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Abstract 

INVASION GENETICS OF THE BLUE CATFISH (ICTALURUS FURCATUS) 
RANGE EXPANSION INTO LARGE RIVER ECOSYSTEMS OF THE 

CHESAPEAKE BAY WATERSHED 

Colleen Beth Higgins, B.S., B.A. 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science at Virginia Commonwealth University. 

Virginia Corilmonwealth University, 2006 

Director: Bonnie L. Brown, Ph.D., Associate Professor, Department of Biology 

The blue catfish, Ictalurus furcatus (Ictaluridae), is ranked among the most invasive, non- 

native species of concern in the Chesapeake Bay watershed. This species, intentionally 

introduced to three major tributaries and a number of impoundments between 1974 and 

1989 for sport fishing, has spread into three additional tributaries. Using samples from 

the introduced tributary populations as a baseline, we evaluated microsatellite genetic 

variation in light of demographic and ecological data to elucidate the potential sources of 

the invasive I. furcatus populations. In general, the populations surveyed in the 

Chesapeake 'Bay watershed were considerably more inbred ( F  ranged from 0.03 - 0.27) 

than four native populations (all F = 0.03) and they exhibited 12% lower allelic diversity 
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than native populations, showing evidence consistent with a founder effect. Lack of 

evidence for significant bottlenecks combined with high effective migration rates 

suggested that there may be a great deal more movement of this species within the Bay 

than was previously thought. Two proposed scenarios for expansion (dispersal from 

introduced populations and intentional surreptitious introductions) were evaluated. 

Although not inconceivable, genetic evidence did not support the Bubba mechanism as 

the primary mode of expansion and dispersal was found to be the most probable mode 

underlying the recent range expansion. However, a number of characteristics of the 

population genetic and mixed stock analyses indicate that a separate scenario, escapement 

from impoundments, is worth investigating as a substantial source of the expansion. The 

study has important implications for ecosystenl-based management because it is the first 

application of mixed stock analysis to an invasive species. 



INTRODUCTION 

The negative impact of invasive species on native species diversity, ecological 

communities and ecosystem functioning has been recognized as a significant component 

of current global change (Vitousek et al. 1996). It has been estimated that 42% of species 

listed as threatened or endangered in the U.S. under the Endangered Species Act are at 

risk due to the presence of nonindigenous species (Wilcove et a1 1998). Aside from the 

threat to biodiversity around the world, it has become increasingly apparent that these 

losses have economic consequences as well. A recent study (Pimentel et al. 2000) 

estimates that the ecological and economic costs in the U.S. due to invasive species are 

approximately $13 7 billion per year. In response to executive order # 13 1 12, federal, 

state, and local agencies have been working to complete risk analyses and craft 

management plans that will control and minimize the impacts of invasive species. In the 

specific instance of aquatic species, controlling invasives is all the more challenging 

because of cross-purpose activities of native and nonnative sport fish management 

(Clarkson et al. 2005). Declines in native freshwater ichthyofauiia in the southwestern 

U.S. over the past 20 years have been attributed to the presence of nonnative sport fish; 

effectively precluding or negating restoration efforts (Mueller 2005). Understanding the 

genetic architecture of a successful and expanding invasive species population offers 

insight into the role of genetic diversity in invasion success (Baker and Stebbins 1964) 

and more importantly can provide information about the sources of recent range 

expansions that can be used in turn to predict how they might continue to spread. 



Blue catJish in the Chesapeake Bay watershed 

Among the most invasive species in the Chesapeake Bay watershed is the blue 

catfish, Ictalurus furcatus (Ictaluridae). This species is ranked in the top five "species of 

concern" in Virginia, also as a high priority in Maryland, by the U.S. Environmental 

Protection Agency's Chesapeake Bay Program, and was identified as a species for which 

a risk assessment plan is needed (Moser 2002). As a sport fishing enhancement measure, 

the Virginia Department of Game and Inland Fisheries and the US Fish and Wildlife 

Service introduced I. furcatus into 70 impoundments and reservoirs in Virginia 

(>330,000 fingerlings between 198 1 and 1989) and into the James, Rappahannock, and 

Mattaponi Rivers (>130,000 fingerlings between 1974 and 1989; Table 1). Until the 

early 1990s, I. furcatus were documented only in the river systems where they had been 

introduced. Recently, breeding populations of I. furcatus have been recorded in three 

additional rivers: Pamunkey, upper Potomac, and Piankatank (Edmonds 2003) effectively 

extending their range to all major tributaries in the Virginia portion of Chesapeake Bay 

(Figure 1). 

Ictaluridae is the largest freshwater family of fishes endemic to North America. 

Its broad native distribution (Graham 1999) includes large rivers of the Mississippi, 

Missouri, and Ohio River basins and coastal drainages of the Gulf of Mexico from 

Alabama and into the Rio Grande extending south into Mexico, Belize and Northern 

Guatemala (Etnier and Starnes 1993). Unlike the introduced Chesapeake Bay 

populations, I. furcatus in their native range have experienced an overall decline in 

abundance and a contracting range due to the construction of impoundments, 

channelization and increases in siltation (Graham 1999). Although I. furcatus inhabit 
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primarily deep swift flowing areas of large rivers and lakes in their native ranges (Etnier 

and Starnes 1993), they have been observed in tributaries of the Bay to inhabit even 

shallow creeks (R. Greenlee, VDGIF, personal communication). I. furcatus have a wide 

salinity tolerance, and have been observed inhabiting waters ranging in salinity from 3.7 

ppt to 15 ppt (Ross 2001). I. furcatus are the most migratory of the ictalurids, moving in 

response to water temperatures and have demonstrated the ability to move great distances 

in search of spawning habitat (Graham 1999). Nests are built in sheltered areas, 

protected by either the male or both sexes; no other North American freshwater fish is 

known to provide the same level of parental care. Life span is known to exceed 29 years 

(Graham 1 999). 

Although highly adaptable in their feeding habits, three general feeding stages 

have been determined for I. furcatus based on size and age classes. As young (<I00 mm) 

they feed primarily on zooplankton, as juveniles (up to 240 mm) they feed on small 

benthic invertebrates, and as adults, they feed on larger and more mobile organisms 

becoming primarily nocturnal piscivores as adults (Ross et al. 2004). In the Bay, I. 

furcatus growth rates are dependent upon the amount of biomass consumed (Chandler 

1998) and studies of native populations indicate that growth rates increase substantially 

after they reach a piscivorous state (Graham 1999). Known for the ability to grow 

impressively large and for their aggressive nature, I. furcatus is a desirable species for 

recreational and commercial fishing. These were the primary justifications for 

introducing I. furcatus to lakes and tributaries in the Chesapeake Bay watershed 

beginning in 1974. 
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The introduction of piscivorous I. furcatus in Virginia has been associated with 

declines in anadromous clupeid populations of American shad (Alsoa sapidissima) and 

blueback herring (A. aestivalis), possibly compromising major restoration programs, and 

adding to the documented negative economic and ecological effects of invasive species 

range expansion (Ashley and Buff 1987, MacAvoy et al. 2000). Among the deleterious 

impacts on native aquatic communities is the alteration of habitats, especially by nest 

building species such as I. furcatus (Courtenay and Stauffer 1984). Alteration of 

Chesapeake Bay tributaries from historically bottom-up biomass controlled processes to 

one that is 'top heavy' with predators has been suggested to be a serious consequence of 

the introduction and spread of I. furcatus (Garman et al. 1991). 

Assessing modes of invasion 

In 1974-1 977, James and Rappahannock Rivers were stocked with assemblages of I. 

furcatus collected from a number of hatcheries outside the state (121,950 fish, Tablel). 

During the period 198 1 - 1985, stocking efforts concentrated on impoundments, nine of 

them located in the Potomac River basin. Of more than 79,000 I. furcatus stocked into 

impoundments in the Potomac basin, the majority (78%) were introduced in 1985 and 

consisted of the same group of fish that were also stocked into the Mattaponi and James 

Rivers in that year (1,850 and 13,764 fish, respectively; Table 1). Two years later, 1987, 

I. furcatus were noted in upper Potomac River (Nammack and Fulton 1987), likely a 

result of escapement from the stocked impoundments. Similarly, the Pamunkey I. 

furcatus population (first collected in 1994) is presumed to have arisen from the 

Mattaponi via dispersal. However, the Piankatank River invasion, believed to have 
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occurred within the last five years (G. Garman, personal communication), is a novel 

system in which the source of colonization is more equivocal. A number of scenarios 

have been suggested to account for the appearance of I. furcatus populations found 

outside of their introduced range including intentional transplantation of live fish 

harvested from nearby tributaries, dispersal from one tributary to another via the 

Chesapeake Bay, and escapement from impoundments. 

This study was designed to make use of inherent genetic variation to evaluate the 

potential sources of the secondary I. furcatus populations in the Bay and to investigate 

the role of genetic diversity during the invasion. The utility of genetic mixed stock 

analysis for elaborating the source(s) of an invasive species range expansion is also 

investigated. In this study we posed two primary invasion scenarios regarding the 

sources of the secondary populations: (1) Dispersal: recruits moved from a nearby 

stocked river through the Bay during periods of significant freshwater influx, and (2) 

Bubba: the I. furcatus range expansion was intentionally facilitated by anglers or 

commercial fisherman. A third possibility, escapement from nearby impoundments 

resulting in development of secondary I. furcatus populations could not be tested because 

samples could not be obtained from the impoundments. Hypotheses concerning the 

origin of the 'secondary' I. furcatus populations (Pamunkey, Potomac, and Piankatank 

Rivers) in the Chesapeake Bay watershed were tested by comparing population genetic 

variation at six polymorphic microsatellite loci to the 'introduced' populations (James, 

Rappahannock, and Mattaponi Rivers), as well as four native populations (Alabama, 

Mississippi, Ohio, and Tennessee Rivers). Genetic architecture of the Bay populations 

was then brought into focus using population genetic analyses and genetic Mixed Stock 
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Analysis (MSA). These comparisons were used to search for evidence of relatedness, 

founder effects, and genetic drift. Ultimately, this study was intended to provide 

information regarding to two issues relevant to invasive species management: will I 

furcatus remain in the tributaries they currently occupy or continue to expand, and is 

MSA an effective tool for determining the source(s) of the secondary populations and 

therefore useful in assessing risk for invasive species management? 

A number of assumptions were embedded within the analyses. That I. furcatus in 

Chesapeake Bay represent one large panmictic population was the null hypothesis being 

tested by population genetic analyses. However, it was expected that populations of I. 

furcatus in the original introduced populations (James, Rappahannock, Mattaponi) would 

differ significantly because it is believed that they have not interbred over the past 20-30 

years since their introduction. The Pamunkey River was expected under the dispersal 

scenario to have a high degree of genetic similarity to the Mattaponi population and to 

have less genetic diversity as compared to the Mattaponi. Conversely, the other 

secondarily colonized populations (Potomac and Piankatank Rivers) were expected to 

show various degrees of relatedness to source populations depending on geographic 

distance and length of time since colonization. It was expected that genetic diversity 

would be greater in the "ancestral" introduced populations as compared to the secondary 

populations at the furthest reaches of the expanded range. As observed for a number of 

other species (Marsden et al. 1996, Pollux et al. 2003, Elderkin et al. 2001, Lewis et al. 

2000, Marsden et al. 1993, loss of genetic diversity due to founder effects was expected 

in each of the secondary populations. Loss of heterozygosity, shifts in allele and 

genotype frequencies, genetic drift, and allele fixation were expected to be observed in 
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the comparison to both the native and introduced populations, especially in the most 

recent populations of the Potomac and Piankatank Rivers. 

Using MSA to elaborate the sources of range expansion 

Originally developed for application in fisheries management, MSA provides 

statistical estima.tes of the presence and relative proportions of specific contributing 

populations in mixture samples. Mixture proportion estimates are determined using all 

known source populations to produce baseline allele frequencies against which the 

mixture populations in question are compared. For such an analysis, large sample sizes 

and multiple independent polymorphic loci are necessary for calculations of baseline data 

and mixture estimates. The application of mtDNA and microsatellite variation in MSA 

has been successfully performed to address mixed stock harvesting of several 

anadromous fish species, American Shad (Alosa sapidissima, Epifa.nio et al. 1995, Brown 

et al. 1996, Brown et al. 1999), sockeye salmon (Oncorhynchus nerka, Beacham and 

Wood 1999), and Atlantic cod (Gadus morhua) (Ruzzante et al. 2000). Genetic MSA 

also has been applied in conservation studies of migratory species such as harbour 

porpoises (Phocoenaphocoena, Anderson et al. 2001) in the north Atlantic and in 

Loggerhead sea turtles (Caretta caretta, Witzell et al. 2002) in Florida. Although it is a 

novel application, use of MSA to evaluate the current range expansion of I. furcatus is 

the best currently available tool to elucidate the phenomenon as it is unfolding in the 

Chesapeake Bay watershed and constitutes an informative case study in the investigation 

of invasive species. 



Ecological genetic patterns expected in a range expansion 

The relative roles that genetic drift plays in determining variation patterns in allele 

frequencies of native versus introduced populations are inconclusive (Antonovics 1976, 

Crawley 1986, Lindholm et al. 2005). More important may be life history, founder 

population size, the number and frequency of introductions, and the spatial distribution of 

the invasion are important factors to consider when comparing the genetic diversity of the 

source and colonizing populations (Gray 1986). Nevertheless, the two scenarios have 

been hypothesized to account for secondary I. furcatus populations have predictable 

characteristics that are testable with population genetic and mixed stock analyses: 

1) Dispersal scenario 

Prior studies have demonstrated high gene flow accompanied by an initial loss of genetic 

diversity in introduced populations and further losses as an introduced species expands its 

range (Marsden et al. 1995, Lewis et al. 2000, Pollux et al. 2003). A colonized 

population, such as the one in Pamunkey River, is therefore expected to be less 

genetically diverse than the source population from which it originated (a population 

bottleneck; Sakai et al. 2001). Novel populations would be characterized by high 

estimates of gene flow with the founding population(s), higher levels of inbreeding (Fls) 

than the founder(s), and percent composition would be heavily weighted for one major 

source. 

2) Bubba scenario 

Given the extremely low number of individuals likely to be involved in a small-scale 

intentional introduction, such as has been suggested to be the sole source of the Potomac 

and Piankatank River populations, a severe genetic bottleneck is expected. This scenario 
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would be characterized by a sharp reduction in allelic diversity. The secondary 

population would show greatest similarity to a nearby population, would have a percent 

composition estimate that would be heavily weighted for a single major source, and 

would exhibit high levels of inbreeding (Frs). 



MATERIALS AND METHODS 

Sample collection 

Samples were obtained during the summer of 2004, from six I. furcatus 

populations in Chesapeake Bay tributaries using a combination of high and low 

frequency electrofishing and from four native populations using gill net and 

electrofishing (Table 2). Samples were stored in 70% isopopanol at the site of collection. 

Microsatellite identijication and optimization 

Twenty-two published microsatellite- sequences for I. punctatus were surveyed to 

determine levels of polymorphisn~ in I. furcatus. In addition, a microsatellite-enriched 

library was prepared from a mixture of 5 pg of total nucleic acid pooled from several I. 

furcatus specimens that was then digested with Sau3A1, ligated to linkers, and hybridized 

to a cocktail of biotinylated tandem repeat oligonucleotides [(AAC)l 1, (GAAT)lo, 

(ACAT) I I ,  (AAAG)ll, (GTA) 1 and (AAT)l S]. Coupled molecules were separated from 

non-repeat sequences using avidin, PCR repaired, and TA-cloned with the TOPOTM 

vector (Invitrogen). Approximately 100 colonies with inserts were picked and subjected 

to PCR using M13 primers. Appropriately sized amplicons (500-1 200 bp) were 

sequenced in both directions resulting in a suite of 20 repeat-containing sequences. 



DNA preparation and genotyping 

For each specimen, DNA was extracted from 50 mg of tissue using the PureGeneTM 

method. Three primer sets were directly labeled with FAM, TET, or HEX, and three 

others were modified as described by Boutin et al. (2001) with the addition of a unique 

sequence to the 5' end of one of each pair (referred to hereafter as modified primer) as 

shown in Table 3. Each 6 pL PCR reaction contained 1 pL of template, 0.6 pL of 0.5 

pM primer mix, 1 pL H20, 0.2 pL 4mM spermidine, and 3 pL of Jumpstart Red Taq 

(Sigma-Aldrich). PCR was performed using MJ Research PTC 100 thermal cyclers to 

cycle through the following steps: 2 min denaturation at 95OC, followed by 30 sec at 

94OC, 30 sec annealing at the appropriate temperature (Table 3), and 50 sec extension at 

72°C. These three steps, repeated 40 times. The 5'-modified primers allowed use of the 

third fluorescently labeled primer in PCR, which facilitated pooling of PCR reactions and 

automated detection and genotyping using a Basestation 5 lTM DNA fragment analyzer 

(MJ Research). Each lane of each ultra thin gel contained a 70-400 base pair ROX- 

labeled molecular marker (BioVentures). All genotypes were scored individually with 

the use of automated Cartographer@ genotyping software. 

Statistical tests 

To calculate allele frequencies and genotypic proportions, GENEPOP Version 3.4 

(Raymond and Rousset 1995) was used. Linkage disequilibrium was tested with the 

probability test using a Markov chain method (Guo and Thompson 1992) and global tests 

were performed across all populations with Fisher's method. The significance of 

deviation from Hardy-Weinberg expectations was examined with exact P-values that 



were estimated using a Markov chain method and tests for heterozygote excess and 

heterozygote deficiency for each locus were conducted. All Markov chain runs consisted 

of 1000 dememorization steps, 100 batches, and 1000 iterations. In each instance where 

multiple independent tests were performed, significance levels (a) were revised by 

Bonferroni correction (Rice 1989). 

Population genetic structure was examined using Arlequin version 2.00 

(Schneider et al. 2000) in terms of DST calculated by AMOVA (Excoffier et al. 1992), 

painvise genetic differentiation among populations, and F-statistics (Wright 1946). As a 

further indication of how genetic variation was distributed among populations, a 

population topology was determined using GENO (Dyer 2005). Multilocus inbreeding 

estimates, originally described by ~ y r e s  and Balding (2001) and subsequently illustrated 

by Dyer (2005) to be useful in consideration of inbreeding in wild populations, were 

examined in each of the ten I. furcatus populations. The distribution of inbreeding 

coefficients, F, generated by GENO was plotted to compare estimated levels of 

inbreeding. Nei's standard genetic distance (Ds; Nei 1987) was calculated for each 

population pair using MICROSAT Version 1.5d (Minch 1997) and PHYLIP phylogenetic 

software (Felsenstein 1993) was used to obtain a neighbor-joining tree (Saitou and Nei 

1987) based on Ds-values. The extent of gene flow was evaluated by calculating the 

effective migration rate (N,m) using the standard relationship of N,m to FsT (Wright 

1946) and with GENEPOP using private allele frequencies (Barton and Slatkin 1986; 

Slatkin 1985). 

The possibility of recent effective population size reductions was examined using 

BOTTLENECK (Ver 1.2; Cornuet and Luikart 19976). The Wilcoxon sign-rank statistic 
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tested for heterozygosity deficiency or excess, and the allele frequency distribution mode 

shift analyses (Luikart and Cornuet 1998) were performed using the heterozygosity data 

results to detect recent population bottlenecks under the two-phased model (TPM). The 

TPM was selected because it accepts lower numbers of loci and smaller sample sizes than 

the other two models implemented by BOTTLENECK (Luikart and Cornuet 1998). 

Unconditional genetic mixed stock analysis was used to identify the sources of the 

three secondary populations: Panlunkey, Piankatank, and Potomac Rivers, using the 

Statistics Program for Analyzing Mixtures (SPAM version 3.7, Pella and Masuda 2001). 

SPAM estimated the relative contributions of discrete populations (in this case the 

original rivers into which I. furcatus were introduced) to each of the three mixture 

samples. Settings for each run of SPAM included activation of the IRLS algorithm and 

use of the Pella-Masuda model for determining the baseline posterior allele frequency 

distributions. All models were run with 95% confidence intervals and 100 resamplings of 

the baseline populations. 



RESULTS 

Of more than 2,000 I. furcatus collected, we obtained genotype data for 1,376. Genetic 

sample sizes for the Bay populations ranged from n = 119 to n = 265, and for the four 

comparative native populations genetic sample size ranged form n = 38 to n = 96. 

Genetic variation among populations of native and Chesapeake Bay I. furcatus 

Of 22 Ictalurus punctatus loci examined, four were polymorphic in I. furcatus. Of 20 

microsatellite sequences isolated for I. furcatus, primers were designed for seven, and of 

those only two loci produced at leasttwo different alleles. In combination with one 

previously published locus for channel catfish (I. punctatus; Liu et al. 1999) and three 

primer sets designed from published sequences for I. punctatus (Table 3), a total of six 

polymorphic loci yielded sufficient data for discrimination among the Chesapeake Bay as 

well as native populations. Across the ten populations examined, a total of 72 alleles 

were detected. The total number of alleles per locus, ranged from a low of 3 for Ifu F43B 

to a high of 23 alleles for Ifu F42A. Mean allelic diversity, A, observed for Chesapeake 

Bay populations averaged 3.5, 12% lower than observed for the native populations (A 

=4.1). For the six Bay populations, A ranged from a median of 3.0 to 4.2 with the 

Mattaponi / Pamunkey populations both having the lowest and James / Rappahannock 

populations having the highest, whereas for the native populations A ranged from a 

median of 3.7 to 4.7. The secondary Potomac and Piankatank populations both had 

higher allelic diversity than the introduced Mattaponi population, but less than the James 
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and Rappahannock (Table 4). Of particular note, five alleles for Ijiu F42A were unique to 

the Potomac population. Five instances of significant linkage were observed (of 15 

comparisons) all of which involved Ipu13 or Ipu15, indicating a possibility of null alleles 

at these two loci. Gene diversity did not reveal a clear trend in terms of native, 

introduced, and secondary populations. Although a number of individual loci were in 

Hardy-Weinburg Equilibrium (HWE) in various population samples, none of the six Bay 

populations conformed to HWE overall (Table 4). BOTTLENECK analyses indicated 

that severe reductions in population size resulting in genetic bottlenecks were not a likely 

factor for non-conformance to HWE in any populations including the native samples. 

For the six Bay populations, theta (4N,,u) ranged from a low of 6.72 for Pamunkey to a 

high of 36.47 for Rapahannock. By comparison, the native I. furcatus populations 

sampled had much lower values of theta (3 .OO - 13.12). 

Analysis of molecular variance resulted in 18% of genetic variation detected 

among the native and introduced groups, and 6% of the diversity was due to differences 

among Chesapeake populations (Table 5). Exact tests of population differentiation using 

only 3 loci (Ipu 1 3, Ipu 1 5, and Ipu270) among all ten native and introduced population 

samples, revealed that the native populations of Mississippi and Ohio did not differ 

significantly. (P = 0.79), nor did the samples collected from Tennessee and Rappahannock '5 

Rivers (P = 0.14). Considering all six loci for all six populations in the Bay, the 

microsatellite allele frequency distributions differed significantly = m, P = 0.000) 

among each of the Chesapeake Bay population pairs, thus each of the six populations 

were genetically distinct and therefore considered separately in all subsequent analyses. 



Pairwise FsTestimates, ranging from 0.042 to 0.1 83 (P = 0.000), provided 

evidence of moderate population substructure sufficient to perform MSA (Table 6). 

Estimates of Ds between population pairs ranged from a low of 0.0 19 between 

Rappahaimock and Piankatank to a high of 0.194 between Rappahannock and Pamunkey 

(Table 7). The neighbor-joining tree based on Ds resulted in strong association between 

Rappahannock and Piankatank and a weaker cluster of Mattaponi, Pamunkey and 

Potomac (Figure 3). The overall effective migration rate (N,m) for the six Bay 

populations was very high 37.88, and gene flow was observed among all populations 

ranging from a low between Rapahannock and Pamunkey (0.58) to very high between 

Piankatank and Rapahannock (13.75; Table 7). The N,m values between the James and 

Piankatank (5.77) and between Mattaponi and Potomac (12.44) were also high. 

Considering the multilocus inbreeding F analysis, Piankatank had the lowest 

observed level of inbreeding of all Bay populations, not significantly different from the 

native populations (P > 0.50) and significantly less than the Bay populations (P < 0.05), 

with a median value F = 0.03. The least genetically diverse Pamunkey population had 

the highest level of inbreeding, 0.27. The James and Potomac populations had a median 

F = 0.22 and were not significantly different (P>0.05). The Rappahannock and the 

Mattapoiii were the least inbred of the introduced populations having similar median F of Y 

0.15 and 0.17, respectively (Figure 2). 

Maximum likelihood estimates of secondary populations 

Three separate sets of admixture analysis were conducted. The first employed a baseline 

consisting of only the three original introduced populations and examined Pamunkey, 
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Potomac and Piankatank sets as mixtures. Because the Pamunkey population has been 

self-sustaining since the early-1 990s, a second analysis employed the three original 

introduced populations plus the Pamunkey in the baseline to determine the percent 

compositions of Potomac and Piankatank only. Because Potomac, itself a mixture, could 

conceivable be contributing to the Piankatank population, a third baseline containing 

Potomac was employed to analyze the Piankatark mixture. In each of the three instances 

(Table 8), there was a single major contributing population and a relatively large 

component that was unknown (9.5 - 16.5%). The Pamunkey River I. furcatus population 

was estimated to be 83% derived form Mattaponi, 16.5% unknown and <0.5% each of 

Rappahannock and James. Using the three-source baseline, the Potomac population was 

derived primarily of Mattaponi (74%), followed by Rapahannock (1 6%) and 10% 

unknown. Including Pamunkey in the baseline group, dropped the Mattaponi percentage 

to 52%, complemented by 2 1% Pamunkey, and the Rapahannock and unknown portions 

of composition remained approximately the same as in the prior analysis. The James 

population was not observed to contribute in either instance to the Potomac population. 

Analysis of the newest population, Piankatark, revealed a more complex mixture 

consistent across the three- and four-population baseline analyses where Rappahannock 

was the major contributing population (7 1 %), followed by an unknown group (1 4%), 

James (10-1 1%) and Mattaponi (4-5%). When Potomac was added to the baseline, all of 

the Mattaponi and 5% of Rappahannock's contribution to Piankatank were replaced by 

Potomac (1 0%). 



DISCUSSION 

Each of the six Chesapeake Bay I. furcatus populations was genetically distinct from the 

others and moderate population substructure was observed within the Bay (Figure 4). In 

general, the Bay populations were considerably more inbred than the native populations 

and they exhibited lower allelic diversity, showing evidence typical of the founder effect. 

However, the high N,m rates suggest that there may be a great deal more movement of 

this species within the Bay than was previously thought. The known predilection to 

seasonal migration combined with the wide range of salinity tolerance provides ample 

support that the observed levels of effective migration are contemporary estimates, as 

opposed to reflecting historical stocking activities. Long range movement is further 

supported by significant high flow storm-related events that could facilitate far range 

movement over short time periods. However, without physical tagging, there is little 

recourse to verify the absolute extent of movement and effective migration. 

Pamunkey expansion 

Pamunkey was the most inbred of all I. furcatus populations examined. The 

Mattaponi and Pamunkey populations had the lowest allelic diversity of all populations 

studied, 28% less than Rappahannock or James, reflecting the stocking history in which 

only 1,850 fingerlings were introduced into Mattaponi River in 1985. The MSA 

procedure worked well for ana1yzing.I. furcatus in Chesapeake Bay as shown by the 

result that the Mattaponi population was the primary contributing source for the 
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Pamunkey population, 82%, as expected from its geographic proximity. Unexpectedly, 

no loss of genetic diversity was observed between the source (Mattaponi) and the 

secondarily colonized (Pamunkey) populations in this expansion event. A note of caution 

is that a major contribution of an unknown source to Pamunkey (16%), likely indicates 

that the baseline could have been better characterized by addition of more loci. This 

proportion of unknown in the mixture estimate was consistent with other MSA performed 

for the other two secondary populations (Potomac and Piankatank). A subsequent 

simulation using the program WHICHLOCI indicated that the 6-locus data set for the 

Bay baseline populations provided 86% accuracy in population assignment and no 

misassignments. Overall, population genetic and MSA analyses indicate that the 

Pamunkey expansion conforms to the dispersal scenario. 

Potomac expansion 

The Potomac population, observed to date only in the upper reaches of Potomac River 

near Occoquan Bay, exhibited a 22% higher diversity than the primary contributor 

identified by MSA (MattaponiIPamunkey) accompanied by a 12% drop in allelic 

diversity as compared to the second highest contributor (Rappahannock). In the case of 

range expansion via dispersal, although lower diversity .than Rappahannock is expected, 

it is an apparent contradiction for this novel population to have higher allelic diversity 

than a major source located two drainages away (Mattaponi). Based on the MSA results 

alone, these conflicting data are difficult to explain. However, considering the fact that 

the northern Virginia impoundments were stocked at the same time with -70,000 of the 

same hatchery stock of fingerlings as were stocked into Mattaponi and James Rivers 



(-2000 and -1 3,000, respectively), it is possible that the contribution attributed to 

Mattaponi and James may actually be a genetic signal of shared ancestry with fish 

stocked in impoundments in northern Virginia. The fact that five Ifu 42A alleles were 

found exclusively in Potomac, constitutes additional evidence in support of the possibility 

that escapees from lakes are the more likely source(s) of the secondary Potomac 

population. Finally, lack of evidence for a genetic bottleneck effectively rules out the 

possibility that this population was founded solely by one or more intentional 

introductions. Taking into account the stocking history, population genetics, and MSA 

analyses, the Potomac expansion conforms best to a scenario involving escapement from 

impoundments. However, although evidence points to such a scenario, this conclusion 

cannot be supported without genetic samples from such impoundment populations. 

Piankatan k expansion 

Never observed prior to 2002, the Piankatank population appeared after an 

extended season of high flow, the highest annual discharge since 198 1 (USGS Dragon 

Swamp station #01669520). Collections from this population exhibited a substantial 

reduction in allelic diversity compared to its primary contributors, the Rappahannock, 

Potomac, and James populations (1 6%, 18%, and 28% less, respectively). The 

observations of reduced allelic diversity and high genetic similarity to the source are 

consistent with the Piankatank population being founded by either dispersal or many 

intentional introductions, assumedly from the geographically proximal Rapahannock. 

Because Piankatank had the most diverse maximum likelihood estimate of composition, 

the second highest theta value, and the lowest observed level of inbreeding of all Bay 



populations, intentional introductions alone are not a likely source of the recent 

Piankatank population. Furthermore, the lack of evidence for a genetic bottleneck 

effectively discounts the possibility that this population was founded solely by one or a 

few small-scale intentional introductions. Therefore, based on quantitative and 

qualitative considerations, the sudden Piankatank expansion conforms best to the 

dispersal scenario. 



CONCLUSION 

This analysis of the I. furcatus range expansion among Chesapeake Bay tributaries 

provides practical information that is relevant to a watershed-wide risk assessment. The 

ecological and genetic data provide quantitative measures of the potential for migration 

among tributaries and indicate that dispersal and escapement are the primary modes for 

the recent range expansion and that intentional introductions are not an effective 

explanation for the sudden appearance of Potomac and Piankatank secondary 

populations. Because one interpretation of the MSA results indicates that escapees from 

impoundments may be important components of the I. furcatus range expansion, this 

implies that such ecosystems may be more connected to watershed biology than 

previously recognized. This, in turn, may provide important information as these results 

imply that impoundments may be much more intimately connected to watershed ecology 

than previously recognized, and therefore may be an important component of river 

ecosystem management. This study also has proven to be an informative system for 

exploring the utility of a MSA in the study of invasive species. By combining MSA with 

other more typical population genetic analyses and ecological information, it was 

possible to select the most likely scenario to account for three separate expansion events. 

In each of the three cases, had we used only population genetics analyses and ecological 

data, we would have detected only decreased genetic diversity and the major contributing 

populations. By including MSA in the total analysis, we obtained more complete 

information on the sources of the range expansion and acquired higher degree of 
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confidence in the ability to estimate sources (roughly 86%) providing information that 

will be useful in determining future risk. 
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Table 1. History of stocking and range expansion of I. furcatus in Chesapeake Bay 

tributaries. 

Record of stocking date or 
date of first observation 

Population Years Numbers 

Introduced populations: 
James 1975 

1985 
Rappahannock 1974 

1977 
Mattaponi 1985 
Impoundments 1983 

1985 
Secondary populations: 
Pamunkey 1988 
Potomac 2001 
Piankatank 2003 



Table 2. Sites sampled for blue catfish, Ictalurus furcatus, during 2003-2005 from 

tributaries of the Chesapeake Bay and from four native range tributaries of the 

Mississippi River. Abbreviations in parentheses are used in subsequent tables 

and figures. 

Location Site Latitude Longitude N 

CHESAPEAKE BAY, Virginia* 
James River Jordan Point 

Turkey Cut 
Jordan Point 
Sandy Point 

Rappahannock River Stony Creek VA 
Horse Head Point VA 
Skinker's 
Highway 360 Bridge 
Fowners 

Mattaponi River Clifton 
Melrose 
Muddy Point 
Powerline 
RT 30 Bridge 
Walkerton 

Pamunkey River Indian Resevoir 
Brickhouse 
Cohoke Creek 
Cumberland 
Grimes Landing 
Hill Marsh 

Potomac River Ft. Washington 
Pinakatank River RM 15 - 16 Sta'tion 

Mississippi River Herculoneum, MO 38.2527 90.3674 96 
Ohio River Cincinnati, OH 39.0925 84.5164 46 

Tennessee River Muscle Shoals, AL 34.7444 87.6503 45 
Alabama River Miller's Ferry Power House, AL 32'05.27 87'24.00 28 

Hwy 84 Bridge, AL 31'36.33 87'33.02 66 
Chastain's Hole, AL 31'35.48 87'32.47 4 

* Samples obtained through VDGlF and VCU. 
**  Native samples obtained through The Illinois Natural History Survey, Ohio River Valley Water 

Sanitation Commission, Auburn University, and the Alabama Department of Conservation and 
Natural Resources, respectively. 



Table 3: Details for six microsatellite loci used in genetic analyses of I. furcatus 

populations. 

Locus Name GenBank 
(Repeat) Access. 

No. 

Primer Sequences 
(5' - 3') 

Anneal 
("C) 

Ifu F42-A Pending CAGTCGGGCGTCATCAATAAGGGCTAACTGGGATGT 53 

(CT)9 CTGCAAAGAGTAGAGGAAGAGT 

Ifu F43-B Pending GGTGCATACAGAGAATAAGGAACA 54 

(CA)6 CAGTCGGGCGTCATCAGAAAAGGGCATGCCAGGATAA 

Ipu 270 NIA ACTCAATAAATCAAATCATGCG 

(ATTT),~(TC) (CA),~ Liu et al. 1999 ATTTGTGAAACAAAATGAGTGG 

lpu 13 

(AC)18 

BV078113 CACTCCGGTCACACTCTACG 

GTGGCTTTCTTATTTTTGTTrrrG 

lpu 15 BV078115 GACGCTTTGTGGTTTCTCG 

TCAGTCGCGCCCTCATC 

Ipu 41 AF321241 CTTTGCTGGTTGAAATGGGATTA 

(GAA),o TTGAGATAAAGAGCAATTCAGTCG 



Table 4: Diversity indices characterizing introduced and secondary populations of 

Ictalurus,furcatus in the Chesapeake Bay watershed and four populations 

collected from the native range of the species. Maximum sample size (N), 

conformation to Hardy-Weinberg Equilibrium predictions (HWE), average 

allelic diversity (A) ,  gene diversity (expected heterozygosity), inbreeding (F), 

and Theta(h,,, which is = 4 N,p. 

Population N HWE A Gene lnbreedin Theta(hom) 

Diver. g F  

JAM 

POT 

PI A 

PAM 

MAT 

RAP 

AL 

MS 

OH 

TN 



Table 5: Analysis of molecular variance for six I. furcatus populations in Chesapeake 

Bay and four native range samples. 

Source of 
variation 

Variance 
components 

% 
variation 

Native vs. 
Chesapeake 

Among 
populations 

within 
Chesapeake 

Bay 

Within 
populations 

Total 2629 261 5.01 1.15 
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Table 6:  Microsatellite genetic variation at three microsatellite loci in I. furcatus from 

six Chesapeake Bay and four native populations categorized above the diagonal 

as OST and below the diagonal as FST (P-values shown in parentheses). 

JAM POT PIA PAM MAT RAP AL MS OH T N 
JAM 0.065 0.048 0.175 -0.016 0.024 0.101 0.299 0.304 0.106 

PIA 
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Table 7: Microsatellite genetic variation at six microsatellite loci in I. furcatus from six 

Chesapeake Bay populations categorized using pairwise estimates of genetic 

distance, Ds (above the diagonal), and effective migration rate, Nem (below the 

diagonal) using the private alleles method (overall Nem = 37.88). 

JAM MAT POT PIA PAM RAP 

JAM 0.046 0.094 0.098 0.166 0.124 

MAT 1.25 0.031 0.087 0.058 0.131 

POT 2.23 12.44 0.087 0.041 0.112 

PIA 5.77 1.11 0.80 0.174 0.019 

PAM 2.45 2.97 2.78 0.73 0.194 

RAP 5.72 1.02 1.13 13.75 0.58 



Table 8. Estimated mixture proportions of secondary I. furcatus populations in Chesapeake Bay tributaries. Three models were 

used: JMR indicates baseline included James, Mattaponi and Rappahannock only; JPMR indicates baseline included 

introduced populations plus the secondary Pamunkey population; JPMRP indicates baseline included introduced 

populations plus the secondary Pamunkey and Potomac populations. SE and CV refer to the standard error and coefficient 

of variation of the estimates, respectively. N,m: effective migration between source and mixture. Relative percent change 

in A for secondary versus source. Population names in bold are the purported mixtures, whereas other populations are 

potential sources. 

Pamunkey 
JAM 
MAT 
RAP 
Unknown 
Potomac 
JAM 
PAM 
MAT 
RAP 
Unknown 
Piankatank 
JAM 
PAM 
MAT 
RAP 
POT 
Unknown 

MSA Estimates of %Composition 
JMR JPMR JPMRP 

Estim. Estim. Estim. 

Rel. % 
change 

in A 

Genetic 
Dist. 



39 
Figure 1: Map of the Virginia portion of Chesapeake Bay watershed denoting introduced 

(bold) and secondary (italic) populations of I. furcatus. See Table 1 for stocking years 

and numbers introduced. 

Piankatank 

Longitude (degrees West) 



Figure 2: Distribution of inbreeding coefficients in six Chesapeake Bay and four native 

populations of blue catfish, Ictalurus furcatus. Frequencies appear on the y-axis and 

inbreeding coefficient values, F, along the x-axis. 

MS 
OH 
AL 
TN 
PIA 
RAP 
MAT 
JAM 
POT 
PAM 

-0.2 -0.1 0.0 0.1 . 0.2 0.3 0.4 0.5 0.6 

Inbreeding 
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Figure 3: Neighbor joining tree constructed from Nei's standard genetic distance (DS) values 

among six populations (introduced and secondary colonization events) of I. furcatus 

in the Chesapeake Bay watershed. Bootstrap values at nodes indicate the percentage 

of unambiguous branches at that point. 
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Figure 4: Population graph illustrating genetic relationships among Chesapeake Bay watershed 

introduced and secondary populations of 1 furcatus. The variation among population 

samples is incorporated in the lengths of lines connecting nodes. Extent of within 

population genetic variability is illustrated by relative node size. 

MAT 
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