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ABSTRACT 
 

Risperidone and its Deconstructed Analogs: Functional Effects on the 
5HT2AR 

 
By: Sneha Shah, B.A. 

 
A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

at Virginia Commonwealth University 
 

Virginia Commonwealth University, 2015 
Thesis Director: Diomedes E. Logothetis, Ph.D. 
Chair, Department of Physiology and Biophysics 

 
G protein-coupled receptors (GPCRs) are seven-transmembrane domain receptors that 

sense extracellular signal and activate intracellular signaling pathways. The serotonin 5HT2A 

receptor (or 2AR) is one of the GPCRs coupled to Gq proteins, activating PLC and hydrolyzing 

PIP2. This hydrolysis causes a diffusion of bound PIP2 away from the channel binding site 

resulting in G protein-gated inwardly rectifying K+ channel (GIRK) inhibition and a downstream 

stimulation of Ca2+ release from endoplasmic reticulum stores. Previous experiments have 

demonstrated that the serotonin 5HTA receptor is a target of serotonergic psychedelic drugs, 

such as LSD, and partially mediates the action of many atypical antipsychotic drugs. However, 

the portion responsible for the functional activity and response of these drugs is unknown. The 

purpose of this study was to functionally characterize four deconstructed analogs of risperidone, 

an atypical antipsychotic agent, using two assays: by application to 5HT2A receptors in Xenopus 

oocytes and by calcium epifluorescence imaging in a HEK293 cell line stably expressing 2AR. 

Our experiments revealed that two analogs, RHV-006 and RHV-008, are partial agonists by 

themselves and greatly antagonize the effects of serotonin. RHV-006 and RHV-008 contain the 

piperidine and benzisoxizole ring systems of risperidone. RHV-023 and RHV-026, on the other 

hand, are more efficacious agonists than RHV-006 and RHV-008 but display a non-antagonistic 

effect with serotonin. RHV-023 and RHV-026 contain both the piperidine and benzisoxizole ring 

systems in addition to part of the diazabicyclo ring, thus containing more of risperidone’s 

structure than RHV-006 and RHV-008. 

!
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INTRODUCTION 
 

G- Protein- Coupled Receptors (GPCRs) and their downstream signaling partners 

constitute one of the largest classes of molecular targets contributing to many diseases. Half the 

current drugs on the market target GPCRs, generating tens of billions of dollars in revenue and 

representing a significant portion of the portfolio of many pharmaceutical companies (Solis, et 

al, 2014). Approximately 80% of known hormones and neurotransmitters activate cellular signal 

transduction mechanisms by activating GPCRs (Birnbaumer et al., 1990). Due to their 

importance, GPCRs and their signaling have been studied extensively and breakthroughs in our 

understanding of how their work has received multiple Nobel Prizes (Lin, 2013).  

GPCRs are transmembrane receptors with an extracellular N terminus, a cytoplasmic C 

terminus and 7 transmembrane helices connected by loops (Ballesteros and Weinstein, 1994). 

GPCRs sense molecules outside the cell and activate intracellular signal transduction through 

pathways involving activation of G- proteins (Lefkowitz, 2007). These heterotrimer G (G-alpha-

beta-gamma) proteins transduce ligand binding of the receptor to downsteam effectors. The cycle 

is described in three steps. The first occurs when binding of the ligand to the GPCR induces a 

conformational change to the receptor that is transduced to the Galpha subunit, such that its 

affinity for intracellular GTP is greatly increased over the already bound GDP, and in a Mg2+ 

dependent manner GDP is exchanged with GTP. The activated GPCR is acting as a guanine 

nucleotide exchange factor (GEF) to stimulate the exchange of nucleotides with the G- alpha 

subunit. Second, the G-alpha subunit uses the binding energy of GTP to produce a conformation 

favoring its dissociation from G-beta-gamma and association with effector proteins. Similarly, 

the dissociated Gbeta-gamma can also interact with effectors. Third, the activation of G- protein 

subunits ends by hydrolysis of GTP to GDP by the GTPase activity of the G-alpha subunit, 
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enabling re-association with Gbeta-gamma. Following re- association, the heterotrimeric G- 

protein can interact again with GPCRs and the activation cycle can continue (Solis, et al, 2014).  

Co-expression of GPCRs with an inwardly rectifying potassium (Kir) channel reporter 

allows for membrane-delimited G- protein signaling, and its quantification can be achieved 

through measurement of ionic currents. Kir channels are named for their ability to conduct K+  

ions better in the inward (Vm < Ek) rather than the outward (Vm > Ek) direction (Hibino et al., 

2010). Assessment of Gq signaling in oocytes involves co-expression of a Gq-coupled GPCR 

with a channel reporter, followed by ligand-induced hydrolysis of PIP2 resulting in current 

inhibition (Figure 2). Kir activity is highly dependent on interactions with PIP2 to maintain its 

activity. Stimulation of the Gq coupled GPCR by the appropriate ligand leads to activation of 

PLC and hydrolysis of PIP2 to inositol triphosphate (IP3) and diacylglycerol (DAG). The 

decrease in PIP2 concentration in the immediate vicinity of the channel causes diffusion of 

bound PIP2 away from the channel-binding site resulting in current inhibition. IP3 stimulates 

Ca2+ release from endoplasmic reticulum stores, while DAG stimulates PKC that phosphorylates 

many protein targets (Keselman, 2007).  

The Gq-coupled GPCR used in this experiment is the 5HT2A serotonin receptor. The 

5HT2 receptors are one of seven families that have been identified (5HT1-5HT7) and 

subpopulations have been described for several of these. The family of 5HT2 receptors are all 

GPCRs, except for 5HT3 receptors which are nonselective Na+/K+ ion channel receptors 

(Glennon, 2000). The three receptor subtypes within the 5HT2 family have 70 to 80% sequence 

homology, and have been found to be consistent with those of transmembrane-spanning GPCRs 

coupled to a phosphoinositol second messenger system (Glennon, 2000). 5HT2A receptors are 

mainly expressed in the Central Nervous System (CNS), with a distribution of these receptors at 
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various densities throughout the brain. The highest density is in the neocortex, specifically in the 

frontal cortex and hippocampus modulating local circuitry. Both of these brain areas are known 

to be involved importantly in associative learning across a number of species and learning 

paradigms (Zhang, 2013). These receptors have also received considerable attention from a 

neuropsychiatric standpoint. Various antipsychotic agents and antidepressants bind with 

relatively high affinity to the 5HT2A receptors. For example, chronic administration of 5HT2A 

antagonist results in a paradoxical down-regulation of 5HT2A receptors; such a down- regulation 

would be of benefit in the treatment of depression (Glennon, 2000). 5HT2A receptors also play a 

role in anxiety, depression, schizophrenia, migraine and drug abuse.  Several 5HT2A antagonists 

are currently in clinical trails as potential antipsychotic agents. Compared to indolealkylamine 

and classical hallucinogens (such as LSD), phenylalkylamine hallucinogens (such as DOB, DOI) 

are much more 5HT2 selective (Glennon, 2002).  

Risperidone is an atypical antipsychotic and an inverse agonist at 5HT2A receptors 

(Marder, 1997). Inverse agonists bind to constitutively active receptors, stabilize them and shift 

receptor equilibrium towards the inactive state, reducing the level of basal activity (Milligan, 

2003). It is most often used to treat delusional psychosis such as schizophrenia, in addition to 

some forms of bipolar disorder and psychotic depression (Glick, et al, 2001). Schizophrenia is a 

devastating psychiatric disorder, having its onset in puberty and lasting throughout life (Schotte, 

1996).  Conventional antipsychotic agents have displayed major shortcomings in the treatment of 

schizophrenia: the induction of neurological side effects (dystonia, parkinsonism, akathisia, 

tardive dyskinesia) and often a lack of efficacy for the treatment of the negative symptoms of 

schizophrenia (Seeman 1980; Ellenbroek 1993). Clinical studies have shown risperidone to 

improve both the positive symptoms (hallucinations, delusional thinking, severe excitement and 
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unusual behavior) and the negative symptoms (anergy, apathy, lack of drive, social withdrawal 

and depressive mood) of schizophrenia with a low incidence of extrapyramidal side effects 

(EPS) (Megens, 1994). Although both types of symptoms are independent from each other, they 

may coexist in the same patient (Stevens 1973; Crow 1980; Hafner 1993). It has also shown 

some success in treating symptoms of Asperger’s Syndrome and autism (Fisman, et al, 1996). 

The actions of risperidone are considered before those of other 5HT2 antagonists because this 

drug is the most potent and selective 5HT2A antagonist available to clinicians (Schotte, 1996; 

Richelson and Souder, 2000). 

Risperidone is a benzisoxazole derivative. Its molecular structure is shown in Figure 1A. 

The short-term aim of this study is to examine four deconstructed analogs of risperidone to 

determine the portion that is important to 5HT2AR functional activity and response.  Risperidone 

was deconstructed by first removing a portion of the diazabicyclo ring to afford RHV-023 and 

RHV-026 (Fig. 1). The next two compounds, RHV-008 and RHV-006, solely contain the 

piperidine ring and the benzisoxazole ring system (Fig. 1B). RHV-008 contains a methyl group, 

derived from the carbon chain, whereas, RHV-006 does not retain the methyl group (Gaitonde, 

2013). 

We demonstrated that all four deconstructed analogs have a functional effect on the 

5HT2A receptor. The data were collected mainly by performing two-electrode voltage clamp 

recordings and epifluorescence calcium imaging.  
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Figure 1. Risperidone and its deconstructed analogs along with 
serotonin. 
 
A 
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Figure 2. PIP2 signaling pathway indirectly modulates ion channels 

through the activation of protein kinase C (PKC) and Ca2+ 

dependent enzymes using secondary messengers. Activation of 

phospholipase C (PLC) results in the hydrolysis of phosphatidylinositol (PIP2) to produce 

inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG). IP3 activates Ca2+ channels in the 

endoplasmic reticulum (ER) triggering the release of Ca2+ from intracellular stores. The 

cytoplasmic rise in Ca2+ level and DAG then activate protein kinase C (PKC), which in turn 

phosphorylates K+ channels, thereby modulating current across the membrane. 
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MATERIALS AND METHODS 
 

A) Electrophysiology 

Xenopus laevis oocytes have been used as a heterologous expression system for studying 

ion channels in a controlled cellular environment. Oocytes are enzymatically isolated, and 

microinjected with 1-2 ng cRNA constructs. Oocytes are then incubated for 2 days at 18°C for 

expression, as previously described (Solis, et al, 2014). The responses are analyzed 

electrophysiologically using the two-electrode voltage-clamp technique. A high potassium 

solution is used to record basal channel expression levels. The high potassium solution contains 

96 KCl, 1 NaCl, 1 MgCl2, 5 KOH/HEPES, in mM). A 3mM BaCl2 solution is used to block 

GIRK4* currents. The presence of an endogenous response is utilized as positive control for the 

second messenger system coupled to the initial response being studied. In the case of Gq- GPCR, 

a calcium- induced chloride spike is the endogenous response visualized as a large outward 

current spike and a smaller inward current spike.  

 

B) HEK-293 cells stably expressing 2AR 

 This cell line was kindly provided by Dr. Jose Miguel Eltit (Department of Physiology 

and Biophysics, Virginia Commonwealth University, Richmond, VA). To produce stable 

inducible cell lines using the Flp-In T- REx expression system (Invitrogen), the 2AR DNA 

fragment was subcloned into the pcDNA5/FRT/TO vector to generate the 

pCDNA5/FRT/2AR/FRT/TO plasmid. The inducible expressing cells were made following the 

manufacturer’s protocol. Briefly, the Flp-In T-REx host cell lines are HEK cells with a single 

FRT recombination site and a Tet repressor gene. The T-Rex system is a tetracycline regulated 

mammalian expression system that uses regulatory elements. These cells were co- transfected 
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with the pcDNA5/2AR/FRT/TO and the pOG44 plasmids. The latter encodes the Flp 

recombinase. Clones that have inserted a single copy of the gene inserted into the recombination 

site acquire a hdyrogmycin resistance. 2AR was induced adding doxycycline 1ug/mL to the 

culture media for 3 days.  

 

C) Cell Culture and Transient Transfection 

 These cells were maintained with guidance by Dr. Lia Baki (Department of Physiology 

and Biophysics, Virginia Commonwealth University, Richmond, VA). The HEK293 cell line 

stably expressing 5HT2AR was grown in Dulbecco’s modified Eagle’s medium (DMEM) 

(Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS) (Atlanta 

Biologicals, Inc., Lawrenceville, GA) and Hygromycin- containing media. The HEK cells were 

transiently transfected with 5HT2AR.  

 

D) Calcium Imaging 

The Ca2+ sensitive dye Fura2AM (Life Technologies) was dissolved in DMSO pluronic 

F-127 20% and then was diluted in Imaging Solution (recipe below). The Ca2+ unbound form of 

Fura2 gets excited at 380 nm and the Ca2+ bound form at 340 nm. The emitted light is measured 

at around 510 nm. The fluorescence intensity increases at 340 nm with increasing Ca2+ 

concentration and decreases at 380 nm for the unbound form resulting in an emitted ratio 

wavelength of 510 nm. For calcium imaging, load cells with Fura-2 AM (2 μM) diluted in 

calcium-containing extracellular imaging solution (IS) (130 NaCl, 4 KCl, 2CaCl2, 1MgCl2, 10 

Hepes, 10 glucose, pH 7.4, in mM) to get a final concentration of 5.5 μM. The cells were loaded 

for 25 minutes with Fura-2AM all at 37°C. Fura-2AM is a high affinity, intracellular calcium 
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indicator that is ratiometric and UV light excitable. Then the cells were washed twice with IS 

and placed on the stage of an epifluorescence microscope. All the compounds used were 

dissolved in IS and when high K+ solution was used in equimolar amount of NaCl it was 

substituted by KCl. The setup consists of an Olympus IX70 microscope equipped with a 

polychrome V (Till photonics, Gragelging, Germany) as a light source, a Luca S digital camera 

(Andor Technology, Belfast, UK), and an automatic perfusion system (AutoMate Scientific, 

Berkeley, CA). The imaging system was controlled by the Live Acquisition Software from Till 

Photonics. The measurements were done under constant perfusion at RT (23 degC) or at 35degC 

using a ThermoClamp-1 heater (AutoMate Scientific, Berkley, CA). The objective used was an 

Olympus 20x 0.8NA Oil. The Fura-2 signal was acquired switching the excitation wavelength 

between 340/10nm and 380/10nm at 6Hz, the dichroic mirror used was LP490 and the emission 

wavelength was 510/40nm. All signals were background subtracted.  

 

E) Statistical Analysis 

All oocyte recordings were obtained using Clampfit 9.2 (Molecular Devices, Sunnyvale, 

CA) and transferred to Excel software (Microsoft, Albuquerque, NM). The first few data points 

of the current versus time plot were averaged to obtain the basal current. The agonist-induced 

currents were obtained by averaging several current values that appear immediately after the 

slope of the ramp current started to change. Similarly, the data points after barium block were 

averaged. Barium-sensitive basal and agonist-induced currents were calculated by subtracting the 

current remaining after barium block from basal and agonist-induced currents, determined as 

described above. In the statistic analysis, basal and agonist-induced currents from each recording 

were again averaged. Error bars in the figures represent standard error. The standard deviations 
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for each data set were divided by the square root of the number of recordings to get the standard 

errors.  

All calcium imaging recordings were obtained using Live Acquisition (Innsbruck, 

Austria) and transferred to Excel software (Microsoft, Albuquerque, NM). The maximum and 

basal value (average value between 20 and 30 second) was taken. A threshold of 1.05 was used 

over the ratio of maximum to basal, to distinguish between responsive and non- responsive cells. 

In statistical analysis, the average maximum values from responsive and non-responsive cells at 

each concentration of RHV-006/8 were analyzed. Total number of cells was calculated between 

the two groups. Average time traces were graphed between different concentrations. Error bars 

in the figures represent standard error. The standard deviations for each data set were divided by 

the square root of the number of recordings to get the standard errors.  

Statistical significance of experiments involving four groups was assessed by one- way 

ANOVA. Statistical significance of experiments comparing two groups was assessed by 

Student’s t-test.  

 

F) Analogs 

 The exact chemical names for the deconstructed analogs are as follows: RHV-006 is 6-

fluoro-3-(piperidin-4-yl)benzisoxazole, RHV-008 is 6-fluoro-3-(1-methyl-piperidin-4-

yl)benzisoxazole,, RHV-023 is 4-[(4-(6-fluorobenzisoxazol-3-yl)piperidin-1-yl)-1-(piperidin-1-

yl)]butan-1-one and RHV-026 is 6-fluoro-3-[(1-(4-piperidin-1-yl)butylpiperidin-4-

yl)]benzisoxazole. All compounds were submitted as their HCl salts. They were synthesized in 

the laboratory. The synthesis is represented in the VAS slides and poster (Gaitonde, 2013). 
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RESULTS 
 
RHV-006 is a partial agonist and suppresses 5-HT activity on the 5HT2A receptor. 

Figure 3 shows time course examples of serotonin and RHV-006 effects on GIRK currents.  

Figure 3A reports currents at Vm=-80mV (negative currents) and Vm=+80mV (positive 

currents). 1μM 5-HT elicited large transient calcium-activated chloride currents that showed 

outward rectification. In addition, there is a 5-HT induced inhibition of the inwardly rectifying 

GIRK4* current. In contrast, RHV-006 did not induce calcium-activated chloride current spikes, 

but did inhibit GIRK4* currents (Figure 3B).  When comparing the relative inhibition by these 

ligands, 5-HT at 1µM and RHV-006 at 10 µM, the risperidone fragment elicited 34% agonism 

compared to 5-HT from 10 experiments in oocytes from 3 different frogs (Figure 4). The RHV-

006 effects showed saturation by 0.1µM (Figure 5). Additional experiments will be necessary to 

obtain a full dose-response leading to the saturated levels of the effect.  When applied together 

with 1µM 5-HT, 10 µM RHV-006 reduced Gq activity by ~67% (Figure 6), bringing the current 

to its saturated level of partial agonism (see Figure 6).  A dose-dependent response of RHV-006 

inhibition of the 5-HT response is shown in Figure 7, where it can be seen that the half maximal 

inhibition lies between 0.1-5 µM.  

 

RHV-008 is also a partial agonist and suppresses 5-HT activity on the 5HT2A receptor. 

Figure 8 shows current time courses for 5-HT (Figure 8A) and RHV-008 (Figure 8B).  Just like, 

RHV-006, RHV-008 did not induce Ca2+-activated Cl- currents.  RHV-008 elicited 27% agonism 

when applied alone at 10μM (Figure 9). Application of RHV-008 alone showed partial agonism 

saturation by 10μM (Figure 10). Additional experiments will be required for a full dose-response 

curve to determine the EC50 value for this compound. When applied together with 1µM 5-HT, 10 
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µM RHV-008 reduced Gq activity by ~77% (Figure 11). Application of RHV-008 together with 

1 μM 5-HT showed that the receptors became saturated by around 5 μM (Figure 12).  

 

RHV-023 and RHV-026 are weak agonists and have an additive effect on 5-HT activity on 

5HT2AR.  

Application of 10μM RHV-023 and RHV-026 together with 1µM 5-HT produced partial 

agonism of ~45% and ~74%, respectively (Figure 13) (data produced by Jason Younkin and 

Peter Drossopoulos)).  Figure 13 compares the partial agonism of all four deconstructed 

risperidone fragments. In the presence of 5-HT, RHV-023 and RHV-026 did not decrease the 5-

HT-mediated inhibition of K+ currents (Figure 14).  In fact, RHV-026 was additive to the 5-HT 

effect, suggesting that these two compounds did not compete with 5-HT to trigger their effects. 

 

Figure 15 summarizes the effects of the deconstructed risperidone fragments on their partial 

agonism and their effect on the 5-HT effects on the 5HT2AR. 

 

Cells transfected with 2AR show a decrease in calcium signaling when RHV-006 or RHV-

008 is added along with 5-HT. 

The addition of 1μM 5-HT to 2AR expressing HEK-293 cells using epifluorescence showed a 

robust calcium signaling increase, with the Fura2 ratio (340/380nm) reaching 1.6 (Figure 16A). 

However, addition of 10 μM of RHV-006 (Figure 16D) or RHV-008 (Figure 16E) alone did not 

elicit a calcium signal, consistent with the experiments in oocytes where these compounds did 

not elicit Ca2+-activated Cl- currents (see Figures 3B and 8B). When 10μM of RHV-006 (Figure 

16B) or RHV-008 (Figure 16C) was added to 2AR cells in the presence of 1μM 5-HT, however, 
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both the number of cells responding and the level of responses to 5-HT decreased. Only 28% of 

all cells showed a calcium response to 10μM RHV-006 in the presence of 1μM 5-HT. 30% of all 

cells showed a calcium response to 10μM RHV-008 in the presence of 1μM 5-HT (Figure 17). 

Thus, a large number of cells did not show a calcium response to 1μM 5-HT in the presence of 

10μM RHV-006/8. Furthermore, the level of response of the responsive cells decreased with the 

addition of RHV-006/8. Addition of 10μM RHV-006 showed an approximately 65% decrease in 

the Fura2 ratio calcium response (Figures 16B, 18) compared to that of 1μM 5-HT. Addition of 

10μM RHV-008 showed an approximately 40% decrease in the Fura2 ratio calcium response 

(Figures 16C, 18) compared to that of 1μM 5-HT. A dose response, using the addition of 7 

concentrations of RHV-008 (0.01uM, 0.1μM, 0.5uM, 1μM, 5uM, 10μM, 100uM) to 1μM 5-HT, 

showed a decrease of the level of response (Figures 19, 20) starting at 5 μM RHV-008. 100 μM 

RHV-008 and 1 μM 5-HT showed almost no calcium response – the signal was completely 

quenched at this concentration. Interestingly, the concentrations lower than 5uM showed a 

kinetic change, according to their decrease in Fura2 ratio level of response over a period of time 

compared to the time trace of 1μM 5-HT applied alone. 
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Figure 3. Gq signaling activity of 2AR in response to serotonin and 

RHV-006. Representative barium- sensitive traces of GIRK4* currents obtained in oocytes 

in (A) response to 1μM serotonin (5-HT) and (B) response to 10 µM of RHV-006. Note the lack 

of a calcium- induced chloride spike, visualized as a large spike in the outward current, when 

RHV-006 is added, compared to an evident spike with serotonin.  
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Figure 4. Agonism of 10μM RHV-006 on 2AR. Normalized Gq activity 

(GIRK4* current inhibition) compared to basal currents of 10μM RHV-006 obtained in oocytes 

expressing 2AR.  Each bar is normalized to the Gq activity of 1μM 5-HT. Each bar represents 

n=3 frogs and 10 oocytes each with error bars depicting the standard error of the mean.  

(*** indicates 95% confidence intervals do not overlap; estimated p-value ≤ 0.001 compared to 

1μM 5-HT ) 
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Figure 5. Saturation of RHV-006 Agonism. Summary of normalized Gq 

activity (GIRK4* current inhibition) compared to basal currents obtained in oocytes expressing 

2AR in response to increasing concentrations (0.01uM to 10μM) of RHV-006. By 0.1μM RHV-

006, saturating agonist effects have been reached; 10μM of RHV-006 does not give any larger 

effect. Each bar is normalized to the Gq activity of 1μM 5-HT. Each bar represents n=1 frog and 

4-5 oocytes each with error bars depicting the standard error of the mean. (*** indicates 

p<0.0001 for comparison to 1μM 5-HT. �indicates p<0.05 for comparison to 0.01μM RHV-

006) 
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Figure 6. Effect of 10μM RHV-006 in the presence of 5-HT on 

5HT2AR. Normalized Gq activity (GIRK4* current inhibition) compared to basal currents of 

10μM RHV-006 in the presence of 1μM 5-HT obtained in oocytes expressing 2AR.  Each bar is 

normalized to the Gq activity of 1μM 5-HT. Each bar represents n=3 frogs and 15 oocytes each 

with error bars depicting the standard error of the mean. (*** indicates 95% confidence intervals 

do not overlap; estimated p-value ≤ 0.001 compared to 1μM 5-HT) 
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Figure 7. Inhibition Dose Response of RHV-006 in the presence of 5-

HT. Summary of normalized Gq activity (GIRK4* current inhibition) compared to basal 

currents obtained in oocytes expressing 2AR in response to increasing concentrations (0.01uM to 

10μM) of RHV-006 in the presence of 1μM 5-HT. Each bar is normalized to the Gq activity of 

1μM 5-HT. (*** indicates p<0.0001 for comparison to 1μM 5-HT. ����indicates p<0.0001 

for comparison to 1μM 5-HT + 0.01μM RHV-006)
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Figure 8. Gq signaling activity of 2AR in response to serotonin and 

RHV-008. Representative barium- sensitive traces of GIRK4* currents obtained in oocytes 

in (A) response to 1μM serotonin (5-HT) and (B) response to 10 µM of RHV-008. Note the lack 

of a calcium- induced chloride spike, visualized as a large spike in the outward current, when 

RHV-006 is added, compared to an evident spike with serotonin. 
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Figure 9. Agonism of 10μM RHV-008 on 5HT2AR. Normalized Gq activity 

(GIRK4* current inhibition) compared to basal currents of 10μM RHV-008 obtained in oocytes 

expressing 2AR.  Each bar is normalized to the Gq activity of 1μM 5-HT. Each bar represents 

n=3 frogs and 12 oocytes each with error bars depicting the standard error of the mean. (*** 

indicates 95% confidence intervals do not overlap; estimated p-value ≤ 0.001 compared to 1μM 

5-HT) 
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Figure 10. Saturation of RHV-008 Agonism. Summary normalized Gq activity 

(GIRK4* current inhibition) compared to basal currents obtained in oocytes expressing 2AR in 

response to increasing concentrations (0.1μM to 100uM) of RHV-008. By 10μM RHV-008, 

saturating agonist effects have been reached; 100uM of RHV-006 does not give any larger effect. 

Each bar is normalized to the Gq activity of 1μM 5-HT. (* indicates 95% confidence intervals do 

not overlap; estimated p-value<0.05 compared to 1μM 5-HT) 

 
 
 
 
 
 
 
 

!
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Figure 11. Effect of 10μM RHV-008 in the presence of 5-HT on 

5HT2AR. Normalized Gq activity (GIRK4* current inhibition) compared to basal currents of 

10μM RHV-008 in the presence of 1μM 5-HT obtained in oocytes expressing 2AR.  Each bar is 

normalized to the Gq activity of 1μM 5-HT. Each bar represents n=3 frogs and 12 oocytes each 

with error bars depicting the standard error of the mean. (*** indicates 95% confidence intervals 

do not overlap; estimated p-value ≤ 0.001 compared to 1μM 5-HT) 
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Figure 12. Inhibition Dose Response of RHV-008 in the presence of 

5-HT.  Summary of  normalized Gq activity (GIRK4* current inhibition) compared to basal 

currents obtained in oocytes expressing 2AR in response to increasing concentrations (0.1μM to 

10μM) of RHV-008 in the presence of 1μM 5-HT. Each bar is normalized to the Gq activity of 

1μM 5-HT. (*** indicates p<0.0001 for comparison to 1μM 5-HT. ����indicates p<0.0001 

for comparison to 1μM 5-HT + 0.1μM RHV-008) 
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Figure 13. RHV Agonism Totals. Summary bar graph of the agonist- induced Gq 

activity of RHV-006, RHV-008, RHV-023 and RHV-026. Each bar is normalized to the Gq 

activity of 1μM 5-HT. Each bar represents n=2-3 frogs and 7-12 oocytes each with error bars 

depicting the standard error of the mean. (*** indicates p<0.0001 for comparison to 1μM 5-HT. 

���indicates p<0.001 for comparison to 10μM RHV-008, $ indicates p<0.0.05 for 

comparison to 10μM RHV-006 ) 
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Figure 14. Total RHV Effects in the Presence of 5-HT. Summary bar 

graph of the agonist- induced Gq activity in the presence of 1μM 5-HT of RHV-006, RHV-008, 

RHV-023 and RHV-026. Each bar is normalized to the Gq activity of 1μM 5-HT. Each bar 

represents n=3 frogs and 12-15 oocytes each with error bars depicting the standard error of the 

mean. (*** indicates p<0.0001 for comparison to 1μM 5-HT, ** indicates p<0.001 for 

comparison to 1μM 5-HT, * indicates p<0.05 for comparison to 1μM 5-HT. ����indicates 

p<0.0001 for comparison to 10μM RHV-006 and 10μM RHV-008, $ indicates p<0.05 for 

comparison to 10μM RHV-023) 
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Figure 15. Summary of RHV Analogs. Summary chart of the agonist-induced Gq 

activity values of RHV-006, RHV-008, RHV-023 and RHV-026 compared to 1μM 5-HT (100% 

Gq activity). 

 
 

 
 
 
 
 
 
 
 
 



! 27!

 
Figure 16. Calcium Signal of RHV-006 and RHV-008 by themselves 

and in the Presence of 5-HT using Epifluorescence Assay. Three images 

of representative time series of Fura2 fluoresence intensity (340nm/380nm) obtained in HEK 

cells expressing 2AR with the addition at 30 seconds of (A) 1μM Serotonin, (B) 1μM Serotonin 

and 10μM RHV-006, (C) 1μM serotonin and 10μM RHV-008. The protocol for (A), (B) and (C) 

is: low potassium (30 s), compounds (45 s) and low potassium (30 s). Two images of 

representative time series of Fura2 fluoresence intensity (340nm/380nm) obtained in HEK cells 

expressing 2AR with the addition at 30 seconds of (D) 10μM RHV-006 and (E) 10μM RHV-008 

shows no calcium response; after washing with low potassium, 1μM of serotonin is added at 85 

seconds in (D) and (E). The protocol for (D) and (E) is: low potassium (30 s), compound (45 s), 

1μM serotonin (30 s), low potassium (30 s). Each line depicts one cell. 
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Figure 17. % Calcium Responsive Cells vs % Non- Calcium 

Responsive Cells of RHV-006 and RHV-008 in the presence of 5-HT. 
The bar graph summarizes the percent of calicium responsive and non- calcium responsive cells 

of (A) 10μM RHV-006 in the presence of 1μM 5-HT (1 experiment in 80 cells total) and 

(B)10μM RHV-008 in the presence of 1μM 5-HT (1 experiment in 94 cells total). (C) shows a 

summary chart of percent values of calcium responsive and non- calcium responsive cells of both 

RHV-006 and RHV-008 in the presence of 1μM 5-HT. 
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Figure 18. Normalized Calcium Response of Responsive Cells of 

RHV-006 and RHV-008 in the presence of 5-HT. Fura2 fluoresence maximal 

intensities of 1μM 5-HT, the addition of 10μM RHV-006 and 10μM RHV-008 were evaluated at 

30 seconds and normalized to their initial values at 0 seconds (100%). All ratios were then 

normalized to the ratio of 1μM 5-HT.  The protocol is low potassium (30 s), compounds (45 s) 

and low potassium (30 s). Only HEK293 cells showing a calcium response were analyzed. (*** 

indicates 95% confidence intervals do not overlap; estimated p-value ≤ 0.001 compared to 1μM 

5-HT) 
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Figure 19. Average Time Traces of Responsive Cells of RHV-008 at 

Various Concentrations in the Presence of 1μM 5-HT. Representative 

time series of Fura2 fluoresence intensity (340nm/380nm) obtained in HEK cells expressing 

2AR with the addition at 30 seconds of increasing concentrations (0.01uM to 100uM) of RHV-

008 in the presence of 1μM 5-HT. The protocol is low potassium (30 s), compounds (45 s) and 

low potassium (30 s). Only HEK293 cells showing a calcium response were analyzed. 
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Figure 20. Inhibition Dose Response of RHV-008 in the presence of 

5-HT in HEK Cells. Fura2 fluoresence intensities of 1μM 5-HT and the addition of 

increasing concentrations (0.01uM to 100uM) of RHV-008 were evaluated at 30 seconds and 

normalized to their initial values at 0 seconds (100%). All ratios were then normalized to the 

ratio of 1μM 5-HT. The protocol was as follows: 30 seconds of low potassium solution, 45 

seconds of solution of interest and 30 seconds of low potassium solution.  Only HEK293 cells 

showing a calcium response were analyzed. 
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DISCUSSION AND FUTURE DIRECTIONS 
 

The purpose of this study was to examine four deconstructed analogs of risperidone to 

determine the portion(s) of the molecule that is (are) important to 5HT2AR functional activity 

and response (Figure 1). Risperidone is a novel antipsychotic that possesses advantages over 

other antipsychotic agents in terms of efficacy and side effects. Ascertaining which analog 

accounts for risperidone’s action  was investigated in two functional assays: the two-electrode-

voltage clamp (TEVC) and the Epifluorescence technique. We employed the GIRK4* channel as 

a reporter of Gq-coupled GPCR signaling and used two-electrode voltage-clamp to monitor 

currents. Perfusion with 1μM 5-HT caused a robust inhibition of K+ current. The spike observed 

at the onset of serotonin perfusion signifies activation of the oocyte endogenous Ca2+- activated 

chloride current (ICl-Ca) and provides additional evidence of the serotonin- induced PIP2 

hydrolysis and IP3 mediated rise in intracellular Ca2+ (Figure 2).   

 The normalized Gq activation (relative to the maximal current inhibition – 100%) was 

plotted as a function of serotonin concentration. Perfusion with 10μM RHV-006 (Figure 4) or 

RHV-008 (Figure 9) alone showed approximately 30% normalized Gq activity using a TEVC 

functional assay. Although inhibition of current was clear, we did not observe a Ca2+-activated 

chloride current spike. In the TEVC assay, these deconstructed analogs were seen as partial 

agonists. Interestingly, neither compound elicited a calcium signal while using Epifluoresence 

microscopy (Figures 3 and 8). A possible explanation for this may due to insufficient PIP2 

hydrolysis and IP3 production for Ca2+ release from endoplasmic reticulum stores. Although a 

decrease in PIP2 concentration in the immediate vicinity of the channel would cause diffusion of 

its bound PIP2 away from the channel binding site resulting in current inhibition and was evident 
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with TEVC, there was no downstream rise in intracellular Ca2+ evident with TEVC or 

Epifluorescence.   

 Since GIRK4* current inhibition signified Gq activation, we then proceeded to 

investigate the concentrations at which RHV-006 and RHV-008 agonism showed saturation, and 

plot them as a function of serotonin concentration at 1µM. Agonism with RHV-006 appears to 

saturate by 0.1μM (40% normalized Gq activity) (Figure 5), while agonism with RHV-008 

appears to saturate by 10μM (65% normalized Gq activity) (Figure 10). Next, we investigated 

the concentrations at which the RHV-006 and RHV-008 inhibitory effects on serotonin activity 

were saturated. The normalized Gq activation (relative to the maximal current inhibition – 100%) 

was plotted as a function of serotonin concentration. We proceeded to perform a serotonin 

inhibition dose- response experiment with RHV-006 and determine the apparent affinity of 2AR 

for serotonin in the Xenopus oocyte expression system. The results of the dose- response 

experiment allow us to extrapolate a likely IC50 of approximately 0.1μM (Figure 7). 

(Additionally, inhibition of 2AR with RHV-008 and 1μM 5-HT seems to saturate at 5uM of 

RHV-008 (Figure 12).  

 We then looked at both RHV-006 and RHV-008’s effects in the presence of serotonin 

using calcium imaging. 10μM of RHV-006 and RHV-008 showed a significant decrease in the 

number of calcium responsive cells (~20%) (Figure 17). The time traces also showed a 

significant number of unresponsive cells in the presence of both RHV-006/8 and 1μM 5-HT 

(Figures 16, 17). In addition, the level of response of the responding cells is also decreased. 

Since a decrease in calcium signals signifies a change at binding at the receptor level, we then 

proceeded to perform a serotonin inhibition dose- responsive experiment with RHV-008 in the 

presence of 1μM 5-HT using the HEK293 2AR cell line. Figure 19 nicely shows the progressive 
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time traces of increasing RHV-008 concentrations in the presence of 1μM 5-HT; the level of 

response of these responsive cells decreased starting at 5uM RHV-008. Figure 20 shows that the 

IC50 of RHV-008 in the presence of 1μM 5-HT lies between 5 and 10μM. It can also be 

extrapolated that there are receptor- ligand kinetics involved between RHV-008 and serotonin 

binding to 2AR over time. Specifically, the IC50 at 85 seconds is 0.5µM, a greater than 10-fold 

difference from the IC50 at 30 seconds. It is conceivable that in some cases, such as in dynamic 

regulation of signal transduction processes, kinetic control prevails rather than affinity control.  

The data for analogs RHV-023 and RHV-026 were kindly provided by Jason Younkin 

and Peter Drossopoulos. RHV-023 and RHV-026 have 45 and 74% Gq agonism respectively and 

consequently seem to be more efficacious agonists than RHV-006 and RHV-008. Both RHV-023 

and RHV-026 do not appear to affect serotonin’s activity; in fact, RHV-026 seems to have a non- 

antagonistic, additive effect on serotonin’s activity.  

Our two-electrode voltage-clamp assay findings show that all four deconstructed analogs 

by themselves have partial Gq activity normalized to basal. However, the Epifluorescence assay 

does not show downstream calcium signaling of these compounds. This could be explained by 

the greater sensitivity of the TEVC assay at the receptor- channel membrane level, and perhaps 

insufficient PIP2 hydrolysis for intracellular calcium release. Next, our findings show that the 

addition of 1-(piperidin-1-yl)butane (structure in analogs RHV-023 and RHV-026) (Fig. 1B) to 

the piperidine ring and benzisoxazole ring system does not suppress the activity of serotonin, but 

the removal of this structure greatly suppresses serotonin’s activity. Interestingly, although 

RHV-006 and RHV-008 are structurally most similar to serotonin, these analogs instead act 

similarly to risperidone. On the other hand, RHV-023 and RHV-026 act the least similarly to 
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risperidone, but have the most structural similarity. This could be accounted for by the removal 

of the amine and methyl group from the risperidone molecule.  

In conclusion, the smaller compounds, RHV-006/8, are partial agonist by themselves and 

antagonize the effects of serotonin down to their partial agonism level. The longer compounds, 

RHV-023/26, are more efficacious agonists than RHV-006/8, but do not display an antagonistic 

effect on serotonin, unlike compounds RHV-006/8.   

Further research is needed to complete deconstructed analogs’ dose responses for 

agonism and antagonism using the TEVC assay. Additionally, further research is needed to 

complete the same dose responses using the epifluorescence assay. The combined study of these 

deconstructed analogs using both assays discussed in the present work will give us a better idea 

of the portion of risperidone that is important to 5HT2AR functional activity and response. 
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