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The adhesion and resuspension of nanoparticles is important in applications 

ranging from semiconductor manufacturing to pollution management. The objective of this 

work is to understand the effect of particle size on re-entrainment of nanometer scale 

particles.  One of the major contributions is to reduce the randomness introduced in past 

measurements on resuspension by controlling humidity, temperature, material and the 

distribution of shape and particle sizes.  In the process of studying particle size, the effect 

of surface roughness was also found.  Measurements of the detachment fraction of carbon 



xii 

particles as a function of flow rate show three distinct regimes that we attribute to the 

dominance of drag, energy accumulation by particles, and collision and agglomeration 

respectively. Experiments with silica nanoparticles on silica microspheres show the 

detachment fraction to increase non-linearly with particle diameter and to decrease with the 

substrate diameter. We attribute the former to the dominance of the drag moment over the 

adhesive moment. We attribute the influence of the substrates to the surface roughness 

being comparable to the size of the nanoparticles. This work provides new empirical 

insight into the interaction of nanoparticles with surfaces and fluid flows.  
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CHAPTER 1 Introduction 
 

 This work is an attempt to understand the properties and surface characteristics of 

nanoparticles that are in contact with surfaces. The nanoparticles are subjected to an 

aerodynamic removal force and their consequent detachment from the surface is studied.  

 

1.1 Why Study Nanoparticle Entrainment from Surfaces?  

Particles are present all around us, ranging from pollen, dust and fibers to metals and metal 

oxides. These particles are held to the surface by strong attractive forces. A control over 

the attachment and detachment process is important in many fields including 

semiconductor industry, aerosol research, pneumatic transport, design of filters, control of 

micro-contamination, groundwater, handling of toxic substances and oil transport 

(Nicholson 1988; Theerachaisupakij, Matsusaka et al. 2003). For example, in the 

semiconductor industry, contamination due to particle adhesion accounts for 50% of the 

yield loss (Hoenig 1986).  

 
Fig. 1.1 Particle entrainment is of practical importance in semiconductors and pollution 
             control. 
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The adhesion of nanoparticles to surfaces is very difficult to control. Removal of 

nanoparticles can be brought about by aerodynamic or hydrodynamic forces. However, the 

removal process becomes increasingly difficult with decreasing particle size. The removal 

of particles in the nanometer range puts forward a new challenge.  

 

1.2 Statement of the Problem  

The removal of nanoparticles from surfaces subjected to turbulent flow has been 

the focus of several theoretical and experimental studies. The variability of the properties 

of the particles and the ambiguous nature of the results are due to the broad distribution of 

particle-surface interactions. The problem can be solved by designing a study that 

considers particles with uniform properties in contact with a well-characterized surface.  

Our goal is to perform entrainment experiments with uniform-sized spherical 

nanoparticles in contact with a well-characterized surface. Aerodynamic force, with well-

defined flow parameters is used to detach the particles. The use of different sizes of 

spheres while other parameters are carefully controlled, results in a narrow distribution of  

sphere-surface forces (Phares, Smedley et al. 2000). This facilitates a better understanding 

of the process. The scientific objective is to determine the effect of particle size and surface 

roughness on the entrainment process. The biggest hurdle in this study is the random 

nature of the process and the complexity introduced by several factors such as humidity, 

residence time, material properties of particle and surface, and flow rate of removal force.  
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1.3 Organization of the Thesis  

We review the theory behind the resuspension of nanoparticles from surfaces in 

Chapter 2. In particular, we discuss the two most commonly used models: the energy 

balance model and the force balance model. Chapter 3 describes the development of an 

experimental setup to ultimately measure the fraction of particles that are detached from a 

substrate due to air-flow over the substrate. We also describe the characterization of the 

particles and the substrates used in this work. Chapter 4 discusses experiments on the 

resuspension of carbon particles. This study helps to identify the key factors that introduce 

randomness in measurements. The insight gained from this study is used to redesign the 

experiments using silica particles. This is discussed in Chapter 5. We analyze the 

experimental data to understand the effect of particle size and surface roughness on the 

process of adhesion and resuspension of particles from the substrate. We present our 

conclusions and provide suggestions for future work in Chapter 6.  

 

1.4 Summary  

Experiments to date have involved a broad distribution of particle-surface 

interactions. Neither results from previous experiments nor models developed to predict 

the entrainment behavior have been able to satisfactorily explain the detachment of 

nanoparticles from surfaces subjected to airflow. Our work is an attempt to understand the 

entrainment process with respect to size of the nanoparticle.  
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CHAPTER 2 Mechanics of Resuspension 
 

 This chapter presents a survey of the literature on the resuspension of particles from 

a surface and into a flow. We begin by explaining terms such as detachment, entrainment 

and re-entrainment, used commonly in aerosol science to describe the state of a particle 

with respect to the flow. The removal of a particle from a surface and into the flow 

depends on the relative magnitudes of several forces. Section 2.2 discusses the various 

adhesive forces that contribute to the attachment of a particle to the surface. Section 2.3 

describes the counteracting aerodynamic forces that remove the particle from the surface as 

well as the theoretical models that aim to explain this process. Section 2.4 describes the 

various parameters and methods that are used to describe the flow of a fluid through a 

porous medium.  

 

2.1 Introduction  

Detachment refers to the process of separation of a microparticle adhering in static 

equilibrium to a surface by rolling, sliding or direct lift-off. Entrainment is the capture of 

the microparticle in the flow once it is detached. Resuspension or re-entrainment is the 

removal of a microparticle from a surface, where the microparticle was previously airborne 

and subsequently was deposited on the surface. The mechanics of resuspension depend 

primarily on the balance of two kinds of forces: adhesive forces that serve to keep the  
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particle attached to the surface, and counteracting aerodynamic removal forces. We 

describe these forces below in greater detail.  

 

2.2 Process of Particle Adhesion  

Particle adhesion forces are responsible for establishing contact and adhering 

particles to surfaces. Particle adhesion in solids is due to long-range forces, chemical 

interactions and very short-range forces.  

Long-range attractive forces bring the particle to the surface and establish the 

adhesion contact area. These include van der Waals forces, electrostatic and magnetic 

forces. The establishment of the contact area is supported by chemical interactions like the 

building of solid and liquid bridges between particle and surface, resulting in capillary 

forces. The short-range forces include chemical and intermediate bonds such as hydrogen 

bonds.  

 

2.2.1 Van der Waals Adhesion Force  

Van der Waals forces predominate for particles below 50 _m in diameter, and 

electrostatic forces dominate for larger particles (Bowling 1988). The origin of van der 

Waals forces is quantum mechanical. For a non-polar atom, the average of its dipole 

moment is zero. However, at any instant there exists a finite dipole moment given by the 

instantaneous positions of the electrons about the nuclear protons. This instantaneous 

dipole generates an electric field that polarizes any nearby neutral atom, inducing a dipole 

moment in it (Israelachvili 1985; Israelachvili 1992; Friedlander 2000). This interaction  
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between the two dipoles gives rise to an instantaneous attractive force, as shown in Fig. 

2.1.  

 
Fig. 2.1: Generation of Van der Waals attractive force 

between two non-polar atoms 
 

 

The attractive van der Waals forces can be calculated using Hamaker’s theory. The 

Hamaker theory integrates forces between individual atoms to determine the interaction 

between larger bodies. This method uses the Hamaker constant, A, which depends on the 

number density atoms in both the particles in contact and on the coefficient of van der 

Waals pair-wise interaction. The van der Waals interaction energy (Israelachvili 1992) 

between two spheres is given by  
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( )
)(6 21

21

RRD
RRAW spsp =−      (2.1) 

where A is the Hamaker constant, R1 and R2 are the radii of the spheres that are close to 

each other and D is the separation between the spheres.  

For a sphere-surface interaction, the interaction energy, Wsp-sf is given by  

( )
D
RAW sfsp

6
=−      (2.2) 

where R is the radius of a sphere in close proximity of a surface.  

 
Fig. 2.2: Sphere-surface interaction 

 

This approach has severe shortcomings because it extends a microscopic interaction 

to a macroscopic level. A more satisfactory macroscopic approach was developed by 

Lifshitz (Lifshitz 1956), who started directly from the bulk optical properties of the 

interacting bodies. In this approach, the material value is the Lifshitz-van der Waals 

R D
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constant h, which is defined as the integral parts of the dielectric constants of the adhering 

particles. The van der Waals force, Fvdw for a spherical particle on a flat surface is given by  

2vdw πz
hR  F

8
=      (2.3) 

where h is the Lifshitz-van der Waals constant, R is the particle radius and z is the atomic 

separation between the particle and the surface. The Lifshitz-van der Waals constant 

generally ranges from 0.6 eV for polymers to 9.0 eV for metals such as silver and gold. It 

depends on the combination of materials.  

 

2.2.2 Electrostatic Force  

The electrostatic adhesive force is the result of image and double layer forces. The 

image force is due to bulk excess charge present on the surface or particle, which produces 

Coulombic attraction. The image force is given by the equation  

2
0

2

4 l
qFimage επε

=     (2.4) 

where q is the charge, ε is the dielectric constant of the medium between the particle and 

the surface, ε0 is the permittivity of free space and l is distance between the charge centers 

and is approximately twice the radius of the particle.  

The double layer force is due to the potential difference that develops between two 

materials in contact. Charge is transferred from one material to another until equilibrium is 

reached. In the equilibrium state, the current flow in both directions is the same. The 
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contact potential difference is in the range of 0 to 0.5 V. The distribution of the contact 

charge depends on the material. For example, in metals, only the surface has contact  

charges while in the case of insulators and semiconductors, these charges may extend 1 µm 

or more inside the material. The double layer force can be measured as  

z
RU

Fdlf

2
0πε

=     (2.5) 

where ε0 is the permittivity of free space, R is the particle radius, U is the contact potential 

difference and z is the distance of separation between the two materials.  

 

2.2.3 Gravitational Force  

The attractive force on a particle due to gravity can be calculated based on the 

equation  

gRFgrav ρπ 3

3
4  =     (2.6) 

where ρ is the density of the particle and g is the gravitational acceleration. The attraction 

due to gravity is insignificant in the case of particles smaller than 20 µm (Bowling 1988).  

 

2.2.4 Other Forces that Contribute to Adhesion  

Capillary condensation forces come into play due to humidity present in the 

surroundings. Condensation of water vapor takes place in the gap between bodies which 

are in contact. The capillary force is a function of the particle radius and the surface 

tension of the liquid in contact. It is given by  

Fcap = 4πRγ     (2.7) 
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where R is the radius of the particle and γ is the liquid surface tension. 

Studies indicate that there is almost no change in adhesion forces till about 30% 

relative humidity (Corn 1961; Stein 1965; Bhattacharya and Mittal 1978). However, at 

higher relative humidities, there is a rapid increase in adhesion forces. Water adsorbed 

between the surface and the particle increases the effective contact area and the 

corresponding pull-off force (Akiyama and Tanijiri 1989).  

Van der Waals forces create tremendous pressure on particles and surfaces and lead 

to deformation. The amount of deformation depends on the hardness of the particle and the 

surface (Johnson, Kendall et al. 1971). The surface area of contact increases due to 

deformation, thereby increasing the adhesion force. The additional van der Waals force due 

to deformation is given by  

3

2

8
  

z
hFvdw deform π
ρ=      (2.8) 

The effect of roughness of the surface on van der Waals force is dependent on the 

nature of the roughness. The roughness of real surfaces is a highly complex mix of height, 

curvature and distribution of asperities(Cheng, Dunn et al. 2003). In most cases, the 

roughness of a surface is characterized by an asperity radius, r and the distance between 

asperities, a. This is applicable in the case when the particle size, R, is considerably larger 

than the asperity size. This case is shown in Fig. 2.3a, where the roughness is fine and 

reduces the adhesion force. Fig. 2.3b, demonstrates a case where the size of the asperity is 

comparable to the particle size (Ranade 1987). A discussion on the effect of asperity size 

on the adhesion force is dealt with in section 2.4.  
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Fig 2.3a Surface with fine roughness Fig. 2.3b Asperity size comparable to 

particle size 
 

2.3 Particle Entrainment  

The most common method of entrainment is by the application of aerodynamic or 

hydrodynamic forces. In the aerodynamic method, there are three modes of inceptive 

motion, namely, lift-off, rolling and sliding (Wang 1990; Mollinger, Nieuwstadt et al. 

1992). Figure 2.4 demonstrates the balance of forces schematically.  

 

 
Fig. 2.4 Balance of forces 

 

The particle gets directly lifted off the surface when the normal component of the 

applied aerodynamic force exceeds the adhesive force. The tangential component of the 

applied force overcomes the combined effect of frictional and adhesive force, resulting in 

sliding of the particle. The torque at the point of contact of the particle on the surface sets  

Lift force Fl 

Drag force Fd 

Adhesive force Fad

Fluid flow 
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the particle in a rolling motion (Denis J. Phares;Gregory T.. Smedley; Phares, Smedley et 

al. 2000).  

The balance of forces resulting in particle resuspension can be explained using two 

basic models, namely the force balance (Cleaver and Yates 1973) and the energy balance 

models (Reeks 1988; Reeks 1988). The rock’n roll model(Reeks and Hall 2001) and 

aggregate wall-collision model (Adhiwidjaja, Matsusaka et al. 2000) are modifications to 

the energy balance model, in order to better estimate the resuspension rate.  

 

2.3.1 Force Balance Model  

Particles on a surface are held by very strong surface forces, which are a 

combination of physical interactions, chemical bonds and mechanical stresses. When the 

particles are subjected to very high turbulent flows, some particles get suspended due to 

the aerodynamic force (Ziskind, Fichman et al. 1995). The fluid flow counteracts the 

adhesion force. Particles get resuspended when aerodynamic forces exceed their surface 

counterparts (Cleaver and Yates 1973) . There is a strong dependence of the reentrainment 

rate on the frequency and intensity of the turbulent bursts (Wen, Kasper et al. 1989). 

Experiments using this model indicate that resuspension occurs in two regimes, namely the 

short-term regime (less than a few minutes) and the long-term regime. The short-term 

regime is characterized by a power law decay where the concentration of removed particles 

is proportional to t-a (t is time and a is a function of flow rate and particle size). The 

concentration of particles in the long-term regime is proportional to (1/t) e -t/T, where T is 

the decay constant (Wen and Kasper 1989; Jurcik and Wang 1991).  
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To better understand the force balance model, we first analyze the moment of 

forces on a single particle in contact with a surface as shown in Fig. 2.5.  

 

Fig. 2.5 Forces acting on a small agglomerate 
 

With reference to Fig. 2.5, R is the particle radius, Dp the particle diameter, Fad is 

the adhesive force (primarily van der Waals force) between the particle and the wall and θ 

is the contact angle of the aggregate with the wall. The moment of adhesion is given by  

 θ  DF M padad sin=      (2.9) 

The adhesive force Fad consists primarily of van der Waals force, ignoring 

electrostatic, capillary and gravitational forces. Hence, The van der Waals force acting 

between the particle and the surface is given by  

12

2  zAD
  F

-
p

ad =      (2.10) 

where A is the Hamaker constant and z is the separation gap between contact bodies.  

Substituting Fad in equation for Mad, we get   

12
sin22 θ  zAD

  M
-

p
ad =     (2.11) 

R 

Center of rotation 
Fad 

Drag Force 
Fd 

θ 
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The aerodynamic drag moment, Md is given by (Matsusaka and Masuda 1996)   

16
15 3

pw
d

Dπτ
  M =      (2.12) 

where τw is the wall sheer stress caused by the airflow in a tube and is given by  

4
7

4
1

4
1

21096.3
−−−×= avgtffw uDvρτ      (2.13) 

where ρf is the density of air, νf is the kinematic viscosity, Dt is the diameter of the tube and 

uavg is the average flow velocity. For resuspension to take place, the drag moments should 

be greater than the adhesion moment.  

The force balance model of particle resuspension works well when the force of 

detachment is greater than the adhesion force. However, this model also has its limitations 

as it is unable to explain removal of nanometer sized particles where the removal force is 

less than the adhesion force. A modification of the force balance model tries to overcome 

this limitation by developing a model based on aggregation of nanoparticles.  

 

2.3.1.1 Aggregates with Breaking Particle Collisions  

This model is based on the agglomeration of very fine particles and their removal 

by breaking-particle wall collisions (Adhiwidjaja, Matsusaka et al. 2000) and we analyze 

the case by considering forces acting on an agglomerate of particles. Fine particles in 

aerosol flow form aggregates or a particle deposition layer (Theerachaisupakij, Matsusaka 

et al. 2003). A particle deposition layer is formed when the flow velocity is below a certain 

critical velocity. When the particle deposition and reentrainment rates are in equilibrium, 

the state of the deposition layer is controlled by the balance of the moments of  
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forces. As the flow velocity is increased gradually, the amount of the deposited particles 

decreases and the particle deposition layer changes into small aggregates. Collisions 

between particles have a significant effect on resuspension (Matsusaka and Masuda 1996). 

Once a few microparticles are detached, they move along the surface and impact other 

microparticles. This process of aggregation and detachment, provides enough momentum 

to the stationary microparticles to overcome their adhesion with the substrate (Gotoh, 

Karube et al. 1996; Ibrahim, Dunn et al. 2004).  

From experiments it is observed that small nanometer-sized particles are present in 

the flow of resuspended particles. From this we infer that nanoparticles are removed even 

when they do not agglomerate, that is when the removal force does not exceed the surface 

adhesion. This conclusion can be explained using the energy balance model of detachment.  

 

2.3.2 Energy Balance Model  

The energy balance model is based on the understanding that entrainment occurs 

even though removal aerodynamic forces do not always exceed the surface adhesion 

forces. With every turbulent burst a particle accumulates kinetic energy and it gets 

resuspended when it overcomes the adhesive potential well. Particles in turbulent flow 

accumulate energy and finally get resuspended as shown in Figure 2.6.  
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Fig. 2.6: Resuspension of particles by accumulation of energy in turbulent flow 

 

The energy balance model introduces the concept of turbulent bursts or eddies, 

wherein the particles accumulate energy to overcome the adhesion potential well and get 

resuspended (Reeks 1988; Reeks 1988). It is based exclusively on lift/normal forces. 

Unfortunately, the energy balance model consistently underestimates the resuspension rate 

because it does not account for removal of particles due to sliding/rolling modes. It also 

assumes surfaces to be perfectly smooth and hence it does not consider the rocking of 

particles about surface asperities. The rock’n roll model overcomes these limitations of the 

energy balance model.  

 

2.3.2.1 Rock’n Roll Model  

The rock’n roll kinetic model considers the effect of drag (sliding) forces and also 

involves the rocking of a particle about an asperity in the contact zone (Ziskind, Fichman 

et al. 1997; Lazaridis, Drossinos et al. 1998; Reeks and Hall 2001). It considers the surface  
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to be rough and accounts for the variation in moments. The surface geometry of the rock’n 

roll model is shown in Fig. 2.7. As the particle oscillates about the asperity, the potential 

energy depends on the torque acting on the particle and the moment of inertia about the 

pivot. The analysis of the moments of a particle in contact with a rough surface depends on 

the height, distribution in space and the curvature of the asperities (Ziskind, Fichman et al. 

1997).  

 

Fig. 2.7 Rock’n roll model to account for surface roughness 
 

An asperity is characterized by its radius, r, and the distance between two 

asperities, a. We consider three cases of the rock’n roll model here with respect to one, two 

and three surface asperities.  

When the size of a "large" particle (radius R) is significantly larger than the asperity 

(R>>r), the asperity acts like a small particle and the large particle plays the role of a flat 

surface (Lazaridis and Drossinos 1995). This is shown in Fig. 2.8a. This case is similar to 

that of a particle in contact with a smooth surface. In comparison to the adhesion force, Fad  

R
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P

Lift force Fl 

Drag force 
Fd 

Adhesive force 
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in Eq. 2.10 (where Dp=2R), we observe that in this case Fad becomes smaller because it is 

calculated using the asperity radius and not the particle radius. Hence, Fad is calculated 

using r instead of R. The contact of a particle with two surface asperities is of practical 

interest. The side view diagram of a particle on two surface asperities is shown in Fig. 

2.8b. In this case, the rotation of the particle can occur in two directions. It can be along the 

line connecting the contact points, and it can also be along the line perpendicular to the 

previous one (Cheng, Dunn et al. 2002). These two directions of rotation are shown in Fig. 

2.9a and b.  

              
               

Fig. 2.8a Particle in contact with a 
single asperity (side view) 

Fig 2.8b Particle in contact with two 
asperities (side view) 

 

                                           

Fig. 2.9a Rotation along the line 
joining the asperities (top view) 

Fig. 2.9b Rotation along the line 
perpendicular to the line joining the 

asperities (top view) 
 

The three asperity case is similar to the two asperity case. The first possibility is 

that the particle can move on the surface of an asperity. This will be similar to the case  

r 

R

r 

R 

a
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shown in Fig. 2.9a. The second possibility is that the particle moves between the two 

asperities in which the direction of travel is perpendicular to the line joining the two 

asperities. This is similar to the case demonstrated in Fig. 2.9b. The two cases of the three 

asperity motion are shown in Fig. 2.10a and b.  

                                                                  

Fig. 2.10a Rotation of particle on surface 
asperity (top view) 

Fig. 2.10b Rotation of particle 
perpendicular to line joining two asperities 

(top view) 
 

After gaining sufficient momentum, the particles lift-off/roll/slide on the surface, 

get detached and travel with the flow (Ibrahim, Dunn et al. 2003). If the flow of air is 

through a porous media, it is characterized by parameters like porosity, Reynolds number 

(Re), pressure difference, loss coefficient, interstitial velocity and volumetric flow rate.  

 

2.4 Fluid Flow through Porous Media  

In a porous medium, only a fraction of the cross section is available for fluid flow. 

The porosity, ε’ of a medium is defined as the fraction of total volume of the medium that 

is occupied by void space. In defining the porosity of a medium we assume that all the 

void space is connected. The porosity of a bed composed of identical spherical bodies is 

independent of the grain diameter; it is a function of the mutual disposition of the grains, 

the angle θ (Idelchik and Fried 1986).  
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Fig. 2.11 Porosity varies between 600 and 900 

 

Porosity for the extreme values of θ is given by:  

(2.14) 

 

The extreme values of θ are 600 and 900. The porosity of a bed of solid spheres, can 

vary between 0.25 to 0.47. Media made up of nonuniform sizes of grains have lesser 

porosity because smaller grains fill pores formed by larger grains. A characteristic feature 

of flow in porous media is a gradual transition from laminar to turbulent regime starting at 

low Reynolds numbers (Re) and extending over a wide range of values of Re (White 

2003). The smooth transition in Re number is due to tortuosity of the pores, contractions, 

and expansions and surface roughness of the porous medium, which favors vortex 

formations and flow disturbances (Kaviany 1999). It is also due to the gradual propagation 

of turbulence from larger pores to smaller ones associated with the size distribution of   
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pores in the medium. Figure 2.12 shows the flow of fluid through a porous medium 

composed of grains on non-uniform size.  

 
Fig. 2.12 Flow of fluid through porous medium composed of non-uniform grain size 

 

The flow of a fluid through a porous medium or packed bed involves several 

parameters, namely pressure loss, bed porosity and length, volumetric flow rate, interstitial 

velocity and the Reynolds number depending on whether the flow is in the laminar or 

turbulent regime. The flow parameters of a packed bed can be determined using two 

methods – Darcy and Idelchik methods.  

 

2.4.1 Darcy’s Method  

Darcy’s method is based on Darcy’s law, which states that for a steady-state 

unidirectional flow in a uniform medium, the relation between the flow rate and the 

applied pressure difference is given by  

x
PKu

∂
∂−=

µ
     (2.15) 
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where 
x
P

∂
∂  is the pressure gradient in the flow direction, µ is the viscosity of the fluid, K is 

the hydraulic conductivity of the medium (it is independent of the nature of the fluid) and u 

is the flow rate. The hydraulic conductivity, K is a function of the size and distribution of 

the pores in the medium. It is essentially a measure of the size, orientation and 

connectedness of the pores. Darcy’s method to calculate the flow parameters is valid for 

only laminar flow. Further, it is necessary to know the permeability k of the medium.  

 

2.4.2 Idelchik Method  

The Idelchik method is valid for laminar or turbulent flow through a bed. Any 

value of porosity may be used. Another advantage is that, using the Idelchik method, 

permeability can be back-calculated for use in Darcy’s method.  

To calculate flow parameters using Idelchik’s method, we consider a column with 

area Aup, bed length l, packed with grains of diameter d of total weight, w and density, ρ. 

The bed length, column cross-sectional area Aup, area of bed Abed (column cross-sectional  

area minus area of grains), the volumetric flow rate (Q), fluid density (ρ), fluid viscosity 

(µ) and bed porosity ε’ are the parameters that we need to know. The values that we can 

measure are interstitial/pore velocity (Vbed), Reynolds number (Re), pressure difference 

(∆P), bed permeability k and the minor loss coefficient (Km) of the bed.  

The method to calculate the flow parameters is as follows. The porosity of the bed 

ε’ is given by Eq. 2.14. For a bed of spherical particles, the extreme values for θ are in the 
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range of 600-900. From the values of volumetric flow rate Q and column cross-sectional 

area Aup, we determine the upstream velocity Vup using the equation  

up
up A

Q  V =       (2.17) 

Using the assumption that the input volumetric flow rate is equal to the output flow 

rate, we get the relation  

bedbedupup  A V  A VQ ==     (2.18) 

From the above relation we can determine the value of the interstitial velocity or the pore 

velocity, Vbed.  

From the two extreme values of porosity, we can determine the range of Re for the flow as 

given below  

(2.19) 

The pressure gradient across the bed is given by the equation  
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The minor loss coefficient is given by the equation  
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The permeability of the bed can be back calculated for use in Darcy’s method using the 

relation  
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In Chapter 5, the Idelchik method is used to determine the flow parameters of the 

bed. It also provides the permeability of the bed for use in the Darcy’s method.  

 

2.5 Summary  

This chapter covered the important aspects that affect the resuspension of particles 

from a bed of substrate particles. We discussed the forces that affect the attachment and 

detachment of particles, especially the ones that become prominent for sub-micron 

particles. Different models and their modifications try to explain the results from 

experiments. The characteristics and important parameters of particles suspended in porous 

media were discussed. Two alternate methods, the Darcy method and the Idelchik method 

explain the calculation of the flow parameters in laminar and turbulent flow in porous 

media.  
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CHAPTER 3 Experimental Setup 
 

3.1 Introduction  

This chapter describes the experimental setup, materials and method used to 

investigate the detachment of nanoparticles from the surface of micron-sized substrate 

spheres under the influence of air flow. A known size and quantity of micro and 

nanospheres were packed in a tube. All flow parameters were controlled to study the effect 

of particle size on resuspension. Section 3.2 provides information about the experimental 

setup and the instrumentation. Material specifications and the sample preparation are 

discussed in Section 3.3. Section 3.4 describes the experimental technique and the 

procedure used to set the control parameters. Finally, Section 3.5 explains how a set of 

controlled experiments is carried out to ensure consistent and repeatable results.  

 

3.2 Experimental Setup  

Figure 3.1 shows a schematic of the experimental setup. The setup consists of a gas 

filter, a mass flow controller (MFC), a mass flow meter (MFM), a pressure transducer, a 

humidity sensor, a steel capillary tube where the mixture of nanoparticles and substrate 

beads is held, particle filters, condensation particle counter (CPC) and a computer for data 

acquisition (PC).  
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Figure 3.1 Schematic block diagram of the experimental setup 

 

The air source in the setup is connected to a series of gas filters. The gas filter is a 

TSI 3074B, and it removes particles, water and oil droplets. The filter contains activated 

carbon pellets which remove even trace amounts of oil. The final stage of the filter 

contains a membrane dryer which removes water vapors in the gas. Before the start of the 

experiment, the inlet air is cleaned to a maximum of 0.01 particles per cm3. The mass flow 

controller MKS 1559 and the mass flow meter MKS 558 are used to control the flow rate 

of the air that enters the tube. The mass flow meter and the controller have a full scan 

range of 100 Lpm, an accuracy of ± 1% and a resolution of 0.1% of full scale. The MKS 

PR 4000 controls the volumetric flow rate at the tube inlet. The inlet pressure and the 

volumetric flow rate are read by the MKS PR 4000. Figure 3.2 shows a photograph of the 

setup.  

Air Source Gas filter MFC MFM Humidity 
sensor

Steel tube 

Bypass tube

PC Pr Transducer 

MKS PR40000 

Particle filters CPC 
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Figure 3.2: Picture of the experimental setup 

 

The steel tube is filled with micrometer-size particles which act as the substrate 

particles. The tube is 1.75 mm O.D. × 160 mm in length, with an internal bore of 1.6 mm. 

On the surface of the substrate are the nanometer-size particles. The method for preparing 

the mixture of micrometer and nanometer sized particles is described in Section 3.3.4. 

There is a bypass tube in parallel with the sample tube through which the filtered air flows 

before and after the experiment at the set flow rate. A valve along with a 3-way fitting 

regulates the air flow between the sample tube and the bypass tube. A similar valve at the 

end of the parallel tube combination directs the flow into a set of particle filters. A set of 

swagelok particle screens are placed after the sample tube (40 µm and 20 µm). They 

prevent the larger micron sized spheres from entering the particle counter.  

The TSI 3022A condensation particle counter (CPC) is used to measure the 

concentration of nano particles. It can detect particles in the size range from 15nm – 1µm. 

At 15nm, the CPC detects 90% of the particles. The detectable concentration of the 
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particles is from 0 to 9.99 × 106 particles/cm3. The aerosol enters the CPC at a fixed flow 

rate of 25 cm3/s. Out of this, 5 cm3/s of the flow is branched toward the sensor of the CPC 

for counting of the particles. Aerosol enters the saturator tube of the CPC and passes 

through a wick which is soaked in n-butanol. The liquid evaporates and saturates the 

aerosol stream with vapor. This passes through the condenser tube, becomes 

supersaturated, and condenses on the particle to form larger detectable droplets. The 

particles are detected by the optical detector by scattering of laser light. The concentration 

of particles is detected by the CPC and is recorded by the computer.  

 

3.3 Materials and Sample Preparation  

 

3.3.1 Introduction  

The steel tube is filled with a known amount and fixed composition of a mixture of 

micrometer (Missouri Scientific) and nanometer (Bangs Laboratories) sized silica beads (a 

packed bed). Three different sizes of micrometer and nanometer sized silica beads are used 

to obtain 9 combinations of substrate-particle beds. The specification and properties of the 

nano and micron sized substrate particles are explained in Section 3.3.2 and 3.3.3. Various 

tools such as the scanning electron microscope (SEM), the atomic force microscope 

(AFM), optical and confocal microscopes, as well as potential analysis and sizing methods  

are used to understand and measure the surface properties and the size distributions. 

Finally, we discuss the procedure for sample preparation.  
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3.3.2 Properties of the substrate particles  

The micrometer-sized substrate beads are composed mainly of silica with small 

amounts of oxides of aluminium, calcium, magnesium, sodium and iron. The chemical 

composition (by weight) is listed in Table 3.1.  

Table 3.1 Chemical composition (by weight) of micron-sized substrate beads 

Silica 65~75% 
Aluminium oxide 0~5% 

Calcium oxide 6~15% 
Magnisium oxide 1~5% 

Sodium oxide 10~20% 
Iron Oxide <0.8% 

 

 The physical properties of the microspheres are listed in Table 3.2. 

Table 3.2 Physical properties of the silica microspheres 
Bulk density of dry beads 1.3 g/cm3 

pH in water at 250C 7.8 
Refractive index 1.5 

Hamaker constant 8.5×10-20J 
Specific gravity 2.5 g/cm3 

Softening temperature 6500C 
Coefficient of thermal expansion 90×10-7/0C 

Compression strength 29 kg/mm2 

 

The silica microspheres are selected in 3 size ranges. The ranges are 250-350µm, 

350-500 µm and 590-840µm. They were inspected under an optical microscope and an  

image of the 250-350 µm sized beads is shown in Fig. 3.3. The surface of the silica 

microspheres appears “smooth” at this magnification.  
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Figure 3.3: Optical microscope image of the glass substrate 

 

From the literature review, we understand that the size and rms roughness of the 

microspheres decide the contact area between the microspheres and nanospheres and 

hence, the surface adhesion force.  

We use an atomic force microscope (AFM) to determine the surface roughness of 

the substrate beads. The AFM measurements also provide information regarding the 

adhesive force.  

The roughness measurements were carried out by measuring the root mean square 

(rms) height of several 12×12 µm2 areas on the surface of the bead. This measurement was 

repeated for several beads of the same size range. There was variation based on the region 

selected, the area scanned and the bead. However, the average of all the measurements for  
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a specific size range gave an idea of the rms roughness. An AFM roughness plot is shown 

in Fig. 3.4.  

 

 

 

 

 

Figure 3.4: Roughness profile of 590-840 µm substrate particle 
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The rms height of the different sizes of silica microspheres is given Table 3.3. 

Table 3.3 Rms roughness of silica microspheres 
Size (µm) Rms height of surface 

asperity (nm) 
590-840 123  
350-500 100 
250-350 155 

 
We have a size range of microspheres from the manufacturer. To determine the 

mean size of each range, the Horiba camsizer was used. The beads were also measured for 

their sphericity and symmetry. The values of the camsizer measurements are tabulated in 

Table 3.4.  

Table 3.4 Mean size, sphericity and symmetry of substrate particles 

Size range (µm) Median size (µm) Sphericity Symmetry 
590-840 648 0.85 0.92 
350-500 360 0.87 0.89 
250-350 272 0.80 0.85 

 

From Table 3.4, we understand that the microspheres are more symmetrical than spherical. 

This is further validated by SEM microimages presented in Section 3.3.3.  

 

3.3.3 Properties of the entrained particles 

For the experiment, the nanospheres are deposited on the surface of the micron-

sized silica beads, as shown in the SEM microimage (Fig. 3.5). A higher magnification 

image of the nanospheres is shown in Fig. 3.6.  Also, as discussed in Section 3.3.2 (the 

Horiba camsizer measurements), the microspheres appear to be more symmetrical than 

spherical. This is apparent from Fig. 3.7. 
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Fig. 3.5 Nanospheres on the surface of silica microspheres 

 
Fig. 3.6 Closer view of the silica nanospheres 
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The monosized nanospheres (Bangs Laboratories) lie within a very narrow size 

range. This is necessary in order to limit the range of surface adhesion forces (Phares 

2000). Further, the particles absorb moisture on exposure to air and tend to agglomerate. 

This tendency is retarded by using particles that have a surface charge and repel each other. 

Zeta potential is a useful and important indicator of this surface charge and determines the 

stability of colloidal suspension or emulsion. The measurement of zeta potential can 

predict the aggregation behavior of particles. The size and zeta potential measurements of 

the nanospheres were conducted using the ZetaPlus (Brookhaven) particle size analyzer. 

 

Fig. 3.7 Microimage showing higher symmetry than sphericity of microspheres 
(nanospheres are present on the surface) 
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The potential was measured by making a suspension of the nanospheres in de-ionized 

water (pH 6.825). A snapshot of a sample measurement is shown in Fig. 3.8. The size and 

surface potential measurements of the nanospheres are tabulated in Table 3.5 and a 

snapshot is shown in Fig. 3.9.  

 

 
Fig. 3.8 Snapshot of the particle size measurements of the nanospheres 

 

Table 3.5 Median size and zeta potential measurements of the nanospheres  

Size (nm) Measured size (nm) Zeta potential 
970 1037 -16.27 
570 575 -35.88 
330 340 -16.27 
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Fig 3.9 Snapshot of the zeta potential measurements of the nanospheres 

 

3.3.4 Sample preparation 

 The nanoparticles are stored at 3-40C to prevent agglomeration. The nanoparticles 

are mixed with the substrate particle in a series of steps as described here. First, 0.25% (by 

weight) of nanoparticles is mixed with the silica microspheres to make a mixture. The total 

weight of the mixture is noted. The mixture is then put in a glass bottle, which is placed 

inside a bin tumbler. The inner walls of the bin tumbler should be padded sufficiently to 

prevent jerking while mixing. The bin tumbler is rotated at 40 rpm for a period of 7 days. It 

is necessary that the mixture be used in the experiment immediately to reduce residence 

time. It should be discarded after a period of 2-3 days. It is necessary to take care that the 

mixture does not undergo any harsh mechanical agitation or jerking. Such agitation can 

cause the nanoparticles to break or cause a change in the distribution on the substrate 

surface. The microimages in Fig. 3.9 show the effect of harsh mechanical agitation 
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observed in this work.  As can be seen, the nanoparticles are crushed and removed from the 

substrate surface.  

Fig. 3.10 Effects of mechanical agitation on the mixture 

 

The steel tubes need to be thoroughly cleaned and dried before the experiment. The 

tubes are first sonicated in a bath of soapy solution for 24 hours. Then, they are rinsed in 

acetone and sonicated in an ultrasound bath containing acetone for another 24 hours.  This 

is followed by rinsing and sonication in propanol and de-ionized water for a period of 24 

hours each.  The clean steel tubes are dried in a jet of filtered air and stored in clean glass 

jars. Before the start of the experiment they are dried again in a jet of filtered air. Then a 

tube is placed in the experimental setup (without any mixture inside) and filtered air is 

passed through it. The particle counter should read within a range of 0.05-0.01 particles per 

cm3. This is done to ensure that no particles are present inside the tube before the sample is 

added to it. If the measured value does not lie within the permissible particle count range, a 

different steel tube should be used. 
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In the silica experiments, the sample is filled in the tube and the interstitial velocity 

is maintained at a fixed value. The Idelchik method outlined in section 2.4.2 is followed to 

determine the flow parameters. The volumetric flow rate was varied along with the size of 

the substrate particles to keep the interstitial velocity constant. A sample calculation for 

250-350 µm sized substrate particles is described here. 

The maximum possible volumetric flow rate for the 250-350 µm sized particles is 

Q = 4.9 l/min. The range of porosity for extreme values of mutual disposition of 600-900 is 

calculated using Eq. 2.14. The values of porosity are between 0.26 and 0.47. From the 

dimensions of the steel tube, we determine the column cross-sectional area, Aup = 2.01×10-

6 m2. The upstream velocity, Vup is calculated from Eq. 2.17. Using the relation in Eq. 2.18, 

we get the interstitial velocity Vbed to be 101 m/s. From this value of interstitial velocity, 

we determine the Re number for this range of substrate using Eq. 2.19. The pressure 

gradient, loss coefficient and permeability are determined from Eqs. 2.20, 2.21 and 2.22. 

For a different size of substrate particles, the value of the volumetric flow rate is adjusted 

so that the interstitial velocity in all the trials is set at 101 m/s. We run the experiment at its 

limit so that it results in maximum entrainment. 

 

3.4 Experimental procedure 

This section describes the experimental procedure for the measurement of 

detachment fractions. The steel tubes (1.75 mm O.D. x 160mm length) with an internal 

bore of 1.6 mm are weighed using a sensitive balance before the experiment. Humidity and 
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temperature are measured. We note that humidity should be below 50%. Humidity higher 

than this value can affect particle count. 

 Then the tube it is filled with a mixture of substrate and sub-micron particles, and is 

weighed again. In all the experiments the interstitial velocity is maintained at 101 m/s. The 

flow rate is set differently depending on the size of the substrate particles.  Filtered air is 

allowed to pass through the bypass tube at the required flowrate until the count in the 

particle counter drops to 0.01 particles/ cm3. The sample tube is then placed in the 

experimental setup. The flow of air is now allowed into the steel tube while stopping it 

through the bypass.  

While the experiment is running, the flow rate is monitored to ensure that the actual 

flow rate is the same as the set flow rate. The experiment is allowed to run for an hour.  On 

completion of the experiment the air is shut off in the sample path and allowed to flow 

through the bypass. The weight of the sample on completion of the experiment and any 

spill that may have occurred are noted. 

 

3.5 Closure 

 This chapter described the experimental setup, sample preparation and the 

experimental procedure for the measurement of detachment fractions. We present results 

from the measurements in Chapters 4 and 5. 
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CHAPTER 4 Ground work – Carbon study 
 

 Prior to conducting the controlled experiments using silica particles, we conducted 

a series of experiments using charred carbon particles and in this chapter, we present 

results from experiments on the resuspension using the carbon particles. In this case, the 

nanoparticles are on the surface of micrometer-size charred carbon substrate particles.  

However, the carbon particles used in this study suffered from two drawbacks that 

limit controlled resuspension experiments. Firstly, their distribution in size varied across 

104 orders of magnitude, complicating any studies on size effects. Secondly, their shapes 

were irregular with very high surface asperities, which introduced inaccuracies in particle 

counting based on weight. Despite these limitations, the particles provide a starting point 

for studying the interactions of micrometer-size substrate particles and nanoparticles and 

this study serves as the foundation for the more controlled experiments on silica particles 

that are described in the next chapter. We describe the objectives of the experiments in 

Section 4.1. The properties of the carbon particles used in the experiments are given in 

Section 4.2. This is followed by a description of the experimental procedure. The results of 

the carbon study are discusses in section 4.4 and 4.5. Section 4.6 discusses the limitations 

of the carbon study.  

 

 



41 

4.1 Objectives of the carbon study  

The main objective of the carbon study is to identify factors that affect the 

resuspension process as well as those that introduce randomness in the measurements. In 

particular, we study the effect of flow rate on the count and size of resuspended particles. 

We test the validity of the three models of resuspension of particles: force balance, energy 

balance, and aggregates with breaking particle collisions. These models have been 

discussed in detail in Chapter 2. Finally, we aim to identify the factors that introduce 

randomness and complications in understanding the effect of size (of the micro- and 

nanoparticles) on the resuspension process.  

 

4.2 Properties of the carbon particles  

The carbon mixture contains micron-sized carbon particles on the surface of which 

are nano-sized charred carbon particles. The mixture consists of primarily carbon with 

oxides of several metals and non-metals.  

We found the carbon particles to have a very broad range of size. The Malvern 

Mastersizer 200 measured particles in the range from 300 nm to 1200µm (Fig. 4.1). The 

size is divided into two regions, one in the micrometer range for the substrate particles and 

the other in nanometer range for the nanoparticles on its surface.  
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Carbon Particles
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Fig. 4.1 Size distribution of carbon particles 

 

We also found the carbon particles to be very irregular in shape. This is seen from 

Fig. 4.2, which shows an image of an angular carbon particle obtained using a Zeiss 

confocal microscope. The surface of the carbon particles is highly rough with asperities as 

high as 140 µm. A typical cross-sectional profile of the surface is shown in Fig. 4.3.  
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Fig. 4.2 Shape of a carbon substrate viewed under the confocal microscope 

Fig. 4.3 cross-sectional surface profile of a carbon particle 

 

4.3 Overview of the experimental procedure  

The experimental procedure for the carbon study is similar to that for the silica beads, 

described in Chapter 3. Before the start of the experiment, the steel tubes are cleaned as 

outlined in Section 3.3.4. The tube is first weighed and then filled with the carbon mixture. 

The tube is weighed again and then placed in the experimental setup. The flow rate is set 

and air is allowed to pass through the bypass tube. Then, the flow into the sample tube is 

turned on while it is shut through the bypass. The particles resuspended from the sample 
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enter the condensation particle counter at a set flow rate of 1.3 l/min. The experiment is run 

for an hour. At the end of the experiment the tube is weighed again. The experiment is 

repeated several times for each flow rate. The experiment was conducted at seven different 

flow rates.  

 

4.4 Experimental results 

In the carbon experiments the volumetric flow rate was increased from 1.0 to 2.9 

l/min over seven steps. Measurements were repeated 4 times at each flow rate. At the end 

of each run, the total particle count and the weight of resuspended particles were noted. 

The particle count that is read from the counter is the number density of particles. The flow 

rate that enters the sensor chamber of the counter is 0.3 l/min. The particle density has to 

be converted to particle count. The calculation for the particle count is given below.  

Flow rate at the entry point of the sample = f1 l/min 

Weight of the tube (with the carbon mixture) before the experiment = w1 mg 

Weight of the tube after the experiment = w2 mg 

Weight of resuspended particles = w1 – w2 mg 

Particle number density = n1 particles/cm3 

Flow rate at which the released particles enter the sensor chamber  = 0.3 l/min  

= 5 cm3/s 

 The time step at which each measurement is being taken = 0.1 s 

 Volume measured in the sensor at each time step = 5 cm3/s× 0.1 s = 0.5 cm3 

 Hence, the total particle count = n = n1 × 0.5   
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Average weight of typical nanoparticle = wavg = (w1 – w2)/n             (4.1) 

 

Particle count = n =  n1× 0.5       (4.2) 

 In the next two subsections, we discuss the observed effect of flow rate on the total 

count and size of resuspended particles.  

 

4.4.1 Effect of flowrate on resuspended particle count 

Table 4.1 tabulates the raw count (as a percentage) and the corrected count of the 

resuspended particles as a function of the flow rate. Figure 4.4 shows a plot of the same 

data. As seen from the plot, the total particle count increases and then plateaus off (a flow 

rate of 2.9 l/m is the limit of the experiment). A statistical analysis of the data shows that 

the total particle count increases significantly (α = 0.95, p-value <0.0076) with increase in 

flow rate. The dashed blue line is a quadratic fit through the data points. We find the 

empirical relation to be  

 608515)10( 1
2

1
6 −+−= ffn     (4.3) 

where n is the particle count in units of 106 and f1 is the flow rate in l/min. 

Table 4.1 Variation in total particle count with flowrate 

Flowrate (l/min) % Resuspended particles (x2) Particle count 
1.0 0.95 1.75×107 

1.3 1.02 1.20×107 

1.5 4.52 3.35×107 

1.8 2.10 4.30×107 

2.1 1.20 0.55×108 

2.4 1.42 0.60×108 

2.9 1.81 0.55×108 
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Fig. 4.4 Graph depicting the increase in particle count with respect to flow rate. 

 

4.4.2 Effect of flow rate on the size of the resuspended particles 

From the flow experiments, we get the weight and count of the resuspended 

particles. The average weight of a nanoparticle can be determined from Eq. 4.1. Since the 

exact composition of the carbon mixture is not known, we assume a particle with a lower 

average weight to be a smaller particle. With this assumption, we now compare the effect 

of flow rate on the average weight of the resuspended nanoparticle. Further, from this 

comparison we can obtain an understanding of the variation in size of nanoparticle with 
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flowrate. The variation in average weight of resuspended particle with flowrate is shown in 

Table 4.2. 

Table 4.2 Variation in average weight of nanoparticle removed with flow rate 

Flow rate (l/min) Avg. weight of removed particle (100 fg)  
1.0 12.5 
1.3 22.5 
1.5 43.0 
1.8 18.5 
2.1 10.0 
2.4 12.5 
2.9 20.5 

 

The effect of flowrate on the average weight of the nanoparticle can be divided into 

three regions, which are depicted in Fig. 4.5. The blue dashed curve shows a best-fit 

interpolation of the data (in yellow markers). We note that the data cannot be fit using a 

simple polynomial function of the flow rate. Region I in the figure refers to the flow rate 

regime where the average weight of the nanoparticles increases with the flow rate. This 

extends to a flow rate of 1.5 l/min. Region II refers to the regime where the average size 

decreases with increasing flow rate. This ranges from 1.5 to 2.1 l/min. Finally, in Region 

III that extends from 2.1 to 2.9 l/min, the average size of the removed nanoparticles 

increases again.  

 

4.5 Discussion on results 

We discuss the combined effect of flow rate on particle count and weight in this 

section. An overlay graph of the total particle count and the average particle weight with 

respect to flow rate is shown in Fig. 4.5. 
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Fig. 4.5 Overlaid plot of variation of total particle count and weight of nanoparticles with 

increase in flow rate. 
 

The resuspension of particles with respect to flow rate can be divided into three 

distinct regions. As discussed previously in Section 4.4.2, we make the assumption that the 

weight of a particle is proportional to its size. In other words, lighter particles are smaller 

and heavier are larger. The three regions of resuspension are as follows. 

In Region I that extends from flow rates of 1.0 to 1.5 l/min, we observe that the 

particle count consistently increases while the average weight of the particle also increases. 

This means that, due to an increase in acceleration with increasing flow rate, an increasing 

number of larger particles are being removed. This region validates the force balance 
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model of resuspension according to which a particle gets removed when the acceleration 

due to the removal force is sufficient to instantaneously remove it. 

In Region II that extends from flow rates of 1.5 to 2.1 l/min, we observe that the 

particle count continues to increase while the average weight of the nanoparticle decreases. 

This means that smaller particles are being removed in large numbers. The aerodynamic 

force is sufficient in this flow rate regime to remove smaller particles, which require higher 

flow rates. This region validates the energy balance model of resuspension according to 

which a particle accumulates energy from the removal force. When a particle gains enough 

energy to roll/slide (but insufficient to lift off the surface) it starts moving along the surface 

of the substrate. Finally, when it has accumulated sufficient energy to lift-off, it gets 

detached. 

In Region III that extends from flow rates of 2.1 to 2.9 l/min, we observe that the 

average weight of the nanoparticle increases again with increasing flow rate. This means 

that primarily larger particles are being removed from the surface. This region validates the 

particle-wall collision model according to which particles agglomerate and collide with 

each other. This process of particle collisions with the surface leads to transfer of energy 

necessary for lift-off of the particle.  

 

4.6 Limitations of the carbon experiments  

The carbon particle experiments provide a good foundation for understanding 

resuspension from packed beds. However, in order to better understand the process, it is 
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necessary to identify and control the factors that introduce randomness and complexity 

(Wang 1991).  

For example, the carbon nanoparticles have a broad range of size. This leads to a 

wide scatter in the adhesion force. Monodisperse spherical particles can address this issue. 

In particular, using commercially available silica nanospheres having a very narrow size 

range with a minimum standard deviation can overcome this limitation. The amount or 

number of nanoparticles on the surface of the carbon particles is also difficult to determine. 

However, this knowledge is necessary to ensure that there are a reasonable number of 

particles available for resuspension in the experiments.  

The carbon particles were irregularly shaped making it very difficult to calculate 

the flow parameters. The use of spherical substrate microspheres addresses this problem.  

The carbon mixture was used in the experiment over a period of time. The residence time 

needs to be a minimum to prevent humidity from increasing the capillary condensation 

forces. Hence, it is necessary to monitor the temperature and humidity.  

The roughness of the carbon particles varied from a few nanometers to 140 µm. 

This variability in roughness would unexpectedly influence the adhesion force thereby  

altering the resuspension. Hence, it is required to use microspheres that appear relatively 

“smooth” and the root mean square value of the roughness can be determined.  

The carbon substrates break very easily and form a powder. This makes it difficult 

to study the substrate for roughness, size, surface potential and adhesion force. Further, it 

alters the count of nanoparticles that are available for resuspension. Hence, it is necessary 
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to use substrates that do not break easily and can be characterized using several surface 

measurement techniques.  

In order to address these limitations, a series of controlled experiments using silica 

microspheres were conducted and are described in Chapter 5. Though the experiments 

discussed in the chapter suffer from control limitations owing to the use of carbon 

particles, the experience was helpful in designing the experiments on silica microspheres.  

 

4.7 Summary  

The carbon experiments validates the theoretical models, presents interesting 

results and limitations and essentially sets the stage for running a controlled set of silica 

experiments. The silica experiments study the effect of particle size on entrainment from 

surfaces. These are presented in Chapter 5.  
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CHAPTER 5 Effect of Size on Resuspension 

 

This chapter discusses the effect of particle size and substrate size on resuspension. 

We use the experimental setup described in Chapter 3 to measure the fraction of 

detachment for different combinations of particle and substrate sizes. Detachment fraction 

is the ratio of the number of particles detached to the original number of particles that were 

present before the start of resuspension (Ibrahim, Dunn et al. 2003). Section 5.1 

qualitatively discusses the expected influence of particle size based on existing theory. We 

present characterization results for the substrate in Section 5.2 in terms of the surface 

roughness of the substrate beads and their adhesive forces. Sections 5.3 and 5.4 present 

measured detachment fractions for different combinations of particle and substrate sizes. 

Section 5.3 describes a set of experiments in which the substrate size is kept constant while 

the particle size is varied. In the second set of experiments, reported in Section 5.4, we 

study the effect of substrate size on resuspension by keeping the particle size constant and 

varying the substrate size. Finally, we summarize and discuss the experimental results in 

Section 5.5.  

 

5.1 The Predicted Effect of Size  

The resuspension of a particle from the surface of the substrate depends on the 

complex interaction between the nanoparticles and the micrometer-size substrate. The  
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detachment flux is an important measure of the micro-nano particle interaction that can be 

studied in a controlled set of conditions. Since in all the experiments reported below, the 

interstitial velocity is set constant at 101 m/s, it follows that the aerodynamic force applied 

to a particle is the same. Section 3.3.4 has the details of the interstitial velocity calculation. 

However, from Section 2.3, it can be inferred that with decreasing particle size, the 

removal force increases. To determine the detachment flux the raw count of released 

particles is corrected for different values of surface density of nanoparticles using the 

method outlined in Chapter 3.  

Hence, the detachment flux is expected to increase with the size of the nanoparticle. 

Therefore, for the three sizes of the nanoparticles used in this work, the detachment rate 

decreases in the order: 970 nm > 570 nm > 330 nm. Further, the size of the substrate has no 

effect on detachment flux, because it has been approximated as a flat surface.  

 

5.2 Substrate Characterization  

As discussed in Chapter 2, parameters such as the volumetric flow rate, the 

Reynolds number, the pressure drop across the tube, the size of the substrate particles, the 

resistance coefficient and the porosity of the bed determine the interstitial velocity of air 

through the mixture of substrate and nanoparticles. Of the methods mentioned in the 

literature review, we choose a combination of Darcy and Idelchik methods to calculate the 

flow parameters. With reference to Section 2.4, we understand that the Idelchik method is 

used because it is valid for both laminar and turbulent regime. The method to calculate the 

porosity, pressure difference, Re number and interstitial velocity is outlined in Section  
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2.4.1 and 2.4.2. As discussed in Chapter 2, the porosity of a bed of spherical bodies is 

independent of the diameter of the grain while the relative position of the grains varies 

from 60 to 900. Using these values in Eq 2.13, we estimate the porosity, ε ’ to be in the 

range 0.25 - 0.47. Table 5.1 lists the porosity values for different grain disposition angle, 

θ  . 

Table 5.1 Porosity as a function of the grain disposition angle 

θ  600 640 690 740 810 900 

ε ’ 0.26 0.32 0.38 0.42 0.46 0.47 

 

Using the Idelchik method, the permeability of the bed can be determined. The 

permeability of the bed is determined rather than the conductivity, because permeability is 

a property of the bed while the conductivity is a property of the fluid. After determining 

the permeability, the Idelchik method is used as outlined in Section 2.4 to determine the 

flow parameters. In the set of experiments described below, the volumetric flow rate is 

varied with respect to the size of the microspheres to maintain the interstitial velocity at 

101 m/s (refer Section 3.3.4).  

Table 5.2 Flow parameters interstitial velocity is 101 m/s 
Median substrate size (µm) Flow rate (l/min) Re number 

648 11.7  5211-5440 
360 8.2 2895-3022 
272 4.9 2187-2283 
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Further, as discussed in Section 3.3, it is clear that the surface of the substrate 

sphere can be approximated as a flat surface. The surface roughness of a substrate 

determines the area of contact with the nanoparticle, and, in turn, affects the van der Waals 

surface adhesive force. Table 5.3 lists the root mean square height (Rq) of the roughness of 

the surface (refer Section 3.3.2). 

Table 5.3 Roughness of the substrate beads 

Size of substrate (µm) Surface roughness (nm) 
590-840 123 
350-500 100 
250-350 155 

 

The adhesive force is measured using an atomic force microscope (AFM). The 

method to calculate the AFM force measurements is described with reference to Fig. 5.1.  

 
Fig. 5.1 AFM force calibration plot measurement 
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The deflection of the tip of the AFM is proportional to the attractive force acting between 

the tip and the surface. This relation is given by Hooke’s law  

x  kF  2=      (5.1) 

where F is the deflection force, k2 is the spring constant and x is the extent of deflection.  

The sensitivity of the curve should be calibrated to measure the correct deflection. 

The inverse of the slope of the force curve is the sensitivity. The slope is determined by 

drawing a line parallel to the force curve. The number of divisions that are present between 

the tip touching the surface and the point where it feels no attraction is obtained from the 

plot. Then we determine the deflection by multiplying the sensitivity with the number of 

deflection divisions and the z-axis (nm/div). The spring constant of the AFM tip is a range 

of values. The product of the spring constant with the deflection gives the range of 

attractive forces (Sharma, Chamoun et al. 1992; Das, Schechter et al. 1994). However, it is 

difficult to determine the adhesive force precisely since it is a function of the geometry and 

material of the AFM tip and cantilever (Freitas and Sharma 2001). However, a qualitative 

understanding can be obtained by repeating the measurements over several areas of the 

substrate. Table 5.4 tabulates the range of surface adhesive force exerted on the tip by 

substrates of different sizes.  

 

Table 5.4 Measured surface adhesive force for different sizes of the substrate beads  

Size of substrate (µm) Adhesive forcemin(nN) Adhesive forcemax(nN) 
590-840 330 1138 
350-500 255 1023 
250-350 242 970 
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5.3 Measured Effect of Particle Size  

In this section, we present experimental data for the fraction of detachment when 

the substrate size is kept same while the particle size is varied. The first three subsections 

present results for the three different bead sizes which are characterized in Section 5.2  

above. Subsection 5.3.4 combines the experimental results from the three sets and 

compares them with theoretical predictions based on surface property measurements.  

 

5.3.1 Results for Large Substrate Particles (590-840 µm silica beads)  

For a bed composed of 590-840 µm sized silica beads (the substrate), the variation 

in fraction of detachment of nanoparticles due to variation in nanoparticle size is tabulated 

in Table 5.5 and shown in Fig. 5.2.  

Table 5.5 Fraction of detachment for 590-840 µm spheres 

Particle (nm) Raw count Detachment 
flux/m2 

Number of 
particles/m2 

Fraction of 
detachment 

330 9.6×103 0.55×107 3.8×1013 1.5×10-7 

570 5.2×103 3.05×106 7.4×1012 4.1×10-7 

970 7.6×103 4.50×106 1.5×1012 3.0×10-6 
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Fig 5.2 Variation in fraction of detachment of nanoparticles on 590-840 µm substrate 

 

As the particle size increases the fraction of detachment also increases. The rms 

value of roughness is 123 nm (Table 5.3) and the mean value of adhesive force is 330-1138 

nN (Table 5.4). 

 

5.3.2 Results for Medium Substrate Particles (350-500 µm silica beads) 

 For a bed composed of 350-500 µm sized silica beads (the substrate), the variation 

in fraction of detachment of nanoparticles due to variation in nanoparticle size is tabulated 

in Table 5.6 and shown in Fig. 5.3.  
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Table 5.6 Fraction of detachment for 350-500 µm spheres 

Particle (nm) Raw count Detachment 
flux/m2 

Number of 
particles/m2 

Fraction of 
detachment 

330 2.4×105 0.70×108 2.1×1013 3.35×10-6 

570 8.9×104 2.60×107 4.1×1012 0.65×10-5 

970 6.1×104 1.75×107 8.3×1011 2.15×10-5 
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Fig 5.3 Variation in fraction of detachment of nanoparticles on 350-500 µm susbtrate 

 

As the particle size increases the fraction of detachment also increases. The rms 

value of roughness is 100 nm (Table 5.3) and the mean value of adhesive force is 255-1023 

nN (Table 5.4). 
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5.3.3 Results for Small Substrate Particles (250-350 µm silica beads) 

 For a bed composed of 250-350 µm sized silica beads (the substrate), the variation 

in fraction of detachment of nanoparticles due to variation in nanoparticle size is tabulated 

in Table 5.7 and shown in Fig. 5.4.  

Table 5.7 Fraction of detachment for 250-350 µm spheres 
Particle (nm) Raw count Detachment 

flux/m2 
Number of 
particles/m2 

Fraction of 
detachment 

330 1.5×105 3.15×107 1.6×1013 1.95×10-6 

570 1.2×105 2.50×107 3.1×1012 0.80×10-5 

970 1.0×105 2.20×107 6.3×1011 3.45×10-5 
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Fig 5.4 Variation in fraction of detachment of nanoparticles on 250-350 µm susbtrate 
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As the particle size increases the fraction of detachment also increases. The rms 

value of roughness is 155 nm (Table 5.3) and the mean value of adhesive force is 242-970 

nN (Table 5.4). 

 

5.3.4 Analysis – Influence of Size of Nanoparticles 

Tables 5.5, 5.6 and 5.7, show that the fraction of detachment increases as the size 

of the nanoparticle increases, irrespective of the size of the substrate. This is summarized 

in Fig. 5.5, which is the overlay graph of all 9 combinations of mixtures. 
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Fig. 5.5 Variation in detachment fraction of nanoparticles as a function of the size of the 
nanoparticles. 
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The results are in accordance with the theory of attachment and resuspension of 

nanoparticles on surfaces. The van der Waals attractive force is most dominant in the case 

of particles below 50µm. The van der Waals moment increases quadratically with the 

particle diameter as given by Eq. 2.11. The drag moment increases as the cube of the 

diameter. Hence, the ratio of the removal force to the attractive force increases with 

particle size. However, we note that the observed increase in detachment fraction is non-

linear with respect to particle size and not linear as the ratio of the two moments might 

suggest.  

 

5.4 Measured Effect of Substrate Size 

In this section, the effect of substrate size on the resuspension process is discussed. 

Theory conveys that the surface of the microsphere is like a flat surface for the nanometer 

sized beads. Hence, the size of the substrate should not have any effect on the attachment 

and detachment characteristics of the nanoparticles. However, a comparison of 

nanoparticle resuspension with change in substrate size conveys that the substrate size and 

surface roughness are important factors. This is demonstrated in Fig. 5.6.  
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Fig. 5.6 Variation in detachment fraction of nanoparticles due to size of substrate 

 

 In the case of 570 and 970 nm particles, the resuspension decreases with increase in 

size of the substrate beads. This can be explained from the AFM surface force 

measurements (refer Table 5.4). Hence, as the size of the substrate increases, for larger size 

nanoparticles (570 and 970 nm), the adhesive force increases thereby reducing detachment 

rate.  

For the 330 nm particles on substrates of different sizes, the variation in 

resuspension is due to difference in roughness profile of the microspheres. From Table 5.3, 

it is understood that the 250-350 µm beads have a roughness of 155 nm, followed by the 
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590-840 µm beads with 123 nm and the smoothest are the 350-500 µm beads with a mean 

roughness of 100 nm. The resuspension is lesser for 330 nm particles on 250-350 µm 

susbtrate beads because the surface roughness is close to the order of magnitude of the 

nanoparticles. Hence, the nanoparticles reside in the valleys on the surface thereby 

decreasing resuspension. For larger sized nanoparticles (570 and 970 nm), the order of 

magnitude of the nanoparticles is less than that of the surface roughness. With increase in 

roughness of the surface, the area of contact with the nanoparticles decreases, hence the 

adhesive force also falls, leading to an increase in resuspension rate.  

 

5.5 Closure 

This chapter presented data from resuspension experiments on silica microspheres and 

nanoparticles. We find the detachment fraction to increase with increasing particle size for 

all the three substrate sizes investigated. We attribute this to the increase in drag moment 

with particle size. However, we find that the detachment fraction grows non-linearly with 

particle diameter whereas a ratio of the drag moment to the van der Waal’s moment 

suggests a linear increase. Finally, we find the substrate size to also influence the 

detachment fraction. The detachment fraction decreases with an increase in the substrate 

size. We attribute this to the surface roughness being comparable to the particle size in our 

measurements. 
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CHAPTER 6 Conclusions and Future Work 

6.1 Conclusion 

The carbon set of experiments validated the force balance and energy balance 

models of nanoparticle entrainment from surfaces. It was observed that the particle size 

and shape affected the flow parameters, thereby introducing variability in the resuspension 

rates. The energy balance model, with the rock’n roll modification, correlated better with 

the experimental results. The count of removed particles increased significantly with the 

flow rate (α = 0.95, p-value < 0.0076). The empirical relation describing the effect of flow 

rate on the particle size is 608515)10( 1
2

1
6 −+−= ffn , where n is the particle count and f1 

is the flow rate in l/min. The carbon study identified the limitations and set the stage for 

controlled silica trials.  

The silica experiments, had nanometer sized spheres on the surface of micron-sized 

silica beads. The sizes of the nano and micro-sized spheres were varied and its effect on 

the detachment fraction was recorded. The detachment fraction increased with increasing 

particle size for all the three sizes of substrate. This is a result of the increase in drag 

moment with increasing particle size. Further, we observed that the detachment fraction 

grows non-linearly with particle diameter whereas a ratio of the drag moment to the van 

der Waal’s moment suggests a linear increase. Finally, we find that the substrate size also 

influences the detachment fraction. The detachment fraction decreases with an increase in 
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the substrate size. This is due to the surface roughness being of the same order of 

magnitude of the particle size. When the substrate size is large, the asperities on its surface  

do not affect the resuspension. However, as the substrate size decreases and the 

nanoparticle dimension gets closer to the size of the asperity, detachment fraction 

decreases.  

 

6.2 Areas for future study  

The surface roughness measurements would provide more information if studied 

for nanoparticle sizes lesser than 330nm. It was difficult to study that because as the size of 

the nanoparticle decreased, its agglomeration increased and the range of size was not 

narrow. Current theoretical models do not account for the influence of surface roughness 

on the resuspension process.  

It will be useful to study the behavior of the particle after it is entrained. Studying 

the dynamics of the particle will provide information on what mechanism was responsible 

for entrainment, mode of motion after detachment (sliding or rolling), whether the particle 

got attached again to the surface and what caused it.  

Further, including the study of factors like residence time and humidity of 

nanoparticles would provide useful information about the entrainment process.  
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APPENDIX A Uncertainty Analysis 
 

Let the detached fraction be φ and let the uncertainty be denoted by u. 

Now,  

P
nC=ϕ ,  

where nc is the raw count of detached particles and P is the number of particles added to 

the substrate. Also,  

3

3
4

pp

p

r

W
P

πρ
= , 

where Wp is the weight of nanoparticles added to the mixture, ρp is the density and rp is the 

average radius of the particle. The uncertainty in the measured detachment fraction is thus, 

222 3
Ppc rWn uuuu ++=ϕ  . 

The instrument manual for the particle counter, TSI 3022A states that
cnu is 0.20. The 

manual for the weighing balance, and GR-202 states that 
pWu is 0.1 mg in 500 mg or 2x10-

3. Finally, 
Pr

u is 1 µm in 970 µm or 1x10-3. Thus, we see that the dominant contribution to 

the experimental uncertainty is from the particle counter. The net uncertainty is 

approximately ±20%. 
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