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Abstract 

 
 There are numerous applications of mathematics, specifically spectral graph 

theory, within the sciences and many other fields.  This paper is an exploration of recent 

applications of spectral graph theory, including the fields of chemistry, biology, and 

graph coloring.  Topics such as the isomers of alkanes, the importance of eigenvalues in 

protein structures, and the aid that the spectra of a graph provides when coloring a graph 

are covered, as well as others. 

 The key definitions and properties of graph theory are introduced.  Important 

aspects of graphs, such as the walks and the adjacency matrix are explored.  In addition, 

bipartite graphs are discussed along with properties that apply strictly to bipartite graphs.   

The main focus is on the characteristic polynomial and the eigenvalues that it 

produces, because most of the applications involve specific eigenvalues. For example, if 

isomers are organized according to their eigenvalues, a pattern comes to light.  There is a 

parallel between the size of the eigenvalue (in comparison to the other eigenvalues) and 

the maximum degree of the graph.  The maximum degree of the graph tells us the most 

carbon atoms attached to any given carbon atom within the structure.   

The Laplacian matrix and many of its properties are discussed at length, including 

the classical Matrix Tree Theorem and Cayley’s Tree Theorem.  Also, an alternative 

approach to defining the Laplacian is explored and compared to the traditional Laplacian.   

 

 

 

i 



CHAPTER 1:  GRAPH THEORY 
 
 
SECTION 1.1:  INTRODUCTION TO GRAPH THEORY 
 

A graph G is a finite nonempty set of points called vertices, together with a set of 

unordered pairs of distinct vertices called edges.  The set of edges may be empty.  The 

degree of a vertex v, deg(v), is the number of edges incident on v.  A graph is regular if 

all vertices have equal degrees.  A graph is considered a complete graph if each pair of 

vertices is joined by an edge. 

In the example graph below, the set of vertices is V(G) = {a, b, c, d} while the set 

of edges is E(G) = {ab, ac, bc, bd, cd}.  The graph is not complete because vertices a and 

d are not joined by an edge.  deg(a) = 2 = deg(d), deg(b) = 3 = deg(c).  Two vertices are 

adjacent if there is an edge that connects them.  In Figure 1-1, vertices a and c are 

adjacent, while vertices a and d are not. 

b

dc

a

Graph G 
Figure 1-1  

 
A wide variety of real world applications can be modeled using vertices and edges 

of a graph.  Examples include electrical nodes and the wires that connect them, the stops 

and rails of a subway system and communication systems between cities.  The cardinality 

of the vertex set V(G) is called the order of G and is denoted by p(G), or simply p when 

the context makes it clear.  The cardinality of the edge set E(G) is called the size of G, 

and is usually denoted by q(G) or q.  A graph G can be denoted as a G(p, q) graph. 



A vivj walk in G is a finite sequence of adjacent vertices that begins at vertex vi 

and ends at vertex vj.  In Figure 1-1, a walk from a to d would be acd. Another walk from 

a to d is abcd.  If each pair of vertices in a graph is joined by a walk, the graph is said to 

be connected.  The distance between any two vertices in a graph is the number of edges 

“traced” on the shortest walk between the two vertices.  The distance from a to d is 2.  

The maximum distance between all of the pairs of vertices of a graph is the diameter of 

the graph.  In Figure 1-1, the distance between any two vertices is either 1 or 2, making 2 

the diameter of G, or diam(G) = 2. 

The vertices and edges may have certain attributes, such as color or weight.  Also, 

the edges may have direction.  When the edges are given direction we have a digraph, or 

directed graph, as shown below in Figure 1-2.  Digraphs can be used to model road 

maps.  The vertices represent landmarks, while the edges represent one-way or two-way 

streets.  

work

vcu

home

gym 

bank
Figure 1-2 

 

An incidence matrix associated with a digraph G is a q × p matrix whose rows 

represent the edges and columns represent the vertices.  If an edge k starts at vertex i and 

ends at vertex j, then row k of the incidence matrix will have +1 in its (k, i) element, and  

–1 it its (k, j) element.  All other elements are 0. 
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Example:  A directed graph and its incidence matrix are shown above in Figure 1-3. 

When two vertices are joined by more than one edge, like the example in  

Figure 1-4, it becomes a multi-graph.  

b

dc

a

Figure 1-4 

 

When a pair of vertices is not distinct, then there is a self-loop. A graph that 

admits multiple edges and loops is called a pseudograph.  In the pseudograph below, 

edge cc is joining a pair of non-distinct vertices; therefore, there is a self-loop at vertex c. 

b

d
c

a

Figure 1-5 

 

Graphs G and H are isomorphic, written G ≅ H, if there is a vertex bijection  
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f: V(G)  V(H) such that for all u, v ∈ V(G), u and v adjacent in G ⇔ f(u) and f(v) are 

adjacent in H.  Likewise, u and v not adjacent in G ⇔ f(u) and f(v) are not adjacent in H. 

c

G = 

a

d

b

p 

H = 

n

q

m Figure 1-6 

 
 
Graphs G and H are isomorphic, because a vertex bijection between them is:  f(a) = m, 

f(b) = n, f(c) = g, and f(d) = p. 
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SECTION 1.2:  ADJACENCY MATRICES 

 
There is a great deal of importance and application to representing a graph in 

matrix form.  One of the key ways to do this is through the adjacency matrix, A.  The 

rows and columns of an adjacency matrix represent the vertices, and the elements tell 

whether or not there is an edge between any two vertices.  Given any element, aij,  

1 if ai and aj are connected 
0 otherwise aij = 

 
  
Example:  A graph G with its adjacency matrix A.  

 

ba

c
d

G

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0100
1011
0101
0110

d
c
b
a

A  

a b c d

Figure 1-7 

 
Notice that the diagonal of an adjacency matrix of a graph contains only zeros 

because there are no self-loops.  Remember that our graphs have no multiple edges or 

loops.  This causes the trace of the adjacency matrix, written tr(A), the sum of its main 

diagonal, to be zero.  Also, when A represents a graph, it is square, symmetric, and all of 

the elements are non-negative.  In other words, aij = aji. 

Property 1-1:  The number of walks of length l from vi to vj in G is the element in 

position (i, j) of the matrix Al [Bi, p9]. 

Proof:  If l = 0, then the number of walks from vi to vj, i ≠ j, is 0, making element  
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(i, j) = 0.  The number of walks from any vertex to itself of length zero is 1, making 

element (i, i) = 1, giving us the identity matrix.  A0 = I, therefore it checks if l = 0.  If  

l = 1, then A1 = A, the adjacency matrix.  Let Property 1-1 be true for l = L.  The set of 

walks of length L+1 from vertex vi to vertex vj is in bijective correspondence with the set 

of walks of length L from vi to vh adjacent to vj.  In other words, if there is a walk of 

length L from vi to vh, and vh is adjacent to vj, then there is a walk of length L+1 from vi to 

vj.  The number of such walks is  

   =     =   (A∑
∈ )(},{

)(
GEvv

ih
L

jh

A ∑
=

n

h
hjih

L aA
1

)( L+1)ij     

 
Therefore, the number of walks of length L+1 joining vi to vj is (AL+1)ij.  By induction, 

the property holds.    

Example:  Look again at graph G and its adjacency matrix A: 
 

ba

c 
d

G

⎥
⎥
⎥
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⎣

⎡

=

0100
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0101
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d
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A  

a b c d

Figure 1-7 

 
The number of walks from vertex b to vertex d of length 2 can be found by squaring 
matrix A.   
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1011
0311
1121
1112

2A , therefore if we look at element (b, d) = element (d, b) = 1.  There is 

one walk from b to d of length 2.  That walk is bcd. 
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Likewise, .  Element (a, c) = element (c, a) = 4.  Therefore, there are 

4 walks of length 3 from vertex a to vertex c.  These walks are:  acac, acdc, acbc, abac.   

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0311
3244
1423
1432

3A

 
 

Property 1-1 has two immediate corollaries. We list them as Property 1-2 and 

Property 1-3. 

Property 1-2:  The trace of A2 is twice the number of edges in the graph. 
 
Proof:  Let vi be an arbitrary vertex of G.  For every edge vivj of G, by Property 1-1, we 

get a count of 1 towards the (i, j) position of A2.  That is, the (i, j) position of A2 is equal 

to the degree of vi, because every walk vivi that involves only one vivj edge will have a 

length of 2.  This means: qvAtr
GVv

i
i

2)deg()(
)(

2 == ∑
∈

.  Recall, q equals the cardinality of the 

edge set of G.    

This can be seen in our example in Figure 1-7.  A2 = .  The trace of  

A2 is 8 and the number of edges is 4. 

Property 1-3:  The trace of A3 is six times the number of triangles in the graph.  
 
Proof:  Let vi be an arbitrary vertex of G.  For every 3-cycle vivj of G, again by Property 

1-1, we get a count of 1 towards the (i, j) position of A3.  That is, the (i, j) position of A3 

is equal to the number of 3-cycles that start and end at vi.  However, every 3-cycle vivjvkvi 

is counted six times because the vertices of the 3-cycle can be ordered in 6 ways.  This 

means that tr(A3) = 6(# of triangles) in the graph.    
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Again, let’s test it with the graph from Figure 1-7.  A3 = .  The trace is 6 

and the number of triangles in the figure is 1, illustrating Properties 1-2 and 1-3. 
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SECTION 1.3:  THE CHARACTERISTIC POLYNOMIAL AND 
     EIGENVALUES 

 
 

The characteristic polynomial, Г, of a graph of order n is the determinant  

det(λI – A), where I is the n × n identity matrix.   

Example 1: given adjacency matrix 

Figure 1-8 

0 1 1
1 0 1
1 1 0

a
b
c

⎡ ⎤
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⎢ ⎥⎣ ⎦

A
 

a b c

From graph G  
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λ
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λ
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11
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011
101
110

00
00
00

det)det( AI 3 – 3λ – 2  

 
The general form of any characteristic polynomial is 
 
 λn + c1λn – 1  + c2λn – 2 + . . .  + cn      Equation 1 
 

Property 1-4:  The coefficients of the characteristic polynomial that coincide with matrix 

A of a graph G have the following characteristics: 

1) c1 = 0 

2) – c2 is the number of edges of G  

3) – c3 is twice the number of triangles in G 

Proof:  For each i ∈ { 1, 2, …, n}, the number (– 1)ici is the sum of those principal 

minors of A which have i rows and columns.  So we can argue as follows: 

1) Since the diagonal elements of A are all zero, c1 = 0. 
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2) A principal minor with two rows and columns, and which has a non-zero entry, 

must be of the form .  There is one such minor for each pair of adjacent 

vertices of the characteristic polynomial, and each has a value of – 1.  Hence,  

⎥
⎦

⎤
⎢
⎣

⎡
01
10

      (– 1)2c2 = – | E(G) |. 

3) There are essentially three possibilities for non-trivial principal minors with three 

rows and columns:  , , .  Of these, the only non-zero 

one is the last one (whose value is two).  This principal minor corresponds to 

three mutually adjacent vertices in Г, and so we have the required description of 

c
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⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

000
001
010

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

001
001
110

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

011
101
110

3. [Bi, p8-9]       

Example:  This can be seen from the characteristic polynomial of A above.  n = 4 
 

1) there is no λ2, making c1= 0 

2) – c2 = 3.  The number of edges of G is 4. 

3) – c3 = 2.  The number of triangles in G is 1. 

The characteristic polynomial is enormously important to spectral graph theory, 

because it is an algebraic construction that contains graphical information.  It will be 

explored more in Chapter 2. 

The roots of a characteristic polynomial are called the eigenvalues.  Setting the 

characteristic polynomial λ3 – 3λ – 2 from Example 1 equal to zero and solving gives us 

the eigenvalues {– 1, – 1, 2}.  Eigenvalues are at the heart of understanding the properties 

and structure of a graph.  We will also study them more in chapter 2. 

Property 1-5:  The sum of the eigenvalues of a matrix equals its trace. 

Example:  Let us consider a 2×2 adjacency matrix  
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A = .  Det(A - λI) = λ⎥
⎦

⎤
⎢
⎣

⎡
dc
ba 2 – (a + d)λ + (ad – bc).  Applying the quadratic equation and 

setting b = c, we get λ1 = 
2

4)()( 22 bdada +−++  and λ2 = 
2

4)()( 22 bdada +−−+ .  Adding 

the eigenvalues gives us    λ1 + λ2 = dada
+=

+
2

22 = the sum of the diagonal, or tr(A).  

Similar computations can be applied to any adjacency matrix, regardless of the  

dimensions.    

The algebraic multiplicity of an eigenvalue is the number of times that the value 

occurs as a root of the characteristic polynomial.  In example 1, the eigenvalue -1 has a 

multiplicity of 2 and the eigenvalue of 2 has a multiplicity of 1. 

The eigenvectors that correspond to the eigenvalues are .  The 

geometric multiplicity is the dimension of the eigenspace, or the subspace spanned by 

all of the eigenvectors.  

Property 1-6:  If a matrix is real symmetric, then each eigenvalue of the graph relating to 

that matrix is real.   

Proof:  The proof follows from the Spectral Theorem from Linear Algebra:  Let A be a 

real, symmetric matrix.  Then there exists an orthogonal matrix Q such that  

A = Q Λ Q-1 = Q Λ QT, where Λ is a real diagonal matrix.  The eigenvalues of A appear 

on the diagonal of Λ, while the columns of Q are the corresponding orthonormal 

eigenvectors.  The entries of an adjacency matrix are real and the adjacency matrix is 

symmetric.  Therefore, all of the eigenvalues of an adjacency matrix are real.  

[Ol, p419]      
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Property 1-7: The geometric and algebraic multiplicities of each eigenvalue of a real 

symmetric matrix are equal.  

Property 1-8: The eigenvectors that correspond to the distinct eigenvalues are 

orthogonal (mutually perpendicular). 

Note: When u and v are two orthogonal eigenvectors of A associated with two distinct 

eigenvalues λ and μ in that order, then the unit vectors 
u
u  and 

v
v   are orthonormal 

eigenvectors associated with λ and μ respectively. 

Property 1-9:  If a graph is connected, the largest eigenvalue has multiplicity of 1. 
 
Let’s check these properties with Example 1 from above: 
 

Figure 1-8 

0 1 1
1 0 1
1 1 0

a
b
c

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A
 

a b c

From graph G  

a b

c

 
The eigenvalues are {– 1, – 1, 2}.  All are real, demonstrating Property 1-6.  The 

algebraic multiplicity of – 1 is two, and the algebraic multiplicity of 2 is one.  The 

eigenvector that corresponds to the eigenvalue -1 is the linear combination of the 

vectors .  We can easily show that the two vectors are independent. This means 

the dimension of the subspace they span is 2.  Thus the geometric multiplicity is also 2.  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−

0
1
1

,
1
0
1
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The eigenvector that corresponds to the eigenvalue 2 is .  It spans a subspace of 

dimension one, giving geometric multiplicity of one.  Thus, Property 1-7 holds.   

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
1
1

 
To see if Property 1-8 maintains, we need to calculate whether or not the vectors 

corresponding to distinct eigenvalues are orthogonal. 

Let v1 =  and v
⎥
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⎥
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2v 3 = .  <v
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⎡

1
1
1

1, v3> = -1(1) + 0(1) + 1(1) = 0 and  

<v2, v3> = -1(1) + 1(1) + 0(1) = 0.  Therefore, the vectors corresponding to the distinct 

eigenvalues are orthogonal.  Using the Gram-Schmidt process we can get the 

orthonormal basis 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
=

0
2
2
2
2

1u , 
⎥
⎥
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⎦

⎤

⎢
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⎢

⎣

⎡

−
−

=

3
6
6
6

6
6

2u  spanning the same subspace spanned by v1 

and v2.  If we let 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

==

3
3

3
3

3
3

3

3
3 v

v
u then we see that we have an orthonormal set.  Property 

1-9 applies because the largest eigenvalue is 2, and it has a multiplicity of one.  
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CHAPTER 2:  SPECTRAL GRAPH THEORY 
 
 
SECTION 2.1:  INTRODUCTION 
 
 Spectral graph theory is a study of the relationship between the topological 

properties of a graph with the spectral (algebraic) properties of the matrices associated 

with the graph.  The most common matrix that is studied within spectral graph theory is 

the adjacency matrix.  L. Collatz and U. Sinogowitz first began the exploration of this 

topic in 1957 with their paper, Spektren Endlicher Grafen [Sp]. 

Originally, spectral graph theory analyzed the adjacency matrix of a graph, 

especially its eigenvalues.  For the last 25 years, many developments have been leaning 

more toward the geometric aspects, such as random walks and rapidly moving Markov 

chains [Chu, p1]. 

A central goal of graph theory is to deduce the main properties and the structure 

of a graph from its invariants.  The eigenvalues are strongly connected to almost all key 

invariants of a graph.  They hold a wealth of information about graphs.  This is what 

spectral graph theory concentrates on.   

Remember, our definition of a graph from Chapter 1 does not admit self-loops or 

multi-edges. 
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SECTION 2.2: THE SPECTRUM OF A GRAPH 
 
 

The spectrum of a graph G is the set of eigenvalues of G, together with their 

algebraic multiplicities, or the number of times that they occur.   

Property 2-1:  A graph with n vertices has n eigenvalues. 
 
Proof:  This is a direct result of the Fundamental Theorem of Algebra.  The characteristic 

polynomial of G with n vertices is a polynomial of degree n, and the Fundamental 

Theorem of Algebra states that every polynomial of degree n has exactly n roots, 

counting multiplicity, in the field of complex numbers.   

If a graph has k distinct eigenvalues 1 2 kλ λ> > >K λ  with multiplicities  

m(λ1), m(λ2), . . . m(λk), then the spectrum of G is written  

Spec(G) =  , where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)(...)()(

...

21

21

n

n

mmm λλλ
λλλ

0

k

i
i

nλ
=

=∑   [Bi, p8]    

 
Example: 

 

a b

c
d

         a      b    c       d 

M =  

d
c
b
a

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0110
1001
1001
0110

 Figure 2-1  
G = 

 
 
The characteristic polynomial is 4λ4 – 4λ2 with eigenvalues {0, 0, 2, – 2}.   Our graph has 

three distinct eigenvalues: -2, 0, and 2, hence the spectrum of the graph G is given by 

Spec(G) = .   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
121
202
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One consistent question in graph theory is:  when is a graph characterized by its 

spectrum? [Do, p568]  Properties that cannot be determined spectrally can be determined 

by comparing two nonisomorphic graphs with the same spectrum.  Below are two graphs 

with the same spectrum. 

 

Figure 2-2 
G =

H =

 
 
It is clear that the two graphs are structurally different, with different adjacency matrices, 

and yet they have the same spectrum, which is .  We know that graphs with 

the same spectrum have the same number of triangles.  The example above shows that 

both graphs have no triangles, but it also shows that graphs with the same spectrum do 

not necessarily have the same number of rectangles.  While the first has no rectangle, the 

second one has one rectangle. Our example also shows that graphs with the same 

spectrum do not necessarily have the same degree sequence (the sequence formed by 

arranging the vertex degrees in non-increasing order).  The degree sequence of graph G is 

<4, 1, 1, 1, 1> while that of H is <2, 2, 2, 2, 0>.  Finally, our example also shows that 

connectivity cannot be determined by the spectrum.  A graph is connected if for every 

pair of vertices u and v, there is a walk from u to v.  Here the graph G is connected while 

graph H is not. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
131
202

 There is a correlation between the degree of the vertices of a graph and the largest 

eigenvalue, λ1.  When we have a k-regular graph (all vertices have degree k), then λ1 = k.  
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When we have a complete graph (all vertices are adjacent to one another) with n vertices, 

λ1 = n – 1.  If G is a connected graph, then λ1 is less than or equal to the largest degree of 

the graph.  Also, λ1 increases with graphs that contain vertices of higher degree.  In 

addition, the degrees of the vertices adjacent to the vertex with the largest degree affect 

value of λ1.  

Example:  Look at graphs G and H below.   

G 

H Figure 2-3 

 

Both have 5 vertices.  The degree of each vertex in G is 4; in other words, G is a 

complete graph, so λ1(G) = 4.  The second graph, H, is a path; the degrees of the vertices 

of H are 1 and 2, much smaller than that of G:  λ1(H) = 3  ≈ 1.732.   

Example:  Compare graphs G and H below, and their respective λ1’s.  In each graph, the 

vertex with the highest degree has degree 4, but the adjacent vertices in G have degree 3, 

while in H they have degree 1.  This illustrates how the degrees of the vertices adjacent to 

the vertex with the largest degree affect the value of λ1. 

              G 
λ1 = 1 + 

       H 
   λ1 = 2 5 ≈ 3.236 
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SECTION 2.3:  BIPARTITE GRAPHS 

 
 

A bipartite graph G is one whose vertex-set V can be partitioned into two 

subsets U and W such that each edge of G has one endpoint in U and one in W.  The pair 

U, W is called the bipartition of G, and U and W are called the bipartition subsets.  

Bipartite graphs are also characterized as follows:  

Property 2-2:  A graph is bipartite if and only if it contains no odd cycles.   

Proof:  ⇒   Let v1 v2… vk v1 be a cycle in a bipartite graph G; let’s also assume, without 

loss of generality, that v1 ∈ U.  Then, by definition of a bipartite graph, v2 є W, v3 є U,  

v4 є W, . . . vk ∈ W, and k must be even.  Therefore, the walk from v1 to vk is odd, and the 

cycle v1 to v1 is even. 

⇐   Let’s assume G is connected and without odd cycles. The case of G 

disconnected would follow from this special case.  Consider a fixed vertex v0 ∈ V(G). 

Let Vi  be the set of all vertices that are at distance i from v0, that is  

Vi  = { u ∈ V(G)| d(u, v0 ) = i}, i = 0, 1, …, t}, where t is the length of the longest path in 

G.  Clearly t is finite since G is connected, and V0 , V1 , …, Vt   provides a partition of the 

vertices of G. Let’s observe that no two vertices in V1 are adjacent, otherwise there will 

be a 3-cycle in G.  Similarly, no two vertices in V2 are adjacent because we do not have a 

3-cycle or a 5-cycle. In fact every edge of G is of the form uv, where u ∈ Vi and v ∈ Vi+1 

for some i = 0, …, t – 1. Let U = V0 ∪ V2∪ V4∪ …∪ V2j, the union of all the even 

subscripted sets and W = V1 ∪ V3∪ V5∪ …∪ V2r+1, the union of all the odd subscripted 

sets. This shows that G is bipartite.    
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Example: Graph G from Figure 2-1 below is a bipartite graph.  The vertex subsets are  

U = {a, d}, W = {b, c}.  Its characteristic polynomial is λ4 - 4λ and its eigenvalues are  

{-2, 0, 0, 2}.  

a b

c d

         a      b    c       d 

M =  

d
c
b
a

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0110
1001
1001
0110

 Figure 2-1  
G = 

 

 
Example:  Take also a look at the bipartite graph P7, the path on 7 vertices. 
  
 

Figure 2-4  
 
It has the spectrum:  
 

⎟
⎠
⎞⎜

⎝
⎛ +−−−−+− 22,2,22,0,22,2,22  

 
The eigenvalues of bipartite graphs have special properties. 
 
Property 2-3:  If G is bipartite graph and λ is an eigenvalue, then – λ is also an 

eigenvalue. 

Proof: Let G be a bipartite graph. Let U = {u1, u2, . . . un} and W = {w1, w2, . . . wn}, 

where U and W are the partite sets of V(G).   Then all edges are of the form uiwj where  

ui ∈  U and wj ∈  W.  Also, there are no edges that go from ui to uj or from wi to wj for  

any i, j.  This makes the adjacency matrix of G A = , where B is an n ×m matrix.  

Because λ is an eigenvalue, we know Av = λv.  So   = λ .  Using simple 

⎥
⎦

⎤
⎢
⎣

⎡
0

0
TB

B

⎥
⎦

⎤
⎢
⎣

⎡
0

0
TB

B
⎥
⎦

⎤
⎢
⎣

⎡
y
x

⎥
⎦

⎤
⎢
⎣

⎡
y
x
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matrix multiplication, we get By = λx.  Multiplying both sides by negative one gives us 

B(– y) = – λx.  The second equation that results from the matrix multiplication is  

BTx = λy, and λy = (– λ)(– y).  Therefore, BTx = (– λ)(– y).  This gives us the matrix 

equation 

 = – λ  ⎥
⎦

⎤
⎢
⎣

⎡
0

0
TB

B
⎥
⎦

⎤
⎢
⎣

⎡
− y
x

⎥
⎦

⎤
⎢
⎣

⎡
− y
x

giving us the eigenvalue – λ.    

Corollary 2-3-1:  The spectrum of a bipartite graph is symmetric around 0.  [Do, p558]. 
 
This logically follows from the theorem.  The eigenvalues of a bipartite graph occur in 

pairs of additive inverses. 

Recall from chapter one the general form of a characteristic polynomial is  
 
   λn + c1λn – 1  + c2λn – 2 + . . . + cn   
 
Property 2-4:  If G is a bipartite graph then c2k-1 = 0 for n ≥ 1.   
 
Proof:  Since G is bipartite, by Property 2-2, there are no odd cycles in G.  Thus, c2n-1 = 0 

for n ≥ 1.    

Let’s check this with another bipartite graph. 
 

 Figure 2-5   
b

e
d

c

a

  G = 

 

Its adjacency matrix is  with characteristic polynomial λ5 – 4λ3 + 3λ and 

eigenvalues { ,3−  – 1, 0, 1, 3  }.  For every eigenvalue λ, – λ is also an eigenvalue, as 

 20



stated in Theorem 2-2, and the eigenvalues are symmetric around zero.  Looking at the 

characteristic polynomial, c1 and c3 are both zero as stated in Property 2-4.
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SECTION 2.4: WALKS AND THE SPECTRUM 

 
Recall that a vivj walk in G is a finite sequence of adjacent vertices that begins at 

vertex vi and ends at vertex vj.  Also recall that Ak
i,j represents the number of walks of 

length k from vertex vi to vertex vj.    This means, given vertices vi and vj with  

dist(vi, vj) = t in G, a  graph with adjacency matrix A, we have = 0, for 0 ≤ k < t, and 

≠ 0. 

k
jiA ,

k
jiA ,

A minimal polynomial of a graph G is the monic polynomial q(x) of smallest 

degree, such that q(G) = 0.  For example, if f(x) = x3(x – 5)2(x + 4)4, the minimal 

polynomial for f(x) = x(x – 5)(x + 4). 

Property 2-5:  The degree of the minimal polynomial is larger that the diameter. 
  
Proof: Since A is symmetric, the minimum polynomial is given by q(G:λ) = ∏(λ - λk),  

1 ≤ k ≤ m, where the λk’s are all distinct. If we have m distinct eigenvalues, then the 

degree of the minimum polynomial is m. Suppose m ≤ d, where d is the diameter of G 

and suppose i and j are two vertices of G whose distance is equal to m, then the (i, j) entry 

of Am is positive while the (i, j) entry of Ak is 0 for all k < m. This means q(G:A) ≠ 0, 

which is a contradiction, thus m > d.    

Example:  Using the graph from Figure 2-1, we can see that the diameter of graph G is 2. 

a b

c d

G = 
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We found the characteristic polynomial is 4λ4 - 4λ2 = 4λ2(λ2 – 1).  The minimal 

polynomial 4λ(λ2 – 1) has degree 3, which is larger than the diameter of 2.   

Property 2-6: If a graph G has diameter d and has m distinct eigenvalues, then m > d + 1. 
 
Proof:  This follows from Property 2-5.    
 
Example:  Let’s look at this with Example 1 from Chapter 1, below.  We have already 

established that the diameter of this graph is 2, because the distance between any two 

vertices is either one or two.  

b

dc

a

Graph G 
Figure 2-6  

 

The adjacency matrix for G is A = , giving us the characteristic polynomial  
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0110
1011
1101
0110

λ4 - 5λ2 - 4λ with the 4 eigenvalues {-1.56, -1, 0, 2.56}.  There are 4 distinct eigenvalues, 

giving us m = 4.  The diameter is 2.  Therefore, m > d + 1. 

A complete graph is one in which every pair of vertices is joined by an edge.  A 

complete graph with n vertices is denoted by Kn.   

Example:  Two isomorphic K4 graphs are 
 

Figure 2-7  
G = H=
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Property 2-7:  The complete graph is the only connected graph with exactly two distinct 

eigenvalues. 

Proof:  If a graph has exactly 2 distinct eigenvalues, then its diameter has to be 1 or 0.  

Remember that two distinct eigenvalues means we have a minimal polynomial of degree 

2.  Also, the degree must be greater than the diameter.  If the diameter is 0, then the graph 

is K1.  Otherwise, the graph is Kp for p > 1.    

Furthermore, the degree of the characteristic polynomial of a complete graph is p 

(giving us p eigenvalues). Using matrix algebra one can show that the characteristic 

polynomial for Kp is ( ) ( )11 p pλ λ−+ − 1+ ; then – 1 is a root of the characteristic 

polynomial with multiplicity p – 1 and the other root, which occurs once, is p – 1  

[Sc, Wednesday AM].  

In the example below, the matrix of the complete graph yields a characteristic 

polynomial of degree four.  Note that – 1 occurs as a root 3 times, and 3 = 4 – 1 occurs 

once.  

Example:  The adjacency matrix from Graph G in figure 2-5 is A =   G is a 

complete graph, and its characteristic polynomial is λ

.

0111
1011
1101
1110

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

4 – 6λ2 – 8λ – 3 with eigenvalues  

{-1, 3} where -1 is a triple root and 3 is a single root.  The graph has 4 vertices, 4 roots, 

and exactly two distinct roots.   

Property 2-8:  The complete graph Kp is determined by its spectrum. 
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Proof:  This comes from Properties 2-1 and 2-7.  If there are exactly two eigenvalues in 

the spectrum, then we know that the graph is a complete graph, and we know how many 

vertices the graph has based on the multiplicities of the eigenvalues.    

Example:  Given Spec G = , we know that the graph is complete with three 

vertices, giving us the graph G in Figure 2-8. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
21
12

 

Figure 2-8 G = 
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CHAPTER 3:  THE LAPLACIAN 
 
 
SECTION 3.1: INTRODUCTION 
 

The Laplacian is an alternative to the adjacency matrix for describing the adjacent 

vertices of a graph.  The Laplacian, L, of a graph is the square matrix that corresponds to 

the vertices of a graph [Do, p570].  The main diagonal of the matrix represents the degree 

of the vertex while the other entries are as follows: 

 
 -1 if vi and vj are adjacent 

 Aij =  
0 otherwise 

 
The Laplacian can also be derived from D – A, where D is the diagonal matrix 

whose entries represent the degrees of the vertices, and A is the adjacency matrix. 

 
Example: 
 

 
 
 The Laplacian of a connected graph has eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn.  The 

algebraic connectivity is defined to be λ2, the second smallest eigenvalue.  The name is 

a result of its connection to the vertex connectivity and the edge connectivity of a graph.  

It is the most important information contained within the spectrum of a graph [Mo 2, p14] 

and will be discussed more in Chapter 4. 

Figure 3-1 
b

dc

a

G =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−−

−

=

2110
1210
1131

0011

d
c
b
a

L  

   a      b      c     d 
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The oldest result about the Laplacian concerns the number of spanning trees of a 

graph [Do, p570].  The Matrix Tree Theorem is one of the most significant applications 

of the Laplacian, and is usually contributed to Kirchhoff.  It is discussed in the next 

section. 

A positive semidefinite matrix is one that is Hermitian, and whose eigenvalues 

are all non-negative.  A Hermitian matrix is one which equals its conjugate transpose.  

This is usually written: 

 AH = TA  = A. 

Example: 
1 2 4

2 4 3
i

B
i

+⎡ ⎤
= ⎢ ⎥−⎣ ⎦

, then H =B B . This means B is Hermitian. Here B is 

Hermitian but it is not symmetric. On the other hand, 
1 2 4

2 4 3
i

i
+⎡ ⎤

= ⎢ ⎥+⎣ ⎦
C , is symmetric 

but not Hermitian.  On the other hand, a real matrix is symmetric if and only if it is 

Hermitian. This is because the every real number is its own conjugate. Here A is the real 

symmetric matrix A = ⎥
⎦

⎤
⎢
⎣

⎡
−

−
11
11 .  If we look at each element, aij = jia ; its eigenvalues are 

{0, 2}.  

The characteristic function is the function for which every subset N of X, has a 

value of 1 at points of N, and 0 at points of X – N.  In other words, it takes the value of 1 

for numbers in the set, and 0 for numbers not in the set. 

Property 3-1: The smallest eigenvalue of L is 0. 

Proof:  This is a direct result of the Laplacian matrix being a positive semidefinite 

matrix.  It will have n real Laplace eigenvalues: 0 = λ1 ≤ λ2 ≤ . . . λn.    
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Property 3-2:  The multiplicity of 0 as an eigenvalue of L is the number of connected 

components in the graph. 

Proof:  Let H be a connected component of graph G. Denote by f H ∈ RV the 

characteristic function of V(H).  Then, L(G) f H = 0. Since the characteristic functions of 

different connected components are linearly independent, the multiplicity of the 

eigenvalue 0 is at least the number of connected components of G. 

Conversely, let f ∈ RV be a function from the kernel of L(G). Then 〈 f, Lf 〉  = 0, 

implying that f is constant on each connected component of G. Therefore f is a linear 

combination of the characteristic functions of connected components of G. [Mo 2, p6]    

Property 3-3:  The algebraic connectivity is positive if and only if the graph is 

connected. 

Proof:  ⇒  If λ2 > 0 and λ1 = 0, then G must be connected, because, as mentioned above, 

the eigenvalues of the Laplacian are 0 = λ1 ≤ λ2 ≤ . . . ≤ λn. 

    ⇐  This is a direct result of Property 3-1.  If G is connected, then zero is the smallest 

eigenvalue.  λ2 must be greater than zero, and therefore positive.    

 When we have a k-regular graph, a graph whose vertices all have degree k, there 

is a linear relationship between the eigenvalues of the Laplacian and the eigenvalues of 

the adjacency matrix A.  If θ1 ≤ θ2 ≤ . . . ≤ θn are the eigenvalues of L (Laplacian 

eigenvalues of G) and λ1, λ2, . . . λn are the eigenvalues of A (the adjacency matrix of G), 

then θi = k – λi.  This is a result of the graph being a regular graph, giving us the 

relationship L = kI – A between the Laplacian and the adjacency matrix.  No such 

relationship exists between the eigenvalues of the Laplacian and adjacency matrix of a 

non-regular graph.   
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SECTION 3.2:  SPANING TREES 
 
 

In order to discuss spanning trees, we must first cover a few definitions.  A tree is 

a connected graph that has no cycles.   

 
Example:  

 
 

A subgraph H of a graph G is a graph whose vertex and edge sets are subset of 

V(G) and E(G) in that order.  A few subgraphs of the tree above are: 

  
 

A subgraph H is said to span a graph G if V(H) = V(G).  A spanning tree of a 

graph is a spanning subgraph that is a tree.  Given graph G below, graph H is a spanning 

tree of G. 

A tree  Not a tree 

Figure 3-2 

Figure 3-3 
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Before we go into the next few properties, we need to understand a cofactor of a 

matrix, which begins with the minor of a matrix.  A minor Mij of a matrix B is 

determined by removing row i and column j from B, and then calculating the determinant 

of the resulting matrix.  The cofactor of a matrix is (– 1)i + jMij.   

Example:  B = 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

44434241

34333231

24232221

14131211

bbbb
bbbb
bbbb
bbbb

.  Minor M23 comes from deleting row 2 and  

column 3, and then calculating the determinant of the resulting matrix, 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

444241

343231

141211

bbb
bbb
bbb

.   

M23 =  b11b32b44 + b12b34b41 + b14b42b31 – b14b32b41 – b34b42b11 – b44b31b12.   

Cofactor   C23 = (– 1)2+3M23  

= – b11b32b44 – b12b34b41 – b14b42b31 + b14b32b41 + b34b42b11 + b44b31b12 

Also, given an n × n matrix B,  

det(B) = a1jC1j + a2jC2j + . . . + anjCnj = ai1Ci1 + ai2Ci2 + . . . + ainCin  

           = the sum of the cofactors multiplied by the entries that generated them. 

Property 3-4, The Matrix Tree Theorem:  Given a graph G, its adjacency matrix A, 

and its degree matrix C, the number of nonidentical spanning trees of G is equal to the 

value of any cofactor of the matrix C – A.   

Graph G Graph H 

Figure 3-4 
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Proof:  Let D = C – A.  The sum of the elements of any row i or any column i of A is the 

degree of vertex vi.  Therefore, the sum of any row i or column i of matrix D is zero.  It is 

a result of matrix theory that all cofactors of D have the same value. 

 Let G be a disconnected matrix of order p.  Let Gn be a subgraph of G whose 

vertex set is {v1, v2, . . . , vn}.  Let D′ be the (p – 1) × (p – 1) matrix that results from 

deleting row p and column p from matrix D.  Since the sum of the first n rows of D′ is the 

zero vector with p – 1 entries, the rows of D′ are linearly dependent, implying that  

det(D′) = 0.  Hence, one cofactor of D has value zero.  Zero is also the number of 

spanning trees of G, since G is disconnected. 

 Now let G be a connected (p, q) graph where q ≥ p – 1.  Let B denote the 

incidence matrix of G and in each column of B, replace one of the two nonzero entries by 

– 1.  Denote the resulting matrix by M = [mij].  We now show that the product of M and 

its transpose MT is D.  The (i, j) entry of MMT is ∑
=

q

k
jkik mm

1

, which has the value deg vi if 

i = j, the value – 1 if vivj є E(G), and 0 otherwise.  Therefore, MMT = D. 

 Consider a spanning subgraph H of G containing p – 1 edges.  Let M′ be the  

(p – 1) × (p – 1) submatrix of M determined by the columns associated with the edges of 

H and by all rows of M with one exception, say row k. 

 We now need to determine the determinant of M′.  If H is not connected, then H 

has a component, H*, not containing vk.  The sum of the row vectors of M′ corresponding 

to the vertices of H* is the zero vector with p – 1 entries.  Hence, det M′ = 0.  Now 

assume H is connected.  H is then a spanning tree of G.  Let h1 ≠ vk be an end-vertex of 

H, and e1 the edge incident with it.  Also, let h2 ≠ vk be an end-vertex of the tree  
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H – h1 and e2 the edge of H – e1 incident with e2.  We continue this process until finally 

only vk remains.  A matrix M′′ = [ ''
ijm ] can now be obtained by a permutation of the rows 

and columns of M such that | ''
ijm | = 1 if and only if ui and ei are incident.  From the 

manner in which M′′ was defined, any vertex ui is incident only with edges ej, where j ≤ i.  

This, however, implies that M′′ is lower triangular, and since | ''
ijm | = 1 for all i, we 

conclude that det(M′′) = 1.  However, the permutation of rows and columns of a matrix 

affects only the sign of its determinant, implying that det(M′) = det(M′′) = 1. 

 Since every cofactor of D has the same value, we evaluate only the ith principal 

cofactor.  That is, the determinant of the matrix obtained by deleting from D row i so that 

the aforementioned cofactor equals det(MiMi
T), which implies that this number is the 

sum of the products of the corresponding major determinants of Mi and Mi
T.  However, 

corresponding major determinants have the same value and their product is 1 if the 

defining columns correspond to a spanning tree of G and is 0 otherwise.  [Cha, p66]    

 A key result to the Matrix Tree Theorem is Cayley’s Tree Formula.  

Corollary 3-4-1, Cayley’s Tree Formula:  The number of different trees on n labeled 

vertices is nn – 2. 

Proof:  Start with the matrix (D – A) of a complete graph; we get an n × n matrix M 

with
⎩
⎨
⎧
−

=−
=

otherwise
jin

mij ,1
,1  .  Calculating the determinant of a cofactor of M gives us nn – 2. 

From the Matrix Tree Theorem this number is the number of spanning trees.  
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SECTION 3.3: AN ALTERNATIVE APPROACH 

 
There is an alternative way of defining eigenvalues.  We can define them in their 

“normalized” form.  One advantage to this definition is that it is consistent with 

eigenvalues in spectral geometry and in stochastic processes [Chu, p2].  It also allows 

results which were only known for regular graphs to be generalized to all graphs.  We 

will use NL to represent the Laplacian calculated using this definition. 

In a graph where dv represents the degree of vertex v, the Laplacian would be 

defined to be the matrix 

   1             if u = v and dv ≠ 0 
 NL(u, v) 

vudd
1−    if  u and v and adjacent 

   0     otherwise 
 
Example: 
  

 
When graph G is a k-regular graph, it is easy to see that NL = I –

k
1 A.  The degree of 

each vertex is k, so vu dd = k.  Every entry of A that has a 1 will become 
k
1 A, and when 

we subtract that from I, we get 
k
1− for all vertices that are adjacent.  The non-adjacent 

ba

dc

Graph G 
Figure 3-5  NL =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−

−−−

−−

10
3
10

01
6
1

2
1

3
1

6
11

6
1

0
2
1

6
11
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elements will be 0 for both I and A.  The diagonal entries of I are 1, and the diagonals of 

A (and therefore 
k
1− A) are 0, giving us 1 when we subtract I  – 

k
1− A. 

Example:   
 

 
Let S be a matrix whose rows represent the vertices of a graph G and whose 

columns represent the edges of G.  Each column corresponding to an edge e = uv has an 

entry of 
ud

1 in the row corresponding to vertex u and an entry of 
vd

1− in the row 

corresponding to vertex v.  All other entries in the column will be zero.   

Property 3-5:  NL = S ST.   

Proof:  This is a direct result of their definitions.  When we multiply an element u of S by 

an element v of ST, and there exists an edge uv, then we are multiplying 

=
−

=
−

×
vuvu dddd

111 corresponding element in NL.  If there is no edge uv, then the entries 

in S, ST, and NL are zero.   

 
Example:   
 
 
 
 
 
 

ba

dc

Graph G NL = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−

−−−

−−−

1
3
1

3
1

3
1

3
11

3
1

3
1

3
1

3
11

3
1

3
1

3
1

3
11

= I – 
3
1 A Figure 3-6 

b

dc

a

G = Figure 3-7 
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NL = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−−

−−

−−

1
3
100

3
11

6
1

6
1

0
6
11

2
1

0
6
1

2
11

.  S = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−

1000
3

1
3
1

3
10

0
2

10
2
1

00
2

1
2

1

d

c

b

a

 

 

S × ST = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−

1000
3

1
3
1

3
10

0
2

10
2
1

00
2

1
2

1

× 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

1
3

100

0
3
1

2
10

0
3
10

2
1

00
2
1

2
1

 = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−−

−−

−−

1
3
100

3
11

6
1

6
1

0
6
11

2
1

0
6
1

2
11

= NL 

 
Property 3-6:  0 is an eigenvalue of NL. 
 
Proof:  Let g denote an arbitrary function which assigns to each vertex v of G a real value 

g(v).  We can view g as a column vector.  Then 
〉〈

〉〈
=

〉〈
〉〈 −−

gg
gLTTg

gg
Lgg

,
,

,
, 2/12/1

 where T = the 

diagonal matrix where the entries are the degrees of the vertices, and L is the “regular” 

Laplacian.  g = T1/2f  and ∑=
vu~

the sum over all unordered pairs {u, v} for which u and v 

are adjacent.  ∑
x

xgxf )()(  denotes the standard inner product in 
nℜ .  Then 

 
〉〈

〉〈
=

〉〈
〉〈 −−

gg
gLTTg

gg
Lgg

,
,

,
, 2/12/1

〉〈
〉〈

=
fTfT

Lff
2/12/1 ,

,  
∑

∑ −

=

v
v

vu

dvf

vfuf

2
~

2

)(

))()((
 [Chu, p 4],  

 
which = 0 when f(u) = f(v).  This also shows us how all eigenvalues are nonnegative.  
 
Therefore the spectrum of NL is the set of eigenvalues 0 = λ0 ≤ λ1≤ …≤λn-1.    
 

ab      ac      bc      cd 
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When we use this normalized definition of the Laplacian for a graph with n 

vertices and no isolated vertices, a few properties unfold. 

Property 3-7:  ∑ ≤
i

i nλ  

 
Proof:  ∑

i
iλ = tr(NL), the trace of NL.  If the graph is connected, then tr(NL) = n, 

because each element of the diagonal is 1, and we have an n × n matrix.  If the graph is 

disconnected, then one or more elements of the diagonal will be zero, causing the sum of 

the diagonals to be less than n, and giving us a tr(NL) < n.    

Property 3-8:  For n ≥ 2, 1 1
n

n
λ ≤

−
 and λn-1 ≥ 

1−n
n   

 
Proof:  Assume that λ1 > 

1−n
n ; since all the remaining n -2 eigenvalue in the spectrum 

are at least as large as λ1  their sum i
i

nλ >∑ . This contradicts Property 3.7; thus 

1 1
n

n
λ ≤

−
. Similarly assume that λn-1 < 

1−n
n ; since this eigenvalue is the largest in the 

spectrum, and λ0 is established to be 0, the sum of the n eigenvalues i
i

nλ <∑ . This again 

contradicts Property 3.7 and therefore λn-1 ≥ 
1−n

n .    

Let’s look at Figure 3-8, a very simple example, and apply these properties.   
 

 

G =

a c

b

NL =

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−

−

1
2
10

2
11

2
1

0
2
11

 Figure 3-8 
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The characteristic polynomial is λ3 - 3λ2 + 2λ, yielding eigenvalues {0, 1, 2}.  

Property 3-6 holds, since 0 is an eigenvalue.  The sum of the eigenvalues is 3, so property 

3-7 holds, and λ2 = 2 ≥ 
2
3 , which demonstrates Property 3-8. 



CHAPTER 4:  APPLICATIONS 
 
 
SECTION 4.1:  CHEMICAL APPLICATIONS 
 
 Recall that the eigenvalues of L(G), the Laplacian matrix of graph G  are  

λ1 ≥ λ2 ≥ . . . ≥ λn where λn = 0 and λn – 1 > 0 if and only if G is connected.  Also recall that 

a tree is a connected acyclic graph.  

 A chemical tree is a tree where no vertex has a degree higher than 4.  Chemical 

trees are molecular graphs representing constitutional isomers of alkanes.  If there are n 

vertices, each chemical tree represents a particular isomer of CnH2n+2.  The first four are 

methane, ethane, propane, and butane.  After that, the alkanes are named based on Greek 

numbers.  For example, C5H12 is pentane.  Compounds whose carbons are all linked in a 

row, like the two below, are called straight-chain alkanes.  For example, if n = 1, we 

have the graph in Figure 4-1, which represents methane. 

 
Figure 4-2 shows us butane, which is C4H10.   

= Carbon 

= Hydrogen 

Figure 4-1 
Methane 

Figure 4-2 
Butane 
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Compounds that have the same formula, but different structures, are called 

isomers.  When C4H10 is restructured as in Figure 4-3, we have isobutane, or 2-

Methylpropane.  Butane and 2-Methylpropane are isomers.   

Figure 4-3 
Isobutane or  
2-Methylpropane 

 
 

Compounds with four carbons have 2 isomers, while those with five carbons have 

3 isomers.  The growth, however, is not linear.  The chart below compares the number of 

carbons with the number of isomers. 

Formula Number of 
Isomers 

C6H14 5 
C7H16 9 
C8H18 18 
C9H20 35 
C10H22 75 
C15H32 4,347 
C20H42 366,319 

         [Mc, p76] 

When a carbon has four carbons bonded to it, we have a quarternary carbon.  An 

example is below in Figure 4-4, which is called a 2,2-Dimetylpropane.  It is isomeric to 

Pentane. 
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Figure 4-4 

 

For simplicities sake, we will just draw the carbon atoms from this point on, with 

the understanding that there are enough hydrogen atoms attached to each carbon to give 

that carbon atom a degree of 4. 

Study was done on the eigenvalues of molecular graphs, and in particular, λ1, the 

largest eigenvalue of a graph.  When the isomeric alkanes are ordered according to their 

λ1 values, regularity is observed.  [Gu, p 408] 

 Let Δ denote the maximum degree of a graph.  The chemical trees that pertain to 

the 18 isomeric octanes C8H18 follow a pattern with respect to their largest eigenvalue, λ1.  

The isomer with the smallest λ1 (3.8478) value is the straight-chain octane in Figure 4-5, 

that has Δ = 2.   

Figure 4-5 

 
The next 10 isomers have various extensions of branching, but none possess a 

quaternary carbon atom.  All of them have Δ = 3, and their λ1’s are greater than that of 

the straight-chain graph in Figure 4-5, where Δ = 2, and less than the following seven, 

who have Δ = 4.  They are shown below in Figure 4-6.  
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The 12th through the 18th octanes contain a quaternary carbon atom, they all have 

Δ = 4, and they have the largest λ1.  The largest one has λ1 = 5.6458 and is the last tree 

shown below in Figure 4-7. 

Figure 4-6 

Figure 4-7 

 
 This same regularity occurs with isomeric alkanes with n carbon atoms, discussed 

above.  The normal alkane with Δ = 2 has the smallest λ1.  All alkanes with Δ = 3 have λ1 

greater than the alkanes with Δ = 2, and smaller than any isomer with Δ = 4.  We can 

therefore draw the conclusion that Δ, which tells us whether or not there is a quaternary 
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carbon atom, is the main molecular structure descriptor affecting the value λ1, the largest 

Laplacian eigenvalue of an alkane.  It has been discovered that λ1 can be bounded by 

 
  Δ + 1 < λ1 < Δ + 1 + 2 1−Δ    
 
Also, by using a linear combination of the lower and upper bounds, λ1 can be estimated 

by  

  λ1 11 −Δ++Δ≈ γ , 

where γ depends on both n and Δ.  For alkanes, it has been discovered through numerical 

testing that γ ≈ 0.2.  [Gu p 410] 

 It is possible to establish the alkane isomers with Δ = 3 or Δ = 4 that have the 

minimal λ1.  Give Pn, below, Tn
min is the tree that establishes the minimal λ1 for Δ = 3, 

and Qn
min is the tree that establishes the minimal λ1 for Δ = 4. 

Qn
min = . . . 

1 2 n – 2

n – 1
Tn

min = . . . 
21

Figure 4-8 

Pn = 
1 n

. . . 
2

 

The structure trees that represent the maximal λ1 are more complex.  The Tn
max 

and Qn
max coincide with the chemical trees that have the same Δ and n, having maximal 

λ1 and minimal W, where W represents the Wiener topological index of alkanes, and 

conforms to the formula W = ∑
−

=

1

1

1n

i i
n

λ
.  The exact characterizations of these trees are 

complex, and will not be covered here. 
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SECTION 4.2:  PROTEIN STRUCTURES 

 
The three dimensional structure of proteins is the key to understanding their 

function and evolution [Vi, p10].  There are an enormous number of proteins in nature, 

but a limited number of three-dimensional structures that represent them.  A protein is 

formed by the sequential joining of amino acids, end-to-end, to form a long chain-like 

molecule, or polymer.  These polymers are referred to as polypeptides.  There are four 

major protein classes, shown below in Figure 4-9.  [Vi, p13]  The cylinders represent 

helices (plural for helix) and the arrows represent strands.  A helix is a spiral molecule 

formed from benzene rings.  Two of the current challenges are identifying the fold 

adopted by the polypeptide chain, and identifying similarities in protein structures.  

 

   

Figure 4-9 
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  Analysis of stable folded three-dimensional structures provides insights into 

protein structures for amino acid sequences and drug design studies.  The geometry of a 

protein structure is the composition of the protein backbone and side-chains.  Protein 

structures can have the same gross shape, but have different geometries.  Graphs have 

helped represent the topology of protein structures, no matter how complex.  The main 

problem is to define the vertices and edges.  Below are a few simple examples of proteins 

with their graphs below them. 

 Β-Hairpin 

 

Greek key βαβ Figure 4-10 

Properties of graphs and their graph spectral give information about protein 

structure, depending on how the vertices and edges are defined.  The basic unit of a 

protein is its amino acid residue.  To study cluster identification, the amino acids 

represent the vertices and the three-dimensional connectivity between them is represented 

by the edges.  To study fold and pattern identification and the folding rules of proteins,  

α-helixes and β-strands are used for vertices and spatially closed structures are used for 

edges.  To identify proteins with similar folds, the backbones are the vertices and the 

spatial neighbors within a certain radius are the edges. 
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Mathematical graphs are used to represent β structures, which is much more 

advantageous that drawing three-dimensional figures.  The vertices represent the single  

β-strands and the two edge sets represent the sequential and hydrogen bond connections.   

Connected graphs are used to represent α-helical structures.  The vertices 

represent secondary structures and the edges represent contacts between helices.  The 

main reason for setting the structures up this way was to gain information about the 

folding process of protein structures and understand better the organization and patterns 

within these structures.  It is also used to compare protein structures.  The protein 

connectivity is determined by identifying the main chain atoms, which is found due to the 

closeness within a prescribed distance.  This comes from identifying clusters.   

Two protein graphs can be compared to see if they have common features, and 

thus provide insight into structural overlaps of proteins.  One way is a tree searching 

algorithm, which is a series of matrix permutations.  Through it, subgraph isomorphisms 

are detected to determine the largest subgraph that is common in a pair of graphs.  This 

can highlight areas of structural overlap & therefore show structural and functional 

commonalities not found through other methods.  Unfortunately, this method requires a 

very high number of computations, but a few heuristic methods have been discovered to 

reduce the time and cost of the computations.  

Structural biologists are continuously finding promising applications of graph 

theory with optimism that this field of mathematics will continually contribute 

substantially to the understanding of protein structure, folding stability, function and 

dynamics.  Certainly, there is more to come. 
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SECTION 4.3:  GRAPH COLORING 

 
One of the classic problems in graph theory is vertex-coloring, which is the 

assignment of colors to the vertices of a graph in such a way that no two adjacent vertices 

have the same color.  The object is to use as few colors as possible.  The proper coloring 

of a graph also forms a natural partition of the vertex set of a graph. The chromatic 

number, χ(G), is the least number of colors required for such a partition.  A graph G is  

l-critical if χ (G) = l and for all induced subgraphs Λ ≠ G we have χ (Λ) < l.  The 

spectrum of a graph gives us insight into the chromatic number.  Before we can 

understand the property that provides an upper-bound for χ(G), we must first establish 

Property 4-1. 

Property 4-1:  Given a graph G with χ (G) = l ≥ 2, there exists a subgraph of G, Λ ≠ G, 

such that χ (Λ) = l, and every vertex of Λ has degree ≥ l in Λ. 

Proof:   The set of all induced subgraphs of G is non-empty and contains some graph 

whose chromatic number is l (including G itself).  The set also contains some subgraphs 

whose chromatic number is not l.  An example would be a graph with one vertex.  Let Λ 

be a subgraph such that χ (Λ) = l, and χ (G) is minimal with respect to the number of 

vertices.  Then Λ is l-critical.  If v is any vertex of Λ, then 〉Λ〈 vV \)(  is an induced 

subgraph of Λ and has a vertex-coloring with l – 1 colors.  If the degree of v in Λ were 

less than l – 1, then we could extend this vertex coloring to Λ, contradicting the fact that 

χ (Λ) = l.  Thus the degree of v is at least l – 1.    

Property 4-2:  For any graph G, χ (G) ≤ 1 + λ1, where λ1 is the largest eigenvalue of the 

adjacency matrix of G.   
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Proof:  From Property 4-1, there is an induced subgraph Λ of G such that χ (G) = χ (Λ) 

and dmin(Λ) ≥ χ (G) – 1, where dmin(Λ) is the least degree of the vertices of Λ.  Thus we 

have χ (G) ≤ 1 + dmin(Λ) ≤ 1 + λ1(Λ) ≤ 1 + λ1(G).   [Bi, p55]     

 Of course, the absolute largest value of χ (G) is n, the number of vertices.  If  

λ1 < n – 1, then we will have a smaller maximum than n. 

Property 4-3:  The lower bound of the chromatic number is χ (G) ≥ 1 + 
min

1

λ
λ

−
.   

Proof:  The vertex set V(G) can be partitioned into χ (G) coloring classes.  Thus, the 

adjacency matrix A of G can be partitioned into χ 2 submatrices.  This was seen in 

Chapter 2.  In this case, the diagonal submatrices Aii (1 ≤ i ≤ v) consists entirely of zeros, 

and so λ1(Aii) = 0.  .  It is known that λ1(A) + (t – 1)λmin(A) ≤ .  Therefore, we 

have  λ

∑
=

t

i
iiA

1
max )(λ

1(A) + (χ(G) – 1)λmin(A) ≤ 0.  But, if G has at least one edge, then  

λmin(A) = λ1(G) < 0.  [Bi, p57]     

A classical application of vertex coloring is the coloring of a map.  To make the 

process as inexpensive as possible, we want to use a few colors as possible.  In the graph, 

the countries are represented by vertices with edges drawn between those countries that 

are adjacent.  Determining the chromatic number of the graph gives us the fewest colors 

necessary to color the map.   

Another application to graph coloring is a sorting problem, such as sorting fish in 

a pet store.  Some fish can be in the same tank together, while other fish cannot.  Say we 

have fish types A, B, C, D, E and F.  They can be put into tanks according to the chart 

below 
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Type of Fish A B C D E F 

Cannot be with fish type(s) B, C A, C, D A, B, D, 

E 

B, C, F C, F D, E 

 

If the graph is set up such that the fish are the vertices and edges are drawn between those 

that cannot be in a tank together, the chromatic number will tell us how many tanks we 

need.  

 

B

C

DE

F

A

Figure 4-11 
G = 

 The adjacency matrix for G is A = which has λ

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

011000
100100
100110
011011
001101
000110

1 = 2.853 and  

λmin = – 2.158.  Substituting these into the formula from Property 4-3, χ (G) ≥ 1 + 
min

1

λ
λ

−
, 

we get χ (G) ≥ 2.322.  This tells us that we need at least three colors for our graph.  This 

will save us time by preventing us from attempting to color it with fewer than 3 colors.  

In this case, we will need 3 tanks, as shown above in Figure 4-11.  One tank will hold fish 

A and D, the second tank will hold fish B and E, and the third tank will hold fish C and F. 

A more recent application of graph coloring is used by the Federal 

Communications Commission to set up the frequencies of radio stations.  In order to keep 
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radio s

Station 

tations from interfering with each other, stations within 150 miles of one another 

must be on different frequencies.  Below is the table of the distances between six radio 

stations.   

Radio A B C D E F 

A  35 108 90 215 188 

B 35  192 50 62 14 

C 108 192  55 175 87 

D 90 5  0 55  209 158 

E 215 62 1  75 209  48 

F 188 14 87 15  8 48  

 

The verti e the rad tions, w  edges co ting tho ho are less than 

50 miles apart.  When we apply edge coloring, we will get the minimum number of 

frequen

ces ar io sta ith nnec se w

1

cies required for all radio stations to operate without interfering with one another.   

A B

C

DE

F
Figure 4-12 
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A =  with λ

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

010110
100010
000111
101001
111001
001110

1 = 3.087, λmin =– 2.179, and χ (G) = 2.417.  Therefore, we 

need at least three colors.  The colored graph in Figure 4-12 shows us that we need at 

most 3 frequencies.  Stations A and E can have the same frequency, as can F and D, and 

B and C.   

An even more recent application of this type of problem is with the signals of cell 

phone towers.  Cell phone providers want as few towers as possible, so they want to 

avoid overlapping the tower coverage areas.  Also, customers do not want “dead areas.”  

They can apply the same type of chart above to determine the minimum number of 

towers necessary in a given area. 

 There are many applications of graph coloring, and the spectral of the graph gives 

us insight to the chromatic number, which is at the heart of graph coloring.  
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SECTION 4.4:  MISCELLANEOUS APPLICATIONS 
 
 
 Identifying clusters is an important aspect in the field of electrical network 

connections [Vi, p9].  Graph spectral method is extremely helpful in this, and can find the 

needed results with minimal computations.  An adjacency matrix is used, but edge 

weights are used as entries.  The weights are 
ijd

1 , where dij represents the distance from 

vertices i and j.  The goal is to find the location of “n” vertices that minimizes the 

weighted sum of the squared distances between the vertices.  The full process will not be 

discussed here, but the key point of interest is that the second smallest eigenvalue of the 

Laplacian matrix, λ2, and its vector component gives the clustering points in the graph.  

The vertices that are clustered have the same value for the second smallest eigenvalue.  

Also, the largest eigenvalue contains information regarding only one of the clusters.  The 

vertex with the largest vector component is the vertex with the highest degree. 

 Spectral graph theory is used in the study of DNA.  A molecule of DNA is a very 

long string consisting of a unique sequence using four amino acids.  The goal is to 

determine this sequence for a given molecule of DNA.  In general, the molecule is broken 

up into shorter fragments, which are separated according to their amino acid sequences.  

Once the sequence of the fragments is determined, the original DNA can be represented 

as a sequence of these fragments in some order.   To use this method, each fragment F is 

allowed to bond to the DNA at a point P (called a probe) where the amino acid sequences 

match.  The data of these matches is recorded into a matrix whose rows represent the 

fragments and columns represent the probes.  A one is entered at the (F, P) positions, and 

zeros elsewhere.  So, a one represents a match of fragment F to the DNA at probe P.   
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 The DNA sequencing problem is to find the ordering of the rows and the ordering 

of the columns of the matrix, because this tells the order that the fragments occur along 

the DNA.  Normally, a breadth first search works in this situation.  Unfortunately, the 

procedure of matching the probes and fragments is error prone, so other more complex 

methods are employed.  These methods employ spectral ordering involving the Laplacian 

and permuted matrices.  It is a rather involved process that will not be covered fully here, 

but the process relies on spectral graph mathematics. 

 The Laplacian eigenvalues determine the kinematic behavior of a liquid flowing 

through a system of communicating pipes.  In this situation, the vertices of graph G are 

beads, and the edges are mutual interactions between the beads.  The basic behavior of 

the flow (periodic, aperiodic, etc) is determined by λ2, the algebraic connectivity, or the 

second smallest Laplacian eigenvalue.  [Ma, p35] 

 The algebraic connectivity derived its name from its relationship to the 

connectivity parameters of a graph – the vertex connectivity and the edge connectivity.  

λ2 imposes reasonably good bounds on several properties of graphs which can be very 

difficult to compute.   

Graphs with high connectivity properties are concentrators and expanders.  They 

are used in the construction of switching networks that exhibit high connectivity as well 

as the construction of superconcentrators which are used in theoretical computer science.  

The Laplacian spectrum of a graph, particularly λ2, appears naturally in the study of 

expanding properties of graphs.  In a rather complex formula, it gives a lower bound on 

the number of neighbors a subset of the vertex set can have.   
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λ2 is the main ingredient of the formula for an isoperimetric number of a graph, 

i(G).  The isoperimetric number is used by geometers to investigate the spectral 

properties of Riemann surfaces.  If λ2 = 2, then we know that i(G) ≥ 1.  Also, the diameter 

of a graph holds a relationship with λ2, which is diam(G) ≥ 
2

4
λn

.  There is also a more 

complex formula for the upper bound of the diameter involving the algebraic 

connectivity. 

The applications of linear algebra, graph theory, and the spectral of a graph 

continue on and on through the various sciences and other fields.  As we know, 

mathematics is found everywhere, and is required in many many situations in order to 

evaluate, process, and better understand the world around us. 
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