo−/− mice. Densitometry of NFκBp65/Lamin B from peritoneal PMNs of VitC sufficient and deficient 
Gulo−/− mice (N = 4 for each group, * p < 0.05). (B) Real time QPCR for TNFα and IL-1β mRNA from peritoneal 
PMNs of VitC sufficient and deficient Gulo−/− mice, (N = 6 for each group, * p < 0.05). 

2.3.7 Vitamin C Attenuates NET Formation in Activated Human Neutrophils  

Freshly isolated human PMNs formed NETs following activation by PMA (50 nM) for 

three hours as seen by immunofluorescence staining (Figure 14B, E). Loading the cells 

with VitC (3 mM) prior to PMA stimulation greatly reduced NET formation by human 

PMN (Figure 14C, F). Further, quantification of cf-DNA from the supernatants showed 

VitC (3 mM) loading significantly reduced NETs release from activated PMN (Figure 

14G, p < 0.05).  
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Figure 14 Vitamin C attenuates NET formation in activated human neutrophils. Representative image of 
immunofluorescent staining for NETs in human neutrophils: DNA (blue); myeloperoxidase (green). Upper 
Panels: Control PMNs (A, 20×); PMNs exposed to PMA (50 nM) for 3 h (B, 20×); PMNs loaded with VitC (3 mM) 
for 1 h and then exposed to PMA (50 nM) for 3 h (C, 20×). Lower Panels: Control PMNs (D, 60×); PMNs 
exposed to PMA (50 nM) for 3 h (E, 60×); PMNs loaded with VitC (3 mM) for 1 h and then exposed to PMA (50 
nM) for 3 h (F, 60×). (N = 3 for each group, Magnification: upper panel 20×, lower panel 60×). (G) 
Quantification of cf-DNA in the supernatants above (N = 3 for each group, p < 0.05). 
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2.4 Discussion  

In this study we show that VitC could play a critical role in regulating the ultimate 

fate of PMNs in sepsis. Activated PMNs undergo extensive NETosis in septic mice 

lungs, resulting in potential damage to lung alveolar and endothelial cells. This effect 

was predominant in PMNs from VitC deficient mice and could be rescued by VitC 

infusion after the onset of sepsis. In contradistinction, PMNs from VitC sufficient mice 

underwent attenuated NETosis. Importantly, at a molecular level, VitC deficient 

peritoneal PMNs were likely to be more pro-inflammatory, to resist apoptosis, and to 

preferentially undergo NETosis.  

Although several signaling mechanisms responsible for NET formation have been 

reported, critical regulatory elements remain unidentified. This study advances our 

understanding of PMN function and NET biology by identifying a novel regulatory 

mechanism for NET formation in both murine and human PMNs. Using our previously 

well-characterized model of abdominal peritonitis induced sepsis we show that sepsis 

promotes NET formation in lungs of VitC deficient mice (Figure 8). NETosis in this 

model was accompanied by increased circulating cf-DNA (Figure 8F). VitC sufficiency 

or infusion of VitC after initiation of sepsis significantly decreased NETosis in lungs and 

circulating cf-DNA content (Figure 8). NET formation in VitC deficient peritoneal PMNs 

required activation of well characterized signaling pathways including ROS generation 

(data not shown), activation of the peptidylargininedeiminase PAD4 (Figure 9), 

autophagy (Figure 10), endoplasmic reticulum stress (Figure 11), and inhibition of 

apoptosis (Figure 12). NFκB, a pro-inflammatory, pro-survival transcription factor was 
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activated in the VitC deficient peritoneal PMNs (Figure 13). VitC sufficiency or treatment 

with VitC attenuated these signaling pathways in PMNs.  

Intracellular chromatin decondensation is essential for NET formation. Chromatin 

decondensation is brought about by peptidylargininedeiminase 4 (PAD4), a nuclear 

enzyme that deiminates arginine residues on histone tails thereby converting positively 

charged arginines to uncharged citrullines.(56, 57) The importance of PAD4 is that 

many NET forming stimuli including PMA, LPS, and IL-8 as well as various bacterial and 

fungal species converge to its activation. While PAD4 is expressed in PMNs and is 

localized to the nucleus (64, 65), little is known about its mechanism of action or its 

transcriptional regulation. Ying et al. have shown that PAD1, which belongs to the same 

family of enzymes as PAD4, is transcriptionally regulated by NFκB.(72) We have 

previously shown that VitC blocks NFκB activation in septic mouse lungs.(29) Cárcamo 

et al. also demonstrated that VitC blocks IκB kinase activity and NFκB activation.(73) In 

this study we observed that nuclear NFκB levels were higher in the VitC deficient PMNs 

(Figure 13A). Further, PAD4 mRNA expression was also significantly higher in PMNs 

from VitC deficient mice (Figure 9). Therefore, we hypothesize that VitC decreases 

PAD4 expression by suppressing NFκB activation in PMNs. Further, by decreasing 

PAD4 expression VitC could decrease histone citrullination activity and therefore 

chromatin decondensation in VitC sufficient PMNs.  

Autophagy has been identified as a well-conserved, homeostatic mechanism that clears 

damaged organelles or proteins and plays an essential role in cell survival during 

periods of nutrient depletion.(74) Despite the view that it might not occur in neutrophils, 

autophagy was recently shown to occur both in murine and human PMNs.(75, 76) While 
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Mitroulis et al. reported that autophagy occurs in human PMNs in response to PMA 

activation.(77) Remijsen et al. have shown that autophagy is necessary for the induction 

of intracellular chromatin decondensation during PMA-induced NETosis.(56) In our 

study, we found increased expression of autophagy genes (Figure 3A) as well as 

significantly enhanced LC3B-I to LC3B-II conversion in VitC deficient PMNs (Figure 3B) 

indicative of the presence of more autophagosomes in VitC deficient PMNs. However, 

LC3B-I to LC3B-II conversion is a static measure of autophagosome number, and does 

not measure the actual activity of the pathway. The increased LC3B-II could be 

interpreted as either high autophagic activity or a downstream block in the system that 

results in an accumulation of LC3B-II protein, even though autophagic degradation itself 

is diminished. To supplement our observations we examined levels of 

p62/sequestosome I, a cytosolic chaperone protein with an LC3B binding domain.(78) 

The normal function of p62 protein is to carry polyubiquitinated proteins to the 

autphagolysosome where it binds to LC3B before getting degraded. Thus, the loss of 

p62 protein is a measure of the flux of autophagy and indicative of increased 

autophagy.(78) In our studies we found a trend towards decreased p62 levels in the 

VitC deficient PMNs (Figure 10C). While this decline did not reach statistical 

significance, in combination with the increased autophagy gene expression and 

increased LC3B conversion, our data imply increased autophagy in VitC deficient 

PMNs. The unfolded protein response (UPR) and autophagic machinery have been 

shown to be critically linked to each other. It is well established that activation of the 

UPR genes transcriptionally up-regulates several autophagy related genes required for 

induction and construction of the autophagy machinery.(79) However, it is not known 
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whether activation of the UPR drives autophagy and eventually leads to NET formation 

in PMNs. Our study shows that most of the UPR genes examined except for CHOP 

were significantly up-regulated in PMNs from VitC deficient mice (Figure 11). This 

implies that VitC deficient PMNs could be actively undergoing ER stress, which in turn 

could drive autophagy genes and increase their susceptibility to undergo NETosis.  

The transcription factor NFκB is central to pro-inflammatory/pro-survival responses in 

sepsis. It is normally sequestered to IκB in the cytosol. Upon appropriate stimulation, 

IκB is degraded allowing NFκB to migrate to the nucleus and drives transcription of 

numerous genes that regulate the immune response in sepsis. Moine et al. have 

demonstrated increased NFκB translocation in the lungs of patients with ALI.(80) Yang 

et al. found that increased nuclear levels of NFκB in unstimulated neutrophils were 

associated with a worse clinical outcome.(70) As discussed above, NFκB likely drives 

expression of PAD4 in PMNs. NFκB activation also drives expression of pro-survival 

genes.(81) In this study we found that nuclear NFκB translocation was higher in VitC 

deficient PMNs (Figure 13A). Further, NFκB translocation in these VitC deficient PMNs 

increased expression of the pro-inflammatory genes TNFα and IL-1β (Figure 13). NFκB 

activation also inhibited apoptosis as seen by the reduced activation of caspase 3 in 

VitC deficient PMNs (Figure 12). These results suggest that NFκB may play a critical 

role in modulating cell signaling pathways that eventually regulate the fate of PMNs. By 

activating PAD4 (chromatin decondensation), inducing ER stress and subsequent 

autophagy, and inhibiting apoptosis, NFκB may drive the cellular machinery of VitC 

deficient PMNs towards NET formation (Figure 15). VitC sufficiency or infusion of VitC 

allows PMNs to increase intracellular levels of VitC and attenuate NFκB activation. This 
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could dampen the pathways required for NETosis and may allow PMNs to undergo 

apoptosis instead. While the decreased apoptosis rate in VitC deficient PMNs may 

benefit the host by giving more time for PMNs to perform their innate immune functions, 

studies show that it could also be detrimental in sepsis due to the PMN-dependent 

inflammation and tissue damage that could be heightened by a prolonged lifespan. 

Recent reports in the literature have implicated NETs in transfusion-related acute lung 

injury (TRALI), the leading cause of death after transfusion therapy.(82, 83) NETs were 

shown to be present during TRALI both in mice and humans and so it was suggested 

that targeting NET formation may be a new approach for the treatment of acute lung 

injury. While we did not examine TRALI in our studies, it is conceivable that VitC 

infusion could be a useful adjunct for the prevention/treatment of TRALI or other 

disease states involving exuberant formation of NETs particularly in the lungs.  

Our study has several limitations: (1) It is possible that the PMNs isolated within the 

peritoneal cavity by thioglycollate could be partially activated; (2) We examined PMN 

function ex vivo. Further in vivo studies are needed to characterize the fate of PMNs; (3) 

others have performed studies with PMNs isolated from bone marrow instead of 

thioglycollate elicitation. These PMNs would be less “activated” when compared to 

thioglycollate elicited PMNs, but would also have a large component of immature PMNs 

which have been shown to behave somewhat differently from mature PMNs.(84) 
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Figure 15 Schematic hypothesis of regulation of signaling pathways that leads to NETosis by VitC. Septic 
stimuli activate NFκB in PMNs with increased activation observed in VitC deficient PMNs. NFκB nuclear 
translocation drives expression of PAD4, ER stress and autophagy signaling genes while inhibiting caspase 
3 in activated PMNs. This drives the fate of activated PMN away from apoptosis and enhances NETosis. VitC 
likely blocks up-regulation of PAD4, ER stress and autophagy signaling genes by decreasing NFκB 
activation. Activated PMNs now undergo apoptosis while NETosis is attenuated. 

2.5  Conclusion 

In the past few years circulating cf-DNA has been identified as a prognostic marker 

in severe sepsis.(52, 85, 86) Indeed cf-DNA was shown to have better discriminatory 

power than IL-6, thrombin or protein C to predict ICU mortality in sepsis.(52) The 

cellular origin of cf-DNA from host cells was shown by Dwivedi et al. (52) who confirmed 

that the release of cf-DNA was independent of the infecting organism and was likely 

mediated by inflammatory mediators generated during the exacerbated host immune 

response. Our study showed attenuated NET formation and reduced cf-DNA in the 

serum of septic VitC sufficient mice and in VitC deficient mice treated with ascorbic acid 
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(Figure 1). Our study did not examine the origin of cf-DNA in the serum of these mice. It 

is possible that some of this DNA could be non-neutrophilic in origin since mast cells, 

eosinophils, and basophils have also been shown to expel their DNA in a manner 

similar to PMNs.(87) However, a detailed examination of the origin of cf-DNA in these 

septic mice is beyond the scope of this study. Nevertheless, data from our study implies 

that attenuation of NETs maybe crucial for resolution of sepsis in mice.  

Overall, our in vitro and in vivo findings identify a novel regulatory mechanism that limits 

NET formation in sepsis. These findings implicate VitC as a previously unrecognized 

layer of regulation that prevents generation of excessive NETs. 

2.6  Supplementary Material 

Vitamin C (VitC) deficient neutrophils are susceptible to NETosis. In order to determine 

whether peritoneal neutrophils from VitC sufficient or VitC deficient mice produced 

NETs without further stimulation, thioglycollate-elicited peritoneal PMNs were seeded 

onto 8-well IbiTreat µ-slides (Ibidi #80826) and allowed to adhere for 16 h. As described 

in the Methods section of the manuscript, PMNs were fixed with 4% paraformaldehyde, 

permeabilized with 0.15% Triton X-100 in PBS, and blocked with 5% normal chicken 

serum (Sigma) in PBS. To stain NETs, slides were incubated with a mouse monoclonal 

anti-myeloperoxidase (MPO) antibody and a secondary Alexa Fluor® 488-conjugated 

chicken anti-mouse IgG antibody. After staining of DNA with DAPI, PMNs were 

visualized by immunofluorescence microscopy. As seen below (Figure 16a), PMNs from 

VitC sufficient mice retained their lobulated structure with no significant co-localization 

of DNA and MPO signals (no inter-mixing of nuclear and cytosolic contents). In contrast, 

PMNs from VitC deficient mice demonstrated some degree of co-localization of DNA 
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and MPO signals (Figure 16b). Importantly, nuclei from some of these PMNs (arrows) 

were delobulated and had released their DNA content into the cytosol. However, full 

NET structures are not evident in these images. This suggests that thioglycollate 

stimulation of PMNs is insufficient to induce NETs in murine PMNs from VitC sufficient 

mice. Conversely, some PMNs from VitC deficient mice were sufficiently activated and 

had commenced the process of NET formation by intermixing nuclear and cytosolic 

contents. 

 

Figure 16 Vitamin C deficient neutrophils are susceptible to NETosis. Representative image of 
immunofluorescent staining of Thioglycollate elicited peritoneal PMNs (DNA (blue); myeloperoxidase 
(green)) obtained from: (a) VitC sufficient mice; nuclei from VitC sufficient mice retained their lobulated 
structure, and (b) VitC deficient mice; PMNs from VitC deficient mice demonstrated some degree of co-
localization of DNA and MPO signals. Nuclei from some of these PMNs (arrows) were delobulated and had 
released their DNA content into the cytosol. 

Detection of reactive oxygen species in peritoneal neutrophils by flow cytometry. The 

generation of ROS and superoxide radicals in peritoneal PMNs was measured by using 

the cell permeable dye 5-(and-6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate 

(carboxy-H2DCFDA, Invitrogen) as described by Chatterjee et al.(88) Briefly, peritoneal 

PMNs from VitC sufficient and deficient Gulo-/- mice were re-suspended in cold PBS/ 

1% BSA (4˚C) and incubated in the dark for 15 min with 10µM carboxy-H2DCFDA. 

Samples were acquired on a BD Accuri® C6 Flow Cytometer (BD Accuri Cytometers, 
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MI, USA) and mean fluorescence intensity recorded for at least 10,000 neutrophils. 

Data was analyzed using FlowJo software (Tree Star, Ashland, OR). Results were 

compared using Student-Newman-Keuls test and the post hoc Mann-Whitney U test to 

identify specific differences between the groups. There was no significant difference 

(Figure 17) in the amount of ROS produced by peritoneal PMNs isolated from VitC 

deficient/sufficient Gulo-/- mice (N=8/group). 

 

 

 

Figure 17 Vitamin C status (sufficient/deficient) does not alter neutrophils’ 
reactive oxygen species production that is essential for its normal 
immunological function. Deficient neutrophils trended lower but there was 
no statistically significant difference (n= 8/group). 
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Chapter 3: Resolution of Sterile Inflammation: Role for Vitamin C 

3.1  Introduction 

Resolution of inflammation typically follows an ordered series of events 

orchestrated by different cell types.(89) During the early stages of inflammation, 

leukocytes such as polymorphonuclear neutrophils (PMN) are the first immune cells to 

arrive at the site of inflammation. PMNs are recruited by gradients of proinflammatory 

signals and usually reach peak numbers within 24–48 hrs. PMNs have short half-lives 

and are normally cleared from sites of inflammation by undergoing apoptosis.(90) 

Mobilized monocyte-derived macrophages extravasate to inflammatory tissue sites and 

clear apoptotic PMN in a non-phlogistic fashion by the process of efferocytosis. 

Apoptotic PMN release “find-me” signals that are sensed by extravasated 

macrophages.(91) Following phagocytosis, apoptotic PMN provides resolution cues to 

macrophages by evoking distinct signaling events that block release of proinflammatory 

mediators thus allowing further engulfment of apoptotic cells. Mantovani et al. and 

Fleming and Mosser note that mobilized macrophages are divided into three groups 

based upon their activation states.(92, 93) These include the M1, M2, and the recently 

described regulatory macrophages (Mres). M1 macrophages, classically referred to as 

activated macrophages, secrete proinflammatory factors that mediate host defense 

against invading pathogens. M2 macrophages, termed alternatively activated 

macrophages, are considered to be anti-inflammatory.(94, 95) Finally, Mres 

macrophages secrete considerable amounts of anti-inflammatory cytokines that prevent 

inflammatory and autoimmune pathology.(96, 97) Mres macrophages also secrete 

various lipid mediators that play critical roles in resolution of inflammation (see below). 
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Extensive new research has identified expression markers or phenotypic signatures for 

the various macrophage activation states in mice. They include gene expression 

changes in IL- 1𝛽, TNF𝛼, and iNOS for classical activation and arginase-1 (Arg1), 

chitinase 3-like 3 (YM-1), and TGF𝛽 for the alternatively activated macrophages.(95)  

Resolution of inflammation and restoration of normal tissue function prevent the 

development of “complications” of excessive inflammation, a process referred to as 

catabasis.(98) Catabasis is driven by synthesis and release of proresolution lipid 

mediators such as resolvins, protectins, and lipoxins.(99) Lipoxins and protectins are 

synthesized by lipoxygenase enzymes (such as 15-lipoxygenase (15-Lox)).(100, 101) 

Resolvins are derived from omega-3 polyunsaturated fatty acids such as 

docosahexaenoic acid and eicosapentaenoic acid.(102) They are products of 

metabolism involving 15-Lox and cyclooxygenase. Russell and Schwarze have 

reviewed the proresolution effects of proresolution mediators in a variety of 

inflammatory states.(103) However, their regulation by vitamin C (VitC, ascorbic acid, 

AscA) has yet to be examined.  

VitC readily functions as one or two electron-reducing agents for many oxidants 

and serves as a primary chemical antioxidant in most cell types. It modulates complex 

biochemical pathways that form an essential part of normal metabolism of immune 

cells.(104) Intracellular levels of VitC in cells differ significantly from circulating plasma 

levels. In particular, VitC accumulates in millimolar quantities in immune cells such as 

PMN and macrophages in which intracellular VitC concentrations are typically 40–60 

fold higher than that present in circulation.(27, 105) In PMN, Vissers and Wilkie showed 

that intracellular VitC levels regulate neutrophil apoptosis.(54) Further, VitC contributes 
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to the antioxidant defenses as well as normal PMN and macrophage function. Oberritter 

and colleagues showed that intracellular concentrations of VitC in macrophages are in 

the low millimolar range in freshly prepared peritoneal macrophages and in vivo or in 

vitro activation of peritoneal macrophages results in a significant decline in their VitC 

content.(106) Li et al. found that VitC deficiency worsens the inflammatory response 

following infection with the influenza virus.(107) Moreover, mice deficient in VitC 

generate excessive proinflammatory responses upon infection with the virulent 

bacterium Klebsiella pneumonia.(108) In humans, VitC levels are significantly reduced 

in critically ill patients and specifically in patients with poorly resolving proinflammatory 

states (e.g., sepsis, systemic inflammatory response syndrome).(22, 109) Several 

studies performed in septic patients have found that plasma VitC levels correlate 

inversely with the incidence of organ failure and directly with survival.(110, 111) We 

recently showed that VitC attenuates inflammation and normalizes PMN function in 

septic mice.(31, 112) We further showed that parenteral VitC attenuates 

proinflammatory biomarkers and reduces mortality in human sepsis.(32) However 

information is limited regarding the mechanism by which VitC regulates the progression 

and eventual resolution of inflammatory states. 

In the current study we examined the progression and resolution of inflammation 

using a murine thioglycollate (TG)-elicited peritonitis model in VitC sufficient and 

deficient mice. While humans lack L-gulono-𝛾-lactone oxidase (Gulo), the final enzyme 

in the biosynthesis pathway of VitC,(55) mice express functional Gulo, resulting in cells 

and tissues generally maintaining high levels of VitC thereby complicating the 

translatability of VitC studies in mice, to humans. In order to establish the studies more 
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relevant to humans, TG-induced peritonitis was performed in transgenic mice lacking 

Gulo (Gulo−/−). Our studies reveal that progression and resolution of TG-induced 

inflammation is significantly delayed in VitC deficient mice. In particular, the 

spatiotemporal profile of pro- and anti-inflammatory mediator production by TG-elicited 

macrophages was significantly different between the VitC sufficient and deficient mice. 

Further, macrophage function and phenotype, as well as the antioxidant capacity of VitC 

deficient macrophages, was significantly impaired by the decline in intracellular VitC 

levels. Infusion of parenteral VitC as ascorbic acid (AscA) partly restored macrophage 

phenotype and function in VitC deficient mice. 

3.2  Materials and Methods 

3.2.1 Animals.  

Gulo−/− mice were bred in-house from an established homozygous colony as 

previously described.(31) In order to maintain their plasma VitC levels similar to that 

observed in humans, VitC sufficient mice were fed ad libitum with regular chow and 

water supplemented with vitamin C (0.33 g/L) renewed twice per week. Gulo−/− mice 

were made VitC deficient by reducing VitC supplementation (0.033 g/L) for 1 week, 

followed by complete removal of dietary VitC for additional 2 weeks. We and others 

have shown that this reduced supplementation significantly decreases the concentration 

of VitC in immune cells, plasma, and organs.(31, 58, 59) 

3.2.2 Thioglycollate Induced Peritonitis and Isolation of Mouse Peritoneal 

Macrophages.  

Thioglycollate-mediated peritonitis was established by intraperitoneal (i.p.) injection of 

1mL aged, sterile 3% TG solution to 9–11-week old Gulo−/− mice. Thirty minutes 
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following i.p. challenge, some VitC deficient mice were randomized to receive daily i.p. 

injection of VitC as AscA (200mg/kg in saline) for a further 3 or 5 days. Untreated mice 

received i.p. saline instead of VitC. Mice were euthanized on day 3 or day 5, and the 

peritoneal cavity lavaged with 7mL of Hanks’ balanced salt solution (HBSS) containing 

1% bovine serum albumin (BSA). The lavage was centrifuged and the resulting 

leukocyte pellet was washed with HBSS and resuspended in RPMI-1640 medium. Cell 

counts of the peritoneal lavage were performed using a Hemocytometer. Cytochemical 

staining of peritoneal cells was performed using HARLECO Hemacolor solution 

(EMDMillipore).(112) PMNs were then separated from macrophages by adherence to a 

plastic dish as described previously.(60, 112) Peritoneal macrophages were plated at a 

density of 2 × 106 cells in 35mm dishes in growth media (DMEM, 10% FBS). Media 

were changed after 2 h to remove floating cells prior to experimentation. 

3.2.3 Cell Culture.  

Human acute monocytic leukemia suspension cell line (THP-1) was obtained from 

ATCC (Manassas, VA). THP-1 cells were maintained in RPMI-1640 medium containing 

10% FBS according to the instructions supplied. For induction of macrophages, PMA 

(100 nM) was added to the medium and cells were seeded at a density of 0.1 × 106 

cells/cm2 into tissue culture dishes and maintained in a humidified atmosphere of 95% 

air and 5% CO2. Media containing PMA were replaced every 2 days, and experiments 

started after 5 days in culture, when the cells were phenotypically macrophage.(113) 

3.2.4 Vitamin C Analysis.  

Plasma and intracellular VitC levels of peritoneal macrophages seeded onto 35mm 

dishes were measured using a fluorescence end-point assay adopted from Vislisel et 
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al..(114) Plasma was deproteinized as described previously.(32) Briefly, 0.2mL of cold 

20% trichloroacetic acid (TCA) and 0.2mL of cold 0.2% dithiothreitol (DTT) were added 

to 0.1mL of plasma, vortexed for 2min, and centrifuged (10,000 g, 10 min, 4∘C). 

Supernatants were aliquoted and frozen at −70∘C for batch analysis. Peritoneal 

macrophages were similarly extracted with TCA and DTT and frozen at −70∘C for batch 

analysis. Supernatant or AscA standards were transferred in triplicate to a 96-well plate. 

Assay buffer containing 1M sodium acetate, pH 5.5, and 1mM TEMPOL was added to 

each well and the plate was incubated for 10 minutes at room temperature. Freshly 

prepared o-phenylenediamine (OPDA) solution (5.5mMOPDA in acetate buffer of pH 

5.5) was then added. After further 30min incubation in the dark, fluorescence was 

measured at an emission wavelength of 425 nm following excitation at 345 nmand 

values determined after comparison to a standard curve. Intracellular AscA levels were 

estimated spectrophotometrically from the standard curve and the intracellular 

concentrations derived from the measured amount of AscA and the knownmacrophage 

cell volume.(115) 

3.2.5 RNA Isolation and Real-Time Quantitative PCR (QPCR) Analysis.  

Isolation of total RNA and real-time QPCR analyses were performed as described 

previously.(30) Briefly total RNA was extracted and purified using QIAshredders and 

RNeasy columns according to the manufacturer’s specifications (Qiagen). Total RNA 

(1𝜇g) was reverse-transcribed into cDNA using the High Capacity cDNA Reverse 

Transcription kit. Complimentary DNA (cDNA) was diluted (1 : 500) and real time QPCR 

performed using POWER SYBR Green QPCR Master Mix. Primers were designed to 

anneal to sequences on separate exons or to span two exons. Primers used for QPCR 
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are listed in Table 1. Cycling parameters were 950C, 10min, 40 cycles of 950C, 15 sec, 

and 600C, 1min. A dissociation profile was generated after each run to verify specificity 

of amplification. All PCR assays were performed in triplicate. No template controls and 

no reverse transcriptase controls were included. The mRNA expression in macrophages 

from a “sufficient” mouse or a media well was set to “1.” The mRNA expression of all 

other samples was compared relative to this sample which was used as the baseline. 

18S rRNA was used as housekeeping gene against which all the samples were 

normalized for differences in the amount of total RNA added to each cDNA reaction and 

for variation in the reverse transcriptase efficiency among the different cDNA reactions. 

Automated gene expression analysis was performed using the Comparative 

Quantitation module of MxPro QPCR Software (Agilent). 

Table 1 Primer sequences for Real Time Quantitative PCR. 

Name Sequence 5’ to 3’ 

Murine IL-1β forward CTGAACTCAACTGTGAAATGCC 

Murine IL-1 β reverse CAGGTCAAAGGTTTGGAAGC 

Murine TNF-α forward GATGAGAAGTTCCCAAATGGC 

Murine TNF- α reverse TTGGTGGTTTGCTACGACG 

Murine MCP-1 forward TTCTGGGCCTGCTGTTCACAG 

Murine MCP-1 reverse CCAGCCTACTCATTGGGATCATCTTGC 

Murine YM1 forward CAAGACTTGCGTGACTATGAAGC 

Murine YM1 reverse AGGTCCAAACTTCCATCCTCC 

Murine Arg1 forward AGGAAAGCTGGTCTGCTGG 

Murine Arg1 reverse TTGAAAGGAGCTGTCATTAGGG 

Murine IL-10 forward CAAGGAGCATTTGAATTCCC 

Murine IL-10 reverse ATTCATGGCCTTGTAGACACC 
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Murine Gal1 forward CAGCAACCTGAATCTCAAACC 

Murine Gal1 reverse AGTGTAGGCACAGGTTGTTGC 

Murine 15-Lox forward TGGTGGCTGAGGTCTTTGC 

Murine 15-Lox reverse TCTCTGAGATCAGGTCGCTCC 

Human IL-6 forward GGATTCAATGAGGAGACTTGCC 

Human IL-6 reverse TCTGCAGGAACTGGATCAGG 

Human IL-8 forward GTGTGAAGGTGCAGTTTTGC 

Human IL-8 reverse GAGCTCTCTTCCATCAGAAAGC 

Human TNF-α forward CCTCTTCTCCTTCCTGATCG 

Human TNF- α reverse CGAGAAGATGATCTGACTGCC 

 

3.2.6 Western Blot Analysis.  

Mouse macrophage and THPI whole-cell extracts were isolated for western blot 

analysis as described previously.(30) Proteins were resolved by SDS polyacrylamide 

gel electrophoresis (4–20%) and electrophoretically transferred to polyvinylidene 

fluoride membranes (0.2 𝜇m pore size). Immunodetection was performed using 

chemiluminescent detection with the Renaissance Western Blot Chemiluminescence 

Reagent Plus (Perkin Elmer Life Sciences Inc., Boston, MA). Blots were stripped using 

the Restore Western Blot Stripping Buffer (Pierce Biotechnology Inc., Rockford, IL) as 

described by the manufacturer. Purified rabbit polyclonal antibodies to phospho-NF𝜅B 

p65 (Ser276, Cell Signaling), NF𝜅B p65 (sc-109, Santa Cruz Biotechnology), iNOS (sc-

650, Santa Cruz Biotechnology), and actin (sc-1616, Santa Cruz Biotechnology) were 

used.Optical densities of antibody-specific bands were determined using Quantity One 

acquisition and analysis software (Bio-Rad, Hercules, CA). 

3.2.7 Flow Cytometry.  
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Mouse peritoneal lavage obtained on day 3 and day 5 from VitC sufficient or deficient 

mice following induction of TG-induced peritonitis was pelleted by centrifugation at 40C. 

Cells were resuspended in FACS buffer containing Fc receptor block (CD16/CD32 

eBioscience) for 10min at 40C. Aliquots of the suspension were incubated at 40C for 

30min (in the dark) with fluorescein isothiocyanate (FITC-) conjugated anti-mouse CD45 

(eBioscience) and allophycocyanin (APC-) conjugated anti-mouse CD11b 

(eBioscience). Unstained and single color controls were employed for each experiment. 

Samples were then fixed with 1% formaldehyde for 20min at room temperature. All runs 

were performed on a BD Accuri C6 Flow Cytometer (BD Accuri Cytometers, MI, USA) 

and analyzed using FlowJo software (Tree Star, Ashland, OR). 

3.2.8 Fluorescence Microscopy.  

Fluorescence microscopy for evaluation of mitochondrial reactive oxygen species 

(ROS) in macrophages was performed using the cell-permeant probe MitoTracker Red 

CMXRos as described by the manufacturer. Briefly, macrophages from VitC sufficient or 

deficient mice were grown on Ibidi 6-channel IbiTreat 𝜇-slide VI. Following treatments 

(H2O2, 18 hours) culture media were aspirated and cells were fixed in 3.7% 

paraformaldehyde in PBS for 10 minutes at 40C. Fluorescence imaging was performed 

using an Olympus model IX70 inverted phase microscope (Olympus America, Melville, 

NY) outfitted with an IX-FLA fluorescence observation system equipped with a TRITC 

filter cube (530–560nmexcitationand590–650nmemission, Chroma Technology Corp. 

Brattleboro, VT) through an Uplan FI objective (40x). Fluorescence images were 

digitized and captured by a MagnaFire digital camera (Optronics, Goleta, CA). 

3.2.9 Lipid Extraction and Analysis. 
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Quantitative analysis of eicosanoids was performed as previously described by us with 

minor modifications.(116-121) Briefly, peritoneal lavage was clarified by centrifugation 

and 0.05% BHT and 10 ng of each internal standard added. The internal standards 

used were (𝑑4) 8-iso PGF2𝛼, (𝑑11) 5-iso PGF2𝛼-VI, (𝑑4) 6k PGF1𝛼, (𝑑4) PGF2𝛼, (𝑑4) 

PGE2, (𝑑4) PGD2, (𝑑4) LTB4, (𝑑5) Lipoxin A4, (𝑑5) Resolvin D2, (𝑑4) TXB2, (𝑑4) LTC4, 

(𝑑5) LTD4, (𝑑5) LTE4, (𝑑8) 5-hydroxyeicosatetranoic acid (5HETE), (𝑑8) 15-

hydroxyeicosatetranoic acid (15HETE), (𝑑8) 14,15 epoxyeicosatrienoic acid, (𝑑8) 

arachidonic acid, and (𝑑5) eicosapentaenoic acid. The samples were mixed by 

vortexing and subjected to purification via solid phase extraction (SPE) using a 24 port 

vacuum manifold (Sigma-Aldrich). Strata-X SPE columns (Phenomenex) were washed 

with methanol (2 mL) and then dH2O (2mL). The samples were applied to the column. 

Thereafter the sample vials were rinsed with 5% MeOH (2mL), which was then used to 

wash the columns. Finally, the eicosanoids were eluted with isopropanol (2 mL). The 

eluents were then dried under vacuum and reconstituted in LCMS grade 50 : 50 EtOH: 

dH2O (100𝜇L) for eicosanoid quantitation via UPLC ESI-MS/MS analysis. A 14-minute 

reversed-phase LC method utilizing a Kinetex C18 column (100 × 2.1 mm, 1.7 𝜇m) and 

a Shimadzu UPLC was used to separate the eicosanoids at a flow rate of 500 𝜇L/min at 

50 0C. The column was first equilibrated with 100% Solvent A (acetonitrile : water : 

formic acid (20 : 80 : 0.02, v/v/v)) for two minutes and then 10 𝜇L of sample was 

injected. 100% Solvent A was used for the first two minutes of elution. Solvent B 

(acetonitrile : isopropanol (20 : 80, v/v)) was increased in a linear gradient to 25% 

Solvent B to 3 minutes, to 30% by 6 minutes, to 55% by 6.1 minutes, to 70% by 10 

minutes, and to 100% by 10.1 minutes. 100% Solvent B was held until 13 minutes and 
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then was decreased to 0% by 13.1 minutes and held at 0% until 14 minutes. The eluting 

eicosanoids were analyzed using a hybrid triple quadrapole linear ion trap mass 

analyzer (ABSciex 6500 QTRAP) via multiple-reaction monitoring in negative-ion mode. 

Eicosanoids were monitored using species specific precursor → product MRM pairs. 

The mass spectrometer parameters used were curtain gas: 30; CAD: High; ion spray 

voltage: −3500V; temperature: 300∘C; Gas 1: 40; and Gas 2: 60; declustering potential, 

collision energy, and cell exit potential were optimized per transition. 

3.2.10 Statistical Analysis.  

Statistical analysis was performed using SAS 9.3 and GraphPad Prism 6.0 (GraphPad 

Software, San Diego, CA, USA). Data are expressed as mean ± SE. Results were 

compared using one-way ANOVA and the post-hoc Tukey test. Statistical significance 

was confirmed at a p-value of <0.05. 

3.3  Results 

3.3.1 VitC Deficiency Alters the Progression of TG-Induced Peritoneal Inflammation.  

In order to make the Gulo−/− mice VitC deficient, supplementation of water with AscA 

was withdrawn as described in the Methods section. Within 3 weeks of removal of VitC 

supplementation, plasma VitC levels of Gulo−/− mice declined significantly (Figure 1). 

This decline was not associated with deleterious changes in weight or health status in 

the VitC deficient mice (data not shown).  

To determine whether VitC deficiency impacts the progression of peritoneal 

inflammation, VitC sufficient or deficient mice were injected with TG and the progression 

of inflammation was monitored on days 3 and 5 (as described in Section 2). Some VitC 
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deficient mice were injected i.p. with 

AscA (200mg/kg) prior to harvest of 

peritoneal lavage (see Section 2). 

Daily i.p. administration of ascorbate 

for 3 days restored circulating plasma 

VitC concentrations in these mice to 

levels observed in the VitC sufficient 

mice (Figure 18). In all 3 groups, the 

infiltration of inflammatory cells on 

day 1 was similar to that observed in 

wild type mice and was in agreement 

with our previous observations (Table 

2).(112, 122) As seen in Table 2, 

there was also no difference in the total number of cells elicited from the peritoneal 

exudation of day 3 and day 5. However, significant differences in the cellular 

composition of the lavage were evident on day 3 and day 5 between the 3 groups. In 

the VitC sufficient mice group, mononuclear cells were the predominant cell type on 

days 3 and 5 (Table 2). PMN numbers, which peaked on day 1,(112) returned to 

baseline by days 3 and 5. In contrast, significantly elevated numbers of PMNs persisted 

in the peritoneal exudates of VitC deficient mice on days 3 and 5 (Table 2). Infusion of 

AscA reduced PMN numbers by day 3 with a significant decline in PMN numbers to 

baseline similar to the VitC sufficient mice by day 5 Table 2. 

Figure 18 Vitamin C deficiency alters the progression of TG-
induced peritoneal inflammation. Plasma VitC levels were 
measured in VitC sufficient and deficient Gulo -/− mice as 
well as in deficient mice treated daily with i.p. AscA for 3 

days (𝑁= 3–6 mice/group, ns = not significant). 
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Table 2: Differential cell counts from peritoneal exudates following thioglycollate-

induced peritonitis (𝑁 = 6–8 mice/group, n.d. = not determined). 

  Sufficient Deficient Deficient + AscA 

Day 1 
PMN (x106) 

M0 (x106) 

20.02 ± 3.4 

5.0 ± 0.8 

23.2 ± 2.6 

3.9 ± 0.6 

n.d. 

n.d. 

Day 3 
PMN (x106) 

M0 (x106) 

1.8 ± 0.4 

18.4 ± 3.2 

8.1 ± 1.9a 

13.1 ± 3.1 

3.8 ± 0.4 

14.5 ± 3.2 

Day 5 
PMN (x106) 

M0 (x106) 

1.0 ± 0.6 

18.8 ± 5.6 

4.4 ± 1.1b 

22.1 ± 4.2 

0.4 ± 0.2c 

14.3 ± 4.1 

a Sufficient versus deficient, 𝑃 = 0.006. 
b Sufficient versus deficient, 𝑃 = 0.02. 
c Deficient versus deficient + AscA, 𝑃 = 0.02. 

 

3.3.2 Spatiotemporal Profiling of Inflammatory Mediators following TG-Induced 

Peritoneal Inflammation.  

We previously observed that TG-elicited PMN from VitC deficient mice (on day 1) 

demonstrated increased expression of the proinflammatory genes TNF𝛼 and IL-

1𝛽.(112) Here we examined the expression of multiple pro- and anti-inflammatory 

mediators originating from macrophages, the predominant cell type recruited to the 

inflamed peritoneum on days 3 and 5. As seen in Figure 19, significant differences were 

evident in the magnitude of pro- and anti-inflammatory mediator expression on days 3 

and 5. On day 3, increased expression of the pro-inflammatory mediators (IL-1𝛽, TNF𝛼, 

and MCP-1) was observed in macrophages from VitC deficient mice when compared to 
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macrophages from VitC sufficient mice (Figure 19(a), (A), (C), and (E)). 

 

Figure 19 Spatiotemporal profiling of inflammatory mediators following TG-induced peritoneal inflammation. 
Real time QPCR for IL-1𝛽, TNF𝛼,MCP-1, YM1, Arg1, and IL-10mRNA from peritoneal macrophages elicited on 
day 3 (a) and day 5 (b) following TG-induced peritonitis from VitC sufficient and deficient Gulo−/− mice. 
Following TG challenge, some VitC deficient mice were randomized to receive daily i.p. injection of VitC as 
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AscA (200mg/kg in saline) for a further 3 days (day 3, deficient + AscA) or 5 days (day 5, deficient + AscA) (𝑁 
= 6 mice/group, ns = not significant) 

Pro-inflammatory gene expression was significantly attenuated by i.p. infusion of AscA 

in the VitC deficient mice (Figure 19(a), (A), (C), and (E)). In contrast, anti-inflammatory 

gene expression (YM1 and Arg1, but not IL-10) was elevated in macrophages from VitC 

sufficient mice (Figure 19(a), (B), (D), and (F)). Daily AscA infusion induced YM1 

expression in VitC deficient macrophages but failed to restore Arg1 expression. IL-10 

expression on the other hand was significantly lowered by AscA infusion on day 3 

(Figure 19(a), (B), (D), and (F)). On day 5 (Figure 19(b)), pro-inflammatory gene 

expression remained persistently elevated in macrophages from VitC deficient mice (IL-

1𝛽 andMCP-1) but was attenuated by AscA infusion. In contrast, anti-inflammatory gene 

expression in VitC deficient macrophages was significantly higher when compared to 

macrophages from VitC sufficient mice (Arg1, IL-10). AscA infusion did not alter anti-

inflammatory gene expression on day 5 although Arg1 levels were now similar to that 

observed in VitC sufficient mice (Figure 19(b), (B), (D), and (F)). 

3.3.3 Ex Vivo Bacterial Lipopolysaccharide Differentially Activate Pro-inflammatory 

Gene Expression in Macrophages from VitC Sufficient and Deficient Mice.  

Canali et al. recently showed that in contrast with baseline physiological activation, 

exposure to a second “hit” such as an inflammatory stimulus results in a markedly 

different modulation of gene expression in human peripheral blood mononuclear cells in 

the presence or absence of VitC supplementation.(123) To examine whether peritoneal 

macrophages would exhibit an altered modulation of gene expression, we exposed day 

3 peritoneal macrophages from VitC sufficient and deficient mice to bacterial 
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lipopolysaccharide (LPS, 50 ng/mL). Some macrophages were incubated with AscA (3 

mM, 16 hours) prior to LPS exposure. As seen in Figures 20(a) and 20(b), LPS 

exposure 

 

Figure 20 LPS differentially activates pro-inflammatory gene expression in macrophages from vitamin C 
sufficient and deficient mice. Peritoneal macrophages elicited on day 3 following TG-induced peritonitis from 
VitC sufficient and deficient Gulo−/− mice were exposed to LPS (50 ng/mL) for 4 hours. Macrophages from 
some VitC deficient mice were incubated with AscA (3 mM, 16 hours) prior to LPS exposure (deficient + 

AscA). Real time QPCR was performed for IL-1𝛽 (a) and TNF𝛼 (b) (𝑁 = 6/group). (c) Upper panel: 

representative western blot for expression of phospho-NF𝜅B andNF𝜅B from VitC deficient macrophages 
exposed to media alone (M), AscA (3 mM, 16 hours (AscA)), LPS (50 ng/mL) for 1 hour (LPS), or AscA for 16 
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hours followed by LPS for 1 hour (LPS + AscA). Lower panel: densitometry for normalized expression of 
phospho-NF𝜅B from macrophages (𝑁 = 3/group). (d) Upper panel: representative western blot for expression 
of iNOS and actin from macrophages groups described in (c) and exposure to LPS (50 ng/mL) for 4 hour. 

Lower panel: densitometry for normalized expression of iNOS from macrophages (𝑁 = 3/group). 

resulted in a robust increase in expression of pro-inflammatory markers (IL-1𝛽, TNF𝛼) in 

macrophages from VitC sufficient mice. Pro-inflammatory gene expression was also 

induced in macrophages from VitC deficient mice, but the magnitude of induction was 

significantly greater than that observed in the VitC sufficient macrophages (Figures 

20(a) and 20(b)). Importantly, exposure of VitC deficient macrophages to AscA prior to 

LPS significantly attenuated IL-1𝛽 and TNF𝛼 expression. Increased NF𝜅B activation 

(Figure 20(c)) and iNOS protein expression (Figure 20(d)) was observed upon exposure 

of VitC deficient macrophages to LPS (𝑃 < 0.05). AscA pretreatment attenuated NF𝜅B 

activation and iNOS expression in VitC deficient macrophages. 

3.3.4 VitC Regulates Macrophage Function during the Resolution of Inflammation. 

Macrophages undergo reprogramming to adopt a variety of functional phenotypes upon 

receiving differentiation cues from their surrounding environment.(124) It was recently 

shown that macrophage reprogramming is vital for the resolution of acute 

inflammation.(125) We examined whether macrophage VitC sufficiency or deficiency 

could influence macrophage function during resolution of acute inflammation. 

Macrophages were isolated on day 3 following TG-mediated peritonitis from VitC 

sufficient or deficient mice and intracellular concentrations of VitC measured (as 

described in Section 2). Some VitC deficient mice were injected daily with i.p. AscA 

(200mg/kg) prior to harvest of peritoneal lavage (see Section 2).  
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  As seen in Figure 21(a), macrophages from VitC sufficient mice have high intracellular 

Figure 21 Vitamin C regulates macrophage function during the resolution of inflammation. (a)Macrophages 
were isolated on day 3 following TG-mediated peritonitis from VitC sufficient or deficient mice as well as in 

deficient mice treated daily with i.p. AscA for 3 days and intracellular concentrations of VitC measured (𝑁 = 
3–10 mice/group, ns = not significant). (b) Real time QPCR for Gal1 and 15-Lox from peritoneal macrophages 
elicited on day 3 following TG-induced peritonitis from VitC sufficient and deficient Gulo−/− mice. Thirty 
minutes following TG challenge, some VitC deficient mice were randomized to receive i.p. injection of VitC as 
AscA (200mg/kg in saline) for a further 3 days (deficient + AscA). (𝑁 = 6 mice/group, ns = not significant). (c) 
Real time QPCR for Gal1 and 15-Lox from peritoneal macrophages elicited on day 5 following TG-induced 
peritonitis from VitC sufficient and deficient Gulo−/− mice. Thirty minutes following TG challenge, some VitC 
deficient mice were randomized to receive i.p. injection of VitC as AscA (200mg/kg in saline) for a further 5 
days (Deficient + AscA) (𝑁 = 6 mice/group, ns = not significant). (d) UPLC ESI-MS/MS quantification of 
resolvin D1 (RvD1) and E1 (RvE1) in peritoneal lavage on day 5 following TG-induced peritonitis from VitC 
sufficient and deficient Gulo−/− mice (𝑁= 3-4 mice/group, ns = not significant). 
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VitC concentrations. In contrast, intracellular ascorbate levels were significantly 

depleted in macrophages from VitC deficient mice. Daily i.p. administration of AscA for 3 

days also restored macrophage intracellular concentrations to levels observed in the 

VitC sufficient mice (Figure 21(a)). Gal-1 and 15-Lox expression is induced in 

macrophages during peritonitis. Their expression is associated with generation of pro-

resolving lipid mediators and successful resolution of inflammation.(99, 126) Therefore 

we examined Gal-1 and 15-Lox expression in day 3 and day 5 macrophages from VitC 

sufficient or deficient mice. As seen in Figure 21(b), Gal-1 and 15-Lox expression was 

significantly induced in macrophages from VitC sufficient mice on day 3 when compared 

to macrophages from VitC deficient mice. AscA infusion restored Gal-1 expression in 

VitC deficient macrophages but did not affect 15-Lox expression on day 3 (Figure 

21(b)). In contrast, Gal-1 expression in VitC deficient macrophages was delayed and 

observed to be higher on day 5 following TG-induced peritonitis (Figure 21(c)). 15-Lox 

expression was induced by AscA infusion on day 5 and was higher than that observed 

in macrophages from VitC sufficient or deficient mice. In agreement with the expression 

data seen above, resolvin (Figure 21(d)) production was higher on day 5 in VitC 

deficient mice indicating delayed resolution of inflammation. 

3.3.5 VitC Influences Macrophage Phenotype during Resolution of Inflammation. 

Rostoker et al. recently showed that Gal-1 was selectively expressed in CD11b-high 

macrophages, and its expression declined significantly once these cells converted 

toward a CD11b-low phenotype.(127) Moreover, CD11blow macrophages are the 

predominant subtype to depart the peritoneum.(127) To determine whether VitC 

regulated reprogramming of peritoneal macrophages to pro-resolution CD11b-low 
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phenotype we used flow cytometry to examine the distribution of CD11b-high and 

CD11b-low population on macrophages isolated on day 3 and day 5 following TG-

induced peritonitis in VitC sufficient or deficient mice. As seen in Figure 22, there was a 

significant transition from CD11b-high to a CD11b-low phenotype observed from day 3 

to day 5 in the VitC sufficient macrophages. This was not evident in the macrophages 

from VitC deficient mice indicative of a delay in the resolution of TG-induced peritonitis 

in these mice. 

3.3.6 Macrophages Deficient in VitC Have Reduced Antioxidant Capacity.  

Figure 22  Vitamin C influences macrophage phenotype during resolution of 
inflammation. Flow cytometry for distribution of CD11bhigh and CD11blow population 
from macrophages isolated on day 3 and day 5 following TG-induced peritonitis in 
VitC sufficient or deficient mice (𝑁 = 5mice/group, 𝑃 < 0.05, CD11blow day 3 versus 

day 5, ns = not significant). 
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Activated macrophages potentially generate mitochondria-damaging deleterious 

reactive oxygen species (ROS).  

 

 

Release of large amounts of ROS during activation exposes macrophages themselves 

to oxidant stresses not encountered by most other cell types.(128) To test whether VitC 

deficiency affected mitochondrial function in macrophages, we exposed peritoneal 

Figure 23 Macrophages deficient in Vitamin C have reduced antioxidant capacity. Peritoneal macrophages 
elicited on day 3 following TG-induced peritonitis fromVitC sufficient ((a)–(d)) and deficient Gulo−/− ((e)–(h)) 
mice were exposed to 12.5, 25, and 50 𝜇MH2O2 for 18 hours and probed with MitoTracker Red CMXRos. 
Macrophages from some VitC deficient mice were incubated with AscA (3 mM, 16 hours) prior to exposure to 
H2O2 followed by staining with MitoTracker Red CMXRos (Deficient + AscA, ((i)–(l))). 
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macrophages (day 3) from VitC sufficient or deficient mice to varying concentrations of 

H2O2 for 18 hours and stained the cells with Mito- Tracker Red CMXRos as described in 

Section 2. This probe is selectively retained by mitochondria, where it is oxidized to its 

fluorescent form. As seen in Figures 23(a) and 23(e), control macrophages from VitC 

sufficient or deficient mice were stained brightly with the probe. Oxidative stress from 

exposure to H2O2 decreased fluorescent staining in macrophages from both VitC 

sufficient and VitC deficient mice. However, the magnitude of decrease was significantly 

greater in macrophages from VitC deficient mice (Figures 23(f) – 23(h)). This decrease 

was partially reversed by pretreatment of VitC deficient macrophages with AscA 

(Figures 23(j) and 23(k)). These studies indicate that VitC deficient macrophages 

sustain greater mitochondrial dysfunction when challenged with ROS. 

3.3.7 VitC Attenuates Proinflammatory Gene Expression in Human 

Monocyte/Macrophages.  

To address whether the modulatory activities of VitC are effective in human monocyte/ 

macrophages, we exposed THP-1 cells to bacterial LPS and examined the mRNA 

expression of the pro-inflammatory genes IL-6, IL-8, and TNF𝛼. Since the culture 

medium in which THP-1 cells are grown contains no VitC, we increased intracellular 

concentrations of VitC by loading cells with AscA prior exposure to LPS. As seen in 

Figure 24(a), exposure of THP-1 cells to LPS resulted in a robust activation of mRNA 

for IL-6, IL-8, and TNF𝛼. Loading cells with AscA did not affect baseline pro-

inflammatory gene expression. However LPS exposure of AscA loaded cells resulted in 

significant attenuation of mRNA expression of these proinflammatory genes. 
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Attenuation of mRNA expression was likely achieved by reduction in activation of the 

transcription factor NF𝜅B following LPS exposure (Figure 24(b)). 

 Figure 24 Vitamin C attenuates proinflammatory gene expression in human THP-1 monocyte/macrophages. 
THP-1 macrophages were exposed to media alone (Media), AscA (3mM, 16 hours (AscA)), and LPS (50 ng/mL) 
for 4 hour (LPS) or AscA for 16 hours followed by LPS for 4 hour (LPS + AscA). (a) Real time QPCR for IL-6, IL-
8, and TNF𝛼 was performed as described in Section 2 (𝑁 = 4/group; 𝑃 < 0.05, Media versus LPS and LPS 

versus LPS + AscA). (b) Left panel: representative western blot for expression of phospho-NF𝜅B andNF𝜅B 
from THP-1 groups described above following exposure to LPS (50 ng/mL) for 0, 15, 30, and 60 minutes. Right 
panel: densitometry for normalized expression of phospho-NF𝜅B fromTHP-1 (𝑁 = 4/group, 𝑃 < 0.05, LPS 
versus LPS + AscA). 
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3.4  Discussion 

In this study, we examined the mechanism by which VitC regulates the resolution of 

sterile inflammation. Using mice lacking the ability to synthesize VitC, we showed that 

subnormal cellular VitC levels negatively impact the progression and resolution of sterile 

inflammation. In particular, our results demonstrate that low circulating VitC levels are 

associated with significant delays in the timing of resolution of inflammation. This 

apparent VitC-dependent process primarily occurs due to failure of macrophages to 

transition from a pro-inflammatory to a pro-resolving phenotype. The initial response to 

sterile inflammation was identical in VitC sufficient and deficient mice. During the early 

pro-inflammatory phase no differences in the cell numbers or cell types were observed. 

However, by days 3 and 5, VitC deficient mice exhibited significant numbers of PMN in 

peritoneal exudates (Table 2). Spatiotemporal mRNA profiling of macrophage-derived 

inflammatory mediators revealed dramatic differences in the magnitude of pro and anti-

inflammatory mediator gene expression (Figure 19). Macrophages from VitC sufficient 

mice displayed prominent anti-inflammatory phenotypes, while VitC deficient 

macrophages persistently expressed mRNA for IL-1𝛽, TNF𝛼, and MCP-1, findings 

characteristic of a pro-inflammatory phenotype. LPS activation of day 3 macrophages 

from VitC deficient mice led to pro-inflammatory gene expression that was significantly 

greater in magnitude than that observed in VitC loaded macrophages (Figure 20). LPS 

stimulation was characterized by enhanced NF𝜅B activation and iNOS induction in VitC 

deficient macrophages (Figure 20). Importantly, on day 3, VitC sufficient macrophages 

demonstrated cues for reprogramming into resolution type macrophages, a vital step 

required for resolution of inflammation. In day 3 macrophages from VitC sufficient mice, 
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expression of Gal-1 and 15-Lox mRNA was robust (Figure 21). In contradistinction, 

enhanced Gal-1 and 15-LoxmRNA expression was delayed to day 5 in VitC deficient 

macrophages. The delays in resolution we observed in VitC deficient mice were 

confirmed by quantification of resolvins in peritoneal exudates; increases of which were 

present only on day 5 (Figure 21). Further confirmation of altered spatiotemporal 

relationships was achieved by studying macrophage phenotypic changes by examining 

the distribution of CD11b on macrophages from VitC sufficient or deficient mice on day 

3 and day 5 following TG-induced peritonitis (Figure 22). Phenotypic changes in 

macrophages were accompanied by alterations in macrophage function as 

demonstrated by the increased susceptibility of VitC deficient macrophages to 

mitochondrial dysfunction when exposed to reactive oxygen species (Figure 23). In final 

studies, we employed the human monocyte/macrophage cell line THP-1, which lacks 

VitC in culture medium when cultured under standard conditions. We demonstrated 

increased pro-inflammatory gene expression in THP-1 when exposed to LPS under 

VitC-deprived conditions. Loading THP-1 cells with AscA significantly  attenuated 

mRNA expression of pro-inflammatory genes via a mechanism likely involving reduced 

activation of the transcription factor NF𝜅B. VitC loading was effective both in vitro and in 

vivo since daily AscA infusion following induction of peritonitis significantly restored 

macrophage phenotype and function in the VitC deficient mice. Few studies have 

examined the role of VitC in resolution of sterile inflammation. Ganguly et al. initially 

reported that VitC deficiency affected migration of guinea pig macrophages under in 

vitro conditions.(129) They further showed that addition of exogenous VitC partially 

restored the migratory response. May et al. showed that activated macrophages use 
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ascorbate to lessen self-generated oxidant stress.(105) They later showed that 

ascorbate deficient peritoneal macrophages were more susceptible to H2O2-induced 

mitochondrial dysfunction and apoptosis.(130) However, no studies to date have 

examined macrophage function during resolution of inflammation in mice lacking the 

ability to synthesize their own VitC. Our observation of persistence of PMN at the site of 

inflammation in VitC deficient mice is in agreement with our previous results and those 

of Vissers and Wilkie who used a similar TG model of peritonitis to show impairment in 

PMN apoptosis and clearance.(54, 112) It has been suggested that the engulfment of 

apoptotic cells is generally anti-inflammatory or immunologically silent due to the fact 

that it sequesters dying cells thus preventing release of potentially toxic cell contents 

into the local environment.(131) Based on the observations that PMN persists for up to 

5 days in the peritoneum of VitC deficient mice (Table 2), it is therefore possible that the 

apoptosis-resistant PMN can cause strong pro-inflammatory responses from the 

macrophages that extravasate to sites of inflammation. Indeed strong and persistent 

pro-inflammatory responses were evident in VitC deficient macrophages elicited on day 

3 and even day 5 (Figure 19). Efferocytosis, a process by which dead and/or dying cells 

are being engulfed and removed by other cells, has been reported to induce production 

of anti-inflammatory mediators from macrophages that suppress inflammation thereby 

silently clearing apoptotic cells and thus dampening pro-inflammatory responses.(132) 

VitC sufficient mice exhibited anti-inflammatory mediator expression in macrophages 

early (day 3) in the post TG-induced inflammatory process, a phenomenon indicative of 

functional efferocytosis. In contrast, VitC deficient macrophages failed to upregulate 

anti-inflammatory mediator production until day 5 (Figure 19). Gal-1 and 12/15-Lox play 
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vital roles in resolution of inflammation. Rostoker et al. have shown that Gal-1 promotes 

the generation of M2-like macrophages, which then favors tissue repair during early 

resolution of inflammation.(127) Ariel and Timor demonstrated that Gal-1 promotes 

generation of Mres from M2 macrophages, which generates pro-resolving lipid 

mediators. This phenotype change promotes macrophage departure from peritoneal 

cavities with resolving inflammation, thus allowing return of tissue to homeostasis.(133) 

Moreover, Gal-1 expression, which is enhanced inCD11bhigh macrophages, declines 

sharply as cells revert to the CD11blow phenotype. CD11blow macrophage 

phenotypes, as noted previously, promote departure from peritoneal cavities with 

resolving inflammation.(127) Our findings (Figures 21 and 22) which agree with the 

above studies implicate VitC as a critical regulator of macrophage transition during 

resolution of inflammation. Expression and function of 12/15-Lox produce key mediators 

(e.g., lipoxins, resolvins, protectins, and maresins) that promote resolution of pro-

inflammatory pathologies.(134) In particular, human and murine 

monocytes/macrophages expression of 15-Lox is upregulated by efferocytosis with 

production of mediators such as RvD1, a mediator shown to promote the resolution of 

murine peritonitis.(125, 135) Further, Gal-1 directly promotes 15-lipoxygenase 

expression and activity in macrophages during the inflammatory and resolving phases 

of peritonitis.(127) The earlier increases in Gal-1 and 15-Lox mRNA expression in VitC 

sufficient macrophages (Figures 21(b) and 21(c)) and the delayed resolvin production in 

the VitC deficient macrophages (Figure 21(d)) indicate for the first time that VitC 

influences multiple processes leading to the resolution of inflammation. 
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3.5  Conclusion 

The findings in this mouse model have significant human relevance since VitC levels 

are subnormal in multiple human inflammatory disease states including sepsis, systemic 

inflammatory response syndrome (SIRS), trauma, and cancer, among others. In a 

recently completed Phase I trial (ClinicalTrials.gov identifier NCT01434121) of 

intravenous AscA in critically ill patients with severe sepsis, we showed that septic 

patients exhibited abnormally low VitC plasma levels and that intravenous AscA infusion 

could significantly increase circulating VitC levels.(32) Further, AscA infusion 

significantly reduced the pro-inflammatory biomarkers C-reactive protein and 

procalcitonin as well as multiple organ dysfunction.(32) Our findings here add a 

previously unrecognized element to our understanding of the machinery that governs 

the resolution of inflammation. 
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Chapter 4: VITAMIN C IN WOUND HEALING: A NEW PERSPECTIVE 

 
 

4.1 Intoduction: 

Wound healing is a normal physiologic process aimed at restoring the anatomical 

structure and function of injured skin.(136) Many factors have been identified that affect 

wound healing like age, wound location, wound size, nutritional status, immune system 

status, and underlying co-morbidities such as diabetes and obesity.(137, 138) Delayed 

wound healing can result in a number of complications such as increased hospital 

length of stay, amputations, and even death.(138) There is a 2 % prevalence of chronic, 

non-healing wounds in the general population that is associated with an annual 

estimated cost of > $50 billion and this expenditure is expected to rise in the coming 

years.(139) Hence there is an unmet need to better identify the mechanisms that delay 

normal wound healing. 

The ultimate goal of wound repair is achieving an adequate restoration of 

epidermal barrier (wound closure) without a loss of function within a reasonable time 

frame. Re-establishing the integrity of injured skin necessitates a delicate balance 

between four sequential yet overlapping stages: hemostasis, inflammation, proliferation 

and remodeling (maturation).(140) This process involves a highly ordered series of 

cellular events: platelet activation and fibrin clot formation at the wound site 

(hemostasis); polymorphonuclear neutrophil (PMN) infiltration to contain invading micro-

organisms and clear damaged matrix and tissue debris, followed by macrophage 

infiltration to engulf and clear apoptotic sated PMNs (inflammation); and fibroblast 

migration and proliferation (proliferation) to lay down the new matrix collagen that 
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progressively matures, cross-links, and organizes (remodeling/maturation).(140) These 

cellular events are orchestrated by chemokines and cytokines such as platelet derived 

growth factor (PDGF), transforming growth factor beta (TGF-α), vascular endothelial 

growth factor (VEGF), connective tissue growth factor (CTGF), interlukin-6 (IL-6), 

interleukin-1β (IL-1β), and tumor necrosis factor alpha (TNF-α)(141, 142) whose 

expression ultimately determine the course and fate of wound healing.  

Wounds create an environment of higher catabolic state.(143) Following injury, 

the rate at which micronutrients are metabolized increases significantly often leading to 

critical deficiencies.(143) Indeed, levels of vitamin C (VitC), a small, organic, water 

soluble micronutrient, with strong anti-oxidant properties, (2, 144) fall rapidly during 

inflammation. Moreover, scorbutic individuals experience delayed healing and 

decreased rates of collagen synthesis and maturation.(145) Along with its strong anti-

oxidant properties, VitC is an essential co-factor for multiple enzymatic reactions and 

has recently been shown to suppress pro-inflammatory processes by pleiotropic 

mechanisms while promoting anti-inflammatory and pro-resolution effects in 

macrophages.(29, 31, 112, 146) VitC is also intimately involved in collagen metabolism 

and regulation and therefore many studies have focused on this particular role in wound 

healing.(147-150) Humans lack functional L-gulono- -lactone oxidase (Gulo), the final 

enzyme for VitC biosynthesis, and hence are dependent upon an external supply (in 

diet) of VitC.(2, 144) In contrast, wild type mice express functional Gulo and maintain 

high levels of VitC in their tissues. In order to better understand the role of VitC in 

wound healing we used humanized knock-out mice lacking Gulo (Gulo−/−) in our studies. 

In these studies, we went beyond the known effects of VitC on collagen synthesis to 
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explore the role of VitC on the spatiotemporal changes in the inflammatory, proliferative 

and maturation stages of wound healing. 

4.2  Methods 

4.2.1 Animals: All animal studies were performed in accordance to the Virginia 

Commonwealth University Animal Care and Use Committee’s approved protocols. Gulo-

/- mice were bred in-house from an established homozygous colony maintained on a 

C57BL/6J background as previously described.(31) Mice were fed ad libitum with 

regular chow and had free access to water supplemented with AscA (330 mg/L) 

renewed twice a week to yield sufficient mice. Supplements were given in de-ionized 

water with 20 µL of 0.5 M EDTA/L to increase the stability of the AscA in solution. At 

week 10 of age, some mice were rendered VitC deficient by reducing VitC 

supplementation for one week (33 mg/L), followed by complete removal of VitC 

supplementation for an additional week. This reduced supplementation was shown to 

result in very low plasma VitC concentration, yet insufficient to result in scurvy.(58, 59) 

In this study, mice were divided into three groups: VitC sufficient, VitC deficient and VitC 

deficient+AscA mice. The third group was given daily parenteral AscA (200 mg/kg 

intraperitoneal injection) and AscA supplemented drinking water (330 mg/L) for up to 14 

days following wounding. 

4.2.2 Surgical Procedure: Animals were maintained under isoflurane anesthesia. In 

addition, they were also injected subcutaneously with the analgesic buprenorphine 

(4µg/ml) for pain management. Wounds were created using the methods described by 

Galiano et al.(151) Briefly, the mouse hair on the dorsum of the mice thoracic curvature 

was shaved with an electric clipper followed by an additional treatment with a depilatory 
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cream (Nair), for 3 minutes, to remove any remaining fur. The surgical area was then 

neutralized with betadine followed by another disinfection step with alcohol swaps. Two 

full thickness excisional wounds were created on the back of VitC sufficient/deficient 

Gulo-/- mice using a sterile 6-mm biopsy punch. Wounds were covered with non-

adherent dressing (Telfa™, Covidien); and animals were housed individually with ad 

libitum water and food access as discussed earlier. At day 7 and day 14 post-wounding, 

mice were anesthetized, blood was collected via cardiac puncture (anti-coagulated with 

sodium citrate 1:10) and kept on ice to be processed for VitC analysis. Mice were then 

sacrificed and the wound tissue was collected using forceps and scissors. Per mouse, 

the tissue from one wound was fixed in formalin for 48hr and processed for histology. 

The tissue from the second wound was excised, bisected, and stored in liquid nitrogen 

followed by long term storage at -800C for subsequent RNA and protein extraction.  

Human Neonatal Dermal Fibroblast (HnDF) Culture: Primary HnDF cells were 

obtained from American Type Culture Collection (ATCC, Manassas, VA). Cells were 

maintained in high glucose, Dulbecco’s Modified Eagle Medium (DMEM) supplemented 

with 10% fetal bovine serum, penicillin (100µg/mL), and streptomycin (100µg/mL) under 

a 5% CO2 atmosphere at 37°C. All experiments were performed using cells at passages 

3 to 5. 

4.2.3 VitC Analysis: Blood samples obtained from mice on day 7 and 14 post 

wounding were kept on ice, centrifuged and the resultant plasma was deproteinized as 

previously described.(146) Briefly, 100µL of plasma was deproteinized with 200µL of 

cold 20% trichloroacetic acid (TCA), and treated with 200µL of cold 0.2% dithiothreitol 

(DTT) to prevent oxidation. The mixture was vortexed intermittently for 2 min and 
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centrifuged (10,000g, 4 0C, 10 min). Supernatants were stored at -80 0C for batch 

analysis using a fluorescence end-point assay.(130)   

4.2.4 Histological Staining and Wound Assessment: Formalin fixed paraffin 

embedded wound sections (3-4 μm) were cleared in xylene washes, rehydrated in a 

series of decreasing alcohol concentrations and brought to water. Prepared specimens 

were stained with Masson’s Trichrome according to manufacturer’s protocol (Richard 

Allan Scientific, Catalogue # KTRA87019, Kalamazoo, MI). 

4.2.5 RNA Isolation and Real-Time Quantitative PCR (QPCR) analysis: Total RNA 

isolation and real-time QPCR were performed as described previously.(146) Assays 

were run in triplicate with no template controls and no reverse transcriptase controls. 

The mRNA expression from a “sufficient” mice or a media well was set to “1.0” and 

mRNA expression of all other samples was compared relative to this sample and 

represented as a fold change. To normalize for differences in the amount of total RNA 

added to each cDNA reaction and possible variation in the reverse transcriptase 

efficiency among the different cDNA reactions, the housekeeping gene 18S rRNA was 

used. Automated gene expression analysis was performed using the Comparative 

Quantitation module of MxPro QPCR Software (Agilent). Both the forward and reverse 

primers for each target are listed in table (1) below. 

Table 1. Murine and Human Primers used for qPCR 

Name Sequence 5’ to 3’ 

Murine IL-1 forward CTGAACTCAACTGTGAAATGCC 

Murine IL-1 reverse CAGGTCAAAGGTTTGGAAGC 

Murine TNF forward GATGAGAAGTTCCCAAATGGC 

Murine TNF reverse TTGGTGGTTTGCTACGACG 

Murine KC forward CAATGAGCTGCGCTGTCAGTGCCTGCAG 

Murine KC reverse CTGAACCAAGGGAGCTTCAGGGTC 
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Table 1. Murine and Human Primers used for qPCR 

Murine Mpo forward CTGGATCATGACATCACCTTGACTCC 

Murine Mpo reverse GATCTGGTTGCGAATGGTGATGTTGTTCC 

Murine HO-1 forward GGTACACATCCAAGCCGAGAATGCTGAG 

Murine HO-1 reverse CGGTGCAGCTCCTCAGGGAAGTAGAG 

Murine VEGF forward GAGACCCTGGTGGACATC 

Murine VEGF reverse CTTTCTTTGGTCTGCATTCAC 

Murine CTGF forward CCCAACTATGATGCGAGCC 

Murine CTGF reverse ACAGGCTTGGCGATTTTAGG 

Murine TGF- forward TGACGTCACTGGAGTTGTACGG 

Murine TGF- reverse CCACGTGGAGTTTGTTATCTTTGC 

Murine Gal1 forward CAGCAACCTGAATCTCAAACC 

Murine Gal1 reverse AGTGTAGGCACAGGTTGTTGC 

Human IL-6 forward GGATTCAATGAGGAGACTTGCC 

Human IL-6 reverse TCTGCAGGAACTGGATCAGG 

Human Nanog forward AATGTCTTCTGCTGAGATGCC 

Human Nanog reverse GCTGTCCTGAATAAGCAGATCC 

Human OCT4 forward CTTGCTGCAGAAGTGGG 

Human OCT4 reverse CACTCGGTTCTCGATACTGG 

Human p21 forward CTGTCTTGTACCCTTGTGCC 

Human p21 reverse CCTCTTGGAGAAGATCAGCC 

Human p27 forward TGGACCCAAAGACTGATCC 

Human p27 reverse CATTTTCTTCTGTTCTGTTGGC 

 

4.2.6 Western Blot Analysis: Wound tissues whole cell extract and HnDF whole-cell 

and nuclear extracts were isolated and used for Western Blot analysis as described 

previously.(29) Nuclear extracts were isolated using the NE-PER kit (Pierce 

Biotechnology, Rockford, IL, USA). Antibodies to hemoxygenase-1 (HO-1) (ADI-SPA-

896-D, Enzo life sciences, Farmingdale, NY, USA), Oct-3/4 (sc-5279, Santa Cruz 

Biotechnology, Santa Cruz, CA), lamin B (sc-6216, Santa Cruz Biotechnology), and 

actin (sc-1616, Santa Cruz Biotechnology, Santa Cruz, CA) were used in this study. 

Optical densities of antibody-specific bands were determined using Quantity One 

acquisition and analysis software (BioRad, Hercules, CA).  
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VitC Uptake by HnDF: HnDF were grown under normal culture conditions to confluence in 

12-well plates. Cells were then exposed to media alone or AscA (0.5mM and 1mM) for 3 

hours. Media was removed and cells were washed twice with PBS. Fifty µl of tissue 

culture grade water was added to each well. Cells were lysed by repeated freeze-thaw 

cycles (x3). Lysates were treated with TCA and DTT and intracellular VitC content was 

determined as described above. 

4.2.7 HnDF Proliferation Assay: HnDF were seeded into 96-well plates at an initial 

cell density of 3K cells per well. Cells were allowed to rest for a day and then exposed 

to media only, media + 0.5mM AscA, or media + 1mM AscA for 24 hours. Media was 

then aspirated and proliferation determined using the CyQUANT® cell proliferation 

assay kit (Invitrogen, Carlsbad, CA, USA) as per manufacturer instructions. 

4.2.8 Healed skin tensile testing: For these set of experiments, mice were sacrificed 

at day 14 post-wounding and 20mm X 4mm skin specimens were harvested along the 

mouse central axis. Specimens were wrapped in PBS-moistened gauze and stored at 

40C overnight prior to testing. Dimensions of each specimen were taken 3 times using a 

digital caliper and the average was used to calculate the cross-sectional area. Two 

samples were harvested per animal with the healed wound area located mid-substance. 

Mechanical testing was performed at room temperature using MTS tensile testing 

machine and Testworks 4.06A software (MTS Systems, Eden Prairie, MN). The starting 

conditions were a preload of 0.01 Newtons (N), and tensile grip moving rate of 10 

mm/min. Only samples that failed mid-substance were included in the analysis, 

otherwise samples were excluded (due to failure at the clamp or samples slipped from 

the clamp). 
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4.2.9 Statistical Analysis: Statistical analysis was performed using GraphPad Prism 

6.0 (GraphPad Software, San Diego, CA, USA). Data are expressed as mean ± SE. 

Results were compared using one-way ANOVA. Post hoc Tukey test was used to carry 

out multi-comparisons between groups. The level of significance for all statistical tests 

was p < 0.05. 

4.3 Results 

4.3.1 VitC levels affect the progression of wound healing: To examine the effect of 

VitC on wound progression, three groups of Gulo-/- were generated and subject to the 

wounding procedure described in the Methods section. We then measured plasma VitC 

levels on day 7 and 14 post-wounding. As seen in Figure 25A, at day 7 post-wounding, 

VitC “sufficient” mice had significantly higher circulating plasma VitC when compared to 

the other groups. The VitC levels in the “deficient +AscA” group were also significantly 

higher than the deficient group by day 7. By day 14 (Figure 25B), circulating plasma 

VitC levels in the “sufficient” and “deficient + AscA” became comparable and 

significantly higher than the “deficient” group. Masson’s trichrome stained wound 

sections on day 7 demonstrated dense granulation tissue and higher collagen 

deposition (blue color) from “sufficient” and “deficient + AscA” mice when compared to 

the wound sections from “deficient” mice (Figure 26 A-C). In both the VitC groups, the 

dermis and epidermis were better connected to one another. Moreover, the basal 

lamina and keratin layer were also well developed and presented as distinct layers. In 

contrast, day 7 sections from “deficient” mice demonstrate loose granulation tissue with 

reduced collagen deposition. Additionally, in deficient mice, the dermis was more 
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cellular (and reticular) and the lamina was not yet fully distinct (Figure 26 B). Most of 

these striking differences were also evident on day 14 post-wounding (Figure 26 D-E). 

4.3.2 VitC attenuates mediators of inflammation in wound healing: Next we 

examined the mRNA expression of the pro-inflammatory genes (IL-1, KC, TNF-, and 

MPO) in healing tissue 7 and 14 days post-wounding. VitC “sufficiency” or treatment of 

“deficient” mice with AscA significantly attenuated transcript levels of these pro-

inflammatory genes when compared to wound tissue from VitC “deficient” mice at day 7 

(Figure 27). The transcript levels of the pro-inflammatory signaling cytokines (IL-1 and 

KC) remained elevated on day 14 in the “deficient” mice compared to the “sufficient” 

and “deficient + AscA” mice (Figure 28). MPO transcripts however were not detectable 

in all 3 groups on day 14 (data not shown). TNF- transcript expression on day 14 

showed the same trend as IL-1 and KC but these differences in expression did not 

achieve statistical significance. In light of the elevated and persistent expression of pro-

inflammatory mediator transcripts in VitC deficient animals, we examined whether 

markers of inflammation resolution might be altered.  Galectin-1 (Gal-1) expression is 

associated with generation of pro-resolving lipid mediators and successful resolution of 

inflammation.(152) Therefore, we examined Gal-1 expression in day 7 wounds. Gal1 

transcript levels were significantly higher in VitC “sufficient” mice compared with the 

“deficient” mice (Figure 29). Although Gal1 gene expression trended higher in the 

“deficient + AscA” group, it did not reach statistical significance.  

4.3.3 VitC induces genes that promote wound healing: We also examined the 

expression of transcripts levels of several other known modulators of wound healing 

including hemoxygenase-1(HO-1), vascular endothelial growth factor (VEGF), 
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connective tissue growth factor (CTGF), and transforming growth factor beta (TGF-). 

On day 7 post-wounding, both VitC “sufficient” and “deficient + AscA” Gulo-/- mice 

showed significantly higher mRNA expression of HO-1, VEGF, and CTGF (Figure 30 A-

C) in comparison to the “deficient” mice. TGF- expression was significantly elevated in 

“sufficient” mice compared to “deficient” mice. TGF- expression following AscA infusion 

trended higher in the “deficient + AscA” group but did not reach statistical significance 

(Figure 30D). Induction at the protein level was confirmed by Western blot analysis for 

total HO-1 (Figure 31). 

4.3.4 VitC and tensile strength of healed wound: Using the excisional wound model, 

samples collected at day 14 post-wounding were used to carry out skin tension studies 

as described in Methods. Stress at the healing section was measured using the mid-

specimen cross sectional area (in KiloPascals). The healed skin samples from the 

“sufficient” mice demonstrated a significantly higher stiffness compared to the other 

groups (Figure 32). However, there were no statistically significant differences between 

the “deficient” and “deficient + AscA” groups. In addition, we also measured the Peak 

load, a measure of the tensile strength a material can withstand before breaking. 

However, no significant differences were observed between the different mice groups 

(data not shown). 

4.3.5 VitC promotes HnDF proliferation: Confluent HnDF cells were incubated for 3 

hours with two concentrations of AscA (0.5 mM and 1mM). In the absence of 

exogenous AscA, intracellular VitC concentrations in HnDF were extremely low. There 

was a dose and time dependent increase in intracellular VitC concentrations following 

AscA loading (Figure 33) suggesting that these cells have the ability to transport VitC 
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intracellularly. Additionally, incubating sub-confluent HnDF cells with the same AscA 

concentrations (0.5 mM and 1mM) for 24 hours resulted in significant dose dependent 

increases in HnDF proliferation (24% and 40%, respectively) as seen in Figure 34. 

VitC induces the expression of self-renewal, cell-cycle progression and fibroblast 

motility genes in HnDF: To further investigate the increased proliferative capacity 

brought by AscA, HnDF cells were incubated with AscA (0.5 mM and 1mM) for 3 hours 

and mRNA expression of the self-renewal genes Nanog and octamer-binding factor 4 

(OCT4) determined by QPCR. Both Nanog and OCT4 gene expression increased in a 

dose dependent fashion following HnDF incubation with AscA (Figure 35). The 

increased expression was not statistically significant with low level AscA (0.5 mM) but 

was significant with the higher AscA concentration (p<0.05). The mRNA expression 

levels of the cyclin-dependent kinase inhibitors and regulators of cell cycle, p21 and p27 

were also determined (Figure 35). Transcript levels of p27 were significantly decreased 

in a dose dependent fashion by AscA exposure. However p21 expression levels were 

unchanged. Western Blot analysis confirmed the increased nuclear expression of OCT4 

seen with QPCR at 24 hours post incubation with AscA (Figure 36). The pleiotropic 

cytokine IL-6 has been shown to favorably promote cell motility and matrix remodeling 

during the inflammatory phase of wound healing.(153, 154) In addition, IL-6 is a 

resolution promoting cytokine by virtue of its inhibitory effects on pro-inflammatory 

signaling via activation of IL-10 and IL-13, and by its ability to enhance polarization of 

macrophages at wound healing sites towards an anti-inflammatory/alternatively 

activated phenotype.(155) Therefore we examined IL-6 mRNA expression following 

exposure of HnDF cells to AscA. As seen in Figure 9F, exposure of HnDF to AscA 
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produced a dose dependent increase in IL-6 mRNA expression levels; 2.5 fold and 4 

fold increase with 0.5mM and 1mM AscA, respectively. 

4.4  Discussion 

Wounds and more generally injuries are associated with rapid micronutrient 

deficiencies.(143) Levels of one critical micronutrient, VitC, have been shown to drop 

significantly (60-70%) at the wound site and not recover completely even after 14 days 

post-wounding.(156, 157) These observations may reflect VitC depletion by the plethora 

of free oxidant radicals generated in the wound microenvironment, and in part by the 

increased consumption of VitC in different biological processes (e.g. collagen synthesis) 

that are activated during the repair process. While higher oral intake is achievable, 

attaining significant plasma levels are limited by gastric intolerance and also by limited 

absorption and renal excretion thresholds.(19) We and others have shown that 

parenteral VitC is advantageous in bypassing these limitations to produce and sustain 

adequate plasma levels.(19, 158) 

In our present study, we were able to show improved wound healing characteristics with 

VitC sufficiency and also with i.p. VitC repletion of Gulo(-/-) mice. Day 7 wounds from 

VitC “deficient” mice showed a spatiotemporal gene expression characterized by 

persistent inflammation combined with delayed resolution and proliferation. The pro-

inflammatory state persisted throughout day 14 post-wounds in the “deficient” mice but 

not in the “sufficient” or “deficient + AscA” groups. In contrast, VitC “sufficient” and 

supplemented Gulo(-/-) mice showed attenuated expression of pro-inflammatory 

cytokines, increased expression of favorable biomarkers of wound healing, and better 

expression of the pro-resolution markers of wound healing. However, tangible effects on 
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the skin tensile strength properties at day 14 post-wounding were evident only in the 

VitC “sufficient” mice.  These improvements in wound healing in the VitC “sufficient” and 

supplemented mice were corroborated by in vitro cultures of HnDF which showed that 

VitC supplementation led to robust uptake and fibroblast proliferation, induction of self-

renewal genes and up-regulation of a pro-resolution cytokine that also plays a role in 

fibroblast mobility. 

Histological examination of day 7 and day 14 Masson’s Trichrome stained sections  

showed that wounds from VitC “sufficient” and supplemented mice had better matrix 

organization with clear distinction of all skin layers and significant extracellular matrix 

deposition. In contrast, wounds from VitC “deficient” mice were characterized by a loose 

dermis that was highly cellular and accompanied by limited collagen deposition. At a 

molecular level, wounds from “deficient” mice actively expressed the pro-inflammatory 

cytokines IL-1 and TNF-. Additionally, wounds from “deficient” mice demonstrated 

significantly higher MPO expression compared to wounds from VitC “sufficient” and 

AscA infused mice. MPO is an enzyme almost exclusively produced by PMNs (5% of 

total neutrophil protein) and to some extent in monocytes and is often used as a marker 

of PMN infiltration.(159) High MPO levels have been found to be associated with poor 

healing wounds.(160) A similar pattern was observed with the gene expression of the 

PMN chemoattractant factor, KC. Murine KC is analogous to human CXCL-1 (a 

functional homologue of IL-8). We interpret the presence of these pro-inflammatory 

markers as ongoing/sustained pro-inflammatory cellular infiltration into the wound site 

and an extended pro-inflammatory phase in wounds from “deficient’ mice. In contrast, 

the attenuated expression of these pro-inflammatory mediators in VitC “sufficient” and 
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AscA infused mice is indicative of termination of pro-inflammatory cell infiltration to the 

wound site and perhaps the end of the pro-inflammatory phase. The expression pattern 

on day 14 further supports this assumption. 

The proliferation stage of wound healing is typically characterized by increased 

expression of the pro-reparative growth factor cytokines such as TGF-, CTGF, and 

VEGF.(141) TGF- plays an important role at all stages of wound healing. In the initial 

stages, it serves as a chemotactic factor for pro-inflammatory cells as well as 

fibroblasts. In later stages, TGF- provides a strong mitogenic signal for fibroblasts. 

Braiman-Wiksman et al have shown that high levels of TGF- are most beneficial after 

epidermal closure is complete.(161) In our present work, TGF- expression levels were 

significantly higher in day 7 wounds from “sufficient” mice. Wounds from mice receiving 

daily AscA infusion showed TGF- levels that trended higher compared to “deficient” 

mice but did not reach statistical significance. Another growth factor in the wound milieu 

is CTGF whose transcription is regulated mainly by TGF-. It is believed that it is a 

downstream mediator of some of the actions of TGF-.(162)  However, TGF- 

independent regulation of CTGF has also been reported.(163) Recently, Alfaro et al 

(2013) reported that CTGF levels at wound sites increase during the proliferation 

phase.(164) CTGF functions in promoting granulation tissue formation (fibroblast cell 

division and migration and fibroblast matrix deposition e.g. collagen type I and 

fibronectin) and wound remodeling.(165) In our study, VitC “sufficiency” and AscA 

supplementation were associated with significantly higher CTGF expression compared 

to the “deficient” mice at day-7 post-wounding (p<0.05). Combined with histological 

evidence, these results indicate an active cellular and molecular proliferation in the VitC 
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“sufficient” and AscA supplemented mice versus an attenuated/lagging proliferation 

response in “deficient” mice. Several studies have shown that VEGF significantly 

promotes angiogenesis and neovascularization in healing wounds.(140) Multiple factors 

such as pH, reduced oxygen tension, increased lactate as well as pro-inflammatory 

cytokines have been reported to induce VEGF production at the wound site.(140, 142) 

In our study, we observed higher VEGF expression in the VitC “sufficient” and AscA 

infused mice indicating increased angiogenesis and neovascularization in the wounds of 

“sufficient” and AscA supplemented mice. A role for HO-1 in wound healing has only 

been recently described.(166) Grochot-Przeczek et al showed that HO-1 inhibition 

adversely affects wound healing in diabetic mice while HO-1 over-expression promoted 

healing.(166) Earlier, the same research group showed that HO-1 upregulated VEGF 

production and therefore could indirectly promote neovascularization. In our study, HO-

1 expression levels were significantly higher in VitC “sufficient” and AscA supplemented 

mice. In sum, the expression pattern of these growth promoting factors can be 

interpreted as a robust biological response to wounds in VitC “sufficient” mice when 

compared to the “deficient” mice. In addition, daily i.p. VitC supplementation seems to 

restore the growth promoting response in wounds of VitC “deficient” mice. 

Physiologic wound healing involves a regulated fibroblast differentiation into 

myofibroblasts that play an active role in reconstruction of damaged tissue following 

injury.(167) A critical mediator of this process is Gal-1, a lectin produced by various 

tissues. Recently, Lin et al (2015) showed that Gal-1 induced myofibroblast activation 

and proliferation. Moreover Gal-1(-/-) knockout mice experienced reduced myofibroblast 

migration, which was corrected with topical Gal-1 administration in excisional wound 
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models.(168) Elsewhere, Perzelova et al showed that exposure of dermal fibroblasts to 

Gal-1 stimulated extracellular matrix production that subsequently supported endothelial 

cell growth.(169) In our studies, only VitC “sufficient” mice had significantly higher Gal-1 

expression levels as compared to other groups. We have previously shown that both 

VitC “sufficiency” and VitC supplementation were able to induce early Gal-1 expression 

in peritoneal macrophages, which correlated with markers of resolution.(146) This 

suggests that VitC may be required to sustain Gal-1 expression in healing wounds and 

that the level of supplementation provided to the “deficient” mice is probably insufficient 

to adequately restore Gal-1 expression in healing wounds. 

Much to our surprise, only VitC “sufficient” mice demonstrated significantly higher 

healed-skin stiffness compared to the other groups despite the observed increased 

collagen deposition evident by histological analysis in the “sufficient” and “deficient + 

AscA” mice. Although by day 14, we had achieved plasma VitC levels in the “deficient + 

AscA” group that were comparable to the VitC “sufficient” mice, it is possible that the 

VitC levels in the healing wound may not have reached the same level as the sufficient 

mice. While humans have evolved over millennia to up regulate the VitC transporter 

SVCT2 at times of deficiency (170) it is unknown whether SVCT2 is up regulated to the 

same extent in the healing wounds of these knockout mice. Indeed it has been shown 

that the knockdown of SVCT2 in bone marrow derived stromal cells decreased wound 

healing, and that supplementing with VitC failed to rescue these cells.(171) Therefore, 

we interpret these results as insufficient uptake of VitC in the healing wound and that 

perhaps, an additional topical application of VitC at the wound site or a higher dose of 

i.p. VitC could prove beneficial. 
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Using HnDF cells, we showed that AscA exposure resulted in a dose dependent and 

significant increase in intracellular AscA uptake and fibroblast proliferation. This was 

associated with a dose dependent inhibition of p27 expression. The inhibitors p21 and 

p27 suppress cell cycle progression by inhibiting cyclin-dependent kinases as well as by 

down regulating expression of other genes involved with cell cycle progression.(172) 

Conversely, AscA treatment was associated with a dose dependent increase in the 

expression of pluripotent and self-renewal genes Nanog and OCT4.(173) These 

findings suggest a crucial role for VitC in regulating fibroblast proliferation. Although this 

is a novel finding in fibroblasts, there is precedence for these actions of VitC in stem 

cells, and in particular the adipose derived stem cells wherein VitC has been used to 

increase the yield and regenerative potential of adipose derived stem cells.(174) 

IL-6 is a cytokine with pleotropic functions that is produced by several cell types in the 

wound microenvironment including fibroblasts.(153, 175) It plays an important role in 

development of Th17 cells and is known to contribute to the inflammatory component of 

autoimmune diseases.(176) However, recent studies suggest a pro-resolution and anti-

inflammatory role for IL-6 in wound healing environments.(155) Kuhn et al showed that 

inhibition of IL-6 resulted in impaired wound healing due to decreased epithelial 

proliferation.(177) IL-6 knockout mice exhibit delayed wound healing (delayed re-

epithelialization, granulation tissue formation, and sub-optimal inflammatory response) 

compared to wild type mice; this could be reverted with recombinant IL-6.(178, 179) 

Further, Gallucci et al reported IL-6 signaling to promote dermal fibroblast differentiation 

into myofibroblasts, increase their motility and also promote matrix remodeling.(153, 

180) We found that exposure of HnDF cells to AscA promoted a dose dependent 
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increase in IL-6 mRNA levels. These findings suggest a novel mechanism by which VitC 

could promote fibroblast motility and matrix remodeling. Presumably, insufficient 

fibroblast VitC levels could impair IL-6 expression and delay the resolution of wound 

healing. 

Thus, on the basis of these in vitro studies, we speculate that in the absence of 

adequate VitC supplementation, the proliferation and maturation phases of wound 

healing would be delayed or would remain incomplete, thereby resulting in non-healing 

wounds.  

4.5  Conclusion:  

Wound repair is a complex process that requires the co-ordination of various 

local cellular and biochemical events. To date, the majority of studies have used oral 

supplementation to augment plasma/tissue levels of VitC. However, recent studies by 

Padayatty et al and others have shown that oral supplementation does not provide the 

requisite VitC levels for restoration of plasma VitC levels.(19, 59) We have recently 

shown that parenteral routes of VitC administration are safe and effective in critical care 

situations in both mice and humans.(158) Moreover, these doses of VitC, when 

administered parenterally, were sufficient to restore circulating plasma VitC levels. The 

current study presents new evidence that beyond its well characterized role in collagen 

metabolism, vitamin C status plays a crucial role in orchestrating multiple wound healing 

processes. Vitamin C repletion by parenteral infusion has the potential to be a safe and 

inexpensive therapy for enhancing tissue repair and shortening healing time. 



   
 

95 
 

 

Figure 25: Plasma VitC levels from VitC “sufficient”, “deficient” and “deficient + AscA” Gulo
−/−

 mice at day 7 
(a) and day 14 (b) post wounding. Daily supplementation of deficient mice with i.p. AscA post-wounding 
resulted in significantly higher plasma VitC levels in the “deficient + AscA” mice compared to “deficient” 
mice by day 7 post wounding. These levels further rises and became comparable to sufficient mice plasma 
VitC levels at day 14 (n= 3–6 mice/group, ns= not significant). 

 

Figure 26: Representative Masson’s trichrome stained sections from VitC “sufficient”, “deficient”, and 
“deficient + AscA” Gulo

−/−
 mice at day 7 (A-C) and day 14 (D-F) post wounding. VitC “sufficient” (A) and 

“deficient + AscA” (C) sections were showing more dense granulation tissue with significant collagen 
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disposition and distinct lamina. In contrast, sections from the “deficient” mice demonstrated a more cellular 
loose granulation tissue with little collagen disposition (B). Also the lamina was not yet distinct. Day 14 
sections were more mature. However, sections from the VitC “deficient” mice were still showing a less 
compact collagen disposition. 

 

 

Figure 27: Real time QPCR for IL-1β, KC, TNFα, and Mpo mRNA from day 7 wounds of VitC “sufficient” 
“deficient”, and “deficient + AscA”  Gulo

−/−
 mice. Wounds from Vitamin C “sufficienct” and “deficient + 

AscA” mice demonstrated an attenuated pro-inflammatory gene expression profile compared to “deficient” 
mice. (n = 3-6 for each group). 
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Figure 28: Real time qPCR for IL-1β, KC, and TNF-α mRNA from day 14 wounds of VitC “sufficient” 
“deficient”, and “deficient + AscA”  Gulo

−/−
 mice. Wounds from Vitamin C “deficient” was still experience a 

heightened pro-inflammatory gene expression response compared to VitC sufficient/supplemented mice. (n = 
3-6 for each group). 
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Figure 29: Real time qPCR for Gal1 and Ym1 from day 7 wounds. VitC sufficiency is associated with 
significantly higher Gal1 expression. VitC “sufficient”, but not “deficient + AscA”, showed significantly 
higher Gal1 expression compared to “deficient” wounds at day 7.  
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Figure 30: Spatiotemporal profiling of growth factors and HO-1 genes expressions in day 7 wounds. Real 
time QPCR for (TFG-B, CTGF, and VEGF) , and HO-1 mRNA from day 7 wounds from VitC “sufficient”, 
“deficient”, and “deficient + AscA” Gulo

−/−
 mice. (n = 3-6 mice/group, ns = not significant). 
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Figure 31: Wound Healing is delayed in Vitamin C deficient wounds. Representative Western blot for 
expression of HO-1 and actin from day 7 wounds of VitC “sufficient”, “deficient”, and “deficient + AscA” 
Gulo

−/−
 mice. The bar chart is a quantitative representation of the western blot results using densitometry (n 

= 3 - 6 for each group). 

 

 

Figure 32: Stiffness in KiloPascal recorded from skin tension studies performed on wounds collected on day 
7 post incisional wounding. VitC sufficient mice demonstrated a significantly higher stiffness (calculated at 
mid specimen) compared to the other groups. There was no statistically significant difference in the wound 
stiffness between the “deficient” and “deficient + AscA” groups. (n = 6-12; ns = non-significant). 
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Figure 33: VitC levels measured in HnDF cells after being loaded with AscA under normal culture conditions 
for 3 hrs at 37°C. AscA concentrations were determined as described in Methods (n = 3 for each group). 

 

 

Figure 34: HnDF loading with AscA resulted in dose dependent increase in proliferation (n= 3 for each 
group). 
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Figure 35:  Real-time qPCR for interleukin-6 (IL-6), Nanog, Oct4, p21, and p27 from HnDF cells loaded with AscA 
0.5mM and 1mM for 3 hrs (ns: not significant; n = 3 for each group). 
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Figure 36: :  Representative Western blot for nuclear expression of Oct4  and lamin B from HnDF cells 
loaded with AscA 0.5mM and 1mM for 3 hrs. The bar chart below is a quantitative representation of the 
Oct4 western blot results using densitometry (N = 3 - 6 for each group).  
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Chapter 5: Impact of High Dose Ascorbic Acid on Inflammatory markers and 

Atrial Fibrillation among Cardiac Surgery Patients 

 

Future Direction - Study Protocol - Work in Progress 

 

5.1 Abstract 

Ischemia-perfusion injury is an inevitable event taking place during open heart 

surgery involving  cardiopulmonary bypass (CPB). Reactive oxidant species (ROS) and 

the resultant oxidative  burst have been demonstrated to be the main pathway for 

inducing injury during this event. Both  the inflammatory and coagulation systems play a 

role in injury during CPB and are well estab- lished contributors to the oxidative burst. 

Previous work in this area has shown a significant de- crease in the body’s anti-oxidant 

capacity as the oxidative stress builds. Interestingly, Vitamin C  levels, an important 

dietary anti-oxidant, are reported to decrease after surgery in a similar fash- ion 

corresponding to the increased oxidant species. Often a decreased systemic anti-

oxidant  capacity is seen and the body does not revert to normal levels until several days 

after surgery.  The role of Vitamin C has also been emphasized after reports of its use in 

preventing atrial fibrillation (AF), which is known to occur following CPB surgery with the 

highest incidence occurring  by the third day after surgery. The pathogenesis of AF is 

suspected to be multifactorial, with ev- idence to support an inflammatory mediated 

response with a prominent ROS mechanistic com- ponent. The results associated with 

the use of Vitamin C have been significant when given in- travenously in high doses. On 

the other hand, studies employing oral administration have  demonstrated some 

controversy in establishing efficacy. Administration of Vitamin C via oral  route result in 
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plasma concentration tightly maintained around 150-250uM. At this level, the Vit- amin 

concentration may not be enough to replenish tissues and cells and attaining mM 

concen- tration is needed to compete for the oxidant species. Parenteral administration 

opens the door for  mM concentration to be readily achieved with minor inconveniences. 

Based on this evidence,  the main hypothesis is: “Parenteral administration of high dose 

Vitamin C will decrease the ROS- mediated inflammatory/coagulopathies among 

patients undergoing open heart surgery involving  CPB”. 

 

5.2 Public Health Impact (Project Narrator) 

Cardiac surgery is a leading consumer of health care resources. In 2010, data 

collected from   1,001 hospitals representing nearly 80% of all sites in the United States 

that perform coronary  artery bypass grafting (CABG), demonstrated that over 150,000 

major procedures involved  CABG; 18,008 involved both aortic valve replacement and 

CABG; 2,378 involved mitral valve  replacement and CABG; and 4,635 involved mitral 

valve repair and CABG. The mean hospital  charges for CABG and valve procedures 

were $124,404 and $171,270 with a mean length of  hospital stay of 9.1 and 11 days 

and an in hospital death rate of 1.75% and 3.90%, respectively.(181-183) AF, a known 

complication of cardiac procedures, is the most common type of arrhythmia  experienced 

following cardiac surgeries with the risk being highest by third post-operative day.  AF 

occurs in up to 40% of the patients and has been associated with poorer prognosis.(26, 

184) It ac- counts for increased length of hospital stay, as well as increased morbidity 

(e.g. stroke) and  mortality.(25) It is now supported that the high levels of ROS achieved 

in the myocardium can lead  to both electrical and structure remodeling of the cardiac 
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muscle leading to the development of  AF.(26) Therefore, the administration of safe, 

inexpensive Vitamin C using the parenteral route is a  reasonable novel method to 

decrease the ROS for patients undergoing CABG and CPB.  

5.3 Specific Aims 

Cardio-pulmonary bypass (CPB) is considered to be a major contributor of inflammatory 

injury  during cardiac surgery. Recently, the role of reactive oxidant species as a 

prominent media- tor/stimulant has been defined, recognizing the inevitable oxidative 

burst which occurs during  surgery. Several trials have examined interventions aimed at 

controlling and attenuating this  oxidative burst. Other trials have investigated Vitamin 

C’s ability to halt the oxidant species fueled  processes. Unfortunately, the dual routes of 

administration employed, more oral than in- travenous, have made the results of these 

studies controversial. With oral dosing, the 

fasting  plasma concentrations are tightly 

controlled to below 150-200μM.(19) In contrast, 

with intravenous  administration of high doses, 

significantly higher plasma concentrations in the 

milliMolar (mM)  order were achievable.(19) 

These facts agree with the principle that the 

efficacy of an anti-oxidant  is dependent upon its 

concentration in the medium where the oxidant 

species are generated and  the damage is 

anticipated.(185) The mM concentrations 

attainable with parenteral administration  provide potential for wider therapeutic 

Figure 37:  Parenteral Vitamin C (200mg/kg) 

reduced multiple organ dysfunction (SOFA) score 

in septic patients. 
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applications of Vitamin C. A number of trials utilizing  comparable and higher doses than 

proposed in our work have demonstrated improvement in  clinical outcomes and 

decreased overall morbidity and mortality in different patient population  having some 

common pathology. A recent study by our team demonstrated that 

parenterally  administered high dose Vitamin C attenuated sepsis-induced inflammation 

and coagulopathies in  animals, and showed favorable trends in a safety trial of the dose 

in humans (Figures 1 and 2).(186)  Therefore, we hypothesize that administering VitC in 

a dose of 200mg/kg/day divided into 4  doses per day, as used in our previous work, at 

the time of cardiac surgery (prior to CPB, during  bypass and through post-op day 3) will 

reduce inflammatory and coagulatory mediators and  biomarkers by attenuating the 

oxidative burst developing during CPB.   

5.3.1 Specific Aim 1: Establishing the effects of high dose parenteral Vitamin C on the 

inflammatory  and coagulatory system.  

a. Determine how the levels of circulating pro-inflammatory biomarkers profiles are 

affected.  

Figure 38: Parenteral Vitamin C (200mg/kg) reduced inflammatory biomarkers in septic patients  
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b. Examine the effects of high dose parenteral Vitamin C on coagulation biomarkers 

and  platelets function.   

c. Investigate the effects of high dose parenteral Vitamin C on the cardiac enzymes 

profiles.   

d. Measure vitamin C levels in both groups to draw correlation with blood 

biomarkers.  

It is expected that Vitamin C intervention will result in a significant decrease in the 

plasma peak  levels of inflammatory and coagulatory markers over time as compared to 

a control group. 

5.3.2 Specific Aim 2: Determine the effects of high dose parenteral Vitamin C on 

patient clinical  outcomes: Incidence of AF, ICU length of stay, overall Hospital 

length of stay, length of time on  mechanical ventilation, chest tube volume output 

and time to wound healing.   

Note: This pilot study will not be fully powered to answer specific aim #2 but preliminary 

data will  be collected on outcomes to support larger studies to follow.  

5.4 Research Strategy 

5.4.1 Background and Significance Cardiac surgery represents a high complexity 

technical  medical intervention. Patients presenting for cardiac surgery have changed 

over the last 10  years, with clear trends towards treating elderly patients with complex 

disease states such as  congestive heart failure (CHF), worsening secondary diseases, 

increasing numbers of mechani- cal support device placements and associated 

complicated medical treatments. Still, the majori- ties of surgeries are coronary bypass 
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and valve repair cases, which involve CPB. The body and  heart are subjected to 

inflammatory insults through varied causes: surgical trauma, blood contact  with the 

artificial surface of the CPB machine, changing of blood flow type, heparin antico-

 agulation, micro-embolism, endothelial thrombin release, free iron and hemoglobin 

generation,  blood transfusion and myocardium ischemia-reperfusion injury.(36) Indeed, 

there is a plethora of  literature describing the inflammatory and coagulopathy response 

induced by CPB.(187) The ischemia-perfusion injury: Following cardioplegia and during 

CPB, the heart is subjected to is- chemia of varying lengths dependent upon the nature 

of the operation. The cardiac tissue at that  point is electrically resting and its metabolic 

demands are accordingly low. There is also a  severely diminished supply of oxygen and 

nutrients. Accordingly, ROS generation is low and  together with the reduced metabolism 

result in a slow and direct myocardium cellular damage  which extends as the duration of 

the ischemia increases.(36, 185) However, an actual peak of the oxi- dative stress 

occurs shortly after reperfusion with oxygenated blood because of the already ac-

 cumulated oxidative substrates and cellular depletion of reductive counterparts.(185) 

While the for- mer is the major contributor to cardiac damage related to oxidative burst, it 

is worth noting that  ischemia-reperfusion is not the only contributor to oxidative stress 

experienced during surgery in  this particular patient population, which often has many 

other co-morbidities. Most significantly of  these co-morbidities are diabetes and 

Coronary Artery Disease (CAD) whose pathologies have a  significant ROS injury 

component. In addition, insults from the operative procedure result in  activating the 

inflammatory and coagulation systems which contribute significantly to oxidative  stress 

through a number of self-perpetuating feedback loops and are further up-regulated 
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by  oxidative stress. McColl A. J. et al. (1998) demonstrated that the total plasma 

antioxidant status  was significantly lower at 1.5hr, 6hr, 24hr, and 72hr after CPB.  They 

further reported that the  larger drop was between the 0hr and 1.5hr time points when 

the elevation in the lipid peroxide  level was at the lowest level. The study also evaluated 

the cardiac troponin T which was elevated  at all-time points postoperatively with a 

significant correlation between the lipid peroxide elevation  at 1.5hr and troponin T 

elevation.(188) In another study, involving 79 patients undergoing CABG  involving CPB, 

showed a significant increase in both total peroxide and oxidative stress index.  The 

stress index continued to be elevated for 48 hours post operatively with a 

significant  decrease in total antioxidant capacity.(189) Furthermore, as reviewed by 

Larmann, J, & Theilmeier,  G. (2004), the endothelium, platelets and leukocytes are 

activated during CPB.(36) This activation is  caused in part by ROS as well as pro-

inflammatory mediators, an activated complement system  and endotoxins released from 

the gut which have an ROS component as well.(36) More recent, the  role of ROS-

mediated inflammatory responses in the development of AF has been established.  AF is 

the most common type of arrhythmia experienced following cardiac surgeries with 

highest  risk on the third day of surgery. It occurs in up to 40% of the patients despite 

several new  therapies.(26) The development of AF post operatively has been 

associated with poorer  prognosis.(26, 184) It accounts for increased length of hospital 

stay, as well as increased morbidity (e.g.  stroke) and mortality.(25) High levels of ROS 

achieved in the myocardium cause both electrical  and structural remodeling of the 

cardiac muscle leading to AF.(26) An association of more AF with  increased 

transfusions among CPB patients was also reported, thus recognizing the 
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deleterious  effects of the increased plasma load of inflammatory markers and mediators 

from the  transfused red cells.(25)   

Interestingly, the concentration of Vitamin C decreases significantly during 

surgery, sepsis,  burns, postoperatively and with postoperative complications.(25) 

Indeed, Vitamin C levels during  and after cardiac surgery are low. Vitamin C serves as a 

one or two electron-reducing agent ca- pable of seeking out several types of reactive 

oxidant species.(30, 184) A number of randomized con- trolled trials involving trauma 

patients, major burns, critically ill cardiac patients as well as patients  with subarachnoid 

hemorrhage employed intravenous (IV) vitamin C supplementation. Doses  used were 

between 1gm every 8hours to 66mg/kg/hr (110gm/24hours for a 70kg patient). 

A  significant improvement in patient outcomes was observed. There was a decrease in 

patients’  ICU length of stay, hospital length of stay, duration on mechanical ventilation, 

the inflammation  marker C-reactive protein (CRP), wound edema, time to wound 

healing and an overall decrease  in morbidity and mortality.(25) Recent research in 

cardiac surgery has suggested that the use of  Vitamin C decreases AF. Although, the 

incidence of AF in one study was as low as 16.3%  compared to 34.9% in the control 

group(25), the results from other cardiac studies regarding AF  demonstrated increased 

variability. Many of these studies employed Vitamin C orally in a  relatively low dose, 

which is thought to be less effective. Vitamin C plasma concentration is  usually 

maintained and controlled below 150 - 250uM with oral supplementation.(19) Oral 

doses in  excess of 200 mg are associated with no further increases in circulating 

Vitamin C levels.(19) In  contrast, when administered intravenously higher plasma 

concentrations (many folds higher- milliMolar concentrations) are achievable.(19) This is 
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significant when considering factors such as  hemodilution and the associated decrease 

in the plasma antioxidant capacity. The parenteral  route is then considered most 

effective, and serves making Vitamin C a “new (emerging) drug”  to be used in 

conjunction with current therapies for patients undergoing CABG. Finally, 

concerns  regarding high doses Vitamin C have been raised before. Fortunately, the 

safety of this dose has  been verified in our preliminary human data and the safety of 

higher doses has previously been  verified in cancer trials.(190) The only known 

reported toxicity of Vitamin C originates after  continuous (days to weeks) of infusions or 

intake and is limited to oxalate renal calculi.(36) Another  potential concern was the 

hypothesized pro-oxidant property of high dose Vitamin C. However,  evidence 

supporting this claim in literature is weak and the antioxidant property at even 

higher  doses was demonstrated to be predominant.(40) Therefore, overall it is a very 

safe and low risk of  toxicity intervention over a wide range of doses including the 

suggested dose in this proposed  work.  

5.4.2 Innovation The proposed work is able to combine critical review of literature and 

innovation  for the following reasons: 1) Using high dose Vitamin C, 200mg/Kg/day, 

intravenously will allow  for the achievement of effective high plasma concentrations, 2) 

First time to employ the novel  intervention among the patient population undergoing 

cardiac surgery involving CPB. With the  first dose administered before the onset of 

CPB, the body tissues will have the opportunity, most  importantly cardiac tissues, to 

replenish their storage of this natural anti-oxidant as well as in- crease the plasma anti-

oxidant capacity, and 3) The interventions as described aim to interfere  with the 

inflammatory and ROS perpetuated mechanisms involved in developing atrial 
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fibrillation  as well as the associated increase in coagulopathies among this patient 

population during the peri  operative period. This pilot study will allow us to detect 

favorable trends through monitoring of  key markers of these interacting systems. 

5.4.3 ‎Approach 

Specific Aim 1: Establishing the effects of high dose parenteral Vitamin C on the 

inflammatory  and coagulatory system.  

a)  Determine how the levels of circulating pro-inflammatory biomarkers profiles (CRP, 

IL6 and  TNF-α) are affected. CRP: is a known general marker of inflammatory 

processes, as well  as, an acute phase reactant. It is produced in the liver and is thought 

to bind phosphotidylcho- line which is in cell membranes. Cell membrane breakdown 

occurs with ensuing endothelial  cell death. It is thought that vitamin C, as an anti-

oxidant could/should protect endothelial cells  form oxidative stress and early cell death 

after ischemia and reperfusion injury and hence  reduce the level of this biomarker. IL-6, 

and TNF-α: are interleukins, or cell signaling proteins  that white cells release to 

attract/up regulate other leukocytes. A wide range of inflammatory  processes will turn 

on leukocytes to release these proteins and again it is thought that if  vitamin C acts by 

decreasing the body’s response to inflammation form CPB that these  biomarkers of 

inflammation should be lessened.   

b)  Determine the effects of high dose parenteral Vitamin C on coagulation biomarkers 

and  platelets function. Fibrinogen: is the most important circulating coagulation protein 

in that it is  the building block for solid clot. Fibrinogen is, like CRP, a liver produced 

acute phase re- actant. Fibrinogen rises as a result of inflammation. Soluble 

thrombomodulin: is released  from intact endothelial cells in response to thrombin 
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production or active coagulation espe- cially as a way to curb run away pro-coagulant 

responses. Platelet and WBC counts: change  as a response to inflammatory mediators. 

On the other hand, Rotem is a whole blood clot  analysis technology that is particularly 

sensitive to the interactions of fibrinogen and platelets.  As such it is predictive of which 

patients will bleed after CPB Therefore if vitamin C manages  to decrease overall 

inflammation; we expect Rotem analysis of clot dynamics to  demonstrate a better 

preservation (homeostasis/buffering).  

c)  Determining the effects of high dose parenteral Vitamin C on cardiac enzyme profile. 

CPB  procedure results in ischemia mimicking myocardial infarction and more profound 

is the  combination of ischemia-reperfusion injury leading to myocardial cell injury, which 

causes  the release of several cardiac tissue markers. Cardiac Troponin I (cTn-1) is 

considered one  of the best predictors of myocardial cellular injury because it is specific 

to the heart and it  lacks cross reactivity with isoforms derived from skeletal muscles. 

Elevated cTn-I is usually  associated with poor clinical outcomes. It is our hypothesis that 

Vitamin C, by attenuating the  ischemia-perfusion injury, may lower peak cTn-I levels 

and thus indicating lower levels of  tissue injury.(191, 192) A limitation of this assay is 

that the surgery itself and handling the heart  could give rise to this marker regardless of 

the ROS induced injury.  However, this marker  will be nearly constant among the 

patients as each patient will experience the same surgery  procedure by a limited team.  

d)  Vitamin C levels will be measured in both groups to draw correlation with the 

previously de- scribed markers.  
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Specific Aim 2: Determine the effects of Vitamin C on patient clinical outcomes: 

incidence of  AF, ICU length of stay, overall Hospital length of stay, length of time on 

mechanical ventilation,  chest tube volume output and time to wound healing. The 

incidence of post-op AF is known to be  highest by the third day of surgery. Evidence 

from the literature supports the inflammatory and  ROS mechanistic components of AF 

development and perpetuation. It is expected that high  dose Vitamin C should be able 

to attenuate considerably the inflammatory and ROS insults. Patients will be followed up 

through discharge to record the incidence of AF by reviewing clinical  notes for any 

change in heart rhythm or treatment for AF. The rest of outcomes, described in  this aim, 

will be gathered after patient discharge from medical records and will be used to eval-

 uate the clinical significance of the intervention.   

Experimental Design: This is a pilot, single dose prospective, double-blind, placebo-

controlled,  randomized study among a placebo group and a Vitamin C 200mg/kg/day 

group (divided into  four doses throughout the day). The dose was chosen based on 

preliminary data in sepsis patients. Patients will receive their first dose at the beginning 

of surgery prior to CPB so the myocardial tissue has uptake time prior to ischemia and 

reperfusion. The remaining three doses will  be infused 6 hours apart.  All patients will be 

operated-on by a limited surgical team.  

Inclusion criteria Exclusion criteria 

1. Age ≥18  1. Low ejection fraction patients (<35%) 

2. Patients undergoing non-emergent 
elective valve replacement or 
valve/CABG 

2. Patients with autoimmune disease and those 
on immunosuppressant therapy 

3. No known coagulopathy prior to 
surgery 

3. Emergency 

4. Patients with relatively well preserved 4. History of renal calculi, low urine output, renal 
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Inclusion criteria Exclusion criteria 

myocardial function (Ejection fraction 
>35%) 

dysfunction (creatinine clearance < 40 ml/min 
or serum creatinine greater than 1.8mg/dl 
preoperatively) 

 5. Patients with known bleeding diathesis 

 6. Active infection or Active tumor 

 7. History of A-Fib 

 8. Glucose-6-phosphate deficiency 

 9. CABG only 
 

Study Procedures: All patients will be approached prior to their surgery with the 

potential to  participate in the study, and a formal Institutional Review Board (IRB) 

approved Informed Con- sent will be discussed, and all questions answered prior to 

obtaining their informed consent in  writing. Their informed consent will be documented 

in the patient medical record, the clinical re- search office and all patients will receive 

copies of their signed consent forms. Once consented,  patients will be randomized 

(computer generated) to receive either placebo, Normal Saline (NS)  or Vitamin C. 

Experimental pharmacy will make up the infusion bags containing NS or sterile water for 

injection plus  Vitamin C. The IV bags will be sent to the operating room and since 

Vitamin C has no color, the  labeling of the bags would maintain this as a double blind 

study. Neither the clinicians caring for  the patient nor the research (coagulation and 

inflammation) laboratory personnel would know the  identity of the placebo vs. Vitamin C 

grouping of the patient. If a severe adverse event were to  occur the clinicians could 

break the code by calling the experimental pharmacy. Anesthesia,  perfusion (CPB) and 

surgery will be techniques in standard clinical usage by the anesthesia and  surgery 

team. Enrollment in this study will not affect the standard care of the patients. 

Blood  samples will be obtained prior to treatment (base-line- after anesthesia induction 

but prior to drug  administration) and then throughout the 96 hour study (60 minutes on 
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CPB, 20 minutes after  protamine, in ICU at 12, 48 and 96 hours, respectively). The total 

amount of blood drawn at each  of the above time points will be approximately 15cc. 

With the 6 time points outlined that means  an excess of 90cc of blood drawn above the 

usual clinical blood draws/loss of surgery. Other  clinical data will be obtained from the 

patient’s chart under direct supervision of the PI by a  research coordinator and a 

graduate student.  

5.4.4 Sample size calculation and statistical Analysis Data from this pilot human 

trial will be  used for future development of a larger efficacy outcome trial. The effect of 

Vitamin C on in- flammation during cardiac surgery is a novel idea and often must start 

small due to cost and  feasibility concerns.(193) Our study will enroll 24 to 50 patients 

with 12 patients in each arm of  this safety and efficacy study in this new patient 

population. Descriptive statistics will be  used to report patient demographics, medical 

histories which will allow for population description,  identification of potential 

confounding factors and further hypothesis generation. Categorical  variables will be 

reported as absolute and percent values.  Continuous variables (such as number  of 

vessels bypassed) will be expressed as median and interquartile ranges.  Chi-square 

and  Mann-Whitney tests will be used to compare categorical and continuous variables 

among the  different groups using the JMPpro 10.0 Software for Windows. All tests will 

be two-sided using  α=0.05 level of significance. Distributions of all measures will be 

examined to identify possible  outliers; outliers will be thoroughly checked for collection 

or data entry errors before being used  in the analysis.   

5.4.5 Ethical Aspects of Proposed Research This research will involve the use of 

fresh blood  drawn from patients. The blood draws will be done, when possible from in-
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dwelling arterial line  and central line catheters and at the time of their routine blood 

draws. It is anticipated therefore  that the only extra needle sticks a patient may have to 

endure would be at the 48 and 96 hours,  which is most likely after removal of the arterial 

and central line catheters. The toxicity of Vitamin  C is very low (discussed earlier), 

therefore the research team feels that the potential benefit far  outweighs known risks. 

Patients will not be paid for participation and there will be no penalties  imposed for 

either refusing to participate or withdrawing consent once enrolled.  

5.4.6 Future research direction Data from this study will be used to power a larger 

clinical trial  with a more inclusive test panel. If the hypothesis holds, Vitamin C effects 

as an anti-sludging  agent to protect against blood stasis observed in the CPB machine 

will be explored.   

5.4.7 Limitations of proposed research A small number of patients will be involved 

in this pilot,  but this is usually encountered in feasibility studies to standardize the 

protocols as well as esti- mating the effects for sample size calculation. Only few 

biomarkers will be employed which may  not capture the whole effects of the 

intervention, however this was compromised by just choos- ing those of highest relevant 

to cardiovascular conditions and for which association with clinical  outcomes has been 

demonstrated.  
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