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Abstract

CANCELLATION PROPERTIES OF DIRECT PRODUCTS OF GRAPHS

By Katherine Elaine Toman, Master of Science.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2009.

Director: Richard Hammack, Associate Professor, Department of Mathematics and Applied
Mathematics.

This paper discusses the direct product cancellation of digraphs. We define the exact

conditions on G such that G×K ∼= H×K implies G∼= H. We focus first on simple equations

such as G×−→K2 ∼= H×−→K2 where
−→
K2 denotes a single arc and then extend this to the more

general situation, G×K ∼= H×K. Our results are acheived by using a “factorial” operation

on graphs, which is in some sense analogous to the factorial of an integer.
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Introduction

This thesis will discuss the conditions on a digraph H such that given digraphs G and K,

G×K ∼= H×K implies G ∼= H. However we must start with a few definitions. A solid

introduction to the ideas and definitions will make the later sections more understandable.

We begin with the main structure discussed throughout this paper, which is a graph.

1.1 Background

DEFINITION 1.1. A finite graph, denoted G, is a nonempty set of points, called vertices,

and a subset of unordered pairs of points, called edges. The set of vertices in G is called the

vertex set of G and is denoted V (G) while the set containing all unordered pairs of V (G)

is called the edge set of G and is denoted E(G). The number of elements in the vertex set

or the edge set is called the order of V (G) and/or E(G) and is denoted |V (G)| and |E(G)|,

respectively.

A vertex of G is labeled with a single letter or number such as g or 1. An edge of G is

denoted gg′ where g and g′ are vertices of G and there is an edge connecting g and g′.

Two vertices are adjacent if there is an edge connecting them directly. We simply

reference a graph G when refering to both the edges and the vertices of the graph, however

we will discuss the vertex set of G and the edge set of G separately as well. Figure 1.1 shows

three examples of graphs.

Notice in Figure 1.1, the first two graphs have the same vertex set, V (G) = V (H) =

{a,b,c,d}, however the edge sets differ greatly with E(G) = {ab,bc,cd,da} and E(H) =
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G
a b

d c

H
a b

d c

K
i

j k

Figure 1.1: Three examples of graphs G,H and K

{ac,bb,dd}. We should observe that the second graph is also not connected. This means it

is not possible to trace along the edges and connect every pair of vertices using only edges.

Connectedness will not be an important graph characteristic in this paper however. For a

more in-depth discussion of connectness, refer to G. Chartrand and L. Lesniak’s Fourth

Edition of Graphs and Digraphs [1].

At this time you may realize there can be an edge that begins and ends at the same point,

as in the second and third graphs of Figure 1.1. This is called a loop. The formal definition

is below.

DEFINITION 1.2. Given a graph G, a loop is an edge that connects a vertex g ∈ V (G) to

itself and is written gg.

In this paper we will focus our study on a particular generalization of graphs, refered to

as digraphs. A digraph is similar to a graph in that it has vertices and edges, however the

edges are given a direction.

DEFINITION 1.3. A digraph G consists of a vertex set, V (G), and an arc set, E(G). An

element of E(G) is denoted gg′ and the order in which the vertices are written indicates a

direction from g to g′. So, if gg′ ∈ E(G) then there is an arc (or arrow) pointing from g to g′.

Refer to Figure 1.2 for examples of a digraph. Observe that V (G) = {a,b,c} and

E(G) = {ac,ca,ab} while V (H) = {i, j,k} and E(H) = {ik, ji, jk, j j}. Also note that for
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G
a b

c

H
i

j

k

Figure 1.2: Two examples of digraphs G and H

digraphs it is possible that ab ∈ E(G), but ba is not contained in E(G), as in Figure 1.2.

If ab ∈ E(G) for some digraph G, then it is said that a is incident to b and b is incident

from a. Throughout the later sections the graphs mentioned can be assumed to be digraphs

and characteristics of digraphs will be important to note within proofs. One characteristic of

digraphs that should be mentioned is the indegree and outdegree of a vertex in G.

DEFINITION 1.4. The number of vertices incident from a vertex g ∈V (G) is the outdegree

of g and the number of vertices incident to g is the indegree of g. The total degree of a vertex

g is the number of vertices incident to g added to the number of vertices incident from g. A

loop gg ∈ E(G) adds 1 to the indegree of g and 1 to the outdegree of g.

Another way to consider the degree of a vertex focuses on the arcs of G. The outdegree

of a vertex g ∈V (G) is the number of arcs that begin at g and conversely, the indegree of g

is the number of arcs ending at g. Also, the total degree of a vertex g is the number of arcs

beginning or ending at g. We denote outdegree of g as od(g) and indegree of g as id(g). The

total degree of g is denoted deg(g) = od(g)+ id(g).

Please note that the numbers in Figure 1.3 represent the total degree of each vertex. In

this example, the vertex with total degree 4 and no loops has outdegree 2 and indegree 2,

and the vertex with total degree 4 and a loop has indegree 3 and outdegree 1.

DEFINITION 1.5. A vertex with a total degree of zero is called an isolated vertex.
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2 4 4

2 2

G

Figure 1.3: Example of a digraph with the total degree of all vertices

Along with considering the degree of vertices in V (G), we can look at properties of

digraphs that incorporate both vertices and arcs, such as bipartiteness.

DEFINITION 1.6. A digraph G is said to be bipartite if it is possible to partition the vertex

set of G into two subsets, V1 and V2 such that every arc in E(G) connects a vertex in V1 with

a vertex in V2.

In other words, arcs in a bipartite digraph G either begin at a vertex in V1 and end at a

vertex in V2 or begin at a vertex in V2 and end at a vertex in V1. For an example, see Figure

1.4.

a

b

c

d

e

G

Figure 1.4: A bipartite graph G

In Figure 1.4, notice that V1 = {a,b,c} and V2 = {b,d} and each arc of G connects a

vertex in V1 to a vertex in V2 or a vertex in V2 to a vertex in V1. Observe that any graph

containing a loop will not be bipartite. An example of a simple bipartite graph is
−→
K2 and is
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shown in Figure 1.5. We will be using this particular bipartite graph throughout this thesis.

Please note its use in concrete examples leading up to the theory portion of this paper.

0 1

−→
K2

Figure 1.5: The graph of a simple bipartite digraph

Bipartiteness is a definition that will come into play when we discuss the direct product

of two graphs, one being
−→
K2.

1.2 The Direct Product

The direct product of two graphs is a way of “multiplying” two graphs together in such a

way that we get another graph.

DEFINITION 1.7. The direct product of two digraphs G and H is a digraph G×H and is

defined as follows: V (G×H) = V (G)×V (H) and (g,h)(g′,h′) ∈ E(G×H) if and only if

gg′ ∈ E(G) and hh′ ∈ E(H). Thus elements in V (G×H) are ordered pairs (g,h) such that

g ∈V (G) and h ∈V (H).

This definition can be difficult to grasp with only words and therefore please refer to the

following examples for clarification.

In Figure 1.6, notice that V (G) = {1,2,3} and V (H) = {a,b} and therefore, using Defi-

nition 1.7, V (G×H) = {(1,a),(2,a),(3,a),(1,b),(2,b),(3,b)}. Also, E(G) = {12,32,33}

and E(H) = {01} so by Definition 1.7 E(G×H) = {(1,a)(2,b),(3,a)(2,b),(3,a)(3,b)}.
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(1,a) (2,a) (3,a)
a

1 2 3

b

H

(1,b) (2,b) (3,b)

G

Figure 1.6: The first example of a direct product G×H.

In this first example of G×H, you can see that each element of V (G×H) is an ordered

pair with first coordinate from V (G) and the second coordinate from V (H). Also, only

when gg′ ∈ E(G) and hh′ ∈ E(H) will (g,h)(g′,h′) ∈ E(G×H). For example, 12 ∈ E(G)

and ab ∈ E(H), therefore (1,a)(2,b) ∈ E(G×H). Another observation worth noticing

is that Figure 1.6 is an example of a direct product that is bipartite. Observe that V1 =

{(1,a),(2,a),(3,a)} while V2 = {(1,b),(2,b),(3,b)}. The bipartite nature of this graph is

due to H in the product, given that H is bipartite.

REMARK 1.8. Let H be a bipartite graph with partite sets V1 and V2. Then there can be no

arc of G×H jointing vertices in V (G)×V1 and likewise there can be no arcs connecting

vertices in V (G)×V2. To support this claim, consider that an arc (g,v)(g′,v′) with v,v′ ∈V1

would imply that gg′ ∈ E(G) and vv′ ∈ E(V1). However, since H is bipartite, we know that

there are no arcs between two vertices in V1 and so vv′ is not in E(G×V1). Therefore each

arc in E(G×H) must connect a vertex in V (G)×V1 and a vertex in V (G)×V2. So, G×H

is also bipartite.

As you may notice in Figure 1.7, G is the same graph as Figure 1.6, however computing

the direct product of G and K creates a completely different graph than G×H.
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K

G
1 2 3

a

b

c

(1,a)

(1,b)

(1,c)

(2,a)

(2,b)

(2,c)

(3,a)

(3,b)

(3,c)

Figure 1.7: Second Example of a direct product G×K.

This last example of a direct product, Figure 1.8, shows the possiblity for a loop in the

product. Though it is not as common, in many examples there will be a loop in the product

of G and J if there is a loop in both G and J.

J

G
1 2 3

a

b

(1,a)

(1,b)

(2,a)

(2,b)

(3,a)

(3,b)

Figure 1.8: Third example of a direct product G× J.

The majority of this paper will focus on the direct products of graphs and the existence

of a homomorphism or an isomorphism between them.
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1.3 Homomorphisms and Isomorphisms

DEFINITION 1.9. A homomorphism ϕ from a digraph G to a digraph H is a map ϕ :

V (G)→V (H) satisfying gg′ ∈ E(G) implies ϕ(g)ϕ(g′) ∈ E(H).

Figure 1.9 illustrates the definition of a homomorphism from a graph G to a graph H.

Notice that V (G) = {1,2,3,4} and V (H) = {a,b,c}. Let ϕ : V (G)→V (H) be defined as

follows: ϕ(1) = a, ϕ(2) = b, ϕ(3) = c and ϕ(4) = a. Since E(G) = {12,23,34} we can

see that ϕ(1)ϕ(2) = ab ∈ E(H) and ϕ(2)ϕ(3) = bc ∈ E(H) and ϕ(3)ϕ(4) = ca ∈ E(H).

Therefore ϕ is a homomorphism from G to H.

1 2 3 4

a b c

G

H

Figure 1.9: Example of a homomorphism ϕ between G and H.

We denote the number of homomorphisms from G to H as hom(G,H). Also, the number

of injective homomorphisms from G to H is denoted inj(G,H).

DEFINITION 1.10. Two digraphs G and H are isomorphic if the exists a bijective mapping

ϕ : V (G)→ V (H) such that gg′ ∈ E(G) if and only if ϕ(g)ϕ(g′) ∈ E(H). such a map is

called an isomorphism.

Observe that Figure 1.9 is not an example of an isomorphism between G and H because

ϕ is not a bijection between V (G) and V (H) shown by ϕ(1) = ϕ(4) when 1 6= 4. However,

Figure 1.10 is an example of an isomorphism ϕ from G to H.
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a b c 1 2 3

d e f 4 5 6

G H

Figure 1.10: Example of two isomorphic graphs G and H.

Observe that V (G) = {a,b,c,d,e, f}, V (H) = {1,2,3,4,5,6}, E(G) = {ea,ec, f b} and

E(H) = {14,15,62}. If ϕ : V (G)→ V (H) is defined as ϕ(a) = 4, ϕ(b) = 2, ϕ(c) = 5,

ϕ(d) = 3, ϕ(e) = 1, and ϕ( f ) = 6 then we can verify that ϕ is indeed an isomorphism

between G and H. This means gg′ ∈ E(G) if and only if ϕ(g)ϕ(g′) ∈ E(H) and such is the

case for Figure 1.10.

Many observations have been made about homomorphisms and isomorphisms between

graphs and we should discuss a few of them that will be relevant in this paper. Firstly, please

refer to Remark 1.11 to understand why the number of homomorphisms from
−→
K2 to any

graph K is equal to the number of edges in K.

REMARK 1.11. If K is a digraph with at least one edge, then hom(
−→
K2,K)=| E(K) |. This is

made clear given that there is a unique homomorphism ϕ :
−→
K2→ K such that ϕ(0) = k and

ϕ(1) = k′ for each kk′ ∈ E(K). Conversely, any homomorphism ϕ :
−→
K2→ K is necessarily

of this form. Therefore, the number of homomorphisms from
−→
K2 to K is equal to the number

of edges in E(K).

Another fascinating observation about homomorphisms is that hom(X ,G×H)= hom(X ,G)·

hom(X ,H) for any digraphs G, H and X . This is proven below in form of the proof provided

in Hell [3]

PROPOSITION 1.12. For any digraphs G, H and X , hom(X ,G×H)= hom(X ,G)·hom(X ,H).



10

Proof. First we will show that every pair of homomorphisms g : X → G and h : X →

H corresponds to a unique homomorphism k : X → G×H. Let g and h be such ho-

momorphisms. Let k : V (X) → V (G×H) be defined as k(x) = (g(x),h(x)) for each

x ∈ V (X). Now observe that k is a homomorphism. Suppose xx′ ∈ E(X). Since g

and h are homomorphisms, g(x)g(x′) ∈ E(G) and h(x)h(x′) ∈ E(H) so we know that

(g(x),h(x))(g(x′),h(x′)) = k(x)k(x′) ∈ E(G×H). Therefore, k is a homomorpihsm and

so it follws that hom(X ,G×H)≥ hom(X ,G) ·hom(X ,H).

Conversely, we want to show hom(X ,G×H)≤ hom(X ,G) ·hom(X ,H). In other words,

we need to show that any homomorphism k : X → G×H is of the form k(x) = (g(x),h(x))

where g : X → G and h : X → H are homomorphisms. Consider the projections πG :

G×H→ G and πH : G×H→ H. Observe that these are homomorphisms. Consider that

any homomorphism k : X→G×H can be written as k(x) = (πG ◦k(x),πH ◦k(x)). Note that

a composition of homomorphisms is again a homomorphism. Therefore, let g = πG ◦ k(x)

and h = πH ◦ k(x). So for any homomorphism k, it follows that k(x) = (g(x),h(x)) for

homomorphisms g and h. So hom(X ,G×H)≤ hom(X ,G) ·hom(X ,H).

Therefore, hom(X ,G×H) = hom(X ,G) ·hom(X ,H).

1.4 Lovász’s Theorem

Another important observation about the homomorphisms between isomorphic graphs

was made by Lovász in 1971. The well-known result in his paper, “On the Cancellation

Law Among Finite Relational Structures” [4] considered the condtions on K such that

G×K ∼= H ×K implies G ∼= H. Though this paper focuses on the structure of G, the

observations made by Lovász on the homomorphisms between graphs is very helpful for
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our discussion. Before we discuss his conclusions, we must state another definition that will

be used in the proof.

DEFINITION 1.13. Suppose X is a digraph and σ = {σ1,σ2, ...,σk} is a partition of V (X).

The quotient of X by σ , denoted X/σ , is a digraph that is defined as follows: V (X/σ) =

{σ1,σ2, ...,σk} and E(X/σ) = {σiσ j : X has an arc pointing from σi to σ j}.

a b c

d e f

σ1 σ2

σ3
X X/σ

Figure 1.11: First Example of X/σ .

Note that in Figure 1.11, σ = {σ1,σ2,σ3}, σ1 = {a,d,e}, σ2 = {b} and σ3 = {c, f}.

Therefore, V (X/σ) = {σ1,σ2,σ3}. Also, E(X/σ) = {σ1σ2,σ2σ1,σ2σ3,σ3σ1,σ1σ1}.

a b

c d e

σ1

σ2 σ3

X X/σ

Figure 1.12: Second Example of X/σ .

In Figure 1.12, σ = {σ1,σ2,σ3}, σ1 = {a,b}, σ2 = {d} and σ3 = {c,e}. According to

Definition 1.13, we know that V (X/σ)= {σ1,σ2,σ3} and E(X/σ)= {σ1σ3,σ3σ1,σ3σ2,σ2σ1}.

Along with this new definition, Lovász uses the below remark on injective mappings in his

cancellation work.
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REMARK 1.14. For digraphs G and H, if inj(G,H) 6= 0 and inj(H,G) 6= 0 then G∼= H.

Proof. Let G and H be digraphs and let inj(G,H) 6= 0 and inj(H,G) 6= 0. Therefore there are

at least one µ : G→ H and λ : H→ G such that both are injective mappings. So |E(G)| ≤

|E(H)| and |E(H)| ≤ |E(G)| and so |E(G)|= |E(H)|. Also, note that |V (G)|= |V (H)|.

Now consider the bijective mapping µ : V (G)→V (H). Since µ is a homomorphism,

each gg′ ∈ E(G) implies µ(g)µ(g′) ∈ E(H) and given that |E(G)|= |E(H)|, we know that

gg′ ∈ E(G) if and only if µ(g)µ(g′) ∈ E(H).

Therefore, G∼= H.

Also, the below observations are discussed in more detail in [1].

REMARK 1.15. For any digraphs X and G and any homomorphism F : X → G, there is a

partition of V (X) denoted σF = {F−1(g) : g ∈V (G)}.

REMARK 1.16. There exists an injective homomorphism F̂ : X/σF → G defined as

F̂(F−1(g)) = g for all g ∈ V (G). Conversely, given any partition σ of V (X) and any

homomorphism F̂ : X/σ → G, there is a homomorphism F : X → G for which σ = σF .

These two remarks lead to the fact that hom(X ,G) = ∑σ∈P inj(X/σ ,G) where P denotes

the set of all partitions of V (G). As mentioned, this is discussed in more depth in [1].

Lovász stated that two digraphs G and H were isomorphic if and only if the number of

homomorphisms from a digraph X to G were equal to the number of homomorphisms from

X to H for all X . The proof is below in the style of Graphs and Digraphs [1].

THEOREM 1.17. Given digraphs G and H, G∼= H if and only if hom(X ,G) = hom(X ,H)

for any graph X .

Proof. It is enough to show that inj(X ,G)=inj(X ,H) because if X = H then there is one

injective homomorphism from H to G and if X = G then there is an injective homomorphism

from G to H and therefore there is an isomorphism between G and H, by Remark 1.16.
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Now, let hom(X ,G) = hom(X ,H). Therefore, by the above remarks, we know that

∑
σ∈P

inj(X/σ ,G) = ∑
σ∈P

inj(X/σ ,H) for all σ that are partitions of V (G). Consider that

there is an identity partition, t, that puts each vertex of G, or H, into its own partition, so

that G/t ∼= G and H/t ∼= H. So we can now write the following:

inj(X/t,G)+ ∑
σ∈Pr{t}

inj(X/σ ,G) = inj(X/t,H)+ ∑
σ∈Pr{t}

inj(X/σ ,H)

where t is the identity partition in the set of all partitions, P. We can observe that this

is equivalent to inj(X ,G)+ ∑
σ∈Pr{t}

inj(X/σ ,G) = inj(X ,H)+ ∑
σ∈Pr{t}

inj(X/σ ,H). By in-

duction it is clear that ∑
σ∈Pr{t}

inj(X/σ ,G) = ∑
σ∈Pr{t}

inj(X/σ ,H) and therefore it follows

that inj(X ,G) = inj(X ,H).

Therefore G∼= H if and only if hom(X ,G) =hom(X ,H) for any digraph X .

Using both Propostion 1.12 and Lovász’s Theorem 1.17, we can now conclude that if

G×K ∼= H×K and there exists at least one homomorphism from a digraph M to K, then

we know that G×M ∼= H×M. This result is also due to Lovász’s work on the cancellation

law among finite structures [4].

PROPOSITION 1.18. If G×K ∼= H×K and there exists a homomorphism f : M→ K for

some digraph M, then G×M ∼= H×M.

Proof. Suppose G×K ∼= H ×K. Therefore hom(X ,G×K) = hom(X ,H ×K) for any

digraph X , by Theorem 1.17. So, hom(X ,G) · hom(X ,K) = hom(X ,H) · hom(X ,K) by

Proposition 1.12.

Case One: Let hom(X ,K) 6= 0. Then hom(X ,G) = hom(X ,H) and so hom(X ,G) ·

hom(X ,M) = hom(X ,H) ·hom(X ,M) because there exists a homomorphism f from M to

K. So hom(X ,G×M) = hom(X ,H×M).

Case Two: Let hom(X ,K) = 0. Then if there was a homomorphism g : X →M then the

composition function f ◦g : X→M→ K would be a homomorphism from X to K. However
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there does not exist such a homomorphism from X to M because hom(X ,K) = 0 and

therefore, hom(X ,M) = 0. So consider that hom(X ,G×M) = hom(X ,G) ·hom(X ,M) =

0 = hom(X ,H) ·hom(X ,M) = hom(X ,H×M). So, hom(X ,G×M) = hom(X ,H×M) for

all digraphs X , so G×M ∼= H×M by Theorem 1.17.

So, if G×K ∼= H×K and there exists a homomorphism f : M→ K for some digraph

M, then G×M ∼= H×M.

Using this introduction as our basis, our goal for this paper will be to discover the

exact conditions needed on a digraph G such that G×K ∼= H×K implies G∼= H. Lovász

called a graph K a zero divisor if there exists two nonisomorphic graphs G and H such that

G×K ∼= H×K. In his paper [4], he defines a particular homomorphism on K such that

its absence guarantees that G×K ∼= H×K implies that G∼= H. For example, Figure 1.13

shows that K is a zero divisor. Clearly A 6∼= B, yet A×K ∼= B×K. Note that both products

are isomorphic to three copies of K.

A B

K KA×K B×K

Figure 1.13: Example of a zero divisor

The following is the main result concerning zero divisors.

THEOREM 1.19. A digraph C is a zero divisor if and only if there is a homomorphism

ϕ : C→−→Cp1 +
−→
Cp2 +

−→
Cp3 + · · ·+−→Cpk for prime numbers p1, p2, . . . , pk.

Also, the following corollary was addressed by Lovász in his paper.
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COROLLARY 1.20. A graph K with at least one edge is a zero divisor if and only if K is

bipartite.

Theorem 1.19 and Corollary 1.20 can be regarded as cancellation laws for the direct

product. They give exact conditions on K (namely the absence of a homomorphism ϕ : K→
−→
Cp1 +

−→
Cp2 + · · ·+−→Cpk) under which A×K ∼= B×K necessarily implies A ∼= B. Refer to

Lovász’s paper [4] for a more comprehensive expanation.

The focus of this paper is to instead focus on the type of graph H is, with respect to G,

such that the above statement holds. We would like to take any G and know whether or not

G∼= H if G×K ∼= H×K for a digraph K. We will pin down specific properties of H so that

we can always say G×K ∼= H×K implies G∼= H.
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Main Results

In this chapter we will describe the conditions required for a digraph G so that G×K∼= H×K

implies G ∼= H for any digraph K. Considering that this question involves both direct

products of digraphs and just digraphs, we must observe the relationship between isomorphic

direct products of digraphs G and H.

Given digraphs G and K, we will see that the digraphs H for which G×K ∼= H×K are

closely linked to the permutations of V (G).

2.1 Permutations of V (G) and the Construction of Gπ

DEFINITION 2.1. Given a digraph G, the set of permutations of V (G) is denoted Perm(V (G)).

Thus, elements π ∈ Perm(V (G)) are bijections π : V (G)→V (G). Recall that for a graph

with n vertices there are n! unique permutations on V (G).

DEFINITION 2.2. Given a digraph G and π ∈ Perm(V (G)), define the digraph Gπ as follows.

The vertx set is Gπ is V (Gπ) = V (G) and the edges set of Gπ is E(Gπ) = {gπ(g′) : gg′ ∈

E(G)}.

Refer to Figure 2.1 for an illustration of digraphs G and Gπ where π =

 a b c d

c b d a

.

Notice that V (G) = {a,b,c,d}= V (Gπ) and E(G) = {ab,bc,cd,ca} and

E(Gπ) = {aπ(b),bπ(c),cπ(d),cπ(a)}= {ab,bd,ca,cc}.
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a b a b

c d c d

G Gπ

Figure 2.1: Example of G and Gπ .

Figure 2.2, we see another example of a digraph G and Gπ . For this example, let

π =

 1 2 3 4

2 3 1 4

 and according to Definition 2.2, the edge set of Gπ is E(Gπ) =

{1π(4),4π(3),3π(2)}= {14,41,33}.

3 4

1 2

3 4

1 2

G Gπ

Figure 2.2: A second example illustrating G and Gπ .

It is clear that G � Gπ in both Figure 2.1 and Figure 2.2. Note that in Figure 2.2, G

contains no loops, while Gπ contains one loop. Though G and Gπ may not be isomorphic

for every π ∈ Perm(V (G)), it may be the case that G×K and Gπ×K are isomorphic graphs.

An example of this effect is illustrated in Figure 2.3. In this example we allow K to be
−→
K2

and we have used the same G and Gπ which were not isomorphic graphs in Figure 2.2.



18

−→
K2

−→
K2

G Gπ1 2 3 4 1 2 3 4

a

b

a

b

Figure 2.3: An example of G×K ∼= Gπ ×K.

Also, considering a particularly simple graph K may make G×K and H×K clearer. As

in many areas of mathematics, beginning with a simpler case allows for expansion later on

in research.

2.2 Simple Products of Digraphs

In fact, Lemma 2.3 considers a relationship between the direct product of G and
−→
K2 and the

direct product of Gπ and
−→
K2, given an arbitrary π ∈ Perm(V (G)) and a digraph G.

LEMMA 2.3. If G is a digraph and π ∈ Perm(V (G)), then G×−→K2 ∼= Gπ ×−→K2.

Proof. Let G be a digraph and let π ∈ Perm(V (G)). Define a function ϕ : V (G×−→K2)→

V (Gπ ×−→K2) in the following way:

ϕ((a,b)) =

 (a,b) if b = 0

(π(a),b) if b = 1

.

We will now show that ϕ is an isomorphism.

We begin by showing that ϕ is onto. Let (c,d) ∈ E(Gπ ×−→K2). The current question is

now: what does ϕ map to (c,d)? By definition of
−→
K2, either d = 0 or d = 1.

Case One: If d = 0, then ϕ((c,0)) = (c,0) = (c,d).
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Case Two: If d = 1, then ϕ((π−1(c),1)) = (π(π−1(c)),1) = (c,1) = (c,d).

Therefore, ϕ is onto.

Next we must show that ϕ is one-to-one. Let ϕ((a,b))= ϕ((a′,b′)) where (a,b),(a′,b′)∈

V (G×−→K2). Note that the second component of ϕ((a,b)) is always b. So b = b′ = 0 or b =

b′ = 1.

Case One: If b = b′ = 0, then ϕ((a,0)) = ϕ((a′,0)). So, by definition of ϕ , we know

(a,0) = (a′,0). Therefore, (a,b) = (a′,b′).

Case Two: If b = b′ = 1, then, ϕ((a,1)) = ϕ((a′,1)). So (π(a),1) = (π(a′),1) which

implies π(a) = π(a′). Since π is a permutation, a = a′ and so (a,1) = (a′,1). So, (a,b) =

(a′,b′).

Therefore, ϕ is one-to-one.

In order to show that ϕ is an isomorphism, we must show that (a,b)(a′,b′) ∈ E(G×−→K2)

if and only if ϕ(a,b)ϕ(a′,b′) ∈ E(Gπ ×−→K2).

Firstly, let (a,b)(a′,b′) ∈ E(G×−→K2). By definition, aa′ ∈ E(G) and bb′ ∈ E(
−→
K2). Ob-

serve that bb′ = 01 by definition of
−→
K2. Also, aπ(a′) ∈ E(Gπ) as we have defined Gπ .

So, (a,b)(π(a′),b′) ∈ E(Gπ ×−→K2) and since b = 0 and b′ = 1, ϕ((a,b)) = (a,b) and

ϕ((a′,b′)) = (π(a′),b′). So, ϕ((a,b))ϕ((a′,b′)) = (a,b)(π(a′),b′) ∈ E(Gπ ×−→K2).

Now, let (a,b)(a′,b′) ∈ E(Gπ ×−→K2). So aa′ ∈ E(Gπ) and bb′ ∈ E(
−→
K2). Note that a′ =

π(π−1(a′)) and aπ−1(a′) ∈ E(G). Also, note that b = 0 and b′ = 1 since bb′ ∈ E(
−→
K2). So,

(a,0)(π−1(a′),1)∈E(G×−→K2). This implies ϕ((a,0))ϕ((π−1(a′),1))= (a,0)ϕ((π−1(a′),1))=

(a,0)(a′,1) = (a,b)(a′,b′). So, if (a,b)(a′,b′) ∈ E(Gπ ×−→K2) then we know that there is an

edge (a,0)(π−1(a′),1) ∈ E(G×−→K2) that ϕ sends to (a,0)(a′,1′) ∈ E(Gπ ×−→K2).

So now, ϕ(a,b)ϕ(a′,b′) ∈ E(Gπ ×−→K2) if and only if (a,b)(a′,b′) ∈ E(G×−→K2). There-

fore, ϕ is an isomorphism.
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In conclusion, (G×−→K2)∼= (Gπ ×−→K2) for any π ∈ Perm(V (G)).

With this result we can tell that even nonisomorphic graphs could have isomorphic

products when crossed with the
−→
K2. Is it possible that if G×K ∼= H×K then H must be

something of the form Gπ? If Lemma 2.3 could be reversed and still hold true we could

conclude that for a digraph G and arbitrary π ∈ Perm(V (G)), G×−→K2 ∼= H×−→K2 if and only

if H ∼= Gπ . This is a subcase of our original question and proving this statement will guide

us in the correct direction. The below proof verifies the converse of Lemma 2.3.

LEMMA 2.4. If G×−→K2 ∼= H×−→K2, then H ∼= Gπ for some π ∈Perm(V (G)).

Proof. Let G×−→K2 ∼= H×−→K2. Then there exists an isomorphism ϕ : V (G×−→K2)→V (H×
−→
K2). Notice that G×−→K2 and H×−→K2 are bipartite digraphs since

−→
K2 has exactly one edge.

Therefore all (g,0) ∈V (G×−→K2) will have an in-degree of zero, regardless of its out-degree,

as will all (h,0) ∈V (H×−→K2). Also, for all (g,1) ∈V (G×−→K2) and (h,1) ∈V (H×−→K2) the

out-degree will be zero regardless of the in-degree.

Define A = {(g,0) ∈ V (G×−→K2)} and B = {(g,1) ∈ V (G×−→K2)} and C = {(h,0) ∈

V (H×−→K2)} and define D = {(h,1) ∈V (H×−→K2)}.

Notice that |A|= |B| and |C|= |D| because we have crossed G with
−→
K2 and H with

−→
K2.

Notice that |A|= |C| and |B|= |D| because G×−→K2 ∼= H×−→K2 and so all elements of A will

have in-degree zero and all elements of C will also have zero in-degree. The same arguement

applies for |B|= |D|, given that all elements of B will have out-degree zero and all elements

with out-degree zero will be contained in D as well.

Since G×−→K2 ∼= H×−→K2, for each element in A, we know that there is a corresponding

element in C with the same out-degree. Therefore, A and C contain the same number of

isolated points. Let the number of isolated points in A be n. Also, B and D contain the

same number of isolated points given that for each element in B, there is a corresponding
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element in D with the same in-degree. Let the number of isolated points in B be m. So

{(a1,0),(a2,0), ...,(an,0)} is the set of isolated points in A, {(c1,0),(c2,0), ...,(cn,0)} is

the set of isolated points in C, {(b1,1),(b2,1), ...,(bm,1)} is the set of isolated points in

B, and {(d1,1),(d2,1), ...,(dm,1)} is the set of isolated points in D. Consider the function

ϕ̂ : V (G×−→K2)→V (H×−→K2) as defined below,

ϕ̂((g,k)) =


ϕ((g,k)) if deg(g,k)≥ 1 and k = 0,1

(ci,k) if g = ai,1≤ i≤ n and k = 0

(di,k) if g = bi,1≤ i≤ m and k = 1

.

We know that ϕ̂ is an isomorphism because (g,0)(g′,1) ∈ E(G×−→K2) if and only

if ϕ((g,0))ϕ((g′,1)) = ϕ̂((g,0))ϕ̂((g′,1)) ∈ E(H ×−→K2). This folows since, given any

(g,0)(g′,1) ∈ E(G×−→K2) the endpoints (g,0) and (g′,1) are clearly not isolated vertices.

Therfore, by definition of ϕ̂ , we have ϕ̂(g,0)ϕ̂(g′,1) = ϕ(g,0)ϕ(g′,1) and this is an edge

in E(H×−→K2) because ϕ is an isomorphism. Note that the isomorphism ϕ̂ has the prop-

erty that the second coordinate of ϕ̂(g,b) is always b. Therefore, there are functions

µ0,µ1 : V (G)→V (H) for which

ϕ̂((g,b)) =

 (µ0(g),b) if b = 0

(µ1(g),b) if b = 1

Note that the fact that ϕ̂ is bijective forces µ0 and µ1 to be bijective. For example if

µ0(g) = µ0(g′) then (µ0(g),0) = (µ0(g′),0) and so ϕ̂(g,0) = ϕ̂(g′,0) and since ϕ̂ is injec-

tive, (g,0) = (g′,0) which implies g = g′. Likewise, observe that µ0 is surjective. Now,

observe that since µ0 and µ1 are bijections, π = µ
−1
0 µ1 with π : V (G)→ V (G) is a per-

mutaion in Perm(V (G)). Note that by definition of Gπ , we have V (G) = V (Gπ) and so
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µ0 : V (Gπ)→V (H). We want to show that µ0 is an isomorphism between Gπ and H. In

other words, we want to show that gg′ ∈ E(Gπ) if and only if µ0(g)µ0(g′) ∈ E(H). Observe

that,

gg′ ∈ E(Gπ) ⇔ gπ−1(g′) ∈ E(G) by definition of Gπ

⇔ (g,0)(π−1(g′),1) ∈ E(G×−→K2)

⇔ ϕ̂((g,0))ϕ̂((π−1(g′),1)) ∈ G(H×−→K2) since G×−→K2 ∼= H×−→K2

⇔ (µ0(g),0)(µ1(π−1(g′),1) ∈ E(H×−→K2) by definition of ϕ̂

⇔ (µ0(g),0)(µ1µ
−1
1 µ0((g′),1) ∈ E(H×−→K2) by definition of π

⇔ (µ0(g),0)(µ0(g′),1) ∈ E(H×−→K2)

⇔ µ0(g)µ0(g′) ∈ E(H).

Therefore, µ0 is an isomorphism between Gπ and H. In conclusion, H ∼= Gπ .

Now, combining both Lemma 2.3 and Lemma 2.4 yields the following result.

PROPOSITION 2.5. If G and H are digraphs, then G×−→K2 ∼= H×−→K2 if and only if H ∼= Gπ

for some π ∈ Perm(V (G))

Proof. Let G and H be digraphs and π ∈ Perm(V (G)). First, let G×−→K2 ∼= H ×−→K2. By

Lemma 2.3, we know that H ∼= Gπ . Secondly, let H ∼= Gπ . By Lemma 2.4, we know that

G×−→K2 ∼= H×−→K2.

Therefore, G×−→K2 ∼= H×−→K2 if and only if H ∼= Gπ for some π ∈ Perm(V (G)).

Now that we have shown that G×−→K2 ∼= H×−→K2 if and only if H ∼= Gπ for some π ∈

Perm(V (G)), our goal is to determine what must hold about H if G×K ∼= H×K, for some

digraph K.
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2.3 Replacing a Simple K with any K

The following proposition shows that given a digraph K such that G×K ∼= H×K, it must

be the case that H ∼= Gπ for some π ∈ Perm(V (G)). We assume K must have at least one

arc because if K were without arcs, G×K and H×K would be digraphs with no arcs given

any G and H and therefore G×K would always be isomorphic to H×K, provided that

|V (G)|= |V (H)|.

PROPOSITION 2.6. If G×K ∼= H×K where K has at least one edge and where G,H,K are

digraphs, then H = Gπ for some π ∈ Perm(V (G)).

Proof. Let G,H,K be digraphs such that K has at least one edge and let G×K ∼= H×K.

Since K has at least one edge, observe that hom(
−→
K2,K) = |E(K)| ≥ 1 for any such K. By

Proposition 1.18, G×−→K2 ∼= H×−→K2. By Proposition 2.5, if G×−→K2 ∼= H×−→K2 then H = Gπ

for some π ∈ Perm(V (G)).

Therefore, if G×K ∼= H ×K where K has at least one edge and where G,H,K are

digraphs, then H = Gπ for some π ∈ Perm(V (G)).

With Proposition 2.6 concluded, it is reasonable to wonder if its converse holds true.

The following remark shows that the converse is generally false.

REMARK 2.7. Figure 2.4 is a perfect example of how it is possible that G×K � Gπ ×K.

In this example, K ∼=
−→
K2 and π =

 1 2 3

3 1 2

. Observe that G×K � Gπ ×K.

If we can state that H = Gπ for some π ∈ Perm(V (G)), when do we know that G×K ∼=

H×K for some digraph K? In fact we need a homomorphism from K onto
−→
K2 in order to

make use of our earlier proposition.
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K2 K2

G Gπ

1 2 3 1 2 3

Figure 2.4: Example of G×K � Gπ ×K

PROPOSITION 2.8. If H = Gπ for some π ∈ Perm(V (G)), and there exists at least one

homomorphism from K to
−→
K2, then G×K ∼= H×K.

Proof. Let H ∼= Gπ and let there exist at least one homomorphism f : K→−→K2. Since H ∼= Gπ ,

G×−→K2 ∼= H×−→K2 by Proposition 2.5. Proposition 1.18 implies that G×K ∼= H×K.

Therefore, G×K ∼= H×K.

Note that in this proof we must have at least one homomorphism from K to
−→
K2, in order

to conclude that G×K ∼= H×K. Remark 2.7 illustrates the neccessity of the homomorphism

as well since there is no homomorphism from K2 to
−→
K2.

Keep in mind our final goal. We want to know conditions on G for which G×K ∼= H×K

implies G∼= H. The following section introductes a necessary ingredient of our solution.

2.4 Factorial of a Digraph

DEFINITION 2.9. Given a digraph G, the factorial of G is another digraph, denoted G!, such

that V (G!) = Perm(V (G)) and an arc of G! is defined as follows: if α,β ∈ V (G!), then

(α)(β ) ∈ E(G!) when α(g)β (g′) ∈ E(G) if and only if gg′ ∈ E(G) for all g,g′ ∈V (G). We

denote arcs of G! as (α)(β ) instead of αβ do avoid confusion with compositon of functions,

given that α and β are actually functions.
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A similar definition of G! has been defined in Richard Hammack’s paper “On Direct

Product Cancellation of Graphs” [2] and was the starting point for the definition above.

As an example of G!, Figure 2.5 shows K2!. For this example, please note that

ρ0 =

 0 1

0 1

 and ρ1 =

 0 1

1 0

 are the permutations of V (K2) = {0,1}. Notice that

ρ0(g)ρ0(g′) ∈ E(G) if and only if gg′ ∈ E(G) so there will be the loop (ρ0)(ρ0) ∈ E(G!).

Also, ρ1(g)ρ1(g′) ∈ E(G) if and only if gg′ ∈ E(G) so (ρ1)(ρ1) ∈ E(G!). However, it

is not true that ρ0(g)ρ1(g′) ∈ E(G) if any only if gg′ ∈ E(G), for all g,g′ ∈ V (G) so

(ρ0)(ρ1) /∈ E(G!). Similarly, (ρ1)(ρ(0) /∈ E(G!).

G G!0 1 ρ0 ρ1

Figure 2.5: First example of G and G!

Figures 2.6, 2.7 and 2.8, show examples of factorial digraphs such that G has the vertex

set {1,2,3}. Let ρ0 =

 1 2 3

1 2 3

 and ρ1 =

 1 2 3

2 3 1

 and ρ2 =

 1 2 3

3 1 2

 and

µ1 =

 1 2 3

1 3 2

 and µ2 =

 1 2 3

3 2 1

 and µ3 =

 1 2 3

2 1 3

 be the permutations

on {1,2,3}.

G

2 1

3

ρ0

ρ1

ρ2

µ1

µ3

µ2

G!

Figure 2.6: Second example of G and G!
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In Figure 2.6, the only edges of G! are the loops to each element of V (G!). This is true

because G is the complete graph, which means E(G) contains all possible edges, excluding

loops. Notice that each permutation π on {1,2,3} is an automorphism of G, so if G is a

complete graph, then, gg′ ∈ E(G) if and only if π(g)π(g′) ∈ E(G) for all gg′ ∈ E(G), and

therefore (π)(π) ∈ E(G!). Generally speaking, in a complete graph with n vertices, there

will be n! copies of a loop in E(G!).

G

2 1

3

ρ0

ρ1

ρ2

µ1

µ3

µ2

G!

Figure 2.7: Third example of G and G!

In Figure 2.7, G is not a complete graph and therefore G! is missing four loops at

ρ1,ρ2,µ3 and µ4. For example, though 13 ∈ G, µ3(1)µ3(3) = 23 is not an edge of G, so

(µ3)(µ3) is not in E(G!).

G

2 1

3

ρ0

ρ1

ρ2

µ1

µ3

µ2

G!

Figure 2.8: Last example of G and G!

Figure 2.8 shows a more interesting pattern for G!, which includes both loops and edges

between elements of V (G!). Each digraph G will have a unique factorial given that G! is



27

constructed using the edges and permutations of G.

2.5 An Equivalence Relation on Permutations

Now we can create a relation that compares permutations on V (G) and encompasses the

definition of G!. This will be the second component that will tell us exactly when Gα ∼= Gβ .

DEFINITION 2.10. Given a digraph G, define a relation, ∼, on Perm(V (G)) as follows:

α ∼ β if and only if α = µ−1βλ for some (µ)(λ ) ∈ E(G!).

This relation definition gives us a chance to use characterisitcs of the permutation set

of V (G) and G!, both of which tell us a large deal about G. Keep in mind the end goal of

determining constraints on G such that G×K ∼= H×K implies G ∼= H. We will see that

this relation narrows down the characteristics for G. Notice that as in Figures 2.5, 2.6, 2.7,

2.8 the identity permutation is labeled as ρ0. In the remaining discussion, I will refer to the

identity mapping as ρ0.

PROPOSITION 2.11. The relation∼, as defined in Definition 2.10, is an equivalence relation.

Proof. First we would like to show that α ∼α for all α ∈V (G!). Consider that for all g,g′ ∈

V (G), gg′ ∈ E(G) if and only if ρ0(g)ρ0(g′) ∈ E(G) since ρ0 is the identity permutation,

and therefore (ρ0)(ρ0) ∈ E(G!). Also, note that α = ρ
−1
0 (α)ρ0 where (ρ0)(ρ0) ∈ E(G!).

So by definition of ∼, the reflexive property holds and α ∼ α .

Secondly, we need to show that if α ∼ β , then β ∼α . Let α ∼ β . Therefore α = µ−1βλ

for some (µ)(λ ) ∈ E(G!). Since α = µ−1βλ , it follows that β = µαλ−1 = (µ−1)−1αλ−1.

Therefore, we need to show that (µ−1)(λ−1) ∈ E(G!) or in other words we need to show
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that gg′ ∈ E(G) if and only if µ−1(g)λ−1(g′) ∈ E(G). Observe that,

gg′ ∈ E(G) ⇔ µµ−1(g)λλ−1(g′) ∈ E(G)

⇔ µ−1(g)λ−1(g′) ∈ E(G) since (µ)(λ ) ∈ E(G!).

Therefore, (µ−1)(λ−1) ∈ E(G!) while β = (µ−1)−1(α)(λ−1). So by definition of ∼,

the symmetric property holds and β ∼ α .

Lastly we must show that if α ∼ β and β ∼ κ then α ∼ κ . So let α ∼ β and β ∼ κ . So,

α = µ−1βλ for some (µ)(λ )∈E(G!) and β = ν−1κδ for some (ν)(δ )∈E(G!). Therefore,

α = µ−1ν−1κδλ = (νµ)−1κ(δλ ). We now need to show that (νµ)(δλ ) ∈ E(G!) or other

words we need to show that gg′ ∈ E(G) if and only if νµ(g)δλ (g′) ∈ E(G). Obeserve that,

gg′ ∈ E(G) ⇔ µ(g)λ (g′) ∈ E(G) because (µ)(λ ) ∈ E(G!)

⇔ νµ(g)δλ (g′) ∈ E(G) because (ν)(λ ) ∈ E(G!)

Therefore (νµ)(δλ ) ∈ E(G!) while α = (νµ)−1κ(δλ ) so by definition of ∼, the

transitive property holds and α ∼ κ .

In conclusion, ∼ is an equivalence relation.

Using this new equivalence relation we will now determine that two permutations on

V (G), call them α and β , are related as defined above if and only if Gα ∼= Gβ . This will

define a direct relation between permutations and products and will give us more information

for the conditions we need for direct product cancellation.

THEOREM 2.12. For a digraph G and arbitrary α,β ∈ Perm(V (G)), it follows that Gα ∼= Gβ

if and only if α ∼ β .

Proof. Let Gα ∼= Gβ where α,β ∈ Perm(V (G)). So gg′ ∈ E(Gα) if and only if ϕ(g)ϕ(g′)∈

E(Gβ ) for some isomorphism ϕ from Gα to Gβ . We know that gg′ ∈ E(Gβ ) if and only
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if ϕ−1(g)ϕ−1(g′) ∈ E(Gα). Consider that β = (ϕ−1)(α)(α−1ϕβ ) because ϕ,α,β are

bijections. Thus, we only need to show that (ϕ)(α−1ϕβ ) ∈ E(G!). Now observe that,

ϕ(g)α−1ϕβ (g′) ∈ E(G) ⇔ ϕ(g)ϕβ (g′) ∈ E(Gα) by definition of Gα

⇔ (g)β (g′) ∈ E(Gβ ) since ϕ is an isomorphism

⇔ gg′ ∈ E(G) by definition of Gβ .

So ϕ(g)α−1ϕβ (g′) ∈ E(G) if and only if gg′ ∈ E(G) for all g,g′ ∈V (G).

So (ϕ)(α−1ϕβ ) ∈ E(G!). Thus, since β = (ϕ−1)(α)(α−1ϕβ ), we know that α ∼ β .

Now, let α ∼ β . So, α = µ−1βλ for some (µ)(λ ) ∈ E(G!) Also, µα = βλ for the

same (µ)(λ )∈ E(G!). We will show that µ is an isomorphism from Gα to Gβ . Note that we

need to show that µ(g)µ(g′) ∈ E(Gβ ) if and only if gg′ ∈ E(Gα). Note that if α = µ−1βλ

then ρ0 = µ−1βλα−1. This will be used below. We know that,

gg′ ∈ E(Gα) ⇔ gα−1(g′) ∈ E(G) by definition of Gα

⇔ µ(g)λα−1(g′) ∈ E(G) since (µ)(λ ) ∈ E(G!)

⇔ µ(g)βλα−1(g′) ∈ E(Gβ ) by definition of Gβ

⇔ µ(g)µµ−1βλα−1(g′) ∈ E(Gβ ) since ρ0 = µµ−1

⇔ µ(g)µρ0(g′) ∈ E(Gβ ) since ρ0 = µ−1βλα−1

⇔ µ(g)µ(g′) ∈ E(Gβ )

.

In conclusion, Gα ∼= Gβ .
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2.6 Conclusion

We will now use the above facts and the following theorem to determine exactly when

G×K ∼= H×K implies G∼= H.

REMARK 2.13. If G is such that G×K ∼= H×K implies G∼= H then we can use Proposition

2.6 to conclude that H ∼= Gπ for some π ∈ Perm(V (G)) for any K with at least one edge. So

G∼= H ∼= Gπ which implies G∼= Gπ for any π ∈ Perm(V (G)). So the definition of ∼ leads

us to observe that ρ0 ∼ π for any π . So∼must have one equivalence class if G×K ∼= H×K

implies G∼= H.

THEOREM 2.14. Let Φ be defined as follows: Φ : E(G!)→V (G!) such that Φ((µ)(λ )) =

µ−1λ for all (µ)(λ )∈ E(G!). Then, Φ is a surjective mapping if and only if G×K ∼= H×K

implies G∼= H.

Proof. Firstly, if Φ is a surjective mapping and defined as it is above, then for every

δ ∈ V (G!), we have δ = µ−1λ for some (µ)(λ ) ∈ E(G!). Clearly, δ = µ−1ρ0λ also for

every δ ∈V (G!). Definition 2.10 implies that δ ∼ ρ0 and by Theorem 2.12, Gδ ∼= Gρ0 ∼= G.

So Gδ ∼= G for all δ ∈V (G!) = Perm(V (G)). Thus, we know∼ has exactly one equivalence

class. By Proposition 2.6, if G×K ∼= H ×K and | E(K) |≥ 1, then H ∼= Gπ for some

π ∈ Perm(V (G)). So G×K ∼= H×K implies H ∼= Gπ ∼= G and so H ∼= G.

Conversely, if G×K ∼= H×K implies G∼= H then by Remark 2.13, ∼ has one equiva-

lence class. Hence, given any δ ∈V (G!) we know δ ∼ ρ0, which means there is an edge

(µ)(λ ) ∈ E(G!) with δ = µ−1ρ0λ . Thus, δ = µ−1λ = Φ((µ)(λ )), and so Φ is surjective.

In conclusion, G×K ∼= H×K implies G∼= H if and only if Φ is a surjective mapping.

After such a large theorem, we must consider a few examples to make this theory more

concrete.



31

b c

a

µ1

ρ0

µ2

µ3

ρ2

ρ1

G

G!

Figure 2.9: An Example of G and G!

Consider that Figure 2.9 is an example a digraph G for which Φ : E(G!)→V (G!) which

is surjective. Observe that V (G) = {a,b,c} and E(G) = {aa,ab,ac} and see that each arc be-

gins at a, while E(G!)= {ρ0ρ0,ρ0ρ1,ρ0ρ2,ρ0µ1,ρ0µ2,ρ0µ3,µ1ρ0,µ1ρ1,µ1ρ2,µ1µ1,µ1µ2,µ1µ3}.

Note that V (G!)= {ρ0,ρ1,ρ2,µ1,µ2,µ3} and consider that ρ0 = Φ((ρ0)(ρ0)), ρ1 = Φ((ρ0)(ρ1)),

ρ2 = Φ((ρ0)(ρ2)), µ1 = Φ((ρ0)(µ1)), µ2 = Φ((ρ0)(µ2)), µ3 = Φ((ρ0)(µ3)). Therefore

Φ is a surjective mapping.

Now, consider this next figure as an example when Φ is not surjective.

G

2 1

3

ρ0

ρ1

ρ2

µ1

µ3

µ2

G!

Figure 2.10: Third example of G and G! for earlier section

This nonsurjective mapping Φ is deduced from Figure 2.10. Note that this is the same ex-
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ample of G and G! as in Figure 2.7. Notice that V (G) = {1,2,3} and E(G) = {12,21,13,31}

and just as in Figure 2.9, V (G!)= {ρ0,ρ1,ρ2,µ1,µ2,µ3}. However, E(G!)= {ρ0ρ0,ρ0µ1,µ1ρ0,µ1µ1}.

This means that Φ : E(G!)→ V (G!) is not surjective. For justification, consider that

ρ1 ∈V (G!) but there is no element of E(G!) such that Φ maps that element to ρ1.

In conclusion, the mapping Φ from E(G!) to V (G!) must be surjective in order for

G×K ∼= H×K to imply G ∼= H. Note that only one such mapping must occur, however

without such a mapping, cancellation will not hold true.
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