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Abstract 
 

Many physical, biological, ecological and behavioral events occur at times and rates that 

are exponentially distributed.  Modeling these systems requires simulators that can 

accurately generate a large quantity of exponentially distributed random numbers, which 

is a computationally intensive task.  To improve the performance of these simulators, one 

approach is to move portions of the computationally inefficient simulation tasks from 

software to custom hardware implemented in Field Programmable Gate Arrays (FPGAs).   

  

In this work, we study efficient FPGA implementations of exponentially distributed 

random number generators to improve simulator performance.  Our approach is to 

generate uniformly distributed random numbers using standard techniques and scale them 

using the inverse cumulative distribution function (CDF).  Scaling is implemented by 

curve fitting piecewise linear, quadratic, cubic, and higher order functions to solve for the 

inverse CDF. 

 

As the complexity of the scaling function increases (in terms of order and the number of 

pieces), number accuracy increases and additional FPGA resources (logic cells and block 

RAMs) are consumed.  We analyze these tradeoffs and show how a designer with 

particular accuracy requirements and FPGA resource constraints can implement an 

accurate and efficient exponentially distributed random number generator.   
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1. Introduction 
 

This chapter discusses the motivation for accelerating the performance of exponentially 

distributed random number generation using FPGAs, key contributions made by this 

work, and provides an outline for the thesis. 

 

1.1 Motivation 

 

Many natural systems have properties, rates, or events that are exponentially distributed.  

The arrival of cars at traffic lights are exponentially distributed [1].  The rates at which 

phone numbers are called in a telemarketing system are exponentially distributed [1].  

The inter-arrival time of packets in a network router and processing tasks on a computer 

are exponentially distributed [3].  Engineers model these systems to optimize the capacity 

and efficiency of their design, in turn using simulators that rely heavily on exponentially 

distributed numbers. 

 

Scientists use the exponential distribution to model the radioactive decay time of a 

nuclear material [4]. Also, the decrease in the intensity of electromagnetic radiation in a 

medium follows an exponential distribution [4].  Models can then be used to calculate the 

thickness of a shield used in a nuclear reactor.  

 

Similarly, the rate of a chemical reaction can be modeled by the exponential distribution. 

In pharmacology, for instance, the time it takes for a chemical to be metabolized also 

usually follows an exponential decay [5]. This has implications on the absorption of a 

medicine by the body as well as how it is spatially distributed to different parts of the 

body over time.  

 

Because exponentially distributed random numbers are used to model such a wide variety 

of physical, biological, ecological, and behavioral systems, accelerating the performance 

of exponentially distributed random number generation stands to benefit many areas of 

scientific inquiry and engineering design.   
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Field Programmable Gate Arrays (FPGAs), which have been used to accelerate a wide 

variety of computationally intensive tasks, are an obvious platform for developing 

accelerated simulators that are either partially or fully implemented in hardware.  The 

first step in constructing FPGA-accelerated simulators is to develop re-usable hardware 

elements that can be assembled into working solutions.  Here we study a fundamental 

issue in the development of hardware accelerated simulators by developing an optimized 

and accurate exponential random number generator. 

 

 

1.2 Contribution 

 

McCollum et al [6] first designed a system capable of generating exponentially 

distributed random numbers using a piecewise linear approximation of the inverse CDF 

using a 256 entry data lookup table.  This work is significantly expanded here by 

exploring the tradeoffs in FPGA resources and number accuracy by varying the data 

lookup table size and increasing the order of the approximation function.  The study 

shows how a designer can generate the most accurate exponential numbers given a 

particular limitation on FPGA resources.  The study also shows how a designer can use 

the least amount of FPGA resources to achieve a specific accuracy value.  An exponential 

distribution generator is then implemented on a Virtex 5 FPGA capable of generating 

100,000,000 exponentially distributed random numbers per second. 

 

1.3 Outline 

 

Introductions to probability theory, curve fitting, FPGAs, and prior work are presented in 

the Section 2.  Details of how the random number generator was constructed and how 

performance and error analysis was conducted are given in the Section 3.  Section 4 

describes the results of the research and gives a detailed description of FPGA resource 

utilization for different order polynomials and different data look up table sizes. Section 5 
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concludes this thesis by summarizing the key results and discussing the future areas of 

research. 
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2. Background 
 
Information needed to understand this thesis and description of previous work performed 

in the proposed research area is described in this section. First, probability density 

functions [7] and their importance in generation of random numbers that follow a 

particular distribution are described. The emphasis is on the exponential distribution. 

Second, floating point numbers [8] that are key to implementing any such distribution on 

hardware and operations involving them are discussed. Third, the use of curve fitting to 

approximate these distribution functions in various intervals is described. Finally, the 

work performed by other researchers is discussed. 

 

 

2.1 Probability 

 

The concept of probability can be explained with a simple example involving tossing of 

coins or rolling of dice. When a coin is tossed, there is equal chance of getting a head or 

tail. Thus the probability of getting a head or tail is 0.5. When a dice is rolled, there is one 

in six chance of getting a specific number between 1 and 6, the probability of any of these 

events is 0.1333.  

 

The probability of an event occurring is thus the number of ways the event can occur 

divided by all of the possible ways of getting the outcomes. The probability of an event 

occurring is always less than or equal to 1. A probability of 1 implies that there is one 

hundred percent chance of occurrence of the event. A probability of zero implies that 

there is no chance of occurrence of the event.  

 

For example, when a pair of dice is flipped, we can make the following observations. 

 

• Number of ways of getting a sum of 2 or 12 is one in twelve  

• Number of ways of getting a sum of 3 or 11 is two in twelve  

• Number of ways of getting a sum of 4 or 10 is three in twelve   
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• Number of ways of getting a sum of 5 or 9 is four in twelve 

• Number of ways of getting a sum of 6 or 8 is five in twelve 

• Number of ways of getting a sum of 7 is six in twelve 

 

It can be observed that all of these outcomes do not have equal probabilities. Suppose the 

sum is plotted on the x-axis and the probability of obtaining this sum is plotted on the y-

axis, it gives a graph of the probability of each and every event (in this case the sum) as 

shown in Figure 2.1. A similar graph can be obtained when we toss a coin a hundred 

times and record the number of consecutive heads or tails.  These are graphs of the 

probability density function (PDF) of the event.   

 

 
Figure 2.1: Probability density function for rolling of a dice. 
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2.1.1 Probability distributions 
  

Many systems can be modeled using probability distributions. There are different 

standard forms of probability distribution functions, such as the exponential, normal, 

weibull, and uniform, that commonly mimic the behavior of real-world events. These 

distributions can be observed in various applications in our daily activities.  

 

As discussed in the introduction section, radio-active decay time of a material and 

waiting time at a traffic light follow an exponential distribution, which will be discussed 

in later sections.  

 

Marks scored by students in a class and performance of employees in a company follow 

the normal distribution, an example of which is shown in Figure 2.2.  

. 

 
Figure 2.2. PDF of a normal distribution function. 

 

 

2.1.2. Probability density function 

 

The probability density function (PDF) represents the likelihood of a random number 

falling in a given sample space [9]. For example, when a coin is tossed a hundred times 

and the number of consecutive heads or tails are plotted on X axis and the probability of 
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getting the outcome is plotted on the Y axis, then we get a graph of the Probability 

density function of the event. 

 

The PDF is described by the following equation 

 

       (2.1). 

 

For example, if the marks scored by students in a class is plotted and it gives us a 

probability distribution function as shown in Figure 2.3, then the probability of the marks 

falling between a and b where a and b are marks of the students can be calculated by 

using equation (2.1) where f(x) is the probability distribution function defining the marks 

scored by the students. 

 

 
Figure 2.3. Probability of x falling between a and b, given PDF=f(x). 

 

 

2.1.3 Cumulative distribution function 

 

The cumulative distribution function is the integral of the probability density function. 

CDF (x) represents the probability of a number being less than or equal to x. Since, the 

total probability can never exceed one, the CDF can never take a value greater than one. 
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It usually asymptotes to 1 as x tend to infinity as shown in Figure 2.4.  The cumulative 

distribution function of a number x can be described by the equation 

  

  ( ) ( )F x f x dx=∫         (2.2)  

 

where F(x) is the probability density function. 

 
Figure 2.4. Cumulative distribution function (CDF). 

 

2.1.4 Inverse cumulative density function 

  

The Inverse CDF involves finding the value “x”, so that the CDF (x) = p, where 0≤ p≤1. 

In other words given a certain probability p between 0 and 1, the inverse CDF (p) gives 

the number x described above.  

 

It can be seen that if p is a uniformly distributed random number between 0 and 1, and 

the exponential CDF is chosen, then taking the inverse CDF yields exponentially 

distributed random numbers. If we choose the CDF to be Weibull, Normal, etc we would 

get Weibull or normally distributed random numbers by taking the inverse CDF of these 

functions respectively. This makes inverse CDF a very useful method to generate 

numbers with different distributions.  
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2.1.5 The Exponential distribution 

 

The exponential distribution is used significantly in modeling statistical data and 

simulation. The probability distribution function (PDF) of exponential distribution is 

given by [7]   

 

( ) , 0tf t e tλλ −= ≥         (2.3). 

 

where λ is a positive parameter. A plot of the probability density function for different 

values of λ is shown in Figure 2.5. 

 

 
Figure 2.5. The PDF for exponential distribution for different values of λ. 

 

 

The cumulative distribution function (CDF) of exponential distribution, which is the 

integral of the PDF, is given by [7]  

        (2.4). ( ) 1 , 0tF t e tλλ −= − ≥
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where λ is a positive parameter. A plot of the cumulative distribution function is shown in 

Figure 2.6. 

 

 
Figure 2.6.   CDF of exponential distribution for different values of λ. 

 

The inverse CDF can be calculated as ln(1 ( ))t F t= − −  where F (t) is the CDF of the 

exponential distribution function.  

 

The approach used in this thesis will be to generate uniformly distributed random 

numbers using standard FPGA methods, then scale the uniform random numbers to the 

exponential distribution using the inverse CDF.  The challenge in implementing this 

approach in hardware will be to accurately and efficiently calculate the inverse CDF 

function in hardware.   

 

 

2.2 Floating-Point Number Representation 

 

This section describes floating-point number representation, floating-point addition and 

floating-point multiplication. There are data look up tables (DLUT) used in the design, 
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which have numbers in the integer format. These numbers are converted to floating point 

form to perform further operations. The description below describes real to float 

conversion. Floating point addition and multiplication are also performed in the design 

when we do curve fitting using different polynomials. Hence, these operations are also 

described in this section. 

 

2.2.1 Floating point Numbers 

 

Floating point numbers are used to represent very large and very small numbers. They 

can be represented in single precision or double precision format. In single precision 

format the number is represented as a 32 bit binary number. In double precision format 

the number is represented as a 64 bit binary number. In our research implementation, 

single precision floating point operations are performed. 

 

A 32 bit floating point number has three parts. It has one sign bit, eight bits for the 

exponent and 23 bits for the mantissa. The sign bit is used to indicate if the number is 

positive or negative. Sign bit is zero for a positive and one for negative number. The 

exponent ranges from -126 to +127. All bits are zeros in the exponent for representing 

zero and all bits are ones for representing infinity or NaN.  The mantissa part has 23 bits. 

There is an implicit 1 at the beginning of the mantissa. Therefore the mantissa has a 

precision of 24 bits [8].  

 

Figure 2.7 shows a single bit floating point representation. 

 

 
Figure 2.7.  Floating point representation. 
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The following steps describe the procedure to convert a real number to a 32 bit floating 

point format [10]: 

1. The integral and fraction part of the given number is converted to binary. The 

fraction part in converted to binary by repeated multiplication by 2. 

2. 20
  is appended at the end of the number. This does not change the value of the 

number as it is same as multiplying by 1. 

3. The number is then normalized. Normalization of a number means, the decimal 

point is shifted such that there is only one number to the left of the decimal point. 

The exponent is adjusted such that the value of the number is not changed. 

4. A bias is added to the exponent and the new exponent is placed in the exponent 

field of the floating point number. The bias is given by 2k-1
 - 1 where k is the 

number of bits in the exponent field of the floating point number. For a 32 bit 

floating point number, the exponent field has 8 bits. Therefore the bias is 28-1 -1= 

127.  

5. The sign bit is set for the given number. If the number is positive, sign bit is zero, 

otherwise the sign bit is one. 

Ex: Convert 3.25 to floating point  

• Convert to binary 

3 in binary is11 

0.25 in binary  

      0.25 ×2 =0.50   0 

      0.50×2 = 1.0     1 

• 3.25 in binary is 11.01 

• Insert 20  11.01 * 20 

• Shift decimal point and adjust exponent: 

      1.101 * 21  

•  Normalize:  1+ 127=128  128 = 10000000 
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•  Floating point representation of number 3.25 is  

                  0 10000000  10100000000000000000000 

 

2.2.2 Floating point Multiplication 

 

Single precision floating point multiplication consists of multiplying two 32 bit numbers 

with an 8 bit exponent and a 23 bit mantissa. The exponents are added and the mantissas 

are multiplied. Mantissa multiplication can be done by repeated additions. The result is 

then normalized.  

 

2.2.3 Floating Point addition 

 

Single precision floating point addition involves addition of two 32 bit floating point 

numbers. The two numbers must have the same exponent value to do the addition 

operation, or they must be shifted numerous times until they have the same exponent. The 

mantissas are then added. 

 

2.3 Curve fitting 

 

The exponential distribution implemented on hardware in this research involves curve 

fitting with different polynomials. This section gives a brief description of curve fitting. 

 

2.3.1. Polynomial fit 

 

A pool of data points can be defined by a mathematical equation or well defined curve by 

the method of curve fitting. Curve fitting can be done in many ways. One of the methods 

of curve fitting is to fit polynomial equations to the data set. The polynomial which best 

fits the data set is used to define the data points. Best fit depends on the nature of the data 

points. In this thesis curve fitting was done by polynomial curve fit. A set of data points 

are fit by different polynomials like linear, quadratic, cubic etc.  
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The equation for a linear polynomial is given by 

                    y=ax+b          (2.5) 

where x is a set of input data points. The co-efficient a and b are calculated so that ax+b 

is close to the output y. 

 

The expression for higher order polynomials is given by 

 

Y=a0 + a1 x + a2 x2 +a3 x3 …….. +am-1 xm-1   + am xm                               (2.6) 
 

where m is the order of the polynomial. 
       

 
                        Figure 2.8.  Polynomial curve fit for linear, quadratic, cubic and quartic 

polynomials. 
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Figure 2.8 is curve fit using linear, quadratic, cubic and quartic polynomials. The 

coefficients of the polynomials can be calculated numerically. This is easy for linear 

polynomials.  But for higher order polynomials, numeric calculations become tedious. 

There are tools available for doing curve fit. The curve fitting toolbox available in Matlab 

was used in this research. “Polyfit” is used to do the curve fit in Matlab. “Polyval” is used 

to evaluate the curve fit polynomial and compare against input data and get an error 

estimate between the given curve and the polynomial curve fit. 

 

2.3.2 Mean square error  

 

The error between the given curve and the polynomial fit is squared and the mean of this 

square of the errors between the data points is taken. This gives the error estimate in the 

polynomial fit.  The lower the MSE, the polynomial is considered a better fit. 

 

2.4 Field Programmable Gate Arrays 

 

Field programmable gate arrays (FPGA) are an array of logical blocks which can be 

configured based on the design requirements. The interconnections between the cells are 

field programmable and hence the name field programmable gate arrays. Each logical 

block consists of logic gates, flip flops, and multiplexers which can be programmed to 

perform the required function [11].  

 

FPGAs have a lot of advantages over Application Specific Integrated Circuits (ASIC). 

They have more design flexibility since there is no need to draw the layout and fabricate 

the IC for each design [12]. The designs can be tested instantaneously on hardware 

without the need to wait for a fabricated IC to test the design. Alterations on the original 

design can be made easily. ASICs on the other hand take more time to manufacture and 

thereby take more time for the design to be tested. They are not flexible. Once an ASIC is 

fabricated, design changes cannot be made.  
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In this research, a Xilinx Virtex 5 FPGA was used. Virtex 5 FPGA consists of about 

330,000 logic blocks and 16.4 Mbits of Block RAM [13]. Block RAM is large memory 

blocks configured to store data continuously. In Virtex 5 FPGA, BRAMS can be used as 

one 36Kb or two 18 Kb RAM. Each logical block in a Virtex 5 FPGA consists of 4 LUTs 

and 4 flip flops. It also has an IBM Power PC RISC processor core.  

 

2.5 Previous work by other researchers 

 

Random numbers have many applications in gaming, biological simulations etc. The 

exponential distribution module that is designed can be used with a random number 

generator to get exponentially distributed random numbers. This section gives a brief 

description on random numbers generation. A summary of work of others researchers on 

generating true random numbers and random numbers that follow different distributions 

is presented in this section.  

 

2.5.1 True random numbers 

 

Random numbers can be truly random or pseudo random. In case of pseudorandom 

numbers, the sequence of random numbers repeat after certain set of data. The time for 

the first repeat of data depends on the initial seed. In case of true random numbers, the 

next number that is generated cannot be predicted. Random numbers can be generated by 

hardware or software. Software random numbers generally have a code written which is 

initiated when random number generation is set. They are usually pseudo random. 

Pseudorandom numbers are preferable sometimes to true random numbers because you 

can repeat the simulations for a certain set of data and repeat the simulation for the same 

set of random data and verify the results [7]. Just the initial seed has to be changed to get 

a new set of random data.  

 

True random numbers are used in cryptography so that secrecy is maintained [14].They 

are also used in gaming [14]. Thermal noise, photo electric effect is used as some of 

randomness in a hardware random number generator [14].   
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A hardware random number generator generated by Mitchum [14] was interfaced to the 

exponential distribution module to get a hardware exponential true random number 

generator. In Mitchum [14] a true random number generator is designed such that after 

generation of each number there are multiple paths that can be followed to generate the 

next successive number. It is difficult to predict the outcome of the generator as there are 

many ways that may be followed to get the number. Many digital components like ring 

oscillator, counters, shift registers, multiplexers and transposers were used in the design 

[14]. The ring oscillator has series of inverters connected back to back and the output of 

the last inverter is fed back to the first one. The period of the output wave of the ring 

oscillator is unpredictable and is the source of randomness in this paper. Divergent paths 

were introduced by using Linear feedback shift registers (LFSRs) of different lengths 

with ring oscillators to clock them. Thus true random numbers are generated and the 

randomness is tested using different methods.  

 

2.5.2 Random numbers that follow different distributions 

 

Wallace [15] method uses a conventional random number generator to generate a pool of 

random numbers. This is multiplied by an orthogonal matrix to get a new pool of random 

numbers. This is based on closure property where the new pool generated will also 

belong to the same random distribution as the old pool. Mixing of the numbers in the new 

pool is performed so that each number in the old pool can affect every element in the new 

pool after many successive transformations. This method may be used for different 

distributions but has been shown only for the exponential case. Here statistical errors get 

built up due to rounding off with successive transformations.  

 

Ziggurat [16] is an efficient method for normal distributions but can be used for any 

distribution that increases monotonically to a peak and then decreases. It is based on the 

fact that most points lie in the mid-region of an exponential distribution and very few 

points lie in the tail of the curve. The points which fall in the mid region can be 

calculated easily and require less computation but points in the tail region require more 
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computation. A pipelined approach is used so that computation of the tail and the mid 

region can be done in parallel by hardware to generate a lot of mid-region points and few 

tail points. These are mixed together at the final step. The main disadvantage of this 

method is it cannot be used to for all kinds of distributions.  

 

Thomas and Luk [17,18] develop a very general random number generator that is capable 

of generating random numbers with any kind of distribution. This uses a good mix of 

both hardware and software methods. The LUTs for different distributions are generated 

by software. A combination of different distributions that approximates the target 

distribution well is also chosen by software. The hardware generates a uniform random 

number and then uses the combination of distributions that has already been selected to 

generate random numbers that follow the desired distribution. The hardware also uses 

another random variable to pick one of the component distributions at random for 

calculating the transformation of each of the uniformly distributed random point. This is 

quick as it is only selecting a component distribution randomly and not using a 

combination of tables for calculating a given point. This method is applicable to different 

distributions. The method described in [17] uses equal weights for all selected tables, but 

the weight or probability of use of selected tables can be changed in method described in 

[18]. This allows it to approximate target distributions better. The drawback of this 

method is approximation of the target distribution by software is time consuming and 

complex. If the target distribution is known in advance then this is not an efficient 

method to generate random numbers. 

 

McCollum [6] uses a LUT based method. The inverse CDF of a distribution is divided 

into many intervals. Each interval is curve fitted with linear polynomial and the 

coefficients are stored in a Data Look Up Tables (DLUTs). Thus random numbers can be 

generated by interpolation. This method can be used for all kinds of distributions. 

 

In this research a similar approach to McCollum [6] is used. Here each interval is curve 

fitted with higher order polynomials like quadratic and cubic. It was found that the 

accuracy improves. By reducing the number of intervals the size of the DLUT can be 
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decreased while accuracy can be maintained by using higher order polynomial fits. The 

next chapter describes the detailed implementation of this scheme.  
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3.  Implementation 
 
The design and implementation of the exponential distribution on an FPGA based on 

using the inverse CDF was performed in two steps as described below: 

 

1. In the first step Matlab is used to generate Data Look Up Tables (DLUT) and 

optimize the interval size. This is purely implemented in software, where the 

effect of the size of intervals on the mean square error as well as the size of the 

data look-up tables required is studied. This is used to select an optimum interval 

size for which the data lookup tables are generated for linear, quadratic and cubic 

curve fits. 

 

2. In the second step, a hardware implementation of the inverse CDF, using the data 

look-up tables generated for the optimum interval size is performed.  This is 

implemented on a Virtex 5 XC5VF70T-2FFG1136 FPGA.  

 
These two steps are explained in detail in the “Matlab implementation” and “Hardware 

implementation” sections.  

 

3.1 Matlab implementation 
 

The aim of this research project is to generate the exponential distribution in hardware. 

To achieve this we have to implement the inverse CDF of the distribution. A 32 bit 

uniform number between 0 and 1 input to this inverse CDF will generate an exponentially 

distributed number as output. 

 

The inverse CDF of exponential distribution function is given below [7]. 

 

                       t = - ln (1-F (t))                                                                          (3.1) 
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This involves implementing the natural log in hardware, which is difficult. Hence, a 

DLUT (Data look up table) based method is used implement the natural log in hardware. 

The values of the output for all possible inputs can be stored in a DLUT. Then, for a 32 

bit input there are 232 i.e. 4,294,967,296 possible output combinations to be stored in the 

DLUT. This would require a huge amount of memory for implementation. Hence, a more 

efficient way is proposed. Instead of storing all the output values in DLUT, the inputs are 

divided into intervals. The inverse CDF of the numbers in each interval is calculated and 

curve fitted with polynomials. The coefficients of the polynomials are stored in LUT. By 

choosing the coefficients for the correct interval from the DLUT and interpolating, the 

natural log of a number can be calculated. 

 

Figure 3.1 shows the inverse CDF, curve fitted by a linear polynomial Ax+B where A 

and B are polynomial coefficients. Input numbers from 0 to 100 were curve fitted by 

linear polynomial and coefficients A= 3.951 and B= -0.808 were obtained. 

 

 
Figure 3.1. Inverse CDF curve fitted by linear polynomial. 
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Figure 3.2 shows the inverse CDF divided into two intervals and then curve fitted by a 

linear polynomial Ax+B and quadratic polynomial Ax2+Bx+C where A,B and C are 

polynomial coefficients. Polynomial coefficients obtained in each interval are shown 

below. 

 

For the first interval: 

Linear fit : A = 1.365   B= -0.034. The linear equation is (1.365 × x) +(-0.034 ) 

Quadratic fit A= 0.935  B= 0.897 and C= 0.004. The quadratic equation is 

(0.935 × x2) +(0.897 × x) +(0.004) 

 

For the second interval: 

Linear fit: A= 7.838 B= -4.024. Therefore linear equation is (7.838 × x) +(-4.024) 

Quadratic fit: A= 37.451 B= -48.339 and C= 16.245. The quadratic equation is 

(37.451 × x2) + (-48.339 × x) +16.245 

 
Figure 3.2 . Inverse CDF function divided into 2 intervals and curve fitted with linear 

and quadratic polynomials 
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The coefficients are stored in Data Look Up Tables (DLUTs). Thus for an input x, the 

inverse exponential CDF is calculated by fetching the coefficient values from the LUTs 

and interpolating using the polynomials. 

 

Table-3.1 shows that the DLUT entries increases exponentially with the bit size 

corresponding to the number of intervals. For example, if there are 8-bits that are 

allocated to the number of intervals, then we need 28= 256 DLUT entries. In fact, we will 

need a multiple of this number depending on the order of the interpolation polynomial 

used. 

 

Bit-size allocated to 

Number of Intervals 

Number of entries in LUT

4 16 

8 256 

12 4096 

16 65536 

20 1,048,576 

24 16,777,216 

28 268,435,456 

32 4,294,967,296 
Table3.1. Increase in LUT size as the number of intervals increases. 

 

 

The intervals are curve fitted with linear, quadratic and cubic polynomials. Curve fitting 

was done using polyfit () and the interpolations are performed using polyval () function in 

Matlab.  
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Table 3.2 shows the DLUT size for linear, quadratic and cubic polynomials for different 

interval lengths the inverse CDF is divided into. 

 

 

Intervals  Linear Quadratic Cubic 

4 32 48 64 

8 512 768 1024 

12 8,192 12,288 16,384 

16 131,072 196,608 262,144 

20 2,097,152 3,145,728 4,194,304 

24 33,554,432 50,331,648 67,108,864 

28 536,870,912 805,306,368 1,073,741,824 

Table 3.2 . Scaling of DLUT entries with number of intervals and order of polynomial 

fit. 

 

From Table 3.2 we can see that as the order of the polynomial increases the DLUT 

entries also increases as higher order polynomials will have more coefficients to be stored 

in the DLUT. As the number of intervals increase, there is a large increase in DLUT size.  

 

Linear, quadratic and cubic polynomials used are: 

A1x+B1,                     (3.2) 

A2x2+B2x+C2                    (3.3) 

A3x3+B3x2+C3x+D3                    (3.4)  

 

Thus, as we use higher order polynomials to curve fit, the number of coefficients 

increase. Thus LUT size also increases.  The number of intervals that the inverse CDF is 

divided into is also important. From Table 3.2 we can see that as the interval size 

increases, there will be bigger LUTs for coefficients in each interval. 
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The Matlab code which implements the design is given below. 
 

total_points=2^32; 

no_intervals=2^8; 

points_interval=2^24; 

for j=1: No_intervals; 

x=linspace ((j-1)/ No_intervals, (j/ No_intervals)-(1/ total_points), 

points_interval);   

y=-log (1 - x); %Exponential distribution 

poly1=polyfit(x,y,1); 

poly2=polyfit(x,y,2); 

poly3=polyfit(x,y,3); 

end 

 

• The input is a 32 bit uniform number. Therefore there are 232 points.  We chose to 

divide them into 28 intervals (one particular case). Therefore there are 224 points 

in each interval.  

• The for loop iterates from 1st to the 28th interval.  

• “x” holds the starting point and end point for each interval. Matlab function 

linspace generates an array of values from the start point to the end point. 

• For all points in each interval, the inverse CDF is calculated. “y” holds the inverse 

CDF values for each interval. 

• Points in each interval are curve fitted by the polyfit () function in Matlab. Linear, 

quadratic and cubic polynomials are used to fit the intervals. 

 

It should be noted that in dealing with natural log function, ln (0) →∞. In case of the 

inverse CDF of exponential distribution the log (1-x) term tends to infinity when x tends 

to one. To avoid this situation the code was modified  to bypass the last bit by subtracting 

1/232 from the each interval so “1” is not included in the last interval. 
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Another important consideration is the Mean Square error (MSE). This is used to 

measure the accuracy of the curve fitted polynomial.  

 

Figure 3.3 shows the inverse CDF fitted by a linear polynomial. We can see that there is a 

difference between actual curve and the curve fit, which results in an error. Mean square 

error is calculated by the mean of square of the difference between actual and curve fit. 

  

 
Figure 3.3. Schematic to show how polynomial fit in an interval introduces an error. 

 

 

Our objective is to generate an optimum DLUT(Data look up table) size, that minimizes 

mean square error. When the number of intervals is increased the mean square error 

decreases but the DLUT size increases. When the number of intervals is decreased the 

error increases while DLUT size decreases. A trade off has to be achieved between the 

MSE and the DLUT size. Using higher order polynomials can improve the accuracy but 

would require more entries in the DLUT.  

 

Figure 3.4 shows the MSE for linear, quadratic, cubic, quartic (4th order) and quintic (5th 

order) polynomials. 

 34



 
 

Figure 3.4 .MSE vs. number of intervals (2n) for linear, quadratic and cubic polynomials 

for inverse CDF of exponential distribution. 

 

We observe that the MSE decreases as the number of intervals increases. As we fit higher 

order polynomials the mean square error does not decrease significantly. We can see 

from the plot that after certain intervals, the MSE of quadratic and cubic polynomials are 

very close. There is no significant decrease in MSE as we move to higher order 

polynomials like quartic and quintic for larger interval lengths. From this we can 

conclude that we cannot see considerable increase in accuracy as we fit higher order 

polynomials. It may be better to fit a quadratic instead of cubic for certain interval lengths 

as the MSE are close and quadratic has less coefficients to store in LUTs. 

 

For our design interval length of 8 was chosen. This gives a DLUT size of 256 entries. It 

also gave a sufficient accuracy. For example if we want to get a MSE of about 0.5*10-3  

then we can choose a linear fit with interval size of 210. From the Figure 3.4 we can see 

that even a cubic fit of interval length 28 gives the same accuracy. This would reduce the 
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DLUT size for the same accuracy. Hence, a cubic is a better fit for this case. There may 

be other cases where higher order polynomials may not provide the best fit. 
 

A similar approach can be used to implement any distribution function on hardware. We 

have to just change the DLUTs for the distribution in the Matlab code that generates the 

coefficients.  

 

3.2 Hardware implementation 
 

In this section the implementation of inverse CDF of exponential distribution on an 

FPGA is discussed. The design was implemented on a Virtex 5 XC5VF70T-2FFG1136 

FPGA and verified in Modelsim simulator. The exponential distribution module was 

interfaced with a true random number generator to produce an exponentially distributed 

random number generator. 

 

3.2.1 Hardware implementation of inverse CDF for generating exponential numbers 

 

The DLUTs generated in Matlab are in real format. These variables of type “real” can be 

simulated in Modelsim but is not synthesizable on Xilinx ISE. They have to be converted 

to integer or floating point form for synthesis. A VHDL code was written to convert all 

the real LUTs to integer LUTs that can be used in Xilinx. 

 

Here is a part of the VHDL code written to convert the LUT contents of type “real” to 

type “integer”. Here linA has the coefficient of linear fit from Matlab. These are 

converted to floating point by the to_float function. The floating point numbers are 

converted to “std_logic_vector” type and then to type “integer” as there is no direct 

conversion function from “float” to “integer”. The integer coefficients are stored in 

linAINT. These can be stored in DLUTs and are synthesizable. The DLUT (Data Look 

Up Table) values are stored in integer format in the design. They can also be stored in  

floating point format. Conversion of the DLUT numbers to floating point using the 

to_float function can be avoided if the DLUT numbers are already stored in float format. 
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The design was implemented using floating point DLUTs and there was no significant 

decrease in the logic utilization by the design.  Here is a part of the code which 

implements the above design: 

 
process(clk) 

 begin 

 if clk='1' and clk' event then 

   for index in 0 to 255 loop 

     linAfloat(index)<=To_float(linA(index)); --converts from real to float 

     linASTD(index)<=to_slv(linAfloat (index)); -- converts from float to 

std_logic_vector 

     linAINT(index)<=conv_integer(linASTD (index)); std_logic _vector to 

integer         

    end loop;                                                                    

   end if; 

end process; 

   

Implementation of exponential distribution on hardware involves floating point 

operations. A floating point library created by David Bishop[19,20] was used to perform 

the floating point addition and multiplication operations. The to_float function used in the 

code above which converts a number of any type to a single precision floating point 

number is also part of the floating point library. 

 

The design was implemented in VHDL. The algorithm of the design is as follows. The 

input is a 32 bit uniformly distributed number less than 1. The higher 8 bits of the input is 

used as an index to get the polynomial coefficients from the DLUT. This would give the 

interval that the input number falls into. The coefficients that correspond to this particular 

interval are used to perform the interpolation to get the inverse CDF. Thus the inverse 

CDF to convert a number between 0 and 1 to an exponentially distributed number is 

realized.  

 

Interpolation was performed using linear, quadratic and cubic polynomials. Figures 3.5, 

3.6 and 3.7 describe the design operations.  The upper 8 bits of the 32 bit input number is 

used to get the coefficients from the data look up table. Depending on the polynomial 
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chosen for interpolation, the DLUT coefficients are selected.  Interpolation using linear 

polynomial will have two DLUTs, quadratic will have three DLUTs, and cubic will have 

four DLUTs and so on. Interpolation is performed after the coefficient values are fetched 

from the DLUTs. Cubic interpolation will require the most logic followed by quadratic 

and then linear. Thus the higher the order of the interpolation polynomial, the more logic 

is needed. For example, the cubic polynomial can be represented as A3x3+B3x2+C3x+D3 

and the linear polynomial can be represented as A1x+B1 where A3, BB3, C3 and D3 are the 

cubic polynomial coefficients, A1and B1 are linear polynomial coefficients and x is the 32 

bit input number. All of the numbers are in floating point format.  

 

Cubic interpolation involves finding the cube and square of the input floating point 

number, which requires three floating point multiplications and three floating point 

additions. Whereas, linear interpolation involves one floating point multiplication and 

one floating point addition. Thus, the higher the order of the polynomial used for curve 

fitting, the more logic would to be implemented and more DLUTs would be required.  

Thus depending on the memory available to store the DLUTs and to implement the logic, 

a suitable polynomial has to be selected. The accuracy needed must also be taken into 

consideration while selecting the polynomial order. As shown in the Matlab 

implementation section, there may not be significant improvement in accuracy for certain 

interval sizes as we move to higher order polynomials for example choosing 4th order 

instead of a 3rd order may not reduce the interpolation error significantly. 

 

Block diagrams for the linear, quadratic, and cubic implementations are given in Figures 

3.5, 3.6 and 3.7. 
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Figure 3.5. Block diagram representation linear interpolation. 

 

 

 

 

 
Figure 3.6. Block diagram representation quadratic interpolation. 
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Figure 3.7. Block diagram representation cubic interpolation. 

 

 

3.2.2 True Random Number Generator 

 

The exponential distribution that is implemented on hardware is interfaced to a true 

random number generator to get an exponentially distributed random number. The true 

random number generator is designed by Mitchum and Klenke [14]. The input to the 

exponential distribution module is taken from the true random number generator output.   
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4. Results 
 

The previous sections discussed selection of the optimum interval size for generating data 

look up tables (DLUTs) for linear, quadratic and cubic fits. To achieve this, the effect of 

the interval size on mean square error (MSE) for different polynomial fits was 

determined. Then the effect of the interval size on memory required for DLUTs for 

different polynomials was also studied. The tradeoff between the accuracy and memory 

required for DLUTs resulted in the selection of an optimum interval size and polynomial 

order. The hardware implementation of the exponential distribution was also discussed.  

 

In this section, the results of the implementation of the design in the previous section 

(summarized above) on Virtex 5 XC5VF70T-2FFG1136 FPGA are shown. The speed 

achieved by the design and memory utilized for design for different interval lengths are 

described. 

 

4.1 Results and verification 

 

The inverse exponential distribution of a number is given by  

 

 Y= - ln (1-x);                                                          (4.1) 

 

where x is the input 32 bit number and y is the 32 bit exponential output. An example of 

the execution of this function by the actual FPGA is shown to confirm that the 

implementation was correct. The FPGA output is shown below. 

 

 

   Input value: 80000000 FPGA Output: 3F317346       Actual value:  3F317218 

   Input value: 567854 FPGA Output: 3AAD0FC3   Actual value:  3AAD0DE4                

   Input value: 0             FPGA Output: 0                     Actual value: 0 
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The input is in the hexadecimal (hex) format. This input hex number is converted to 32 

bit binary number and a decimal point is appended in the beginning of the number. Thus 

the input is always less than 1.  The FPGA output is found by implementing the equation 

in hardware. The actual value gives the correct value of the output. We can see that the 

FPGA output is almost equal to the actual output. The difference between the FPGA 

output and the actual output is due to the interpolation error. The results shown above 

were obtained by performing linear polynomial curve fit with a interval length of 8. 

 

E.g.: For input 800000000 

 

• 32 Binary conversion gives 10000000000000000000000000000000 

• After appending decimal point, the number becomes  

      0.10000000000000000000000000000000  i.e.  0.5 in decimal 

• Output = -ln(1-0.5)=0.6931471806 

• Converting output to floating point, we get 3F317218. The output was converted 

to floating point for verification using IEEE floating point conversion [21]. 

• The FPGA output is slightly different (3F317346) due to small error caused by 

the curve fit. 

 

4.2 Resource Utilization  

 

The Virtex 5 XC5VFX70T is a Xilinx Power PC FPGA. It consists of about 330,000 

logical cells, 1200 user I/Os and 18 Mb of block RAM [22]. FPGA resource utilization 

for linear, quadratic and cubic polynomial fits was studied. The design is mapped on the 

logical blocks and the DLUTs used in the design are mapped on to the BRAMs on the 

FPGA. The logic block utilization is almost the same for a given polynomial. However, 

the number of block RAMs used increases with the interval size. When the DLUT sizes 

are varied, only the BRAM utilization changes, but the logic usage remains the same. 

 

Table 4.1 shows the FPGA device utilization for linear, quadratic and cubic polynomial 

for different interval sizes. Figure 4.1 shows the graphical representation for the same. 
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Table 4.1. Resource utilization for various LUT sizes. 

 

 

 

 

 

 

 

 

 

 

 

 

Linear Quadratic Cubic   Log 

(LUT 

size) 
slice  

registers 

used 

slice  

LUTs 

used 

Block 

RAMs 

 used 

slice 

registers 

used 

slice  

LUTs 

used 

Block  

RAMs 

 used 

slice 

registers 

used 

slice  

LUTs 

used 

Block  

RAMs 

 used 

6 265 4606 2 393 8097 3 517 11158 4 

8 261 4708 2 394 7964 3 519 11158 4 

10 267 4809 2 395 8563 3 517 12614 4 

12 270 4820 8 398 8076 11 519 12076 15 

14 273 4607 32 400 7346 48 525 11158 64 

16 271 4811 122 403 8192 192 

(error) 

518 12332 242 

(error) 

 43



Figure 4.1.  Graphical representation of utilization of BRAM by linear, quadratic and 

cubic polynomials. 

 

From Figure 4.1 it can be seen that the device utilization increases as we go from linear to 

quadratic to higher order polynomials. The block RAM size increases as we move to 

higher order polynomials and as the DLUT size increases. The BRAM size reaches the 

maximum limit of the Virtex 5 FPGA for LUT size of 216 entries in case of quadratic and 

cubic fit. Thus as we fit higher order polynomials, the maximum DLUT size that can be 

used in the design decreases. Similarly, for a smaller DLUT size, higher order polynomial 

fits can be used to fit the given data.  

 

The logic blocks utilized by the design for the exponential distribution module are 

significantly less than the available logic resources on the FPGA. However, as mentioned 

earlier the DLUT limits are reached very fast (For 216 entries). The design is easily fit in 

the FPGA for all the linear, quadratic and cubic polynomials. The cubic fit occupies only 

24% of the available logic. Thus higher order polynomials can be used if necessary to get 

better accuracy as there are lot of logic available unused. However, we will have to use 
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smaller DLUTs to stay within the BRAM memory limit. Virtex 5 FPGA has 148 BRAMs 

of 36Kb each. They can be used as one 36KB block or two 18 KB blocks. The maximum 

limit is reached for BRAM utilization as the data look up table (DLUT) size increases. 

The BRAM can hold a total of 5,328Kb of data. Thus, other FPGAs like Virtex6 can be 

used if more BRAM is needed. The BRAMs needed for a DLUT size of 216 for quadratic 

and cubic is mapped to be 192 and 242 respectively, which exceeds the available BRAM 

size of 148. This results in an “error” message as shown in the last row of Table 4.1. Thus 

another FPGA with higher BRAM memory can be used for these implementations. 

 

From the data obtained in Table 4.1 by running the exponential distribution VHDL code 

for different interval sizes and different polynomial fits, the BRAM utilization for higher 

order polynomials for different interval lengths was predicted. These values are shown in 

Table 4.2.  

 

Mean Square Error (MSE) was calculated in Matlab for different DLUT sizes and for 

various polynomial fits from linear to 8th order polynomial fit. This is shown in Table 4.3.  

 

1 2 3 4 5 6 7 8 Poly Order 

---------------- 
Log 

(LUT size) 

Block RAMs used 

 

10 2 3 4 5 6 7 8 9 

12 8 11 15 19 22 26 30 33 

14 32 48 64 81 96 110 126 141 

16 122 192 

(error) 

242 

(error) 

300    

Table 4.2 . Predicted BRAM usage for different LUT sizes for different polynomials 

 

BRAMS usage shown bold was obtained by implementing the design on Virtex 5 FPGA. 

BRAMS usage shown in italics was predicted based on trends. 
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1 2 3 4 5 6 7 8   Log 

(LUT 

size) 
Mean 

square 

Error 

Mean 

square 

Error 

Mean 

square 

Error 

Mean 

square 

Error 

Mean 

square 

Error 

Mean 

square 

Error 

Mean 

square 

Error 

Mean 

square 

Error 

10 2.4447

e-004 

1.0849

e-004 

6.1054

e-005 

6.1010

e-005 

3.9081

e-005 

3.9049

e-005 

3.9046

e-005 

3.9030

e-005 

12 6.1103

e-005 

2.7110

e-005 

2.0215

e-005 

1.5243

e-005 

1.5240

e-005 

1.5164

e-005 

1.4669

e-005 

1.4133

e-005 

14 1.5265

e-005 

6.7678

e-006 

6.7542

e-006 

3.8173

e-006 

3.8027

e-006 

3.8025

e-006 

3.8020

e-006 

3.8030

e-006 

16 3.8075

e-006 

1.6847

e-006 

1.6826

e-006 

     

 

           Table 4.3 . Mean Square Error for different LUT sizes for different polynomials. 

 

The results obtained in the design report of FPGA implementation agree with the Matlab 

simulations results described in the implementation section. 

 

From Table 4.3 we can see that the MSE decreases as we move to higher order 

polynomials. But after a certain point, there is no significant decrease in error. For 

example, for a LUT size of 212, there is a large decrease in MSE as we move from linear 

fit to quadratic and then cubic. But the MSE remains almost the same after quartic (4th 

order) polynomial fit. Instead of using a higher order polynomial fit like 7th or 8th order fit 

for a LUT size of 212,we can use 4th order polynomial fit which gives almost the same 

MSE. 
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Figure 4.2 . Variation of Mean square error for different BRAM sizes 

 

Figure 4.2 shows the variation of Mean Square Error(MSE) for different BRAM sizes for  

linear, quadratic and cubic  polynomials. We can see that as the BRAM size increases, 

the MSE decreases drastically.  

 

Figure 4.3 shows the variation of mean square error for different interval lengths from 20 

to 216   and for polynomial fits from 1st order to 12th order.  
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Figure 4.3. Variation of Mean square error for different interval lengths and different 

polynomial fits 

 

From Figure 4.3 it can be seen that as the interval length increases, many higher order 

polynomial fits after cubic have almost similar MSEs. The MSEs after 10th order are 

almost the same. Thus as the order of the polynomial fit is increased there is no 

significant improvement in MSE and it is thus better to use a lower order polynomial fit 

with a similar MSE. This way the number of logical blocks utilized will be smaller 

making the implementation more efficient. The MSE decreases drastically as we use 

bigger DLUTs, but the BRAMs size increases. From Figure 4.3 we can see that even with 

small DLUTs we can get better accuracy by using higher order polynomials like 3rd or 4th 

order for curve fitting. Thus depending on the availability of BRAMs and logic and also 

depending on the MSE requirement, an appropriate DLUT size and polynomial fit has to 

be chosen. 
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Linear Quadratic Cubic
Log Block Slice Slice MSE Block Slice Slice MSE Block Slice Slice MSE

(LUT size) RAMs Reg LUTs RAMs Reg LUTs RAMs Reg LUTs
2 2 263 4604 6.26E-02 3 392 8090 2.78E-02 4 515 11153 1.56E-02
4 2 266 4605 1.56E-02 3 394 8091 6.94E-03 4 517 11155 3.90E-03
6 2 265 4606 3.91E-03 3 393 8097 1.73E-03 4 517 11158 9.72E-04
8 2 261 4708 9.73E-04 3 394 7964 4.30E-04 4 519 11158 2.41E-04
10 2 267 4809 2.44E-04 3 395 8563 1.08E-04 4 517 12614 6.11E-05
12 8 270 4820 6.11E-05 11 398 8076 2.71E-05 15 519 12076 2.02E-05
14 32 273 4607 1.53E-05 48 400 7346 6.77E-06 64 525 11158 6.75E-06
16 122 271 4811 3.81E-06 192 403 8192 1.68E-06 242 528 12332 1.68E-06

10% 18% 26%
 

Table 4.4. Device utilization for different DLUT sizes and polynomials. 

 

In Table 4.4 it can be seen that the device utilization is similar for all DLUT sizes less 

than 210. Thus DLUT sizes less than 210 is eliminated, as better accuracy can be achieved 

with 210 DLUT than with smaller DLUTs, for the same device utilization. For a DLUT 

size of 214 the MSE of quadratic is almost similar to cubic. Thus it is better to use 

quadratic as has less device utilization. The quadratic and cubic polynomials for a DLUT 

size of 216 cannot be used as the BRAM utilization for these designs exceed the available 

BRAM on the FPGA. Thus depending on the resources available and the MSE needed, 

the DLUT size and the polynomial fit can be chosen for the design from the available 

choices. 

 

 

4.2.1Timing analysis 

 

The exponential distribution was successfully implemented on the FPGA and the results 

were verified. The speed the design had to be calculated to know how many 

exponentially distributed numbers can be generated each second. A timer was initiated in 

Xilinx Platform Studio (XPS) to count the number clock pulses taken to get the output 

exponential number. The software part of the design was done in Xilinx SDK. A C code 

was written to start the timer when input is ready and stop the timer when the output is 

generated.  
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A FIFO was created using Xilinx coregen which holds input numbers. The exponent of 

the number that was input was calculated and displayed as output on the Hyper terminal. 

The clock pulse count was stored in timer register which was read and thus the timing 

was verified. 

  

Number of clock pulses taken to find the exponent of numbers was monitored. The FIFO 

size was 216. Therefore, 216 numbers were given as input to the exponential module. The 

timer register displayed a value of 65,722. A system clock of 100 MHz was used. The 

following calculations were performed to determine the number of exponential numbers 

that are generated every second.  

 

((100MHz)-1 × 65,722) -1 × 216= 99,716,989 numbers per second 

 

The results shows that one exponential number is generated every clock pulse. This 

implies that almost 100 million exponential numbers can be generated per second.  

 

The static timing report in the Xilinx ISE showed the maximum frequency of operation of 

50-60 MHz for linear, quadratic and cubic polynomial fits. But the exponential module 

was run at a 100MHz clock successfully. The static timing report takes the longest path to 

calculate the maximum frequency of operation and this path may be unused in the design. 

Therefore, the exponential distribution generator was able to run at 100MHz. The timer 

register values also showed that 100 million random numbers were generated every 

second. 

 

The floating point library that is used in the design is not pipelined. Using a more 

efficient pipelined floating point unit would increase the frequency in the timing report. 

The Xilinx Core generator’s floating point adder and multiplier was used in the design 

instead of the floating point library. The floating point library was only used to convert 

the input uniform number to float before performing addition or multiplication 

operations.  It was found that the frequency of operation in the Xilinx ISE timing report 

went up to 91M Hz for the linear fit. The logic utilization also increased for the pipelined 

 50



Coregen floating point unit. Thus by using a pipelined floating point adder and multiplier 

and an efficient conversion of the input uniform random number to float, the design can 

be run at higher frequencies. The design implemented in this thesis uses the floating point 

library for all its operations. 

  

Figure 4.5 shows the resource utilization and the frequency of operation obtained in the 

timing report for linear and cubic curve fits. In the first case, pipelined coregen floating 

point adder and multiplier were used to perform floating point addition and multiplication 

and float library was used to convert the input uniform number to floating point number. 

The DLUTs (Data Look Up Tables) were stored in float format. Hence the conversion of 

the polynomial coefficients in DLUTs to floating point is not needed. The design is 

pipelined and hence both the linear and cubic get the same frequency.  In the second case, 

floating point library was used to convert the input to floating point and also to do 

addition and multiplication operations. The DLUTs were stored in integer formats. Thus 

the conversions of coefficients in the DLUTs have to be converted before performing the 

interpolation. 

 

 Linear Cubic Floating 
point 
unit 

SR SLUT  Freq SR SLUT Freq 

Pipelined 
Coregen 

2,000 2,066  91.397MHz 6,045 5,635 91.397MHz 

Float 
library 

238 3,262 
 

63.11MHz 517 11,158 52.722MHz  

 

Table 4.5. Resource utilization and frequency of operation of Pipelined 

Coregen floating point unit vs. floating point library 

SR: Slice register 

SLUT: Slice LUT 

Freq: maximum Frequency of operation in Xilinx timing report 
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4.3 True random number interface 

 

A true random number generator [14] was interfaced with the exponential module and the 

results were verified. 32 bit exponentially generated random numbers were generated by 

connecting the output the true random number generator to the input of the exponential 

module. The design was performed for linear, quadratic and cubic polynomial fits with a 

DLUT size of 210. 
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5. Conclusion  
 

An efficient exponential distribution generator was implemented on hardware by dividing 

the inverse CDF into intervals and curve fitting each interval with linear, quadratic and 

cubic polynomials. This method of implementing exponential distribution on hardware 

can be extended to other probability distribution functions with a well defined inverse 

CDF function. The design has the following attributes: 

 

Speed/Number of exponentially distributed numbers generated per second 

The exponential module that is designed is time efficient as it produces one exponential 

number every clock cycle, i.e. 100 million numbers/second with a 100 MHz clock.  

 

Efficiency 

The design is also very efficient. In case of exponential distribution, the mean square 

error decreases as we fit higher order polynomials up to cubic polynomials into each 

interval, although this improvement may not be significant as me fit higher order 

polynomial than cubic.  

 

Tradeoff between number of intervals and polynomial order: optimization 

A thorough study of fitting different polynomials to the intervals and getting an optimum 

size data look up table was performed. Thus depending on the resources available and 

accuracy needed, the DLUT size and the polynomial fit is decided. The design was 

implemented on a Virtex 5 FPGA and the resources of the FPGA were well utilized. 

 

5.1 Future work 

 

The research performed in this thesis gives a very efficient exponential distribution 

generator. But there is still a lot of scope for improvement. More efficient methods to 

handle the data look up tables can be implemented. Instead of storing the DLUT values in 

the memory, different methods like changing the values of the data look up tables at run 

time can be investigated. This way, we can change the probability distribution we want to 
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generate at run time and thus get a universal probability distribution generator which is 

more general and widely applicable. For example certain data that behaves like an 

exponential distribution initially and normal distribution later can be handled by 

hardware using the above method of changing the DLUT values during runtime. 

 

We can try to implement the design in other FPGAs like Virtex 6, which have more block 

RAM and can thus store big DLUTs.  A better floating point unit that performs floating 

point addition and multiplication operations efficiently and with less resource utilization 

can be used instead of the floating point library used in this research.  
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Appendix 

 

Linear 
--------------------------------------------------------------------------------------- 
--Function: Calculates exponential of a number by curve fitting using linear polynomial 
-- Input: clk - std_logic,urn -32 bit std_logic_vector 
-- Output: exprand -32 bit std_logic_vector 
---------------------------------------------------------------------------------------        
        
 LIBRARY IEEE; 
 library ieee_proposed; 
 use ieee_proposed.float_pkg.all; 
 use IEEE.Std_Logic_1164.all; 
 use IEEE.STD_LOGIC_ARITH.ALL; 
 use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 use ieee_proposed.fixed_pkg.all; 
         
 entity linear is 
  port( 
    clk :in std_logic; 
    urn : in std_logic_vector(31 downto 0);  
    exprand : out std_logic_vector (31 downto 0) 
      ); 
  end linear; 
         
         
 architecture design of linear is 
  signal ind:std_logic_vector(5 downto 0):="000000"; 
  signal index,Xi:integer:=0; 
  signal exp : float32; 
  signal Alin,Blin,X,Xd:float32; 
  signal expl:float32; 
  constant f:float32:="00110000000000000000000101010001"; 
  signal stda_linear,stdb_linear:std_logic_vector(31 downto 0); 
  signal Al:float32; 
   
type LUT is array (0 to 63) of integer; 
  
 constant LINEARa1 :LUT := (1051438193, 1051572411, 1051706629,1051844202, 
          1051981775, 1052126059,1052270343,1052414627,1051438193,1051572411,  
          1051706629, 1051844202,1051981775,1052126059,1052270343,1052414627, 
          1051438193,1051572411,1051706629, 1051844202,1051981775,1052126059, 
          1052270343,1052414627,1051438193, 1051572411,1051706629,1051844202,      
          1051981775,1052126059,1052270343,1052414627,1051438193, 1051572411, 
          1051706629, 1051844202,1051981775,1052126059,1052270343,1052414627,  
          1051438193,1051572411, 1051706629, 1051844202,1051981775,1052126059, 
          1052270343,1052414627,1051438193, 1051572411, 1051706629,1051844202,      
          1051981775,1052126059, 1052270343,1052414627,1051438193,1051572411, 
          1051706629, 1051844202,1051981775,1052126059,1052270343,1052414627); 
 
 
constant LINEARb1 :LUT :=(1051438193, 1051572411, 1051706629,1051844202,  
        1051981775,1052126059, 1052270343,1052414627,1051438193,1051572411, 
        1051706629, 1051844202,1051981775,1052126059,1052270343,1052414627,     
        1051438193,1051572411, 1051706629,1051844202,1051981775,1052126059, 
        1052270343,1052414627,1051438193,1051572411,1051706629, 1051844202, 
        1051981775,1052126059,1052270343,1052414627,1051438193, 1051572411, 
        1051706629,1051844202,1051981775,1052126059, 1052270343,1052414627, 
        1051438193, 1051572411, 1051706629,1051844202,1051981775,1052126059, 
        1052270343,1052414627,1051438193, 1051572411, 1051706629,1051844202, 
        1051981775,1052126059, 1052270343,1052414627,1051438193, 1051572411, 
        1051706629, 1051844202,1051981775,1052126059, 1052270343,1052414627); 
       
    begin 
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      process(clk) 
      begin 
 if clk='1' and clk' event then 
                 ind<=urn(31 downto 26); 
                 index<=conv_integer(ind); 
      Xi<=conv_integer(urn(31 downto 0)); 
      Xd<=to_float(Xi);  
      X<= Xd *f; 
      stda_linear<=conv_std_logic_vector(LINEARa1(index),32); 
      stdb_linear<=conv_std_logic_vector(LINEARb1(index),32); 
      exp<=expl; 
      exprand<=to_slv(exp); 
  end if;           
    end process; 
  
--Converts a and b to floating point 
   toflinear:process(clk)  
   begin 
       if clk='1' and clk' event then 
           Alin<=To_float(stda_linear); 
           Blin<=To_float(stdb_linear); 
       end if; 
  end process toflinear; 
  
--Linear polynomial fit ax+b   
   Lin: process(clk) 
   begin 
        if clk='1' and clk' event then 
 Al<= Alin*X; 
       end if; 
   end process Lin ; 
   
  explin:process(clk)  
   begin 
       if clk='1' and clk' event then 
           expl<=Al+Blin; 
      end if; 
 end process explin; 
     
 end design; 
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Quadratic 
--------------------------------------------------------------------------------------- 
--Function: Calculates exponential of a number by curve fitting using quadratic 
--                  polynomial 
-- Input: clk - std_logic,urn -32 bit std_logic_vector 
-- Output: exprand -32 bit std_logic_vector 
---------------------------------------------------------------------------------------        
       
  LIBRARY IEEE; 
  library ieee_proposed; 
  use ieee_proposed.float_pkg.all; 
  USE IEEE.Std_Logic_1164.all; 
  use IEEE.STD_LOGIC_ARITH.ALL; 
  use IEEE.STD_LOGIC_UNSIGNED.ALL; 
  use ieee_proposed.fixed_pkg.all; 
         
  entity quad is 
    port( 
         clk :in std_logic; 
         urn : in std_logic_vector(31 downto 0); 
         exprand : out std_logic_vector (31 downto 0) 
         ); 
  end quad; 
         
         
architecture design of quad is 
         
signal ind:std_logic_vector(5 downto 0):="000000";      
signal index,Xi:integer:=0; 
signal exp : float32; 
signal Aqua,Bqua,Cqua,X,Xd,Xsq,ABq: float32; 
signal expq:float32; 
constant f:float32:="00110000000000000000000101010001"; 
signal stda_quad :std_logic_vector(31downto 0); 
signal stdb_quad :std_logic_vector(31downto 0); 
signal stdc_quad :std_logic_vector(31downto 0);   
signal Aq,Bq :float32; 
signal stdexp:std_logic_vector(31 downto 0); 
     
type LUT is array (0 to 63) of integer; 
 
constant quada2 :LUT :=(379663292, 217424109, 557450834, 984198893, 870656109,        
 521483550, 517574259, 941418453, 706227913, 319552454, 412345498, 986391343,              
334652128,  833511935, 435739226, 962474219, 813280190, 696487943, 464112399, 306213272, 
719818415, 239194206, 346640482, 71970826, 608006172, 103701628, 
771529494, 799659653, 984077195, 920412516, 268481594, 359803676, 771747174, 
263179087, 825648194, 55913812, 619520027, 830043195, 208033776, 845628895, 
671874810, 603660393, 710539471, 314441421, 475378998, 80127875, 133820893, 
120324693, 776010575, 478285937,  278050042, 834087114, 617109346,728459085, 
873597457, 389275420, 587303300, 594957368, 769990562, 85133768, 339352445, 
412813635, 479459311, 860062059); 
 
constant quadb2 :LUT := (121415088 , 876323916, 937253381, 787972678, 491496488, 
491548451, 211578144, 549758566, 235474273, 893442683, 396331566, 351517566, 758149530, 
378562418, 715679974, 732341334, 479861249, 855946707, 218110383, 472371576, 
661612092, 834545553, 687540855, 335799729 , 928947794, 255354729, 983216576, 855787557, 
607557367, 305535176, 887455705, 306758910,603568373, 6654410, 813297585,
 220110657, 968826781, 816286366, 147223167, 645666974, 
818602366, 397014267, 204749175, 304511201, 777464834, 487484221,45571940, 405885702, 
781029560, 647883417, 752281163, 745985463, 479095154, 290316292, 839241273, 
828608954, 631612334, 486439999, 506442288, 402922110, 323987124, 957742691, 
54475232, 929801280 ) ; 
 
constant quadc2 :LUT := (116533356, 685389924, 588238150, 917946112 ,802764422, 486309328, 
171037299, 109506285, 298733345, 134091071,535036947,223590236, 336624974, 274192888, 
557952511, 601695545, 313887946, 944638288, 186290869, 920805636, 48972236, 
796665943, 250775239, 96080636, 63773320, 264533359, 782670867, 331673103, 712652608,
 453599047, 463071040, 271878626,393015413, 790971877, 772021279,  905223561
 , 368027015, 304088417, 759467617,114782895, 
738470734, 921290860, 448683070, 347114952, 673705094, 949198404, 949284024,  

 59



895386837, 305771981, 271051071, 620423888, 961468376, 161029073, 462841332, 
340057507, 863919883, 295979126, 259954604, 884450728, 602332351, 49687773, 
121532074, 281923731, 857720864) ; 
 
 begin 
     
   process(clk) 
   begin 
      if clk='1' and clk' event then 
         ind<=urn(31 downto 26); 
         index<=conv_integer(ind); 
         Xi<=conv_integer(urn(31 downto 1)); 
       Xd<=to_float(Xi);  
         X<= Xd *f; 
         stda_quad<=conv_std_logic_vector(quada2(index),32); 
         stdb_quad<=conv_std_logic_vector(quadb2(index),32); 
       stdc_quad<=conv_std_logic_vector(quadc2(index),32); 
       exp<=expq; 
    end if; 
         exprand<=to_slv(exp); 
        
        
  end process; 
  
 ----Converts a,b and c to floating point 
  tofquad:process(clk)  
  begin 
     if clk='1' and clk' event then 
        Aqua<=To_float(stda_quad); 
        Bqua<=To_float(stdb_quad); 
      Cqua<=To_float(stdc_quad); 
     end if; 
  end process tofquad; 
  
 -- A*x*x 
 Quad1: process(clk) 
  begin 
     if clk='1' and clk' event then 
        Aq<= Aqua*Xsq; 
     end if; 
    end process Quad1 ; 
   
 --B*x 
 Quad2: process(clk) 
  begin 
    if clk='1' and clk' event then 
      Bq<=Bqua*X; 
    end if; 
    end process Quad2 ;  
    
 --A*x*x+B*x 
 Aqadd: process(clk) 
 begin 
     if clk='1' and clk' event then 
      ABq<=Aq+Bq; 
    end if; 
 end process Aqadd; 
    
   --Ax*x+B*x+C 
 expquad:process(clk)  
 begin 
    if clk='1' and clk' event then 
       expq<= ABq+Cqua; 
   end if; 
 end process expquad; 
   
 --x*x  
 Xsquare: process(clk) 
 begin 
   if clk='1' and clk' event then 
      Xsq<=X*X; 
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   end if; 
 end process Xsquare; 
     
end design; 
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Cubic  
 
LIBRARY IEEE; 
library ieee_proposed; 
use ieee_proposed.float_pkg.all; 
USE IEEE.Std_Logic_1164.all; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
use ieee_proposed.fixed_pkg.all; 
         
entity cubic is 
port( 
         clk :in std_logic; 
         urn : in std_logic_vector(31 downto 0);  
         exprand : out std_logic_vector (31 downto 0) 
       ); 
end cubic; 
         
         
architecture design of cubic is 
         
 signal ind:std_logic_vector(5 downto 0):="000000";       
 signal index,Xi:integer:=0; 
 signal exp : float32; 
 signal Acu,Bcu,Ccu,Dcu: float32; 
 signal  X,Xd,Xsq,Xcube,ABq,ABc,ABCc: float32; 
 signal expl,expq,expc:float32; 
 constant f:float32:="00110000000000000000000101010001"; 
 signal stda_cubic,stdb_cubic,stdc_cubic,stdd_cubic:std_logic_vector(31 downto 0); 
 signal Al,Aq,Bq,Ac,Bc,Cc :float32; 
 signal stdexp:std_logic_vector(31 downto 0); 
    
type LUT is array (0 to 63) of integer;   
         
constant cubica3 :LUT := (379663292, 217424109, 557450834, 984198893, 870656109, 
521483550, 517574259, 941418453, 706227913, 319552454, 412345498,  986391343, 
334652128, 833511935, 435739226, 962474219, 813280190, 696487943, 464112399, 
306213272, 719818415, 239194206, 346640482, 71970826, 608006172,103701628, 
771529494, 799659653, 984077195, 920412516, 268481594, 359803676, 771747174, 
263179087, 825648194, 55913812, 619520027, 830043195, 208033776, 845628895,  
 671874810, 603660393, 710539471 , 314441421, 475378998, 80127875, 133820893, 
120324693, 776010575, 478285937, 278050042, 834087114 , 617109346 ,728459085, 
873597457, 389275420, 587303300, 594957368, 769990562, 85133768, 339352445, 
412813635, 479459311, 860062059); 
     
constant cubicb3 :LUT := (121415088,876323916, 937253381, 787972678, 491496488, 
491548451, 211578144, 549758566, 235474273, 893442683, 396331566, 351517566,  
758149530, 378562418, 715679974, 732341334, 479861249, 855946707, 218110383, 
 47237157, 661612092, 834545553, 687540855, 335799729, 928947794, 255354729, 
983216576, 855787557, 607557367, 305535176, 887455705, 306758910, 603568373, 6654410, 
813297585, 220110657, 968826781, 816286366, 147223167,645666974, 
818602366, 397014267, 204749175, 304511201, 777464834, 487484221, 45571940, 
405885702, 781029560, 647883417, 752281163, 745985463, 479095154, 290316292, 
839241273, 828608954, 631612334, 486439999, 506442288, 402922110, 323987124, 
957742691, 54475232, 929801280); 
    
constant cubicc3 :LUT := (116533356, 685389924, 588238150, 917946112,802764422, 
486309328, 171037299, 109506285, 298733345, 134091071, 535036947, 223590236, 
336624974, 274192888, 557952511, 601695545, 313887946, 944638288, 186290869, 
920805636, 48972236, 796665943, 250775239, 96080636, 63773320,264533359, 782670867, 
331673103, 712652608, 453599047, 463071040, 271878626, 393015413, 790971877, 772021279, 
905223561, 368027015, 304088417, 759467617, 114782895, 
738470734, 921290860, 448683070, 347114952, 673705094, 949198404, 949284024, 
895386837, 305771981, 271051071, 620423888, 961468376, 161029073, 462841332, 
340057507, 863919883, 295979126, 259954604, 884450728, 602332351, 49687773, 
121532074, 281923731, 857720864 ); 
 
constant cubicd3 :LUT := (130710016, 993703648, 621858027, 225919470, 832077741, 
186164517, 525982250, 770532095, 939741118, 132138646, 315853674, 923454197, 
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167011105, 567929095, 986745034, 940106894, 11956416, 97614603, 36312462, 66631738, 
892626284, 480767608, 246844394, 580470295, 285074586, 375070160, 
671252573, 637588574, 769963702, 691609959, 172331480, 11025438, 174979182, 
283864137, 395094907, 598297564, 490808539, 369907567, 807638979, 939738014, 
252858533, 325845605, 279103687, 788820452, 809478616, 71936329, 35278644, 
912086769, 777284329, 598828301, 779668006, 353686607, 484865129, 222577064, 
24709292, 506605854, 364860657, 232837914, 32846030, 363947809, 69853403, 
547689061, 46961589 ,857957253); 
    
   begin 
              
  process(clk) 
  begin 
     if clk='1' and clk' event then 
        ind<=urn(31 downto 26); 
        index<=conv_integer(ind); 
        Xi<=conv_integer(urn(31 downto 1)); 
        Xd<=to_float(Xi);  
        X<= Xd *f; 
        stda_cubic<=conv_std_logic_vector(cubica3(index),32); 
        stdb_cubic<=conv_std_logic_vector(cubicb3(index),32); 
        stdc_cubic<=conv_std_logic_vector(cubicc3(index),32); 
        stdd_cubic<=conv_std_logic_vector(cubicd3(index),32); 
        exp<=expc; 
    end if;   
     exprand<=to_slv(exp); 
 end process; 
     
--a,b,c and d to floating point  
 tofcubic:process(clk)  
 begin 
    if clk='1' and clk' event then 
       Acu<=To_float(stda_cubic); 
       Bcu<=To_float(stdb_cubic); 
       Ccu<=To_float(stdc_cubic); 
       Dcu<=To_float(stdd_cubic); 
    end if; 
 end process tofcubic; 
                 
--a*x*x*x 
 cubic1: process(clk) 
 begin 
    if clk='1' and clk' event then 
       Ac<= Acu*Xcube; 
    end if; 
 end process cubic1 ; 
       
--b*x*x  
 cubic2: process(clk) 
 begin 
    if clk='1' and clk' event then 
       Bc<=Bcu*Xsq; 
    end if; 
 end process cubic2 ; 
    
--c*x 
 cubic3: process(clk) 
 begin 
    if clk='1' and clk' event then 
       Cc<=Ccu*X; 
    end if; 
 end process cubic3 ;  
       
-- a*x^3 + b*x^2 
 Acadd: process(clk) 
 begin 
    if clk='1' and clk' event then 
       ABc<=Ac+Bc; 
    end if; 
 end process Acadd;  
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-- a*x^3 +b*x^2 + c*x 
 ABcadd: process(clk) 
 begin 
    if clk='1' and clk' event then 
       ABCc<=ABc+Cc; 
    end if; 
 end process ABcadd;   
      
-- a*x^3 +b*x^2 + c*x +d          
 expcubic:process(clk)  
 begin 
    if clk='1' and clk' event then 
       expc<= ABCc+Dcu; 
    end if; 
 end process expcubic; 
        
-- x*x 
 Xsquare: process(clk) 
 begin 
    if clk='1' and clk' event then 
       Xsq<=X*X; 
    end if; 
 end process Xsquare; 
       
 --x*x*x      
  Xcu: process(clk) 
  begin 
     if clk='1' and clk' event then 
        Xcube<= X*Xsq; 
     end if; 
  end process Xcu;  
             
end design; 
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Linear interpolation using Coregen Floating point adder and multiplier 
(uses float library to convert input to floating point) 
 
 
LIBRARY IEEE; 
library ieee_proposed; 
use ieee_proposed.float_pkg.all; 
USE IEEE.Std_Logic_1164.all; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
use ieee_proposed.fixed_pkg.all; 
Library XilinxCoreLib; 
         
entity linear is 
       port(clk :in std_logic; 
             urn : in std_logic_vector(31 downto 0);  
             exprand : out std_logic_vector (31 downto 0)); 
end linear; 
         
         
   architecture design of linear is 
   
  signal ind:std_logic_vector(7 downto 0):="00000000"; 
  signal index,Xi:integer:=0; 
  signal exp : float32; 
  signal Alin,Blin,X,Xd:float32:="00000000000000000000000000000000" ; 
  constant f1:std_logic_vector:="00110000000000000000000101010001"; 
  signal stda_linear,stdb_linear:std_logic_vector(31 downto 0); 
  signal Al:float32; 
  signal Als,Blins,Alins,Xs,Xds,fs:std_logic_vector(31 downto 0); 
   
  type LUT is array (0 to 255) of std_logic_vector(31 downto 0); 
  
  constant LINEARa1 :LUT := (x"3F804189", x"3F80C155", x"3F814467", x"3F81C77A",
 x"3F824A8C", x"3F82D0E5", x"3F83573F", x"3F83DD98", x"3F8463F1", 
x"3F84ED91", x"3F857A78", x"3F860419", x"3F869100", x"3F87212D", x"3F87AE14",
 x"3F883E42", x"3F88D1B7", x"3F89652C", 
x"3F89F8A1", x"3F8A8F5C", x"3F8B22D1", x"3F8BBCD3", x"3F8C56D6", x"3F8CF0D8",
 x"3F8D8ADB", x"3F8E2824", x"3F8EC8B4", 
x"3F8F6944", x"3F9009D5", x"3F90AA65", x"3F915183", x"3F91F55A", x"3F929C78",
 x"3F9346DC", x"3F93F141", x"3F949BA6", 
x"3F954952", x"3F95F6FD", x"3F96A7F0", x"3F9758E2", x"3F980D1B", x"3F98C49C",
 x"3F997C1C", x"3F9A339C", x"3F9AEE63", 
x"3F9BAC71", x"3F9C6A7F", x"3F9D288D", x"3F9DE9E2", x"3F9EAE7D", x"3F9F7319",
 x"3FA03AFB", x"3FA10625", x"3FA1D14E", 
x"3FA29FBE", x"3FA36E2F", x"3FA43FE6", x"3FA514E4", x"3FA5E9E2", x"3FA6C227",
 x"3FA79DB2", x"3FA8793E", x"3FA95810", 
x"3FAA3A2A", x"3FAB1C43", x"3FAC01A3", x"3FACEA4B", x"3FADD639", x"3FAEC227",
 x"3FAFB4A2", x"3FB0A71E", x"3FB1999A", 
x"3FB292A3", x"3FB38BAC", x"3FB48B44", x"3FB58ADB", x"3FB68DB9", x"3FB793DE",
 x"3FB89D49", x"3FB9A6B5", x"3FBAB6AE", 
x"3FBBC9EF", x"3FBCDD2F", x"3FBDF6FD", x"3FBF10CB", x"3FC03127", x"3FC15183",
 x"3FC2786C", x"3FC3A29C", x"3FC4CCCD", 
x"3FC5FD8B", x"3FC73190", x"3FC86C22", x"3FC9A6B5", x"3FCAE48F", x"3FCC28F6",
 x"3FCD70A4", x"3FCEBB99", x"3FD00D1B", 
x"3FD161E5", x"3FD2B9F5", x"3FD41893", x"3FD57A78", x"3FD6DFA4", x"3FD84B5E",
 x"3FD9BA5E", x"3FDB2FEC", x"3FDCA8C1", 
x"3FDE2824", x"3FDFAACE", x"3FE1374C", x"3FE2C3CA", x"3FE45A1D", x"3FE5F3B6",
 x"3FE793DE", x"3FE93A93", x"3FEAE48F", 
x"3FEC985F", x"3FEE4F76", x"3FF01062", x"3FF1D495", x"3FF3A29C", x"3FF573EB",
 x"3FF74F0E", x"3FF930BE", x"3FFB18FC", 
x"3FFD07C8", x"3FFF0069", x"40007FCC", x"4001844D", x"40028C15", x"400398C8",
 x"4004AA65", x"4005BF48", x"4006D917", 
x"4007F7CF", x"40091B71", x"400A425B", x"400B6FD2", x"400CA234", x"400DDB23",
 x"400F1759", x"40105A1D", x"4011A36E", 
x"4012F1AA", x"40144674", x"4015A027", x"4017020C", x"401868DC", x"4019D7DC",
 x"401B4D6A", x"401CC986", x"401E4C30", 
x"401FD8AE", x"40216BBA", x"402306F7", x"4024AA65", x"40265604", x"40280B78",
 x"4029C91D", x"402B8EF3", x"402D6042", 
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x"402F3B64", x"4031205C", x"40330F28", x"4035096C", x"403710CB", x"403921FF",
 x"403B3EAB", x"403D6A16", x"403FA0F9", 
x"4041E4F7", x"404437B5", x"40469931", x"404907C8", x"404B86C2", x"404E17C2",
 x"4050B780", x"40536944", x"40562B6B", 
x"405902DE", x"405BEC57", x"405EE979", x"4061FD8B", x"406526E9", x"40686595",
 x"406BBE77", x"406F2FEC", x"4072B9F5", 
x"4076617C", x"407A233A", x"407E0419", x"4081020C", x"40831340", x"408534D7",
 x"40876873", x"4089AEE6", x"408C0903", 
x"408E786C", x"4090FDF4", x"40939B3D", x"40965048", x"40991F8A", x"409C0AA6",
 x"409F126F", x"40A23886", x"40A57F63", 
x"40A8E979", x"40AC779A", x"40B02D0E", x"40B40C4A", x"40B81893", x"40BC538F",
 x"40C0C227", x"40C566CF", x"40CA4745", 
x"40CF65FE", x"40D4C986", x"40DA75F7", x"40E072B0", x"40E6C49C", x"40ED758E",
 x"40F48C15", x"40FC12D7", x"410209D5", 
x"41064D6A", x"410ADB23", x"410FBA5E", x"4114F488", x"411A93DE", x"4120A3D7",
 x"41273261", x"412E5048", x"41360FF9", 
x"413E87FD", x"4147D42C", x"41521412", x"415D6FD2", x"416A182B", x"417849BA",
 x"418427F0", x"418D463F", x"4197BEAB", 
x"41A3E45A", x"41B22752", x"41C3229C", x"41D7B296", x"41F11B71", x"4208A787",
 x"421DB98C", x"423A7D56", x"42641E6A", 
x"4292E305", x"42CE76E3", x"432EA5C9", x"443FCED7" );  
 
 
 
   constant LINEARb1 :LUT :=( x"00000000", x"00000000", x"00000000",
 x"B8D1B717", x"B951B717", x"B951B717", x"B99D4952", x"B9D1B717",
 x"BA1D4952", 
x"BA378034", x"BA6BEDFA", x"BA902DE0", x"BAAA64C3", x"BAC49BA6", x"BADED289",
 x"BB03126F", x"BB16BB99", x"BB2A64C3", 
x"BB3E0DED", x"BB51B717", x"BB6BEDFA", x"BB83126F", x"BB902DE0", x"BB9D4952",
 x"BBAA64C3", x"BBBAC711", x"BBCB295F", 
x"BBDB8BAC", x"BBEBEDFA", x"BBFF9724", x"BC09A027", x"BC1374BC", x"BC1D4952",
 x"BC28C155", x"BC343958", x"BC3FB15B", 
x"BC4CCCCD", x"BC5844D0", x"BC656042", x"BC741F21", x"BC809D49", x"BC87FCB9",
 x"BC8F5C29", x"BC978D50", x"BC9EECC0", 
x"BCA7EF9E", x"BCB020C5", x"BCB923A3", x"BCC22681", x"BCCB295F", x"BCD4FDF4",
 x"BCDED289", x"BCE978D5", x"BCF41F21", 
x"BCFEC56D", x"BD04B5DD", x"BD0A71DE", x"BD1096BC", x"BD16BB99", x"BD1CE076",
 x"BD230553", x"BD29930C", x"BD3089A0", 
x"BD378034", x"BD3E76C9", x"BD45D639", x"BD4D35A8", x"BD54FDF4", x"BD5CC63F",
 x"BD64F766", x"BD6D288D", x"BD75C28F", 
x"BD7E5C92", x"BD83AFB8", x"BD883127", x"BD8CE704", x"BD91D14E", x"BD96BB99",
 x"BD9BA5E3", x"BDA0F909", x"BDA64C30", 
x"BDAB9F56", x"BDB126E9", x"BDB6E2EB", x"BDBC9EED", x"BDC28F5C", x"BDC8B439",
 x"BDCED917", x"BDD566CF", x"BDDBF488", 
x"BDE28241", x"BDE978D5", x"BDF06F69", x"BDF79A6B", x"BDFEF9DB", x"BE032CA5",
 x"BE0710CB", x"BE0AF4F1", x"BE0EF34D", 
x"BE132618", x"BE1758E2", x"BE1BA5E3", x"BE200D1B", x"BE248E8A", x"BE292A30",
 x"BE2DE00D", x"BE32B021", x"BE379A6B", 
x"BE3C9EED", x"BE41D7DC", x"BE4710CB", x"BE4C7E28", x"BE5205BC", x"BE57C1BE",
 x"BE5D7DBF", x"BE636E2F", x"BE6978D5", 
x"BE6FB7E9", x"BE761134", x"BE7C84B6", x"BE819653", x"BE84F766", x"BE8872B0",
 x"BE8C0831", x"BE8FAACE", x"BE9367A1", 
x"BE973190", x"BE9B22D1", x"BE9F212D", x"BEA339C1", x"BEA76C8B", x"BEABB98C",
 x"BEB013A9", x"BEB49518", x"BEB930BE", 
x"BEBDF3B6", x"BEC2C3CA", x"BEC7BB30", x"BECCCCCD", x"BED1F8A1", x"BED74BC7",
 x"BEDCC63F", x"BEE25AEE", x"BEE816F0", 
x"BEEDFA44", x"BEF404EA", x"BEFA29C7", x"BF004189", x"BF0381D8", x"BF06D5D0",
 x"BF0A43FE", x"BF0DC5D6", x"BF115B57", 
x"BF150B0F", x"BF18DB8C", x"BF1CB924", x"BF20B780", x"BF24D6A1", x"BF29096C",
 x"BF2D5CFB", x"BF31D14E", x"BF365FD9", 
x"BF3B15B5", x"BF3FE5C9", x"BF44DD2F", x"BF49F55A", x"BF4F34D7", x"BF549BA6",
 x"BF5A29C7", x"BF5FDF3B", x"BF65C28F", 
x"BF6BD3C3", x"BF720C4A", x"BF787FCC", x"BF7F1AA0", x"BF82F838", x"BF867D56",
 x"BF8A1FF3", x"BF8DDCC6", x"BF91BA5E", 
x"BF95B8BB", x"BF99D7DC", x"BF9E17C2", x"BFA27EFA", x"BFA70A3D", x"BFABBCD3",
 x"BFB096BC", x"BFB59E84", x"BFBAD42C", 
x"BFC037B5", x"BFC5CC64", x"BFCB9581", x"BFD19653", x"BFD7CED9", x"BFDE45A2",
 x"BFE4FAAD", x"BFEBF488", x"BFF33333", 
x"BFFAB9F5", x"C0014952", x"C0055E9E", x"C0099E84", x"C00E0DED", x"C012AE7D",
 x"C01781D8", x"C01C8E8A", x"C021D495", 
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x"C02758E2", x"C02D205C", x"C0332E49", x"C0398937", x"C040346E", x"C047367A",
 x"C04E978D", x"C0565AEE", x"C05E8A72", 
x"C0672FEC", x"C07051EC", x"C079FBE7", x"C0821CAC", x"C0878BAC", x"C08D5254",
 x"C0937803", x"C09A068E", x"C0A106F7", 
x"C0A88588", x"C0B0902E", x"C0B93405", x"C0C283E4", x"C0CC92A3", x"C0D77732",
 x"C0E34D6A", x"C0F032CA", x"C0FE4DD3", 
x"C106E4F7", x"C10F6DC6", x"C118E0DF", x"C123652C", x"C12F29C7", x"C13C69AD",
 x"C14B6FD2", x"C15C9B3D", x"C17066CF", 
x"C183BB64", x"C191535B", x"C1A19412", x"C1B556A1", x"C1CDDB23", x"C1ED0DB9",
 x"C20B05BC", x"C2271D98", x"C24FEFB8", 
x"C288496C", x"C2C32D43", x"C3287724", x"C43DCC15"); 
  
  
 
 
--Coregen multiply 
begin 
coremul2:ENTITY floating_point_v3_1(floating_point_v3_1_a)  
     port map( 
              a => Xds,  
              b => f1, 
              clk => clk, 
              result => Xs 
                    ) ; 
  
coremul1:ENTITY floating_point_v3_1(floating_point_v3_1_a)  
     port map( 
             a => Alins,  
             b => Xs, 
             clk => clk, 
             result => Als 
                   ) ; 
 
  
 --Coregen add 
  
coreadd:ENTITY floating_point_v3_0(floating_point_v3_0_a)  
   port map( 
            a=>Als, 
            b =>Blins , 
            clk => clk,  
            result =>exprand 
                 ) ; 
 
  
   
   
   process(clk) 
   begin 
      if clk='1' and clk' event then 
        ind<=urn(31 downto 24); 
        index<=conv_integer(ind); 
        Xi<=conv_integer(urn(31 downto 0)); 
        Xd<=to_float(Xi);  
              Xds<=to_slv(Xd); 
            end if;           
    end process; 
  
 --Converts a and b to floating point 
 toflinear:process(clk)  
 begin 
   if clk='1' and clk' event then 
      Alins<=LINEARa1(index); 
      Blins<=LINEARb1(index); 
    end if; 
 end process toflinear; 
  
   
 end design; 
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Modelsim code for converting real to std_logic; 
(The code below converts one of the linear polynomial co‐efficient from real to float 
integer  format) 
 
LIBRARY IEEE; 
USE work.all; 
library ieee_proposed; 
use ieee_proposed.float_pkg.all; 
USE IEEE.Std_Logic_1164.all; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
use ieee.numeric_std.all; 
use ieee_proposed.math_utility_pkg.all; 
use ieee_proposed.fixed_pkg.all; 
use ieee_proposed.float_pkg.all; 
USE ieee.MATH_REAL.ALL; 
 
 
entity rand is 
port(clk :in std_logic; 
     urn : in std_logic_vector(31 downto 0); -- input 32 bit random number from LFSR 
     --fit :in integer range 0 to 2; -- integer to indicate linear,quaddratic or cubic 
intrapolation  
     ans :out std_logic_vector(31 downto 0)); -- exponentially generated random number 
end rand; 
 
 
architecture design of rand is 
 
signal ind:std_logic_vector(7 downto 0):="00000000"; 
signal index,Xi,i:integer:=0; 
signal upper,A,B,C,D:real; 
signal A1,B1,exp,X:float32; 
 
type LUTf is array (0 to 255) of float32; 
signal LINEARb1f :LUTf; 
 
type LUTstd is array (0 to 255) of std_logic_vector(31 downto 0); 
signal LINEARb1std :LUTstd; 
 
type LUTint is array (0 to 255) of integer; 
signal LINEARb1int :LUTint; 
 
type LUTrevstd is array (0 to 255) of std_logic_vector(31 downto 0); 
signal LINEARb1revstd :LUTrevstd; 
 
type LUTrev is array (0 to 255) of float32; 
signal LINEARb1rev :LUTrev; 
 
 
type LUT is array (0 to 255) of real; 
constant LINEARa1 :LUT := ( 1.0020, 1.0059, 1.0099, 1.0139, 1.0179, 1.0220, 1.0261, 
1.0302, 1.0343,1.0385, 1.0428, 1.0470, 1.0513, 1.0557, 1.0600, 1.0644, 1.0689, 1.0734, 
1.0779, 1.0825, 1.0870, 1.0917, 1.0964, 1.1011, 1.1058, 1.1106, 1.1155, 1.1204, 1.1253, 
1.1302, 1.1353, 1.1403, 1.1454, 1.1506, 1.1558, 1.1610,1.1663, 1.1716, 1.1770, 1.1824, 
1.1879, 1.1935, 1.1991, 1.2047, 1.2104,1.2162, 1.2220, 1.2278, 1.2337, 1.2397, 1.2457, 
1.2518, 1.2580, 1.2642,1.2705, 1.2768, 1.2832, 1.2897, 1.2962, 1.3028, 1.3095, 1.3162, 
1.3230,1.3299, 1.3368, 1.3438, 1.3509, 1.3581, 1.3653, 1.3727, 1.3801, 1.3875,1.3951, 
1.4027, 1.4105, 1.4183, 1.4262, 1.4342, 1.4423, 1.4504, 1.4587,1.4671, 1.4755, 1.4841, 
1.4927, 1.5015, 1.5103, 1.5193, 1.5284, 1.5375,1.5468, 1.5562, 1.5658, 1.5754, 1.5851, 
1.5950, 1.6050, 1.6151, 1.6254,1.6358, 1.6463, 1.6570, 1.6678, 1.6787, 1.6898, 1.7010, 
1.7124, 1.7239,1.7356, 1.7474, 1.7595, 1.7716, 1.7840, 1.7965, 1.8092, 1.8221, 1.8351, 
1.8484, 1.8618, 1.8755, 1.8893, 1.9034, 1.9176, 1.9321, 1.9468, 1.9617,1.9768, 1.9922, 
2.0078, 2.0237, 2.0398, 2.0562, 2.0729, 2.0898, 2.1070,2.1245, 2.1423, 2.1603, 2.1787, 
2.1974, 2.2165, 2.2358, 2.2555, 2.2756,2.2960, 2.3168, 2.3379, 2.3595, 2.3814, 2.4038, 
2.4266, 2.4498, 2.4734, 2.4976, 2.5222, 2.5473, 2.5729, 2.5990, 2.6257, 2.6529, 2.6806, 
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2.7090,2.7380, 2.7676, 2.7978, 2.8287, 2.8604, 2.8927, 2.9257, 2.9596, 2.9942,3.0296, 
3.0659, 3.1031, 3.1411, 3.1801, 3.2202, 3.2612, 3.3033, 3.3464, 3.3908, 3.4363, 3.4830, 
3.5311, 3.5805, 3.6312, 3.6835, 3.7373, 3.7926,3.8497, 3.9084, 3.9690, 4.0315, 4.0961, 
4.1627, 4.2315, 4.3026, 4.3761,4.4522, 4.5310, 4.6127, 4.6973, 4.7851, 4.8763, 4.9710, 
5.0694, 5.1718,5.2785, 5.3896, 5.5055, 5.6265, 5.7530, 5.8852, 6.0237, 6.1688,  6.3212, 
6.4812, 6.6496, 6.8269, 7.0140, 7.2115, 7.4206, 7.6421, 7.8773, 8.1274,8.3939, 8.6785, 
8.9830, 9.3097, 9.6611, 10.0400, 10.4498, 10.8946, 11.3789,11.9082, 12.4893, 13.1299, 
13.8398, 14.6309, 15.5180, 16.5195, 17.6593, 18.9681,20.4865, 22.2692, 24.3919, 26.9622, 
30.1384, 34.1636, 39.4312, 46.6224, 57.0297,73.4434, 103.2322, 174.6476, 767.2319); 
 
constant LINEARb1 :LUT :=( -0.0000, -0.0000, -0.0000, -0.0001, -0.0002, -0.0002, -   
0.0003, -0.0004, -0.0006, -0.0007, -0.0009, -0.0011, -0.0013, -0.0015, -0.0017, -0.0020,  
-0.0023, -0.0026,-0.0029, -0.0032, -0.0036, -0.0040, -0.0044, -0.0048, -0.0052, -0.0057,  
-0.0062, -0.0067, -0.0072, -0.0078, -0.0084, -0.0090, -0.0096, -0.0103, -0.0110, -0.0117, 
-0.0125, -0.0132, -0.0140, -0.0149, -0.0157, -0.0166, -0.0175, -0.0185, -0.0194, -0.0205,  
-0.0215, -0.0226, -0.0237, -0.0248, -0.0260, -0.0272, -0.0285, -0.0298,-0.0311, -0.0324, 
-0.0338, -0.0353, -0.0368, -0.0383, -0.0398, -0.0414, -0.0431,-0.0448, -0.0465, -0.0483, 
-0.0501, -0.0520, -0.0539, -0.0559, -0.0579, -0.0600, -0.0621, -0.0643, -0.0665, -0.0688, 
-0.0712, -0.0736, -0.0760, -0.0786, -0.0812,-0.0838, -0.0865, -0.0893, -0.0921, -0.0950, 
-0.0980, -0.1010, -0.1042, -0.1074,-0.1106, -0.1140, -0.1174, -0.1209, -0.1245, -0.1281,  
-0.1319, -0.1357, -0.1396, -0.1437, -0.1478, -0.1520, -0.1563, -0.1607, -0.1652, -0.1698,  
-0.1745, -0.1793,-0.1842, -0.1893, -0.1944, -0.1997, -0.2051, -0.2107, -0.2163, -0.2221, 
-0.2280,-0.2341, -0.2403, -0.2466, -0.2531, -0.2597, -0.2665, -0.2735, -0.2806, -0.2879, 
-0.2953, -0.3030, -0.3108, -0.3188, -0.3270, -0.3354, -0.3439, -0.3527, -0.3617,-0.3710,  
-0.3804, -0.3901, -0.4000, -0.4101, -0.4205, -0.4312, -0.4421, -0.4533, -0.4648, -0.4766, 
-0.4886, -0.5010, -0.5137, -0.5267, -0.5401, -0.5538, -0.5678,-0.5822, -0.5971, -0.6122,  
-0.6278, -0.6439, -0.6603, -0.6772, -0.6946, -0.7124, -0.7308, -0.7496, -0.7690, -0.7889, 
 -0.8094, -0.8305, -0.8522, -0.8745, -0.8975,-0.9212, -0.9455, -0.9707, -0.9965, -1.0232, 
 -1.0507, -1.0791, -1.1083, -1.1385,-1.1697, -1.2019, -1.2351, -1.2695, -1.3050, -1.3417, 
 -1.3796, -1.4189, -1.4596, -1.5017, -1.5453, -1.5905, -1.6374, -1.6860, -1.7365, -
1.7889,  -1.8434, -1.9000,-1.9588, -2.0201, -2.0839, -2.1503, -2.2196, -2.2919, -2.3673, 
-2.4462,  
-2.5286,-2.6148, -2.7051, -2.7997, -2.8990, -3.0032, -3.1127, -3.2280, -3.3493, -3.4772, 
 -3.6123, -3.7550, -3.9060, -4.0660, -4.2358, -4.4163, -4.6084, -4.8133, -5.0321,-5.2663,  
-5.5176, -5.7876, -6.0786, -6.3929, -6.7333, -7.1032, -7.5062, -7.9470, -8.4309, -8.9643, 
 -9.5549, -10.2122, -10.9477,-11.7758, -12.7148, -13.7879, -15.0251,-16.4665, -18.1657, -
20.1973, -22.6673, -25.7320, -29.6317, -34.7556, -41.7789, -51.9841,-68.1434, 97.5884, -
168.4654, -759.1888); 
 
   begin 
  process(clk) 
  begin 
     if clk='1' and clk' event then 
                for index in 0 to 255 loop 
        LINEARb1f(index)<=To_float(LINEARb1(index)); 
        LINEARb1std(index)<=to_slv(LINEARb1f(index)); 
        LINEARb1int(index)<=conv_integer(LINEARb1std(index)); 
        LINEARb1revstd(index)<=conv_std_logic_vector(LINEARb1int(index),32); 
        LINEARb1rev(index)<=To_float(LINEARb1revstd(index)); 
        end loop; 
       end if; 
       
end process; 
end design; 
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Matlab 
 
Matlab code used to get polynomial co‐efficients 
 
n_int_bits=8;   
n_int=2^n_int_bits; % number of intervals 
n_points_bits=32;    
n_points=2^n_points_bits; % Number of bits in the given number 
factor=1/2^1; 
n_points_intv=factor*n_points/n_int; % Each interval has 2^32/2^8 points 
 
for j=1:n_int; 
    x=linspace ((j-1)/n_int,(j/n_int)-(1/n_points_intv),n_points_intv); 
    lamda=1; 
    y=-log (1 - x) /lamda; %inverse of exponent cdf 
 
 
    poly1=polyfit(x,y,1); %linear fit 
    A1(j)=poly1(1); 
    B1(j)=poly1(2); 
 
    poly2=polyfit(x,y,2); %quadratic fit 
    A2(j)=poly2(1); 
    B2(j)=poly2(2); 
    C2(j)=poly2(3); 
 
    poly3=polyfit(x,y,3); %quadratic fit 
    A3(j)=poly3(1); 
    B3(j)=poly3(2); 
    C3(j)=poly3(3); 
    D3(j)=poly3(4); 
    j 
end 
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Matlab code used to calculate Mean Square error 
 
%polynomial co-efficients 
  
 
N = 20000000; 
x = 0:1:N-1; 
x = x./N; 
y = -log(1-x); 
  
n_order = 12; 
n_intervals = 16; 
  
mse = zeros(n_order,n_intervals+1); 
  
        
        order = 8 
        interval_pow = 12 
         
        n_int = 2^interval_pow; 
         
         
        testy = zeros(1,N); 
        for j = 0:n_int-1 
            lowerindex = floor(N*(j)/n_int+1); 
            upperindex = floor(N*(j+1)/n_int); 
            poly1 = polyfit(x(lowerindex:upperindex),y(lowerindex:upperindex),order);            
            testy(lowerindex:upperindex) = polyval(poly1,x(lowerindex:upperindex));      
        end 
                 
        mse(order,interval_pow+1) = sum((y-testy).^2) / N; 
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