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IMPACT OF POST-SYNTHESIS MODIFICATION OF NANOPOROUS ORGANIC 

FRAMEWORKS ON SELECTIVE CARBON DIOXIDE CAPTURE 

By Timur İslamoğlu, M.Sc. 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science at Virginia Commonwealth University 
 

Virginia Commonwealth University, 2013 
 

Director: Hani M. El-Kaderi, Assistant Professor, Department of Chemistry 
 
 
Porous organic polymers containing nitrogen-rich building units are among the most 

promising materials for selective CO2 capture and separation applications that impact 

the environment and the quality of methane and hydrogen fuels. The work described 

herein describes post-synthesis modification of Nanoporous Organic Frameworks 

(NPOFs) and its impact on gas storage and selective CO2 capture. The synthesis of 

NPOF-4 was accomplished via a catalysed cyclotrimerization reaction of 1,3,5,7-

tetrakis(4-acetylphenyl)adamantane in Ethanol/Xylenes mixture using SiCl4 as a 

catalyst. NPOF-4 is microporous and has high surface area (SABET = 1249 m2 g-1). Post-

synthesis modification of NPOF-4 by nitration afforded (NPOF-4-NO2) and subsequent 

reduction resulted in an amine-functionalized framework (NPOF-4-NH2) that exhibits 

improved gas storage capacities and high CO2/N2 (139) and CO2/CH4 (15) selectivities 

compared to NPOF-4 under ambient conditions. These results demonstrate the impact 



xiii 
 

of nitro- and amine- pore decoration on the function of porous organic materials in gas 

storage and separation application. 
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Chapter 1  

Introduction 

 

1.1 Global CO2 Concerns 

 The increase in CO2 concentration in the atmosphere is an urgent global problem 

that needs to be addressed immediately. Over the last fifty years, CO2 concentration 

has increased from about 310 ppm to over 390 ppm and CO2 emission from power 

plants has been identified as one of major contributors.1 Currently, ~85% of the world’s 

energy comes from fossil fuel sources and realistically, this situation will not change 

until sustainable and cleaner energy sources and technologies become widely available 

at a reasonable cost which will take time.2 An alternative way to reduce CO2 emission is 

switching from coal-fired power plants to natural gas-fired power plants since natural 

gas has a lower carbon footprint. For the same reason, the use of natural gas in 

automotive applications is highly desired; however, natural gas found in reservoirs has 

tangible amounts of CO2, N2, and H2S that need to be minimized before transport and 

use. Natural gas purification processes involve CO2 and H2S removal to prevent 

pipeline corrosion and to increase the energy density of this methane-rich gas making 

its onboard storage and use more effective. As a result of the economical and 

environmental impacts of gaseous impurities, selective CO2 capture and sequestration 

(CCS) have attained great attention over the past decades. Particularly, the selective 

separation of CO2 from N2, CH4, and H2 has gained interest since carbon dioxide is the 
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main impurity in flue gases (gases that exit to the atmosphere via an exhaust port such 

as smoke stacks from power plants) as well as natural gas. Advancements in this area 

by the scientific and industrial communities can limit the release of this greenhouse gas 

to the atmosphere and can lead to the production of high purity natural gas in a more 

economically and friendly manner.3-5 

1.2 CO2 Capture Technologies 

 Different technologies and associated materials exist for CO2 separation and 

captures as schematically illustrated in Figure 1.1. With the current technology, the most 

widely employed method to capture CO2 from flue gas is by chemisorption where CO2 is 

chemically absorbed by solutions that contain amine organic solvent (typically 30 wt% in 

water) such as monoethanolamine (MEA) which is the most common amine compound 

used. In such systems, the flue gas is scrubbed with an amine solution, where up to 

98% of CO2 can be captured.6 The CO2-laden solvent is then pumped to a second 

vessel where heat is applied to regenerate the amine solution by releasing absorbed 

CO2. Even though this process is the current state-of-the-art technology, there are 

several concerns because of the enormous energy required for solvent regeneration. 

This concern stems from the fact that the regeneration of amine solutions consumes 

great amount of energy due to the high heat capacity of water. Moreover, the volatile 

nature of amines in addition to their decomposition during regeneration processes result 

in the loss of absorbent over time. In addition, amine sorbents themselves are corrosive, 

not stable in the presence of sulfur containing compounds, and during regeneration 

when the sorbent is heated, they can be oxidized by oxygen present it the gas stream.7 

Recent studies have indicated that electricity cost would increase by ~80% if CO2 were 
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to be captured by aqueous MEA absorption processes that eliminate CO2 from the flue 

gas of coal-fired power plants and such processes can consume about 40% of the 

energy output of the plant.8 The expected properties of an ideal liquid absorbent can be 

summarized as high capture capacity and selectivity towards the targeted gas, 

regeneration with a minimal amount of input energy, thermal and chemical stability, and 

a straightforward synthetic route from accessible precursors. Today’s inventories of 

adsorbents for carbon dioxide capture application, unfortunately, are far from combining 

two or more of these properties together.9 
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Figure 1.1: Different technologies and associated materials for CO2 separation and 

capture.  

 

Membrane-based CO2 separation has also been studied extensively as an 

efficient way to capture CO2. Membranes can be prepared from a wide range of 

materials such as organic polymers, zeolites, ceramics and they can be porous or non-

porous. The driving force for CO2 in the system can be achieved by having higher 

partial pressure on one side of the membrane relative to the other side which can be 

obtained by pressurizing the one side and/or applying vacuum on the other side. 

Membranes cannot be optimized for large volume of gas separation since they cannot 

usually achieve high degree of separation.10 Therefore, multiple treatments are 
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necessary and also they suffer from sulfur and other trace contaminants. In addition, 

their feasibility decreases when CO2 concentration in the feed stream are below 20%.11 

Another approach to capture CO2 from flue gas is the use of porous solids. With 

this approach, the regeneration energy penalty is greatly reduced compared to MEA 

solution process because water is no longer part of the capturing process. The 

development of efficient systems with solid adsorbents depends on the design of new 

materials with high stability, reversible and high adsorption capacity, and high selectivity 

under industrial conditions. Zeolites and activated carbon have also been extensively 

studied for CO2 capture.12,13 Even though zeolites, porous alumina silicate materials, 

perform better than MEA absorbents, their low CO2 capacity and instability in the 

presence of water limit their usage.14 Activated carbon shows better CO2 adsorption 

capacity compared to zeolites, but it generally suffers from low selectivity of CO2 over 

N2 and CH4.
6 Among the emerging alternatives that can mitigate the aforementioned 

problems are Metal-Organic Frameworks (MOFs). MOFs are crystalline hybrid materials 

that combine organic ligands (linkers) and metal ions (nodes) and they have attracted 

intense research interest due to their tunable chemical and physical properties. Their 

extremely high surface area, permanent porosity, thermal stability, well-defined 

structures, and tunable pore functionality have made them plausible adsorbents for CO2 

and other gases such as methane and hydrogen. However, the limited chemical stability 

of MOFs under practical conditions due to non-covalent nature of framework 

significantly limits their application to CO2 capture and separation processes. To 

address this limitation, porous organic polymers (POPs), have been identified as 

alternatives for carbon capture from flue gas as well as natural gas sweetening. POPs 
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are highly cross-linked, amorphous polymers possessing nanopores with high surface 

area. Unlike MOFs, POPs are metal-free purely organic frameworks linked by covalent 

bonds and display remarkable physicochemical stability. Due to their stable covalent 

nature, POPs are in general not subject to hydrolysis in the presence of water and 

remain intact under acidic or basic conditions. Under thermodynamic and kinetic 

controls, POPs can be designed to form crystalline networks known as covalent-organic 

frameworks (COFs) such as those linked by B-O, C-N, and B-N bonds.15-17 It should be 

mentioned that these COFs have limited stability under aqueous conditions and lose 

their porosity.  In contrast, POPs’ physical and chemical stability allow for their chemical 

modification, a process that imparts desirable properties such as pore hydrophobicity 

which is central for gas separation and storage, sensing, and catalysis.  

1.3 Porous Solid Adsorbents for CO2 Capture 

Porous materials, including POPs, are classified depending on the size of the 

pores. According to IUPAC classification, microporous solids have pore width not 

exceeding 2 nm; mesoporous materials are materials that exhibit pore width ranging 

from 2 - 50 nm, and macroporous materials having pores larger than 50 nm.18 

Synthetic porous materials (MOFs, COFs, POPs, etc) have attracted 

considerable attention due to their tunable chemical and physical nature that is not 

accessible for other porous materials such as zeolites, porous silica, and activated 

carbon. They can be processed easily; for instance, they can be produced in a molded 

monolithic form that makes them very attractive for use in a wide range of applications. 

In addition, some soluble porous polymers can be processed by solvent-based 
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techniques without losing their porosity, in contrast to those of naturally occurring 

porous materials listed above.19 

The list for synthetic porous organic materials includes those developed by El-

Kaderi such as Benzaimidazole-Linked Polymers (BILP),20 Borazine-Linked Polymers 

(BLPs),21,22 and Nanoporous Organic Frameworks (NPOF),23 and many other systems: 

Porous Aromatic Framework (PAF),24 Porous Polymer Networks (PPN),25 Polymer 

Intrinsic Microporosity (PIM),26 Covalent Triazine Frameworks (CTZ)27 and Conjugated 

Microporous Polymers (CMP).28 Almost all synthetic strategies to obtain porous 

materials employ either ditopic or polytopic functional organic linkers in order to attain 

extended frameworks. Desired textural properties such as extremely high surface area, 

permanent porosity, and narrow pore size distribution can be achieved by varying the 

molecular building units during synthesis. Combined together, these parameters dictate 

the structure-function relationship in POPs and determine their effectiveness in CO2 

capture applications. 

In order for a porous organic polymer to be useful for carbon capture from flue gas 

as well as natural gas stock, the following criteria must be met.6 

 The adsorbent needs to have high CO2 adsorption capacity in order to make 

adsorbent column smaller. 

 The adsorbent needs to have high selectivity toward CO2. Since CO2 is not the 

major component, highly selective adsorbent will increase the quality of CO2 

capture. 

 The adsorbent needs to be chemically stable since reactive chemicals such as 

oxygen and sulfur are also present as contaminants. 
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 The adsorbent needs to have mechanical stability in order to be densely packed 

for maximum volumetric capacity. 

 The adsorbent itself and building blocks should be readily synthesized from 

abundant and accessible chemicals to make the process cost-effective. 

 The regeneration of adsorbent should be achieved with minimal additional 

energy input to decrease the energy penalty of the total system. 

 The mass and heat transfer of adsorbent should be good. Densely packed 

adsorbent should allow the adsorption and desorption of the guest molecules. In 

addition, heat conductivity is needed since temperature can be used to 

regenerate the adsorbents.  

1.4 Synthesis of Porous Organic Materials 

 Several synthetic methods have been reported for the synthesis of porous 

organic materials and they mainly entail metal catalysts. Other methods are metal-free 

processes and represent a more “economical” way for the mass production of porous 

adsorbents. Probably, having many different routes to synthesize POPs is one of the 

most attractive features of this field. These synthetic routes include Yamomoto 

coupling,24 Suzuki coupling,29 imidazole ring formation,30 Friedel-Crafts alkylation,31 

dibenzo-dioxane formation,32 imidization,33 amidation,33 Sonogashira-Hagihara 

coupling,28 imine formation,34 nitrile cyclotrimerization27 and acetyl cyclotrimerization.35  

In the following section, representative synthetic methodologies of porous organic 

materials are presented to highlight some of their advantages and shortcomings. One of 

the most extensively used methods for the synthesis of POPs is metal catalyzed cross-

coupling reactions. In 2009, Qiu et al. reported a new class of POPs referred as PAF-1 
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(Porous Aromatic Framework).24 PAF-1 was synthesized by Yamamoto coupling 

(Scheme 1.1) using tetra(bromo phenyl)methane as building block and it has an 

exceptionally high BET surface area of 5600 m2 g-1 and remarkable gas uptake capacity 

(H2, CH4, CO2) under high pressure. Due to its robust covalent nature, PAF-1 showed 

high thermal and chemical stability. However, carbon-based PAFs do not perform well 

in gas storage applications at low pressure (1.0 bar) due to their uniform and non-

functionalized pore walls that lead to low isosteric heats of adsorption for small gases. 

 

 

 

 

 

 

 

 

Zhou and coworkers have synthesized several PPNs by employing the same 

method. They have extended the library of PAFs and modified their synthetic 

procedures that resulted in one of the highest surface area (SABET = 6461 m2 g-1) known 

to date as reported for PPN-4 (Scheme 1.1).36 The very high surface area of PAF-1 and 

PPN-4 was attributed to the diamond-like framework topology which provides 

accessible pores with highly cross-linked structures. Another key point in the synthesis 

of PPN-4 was that the C-C coupling was carried out at room temperature to slow down 

the kinetic of the reaction and hence the overall network growth.  

Scheme 1.1: Yamamoto coupling formation of PAF-1 and PPN-4. 



10 
 

Very recently, El-Kaderi and coworkers introduced a new class of porous organic 

material called Benzaimidazole-Linked Polymers (BILPs),20 prepared by metal-free 

catalyzed condensation of aryl-o-diamine and arylaldehyde that resulted imidazole-ring 

formation (Scheme 1.2). Both experimental and theoretical studies have proven that 

having polar functional groups on pore surfaces increases the CO2 uptake dramatically, 

especially at low pressures, and makes the material more selective for CO2 over N2 and 

CH4. As such, the imidazole-functionalized pore walls in BILPs make this type of 

material one of the most attractive candidates for CO2 capture application due to their 

selective nature and high CO2 capacity. BILPs showed CO2 uptake as high as 5.4 mmol 

g-1 at 273 K and 1 bar and very good selectivity as high as 113 for CO2 over N2 and 17 

for CO2 over CH4.
37 

 

Scheme 1.2: A representative route for the synthesis of BILPs. 
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Kaskel and coworkers published a report where cyclotrimerization of bifunctional 

acetyl compounds were employed to synthesize porous organic polymers as illustrated 

in Scheme 1.3.35 

 

 

 

 

 

 

 

The polymers reported by Kaskel are hydrophobic in nature and exhibit only moderate 

surface area (up to 865 m2 g-1). Unlike PAFs, PPNs, and CMPs where cross-coupling 

reactions were used for the construction of the frameworks, Kaskel’s polymerization 

strategy does not employ expensive or precious catalysts and therefore, is more viable 

for large-scale production processes. However, non-functional carbon based 

frameworks are less desirable for CO2 capture due to their low affinity and low 

selectivity at ambient settings. 

As mentioned above, selective CO2 capture and capacity are the most important 

features for CO2  adsorbents. High surface area materials do not necessarily lead to 

high CO2 uptake since gas uptake capacity depends on the favorable interactions 

between pore walls and guest gas molecules. Among the new directions for enhancing 

these factors has been pore functionalization with polar groups such as -OH, -NH2, -

Scheme 1.3: Cyclotrimerization of acetyl groups to construct porous framework. 
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SO3, etc. Incorporation of these functionalities into the framework can be achieved by 

pre-synthesis modification (Figure 1.2) of the building blocks wherein CO2-philic 

moieties are attached to building blocks before framework formation, automated 

functionalization as in the case of imidazole ring formation, or through post-synthesis 

modification (PSM) (Figure 1.3) processes in which functional groups are tethered to the 

pore walls after framework assembly.38 

 
Figure 1.2: Schematic representation of pre-snythesis modification. Adopted from  

reference 38. 

 
 

 

 

 

 

Figure 1.3: Schematic representation of post-synthesis modification. Adopted from 

reference 38. 
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1.5 Post-Synthesis Modification of NPOFs 

 Significant efforts have been devoted to the development of functional porous 

materials for use in gas storage and separation applications. Post-synthesis 

modification (PSM) is one way of synthesizing these functional NPOFs. The chemical 

and thermal stability of NPOFs have allowed researchers to introduce heterogeneity to 

the surface of the pores by PSM even under harsh reaction conditions in order to 

enhance the CO2 uptake capacity as well as selectivity. Even though PSM of NPOFs 

have been studied more recently it is still in its early stage compared to MOFs. As 

stated above, targeted framework functionalities within the pores can be engineered 

through the functionalization of building block before the network formation which is 

known as pre-synthesis functionalization. However, there are some problems 

associated with this method. First, functionalization of building blocks often necessitates 

alternate reaction conditions (i.e. protection of some functional groups), and these 

reactions are often time consuming and non-trivial. In addition, the synthesis of NPOFs 

typically requires harsh conditions such as high temperature, acidic or basic media 

wherein the functional groups on the building blocks may not survive or lead to side 

reactions. Therefore, developing new methods for PSM of NPOFs is highly desirable.  
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 Zhou and coworkers have shown the successful incorporation of sulfonic acid 

and its lithium salt within the pores of PPN-6 (Scheme 1.4).39,40 PPN-6-SO3H and PPN-

6-SO3Li exhibited significant increase in isosteric heat of adsorption and showed a 

substantial increase in the uptakes of H2 and CO2.
39 This dramatic increase in the heat 

of adsorption and CO2 uptake capacity is attributed to strong electrostatic interactions 

between sulfonic acid/CO2 and lithium/CO2. The same group reported another study on 

PSM of PPNs. The latter work described PPN-6 functionalization with alkyl amine 

chains and the modified networks resulted in an excellent CO2 uptake (4.3 mmol g-1) 

and selectivity of CO2/N2 (442, calculated by Ideal Adsorbed Solution Theory) at 1 bar 

and 295 K (Scheme 1.4).40  

 

 

 

Scheme 1.4: Post-synthesis modification of Porous Polymer Networks. 
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1.6 Thesis Problem 

 A significant need exists for improving CO2 capture from flue gas as CO2 

emission from power plants is the main cause for increasing CO2 concentration in the 

atmosphere. Employing porous solid adsorbents to capture CO2 is one of the most 

promising techniques; however, selective adsorption of CO2 may not be possible if the 

framework does not have functional groups within the pores to attract CO2. In addition, 

integrating these functionalities into the pores to engineer their chemical and physical 

environment is not always possible by using pre-functionalized building blocks. With 

these concerns in mind, the specific aims of the work described herein are summarized 

below: 

1) To prepare highly porous networks that are chemically and physically 

robust, using viable and cost effective methods.  The chemical nature of these materials 

should enable PSM processes to improve gas binding and selectivity. 

2) Post-synthesis modification of the frameworks described above should 

offer moderate binding affinities that lead to high CO2 capacity while permitting 

adsorbent regeneration without energy input in the form of heating.  

3) Establish experimental methods to investigate the physical and textural 

properties of the frameworks before and after PSM and evaluate their performance in 

small gas uptake and selective binding. 
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Chapter 2  

 

Synthesis and Characterization of a Novel Nanoporous Organic Framework and 

its Post-Synthesis Modification 

 

2.1 Introduction  

For a porous solid to be employed in flue gas CO2 capture application, chemical 

and physical stability is also as important as CO2 capture capacity because a typical 

flue gas sample is composed of 73-77% N2, 7.4-15% CO2, 6.2-14.6% H2O, ~420 ppm 

SO2, 50-300 ppm CO, 60-70 ppm NOx, and ~4.45 ppm O2 which depends on whether it 

is from gas-fired or coal-fired flue gas.41 Therefore, adsorbents are expected to maintain 

their porosity in the presence of these gases. In this regard, purely organic porous 

polymers are superior to MOFs because of their chemical stability under harsh 

conditions due to their covalent nature. By taking these concerns into consideration we 

chose tetraphenyl adamantane (TPA) as the starting building unit to synthesize NPOF-4 

because of the rigid nature of the TPA core. TPA then was acetylated to afford 1,3,5,7-

tetrakis(4-acetylphenyl)adamantane (TAPA). The latter was used to construct NPOF-4 

through acetyl groups’ cyclotrimerization. The tetrahedral structure of TPA can lead to 

the formation of 3-D frameworks that possess high accessible free volume for gas 

storage and separation. Post-synthesis modification of NPOF-4 was needed in order to 

improve selective CO2 capture and storage. NPOF-4 functionalization was successfully 



17 
 

achieved by nitration of the benzene rings directly attached to the adamantane core, 

and by subsequent reduction of the nitro groups to amines. 

2.2 Synthesis 

Starting materials and solvents, unless otherwise noted, were obtained from 

Acros Organics and used without further purification. 1,3,5,7-Tetraphenyladamantane 

was synthesized according to published method.42 SiCl4 was purchased from Sigma-

Aldrich. SnCl2 was purchased from MP Biomedicals, LLC. Absolute ethanol was 

purchased from Pharmaco Products. Solvents were dried by distillation from Na 

(Xylenes) or Na/benzophenone (THF). Air-sensitive samples and reactions were 

handled under an inert atmosphere of nitrogen using either glovebox or Schlenk line 

techniques. 

2.2.1 Synthesis of Building Block 

The synthetic strategy for the preparation of TAPA is summarized in Scheme 2.1. 

A 250 mL reaction flask was charged with AlCl3 (16.4 g, 123 mmol), placed in an ice 

bath and 90 mL of acetyl chloride (AcCl) was added to afford a colorless solution. A 

mixture of tetraphenyl adamantane (2.50 g, 5.67 mmol) and freshly distilled DCM (100 

mL) was added to this solution at 0 °C and stirred for 10 minutes at 0 °C, and then it 

was allowed to warm to room temperature and stirred for 16 h. The reaction mixture 

was slowly poured into ice (200 mL) while stirring and then was stirred further for 30 

minutes at room temperature. The organic layer was extracted with DCM, and wash 

with 10 % NaHCO3 solution. The resulting yellow solution was dried over MgSO4, and 

filtered over glass frit. Excess DCM was removed by evaporation under reduced 

pressure. The resulting product was crystallized from Chloroform/Ethanol mixture to 
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afford off-white crystals in 68% yield (2.35 g, 3.86 mmol) upon concentration. 1H NMR 

(CDCl3, 300 MHz) δ (ppm) 7.98 (d, JHH = 6.0, 8H), 7.595 (d, JHH = 9.0, 8H), 2.61 (s, 

12H), 2.24 (s, 12H). 13C NMR (CDCl3, 75 MHz) δ (ppm) 197.9, 154.0, 135.7, 128.9, 

125.5, 46.8, 39.8, 26.9. Anal. Calcd. for C42H40O40.5CHCl3: C, 76.36; H, 6.11. Found: C, 

76.12; H, 6.07. TOF MS ES+ m/z for C42H40O4 Calcd  609.30, [M+H]+ 609.35. 43 

Scheme 2.1: Reaction scheme for synthesis of TAPA, NPOF-4, NPOF-4-NO2, and 

NPOF-4-NH2. 
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2.2.2 Synthesis of Nanoporous Organic Framework (NPOF-4) 

The synthetic strategy for the preparation of NPOF-4 is summarized in Scheme 

2.1. A 100 mL reaction flask was charged with TAPA (300 mg, 0.493 mmol), 60 mL 

absolute Ethanol and 60 mL Xylenes (dried over Na). The colorless solution was cooled 

to 0 °C, and SiCl4 (18.3 mL, 157.8 mmol) was added dropwise. The solution was 

allowed to stir for 30 minutes at 0 °C, and then 1 hour at room temperature giving a 

black colored solution which was further refluxed at 80 °C for 16 h. The solution was 

allowed to cool down to room temperature and then was filtered over a glass frit. The 

bright yellow powder was washed with Ethanol, 2.0 M HCl, 2.0 M NaOH, water, and 

DCM, and then dried at 70 °C in the oven to afford NPOF-4 (240 mg, 90% yield) as a 

yellow powder. Anal. Calcd. for C126H96: C, 93.99; H, 6.01. Found: C, 83.09; H, 6.11.35 

2.2.3 Post-Synthesis Nitration of NPOF-4 

The synthetic strategy for the post-synthesis nitration of NPOF-4 is summarized 

in Scheme 2.1. A 50 mL round bottom flask was charged with 12.5 mL of concentrated 

H2SO4, and then cooled to 0 °C. To this solution, 180 mg NPOF-4 was added in small 

portions followed by a dropwise addition of 9 mL 70% HNO3, and was stirred for 6 h at 0 

°C. The mixture was then poured into 100 mL ice. The resulting mixture was stirred for 

30 minutes at room temperature, and then washed with water and EtOH. The resulting 

brown powder was soaked in ethanol/water mixture for 16 h and then was filtered and 

dried in air at 80 °C for 12 h to give NPOF-4-NO2 (225 mg, 93% yield) as a brown 

powder. Anal. Calcd. for C126H84N12O24: C, 70.39; H, 3.94; N, 7.82. Found: C, 67.52; H, 

4.61; N, 7.84. 44 
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2.2.4 Post-Synthesis Reduction of NPOF-4-NO2 

The synthetic strategy for the post-synthesis reduction of NPOF-4-NO2 is 

summarized in Scheme 2.1. A 100 mL reaction flask was charged with 210 mg NPOF-

4-NO2, 50 mL Ethanol, and 3.0 g SnCl2. The mixture was refluxed at 70 °C for 18 h.  

The resulting green suspension was filtered, then suspended in 20 mL concentrated 

HCl and stirred for 16 h at room temperature. Then HCl was replenished and stirring 

continued for 5 h at room temperature. The mixture was filtered and washed with 2 M 

NaOH solution, then sufficient amount of water. The resulting polymer was washed with 

EtOH, dried in air at 80 °C for 6 h to give NPOF-4-NH2 (180 mg, 100% yield) as a dark 

brown powder. Anal. Calcd. for C126H108N12: C, 84.53; H, 6.08; N, 9.39. Found: C, 65.55; 

H, 4.96; N, 8.39.44 

Note: the low carbon content may be due to several issues that still need to be 

addressed; among these issues are partial reduction of the nitro groups, residual tin 

chloride, or trapped HCl. 

 

2.3 Characterization of Building Block and NPOFs 

The chemical composition and structural aspects of these nanoporous 

frameworks were investigated by spectral and analytical methods. Elemental 

microanalyses were performed at the Midwest Microlab, LLC. Liquid 1H and 13C NMR 

spectra were obtained on a Varian Mercury-300 MHz NMR spectrometer (75 MHz 

carbon frequency). Solid-state 13C cross-polarization magic angle spinning (CP-MAS) 

NMR spectra for solid samples were taken at Spectral Data Services, Inc. Spectra were 

obtained using a Tecmag-based NMR spectrometer operating at a H-1 frequency of 363 
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MHz, using a contact time of 1 ms and a delay of three seconds for the CPMAS 

experiment. All samples were spun at 7.0 kHz. Thermogravimetric analysis (TGA) were 

carried out using a TA Instruments Q-5000IR series thermal gravimetric analyzer with 

samples held in 50 μL platinum pans under an atmosphere of air (heating rate 5 °C 

/min). For Scanning Electron Microscopy imaging (SEM), samples were prepared by 

dispersing the material onto a sticky carbon surface attached to a flat aluminum sample 

holder. The samples were then coated with platinum at 1x10-5 mbar of pressure in a 

nitrogen atmosphere for 90 seconds before imaging. Images were taken on a Hitachi 

SU-70 Scanning Electron Microscope. Powder X-ray diffraction data were collected on a 

Panalytical X’pert pro multipurpose difractometer (MPD). Samples were mounted on a 

sample holder and measured using Cu Kα radiation with a 2θ range of 1.5-35. FT-IR 

spectra were obtained on a Nicolet-Nexus 670 spectrometer furnished with an 

attenuated total reflectance accessory. Porosity and gas sorption experiments were 

collected using a Quantachrome Autosorb 1-C volumetric analyzer using adsorbates of 

UHP grade. In a typical experiment, a sample of polymer (~ 60 mg) was loaded into a 9 

mm large bulb cell (from Quantachrome) of known weight and then hooked up to the 

Autosorb 1-C and degassed at 120 °C for 12 hours. The degassed sample was refilled 

with helium, weighed precisely, and then transferred back to the analyzer. The 

temperatures for adsorption measurements were controlled by using a refrigerated bath 

of liquid nitrogen (77 K), liquid Argon (87 K), or temperature controlled water bath (273 

and 298 K). 
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Figure 2.1: 1H NMR for 1,3,5,7-tetrakis(4-acetylphenyl)adamantane in CDCl3. 
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Figure 2.2: 13C NMR for 1,3,5,7-tetrakis(4-acetylphenyl)adamantane in CDCl3. 
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Figure 2.3: FT-IR Spectra of TAPA, NPOF-4, NPOF-4-NO2 and NPOF-4-NH2. 
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Figure 2.4: SEM images of NPOF-4, NPOF-4-NO2 and NPOF-4-NH2.  

 
SEM images of NPOF-4 

 
 

SEM images of NPOF-4-NO2 

 
 

SEM images of NPOF-4-NH2 
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Figure 2.5: TGA Traces of NPOF-4, NPOF-4-NO2 and NPOF-4-NH2. 
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Figure 2.6: XRD Patterns for NPOF-4, NPOF-4-NO2 and NPOF-4-NH2.  
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Figure 2.7: Solid state 13C CP-MAS NMR spectra of NPOF-4. 
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Figure 2.8: Solid state 13C CP-MAS NMR spectra of NPOF-NO2. 
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2.4 Results and Discussion 

Cyclotrimerization of acetyl functional groups which is frequently used to 

construct macromolecules through benzene ring formation has been employed here for 

synthesizing the adamantane-based nanoporous organic polymers (Scheme 2.1). Acid 

catalyzed cyclotrimerization of three acetyl groups results in the formation of a 1,3,5-

substituted benzene units and the elimination of three water molecules. 

NPOF-4 was synthesized in good yields following a modified procedure reported 

recently by Kaskel as depicted in Scheme 2.1.35 The slow addition of SiCl4 at 0 °C 

250 200 150 100 50 0

  
 

ppm

Figure 2.9: Solid state 13C CP-MAS NMR spectra of NPOF-NH2. 
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prevents rapid premature oligomers formation and leads to a more controlled pore 

formation and enhanced porosity. Although there are reports describing room 

temperature cyclotrimerization of acetylated aromatic molecules to generate isolated 

molecules, high temperatures are frequently used to either accelerate the rate of 

reactions or to overcome the steric and electronic effects of substituents. NPOP-4 is 

insoluble in common organic solvents such as DMF, THF, toluene, ethanol, etc, and 

remains intact upon washing with aqueous HCl and NaOH as evidenced by spectral 

and physical studies. Its high chemical stability enables post-synthesis modification 

particularly to introduce new functional groups that are known to enhance gas storage 

and separation properties. For example, pore surface chemical modification of organic 

frameworks with amino groups has significantly enhanced CO2 binding in PPNs and 

POPs. There has been considerable interest recently in the synthesis of amino 

functionalized porous materials because of their interactions with small gas molecules 

consisting of polar bonds, particularly to CO2 capture and selective separation of CO2 

from gas mixtures. Consequently, we have first modified NPOF-4 by nitration (NPOF-4-

NO2) then reduced the resulting network to the corresponding amino-functionalized 

framework (NPOF-4-NH2).  

Nitration was performed through the use of concentrated HNO3/H2SO4 mixture to 

yield brown powder in a quantitative yield. The nitrated polymer NPOF-4-NO2 was then 

reduced to NPOF-4-NH2 using SnCl2 in ethanol under refluxing at 70 °C for 18 h which 

resulted in a dark brown powder in 100% yield after drying at 80 °C. While the synthesis 

of NPOF-4-NO2 and NPOF-4-NH2 under harsh acidic conditions attests the chemical 

robustness of the resultant polymers, the thermal stabilities were examined by thermo 
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gravimetric analysis (TGA). The parent NPOP-4 is stable up to 400 °C, while the 

nitrated and reduced forms NPOF-4-NO2 and NPOF-4-NH2 showed a lower thermal 

stability (~200 °C, Figure 2.5). Scanning electron microscopy (SEM) of the polymers 

revealed aggregated particle morphology in the range of 0.4-1.1 µm (Figure 2.4) which 

seem to remain intact under nitration and reduction steps. As expected, NPOFs are 

amorphous as evidenced by powder X-ray diffraction studies (Figure 2.6).  

The chemical functionalization of the polymers were investigated by FT-IR and 

solid state 13C NMR spectroscopic methods. Figure 2.3 shows the FT-IR spectra of the 

monomer and the synthesized polymers. Upon polymerization, the intensity of the band 

at 1680 cm-1 (C=O) of TAPA is substantially decreased in NPOF-4 as a result of acetyl 

groups cyclotrimerization. This was further supported by the disappearance of 26 ppm 

13C NMR peak of TAPA in NPOF-4 (Figure 2.7). Successful incorporation of nitro 

groups were confirmed by the appearance of new FT-IR bands at 1532 and 1350 cm-1 

(Figure 2.3) which have been assigned to asymmetrical and symmetrical stretching of 

NO2, respectively, in NPOF-4-NO2. Upon reduction, these bands disappear and new 

bands at 3350 and 3230 cm-1 appear which confirm the conversion of the nitro groups 

to the amine functionality (Figure 2.3). Solid-state 13C NMR spectra showed the 

broadening of the peaks at around 150 ppm upon nitration and reduction probably due 

to the overlap of peaks of substituted carbons (Figure 2.8 and Figure 2.9). The chemical 

composition of the functionalized networks was investigated by elemental analysis that 

indicated the content of nitrogen by mass to be 7.84% for NPOF-4-NO2 (~0.54 N per 

phenyl directly attached to adamantane) as illustrated in Scheme 2.1. The nitrogen 

content, as expected, increased to 8.39% upon reduction. Notably, this method seems 
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to be more effective than the previous methods reported for PAFs which resulted in only 

0.25-0.3 N per phenyl rings).40 
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Chapter 3  

Gas Storage Capabilities for Nanoporous Organic Frameworks 

3.1 Introduction 

Great interest has been expressed in the gas storage capabilities of many porous 

media. Recently, the storage of carbon dioxide has received great attention because of 

its greenhouse nature and impact on the environment. Additionally, the use of argon 

gas to examine porosity can provide useful information about the textural properties of 

gas adsorbents and very reliable data on surface area and pore size distribution.  

Nitrogen is the probe gas most commonly used for surface area and pore size 

distribution (PSD) analysis because it is inexpensive, readily available, inert, and well-

studied in the adsorption literature. The nitrogen isotherm at 77 K (liquid nitrogen 

temperature), which is again convenient since liquid nitrogen is inexpensive, is widely 

used as a standard for micro and mesopore size analysis, however, it is also generally 

accepted that nitrogen adsorption is not satisfactory for quantitative assessment of the 

ultramicropores (pore widths <0.7 nm).45 Although the kinetic diameter of nitrogen and 

argon are similar (0.36, 0.34 nm, respectively) the adsorption behavior of these probe 

gases is different because argon is a monoatomic and spherical molecule without a 

quadrupole moment. On the other hand, the nitrogen adsorption and the orientation of 

the adsorbate molecules on the surface is affected by interactions between functional 

groups on the surface and the quadrupole moment of the nitrogen molecule (4.7 x 10-40 

Cm2).46 Therefore, argon has been extensively used for characterizing the pore 
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structure of heterogeneous adsorbents to avoid the abovementioned problems. Thus, 

we have decided to use Argon isotherms at 87 K to characterize the porosity of our 

materials because of their heterogeneous surfaces especially after the incorporation of 

functional groups within the pores.47 

To assess gas storage capabilities, sorption equipment is employed. The 

pressure range that dedicated low pressure sorption equipment can reach is typically 

around 10-6 to 1 bar. Gas storage by high pressure gas sorption measurements is 

beyond the scope of the research described herein.  

For the present work, all sorption isotherms were determined in an automated 

low pressure volumetric gas adsorption instrument (Quantachrome Autosorb 1-C). An 

image of the instrument with essential components labeled is shown in Figure 3.1. 

Sorption isotherms were collected at constant temperatures which typically range from 

77 K to 298 K. The temperature choice within this range is determined by the 

achievability and maintainability of the desired temperature. For example, submerging a 

sample in liquid nitrogen bath will keep the temperature at 77 K until all of the nitrogen 

boils off. Similarly, ice-water bath is used to maintain the temperature at 273 K. In order 

to test the applicability of materials to real life conditions isotherms are also collected at 

higher temperatures i.e. 25 °C which can be achieved and maintain by a thermal 

circulator bath compatible with the sorbent analyzer instrument. The result of an 

isothermal experiment is a graph with pressure on the x-axis and volumetric gas uptake 

(cc g-1) on the y-axis then the uptake can be converted to desired units. The instrument 

measures the amount of gas adsorbed onto (or desorbed from) a solid surface at pre-

requested equilibrium vapor pressure. The instrument admits or removes a known 
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volume of gas at a constant temperature and measure the corresponding pressure. The 

pressure in the sample cell changes as the instrument admits or removes gas in 

repetitive small quantities until the threshold around the requested pressure is reached. 

Then the amount of gas adsorbed or desorbed calculated by the difference between the 

amount of gas admitted or removed and the amount required to fill the void space. 

Figure 3.1: Image of Autosorb-1C with essential components labeled.  
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3.2 Surface Area and Pore Size Characterization 

To investigate the permanent porosity of NPOFs, Argon sorption data was 

acquired using a Quantachrome Autosorb 1-C at 87 K. Pore size distributions were 

calculated using the Non-Local Density Functional Theory (NLDFT)48 on the adsorption 

branch with a cylindrical/spherical pore model for all NPOFs. This model was used in 

conjunction with a similar model on the adsorption branch of the carbon dioxide 

isotherm at 273 K as has been reported previously in literature to obtain lower level pore 

size distributions.49,50 The choice of one model over another is generally determined by 

the shapes of the theoretical computer-generated models. Argon sorption studies were 

performed on activated samples. The activation process for all samples involved 

removing guest molecules by heating at 120 °C for 18 hours under vacuum (10-5 torr).  

Porous textural properties of NPOFs are summarized in Table 3.1. The rapid argon 

uptakes at very low pressure (below 0.1 x 10-2 bar) are indicative of microporosity and 

applying the Brunauer-Emmett-Teller (BET) model within the pressure range of P/Po= 

0.01-0.15 resulted in apparent surface areas SABET of 1249 m2 g-1 (NPOF-4), 337 m2 g-1 

(NPOF-4-NO2), and 554 m2 g-1 (NPOF-4-NH2). The surface area decreased significantly 

upon pore functionalization with nitro groups which can restrict pore accessibility by 

Argon. Further modification upon nitro group reduction resulted in a surface are value 

that is intermediate between those of NPOF-4 and NPOF-4-NO2. Pore size distribution 

was estimated by fitting the argon uptake branch of the isotherms with NLDFT 

(cylindrical/spherical pore geometry with zeolites/silica model) and found to be in a 

broad range of ~8.0-16.8 Å for NPOF-4, ~7.7-10.8 Å for NPOF-4-NO2 and ~7.7-15.2 Å 

for NPOF-4-NH2 (Figure 3.3). Pore volumes were calculated from single-point 
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measurements (P/Po= 0.95) and found to be 0.78, 0.21, and 0.28 cc g-1 for NPOF-4, 

NPOF-4-NO2, and NPOF-NH2, respectively. The porous properties of NPOF-4 and its 

functionalized derivatives are comparable to those of porous organic networks and the 

chemical nature of the latters can be advantageous for small gas storage and 

separation applications as described below.  

Table 3.1: Surface areas, pore size distributions and pore volumes for NPOF networks. 

aCalculated by BET method. bCalculated by Langmuir method. cCalculated from Argon 

adsorption at P/Po = 0.95. dCalculated from NLDFT. 

 

Network SABET
 (m2 g-1)a SALang

 (m2 g-1)b PSD (Å)c Vtotal (cm3 g-1)d 

NPOF-4 1249 1685 8.0-16.8 0.78 

NPOF-4-NO2 337 461 7.7-10.8 0.21 

NPOF-4-NH2 554 719 7.7-15.2 0.28 

 

Figure 3.2 shows the argon adsorption/desorption isotherms for NPOF-4, NPOF-4-NO2, 

and NPOF-NH2 at 87 K. All isotherms are fully reversible and exhibit hysteresis that is 

well pronounced for NPOF-4 most likely due to the flexible nature of the framework as 

documented for numerous porous organic materials.35  
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Figure 3.2: Argon uptake isotherms for NPOFs; adsorption (filled) and desorption 

(empty) data points were taken at 87 K and 0-1 bar. 
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In spite of their amorphous nature, the surface area of the networks under 

investigation, particularly for NPOF-4, are considerably high and comparable with a 

wide range of porous organic networks such as PIMs (618-1760 m2 g-1),51 cage 

compounds (1375 m2 g-1),52 imine-linked microporous polymer organic frameworks 

(POFs, 466-1521 m2 g-1),53 covalent organic frameworks (COF-300, 1360 m2 g-1),54 

diimide-based polymers (750-1407 m2 g-1),55 functionalized conjugated microporous 

polymer (CMP) networks (522-1043 m2 g-1)56 and porous electron-rich covalent organo 

nitridic frameworks (PECONFs, 499-851 m2 g-1).57 

Figure 3.3: Pore size distribution for NPOF-4, NPOF-4-NO2 and NPOF-4-NH2. 
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Pore size distribution by NLDFT are based on fitting the sorption experimental data to 

mathematical functions. As such, the graphical comparison for the fitting method of the 

NLDFT calculations as well as the curves for the BET calculations are shown in the 

following figures. 

 

Figure 3.4: NLDFT calculated isotherm for NPOF-4 overlaid with the experimental 

Argon isotherm. A fitting error less than 1% indicates validity of the model. 
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Figure 3.5: Multipoint BET plot for NPOF-4 calculated from the Argon adsorption in the 

range 0.04-0.16 P/Po. 
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Figure 3.6: Langmuir plot for NPOF-4 calculated from the Argon adsorption in the 

range 0.05-0.25 P/Po.  



44 
 

Figure 3.7: NLDFT calculated isotherm for NPOF-4-NO2 overlaid with the experimental 

Argon isotherm. A fitting error less than 1% indicates validity of the model. 
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Figure 3.8: Multipoint BET plot for NPOF-4-NO2 calculated from the Argon adsorption in 

the range 0.04-0.16 P/Po.  
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Figure 3.9: Langmuir plot for NPOF-4-NO2 calculated from the Argon adsorption in 

the range 0.05-0.25 P/Po. 
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Figure 3.10: NLDFT calculated isotherm for NPOF-4-NH2 overlaid with the 

experimental Argon isotherm. A fitting error less than 1% indicates validity of the model. 
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Figure 3.11: Multipoint BET plot for NPOF-4-NH2 calculated from the Argon adsorption 

in the range 0.04-0.16 P/Po. 
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To investigate the performance of NPOFs in the capture of different gases, 

sorption experiments on activated samples for carbon dioxide, methane, and hydrogen 

were performed. Hydrogen isotherms were performed at 77 and 87 K whereas carbon 

dioxide and methane isotherms were performed at 273 and 298 K. The combined 
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Figure 3.12: Langmuir plot for NPOF-4-NH2 calculated from the Argon adsorption in 

the range 0.05-0.25 P/Po.  
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release typical for organic polymers which makes them energetically attractive for gas 

storage and separation applications. 

 

Figure 3.13: Carbon dioxide isotherms for NPOFs at 273 K: adsorption (filled symbols) 

and desorption (empty symbols). 
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Figure 3.14: Carbon dioxide isotherms for NPOFs at 298 K: adsorption (filled symbols) 

and desorption (empty symbols). 
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Figure 3.15: Methane isotherms for NPOFs at 273 K: adsorption (filled symbols) and 

desorption (empty symbols). 
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Figure 3.16: Methane isotherms for NPOFs at 298 K: adsorption (filled symbols) and 

desorption (empty symbols). 
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Figure 3.17: Hydrogen isotherms for NPOFs at 77 K: adsorption (filled symbols) and 

desorption (empty symbols). 
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Figure 3.18: Hydrogen isotherms for NPOFs at 87 K: adsorption (filled symbols) and 

desorption (empty symbols). 
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Low-pressure gas sorption measurements for CO2, H2, CH4, and N2 were 

collected in order to investigate the impact of pore functionalization on gas storage and 

the preferential binding of CO2 over CH4 and N2. The impact of pore functionalization on 

CO2 uptake is depicted in Figure 3.13 which indicates that NPOF-4-NH2 has the highest 

uptake of 12.78 wt% (2.9 mmol g-1) at 1 bar and 273 K and is about 16% higher than 

the uptakes of NPOF-4-NO2 and NPOF-4 despite of the latter’s much higher surface 

area. These observations originate from the polarizable nature of the CO2 molecule and 

its large quadrupole moment. While pore functionalization with -NO2 and -NH2 has 
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drastic impact on the binding affinity of CO2 (explained in Chapter 4), its impact on the 

CO2 final gravimetric uptake at 1.0 bar was less significant. The microporous nature of 

NPOF-4 and its high surface area facilitate CO2 uptake at ambient pressure. High CO2 

uptake at low pressure (0.15 bar) is desirable for low-pressure post-combustion 

application where the flue gas usually consists of ~15% CO2, ~75% N2 and ~10% of 

other gases. 

To commensurate the pore size of functionalized NPOF-4 for CO2 separation 

from N2 and CH4, introduction of chemical heterogeneity to the pore walls which 

polarizes the CO2 molecule have significant effect on CO2 uptake at low pressures. At 

0.2 bar and 273 K NPOF-4-NO2 adsorbs 1.15 mmol g-1 (5.08 wt%) of CO2 and NPOF-4-

NH2 adsorbs 1.32 mmol g-1 (5.80 wt%) which corresponds to an increase of gravimetric 

capacity of 54% and 76%, respectively, with respect to that of the non-functionalized 

NPOF-4 which takes 0.75 mmol g-1 (3.30 wt%) of CO2. The relatively large dipole 

moment of NO2 and NH2 results in dipole-quadrupole interactions with CO2, and 

remarkably increase the initial CO2 uptake at low pressure range. At 1.0 bar and 273 K 

NPOF-4-NO2 adsorbs 2.41 mmol g-1 (10.63 wt%) and NPOF-4-NH2 adsorbs 2.9 mmol 

g-1 (12.78 wt%) of CO2 which exceed functionalized CMPs (1.6-1.8 mmol g-1),56 

triptycene-based cage compounds (2.1 mmol g-1),52 and functionalized amidoxime-PIM-

1 (2.74 mmol g-1 ).58 At 1.0 bar and 298 K NPOF-4-NH2 adsorbs 1.88 mmol g-1 (12.78 

wt%) of CO2 which is comparable to BPL carbon (SABET= 1150 m2 g-1; a common 

reference material for CO2 uptake) that shows an uptake of 1.90 mmol g-1 under the 

same conditions.59,60 
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We have also studied the H2 and CH4 uptake in order to evaluate the impact of -

NO2 and -NH2 functionalities on the binding affinity of H2 and CH4. Both gases are being 

considered as an alternative fuel for automotive applications because of their 

abundance and clean nature. The H2 uptakes by NPOF-4 (1.33 wt%) and its 

functionalized frameworks were modest (NPOF-NO2: 0.93 wt% and NPOF-NH2: 1.15 

wt%) at 273 K/1 bar although the functionalized materials have higher binding affinities 

as depicted in Figure 4.3. 

In a similar fashion, the CH4 uptakes at 273 K and 298 K and 1 bar were 

collected for all materials and the results are presented in Figure 3.15 and Figure 3.16. 

A comparison of the methane uptake capacities for NPOF-4 and its functionalized 

derivatives suggests that surface area is the predominant factor in attaining high H2 and 

CH4 storage capacities at low pressure (1.0 bar), while surface functionality plays a 

more important role for CO2 capture. 
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Chapter 4  

Isosteric Heat of Adsorption of Carbon Dioxide, Methane, and Hydrogen with 

Nanoporous Organic Frameworks 

 

4.1 Introduction 

The process of adsorption is exothermic, i.e. heat is usually released when a gas 

molecule is adsorbed on a surface due to the loss of molecular motion of the gas 

molecules when they get adsorbed on a surface. As a consequence of that, the stronger 

adsorbent-adsorbate interactions are, the larger the amounts of heat released will be. 

The amount of the heat released also depends on the surface which is already covered 

with adsorbate. Presumably, as the surface is covered by adsorbate molecules, the 

heat of adsorption reduces. Therefore, it is more convenient to represent the heat as an 

isosteric heat of adsorption (Qst), that is, at constant surface coverage for different 

temperatures. As a result, at least two isotherms are needed at different temperature in 

order to evaluate Qst.  

Calculation of isosteric heat of adsorption is based on experimental isotherms. 

Often, these isotherms are fitted to mathematical models that are intended to describe 

the data. In some cases, more than one isotherm is required to calculate Qst. In the rest 

of the cases using more than one isotherm is encouraged to ensure that isotherm fitting 

parameters are reasonably accurate. 
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The viral method has been extensively employed to determine isosteric heat of 

adsorption of porous materials.61-64 A virial expansion is a summation equation for 

which, in this case, the number of summation iterations is unknown: 

ln P = ln N + (1/T) aiN
i +

i = 0 i = 0

m n

biN
i

 

In this equation, P is pressure in torr, T is temperature in Kelvin, and N is the mmol of 

gas adsorbed per gram of sample. The values for m and n are undefined (hence, the 

unknown number of summation iterations) and are varied such that m ≥ n and result in 

the best fit as determined by the sum of the squares of the errors. The values for a0, 

a1,…am and b0, b1,…bn are fitting parameters for the virial expansion. Following the 

appropriate fitting, the values for a0, a1,…am are used in the calculation for the isosteric 

heat of adsorption, Qst: 

Qst = -R aiN
i

i = 0

m

 

The value of m in this case matches the value found for the preceding equation such 

that all ai values are used. The calculated values are then plotted as they relate to the 

surface coverage, N, while the isosteric heat of adsorption at the point of zero-coverage 

is typically reported as a means of comparison.   

In the case of the virial-type calculation for the isosteric heat of adsorption, only 

one temperature is necessary to perform the full calculation. However, the large 

combination of ai and bi values for varying m and n values results in a very subjective 

approach from the researcher’s perspective. In order to mitigate, the subjective human 

element in these calculations, a minimum of two isotherms taken at different 
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temperatures should be performed when utilizing the virial method. This practice of 

multiple temperature-isotherms would drop the subjectivity of the calculations for the 

virial method, however, it should be noted that a base level of subjectivity still exists. 

4.2 Experimental Calculations for the Isosteric Heat of Adsorption of Carbon 

Dioxide, Methane, and Hydrogen 

Isosteric heats of adsorption of CO2, CH4 and H2 were calculated for the 

networks by using viral method. Qst values showed that both functionalized NPOFs 

networks gave higher heat of adsorption for CO2 over non-functionalized NPOF-4 for 

the entire coverage range. Viral equation is fitted to isotherms which were taken at two 

different temperatures. The Qst values and gas uptakes for networks are summarized in 

Table 4.1. 

 
Table 4.1: Gas uptakes for NPOFs. Gas uptake in mg g-1 and the isosteric enthalpies of 

adsorption (Qst) in kJ mol-1. 

 

 
H2 at 1 bar CO2 at 1 bar CH4 at 1 bar 

Network SABET 77 K 87 K Qst 273 K 298 K Qst 273 K 298 K Qst 

 NPOF-4 1249 13.3 9.2 7.2 109.9 61.6 23.2 20.2 8.2 24.6 

 NPOF-4-NO2 337 9.3 7.2 8.3 106.3 68.8 32.5 9.0 5.4 20.8 

 NPOF-4-NH2 554 11.5 8.7 8.1 127.8 82.8 30.1 12.5 7.4 20.7 

 

The pore modification also increases the CO2 bonding affinity from 23.2 kJ mol-1 

to 32.2 and 30.1 kJ mol-1.  These observations are again due to the polarizable nature 

of the CO2 molecule and its large quadrupole moment. The enhanced Qst values are 

expected due to both chemical and physical pore modifications. In addition to the 

electronic nature of –NH2 and -NO2, upon framework functionalization, the pore size of 
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NPOF-4 is reduced and this reduction provides higher adsorption potentials for CO2 and 

thus higher uptake and bonding affinity were observed. The Qst drops with higher CO2 

loading for functionalized NPOFs and clearly indicates the significant interactions 

between the CO2 molecules and the functionalized pore surface. In contrast to this 

observation, the chemically homogeneous and non-functionalized pore surface of 

NPOF-4 leads to a non-notable change in Qst upon increased CO2 loading. The Qst 

values for functionalized NPOFs exceeds most of the organic polymers such as 

BILPs,37 functionalized CPMs56 but are much lower than polyamine-tethered PPNs40 

and PAFs,65 alkylamine appended MOF66 which feature short-chain aliphatic amines 

having binding affinities similar to those of amine solutions being employed in CO2 

scrubbing (50-100 kJ mol-1). It should be noted that PSM of PAF-1 with 

alkylmethylamine (PAF-1–CH2NH2) showed CO2 uptake of 98 cc g-1 which is almost 

double that of parent PAF-1 (55 cc g-1) at 273 K / 1 bar even though the latter has a 

surface area three times higher. This dramatic increase in CO2 uptake can be attributed 

to the much higher binding affinity of PAF-1–CH2NH2 compared to parent PAF-1 (15.6 

kJ mol−1). The notable difference in the binding affinity for CO2 is most likely caused by 

the more reactive nature of the alkylamine employed for the functionalization of PAF-1 

and PPN-6 as evidenced by the large initial Qst values at lower coverage. Tailoring the 

binding affinity for selective CO2 separation is essential because high heats of 

adsorption can lead to a major drawback wherein regeneration processes of adsorbents 

require heating as in the case of amine solutions (ca. 50-100 kJ mol-1) that are 

associated with considerable energy penalty. Recent findings by Wilmer, et al. have 

suggested that these high binding affinities are less desirable when hypothetical MOFs 
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were screened for CO2 capture from flue gas or natural gas, and that only moderate 

surface areas would be needed (1000 to 1500 m2 g-1).67 Ironically, the Qst of NPOF-4-

NO2 (32.5 kJ mol-1) and NPOF-4-NH2 (30.1 kJ mol-1) are within the desirable range and 

suggest that both materials can have novel properties for use in selective CO2 

separation from natural gas or flue gas. Additionally, the fully reversible nature of the 

CO2 isotherms of both samples at ambient conditions (Figure 3.13 and Figure 3.14) also 

indicates that CO2–adsorbent interactions are weak enough to allow for adsorbents 

regeneration without applying heat. 

The Qst values for H2 were calculated from adsorption data collected at 77 and 87 

K by the virial method. At zero-coverage, the Qst values are 7.17, 8.3 and 8.09 kJ mol-1 

for NPOF-4, NPOF-4-NO2 and NPOF-NH2, respectively (Figure 4.3). These values are 

higher than the values reported for organic polymers in general and similar to those 

having functionalized pores. In a similar fashion, the CH4 uptakes at 273 K and 298 K 

and 1 bar were collected for all materials and the corresponding heats of adsorption 

was again calculated by using the virial method and the results are presented in Figure 

4.2. The methane Qst values suggest that pore functionalization with polar functionalities 

reduces the interaction with methane as a result of the non-polar nature of the CH4 

molecule which is consistent with recent reports on methane storage by non-

functionalized PAFs. 
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Figure 4.1: Carbon dioxide isosteric heat of adsorption curves of NPOFs. 
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Figure 4.2: Methane isosteric heat of adsorption curves of NPOFs. 
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Figure 4.3: Hydrogen isosteric heat of adsorption curves of NPOFs. 
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Figure 4.4: Virial analysis curve fitting of CO2 adsorption isotherms for NPOF-4, NPOF-

4-NO2 and NPOF-4-NH2 (blue circles: 273 K, olive squares: 298 K). 
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Figure 4.5: Virial analysis curve fitting of CH4 adsorption isotherms for NPOF-4, NPOF-

4-NO2 and NPOF-4-NH2 (blue circles: 273 K, olive squares: 298 K). 
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Figure 4.6: Virial analysis curve fitting of H2 adsorption isotherms for NPOF-4, NPOF-4-

NO2 and NPOF-4-NH2 (blue circles: 77 K, olive squares: 87 K). 
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Chapter 5  

 

Gas Separation and Selectivity Capabilities for Nanoporous Organic Frameworks 

 

5.1 Introduction 

 As a result of the economical and environmental impacts of gaseous impurities, 

selective gas separation continues to gain great attention by the scientific 

community.62,68-96 In particular, the separation of CO2 from N2, CH4 has become a global 

concern since carbon dioxide exists as an impurity in flue gases as well as in natural 

gas. New technologies and material design in this area can result in a reduction in CO2 

concentration in the atmosphere and can provide a facile approach to the production of 

high purity natural gas. Owing to their tunable properties to capture targeted gases, 

porous organic polymers are an attractive method for this purification process. 

Calculations for the separation and selective capture capabilities of a porous polymer 

media are performed based on the polymer’s pure gas isotherms. Typically, there are 

three different methods for calculating selectivity:  (1) initial slopes method,97 (2) Henry’s 

Law constants where experimental isotherms are fitted to the virial-type expansion that 

was mentioned in Chapter 4 for the calculation of isosteric heat of adsorption,63,98 and 

(3) ideal adsorbed solution theory (IAST) where single-component isotherms is used to 

predict the mixture adsorption equilibria.98,99  The latter two methods will not be 
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discussed here and we have used the initial slopes method to carry out selectivity 

studies. 

The initial slopes method for calculating selectivity employs the varying levels of 

gas uptake in the low pressure range (typically from 0 to about 0.1 bar). In this pressure 

range, the isotherms are assumed to be linear. As such, data points in this range are fit 

according to the linear equation: y = mx + b, where y is the gas uptake in mmol g-1, and 

x is the pressure in bar, m is the slope of the curve, and b is the y-intercept of the curve.  

Selectivity is then calculated based on the ratio of the slopes of the curves for the 

respective gases. Selectivities based on this method are pursued based on the fact that 

it represents the simplest and fastest method of the three methods listed above. 

Nevertheless, the assumption that the isotherms are linear in the low pressure range 

can affect selectivity levels. Additionally, the applicable pressure range is very 

subjective and may hinder the calculation’s reliability. As a result, utilizing the initial 

slopes method is typically performed as a quick assessment to pursue selectivity for the 

polymer or as a confirmation of one of the other two calculation methods. 

In addition to this method, recent reports have reported selectivity studies using 

the equation: 

  
    ⁄

    ⁄
    Equation 1 

where   is the selectivity factor,    represents the quantity adsorbed of component  , 

and    represents the partial pressure of component  .8 For post-combustion CO2 

capture, the partial pressure of CO2 and N2 are 0.15 bar and 0.75 bar, respectively. We 

have used both methods to study the selectivity of NPOFs. 



71 
 

5.2 Results and Discussion 

Effective CO2 adsorbents are expected to have high selectivity for CO2 over other gases 

such as N2 (~75 % in flue gas) and CH4 (~95% in natural gas) along with high CO2 

capacity for gas separation application. Therefore, we carried out CO2/N2 and CO2/CH4 

selectivity studies for NPOF-4 before and after framework functionalization to evaluate 

the preferential CO2 adsorption at 273 and 298 K (Figure 5.1 - Figure 5.6). The general 

observation was that all materials show very low N2 uptake and tangible CO2 amounts 

at 0.15 bar (partial CO2 pressure in flue gas) especially for the functionalized NPOFs. 

The same trend was also noticed for the CH4 isotherms that show markedly lower CH4 

uptakes than CO2 by all NPOFs. Selectivity studies were first calculated according to 

Equation 1. 

For post-combustion CO2 capture, the partial pressure of CO2 and N2 are 0.15 bar 

and 0.75 bar, respectively. The CO2/N2 selectivity studies resulted in very high values 

for NPOF-4-NO2 (133) and NPOF-NH2 (81), while NPOF-4 exhibited much lower 

selectivity (49) at 273 K (Table 5.1). Upon increasing the temperature to 298 K, the 

selectivity drops significantly to 14 (NPOF-4), 62 (NPOF-4-NO2), and 29 (NPOF-4-NH2). 

Furthermore, CO2/N2 selectivity studies were determined by using the ratios of Henry 

law constants for which the constants can be calculated from the initial slopes of pure 

gas isotherms. This simple and convenient method has been widely employed to 

investigate the gas selective nature of a wide range of porous adsorbents including 

porous organic materials as we have reported recently for BILPs. According to initial 

slope calculations presented in Table 5.1, the CO2/N2 selectivity levels for functionalized 

NPOFs are again much higher than the value calculated for NPOF-4 and are somewhat 
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higher than the values obtained from Equation 1. Nevertheless, both methods revealed 

the highly selective nature of NPOF-4-NO2 and NPOF-4-NH2 towards CO2 over N2. 

Noteworthy, these selectivity levels are among the highest by porous materials. For 

comparison, the most selective materials, NPOF-4-NO2, outperforms other selective 

adsorbents at 273 K including BILPs (59-113),37 PECONF-2 (109),57 BPL carbon 

(17.8)60 and ZIFs (17-50),59 Bio-MOF-11 (81)97 and noncovalent porous materials 

(NPMs) (74).100 

By following the same methods described above, we calculated the CO2/CH4 

selectivity of NPOFs at 273 K and 298 K (Table 5.1). In a typical natural gas purification 

process, the mole fractions of CO2 and CH4 are 0.05 and 0.95, respectively, resulting in 

CO2 having a partial pressure of only 0.1 bar. The CO2/CH4 selectivity values from both 

methods; initial slope calculations and Equation 1, provided consistent data for each 

framework. The selectivity trend is in line with those observed for CO2/N2 studies and 

reveal that NPOF-4-NO2 is the most selective material with selectivity levels in the range 

of 16-15 at 273 K that again outperforms the parent framework (NPOF-4 : 3-3) and its 

amine-functionalized derivative (NPOF-4-NH2 : 13-11) (Table 5.1). The latter values fall 

within the range of recently reported porous materials such as diimide-based organic 

polymers, BPL carbon, ZIFs, and most MOFs. The outcome of selectivity studies 

surprisingly indicates that introducing the –NO2 functionality into the pore walls of 

microporous organic frameworks is very advantageous for CO2 separation applications. 

Most likely the higher selectivity of NPOF-4-NO2 originates from the polar nature of the 

nitro functionality and due to its larger size when compared to –NH2 which reduces pore 

size and induces dipole-dipole interactions involving CO2. Although NPOF-4-NO2 and 
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NPOF-4-NH2 have remarkable selectivities, their capacity for CO2 at the practical partial 

pressure of this gas in flue gas (0.15 bar) remains below the desired level (3.0 mmol g-1) 

which can limit their applications as adsorbents. Our results again highlight the 

considerable challenge of attaining high selectivity levels without compromising 

adsorption capacity for CO2 adsorbents. Selectivity results are summarized in the 

following tables. 

Table 5.1: Selectivity results for NPOFs. aSelectivity was calculated from the Equation 1 

at 273 K and 298 K. bSelectivity (mol mol-1) was calculated from initial slope calculations 

at 273 and 298 K. 

 

 

Selectivitya Selectivityb 

CO2/N2 CO2/CH4 CO2/N2 CO2/CH4 

Network 273 K 298 K 273 K 298 K 273 K 298 K 273 K 298 K 

NPOF-4 49 14 3 3 27 16 3 3 

NPOF-4-NO2 133 62 16 11 139 66 15 10 

NPOF-4-NH2 81 29 13 9 101 40 11 8 
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Figure 5.1: Gas uptake selectivity studies for NPOF-4 at 273 K. 
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Figure 5.2: Gas uptake selectivity studies for NPOF-4 at 298 K. 
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Figure 5.3: Gas uptake selectivity studies for NPOF-4-NO2 at 273 K. 
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Figure 5.4: Gas uptake selectivity studies for NPOF-4-NO2 at 298 K. 
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Figure 5.5: Gas uptake selectivity studies for NPOF-4-NH2 at 273 K. 
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Figure 5.6: Gas uptake selectivity studies for NPOF-4-NH2 at 298 K. 
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Table 5.2: CO2 and N2 uptakes at 273 and 298 K for CO2/N2  selectivity studies by using 

Equation 1. 

 

 

273 K 298 K 

CO2 N2 CO2 N2 

Network 
Pressure 

(bar) 
Uptake 

(mmol/g) 
Pressure 

(bar) 
Uptake 

(mmol/g) 
Pressure 

(bar) 
Uptake 

(mmol/g) 
Pressure 

(bar) 
Uptake 

(mmol/g) 

 NPOF-4 0.15 0.59 0.75 0.06 0.15 0.26 0.75 0.10 

 NPOF-4-NO2 0.15 0.97 0.75 0.04 0.15 0.45 0.75 0.04 

 NPOF-4-NH2 0.15 1.09 0.75 0.07 0.15 0.53 0.75 0.09 

 

 

Table 5.3: CO2 and CH4 uptakes at 273 and 298 K for CO2/CH4  selectivity studies by 

using Equation 1. 

 

 

273 K 298 K 

CO2 CH4 CO2 CH4 

Network 
Pressure 

(bar) 
Uptake 

(mmol/g) 
Pressure 

(bar) 
Uptake 

(mmol/g) 
Pressure 

(bar) 
Uptake 

(mmol/g) 
Pressure 

(bar) 
Uptake 

(mmolg/) 

 NPOF-4 0.05 0.21 0.95 1.20 0.05 0.09 0.95 0.48 

 NPOF-4-NO2 0.05 0.47 0.95 0.54 0.05 0.18 0.95 0.31 

 NPOF-4-NH2 0.05 0.51 0.95 0.75 0.05 0.22 0.95 0.44 



81 
 

 

 

Chapter 6  

 

Concluding Remarks 

 

 The research presented in this thesis comprises the design, synthesis and post-

synthetic modifications of functional Nanoporous Organic Frameworks (NPOFs). We 

have successfully synthesized a new NPOF from a novel building block, 1,3,5,7-

tetrakis(4-acetylphenyl)adamantane (TAPA) by employing a metal-free synthesis 

approach. Subsequently, we have successfully used post-synthesis modification 

processes to functionalize the framework with –NO2 and –NH2 functionalities to 

investigate their effect on CO2 uptake and the potential use of functionalized NPOFs in 

small gas storage and separation applications. The metal-free synthesis of NPOF-4 and 

its convenient pore surface modification resulted in a significant enhancement in CO2 

binding affinity: 32.5 and 30.1 kJ mol-1 and selective binding over nitrogen and methane: 

CO2/N2 (139) and CO2/CH4 (15) at 273 K. These results confirmed that surface 

functionality overweighs the high surface area with regards to high CO2 uptakes and 

binding affinity. Therefore, we conclude that having polar groups (-NO2 and -NH2) on 

pore walls notably enhances the initial CO2 uptake and overall selectivity. These results 

highlight the potential use of functionalized NPOFs in post-combustion CO2 separation 

and in natural gas purification processes. The functionalized NPOFs are also capable of 

storing up to 1.15 wt% H2 at 77 K and 1 bar with high isosteric hydrogen heats of 

adsorption (8.1 and 8.3 kJ mol-1). The relatively high initial uptake of H2 by 
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functionalized NPOFs also indicates the significance of the physical and electronic 

nature of the pores in the design of future hydrogen storage sorbents. 
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