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The KsgA enzymes comprise an ancient family of methyltransferases that are 

intimately involved in ribosome biogenesis. Ribosome biogenesis is a complicated process, 

involving numerous cleavage, base modification and assembly steps. All ribosomes share 

the same general architecture, with small and large subunits made up of roughly similar 

rRNA species and a variety of ribosomal proteins. However, the fundamental assembly 

process differs significantly between eukaryotes and eubacteria, not only in distribution 

and mechanism of modifications but also in organization of assembly steps. Despite these 



x 

differences, members of the KsgA/Dim1 methyltransferase family and their resultant 

modification of small-subunit rRNA are found throughout evolution, and therefore were 

present in the last common ancestor.  

The first member of the family to be described, KsgA from Escherichia coli, was 

initially shown to be the determining factor for resistance/sensitivity to the antibiotic 

kasugamycin and was subsequently found to dimethylate two adenosines in 16S rRNA 

during maturation of the 30S subunit. Since then, numerous other members of the family 

have been characterized in eubacteria, eukaryotes, archaea and in eukaryotic organelles. 

The eukaryotic ortholog, Dim1, is essential for proper processing of the pre-rRNA, in 

addition to and separate from its methyltransferase function. The KsgA/Dim1 family bears 

sequence and structural similarity to a larger group of S-adenosyl-L-methionine dependent 

methyltransferases, which includes both DNA and RNA methyltransferases.  

In this document we report that KsgA orthologs from archaea and eukaryotes are 

able to complement for KsgA function in bacteria, both in vivo and in vitro. This indicates 

that all of these enzymes can recognize a common ribosomal substrate, and that the 

recognition elements must be largely unchanged since the evolutionary split between the 

three domains of life. We have characterized KsgA structurally, and discuss aspects of 

KsgA’s activity in light of the structural data. We also propose a model for KsgA binding 

to the 30S subunit, based on solution probing data. This model sheds light on KsgA’s 

unusual regulation and on the dual function of the Dim1 enzymes. 

 



 1 

 
 
 
 

Introduction 
 

Ribosome biogenesis 

Ribosome biogenesis is one of the fundamental processes of the cellular machinery, 

and growing cells devote an extraordinary amount of energy to the production of 

ribosomes. This requires precise and coordinated regulation of rRNA transcription, 

production of ribosomal proteins, and production of extra-ribosomal factors that are 

involved in ribosome maturation. In addition, the pre-rRNA transcript must be co- and 

post-transcriptionally processed and modified to produce the mature RNA species.  

Given the ribosome’s importance, our understanding of it has to some extent lagged 

behind other fields. A major milestone in ribosome research was the in vitro assembly of 

bacterial ribosomes using only the component rRNAs and ribosomal proteins1-3. 

Subsequently, 30S subunits were reconstituted using in vitro transcribed 16S rRNA, which 

lacked modifications4, and using purified recombinant proteins5. Although ribosomes 

assembled in vitro are less active in in vitro assays than natural purified ribosomes3, 5, 

given the size and intricacy of the structures, and their crucial role in the cell, in vitro 

assembly is a remarkable and important achievement. Another milestone in our knowledge 

of the ribosome was the first high-resolution crystal structures of ribosomal subunits, the 

large subunit from the archaeon Haloarcula marismortui6 and the small subunit from the 

eubacterium Thermus thermophilus7. These structures were followed by that of the large 
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subunit from the eubacterium Deinococcus radiodurans8 and of 70S ribosomes from T. 

thermophilus9 and E. coli10. More recently, Selmer et al. have solved the structure of the 

bacterial ribosome with bound mRNA and tRNA11. These structures served as definitive 

proof that the ribosome is, indeed, a ribozyme, and have proven invaluable in our 

understanding of the structure and function of this complex molecule. 

Although functional bacterial ribosomes can be assembled in vitro in the absence of 

accessory proteins1-3, additional factors are required in vivo for optimal assembly12. With 

respect to the 30S subunit, a diverse group of proteins are indirectly necessary for proper 

processing of the pre-16S rRNA, apart from the nucleases that are directly responsible for 

rRNA cleavage: Era13 and RsgA14, which are small GTPases; and RbfA15, RimM15, and 

RimN16. Depletion of any of these proteins results in accumulation of immature forms of 

16S rRNA. These pre-16S species are similar to each other and resemble the 17S precursor 

rRNA, which is trimmed at the 5’ and 3’ ends to produce the mature 16S. Era, RbfA, and 

RimN seem to be important for ribosome assembly at low temperatures, and RbfA is 

considered a cold-shock protein. Era and RimN are both essential, even at normal 

temperatures; RimM, RbfA, and RgsA are not essential, at least under optimal conditions. 

In wild-type cells the 17S 5’ and 3’ processing occurs in the context of a ribosomal 

particle17. Therefore, depletion of these five proteins may impair 17S processing by 

interfering with 30S assembly. Era, RbfA and RimM seem to have some degree of overlap 

in function, as measured by complementation; overexpression of Era complements RbfA 

knockout, and RbfA compensates for lack of RimM. 
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In vitro assembly experiments have allowed construction of bacterial 30S subunit 

assembly maps18. Small-subunit ribosomal proteins assemble onto the pre-16S rRNA in a 

cooperative manner in a roughly 5’ to 3’ order, corresponding to co-transcriptional 

assembly in vivo (Figure 1a). This means that the body (5’ region) of the ribosome is 

assembled first, followed by platform (central region) assembly, and the head (3’ major 

region) is formed last. The final two helices, helix 44 and helix 45, are referred to as the 3’ 

minor region; they assemble along the body and platform regions (Figure 1b). In vitro 

assembly occurs through two defined reconstitution intermediates, RI and RI*19 (Figure 2). 

RI consists of 16S rRNA plus a subset of ribosomal proteins corresponding to the earlier 

binding proteins in the assembly map. Unimolecular rearrangement of RI yields RI*, 

which is able to bind the remaining proteins and form the 30S subunit. The RI to RI* 

transition is the rate-limiting step in assembly, and requires either heat (42°) or the 

presence of the DnaK chaperone system20. Although RI and RI* are seen in in vitro 

assembly, they strongly resemble intermediate particles seen in vivo in certain cold-

sensitive mutants21 and in conditional DnaK mutants22 at restrictive temperatures.  

Eukaryotic ribosome assembly is more complex than that of prokaryotes. 

Eukaryotic ribosome biogenesis requires a significant number of trans-acting factors, 

including snoRNPs, helicases, GTPases, nucleases, transport proteins, chaperones, and 

many more proteins whose function has not been elucidated. In addition, ribosome 

assembly in eukaryotes is spatially and temporally organized, with early processing and 

assembly steps taking place in the nucleolus and the final steps being completed after 

transport to the cytoplasm23, 24 (Figure 3). As the pre-rRNA is transcribed, a complex is  
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Figure 1. Assembly of the 30S subunit. (a) Assembly map. (b) Domains of 
the subunit. rRNA in the body is colored orange, the platform is blue, the 
head is green, and the 3’ minor domain is magenta. Ribosomal proteins are 
gray. 
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S15-S20 
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Figure 2. Prokaryotic ribosome assembly. 
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Figure 3. Eukaryotic ribosome assembly. Terminal knobs are shown as 
blue spheres on the transcribing rRNA. 
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formed consisting of the U3 snoRNP, small subunit r-proteins and other factors, and the 

nascent rRNA25. This complex corresponds to the terminal knobs seen in Miller chromatin 

spreads of actively transcribing rDNA. Cleavage events separate the pre-40S particle and 

the pre-60S particle. The pre-40S particle is exported from the nucleolus through the 

nucleoplasm to the cytoplasm, where a few final processing steps yield the mature 40S 

particle. The pre-60S is subject to additional processing steps in the nucleolus and 

nucleoplasm before export and final maturation steps. Although eukaryotic ribosomes have 

not been assembled in vitro from only component rRNAs and proteins, functional 

Dictyostelium discoideum ribosomes have been assembled from immature rRNA species 

and purified proteins in the presence of unidentified small nucleolar RNA(s)26. 

There is a dearth of information on ribosome assembly in archaeal systems. 

Although archaeal cells lack a nuclear membrane, at least one archaeal genome contains 

putative homologs to nuclear and nucleolar structural genes from eukaryotes27, 28. Spatio-

temporal control of archaeal ribosome synthesis is therefore a possibility, although highly 

speculative. Ribosomes from at least one archaeon, the extreme halophile Haloferax 

mediterranei, have been assembled in vitro from purified components29-31.  

Common rRNA modifications include conversion of uridine to pseudouridine, 

methylation on the 2’-O of the ribose moiety, and base methylation32 (Figure 4). The most 

frequent modification in bacterial rRNA is base methylation. Modifications in bacteria are 

performed by individual enzymes; each enzyme catalyzes a single modification or, in the 

case of some pseudouridylases, modifies up to three specific bases. Eukaryotic rRNAs are 

more highly modified than bacterial rRNAs, and the modifications are mainly  
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pseudouridines and 2’-O methyls. In contrast to bacteria, eukaryotic cells generally utilize 

a common enzyme for each general type of modification, using sequence-specific 

snoRNAs as guides to direct the modifications to particular bases33-35. Archaeal rRNA 

modification is less well-defined, and there is a great deal of variation between species, but 

in general the amount of modification falls somewhere between bacteria and eukaryotes, 

with most of the modifications being 2’-O methyls and relatively few pseudouridines36. 

Archaeal rRNA modification seems to be more similar to that in eukaryotic organisms, 

with snoRNAs guiding pseudouridylation and ribose methylation37-39. Indeed, at least one 

archaeal snoRNA can direct 2’-O methylation when microinjected into the nucleus of a 

eukaryotic cell40. 

While post-transcriptional modification of rRNA is common to all life, in most 

cases the modifications are not very well characterized or understood, and very few 

specific modifications have been conserved in evolution. A notable exception to this 

general lack of conservation is the dimethylation of two adjacent adenosines in the 3’-

terminal helix of small-subunit rRNA, A1518 and A1519 in helix 45 by E. coli numbering 

(Figure 5). Helix 45 is one of the most highly conserved sequences in small subunit 

rRNA41, 42, and the presence of two dimethylated adenosines in the loop of the helix is 

equally conserved. These residues are thus a rare example of an evolutionarily conserved 

post-transcriptional rRNA modification. The enzyme responsible for dimethylation of 

these two adenosines is also universally conserved; in all known instances it has been 

found to be a member of the KsgA/Dim1 family of methyltransferases. 
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G      A* 
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Figure 5. Dimethylated adenosines in 16S rRNA. (a) 16S. Roman numerals refer to 
the body (I), platform (II), head (III), and 3’-minor (IV) domains. Helix 45 is circled 
in red. (b) Helix 45. Stars denote modified adenosines.   
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KsgA 

 The ksgA gene was first described as a locus that determined resistance to the 

antibiotic kasugamycin (ksg)43. Since 16S rRNA from the resistant mutant lacked 

dimethylation of two adenosines near the 3’ end, it was proposed that the ksgA locus 

encoded an rRNA methyltransferase. Subsequent work showed this to be the case, as a 

methylating activity could be purified from the sensitive strain, but not the resistant strain, 

and this activity could be used to restore ksg sensitivity to ribosomes from the resistant 

strain44. Methylation was assayed on a variety of substrates; isolated 16S was not a 

substrate but 21S core particles were. 21S particles consist of 16S plus a subset of 

ribosomal proteins (Table 1); interestingly, the protein composition of these particles is 

very similar to the in vitro RI and RI*assembly intermediates.  

 Further study of the substrate requirements for methyltransferase activity defined a 

minimal substrate as consisting of 16S plus eight ribosomal proteins: S4, S6, S8, S11, and 

S15-S1845 (Table 1). Five proteins, S3, S9, S10, S14 and S21, were found by this group to 

have inhibitory effects on the methyltransferase reaction.  In the crystal structure of the 

30S subunit, all thirteen of these proteins are on the opposite side of the subunit from the 

target adenosines and are not in a position to directly interact with KsgA (Figure 6). 

Therefore, these proteins must regulate KsgA’s activity in an indirect manner. All eight of 

the required proteins reside in the body and platform of the subunit, while all of the 

inhibitory proteins are found in the head region, with the exception of S21, which was not 

present in any crystal structure. Additionally, all of the required proteins are present in the 

in vitro RI and RI* intermediates as well as the in vivo 21S core particle. None of the  
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Table 1. Composition of various sub-30S particles. 
 21S core 

particle 
RI 

intermediate 
Minimal 
substrate 

S1    
S2    
S3    
S4 + + + 
S5  +  
S6 + + + 
S7 + +  
S8 + + + 
S9  +  
S10    
S11 + + + 
S12 + +  
S13 + +  
S14    
S15 + + + 
S16 + + + 
S17 + + + 
S18 + + + 
S19 + +  
S20 + +  
S21 +   
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Figure 6. Proteins required for and inhibitory to KsgA activity, according to 
Thammana and Held. Required proteins are green, and inhibitory proteins are red; 
all other proteins are gray. Helix 45 is circled in yellow; the target adenosines are 
shown in orange. 
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inhibitory proteins are present in these particles, again with the exception of S21, which is 

found in the 21S core particle but not the RI intermediate. It should be noted that the RI 

intermediate formed by incubation of 16S with the ribosomal proteins at low temperature 

is not a substrate for KsgA46, although it is possible that RI* could serve as a substrate. It 

seems likely that KsgA is not able to methylate the target adenosines until some level of 

assembly of the 30S subunit has occurred; this minimum structure includes the body and 

platform regions of the forming subunit. Once the final head proteins bind and the subunit 

is fully formed, KsgA is no longer able to methylate the target adenosines. According to 

Thammana and Held, fully formed 30S are not competent methylation substrates for this 

reason45. 

Poldermans et al., on the other hand, found that 30S subunits could be methylated, 

and that of the five “inhibitory” proteins only S21 inhibits KsgA activity47. A resolution to 

this contradiction has recently been proposed by Desai and Rife48. 30S subunits purified 

from bacteria have been found to exist in two distinct conformational states, one that is 

active in translation assays and one that is translationally inactive49, 50. The two 

conformations are compositionally identical, except that inactive subunits contain more S1 

than active subunits51, and they can be interconverted by varying salt and temperature 

conditions. Chemical modification experiments reveal only slight variations in rRNA 

conformation between the two structures, most of which occur near the site of modification 

by KsgA52. In fact, antibodies raised against the dimethylated adenosines bind to inactive 

subunits but not to active subunits, suggesting that the adenosines are less accessible in the 

translationally active conformation53. In the crystal structures of small subunits from T. 
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thermophilus7, 9 and E. coli10, which represent active forms, the loop of helix 45 is tucked 

into the minor groove of helix 44, confirming the inaccessibility of the target adenosines in 

active 30S subunits. Along with this, Desai and Rife found that KsgA is only able to 

methylate the translationally inactive form of 30S. They hypothesize that, under the salt 

conditions used by Thammana and Held, addition of the so-called inhibitory proteins 

resulted in formation of the active form of 30S, which is not a competent substrate for 

KsgA. In the experiments performed by Poldermans et al., on the other hand, the salt 

conditions did not allow conversion of 30S to the active form, even upon addition of all of 

the component proteins, thus these particles were able to be methylated by KsgA (Figure 

7). S21, which was found to be inhibitory by both groups, has a strong influence on the 

conformation of the 3’ end of the 16S rRNA54. The conformational change promoted by 

S21 has parallels in the inactive to active conformational change. Therefore, it seems likely 

that binding of S21 may promote a conformation in the 3’ region of the rRNA which does 

not allow methylation. 

The question of temporal regulation of KsgA activity may prove to be crucial to 

our understanding of small subunit maturation. Of the ten methylated bases in E. coli 16S 

rRNA, six are clustered in the same immediate area (Figure 8). m2G1516 is located in the 

loop of helix 45 along with the dimethyladenosines at 1518 and 1519; m4Cm1402, 

m5C1407 and m3U1498 are located at the base of helix 44. RsmE and RsmF catalyze the 

methylations at U1498 and C1407 respectively55, 56; the methyltransferase responsible for 

methylation of G1516 has not yet been identified. C1402 is methylated both on the 

exocyclic amine of its base and on the 2’-O of the ribose, presumably by two different  
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Figure 7. Substrate competence. Naked 16S rRNA (a) is not a substrate. Addition of 
the eight required proteins (green) allows assembly of the body and platform (b); 
this particle is a substrate. Addition of the remaining proteins allows head formation 
(c); this particle is a substrate under conditions which promote the inactive 
conformation. Under conditions that promote the translationally active 
conformation, addition of the five inhibitory proteins (red) and subsequent head 
formation results in a particle (d) which is not a substrate. S21, shown in red in 
panels b-d, is inhibitory under all conditions. 

(a) 

(c) (d) 

(b) 
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Figure 8. Methylated nucleotides in the area of A1518 and A1519 (magenta). 
G1516 is shown in orange, U1498 is shown in green, C1407 is shown in blue, 
and C1402 is shown in yellow. 
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methyltransferases; these enzymes are also as yet unidentified. RsmE and RsmF both 

methylate 30S subunits but not naked 16S. Neither of these enzymes has specifically been 

tested for activity against active vs. inactive subunits, but assays for both were performed 

under conditions that would favor the active conformation. So KsgA does not methylate 

until the body and platform are mostly formed, but it must methylate before the head forms 

and the subunit becomes active. During this window of time between KsgA binding and 

involvement of the 30S subunits in translation, at least two, and possibly five other 

methyltransferases bind to their respective target sites, which must overlap the KsgA 

binding site to some extent. These processing events must require exquisite timing to 

ensure that all necessary modifications are carried out without the various enzymes 

interfering with one another. 

ksgA knockout and kasugamycin resistance 

Although knockout of KsgA is tolerated in bacteria57, there are consequences to 

loss of the modifications. Poldermans et al. observed that, in the absence of IF-1, more IF-

3 is required for binding of fMet-tRNA to unmethylated 30S subunits than to methylated 

subunits58. This difference could be eliminated by methylating the subunits, showing that 

the methyl groups were solely responsible for the difference in factor requirements in the 

two types of subunits. An explanation for this requirement may be found in structural 

studies that described the effect of the four methyl groups on the local structure of the 

rRNA. As shown in Figure 5 the modified adenosines lie in a hairpin loop. Unsurprisingly, 

in an oligonucleotide containing the hairpin, the methylation state of the adenosines has a 

strong impact on formation of the loop59. A variety of evidence points to destabilization of 
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helix 45 by dimethylation of the two adenosines60, both by increased stacking of the 

modified adenosines61 and by reduction of the hydrogen bonding potential within the 

loop62. Wickstrom et al. showed that IF-3 binding to 30S disturbed the secondary structure 

of the 3’-OH end of the 16S rRNA; the authors hypothesized that increased stability of the 

unmethylated relative to the methylated loop made it more difficult for IF-3 to disrupt the 

local structure, and therefore more IF-3 would be needed to promote translation 

initiation63. 

Igarishi et al. described a kasugamycin resistant strain which grew slower than the 

wild type strain, but only in certain culture media64. In vitro, ribosomes from the resistant 

strain also showed slower polypeptide synthesis than wild-type ribosomes. However, this 

translational impairment was not directly a result of the undermethylation of 16S. 

Ribosomes from the resistant strain contained lower amounts of ribosomal protein S1 than 

those from the wild-type strain. Since S1 is essential for normal translation in E. coli65, this 

was likely the reason for slower polypeptide synthesis. In this case, loss of the 

modification affects assembly of the ribosomal proteins onto the 30S subunit, and thereby 

indirectly affects translation. This effect of methylation status of the 30S on S1 content 

may help explain the ksgR phenotype in cells lacking functional KsgA. Ribosomes lacking 

protein S1 cannot translate mRNA containing leader sequences, but are able to translate 

leaderless mRNAs66. Kasugamycin acts in part by blocking translation initiation. It has 

been shown that this inhibition is not as pronounced on mRNAs lacking a leader sequence, 

allowing translation of these mRNAs67. If ribosomes in resistant strains contain less S1 

than wild-type ribosomes, one hypothesis is that lower amounts of S1 bound to 30S in 
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resistant cells could bias these ribosomes toward translation of leaderless mRNAs; 

therefore, these cells would be less sensitive to ksg inhibition of initiation. Also, 

Poldermans et al. showed that ksg is able to displace fMet-tRNA from 30S subunits, 

regardless of methylation state, but not from 70S ribosomes68. Leaderless mRNAs may 

bind directly to 70S ribosomes, as opposed to mRNAs with leader sequences, which bind 

to 30S69. This would further protect the mutant cells from the effects of kasugamycin on 

translation.  

van Buul et al. described a ksgA mutant strain which displayed ribosomal 

ambiguity in in vitro translation assays70, providing further evidence of the importance of 

the methyl groups for proper ribosome function. Ribosomes purified from the mutant strain 

allowed leakiness of nonsense and frameshift mutations in in vitro translation assays. This 

group did not examine the protein composition of 30S purified from wild-type and ksgA 

mutant strains. However, given the proximity of the methylated adenosines to the 

functional center of the ribosome, it seems likely that the presence or absence of the methyl 

groups could have a direct effect on translational fidelity. The same study showed that 

kasugamycin causes translation to become hyper-stringent, and the two effects work 

against each other; ribosomes from the ksgR strain translated normally in the presence of 

kasugamycin. These results offer further explanation of how loss of the methyl groups 

leads to ksg sensitivity. 

Another indication that the methyl groups are important, if not essential, comes 

from a study that found a relationship between S20 and KsgA activity71. In an S20 

knockout strain a portion of the 16S rRNA was found to be submethylated at 
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A1518/A1519. 30S subunits containing 16S that was unmethylated at 1518/1519 were not 

able to join with 50S to form 70S. Since functional 30S can be assembled with T7-

transcribed 16S72, which is completely unmodified, the phenotype of the S20 knockout 

strain must be caused by loss of modifications combined with absence of S20.  

The apaH gene lies downstream of ksgA, in the same operon73. ApaH is responsible 

for the hydrolysis of Ap4N nucleotides such as diadenosine tetraphosphate74; knockout of 

apaH results in a sharp increase in the levels of Ap4A57, 75. Curiously, knockout of both 

ksgA and apaH simultaneously results in restoration of the kasugamycin sensitive 

phenotype57. The basis for this is not known, although the authors hypothesize that the 

resulting Ap4A binds to the 3’ region of the 30S and causes it to adopt a conformation 

more similar to the methylated state. An even more astonishing finding in the same study 

is that overexpression of the chaperone DnaK in the ksgA-/apaH- background renders the 

bacteria once again resistant to ksg. This may be explained by the finding that Ap4A binds 

to DnaK76; in this case overexpression of DnaK may act to sequester the increased 

amounts of Ap4A produced by apaH knockout, allowing the ksgA- resistant phenotype to 

dominate. This also suggests an alternate mechanism for the ksg sensitive phenotype in the 

ksgA-/apaH- cells. DnaK is known to be important in ribosome synthesis; it is possible that 

elevated levels of Ap4A could interfere with DnaK in this process, resulting in ribosomes 

that are sensitive to kasugamycin despite lacking the methyl groups in helix 45. 

KsgA in evolution 

Since the first description of KsgA in E. coli, orthologs have been characterized in 

a variety of organisms, including KsgA in Bacillus stearothermophilus77, Dim1 in 
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Saccharomyces cerevisiae78 and Kluyveromyces lactis79, Pfc1 in the chloroplasts of 

Arabidopsis thaliana80, h-mtTFB in human mitochondria81, and MjDim1 in 

Methanocaldococcus jannaschii82. During evolution the KsgA proteins have been recruited 

to play other roles in the cell. Dim1 is essential for proper processing of pre-rRNA at 

cleavage sites A1 and A2
83 (Figure 9), and knockout of Dim1 in yeast is lethal78. Depletion 

of Dim1 in S. cerevisiae leads to buildup of an aberrant 22S rRNA species as a result of 

misprocessing; 5.8S and 25S rRNA can still be processed normally. Pfc1 is important for 

chloroplast development under chilling conditions80; accumulation of misprocessed rRNA 

in chloroplasts upon Pfc1 depletion indicates that Pfc1 may play a role in chloroplast 

rRNA processing similar to Dim1 in yeast84. The methyltransferase function of Dim1 is 

not required for its RNA processing activity; Lafontaine et al. described a dim1 mutant 

which contained properly processed, but unmethylated, rRNA85. Although this strain grew 

normally compared to wild-type, indicating that the unmethylated ribosomes were not 

noticeably impaired in vivo, cell extract from the mutant strain did not support translation 

in vitro. It is possible that the methylations are required for ribosome function in the less 

favorable in vitro conditions; alternately, lack of the modifications could affect ribosomal 

protein assembly in a manner similar to that seen in ksgA mutation in bacteria.  

mtTFB, which is encoded in the nucleus, serves as a transcription factor in 

mitochondria86. h-mtTFB from human mitochondria is able to methylate bacterial 30S in 

vitro, and is presumed to be the methyltransferase for the mitochondrial small subunit 

rRNA, although this RNA seems to be submethylated relative to bacteria 86. Interestingly, 

in some mitochondria, there are two separate mtTFB proteins, mtTFB1 and mtTFB2,  
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5’-ETS 3’-ETS ITS1 ITS2 18S 5.8SS 25S 

A0 A1 A2 A3 B1 C1 C2 

18S 5.8SS 25S 

5.8SS 25S 22S 

(a) 

(c) 

(b) 

Fgure 9. rRNA processing in yeast. (a) The 35S pre-rRNA transcript. Cleavage 
sites are noted; the cleavage sites which require Dim1 activity are shown in red. 
(b) Properly processed rRNA. (c) Improper processing resulting from depletion 
of Dim1. 



24 

which are proposed to have arisen from a gene duplication event87, 88. There is evidence 

that mtTFB1 has retained stronger methyltransferase activity, while mtTFB2 is more active 

as a transcription factor88-91. The fungi have only a single mtTFB, suggesting loss of one of 

the paralogs in this lineage. The S. cerevisiae ortholog, sc-mtTFB, serves as a transcription 

factor but does not have methyltransferase activity. sc-mtTFB lacks significant sequence 

homology to any of the KsgA/Dim1 enzymes; yeast mtTFBs are generally poorly 

conserved and difficult to identify via sequence homology92. It is worth noting that the 

mtTFB2 variants, which have evolved to be stronger transcription factors at the expense of 

the methyltransferase activity, are more closely related to fungal mtTFBs than to 

mtTFB1s88, 93. 

 The Erm family of methyltransferases mediates resistance to the macrolide-

lincosamide-streptogramin B (MLS-B) group of antibiotics94. These enzymes share high 

sequence homology with the KsgA family95 and are likely descended from one or more 

bacterial ksgA genes. The Erms mono- or dimethylate a single adenosine of 23S rRNA, 

near the peptidyl transferase site of the 50S subunit96. Unlike KsgA, which requires at least 

a partially formed 30S subunit for enzymatic activity, ErmC' from Bacillus subtilis can 

methylate a fragment of 23S as small as 32 nucleotides97. 

 The KsgA family belongs to a well-characterized group of S-adenosyl-L-

methionine (SAM) dependent methyltransferases which includes RNA methyltransferases, 

DNA methyltransferases, protein methyltransferases and small molecule 

methyltransferases98. All of the enzymes in this group contain a Rossman-like fold, which 

consists of a central β-sheet surrounded by a variable number of α-helices, and they share 
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several conserved motifs99. Many of these Rossman-like methyltransferases have been well 

characterized structurally and biochemically, and their mechanisms have been explored. In 

the case of nucleic acid methyltransferases, the target base is often involved in secondary 

structure and must be “flipped out” of a stable conformation in order to be methylated. 

This process has been extensively studied in DNA methyltransferases, whose targets reside 

within the double helix. KsgA is unique among this class of enzymes in that it must 

catalyze the transfer of four methyl groups onto two adjacent bases.  

Unanswered questions 

In the three decades since its discovery a picture of KsgA’s role in the cell has 

slowly emerged. However, a plethora of questions still remain and more recent studies on 

KsgA’s orthologs have opened up intriguing lines of inquiry. There is a glaring lack of 

information about the mechanism catalyzed by KsgA, which is no surprise given the 

convoluted reaction involved. Methyl groups from four separate SAM molecules must be 

transferred to two adenosines in the 16S rRNA. Are all of the transfers accomplished in a 

single binding event, or does the enzyme:substrate complex dissociate and reassociate 

between transfers? In the case of ErmC, there is strong evidence that dimethylation of the 

target adenosine occurs in two separate events; the base is monomethylated, the enzyme 

dissociates, and the monomethylated RNA serves as a substrate for the second 

methylation100. In a related question, is there a preferred order of methyl transfer, or are the 

methyl groups transferred randomly to one or the other adenosine? It has been reported 

that, under stringent conditions (low SAM concentration and low temperature), KsgA 

preferentially dimethylates the 3' proximal adenosine, suggesting some preference for 
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ordered methylation101. However, if either adenosine is mutated the other is still able to be 

methylated, indicating that any such preference is not obligatory102.   

Next, the exact nature of KsgA’s intricate substrate requirements is not fully 

understood. KsgA can bind to 16S rRNA, but does not methylate it until certain proteins 

have assembled onto the RNA. One possible explanation is that KsgA is allosterically 

regulated. Free KsgA could exist in a conformation that is competent for RNA binding but 

not methylation; at some point during subunit assembly a conformational change could be 

triggered which allows KsgA to catalyze the methyl transfers. This hypothesis is supported 

by the observation that free KsgA does not bind SAM appreciably47, suggesting that 

binding of the RNA and SAM substrates may occur in an ordered manner. A similar 

ordered binding mechanism is seen in the DNA methyltransferase HhaI, which does not 

bind SAM unless the enzyme is first bound to its target DNA103. Another possibility is that 

a conformational change in the substrate is required. KsgA can bind to naked 16S, but in 

this structural context the target adenosines may not be available to the enzyme. Some 

assembly of the subunit could be required to engender a substrate conformation which 

supports methylation. It should be noted that these two scenarios are not mutually 

exclusive. 

Another intriguing aspect of the KsgA/Dim1 family is their diversity of function. 

KsgA has been recruited to play an essential role in pre-rRNA processing in eukaryotes, 

and serves as a transcription factor in mitochondria. The structural basis for these “new” 

functions is unknown. It is feasible that the basic structure of KsgA is sufficient to allow 

function as a processing factor or transcription factor, in which case a bacterial KsgA could 
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complement for Dim1 or mtTFB knockout. However, it is also possible that structural 

and/or sequence evolution of KsgA was required before KsgA could acquire functions 

other than rRNA methylation. Extensive sequence alignments of KsgA, Dim1 and mtTFB 

enzymes identify elements unique to each group, suggesting possibilities for domains that 

could be involved in these other functions. Notably, the eukaryotic Dim1 enzymes have a 

25-30 residue insert in the C-terminal domain relative to bacterial KsgAs. It is conceivable 

that this insert could mediate RNA or protein interactions important for Dim1’s processing 

function. The mtTFB enzymes have three inserts that are not found in KsgA or Dim1, 

which could be related to their transcription activity. These inserts will be discussed in 

more detail in Chapter 3. 

Given the range of functions displayed by KsgA orthologs, it is tempting to 

speculate that KsgA may play a larger role in ribosome biogenesis, beyond methylation. 

This possibility was hinted at by the discovery of a functional link between KsgA and Era. 

The Inouye group isolated a cold-sensitive Era mutation which resulted in defects in rRNA 

processing and also in cell division13, 104, 105. The cold-sensitive phenotype was 

complemented by overexpression of KsgA105. Although the effects of KsgA 

overexpression on rRNA processing in the Era cold-sensitive mutant background were not 

specifically addressed, it is certainly feasible that KsgA has a role in ribosome assembly 

similar to that of Era, RbfA, RimM, RimN, and RsgA. Although KsgA is not essential for 

viability under normal conditions, it could certainly play a more pronounced role in 

ribosome assembly under non-optimal conditions such as cold shock. 
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Scope and objectives 

 KsgA and its orthologs play an integral role in the biosynthesis of functional 

ribosomes. The studies presented here were undertaken in order to better understand the 

structure and function of these proteins, in order to lay a foundation for future 

investigations. In a first step toward understanding this fascinating family of proteins, we 

have performed a more in-depth characterization of the functional conservation of the 

KsgA/Dim1 enzymes. We have also solved the crystal structure of KsgA from E. coli, the 

first structure of a KsgA/Dim1 enzyme. This structure will serve as a point of reference for 

other work on the KsgA/Dim1 family. The structures of sc-mtTFB106 and ErmC'107 have 

been solved by X-ray crystallography, and a second Erm enzyme, ErmAM from 

Streptococcus pneumoniae, has been solved by NMR108. Since this work was completed, 

the crystal structure of the human Dim1 enzyme (hDim1) has been solved109. Comparison 

of these structures yields information about their common methyltransferase function and 

also hints at such issues as substrate recognition, mechanism, and evolution of function. 

Finally, using biochemical experiments in concert with structural modeling, we have 

characterized the interaction of KsgA with the 30S subunit. This model may help explain 

the substrate requirements for KsgA’s methyltransferase activity.  
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Functional Conservation 
 

All ribosomes share the same general architecture, with two subunits made up of 

rRNA and ribosomal proteins. Mears et al. modeled a minimal ribosome structure based on 

conservation of both RNA and protein elements in the three kingdoms and in organellar 

ribosomes110. This model shows high conservation in the functional core of the ribosome, 

indicating that critical regions of the ribosome have changed very little throughout 

evolution. Indeed, hybrid ribosome can be engineered combining RNA and protein 

elements from different kingdoms. Such combinations include ribosomes with small and 

large subunits coming from different sources111-115, ribosomes containing a hybrid 

rRNA116, and ribosomes from one organism containing selected proteins from another 

organism117-121. A surprising number of these combinations retain some functionality. 

Clearly, there is a high degree of structural and functional conservation in the ribosome, 

which is not really unexpected given its central role in the workings of all cells. Despite 

this conservation, however, there is an astonishing degree of divergence in ribosome 

assembly pathways from the different kingdoms. 

As cells grew more complex with the transition from prokaryotic to eukaryotic 

organisms, the ribosome assembly process became correspondingly more elaborate. 

Eukaryotic rRNA is transcribed in the nucleolus; ribosomal proteins and other factors 

assemble onto the nascent rRNA co-transcriptionally23, 24. Early processing and 
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modification steps occur on the pre-40S and pre-60S particles in the nucleolus, then the 

particles travel into the nucleoplasm, where the pre-60S is further processed, and finally 

the particles are exported into the cytoplasm, where final maturation steps take place. This 

compartmentalization was accompanied by a large increase in the amount of extra-

ribosomal factors required to produce functional ribosomes. At least 170 factors are 

involved in eukaryotic ribosome production, many of which are indispensable in vivo 35; 

this number continues to grow and the final count could be well over 200 proteins and 

RNPs. This is in contrast to bacteria, in which only a few extra-ribosomal assembly factors 

have been identified 12, 122. While some of these factors are essential for ribosome 

formation under non-optimal conditions such as cold-shock13, 16, none of them are essential 

under normal conditions. In fact, prokaryotic ribosomes can be assembled in vitro from 

rRNA and ribosomal proteins, without any accessory factors present1-3.  

In addition to compartmentalization and increased involvement of assembly 

factors, billions of years of evolution have resulted in a shift in rRNA modification 

patterns, as well as the way in which nucleotide modification is carried out. In bacteria, 

base methylation is the predominant modification, with few pseudouridines and ribose 

methylations. Each base methylation and pseudouridylation is carried out by a distinct 

enzyme, although in the case of pseudouridylation, the same enzyme may have up to three 

specific target residues. In contrast, eukaryotes contain mostly pseudouridines and ribose 

methylations, in roughly equal amounts; eukaryotic rRNA contains few methylated bases. 

Eukaryotes, as well as archaea, use a snoRNA guide system to carry out most 

modifications36, 123. A single enzyme, Nop1p/fibrillarin, carries out all of the ribosme 
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methylations; box C/D snoRNAs target the snoRNP complex to specific ribose moieties. 

Similarly, Cbf5p/dyskerin catalyzes all of the pseudouridylations, guided by box H/ACA 

snoRNAs. Little is known about the mechanism of base methylation in eukaryotes, and 

ribose methylation in bacteria is likewise poorly understood.  

In comparing prokaryotic and eukaryotic ribosome biogenesis, the conservation of 

the KsgA/Dim1 family is unique. The presence and function of this enzyme has been 

maintained in every evolutionary lineage, including eukaryotic organelles. Exceptions are 

found in only a few disparate organisms101, 124-129. This high degree of conservation begs 

the question of why the protein has been kept around. Although KsgA is dispensable in 

bacteria57, it must perform a function important enough to justify its preservation 

throughout evolution. Dim1 and h-mtTFB have been shown to complement for KsgA 

function in bacteria78, 86. This indicates that the bacterial, eukaryotic, and organellar 

enzymes can recognize a common bacterial substrate, and suggests that structural cues that 

mediate this recognition have been conserved throughout ribosomal evolution. Given the 

high degree of rRNA conservation in the region of the methylated adenosines, this may not 

seem so remarkable. However, 16S rRNA structure alone is not enough to allow KsgA 

activity; the ribosomal proteins S4, S6, S8, S11 and S15-S18 must be assembled onto the 

RNA in order to form a competent substrate conformation. Since these proteins are not in 

position to directly contact helix 45 or KsgA, their requirement for KsgA activity must 

depend on the rRNA adopting a particular conformation upon binding of the proteins, 

which are all located in the body and platform of the 30S subunit. Although these eight 

proteins are sufficient and necessary to form a competent substrate structure, three out of 
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the eight, S6, S16 and S18 are not conserved outside of bacteria110. That means that the 

local 16S conformation which allows methylation must be achieved with a different subset 

of proteins in other organisms. Given this, it is more striking that KsgA orthologs from 

yeast and from mitochondria can recognize their substrate in bacterial ribosomes in vivo. 

We have extended previous complementation studies to include an ortholog from an 

archaeal organism, M. jannaschii, and have also examined in vitro activity and mono- and 

dimethyladenosine profiles produced by the eukaryotic and archaeal orthologs.  

Cloning, expression and purification of proteins 

The KsgA gene was amplified by PCR of genomic DNA from E. coli XL1-Blue 

cells, using primers designed from the coding sequence (accession number M11054), and 

cloned into the pET15b vector, in-frame with the vector-encoded N-terminal poly-histidine 

tag. Cloning was confirmed by sequencing. The plasmid was transformed into BL-21 

(DE3) cells for protein production.  

To identify the archaeal ortholog of the KsgA/Dim1 family we used NCBI’s 

genomic BLAST tool to search the M. jannaschii sequence, using the E. coli KsgA protein 

sequence (accession number P06992) as the query sequence. This search identified a 

putative ortholog, accession number NP_248023, which was annotated as 

“dimethyladenosine transferase (ksgA)” in the Entrez protein record. Alignment of this 

protein with other KsgA/Dim1 family members revealed a high degree of similarity 

(Figure 10), including the presence of motifs common to SAM-dependent 

methyltransferases. We followed the eukaryotic nomenclature and designated the protein 

as MjDim1 (for M. jannaschii dimethyltransferase 1). We obtained M. jannaschii genomic  
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KsgA            MNNRVHQGHLARKR--------------------FGQNFLNDQFVIDSIV 
HsDim1          -MPKVKSGAIGRRRGRQEQRRELKSAGGLMFNTGIGQHILKNPLIINSII 
ScDim1          -MGKAAKKKYSGATSSKQVSAEKHLSSVFKFNTDLGQHILKNPLVAQGIV 
MjDim1          ---------------------------MFKPKKKLGQCFLIDKNFVNKAV 
 
 
 
KsgA            SAINPQKGQAMVEIGPGLAALTEPVGERLDQLTVIELDRDLAARLQTHPF 
HsDim1          DKAALRPTDVVLEVGPGTGNMTVKLLEKAKKVVACELDPRLVAELHKRVQ 
ScDim1          DKAQIRPSDVVLEVGPGTGNLTVRILEQAKNVVAVEMDPRMAAELTKRVR 
MjDim1          ESANLTKDDVVLEIGLGKGILTEELAKNAKKVYVIEIDKSLEPYANKLKE 
 
 
 
KsgA            ---LGPKLTIYQQDAMTFNFGELAEKMGQPLRVFGNLPYNISTPLMFHLF 
HsDim1          GTPVASKLQVLVGDVLKTDLPFF-------DTCVANLPYQISSPFVFKLL 
ScDim1          GTPVEKKLEIMLGDFMKTELPYF-------DICISNTPYQISSPLVFKLI 
MjDim1          ---LYNNIEIIWGDALKVDLNKLDF-----NKVVANLPYQISSPITFKLI 
 
 
 
KsgA            SYTDAIADMHFMLQKEVVNRLVAGPNSKAYGRLSVMAQYYCNVIPVLEVP 
HsDim1          LHRPFFRCAILMFQREFALRLVAKPGDKLYCRLSINTQLLARVDHLMKVG 
ScDim1          NQPRPPRVSILMFQREFALRLLARPGDSLYCRLSANVQMWANVTHIMKVG 
MjDim1          K--RGFDLAVLMYQYEFAKRMVAKEGTKDYGRLSVAVQSRADVEIVAKVP 
 
 
 
KsgA            PSAFTPPPKVDSAVVRLVPHATMPHPVK-DVRVLSRITTEAFNQRRKTIR 
HsDim1          KNNFRPPPKVESSVVRIEPKNPPP--PI-NFQEWDGLVRITFVRKNKTLS 
ScDim1          KNNFRPPPQVESSVVRLEIKNPRP--QV-DYNEWDGLLRIVFVRKNRTIS 
MjDim1          PSAFYPKPKVYSAIVKIKPNKGKY--HIENENFFDDFLRAIFQHRNKSVR 
 
 
KsgA            NSLGNLF---------SVEVLTG--------------------------- 
HsDim1          AAFKSSA---------VQQLLEKNYRIHCSVHNIIIPEDFS-----IADK 
ScDim1          AGFKSTT---------VMDILEKNYKTFLAMNNEMVDDTKGSMHDVVKEK 
MjDim1          KALIDSSKELNYNKDEMKKILEDFLNTNSEIKNLINEKVFK-----LSVK 
 
 
KsgA            ------MGIDPAMRAENISVAQYCQMANYLAENA-PLQES 
HsDim1          IQQILTSTGFSDKRARSMDIDDFIRLLHGFNAEGIHFS-- 
ScDim1          IDTVLKETDLGDKRAGKCDQNDFLRLLYAFHQVGIHFS-- 
MjDim1          DIVNLSN--------------EFYRFLQNRGRL------- 
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Figure 10. Structure-based sequence alignment of KsgA (P06992), putative Dim from 
Homo sapiens (HsDim1, Q9UNQ2), ScDim1 (P41819), and MjDim1 (NP_248023). 
The alignment was generated using the TCoffee web server130. Identical residues are 
denoted with a star, and strongly conserved residues with a colon; weakly conserved 
residues are marked with a period. Double-headed arrows indicate motifs common to 
SAM-dependent methyltransferases. Structures used for alignment were those of 
KsgA131 (PDB ID 1QYR) and HsDim1109 (PDB ID 1ZQ9). 
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DNA from ATCC and amplified the MjDim1 gene by PCR, using primers designed from 

the coding sequence (accession number NC_000909). The gene was cloned into the 

pET15b vector, in-frame with the vector-encoded N-terminal poly-histidine tag, and was 

confirmed by sequencing. The plasmid was transformed into BL-21 (DE3) cells for protein 

production. 

 The identification and cloning of ScDim1 was described by Lafontaine et al. 

(1994), and ScDim1 was provided to us by the same group as a pET15b construct 

engineered to contain an N-terminal poly-histidine tag. Analysis of the ScDim1 gene 

sequence revealed the use of codons that are rare in E. coli; therefore, the plasmid was 

transformed into BL21-CodonPlus (DE3)-RIL cells, which contain extra copies of rare 

codons. Protein purification was made difficult by insolubility of the overexpressed 

protein; expression conditions were optimized to produce the majority of protein in a 

soluble form.  

 All three proteins were overexpressed with 1mM IPTG and purified by nickel 

chelate chromatography. SDS-PAGE analysis estimated proteins to be >95% pure. 

In vivo analysis 

 ScDim1 has been shown to complement for KsgA function in ksgA- E. coli cells78, 

demonstrating functional equivalence of the two proteins. We asked whether MjDim1 

could also complement KsgA knockout. In vivo activities of both ScDim1 and MjDim1 

were assessed using a modified minimal inhibitory concentration (MIC) assay, which takes 

advantage of the fact that loss of KsgA function renders bacteria resistant to 

kasugamycin44, 77. Plasmids containing the two proteins were transformed into a ksgR strain 
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of E. coli, which lacks endogenous KsgA activity. This strain was constructed from BL-21 

(DE3) cells; this allows leaky expression from the pET15b T7 promoter. Growth on ksg 

was compared to cells transformed with pET15b-KsgA plasmid (positive control) and cells 

transformed with empty vector (negative control). Unlike in a traditional MIC, 

untransformed cells are naturally resistant to the antibiotic and become sensitive when 

transformed with a functional dimethyltransferase. Therefore, cells transformed with KsgA 

have a low MIC of 400 µg/ml ksg, while cells transformed with empty vector have a high 

MIC, greater than 3000 µg/ml ksg. As shown in Figure 11, MjDim1 is fully functional in 

this in vivo system, with an MIC of 400 µg/ml. ScDim1, on the other hand, shows partial 

activity on bacterial ribosomes in vivo, with an MIC of 1200 µg/ml. While ScDim1 doesn’t 

restore full sensitivity to the antibiotic, it does show increased sensitivity, indicating that 

the enzyme is able to recognize the small subunit as a substrate. Lack of full 

complementation may correlate with slower and/or incomplete methylation of 30S as 

compared to the other two enzymes (see nucleotide analysis). 

In vitro analysis 

We next asked how efficiently ScDim1 and MjDim1 were able to methylate E. coli 

30S in an in vitro assay. Unmethylated 30S subunits were prepared from the ksgR strain 

described above. Incorporation of 3H-methyl from labeled SAM by each enzyme was 

followed at discrete time points over an interval of two hours. Control experiments were 

performed with 30S subunits purified from wild-type E. coli cells, which are methylated by 

endogenous KsgA and thus do not serve as substrates. Initial experiments were performed 

with 10 pmol of 30S substrate and 1 pmol of enzyme. This amount of protein did not allow  
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Figure 11. In vivo activity of KsgA orthologs. 

 



37 

for completion of the reaction within two hours, so experiments were also performed using 

10 pmol each of 30S and enzyme.  

 Figures 12a, 12b, and 12c show the time-course of methylation for KsgA, ScDim1, 

and MjDim1 respectively. Methylation of E. coli 30S by ScDim1 and MjDim1 closely 

followed the KsgA time-course, both in rate of incorporation and final level of 

methylation. In reactions with 1 pmol of protein, MjDim1 showed a slightly higher rate of 

3H incorporation than KsgA and ScDim1 at later time points. With stoichiometric amounts 

of protein relative to 30S, the time-course of methylation was essentially indistinguishable 

between the three proteins, confirming the ability of the enzymes from archaea and 

eukaryotes to recognize bacterial 30S subunits as substrates. 

 We then estimated the amount of methyl groups transferred at the two-hour time 

point by each enzyme, with both 1 pmol and 10 pmol amounts of enzyme, by constructing 

a standard curve of cpm vs. concentration of 3H-methyl-SAM. With 10 pmol of 30S per 

reaction, and 4 methylation sites per 30S molecule, we would expect to see transfer of 40 

pmol methyl groups if the reactions have gone to completion. As shown in Figure 13, our 

calculations lead to slight overestimation of methyl group transfer, probably due to error in 

3H counting. Nevertheless, the reactions performed with 10 pmol enzyme appear to be 

more or less complete after 2 hours. Reactions performed with only 1 pmol enzyme are 

approximately halfway completed after 2 hours. 

Nucleoside analysis 

In vitro assays of the three proteins, performed as described above for the time-

course, were incubated for two hours and analyzed to determine relative amounts of m6A  
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Figure 12. In vitro methylation of 30S. Time-course assays for KsgA (a), ScDim1 
(b), and MjDim1 (c). Blue lines indicate assays containing 10 pmol ksgR 30S, 10 
pmol enzyme; orange indicates assays containing 10 pmol ksgR 30S, 1 pmol enzyme; 
green indicates control assays containing 10 pmol wt 30S subunits, 10 pmol enzyme. 
Assays were performed in triplicate; error bars represent standard deviation. 

 

(a) 

(b) 

(c) 
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Figure 13. Quantitation of methyl groups transferred after two hours. Blue 
bars represent assays performed with 10 pmol enzyme; yellow bars represent 
assays using 1 pmol enzyme. Assays were performed in triplicate; error bars 
represent standard deviation. 
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and m6
2A (Figure 14, Table 2). 16S rRNA isolated from 30S subunits methylated by 10 

pmol of either KsgA or MjDim1 contained no detectable labeled m6A; radioactive 

incorporation was seen only in the dimethyladenosine peak. This agrees with the in vitro 

data suggesting that these reactions have gone to completion (Figure 13). ScDim1, on the 

other hand, produced a mixture of m6A and m6
2A; approximately 28% of the incorporated 

radiolabel was found on monomethylated adenosine. This indicates that at most 80% of the 

potential sites were methylated after two hours. 

Partially methylated 30S from reactions using 1 pmol of enzyme showed 

radioactive peaks at both m6A and m6
2A. Surprisingly, although the total level of 

methylation was similar for all three enzymes (Figure 13), rRNA methylated by the 

different enzymes showed different ratios of m6A to m6
2A. ScDim1 produced 

approximately 1.4 times as much m6A as m6
2A. MjDim1, conversely, produced almost no 

m6A; only about 1% of the incorporated methyl groups were found on m6A. KsgA fell 

somewhere between the other two, producing both m6A and m6
2A, with only 0.8 times as 

much m6A as m6
2A. These results could be a result of assaying enzymes from different 

species on the bacterial substrate, or they could reflect a difference in reaction mechanism. 

 The KsgA/Dim1 enzymes transfer a total of four methyl groups from four SAM 

molecules to two adenosines. The exact mechanism of transfer has not yet been 

established; questions remain as to order of addition, if any, and the number of binding 

events required for the four methylations. The above data begin to address the question of 

the multiple methyl group transfers. Partially methylated 30S were produced in reactions 

containing 10 pmol 30S subunits and 1 pmol enzyme. Therefore, m6A produced in excess  
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Figure 14. Representative HPLC trace. The bottom trace (shifted upward by 50 cpm) 
is data from a control assay using wt 30S; the middle trace (shifted upward by 250 
cpm) represents an assay using 1 pmol ScDim1 and 10pmol ksgR 30S; the top trace 
(shifted upward by 1 OD unit) represents reference nucleotides, with m6A and m6

2A 
peaks labeled. 
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Table 2. Quantitation of methylated adenosine species. 
  total CH3 (pmol)a ratio m6A:m6

2A m6A (pmol) m6
2A (pmol)b 

KsgA 1 pmol 
10 pmol 

18.1 ± 1.7 
37.4 ± 10.1 

0.8:1 
- 

5.2 
NDc 

6.5 
37.4 

ScDim1 1 pmol 
10 pmol 

20.1 ± 0.7 
47.4 ± 2.7 

1.4:1 
0.8:1 

8.3 
13.5 

5.9 
16.9 

MjDim1 1 pmol 
10 pmol 

24.1 ± 3.6 
48.1 ± 8.8 

0.02:1 
- 

0.2 
ND 

11.9 
48.1 

aData from Figure 13. 
b1 pmol m6

2A corresponds to 2 pmol methyl groups. 
cND=none detected. 
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of 2 pmol (corresponding to two adenosines available for methylation per subunit) will 

only be seen if the enzyme releases the substrate after monomethylation and rebinds to a 

new substrate. With 20.1 pmol of methyl groups incorporated by 1 pmol ScDim1, the 1.4:1 

m6A:m6
2A ratio represents approximately 8.3 pmol labeled m6A and 5.9 pmol labeled 

m6
2A (1 pmol m6

2A represents 2 pmol incorporated methyl groups). Therefore, under our 

assay conditions, ScDim1 clearly releases the m6A intermediate, which is subsequently 

converted to the m6
2A product after an additional binding event.  

In contrast, there is no indication that MjDim1 produces m6A as anything but a 

transient intermediate. Of the 24.1 pmol methyl groups transferred, only 0.3 pmol were 

found on m6A. These results suggest that the archaeal enzyme preferentially forms 

dimethyladenosine, without release of the monomethyl intermediate. While release of a 

monomethyl intermediate and subsequent re-binding and addition of the second methyl 

cannot be ruled out, such a model requires that MjDim1 prefer the monomethylated 

substrate to the unmethylated substrate to a large degree.  

In terms of m6A vs. m6
2A production, KsgA falls somewhere in between ScDim1 

and MjDim1. Unlike ScDim1, KsgA produces less m6A than m6
2A; however, of the 18.1 

pmol of methyl groups transferred, 5.2 pmol are found on m6A, which is still indicative of 

a released intermediate. Although it is possible that these differences are a result of 

suboptimal assay conditions, these results also allow the possibility of distinct mechanisms 

for the three enzymes, thus demonstrating a need for future analysis to dissect the exact 

scheme of methyl transfer. 
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Conclusions 

 Substrate recognition by the KsgA/Dim1 methyltransferases is complex. KsgA is 

able to methylate 30S subunits, but it can also methylate a pre-ribosomal particle 

containing 16S and a partial complement of ribosomal proteins45. Dim1 is essential for 

early processing of the pre-18S rRNA, but doesn’t methylate 18S until very late in the 40S 

maturation process83. Despite evolutionary divergence of ribosomal assembly and 

processing pathways, eukaryotic and archaeal KsgA orthologs are able to methylate E. coli 

30S both in vivo and in vitro. This requires the conservation of similar structural cues in 

small ribosomal subunits across evolution. Also complex is the mechanism of the 

modification performed by these enzymes. A total of four methyl groups are transferred, 

from four SAM molecules, to two separate adenosines. It is clear from the crystal structure 

of KsgA131 that only one SAM molecule is bound at a time, and that the adenosines enter 

the active site separately. It has not been determined in what order, if any, the methyl 

groups are transferred, or if all four of the transfers take place within a single or multiple 

binding events. The work presented here demonstrates clear differences in the reaction 

intermediate profiles produced in vitro by KsgA enzymes from bacteria, archaea and yeast, 

despite the fact that the three enzymes methylate bacterial 30S to a similar extent and at 

similar rates in the assay used. However, we cannot exclude the possibility that the 

differences in the respective rates of m6A and m6
2A production seen here are a result of 

suboptimal substrate or assay conditions rather than a reflection of true differences in 

mechanism. For example, the yeast and archaeal enzymes may show different activity if 

assayed on their respective small ribosomal subunits rather than on bacterial 30S. Our 
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results demonstrate the remarkable cross-recognition of a complex substrate by 

evolutionarily distant members of an enzyme family and emphasize the need to further 

investigate the multi-step reaction mechanism. 

Experimental 

Cloning 

 E. coli genomic DNA was provided by Dennis J. Wilson. The 819 base-pair KsgA 

gene was amplified by PCR using the following primers, purchased from Integrated DNA 

Technologies: 5’-ATC GCC CAT ATG ATG AAT AAT CGA GTC CAC CAG G-3’ and 

5’-ATT ATG CAC GAG TTA ACT CTC CTG CAA AGG CG-3’. The gene was cloned 

into the pET15b vector (Novagen) as an NdeI/XhoI fragment for expression as a His-

tagged fusion construct.  The recombinant plasmid was sequenced (Nucleic Acids 

Research Facilities, Virginia Commonwealth University) to confirm the presence and 

correct sequence of the insert. 

M. jannaschii genomic DNA was obtained from ATCC. The MjDim1 gene was 

amplified with the following primers, purchased from Integrated DNA Technologies: 5’-

GCC GCA CCA TAT GTT CAA ACC AAA GAA AAA ATT AGG-3’ and 5’-GCT ACT 

CGA GCT ATA ACC TAC CCC TAT TTT GCA G-3’. The amplicon was then inserted 

into pET15b as an NdeI-XhoI fragment for expression as a His-tagged fusion construct. 

The correct clone was confirmed by sequencing. 

Protein expression and purification 

 pET15b-KsgA and pET15b-MjDim1 plasmids were transformed into BL-21 (DE3) 

cells for overexpression. Cell cultures were grown to an OD600 of 0.6 in the presence of 
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ampicillin and induced with 1 mM IPTG (Sigma-Aldrich). After 4 hours at 37ºC, cells 

were harvested by centrifugation. Pellets were resuspended in lysis buffer (50 mM NaPO4, 

300 mM NaCl, 10 mM imidazole, pH 8.0), broken with two passages through an 

Emulsiflex cell breaker (Avestin), and centrifuged to remove cell debris. Cleared lysate 

was loaded onto a HiTrap Chelating column (Amersham) equilibrated with 0.1M NiSO4, 

washed twice with increasing amounts of imidazole (wash buffer 1: 50 mM NaPO4, 300 

mM NaCl, 20 mM imidazole, pH 8.0; wash buffer 2: 50 mM NaPO4, 300 mM NaCl, 50 

mM imidazole, pH 8.0), and the protein eluted with elution buffer (50 mM NaPO4, 300 

mM NaCl, 250 mM imidazole, pH 8.0).  

The pET15b-ScDim1 construct was provided by Dr. Jean Vandenhaute and was 

confirmed by sequencing. Protein was expressed in BL21-CodonPlus (DE3)-RIL cells 

(Stratagene). The cells were grown at 37ºC to an OD600 of 1.2 in the presence of 

ampicillin. Then the protein was induced under mild conditions with 0.1 mM IPTG and 

transferred to 25ºC for 4 hours. Cells were harvested and broken as for KsgA and MjDim1. 

Purification was carried out by affinity chromatography using a Ni2+ column; buffers were 

as above with the addition of 15 % glycerol and 3 mM 2-mercaptoethanol. To increase the 

stability of the protein, glycerol and 2-mercaptoethanol were added to the purified protein 

to final concentrations of 25% and 6 mM respectively. 

Proteins were estimated to be >95% pure by SDS-PAGE analysis. Protein 

concentration was measured using the Bio-Rad Protein Assay. 

30S purification 
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An E. coli strain lacking functional KsgA was constructed by growing BL-21 

(DE3) cells on kasugamycin (ksg) to select for loss of the dimethylations. 30S ribosomes 

from this ksgR strain were used in an in vitro assay to confirm that the adenosines were 

able to be methylated and therefore that the resistance to ksg was due to lack of KsgA 

activity. 30S subunits from both the ksgR strain and the wild-type strain were prepared as 

previously described132, except that cells were broken as described above. Purified subunits 

were dialyzed into reaction buffer (40 mM Tris, pH 7.4; 40 mM NH4Cl; 4 mM MgOAc; 6 

mM 2-mercaptoethanol) and stored at –80ºC in single-use aliquots. 30S concentration was 

estimated by measuring the absorbance at 260 nm and using a relationship of 67 pmol 30S 

per 1 unit of optical density. 

In vivo assay 

ksgR cells were transformed with the pET15b constructs and selected on LB plates 

containing ampicillin. Transformed colonies were picked into liquid media and grown in 

overnight culture. These cultures were diluted 1:25 in fresh LB containing 50 µg/ml 

ampicillin and grown to OD600 of 0.7-0.8, diluted 1:100 in fresh LB, and plated onto 

LB/ampicillin containing increasing amounts of ksg, from 0 to 3000 µg/ml.  Plates were 

incubated at 37º overnight and visually inspected for colony formation. 

In vitro assay 

The in vitro assay was adapted from Poldermans et al.47. Time-course reactions 

were performed in 500 ul volumes containing 40 mM Tris, pH 7.4, 40 mM NH4Cl, 4 mM 

MgOAc, 6 mM 2-mercaptoethanol, 0.02 mM 3H-methyl-SAM (780 cpm/pmol; MP 

Biomedicals), 100 pmol 30S subunits, and 10 or 100 pmol enzyme; volume and 
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components were sufficient for 10 reactions. Buffer and reagents were pre-warmed to 37º 

and added into pre-warmed tubes to minimize any lag in the reaction start. At each of eight 

designated time points 50 ul was removed and added to a pre-chilled tube containing 10 ul 

of 100 mM unlabeled SAM (Sigma-Aldrich) to quench the reaction; the remaining 100 ul 

was stored at -20º and used for HPLC analysis (see below). The quenched reactions were 

deposited onto DE81 filter paper (Whatman), washed twice with ice-cold 5% TCA, and 

rinsed briefly with ethanol. Filters were air-dried for one hour, placed into scintillation 

fluid, and counted. 

HPLC analysis 

Labeled 16S rRNA was extracted from 30S subunits with 

phenol/chloroform/isoamyl alcohol. 16S was digested and dephosphorylated as described 

by Gehrke and Kuo133, and subjected to nucleoside analysis by reversed-phase HPLC. 

Nuclease P1 was obtained from USBiological, shrimp alkaline phosphatase was from MBI 

Fermentas. HPLC analysis was performed on a Polaris C-18 column (Varian). The HPLC 

system used consisted of a Waters 600 Controller, a Waters 2487 Dual λ Absorbance 

Detector, and Waters Empower software. Radioactivity was monitored with a Packard 

150TR Flow Scintillation Analyzer. Buffer A was 20 mM NaH2PO4, pH 5.1. Buffer B was 

20 mM NaH2PO4, pH 5.1:acetonitrile 70:30. Separation was performed at room 

temperature using a linear gradient from 100%A-100%B over twenty minutes, at a flow 

rate of 1.0 ml/min. Nucleoside standards used were N6-methyladenosine (Sigma-Aldrich) 

and N6 N6-dimethyladenosine, synthesized as in Rife et al.134. Peak integration was 

calculated by the Empower software and used to determine ratios of m6A:m6
2A. 
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Crystal Structure 
 

 A significant step towards understanding an enzyme’s function is often to obtain 

information about its structure. Knowledge of the structure can help guide predictions of 

areas important for the protein’s function, including interactions with substrate and 

cofactor. A structure can also direct selection of amino acid residues for mutational 

analysis and biochemical characterization. Although structures of related 

methyltransferases have been solved, the KsgA/Dim1 family has not been explored 

structurally. 

 KsgA belongs to a large group of related SAM-dependent methyltransferases98. 

This group is responsible for methylating a diverse array of target molecules, including 

proteins, nucleic acids, and small molecules. At least fifty of these methyltransferases have 

been characterized structurally135, 136. Despite generally low sequence conservation, these 

structures share a remarkable degree of structural conservation. When SAM is present in 

the crystal structures, it is found in very similar orientations in each protein active site, 

which goes along with the strong structural conservation in this region. The conserved core 

structure consists of a central beta sheet and bears a strong resemblance to the well-defined 

Rossman fold characteristic of proteins which bind NAD(P)98 (Figure 15). The Rossman 

fold proteins contain a six-stranded parallel sheet; the methyltransferase fold is 

characterized by an additional strand inserted antiparallel between strands five and six. The  
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Figure 15. Topology diagrams of the consensus SAM-dependent methyltransferase 
core structure (a) and the Rossman fold (b). Blue circles represent α-helices; green 
triangles represent β-sheets. The hatched green triangle denotes the antiparallel β-
strand found in the methyltransferase fold. 
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β-strands alternate with α-helices, which are not as well conserved in the secondary 

structure as the β-strands, to form an α/β sandwich. The SAM-binding site lies at the edge 

of the sheet, analogous to the NAD(P) binding site in Rossman fold proteins. The 

adenosine moieties of both molecules are bound in a virtually identical manner. Given this 

high degree of structural conservation, a reasonable model of KsgA’s N-terminal catalytic 

domain can be constructed using known structures of other methyltransferases. Sequence 

similarity with the most closely related enzymes can aid predictions of catalytically 

important residues. However, homology models of KsgA’s structure are ultimately 

inadequate. Sequence conservation, even among closely related enzymes, is limited, and 

there are many sequence elements that lie outside of the central β-sheet that cannot be 

modeled in a satisfactory way. 

Outside of the catalytic center, the methyltransferase structures are not conserved. 

This is probably due to the wide range of substrate molecules targeted by this enzyme 

family. Of the structurally characterized SAM-dependent methyltransferases, ErmC’ and 

ErmAM are the most closely related to KsgA. The two families share essentially no 

sequence homology in the C-terminal domains, which are thought to be important in 

substrate binding. Therefore, this region of KsgA cannot be modeled in a satisfactory way, 

and predictions about substrate binding are tenuous at best. 

We have crystallized KsgA from E. coli and solved its structure at 2.1 Å resolution 

and we discuss implications of the structure for substrate binding and activity. This is the 

first structural characterization of a protein from this remarkable family. Recently the 

human cytoplasmic ortholog, hDim1, has also been crystallized and its structure 
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determined109; comparisons of these two closely related proteins may shed light on the 

acquisition of a second function in the Dim1 proteins. Extensive biochemical and structural 

analyses have been carried out on other SAM dependent methyltransferases. These data, 

combined with the KsgA crystal structure, have allowed prediction of residues important 

for KsgA function. We have performed mutagenic analysis of selected residues, testing the 

mutant proteins for in vivo and in vitro activity. 

Crystallization and refinement 

 KsgA-His fusion protein was overexpressed and purified as described in Chapter 2. 

Purified protein was dialyzed into Buffer A (50mM Tris, pH 7.4, 400mM NH4Cl, 6mM β-

mercaptoethanol) and stored in 10% glycerol at 253 K. Prior to crystallization, protein was 

simultaneously concentrated and exchanged into Buffer B (50mM Tris, pH 7.4, 50mM 

NH4Cl, 6mM β-mercaptoethanol). For crystallization experiments, equal amounts of 

protein and precipitant solution were mixed in hanging drops. High quality crystals were 

obtained with 18-20% PEG 4000 and 0.2M calcium acetate (Figure 16). The best crystals 

were obtained by using 4 µl of protein sample in Buffer B mixed with 4 µl of reservoir 

solution. Under these conditions, protein readily formed irregular monoclinic/pseudo-

orthorhombic crystals as clusters from which single crystals could be obtained. 

 Crystals were of the C2 space group with unit cell dimensions of a=173.9 Å, 

b=38.4 Å, c=83.0 Å, β=90.0°. The crystals diffracted X-rays to 1.9 Å; however, due to 

limitations imposed by a long unit cell axis and a finite detector area, data were truncated 

at 2.1 Å. Initial single isomorphous replacement with anomalous scattering (SIRAS) 

phases proved sufficient to permit automated tracing of approximately 80% of the  
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Figure 16. A representative crystal of KsgA. Its approximate dimensions are 0.5 x 0.1 
x 0.05 mm. 
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backbone. After several rounds of manual rebuilding and computational refinement, the 

model had R and Rfree values of 18.9% and 23.8%, respectively. Representative electron 

density is shown in Figure 17. The region shown is part of the packing interface between 

the two copies of KsgA. In the final model, 92.2% of the residues had backbone torsion 

angles in the most favored regions of a Ramachandran plot, and 7.1% of the residues had 

torsions in additionally allowed regions; only 0.2% and 0.5% had torsions in generously 

allowed and disallowed regions, respectively. Data collection and refinement statistics are 

summarized in Table 3. 

Structure analysis 

The asymmetric unit is composed of two monomers, which share only a small 

contact surface (Figure 18). For each monomer, electron density was observed for residues 

17-268 (out of a possible 293, which includes a poly histidine tag on the N-terminus).  

Least squares superposition of the two monomers indicated that they were not identical. 

The overall root mean squared deviation (RMSD) of the backbone atoms between the two 

monomers is 1.2 Å. This somewhat high RMSD between the two copies can be attributed 

to differing orientations of the C-terminal domain (residues 208-268) and of residues 140-

160 with respect to the remainder of the N-terminal domain. When the two monomers are 

aligned using only residues 17-139 and 161-207, the RMSD drops to 0.5 Å; alignment of 

residues 140-160 and 208-268 yields an RMSD of 0.6 Å. While some of the structural 

differences between the monomers are likely due to constraints imposed by the crystal 

lattice, they may nonetheless have important consequences in the SAM binding site (see 

below). 
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Figure 17. Representative region of KsgA, showing the interface between the 
two monomers of the asymmetric unit. The green mesh surface shows the 2Fo-
Fc map at 2.1 Å using phases calculated from the final refined model and 
contoured to 1 σ. 
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Table 3. X-ray data collection, phasing and refinement 
Data Collection 

 Native K3UO2F5 
Space group C2 C2 
Unit-cell parameters  a=173.9 Å, b=38.4 Å, 

c=83.0 Å, β=90.0° 
a=174.5 Å, b=38.5 
Å, c=83.0 Å, β=89.9° 

Resolution (Overall / high resolution shell) 32.0–2.1 (2.14–2.10) 40–2.6 (2.64–2.60) 
Nobs 

a 32474 (1261) 12478 (736) 
Completeness (%)a 95.7 (76.6) 98.4 (68.9) 
Rsymm

b 0.08 (0.33) 0.09 (0.31) 
I/σ (I) 17.2 (2.7) 19.2 (3.2) 
Multiplicity 4.0 (3.2) 6.9 (5.6) 
Wilson Plot B (Å2) 34.3 56.3 
Optical Resolution (Å)c 1.65  

Phasing 
Rderiv

d
   0.31 

RCullis (Isomorphous/Anomalous)e  0.734/0.642 
Phasing Power (Isomorphous/Anomalous)  1.36/1.96 
Figure of Merit (Centric/Acentric) 0.445/0.336  
Figure of Merit After Density Modification 0.871  

Refinement 
Resolution range (Overall / high resolution shell) 32.0–2.1 (2.16–2.10)  
Reflections (work/free) 28356/3159  
Protein Atoms 3876  
Water Atoms 237  
Rwork (Overall / high resolution shell) 0.189  (0.218)  
Rfree (Overall / high resolution shell) 0.238 (0.279)  
Roverall 0.194  
<B> (Å2) 27.4  
Cruickshank’s DPI (Å)f 0.291  
Estimated Maximal Coordinate Error 0.467  
RMSD Bond lengths (Å) 0.015  
RMSD Angles (º) 1.35  
Ramachandran Plot   
Most Favored (%) 93.6  
Additional Allowed (%) 5.7  
Generously Allowed (%) 0.2  
Forbidden (%) 0.5  
a For reflections with Ih>0 where Ih is the mean intensity of reflection h. 
b Rsymm = ΣΣi Ih-Ihi / ΣΣi Ih where Ih is the mean intensity of reflection h.  All data with I>-3σ are included. 
c W = (σ2

Patterson + σ2
sph)1/2  the expected minimum distance between two resolved atom peaks35. 

d Rderiv = Σ FHP-FP / Σ FP 
e RCullis = Σ FPH-FP - FH (calc) / FPH-FP  
f σ(x) = (Natoms/Nobs)1/2c–1/3dminRfree
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Figure 18. Asymmetric unit of KsgA. The A monomer is shown at the 
top, and the B monomer is at the bottom. 
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The structure of the A monomer of KsgA is shown in Figure 19. The three-

dimensional structure of KsgA is very similar to those of hDim1109, ErmC'107, and sc-

mtTFB106. Figure 20 shows a structure-based sequence alignment of the four proteins. All 

four structures share a two-domain architecture with the larger N-terminal domain 

consisting of a mixed α/β structure and a smaller C-terminal domain consisting of 4-5 α-

helices. The N-terminal domains of KsgA, hDim1 and ErmC' share the Rossman-like fold 

characteristic of SAM-utilizing methyltransferase, known as the Ado-Met dependent 

MTase fold98. This fold consists of alternating α-helices and β-strands, with a central 

seven-stranded β-sheet sandwiched between a variable number of α-helices. Strands 1-6 of 

the sheet are parallel, with strand 7 inserted antiparallel between strands 5 and 6. KsgA has 

three α-helices on one side of the sheet and four on the other, and an additional three 310-

helices in the N-terminal domain. The C-terminal domain of KsgA consists of four α-

helices and one 310-helix and, as in the other three structures, forms a cleft with the N-

terminal domain. sc-mtTFB retains a similar topology to the other three enzymes but has 

an overall larger structure and an extra strand in its β-sheet. 

 The strong similarity between the KsgA/hDim1 and ErmC' structures is not 

surprising, since the two enzyme families perform very similar functions. The KsgA/Dim1 

and Erm families are rRNA N6-adenine methyltransferases, and both KsgA and ErmC’ 

dimethylate their target adenosines. Both are members of the γ group of methyltransferases 

based on the order of conserved structural motifs99.  KsgA clearly displays five of the nine 

structural motifs usually found in Ado-Met dependent methyltransferases. Residues in  



59 

 

Figure 19. Diagram of the three dimensional structure of KsgA. β-strands are 
numbered and shown in green. Helices are denoted Z and A-J; α-helices are 
shown in cyan, 310-helices are magenta. The black line indicates the separation 
between the N- and C-terminal domains. (a) Ribbon diagram of the A monomer 
of KsgA. (b) Topology diagram of KsgA. β-strands are represented as triangles; 
α- and 310-helices are large and small circles, respectively. The residue numbers 
at the ends of secondary structures are noted. 
 

(a) 

(b) 
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Figure 20. Structure-based sequence alignment of KsgA (P06992), hDim1 (Q9UNQ2), 
sc-mtTFB (P14908), and ErmC’ (P13596). Structures used for alignment were 1QYR131 
(KsgA), 1ZQ9109 (hDim1), 1I4W106 (sc-mtTFB) and 2ERC107 (ErmC’). Blue lines and 
green arrows indicate KsgA’s α-helices and β-strands, respectively. Double-headed 
arrows indicate motifs common to SAM-dependent methyltransferases. Bold residues in 
the ErmC’ sequence are those which make direct contact with the SAM molecule. 
 

KsgA            -------------------MNNRVHQGHLARKRFGQNFLNDQFVIDSIVSAINPQK---- 
hDim1           MPKVKSGAIGRRRGRQEQRRELKSAGGLMFNTGIGQHILKNPLIINSIIDKAALRP---- 
sc-mtTFB        ----------------MSVPIPGIKDISKLKFFYGFKYLWNPTVYNKIFDKLDLTKTYKH 
ErmC’           --------------------------MNEKNIKHSQNFITSKHNIDKIMTNIRLNE---- 
 
                                                          
 
KsgA            --GQAMVEIGPGLAALTEPVGE--RLDQLTVIELDRDLAARLQT--HPFLGPKLTIYQQ- 
hDim1           --TDVVLEVGPGTGNMTVKLLE--KAKKVVACELDPRLVAELHKRVQGTPVASKLQVLVG  
sc-mtTFB        PEELKVLDLYPGVGIQSAIFYNKYCPRQYSLLEKRSSLYKFLNAKFEGS---PLQILKRD 
ErmC’           --HDNIFEIGSGKGHFTLELVQR--CNFVTAIEIDHKLCKTTEN--KLVDHDNFQVLNK- 
 
 
 
KsgA            DAMTFNFGELAEKM-----G-Q-------PL-RVFGNLPYNISTPLMFHLFSYT------ 
hDim1           DVLKTDL--PF-------------------FDTCVANLPYQISSPFVFKLLLHR------ 
sc-mtTFB        PYDWSTYSNLIDEERIFVPEVQSSDHINDKF-LTVANVTGEGSEGLIMQWLSCIGNKNWL 
ErmC’           DILQFKF--PKN-------Q-S--------Y-KIFGNIPYNISTDIIRKIVFD------- 
 
 
 
KsgA            --DAIADMHFMLQKEVVNRLVAGPNSKAYGRLSVMAQYYCNVIPVLEV------------ 
hDim1           --PFFRCAILMFQREFALRLVAKPGDKLYCRLSINTQLLARVDHLMKV------------ 
sc-mtTFB        YRFGKVKMLLWMPSTTARKLLARPGMHSRSKCSVVREAFTDTKLIAISDANELKGFDSQC 
ErmC’           --SIADEIYLIVEYGFAKRLLN-----TKRSLALFLMAEVDISILSMV------------ 
 
 
 
KsgA            ---------PPSAFTPPPKVDSAVVRLVPHATMPHPVK--DVRVLSRITTEAFNQRRKTI 
hDim1           ---------GKNNFRPPPKVESSVVRIEPKNPPP-PI---NFQEWDGLVRITFVRKNKTL 
sc-mtTFB        IEEWDPILFSAAEIWPTKGKPIALVEMDPID---FDF---DVDNWDYVTRHLMILKRTPL 
ErmC’           ---------PREYFHPKPKVNSSLIRLNRK-KS--RISHKDKQKYNYFVMKWVN------ 
    
  
 
KsgA            RNSLGNL-----------------------------FSVEVLTGMGIDPAM-RAENISVA 
hDim1           SAAFKSSAVQQLLEKNYRIHCSVHNIIIPEDFSIADKIQQILTSTGF-SDK-RARSMDID 
sc-mtTFB        NTVMDSLGHGGQQ-----------------------YFNSRIT-DKDLLKK-CPIDLTND 
ErmC’           -KEYKKIFTK-----------------------------NQFNNSLKHAGIDDLNNISFE 
                                                                             
 
 
KsgA            QYCQMANYLAENAPLQES 
hDim1           DFIRLLHGFNAEGIHFS 
sc-mtTFB        EFIYLTKLFMEWPFKPDILMDFVDMYQTEHSG 
ErmC’           QFLSLFNSYKLFNK 
                                                                       
 

I II III 

IV V 

VII 

VIII 

VI 

αZ 

β1 

αG 

αE 

αJ 

αI 

αD αC 

αB αA 

β4 

β5 

β7 

αF β6 

β2 β3 

αH 



61 

these motifs have been shown to be involved in SAM binding in the ErmC' crystal 

structure97, and in both SAM binding and interaction with the target adenosine in the DNA 

N6-adenine methyltransferase M.TaqI137, 138. 

 Motif I, often referred to as the G-loop, connects β1 with αA. It contains a 

canonical GXG sequence which in other methyltransferases forms part of the binding 

pocket for SAM. Motif II consists of an Asp or Glu residue (E66 in KsgA) followed by a 

hydrophobic residue (L67). In ErmC' the corresponding E59 forms hydrogen bonds with 

hydroxyl groups on the ribose of SAM; I60 might make van der Waals contact with the 

adenine of SAM. Motif III is also involved in SAM binding. The first residue of this motif 

is an Asp or Glu residue (D91 in KsgA) that, in DNA methyltransferases, interacts with the 

exocyclic N6 amine of the SAM adenine. This is followed in DNA methyltransferases by 

an aromatic residue and a hydrophobic residue; the NH group from the peptide backbone 

of the second residue forms a hydrogen bond with N1 of SAM. In Erm and KsgA enzymes 

the charged residue is followed by two hydrophobic residues.  

 Motif IV contains residues important in catalysis. The consensus sequence in DNA 

amino methyltransferases is (D/N)PPY; in Erm enzymes the consensus is (N/S)IP(Y/F) 

and the KsgA sequence is NLPY, residues 113-116. The first residue may form a hydrogen 

bond to the amino group in the target base and play a role in its deprotonation. Mutation of 

this residue is poorly tolerated in DNA methyltransferases139-142. In ErmC' the N101A 

mutant is inactive in vivo but retains some activity in vitro, although only about 10% of 

wild-type143. This reduction in activity is probably due to lack of proper SAM binding. The 

Y104A mutation in ErmC' was inactive both in vivo and in vitro, and similar results were 
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seen in M.TaqI144. These results highlight the importance of this residue, which is involved 

in stabilization of the target residue through stacking interactions.  

Motif VI contains three adjacent hydrophobic residues at the C-terminal end of β5 

(F138, M139 and L140 in KsgA) that are suggested to be involved in proper positioning of 

the target adenosine. Relative to ErmC’, KsgA contains a five residue insert (151-155) 

which forms a loop between motif VI and motif VII, altering the trajectory of the backbone 

between αE and αF.  The presence of this insert is conserved in the KsgA family, although 

the sequence of the five residues is not. Motif VIII contains a very highly conserved Phe 

residue (F181 in KsgA) that is part of the FXPXPXVXS sequence found in Erm and KsgA 

enzymes. Like Y116, this residue is involved in stabilization of the target base through 

stacking interactions. Mutation to Ala is very deleterious in the DNA methyltransferase 

M.TaqI (400-fold reduction of activity)144, but activity of the Phe to Ala mutant is only 

reduced about 4-fold in ErmC'143.  

 Motifs V, VII, and X are less well conserved in KsgA. Motif V in DNA 

methyltransferases is involved in SAM binding. The Leu residue in the DNA 

methyltransferase consensus sequence (N/D)LY makes van der Waals contact with the 

adenine of SAM145; this residue corresponds to I118 of KsgA, which may make a similar 

contact. Motif VII is weakly conserved among DNA methyltransferases and Erm enzymes, 

and we can find no equivalent of in KsgA. This motif may be involved in proper folding of 

DNA methyltransferases146. Motif X is also poorly conserved, if at all, but may comprise 

residues in αZ. 
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Structural comparisons 

Figure 21 shows the A monomer of KsgA superimposed with the B monomer 

(Figure 21a), with hDim1 (Figure 21b), with ErmC’ (Figure 21c), and with sc-mtTFB 

(Figure 21d). Table 4 lists regions of high structural correspondence between the proteins 

which were used to create the superpositions. Table 5 lists the RMSD values obtained from 

these superpositions. Not surprisingly, the RMSD between the two monomers of KsgA is 

slightly less when the two are superimposed using these regions, as opposed to using all 

backbone atoms. hDim1 has a slightly lower RMSD value with the B monomer (1.0 Å) 

than with the A monomer (1.2 Å); conversely, ErmC’ has a lower RMSD value with the A 

monomer (2.3 Å) than with the B monomer (2.7 Å). sc-mtTFB deviates more strongly 

from hDim1 and ErmC’ than from KsgA, with RMSD values of 2.4 Å (KsgA A and B 

monomers), 3.1 Å (hDim1), and 3.2 Å (ErmC’). 

Dim1 proteins have a large insert in the C-terminal domain compared to KsgA. 

This insert in hDim1 is shown with an arrow in Figure 21, and Figure 22 shows a slightly 

rotated, enlarged view. The insert falls between helices H and I, and results in an extra 

helix in hDim1 along with a section of random coil and a slightly longer helix I. Dim1 

interacts with a variety of other proteins involved in pre-rRNA processing and 

maturation24, 147-149; it is tempting to speculate that some of these interactions are mediated 

by this “extra” region of Dim1. 

mtTFB proteins have three inserts relative to KsgA proteins; all of these inserts lie 

in the N-terminal domain (Figure 23). Figure 23b shows the first of these inserts, which 

takes the form of a random coil leading into an extended beta strand. The second insert is  
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(a) 

(d) (c) 

(b) 

Figure 21. Superposition of the A monomer of KsgA with the B monomer (a), 
hDim1 (b), ErmC’ (c), and sc-mtTFB (d). The KsgA A monomer is shown in 
blue, the other proteins are shown in orange. 
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Table 4. Regions of structural correspondence between KsgA, hDim1, ErmC’, and sc-
mtTFB. 

Region KsgA hDim1 ErmC’ sc-mtTFB 
1 17-37 36-56 10-30 20-40 
2 38-57 57-76 31-40 47-66 
3 58-77 77-96 51-70 69-88 
4 84-96 106-118 77-89 94-106 
5 108-129 123-144 96-117 131-152 
6 131-150 146-165 118-137 162-181 
7 156-176 171-191 138-158 187-207 
8 177-197 192-212 159-179 229-249 
9 206-219 219-232 187-200 254-267 
10 248-266 289-307 223-241 301-319 
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Table 5. RMSD values of superpositions in Figure 21. 
RMSD (Å) KsgA (B) hDim1 ErmC’ sc-mtTFB 
KsgA (A) 0.9a 1.2 2.3 2.4 
KsgA (B)  1.0 2.7 2.4 
hDim1   1.9 3.1 
ErmC’    3.2 
aSuperpositions were made based on the ranges listed in Table 4.  When all backbone atoms are used KsgA 
(A) differs from KsgA (B) by 1.2 Å. 
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Figure 22. hDim1 insert. KsgA is shown in blue; hDim1 is shown in orange. The 
insert in hDim1 and the corresponding area in KsgA are shown in darker colors.  
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Figure 23. sc-mtTFB inserts. KsgA is shown in blue; sc-mtTFB is shown in orange. 
Inserts are indicated with solid arrows; inserts and their corresponding regions in 
KsgA are shown in darker colors in (b)-(d). The dashed arrow indicates the N-
terminal end of sc-mtTFB. (a) Superposition from Figure 21. (b) Insert 1. (c) Insert 
2. (d) Insert 3. 
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shown in Figure 23c and clusters together with insert 1. The third insert is shown in Figure 

23d. This insert is on the other side of the protein from the first two, and consists of two 

alpha-helices which form a long loop on the protein surface. Inserts 1 and 2 are generally 

conserved in all mtTFB proteins; however, insert 1 is shorter in mtTFB1 than in mtTFB 

and mtTFB2, which have evolved as transcription factors perhaps at the expense of their 

full function as methyltransferases. Additionally, the presence of insert 3 is conserved in 

mtTFB and mtTFB2 proteins, but not in mtTFB1 proteins. 

A Delphi surface map that reports modeled charge distribution reveals two regions 

of interest in the KsgA structure (Figure 24). In the N-terminal domain there is a 

negatively charged pocket which corresponds to residues in the canonical SAM-binding 

site; this pocket is also present in hDim1 and ErmC’. The pocket is approximately the 

correct size to accommodate a SAM molecule. Notably, a similar pocket is missing from 

the surface of sc-mtTFB. Figure 20 denotes residues in ErmC’ that directly interact with 

SAM, all of which line the pocket. Of those twelve residues six are conserved in KsgA 

(G45, G47, E66, D91, N113 and P115), ErmC’, sc-Dim1, and h-mtTFB, all proteins with 

demonstrated methyltransferase activity, while only three are conserved in sc-mtTFB. 

Three of the nonconserved residues in sc-mtTFB are likely to preclude sc-mtTFB from 

binding SAM.  D91 of KsgA, which is invariant in the γ group of methyltransferases99 is 

replaced by a Pro in sc-mtTFB. Based on the ErmC’/SAM co-structure97 N19 of KsgA is 

predicted to form a hydrogen bond with the positively charged sulfur of SAM.  In sc-

mtTFB this Asn is replaced with a Lys that would likely produce an enormous charge 

repulsion between its side chain and SAM.  The conserved Gly at position 45 in KsgA,  
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(a) 

(c) (d) 

Figure 24. Delphi surface maps of (a) KsgA, (b) hDim1, (c) ErmC', and (d) sc-
mtTFB. Red indicates areas of negative charge; areas of positive charge are shown in 
blue. 
 

 
(b) 
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which in ErmC’ makes a hydrogen bond to SAM through its carbonyl oxygen97, is 

replaced by a Tyr in sc-mtTFB.  The orientation of this Tyr106 is such that its side chain 

would block SAM binding by steric hindrance.  The lack of correspondence between 

several residues known to interact with SAM, along with the absence of methylated 

product in S. cerevisiae mitochondrial ribosomes, strongly suggests that sc-mtTFB is not 

able to act as a methyltransferase.  

Also notable in the Delphi surface map is the large region of positive charge in the 

cleft between the N-terminal and C-terminal domains, present in all four enzymes. 

Bussiere et al. referred to the C-terminal domain of ErmC’ as the RNA-recognition domain 

based on the observation that this cleft could accommodate an RNA helix107, in much the 

same way as the DNA duplex is oriented in the M.TaqI methyltransferase ternary complex 

reported by Goedecke et al150. The importance of this region was recently tested by 

Maravic et al. by mutating charged and polar residues along the N-terminal and C-terminal 

faces of the cleft151.  From this work they concluded that the C-terminal domain played no 

direct role in RNA binding, but on the basis of a series of deletion mutants probably helps 

to stabilize the larger N-terminal domain.  Subsequent to that report Buriánková et al. 

reported the discovery of a Mycobacterium tuberculosis erm gene, ermMT, the product of 

which is an active Erm enzyme that lacks the C-terminal domain altogether152. Therefore, 

at least in some Erm methyltransferases the N-terminal domain alone is sufficient to bind 

target RNA.  

The C-terminal domain of KsgA has fewer conserved residues than the N-terminal 

domain and has a structure substantially different from that of the same domain in ErmC’.  
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The first and last α-helices of the domain, αG and αJ in KsgA, are similar in composition 

and position, but the trajectories of the intervening segments follow very different paths. 

Five of the six C-terminal residues conserved in KsgA proteins (F218, R221, R222, K223, 

and R248) are located in the region between the two helices, and are spatially clustered 

(Figure 25).  With the exception of F218 these conserved residues are outside of the 

domain interface, which might suggest a mode of RNA binding different from that 

proposed for ErmC’.   

Substrate binding  

As previously mentioned, the two copies of KsgA in the asymmetric unit differ 

considerably.  To better understand the genesis of this difference we performed a double 

difference analysis on the two conformers of KsgA (data not shown).  The plot indicates 

that the relatively large structural difference is the result of a large domain movement of 

the C-terminal domain relative to the N-terminal domain in the KsgA B monomer.  This 

motion is propagated into the N-terminal domain through the residue 151-155 loop within 

the N-terminal domain and subsequently into the SAM binding site. 

To further explore the effects of these domain movements on the putative active 

sites of the two KsgA monomers, the monomers were superimposed using Motifs I, II and 

III, which are involved in SAM binding. This superposition reveals a slightly compressed 

SAM binding pocket in the B monomer, along with a relatively large movement of the C-

terminal domain (Figure 26). The active site cavities were also analyzed using the CASTp 

server153 (cast.engr.uic.edu). For comparison, active site cavities for an ErmC' structure 

with SAM bound (PDB entry 1QAO) and for an ErmC' structure without SAM (PDB entry  
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Figure 25. Conserved residues in the C-terminal domain of KsgA/Dim1. (a) KsgA. 
Residues F218, R221, R222, K223 and R248 are highlighted in green. (b) hDim1. 
Residues F231, R233, K234, K236 and R289 are highlighted in blue. 

(a) 

(b) 
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(a) (b) 

Figure 26. Superposition of the A (cyan) and B (orange) monomers, defined 
using SAM-binding motifs I, II, and III. (a) Backbone trace of the entire protein, 
highlighting an approximately 7 Å shift in the C-terminal domain. (b) Close-up 
of the SAM-binding pocket from (a), highlighting the movements of residues 
P115 and Q141. 
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1QAN) were also analyzed using CASTp. Active site cavity volumes and surface areas 

reported by CASTp are reported in Table 6.  

 Examination of the data in Table 6 indicates that there are no significant structural 

differences between the SAM binding pockets of ErmC' with or without a bound SAM 

molecule, suggesting that free ErmC' does not have to undergo any major conformational 

change in order to bind SAM. This is consistent with the observation that free ErmC' binds 

SAM with reasonably high affinity154. For KsgA, the volume of the putative SAM binding 

pocket in monomer A is similar to the volume of the binding pocket in ErmC'; however, 

for monomer B, the domain movements result in a 14% reduction in the cavity volume, 

which is largely the result of P115 being pushed into the cavity (Figure 26). In this 

conformation residue Q141 is oriented so that its side chain is pointing toward P115 from 

underneath, while in the A monomer conformation the Q141 side chain is oriented away 

from the binding pocket. The altered disposition of Q141 in the two copies of KsgA might 

affect the position of P115 within the SAM-binding pocket. The differences in the SAM 

binding cavities between the two KsgA monomers are particularly interesting in light of 

the observation that free KsgA is unable to bind SAM47. 

 Our early expectation was that the structure of KsgA would present obvious clues 

as to why the free enzyme is unable to bind SAM tightly. Instead, the two copies provide a 

tantalizing hint to a possible allosteric mechanism. The two monomers in the asymmetric 

unit have very different packing interactions at a site involving highly conserved residues 

in the C-terminal domain (Figure 27). These interactions might approximate an important 

allosteric binding site whereby interaction of KsgA with a part of the 30S subunit separate  



76 

Table 6. Volume of active site cavities 
Protein Cavity volumea 
KsgA A monomer 839 Å3 
KsgA B monomer 720 Å3 
ErmC' (with SAM) 812 Å3 
ErmC' (without SAM) 837 Å3 
aCalculations by CASTp: http://cast.engr.uic.edu/cast/ 
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Figure 27. Packing interactions of (a) the A monomer and (b) the B monomer 
with their lattice neighbors, which are shown as solid surfaces. Residues 
R221, R222, K223, and R248 are shown in green, and the surrounding area is 
circled in yellow. 
 

(a) (b) 
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from the target adenosines in helix 45 could cause a conformational change, allowing 

SAM to bind in the binding pocket. Such a hypothesis is speculative and requires future 

experimental attention. 

 The Delphi map of KsgA shows a region of high positive charge in the cleft 

between the N-terminal and C-terminal domains (Figure 24). ErmC' and sc-mtTFB have 

similar clefts. Residues in this region in ErmC' have been implicated in recognition and 

binding of the substrate RNA151, although only those on the N-terminal face of the cleft 

were shown to be important. Comparison of these three structures would suggest that sc-

mtTFB retains its ability to bind to RNA, and there is some evidence to support this 

possibility.  

The specifics of RNA binding to KsgA and all other RNA adenosine 

dimethyltransferases remain unknown.  Through inspection of protein structures, assumed 

correspondence with DNA methyltransferases, and mutagenesis of ErmC’, the body of 

evidence suggests that the likely orientation of helix 45 to KsgA is along the cleft formed 

between the two domains.  Based on mutational analysis Maravic et al.151 have constructed 

a model with the helical stem of domain V of 23S rRNA, the motif necessary and 

sufficient for substrate activity, positioned within interdomain cleft of ErmC’.  The model 

satisfies many requirements: the target adenosine can be reasonably inserted into its active 

site pocket, while allowing for a large contact surface between the components in a way 

that maximizes the importance of those residues implicated in RNA binding as determined 

from a mutational analysis of ErmC’.  In cartoon fashion the analogous complex between 

helix 45 of 16S rRNA and KsgA is shown in Figure 28.  Given the close evolutionary ties  
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Figure 28. Cartoon model of Helix 45/KsgA binding interaction. The A monomer 
of KsgA is shown in white, with colored residues as in Figure 2. Helix 45 is shown 
in blue, with the target adenosines extending outward from the loop. Placement of 
the SAM molecule, also in blue, is based on the ErmC’/SAM co-crystal structure. 
Roman numerals indicate structural motifs, while numbers indicate the six 
residues that are conserved in the N-terminal domain (see text for details). 
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between ErmC’ and KsgA it is tempting to believe that the enzymes bind their respective 

substrates in similar ways and indeed this may be the case.  However, while the overall 

structures of KsgA and ErmC’ are very similar, those similarities are concentrated within 

the N-terminal domains, where the catalytic core resides, while the differences between the 

two are concentrated in the C-terminal domains.  In particular, the trajectories of the 

peptide chain diverge considerably between αG and αJ, the only two structural units 

conserved between KsgA and ErmC’ in the C-terminal domains. When we align the 

sequences of 30 Erm proteins, all from separate subfamilies, we find that there are no 

residues in the C-terminal domain that are even moderately conserved according to T-

Coffee designation130 (alignment not shown), which becomes less surprising with the 

observation that at least one Erm, ErmMT, doesn’t even have a C-terminal domain152.  In 

contrast, the KsgA/Dim1 family of methyltransferases has six absolutely conserved or 

highly conserved residues in the C-terminal domain, four of which (R221, R222, K223, 

and R248) are spatially clustered. This constellation is likely important for the enzyme’s 

function, and the nature of the four residues suggests that they may be involved in RNA 

binding, either at helix 45 or elsewhere on the 16S RNA.  If these residues constitute a 

patch that interacts with the rRNA then KsgA probably does not bind helix 45 in the 

manner that is thought to occur for ErmC’ and its substrate RNA.  

On the other hand, the conservation of positive charge in the C-terminal domain of 

KsgA might be important for other reasons. Despite their similarities, KsgA and ErmC’ are 

fundamentally different enzymes. Functionally, KsgA must methylate two adjacent 

adenosines, which means that at some point both A1518 and A1519 must flip into the 
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active site.  Whether transfer of all four methyl groups requires one, two or four binding 

events between KsgA and the nascent ribosome is unknown.  Additionally, KsgA is 

subject to more complex regulation than the Erm enzymes, which is possibly the result of 

an allosteric mechanism triggered by binding of KsgA to the partially formed 30S; such a 

mechanism would presumably involve RNA/enzyme contacts outside of the helix 45 

region. Any or all of these extra functional constraints in KsgA might require altered or 

additional interactions with helix 45 and/or other regions of the 16S rRNA.   

Mutational analysis 

 Using the structure of KsgA in combination with sequence alignments and 

mutational studies of related proteins, we chose eight residues in the catalytic core of KsgA 

for analysis (Figure 29). E66 is one of the most highly conserved residues in SAM-

dependent methyltransferases; an acidic residue at this position is even found in the 

Rossman fold proteins, highlighting the importance of this residue in binding the adenosine 

moiety of SAM/NAD(P) in these enzymes98, 99. D91 is also predicted to be important for 

binding of SAM in the active site of KsgA. N113, P115, and Y116 are located in the 

highly conserved Motif IV. N113 has been proposed to be important for catalysis, and is 

located between the SAM and adenosine binding pockets. Y116 forms the floor of the 

adenosine-binding pocket and may help stabilize the adenosine into the pocket via stacking 

interactions. F181, P183 and P185, in Motif VIII, form the side wall of the adenosine-

binding pocket; like Y116, F181 is proposed to interact with the target adenosine via 

stacking. Each of these residues was mutated to alanine, and Y116 and F181 were also 

mutated to tryptophan. In addition, the double mutant Y116A/F181A was constructed.  
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Figure 29. Mutated residues in the active site of KsgA. The side chain 
of Y116 is not shown because it was not present in the electron density. 
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In vivo and in vitro analyses were performed as described in Chapter 2 (Figure 30). Most 

of the mutations studied have little to no effect on in vivo activity (Figure 30a), despite the 

generally high level of conservation of the mutated residues. Four notable exceptions are 

E66A and, to a lesser extent, D91A, Y116A, and Y116A/F181A. The E66A mutant has 

minimal activity in vivo, with an MIC close to that of the empty vector. D91A has 

impaired activity, but is able to restore some kasugamycin sensitivity to the bacteria. Both 

Y116A and Y116A/F181A have moderate activity in vivo. The N113A and F181A 

mutations are fully functional in our in vivo assay system. Mutation of P115, P183 or P185 

to Ala has little to no measurable effect on in vivo activity. The conservative Y116W and 

F181W mutants had divergent effects. Y116W retained more activity than Y116A; this 

mutation resulted in near wild-type activity.  F181W, conversely, has lower activity than 

F181A, possibly because of steric clashes involving the bulky Trp side chain; we did not 

study this mutant further. 

Interpretation of the in vivo results alone is not quite straightforward. Although 

KsgA dimethylates two adenosines, at A1518 and A1519, the methylation status of A1519 

seems to be the major determinant of resistance/sensitivity to kasugamycin. Mutation of 

A1518, and subsequent loss of dimethylation at this position, does not confer kasugamycin 

resistance155 (Table 7). Mutation of A1519, on the other hand, leads to kasugamycin 

resistance comparable to that seen in ksgA- cells. Therefore, partial methylation by a KsgA 

mutant could still lead to kasugamycin sensitivity. In addition, there are other potential 

intermediate patterns of methylation which have not been correlated with 

resistance/sensitivity (Table 7). For this reason, the in vivo assay can be used qualitatively  
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Figure 30. Activity of active site mutants. (a) In vivo activity as measured 
by kasugamycin resistance/sensitivity. (b) In vitro activity normalized to 
wild-type. Experiments were performed in triplicate; error bars represent 
standard deviation. 
 

 

 

(a) 

(b) 
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Table 7. Phenotypes produced by partial methylation of A1518 and A1519. 
1518 1519 Phenotypea 
** ** S 
- ** S 
- - R 

** - R 
* - nd 
- * nd 
* * nd 
* ** nd 

** * nd 
aS=ksg sensitive; R=ksg resistant; nd=not determined. 
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but is not a quantitative measure of the level of methylation produced by mutant KsgA 

proteins. Therefore, in vitro analysis was used to assess methylating activity of the KsgA 

mutants. Results were expressed as percent of wild-type methylation (Figure 30b). E66A is 

severely impaired, showing almost no methylation after one hour. This is in good 

agreement with the in vivo data showing almost complete loss of activity. D91A and 

Y116A show a similar loss of function in vitro despite having some activity in vivo. The 

Y116W mutant retains some function, with methyl transfer approximately 50% of wild-

type. Interestingly, the Y116A/F181A double mutant shows significantly higher activity 

than the Y116A mutant, although still only approximately 25% of wild-type. N113A is 

about 65% as active as wild-type KsgA, and P185A retains about 85% activity. P115A, 

F181A and P185A show high activity in vitro which is not significantly different than 

wild-type, and which agrees with their high activity in vivo.  

These results are somewhat surprising in view of mutagenesis studies on related 

enzymes such as ErmC’ and M.TaqI. Most surprising are the results of the F181A 

mutation. The equivalent mutation was highly deleterious in M.TaqI144, and was only 

poorly active in ErmC’143. Conversely, the F181A mutation in KsgA had activity 

comparable to wild-type both in vivo and in vitro. This residue, along with Y116, is 

postulated to be important for stabilization of the target base via stacking interactions; 

clearly, any such interaction involving F181 does not contribute significantly to KsgA 

activity. Also surprising was the in vitro activity of the Y116A/F181A double mutant. 

Although this mutant was only 25% as active as wild-type, it is difficult to understand how 

it could have any activity at all, especially given that the Y116A single mutant was 
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inactive in vitro. Finally, the activity of the N113A mutant was unexpected based upon 

comparisons with other enzymes. N113A showed wild-type activity in vivo and only a 

moderate loss of activity in vitro. The equivalent mutations in DNA methyltransferases 

generally results in significant loss of function139-142; in ErmC’, the N101A mutation was 

inactive in vivo and barely active in vitro143. This residue is thought to be important for 

catalysis, but it seems to be mostly dispensable for KsgA activity. 

Conclusions 

 KsgA is the only rRNA post-transcriptional modification enzyme that appears to be 

universally conserved in all three domains of life, a conservation that extends into 

mitochondria and chloroplasts77-80, 86. Here we report the 2.1 Å crystal structure of KsgA. 

This structure has helped direct mutational analysis and will aid in the probing of 

interactions between the enzyme and its substrate and target molecules. Extensive 

sequence alignment of KsgA orthologs from a wide range of organisms has identified 

residues that are highly conserved among species. Inclusion of eukaryotic orthologs such 

as Dim1 and h-mtTFB, which perform additional functions, emphasizes these conserved 

regions but also highlights variations. Alignments with related homologs, such as ErmC’, 

identify both residues that are conserved between enzyme families and those that have 

diverged. The former group includes residues that are important for the common function 

of adenosine dimethylation, including the canonical SAM-binding site, while the latter 

may help identify residues that confer target specificity and diversity of function between 

enzymes.  
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Mutational analysis of KsgA reveals a surprising tolerance for mutation, even of 

highly conserved residues. The residues that were most important for enzyme activity are 

important for SAM binding (E66 and D91) and target base stabilization (Y116). 

Mutagenesis data also exist for the eukaryotic orthologs Dim1 and h-mtTFB85, 86, and the 

KsgA structure will add to our understanding of these mutations and their consequences 

for enzyme function.  

 The three-dimensional structure of KsgA bears strong resemblance to those of 

ErmC', hDim1, and sc-mtTFB. All four proteins share a similar architecture and topology. 

All four have a region of high positive charge in the cleft between the N- and C-terminal 

domains; this region has been implicated in binding of ErmC' to its substrate RNA. This 

bolsters evidence that sc-mtTFB may bind RNA106. KsgA, hDim1 and ErmC’ have well-

formed, highly negatively charged pockets in the N-terminal domain which correspond to 

residues known to be involved in SAM binding. This pocket, and the associated negative 

charge, are absent in the sc-mtTFB three-dimensional structure, and this enzyme probably 

cannot bind SAM. Notably, S. cerevisiae mitochondrial ribosomes are not dimethylated on 

the analogous adenosines124. Sequence inserts characteristic of the Dim1 family and of the 

mtTFB family are seen in the hDim1 and sc-mtTFB structures relative to the KsgA 

structure. These inserts may prove fruitful for future studies of the rRNA processing and 

transcription factor functions that have been acquired by these protein lineages. 

 This similarity of the SAM-binding pockets of KsgA and ErmC' might have 

implications in the design of Erm inhibitors. Antibiotic resistance mediated by Erm 

enzymes has stimulated a search for compounds that can inhibit Erm activity and thus 
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restore sensitivity to resistant bacteria156-158. Many of these candidate inhibitors act by 

binding to the SAM binding site of the enzymes157, 158. Specificity has been tested by doing 

parallel inhibition experiments with other methyltransferases, such as catechol-O-

methyltransferase (COMT), a eukaryotic enzyme, and EcoRI, a prokaryotic 

methyltransferase156, 157. However, despite sharing the same methyltransferase fold, these 

enzymes are not very closely related to the Erm enzymes. COMT is a small molecule 

methyltransferase and EcoRI is a DNA methyltransferase. KsgA and Dim1 are much more 

closely related to the Erms, and KsgA and ErmC' may share a nearly identical SAM 

binding pocket. This raises the possibility that Erm inhibitors that block the SAM-binding 

site could also interfere with KsgA function and perhaps with Dim1 function. The latter 

possibility could be a potential mode of toxicity for Erm inhibitors which act by blocking 

the SAM binding site. 

Despite the high degree of structural similarity between KsgA and ErmC', KsgA 

has unique features which distinguish it from the Erm methyltransferases. While the Erm 

methyltransferases mono- or dimethylate a single adenosine in 23S rRNA, KsgA 

dimethylates two adenosines in 16S rRNA. It is clear from the structure that the active site 

pocket is not large enough to accommodate two adenosines simultaneously. This raises 

questions about KsgA's binding to its substrate RNA. Binding may occur only once, in 

such a way as to allow both nucleotides to flip into the active site successively. 

Alternatively, KsgA may bind in two different places, either in separate binding events or 

by moving along the helix, allowing each adenosine separate access to the active site. A 

related question involves the order of methylation, if any.  
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 KsgA is subject to a complex regulation which is absent in the Erm enzymes. 

ErmC' can methylate RNA substrates as small as 32 nucleotides97. KsgA can bind to 16S 

rRNA46, and to a small fragment of 16S which contains the target adenosines159, but does 

not methylate naked 16S44, 45. KsgA requires 16S plus a defined subset of ribosomal 

proteins in order to be enzymatically active45. These observations suggest that the enzyme 

is allosterically regulated in some way, with at least partial assembly of the 30S required to 

trigger activity. It has been suggested that this trigger involves SAM binding. Poldermans 

et al. reported that SAM binds to KsgA so weakly that it is neither retained by the enzyme 

on a nitrocellulose filter nor does it move with the enzyme on a Sephadex G-25 column47. 

They suggested that SAM will only bind to KsgA upon interaction of the enzyme with 

fully or partially formed 30S subunits. The crystal structure of KsgA provides some 

support for this possibility. The asymmetric unit consists of two monomers in slightly 

different conformations. One of these, the B chain, seems unlikely to bind SAM due to 

steric hindrance by P115 and compression of the binding pocket. Both conformations 

contain a recognizable SAM-binding pocket, but the pocket is compressed in the B chain 

monomer in such a way that the remaining space is not large enough to accommodate a 

SAM molecule. If both conformations are biologically relevant then it is possible that the 

enzyme exists in the B form until binding of a competent substrate, at which point a 

conformational change to the A form is triggered that will allow SAM to enter its binding 

pocket. 

 Understanding of KsgA’s regulation may also lend insight into the temporal 

disconnect between the two functions of Dim1. Dim1 is involved in early cleavage steps of 
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pre-rRNA, but does not dimethylate its target adenosines until late in the ribosome 

maturation process83. If Dim1 is regulated in a manner analogous to KsgA, this could 

explain how it performs its two functions at widely separated points in ribosome 

biogenesis, binding to the pre-rRNA to ensure proper cleavage but remaining 

enzymatically inactive until a subset of ribosomal proteins have assembled onto the 

maturing 40S subunit.  

Experimental 

Crystallization 

 Crystals were obtained by the hanging-drop vapor-diffusion method using a variety 

of conditions. Initial screening was done using Crystal Screens 1 and 2 from Hampton 

Research (Laguna Niguel, CA, USA). While none of these conditions produced crystals, 

we noted a strong solubility dependence on the presence of calcium acetate or magnesium 

acetate. This prompted us to investigate other divalent salts in a screen which closely 

resembled the Hampton Research PEG/Ion Screen. Needle showers were obtained with 

0.2M calcium acetate and 20% w/v PEG 4000. Conditions were refined by optimizing the 

amount of PEG 4000 with a constant concentration of 0.2M calcium acetate. Generally, 

crystals took 3-4 four days to grow at room temperature, but on occasion crystal growth 

required as long as week.  Some crystals grew singly, but most often they grew as clusters 

of two to three crystals, which could be separated to yield single crystals.  A single heavy 

atom derivative was obtained by adding an equal volume of the precipitant solution 

saturated with potassium uranyl fluoride to a crystallization drop containing KsgA crystals. 

Crystals were soaked in this solution for three hours prior to data collection. 
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 A single poor quality crystal was also obtained with 0.2M magnesium acetate and 

20% w/v PEG 4000, and needle showers occurred with 30% or 40% ammonium sulfate 

and 0.1M NaPO4, pH 8.0. These conditions were not optimized as we had already obtained 

several high quality crystals using PEG 4000 and calcium acetate. 

Crystallographic analysis and structure determination 

Crystals were cryoprotected by gradually increasing the amount of PEG 4000 to a 

final concentration of about 30% (w/v).  Crystals were mounted in a nylon loop and cooled 

to 98 K in a stream of N2 gas.  Diffraction sets on the native and uranyl soaked crystals, 

covering 230° and 400° respectively, were collected as 2° oscillation frames on an R-AXIS 

IIC image plate detector using CuKα radiation from a rotating anode generator operating at 

50 kV and 100 mA with Osmic confocal optics. Data integration, merging and scaling 

were performed with the HKL suite160.   

 Initial SIRAS phases were calculated from data obtained on the native and 

potassium uranyl fluoride crystals. Heavy atom positions were refined and initial phases 

were determined using SHARP161 followed by density modification using Solomon162 as 

implemented in the SHARP suite. An initial model consisting of approximately 80% of the 

backbone was automatically traced with the ARP/wARP program163. The initial model was 

refined using several cycles of manual rebuilding into SIGMAA weighted 2mFo-dFc and/or 

composite omit maps164 with Xfit165 followed by simulated annealing in CNS166. In the 

final cycles, simulated annealing was followed by TLS refinement167 and geometry 

restrained conjugate gradient maximum likelihood refinement in REFMAC version 

5.1.24168. For each monomer, two TLS groups were defined consisting of residues 17-195 
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and 203-268, corresponding to the N-terminal and C-terminal domains. All refinements 

were carried out without NCS restraints since attempts to introduce NCS restraints 

between the two monomers resulted in significant increases in both Rwork and Rfree. Model 

quality was monitored via the use of PROCHECK169 and WHATCHECK170. Local 

structural errors were identified with the aid of OOPS2171 coupled with O172 prior to 

manual rebuilding with Xfit. No Ca2+ was found in the structure. 

 Charged surfaces for hDim1 (1ZQ9), ErmC' (1QAM), sc-mtTFB (1I4W) and KsgA 

were calculated using the DELPHI module of the InsightII package (Accelrys, Inc., San 

Diego, CA). In these calculations a protein formal charge set was used in which only Lys, 

Arg, Asp and Glu residues were assumed to be charged. Volumes of active site cavities for 

ErmC' and KsgA were calculated using the CASTp server (cast.engri.uic.edu). Active site 

cavities identified by the CASTp server were visualized as molecular surfaces with the aid 

of the Access program from the Ribbons package173. 

Mutagenesis 

 Primers were constructed which contained the mutations of interest flanked by 15-

20 bases of wild-type sequence (Table 8).  Mutagenesis was performed using the 

Stratagene QuikChange Kit according to the manufacturer’s protocol. Briefly, wild-type 

plasmid was denatured and the primers were annealed and extended by thermal cycling 

with PfuTurbo DNA Polymerase (Stratagene).  DpnI (Stratagene) was used to digest the 

parental (non-mutant) DNA, which is naturally dam methylated.  The mutated DNA is not 

dam methylated, and thus is not susceptible to digestion by DpnI.  The resulting plasmids 

were transformed into E. coli XL1-Blue cells and mutants were confirmed by sequencing.   
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Table 8. Primers for active site mutants 
Mutant Primer 
E66A 5’-CTG ACG GTC ATC GCA CTT GAC CGC GAT C-3’ 
D91A 5’- GAC GAT TTA TCA GCA GGC GGC GAT GAC CTT TAA CTT TGG-3’ 
N113A 5’- GCG TGT TTT CGG CGC CCT GCC TTA TAA CAT CTC C -3’ 
P115A 5’- TCG GCA ACC TGG CGT ATA ACA TCT CCA CGC CGT TG -3’ 
Y116A 5’- TTC GGC AAC CTG CCT GCG AAC ATC TCC ACG CCG -3’ 
Y116W 5’- TCG GCA ACC TGC CTT GGA ACA TCT CCA CGC C -3’ 
F181A 5’- GTA CCG CCG TCA GCC GCG ACA CCA CCA CCC -3’ 
F181W 5’- CCG CCG TCA GCC TGG ACA CCA CCA CCC -3’ 
P183A 5’- CGT CAG CCT TTA CAG CAC CAC CCA AAG TGG -3’ 
P185A 5’- CCT TTA CAC CAC CAG CCA AAG TGG ATT CCG C -3’ 



95 

Protein expression and purification 

Proteins were expressed and purified as in Chapter 2. 

Activity assays 

In vivo activity assays were performed as in Chapter 2. In vitro assays were performed as 

in Chapter 2, except that reactions were performed in a volume of 50µl and the entire 

reaction was stopped at sixty minutes. Reactions contained 10 pmol protein. 

Generation of molecular figures 

The modeling software package Ribbons173 was used in the construction of Figures 

17, 18a, and 25-27, which were rendered using the software package Povray 

(www.povray.org). The molecular visualization program PyMOL (www.pymol.org) was 

used in the construction of Figures 19-21, 24, and 28.
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KsgA/30S Interaction 
 

KsgA has a complex interaction with 30S subunits. The protein can bind to free 

16S, but is not enzymatically active unless the 16S has bound at least a subset of ribosomal 

proteins; however, the basis for this regulation remains unknown. To gain a better 

understanding of KsgA’s activity, we needed to study its binding to the 30S substrate. 

Since KsgA can bind to 16S rRNA, and since there are no ribosomal proteins in the 

immediate area of helix 45, we can presume that KsgA’s binding to 30S is determined 

solely by the RNA. van Gemen et al. showed that KsgA binds to the colicin fragment of 

16S rRNA159, which consists of the 49 3’-terminal nucleotides; this fragment includes 

helix 45 and flanking sequences. Based on this data, the common belief was that KsgA 

binding is localized to the stem of helix 45. This assumption was strengthened by 

experiments with the closely related ErmC’ homolog (see Figure 27). However, upon 

further consideration, this binding model is inadequate. First, there is the problem of helix 

45 accessibility. In the 30S structure, the loop of helix 45 is tucked into the base of helix 

44, and the stem of helix 45 is not exposed (Figure 31). Although KsgA can methylate a 

pre-30S particle, and thus may normally act at a point during subunit maturation at which 

helix 45 is not buried, KsgA is able to methylate 30S subunits, and must have access to its 

binding site in this context. Also, if KsgA is bound to helix 45 as shown in Figure 27, it is 

difficult to understand its ability to dimethylate both adenosines in the loop of the helix. If  
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Figure 31. Helix 45 inaccessibility. Helix 44 is shown in orange, helix 45 in 
magenta, and A1518 and A1519 are cyan. 
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binding were optimized for access of one adenosine into the binding pocket, then the other 

adenosine would seem less likely to have access to the pocket. Two equally unsatisfactory 

alternatives are that binding is such that both adenosines can reach the pocket, although 

probably not in an optimal way, or that there are two separate binding interactions on helix 

45, so that each adenosine can be methylated.  

In order to get a clearer picture of KsgA’s interaction with 30S, we used a powerful 

technique called directed hydroxyl radical probing in combination with primer 

extension174, 175. This approach has been used successfully to model interaction of the 30S 

subunit with ribosomal proteins174, 176-181, with elongation factor182, with release factor183, 

with initiation factor184, and with ribosome recycling factor185. Directed hydroxyl radical 

probing of 16S rRNA has allowed us to model the interaction of KsgA with the 30S 

subunit. This model sheds light on KsgA’s substrate requirements, and may also help 

explain the temporal separation of Dim1’s two functions in eukaryotic ribosome 

biogenesis.  

Hydroxyl radical probing 

In order to probe the RNA with hydroxyl radicals, an Fe(II) is first attached to a 

single cysteine residue in the protein. KsgA naturally contains two cysteine residues, at 

positions 168 and 258. We mutated C258 to alanine, leaving the protein with a single 

cysteine at residue 168 (C168). We then mutated C168 to alanine to produce a mutant with 

no cysteine residues (Cys-less), which was used as a control; we used the double mutant to 

construct KsgA proteins with a single cysteine residue at positions 154, 182, 219 and 231 

(C154, C182, C219, C231). These residues were chosen based on three criteria. First, they 
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are all surface-exposed and accessible to solvent. Second, none of these residues are highly 

conserved, so we didn’t expect mutations at these positions to affect protein activity. Third, 

we wanted residues that were widely spaced in the protein’s structure, so that we could 

maximize the amount of non-redundant information gained. All of these mutants except 

C219 were fully active in our in vivo activity assay (Figure 32); we discontinued work on 

the N219C mutant. Figure 33 shows the four single-cysteine KsgA mutants C154, C168, 

C182, and C231. Mutant proteins were shown to be soluble and purified to homogeneity as 

in Chapter 2.  

 Fe(II) derivatization, hydroxyl radical probing, and primer extension were 

performed by Zhili Xu, under the direction of Dr. Gloria Culver. The Fe(II) moiety was 

tethered to each cysteine residue via a flexible linker, 1-(p-bromoacetamidobenzyl)-EDTA 

(BABE) and the derivatized proteins were incubated with 30S subunits to allow complex 

formation (Figure 34). Upon addition of H2O2, and in the presence of ascorbic acid, 

hydroxyl radicals were generated in the area of the Fe(II) by Fenton chemistry. These 

radicals cleave the surrounding RNA backbone; since the radicals are short-lived, the 

cleavage is localized to areas of the RNA in close proximity to the Fe(II), and therefore to 

the cysteine residue. After cleavage the RNA was extracted from the 30S subunits, 

annealed with labeled primers, and subjected to primer extension reactions (Figure 35). 

The extension products were separated on a gel, and cleavage sites calculated based on the 

length of the extension products. Figure 36 depicts representative cleavage patterns 

produced by each cysteine mutant. Bands on the gel correspond to extension stops; 

comparison with uncleaved RNA (Cys-less) differentiates stops due to cleavage events
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Figure 32. In vivo activity assay of cysteine mutants. 

 



101 

 

 

Figure 33. Cysteine mutants. Backbone atoms of residues which were mutated to cysteine 
are shown as spheres. C154 is red, C168 is blue, C182 is orange, and C231 is green. 
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Figure 34. Hydroxyl radical probing. Proteins containing a singles cysteine 
residue are constructed (a), and Fe(II) is attached to these proteins via a 
flexible linker (b). The proteins are incubated with 30S (c) to allow complex 
formation. Hydrogen peroxide is added and generates hydroxyl radicals, 
which cleave the rRNA backbone. 
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(a) 

(b) 

Figure 35. Primer extension. Cleaved RNA (a) is annealed to labeled primers (b). 
The primers are extended using free nucleotides and RNA polymerase. Extension 
products are separated by gel electrophoresis as in Figure 36. 
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Figure 36. Representative primer extension. Each of the four gels represents an 
extension reaction using a different primer. 
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 from those resulting from secondary structure. Portions of the RNA backbone which are in 

close proximity to the Fe(II) will be cleaved more often than positions which are further 

away; more cleavage events occurring at a particular site correspond to a heavier band on 

the gel. 

Binding model 

The first step in building our model was to visualize the cleavage sites within the 

context of the 30S subunit. Figure 37 graphically depicts the cleavage patterns produced by 

the four Fe(II) positions (attached to residues 154, 168, 182 and 231). Larger spheres 

represent stronger primer extension stops, indicating closer proximity to the Fe(II). The 

colors correspond to the positions of the four single cysteines (Figure 33). Using these 

cleavage patterns, we manually docked KsgA onto the 30S subunit. Docking was done in 

such a way as to position each cysteine in proximity to its resultant cleavages. The model 

was built to maximize favorable intermolecular contacts between KsgA and the 30S. 

Consideration was also given to placing the target adenosine binding pocket in the closest 

proximity to A1518 and A1519 possible while maintaining a minimum of steric clash. In 

an effort to achieve the best possible interface between KsgA and 30S, the two domains of 

KsgA were moved independently: the entire KsgA protein was docked optimizing the 

interface of the N-terminal domain, then the C-terminal domain was moved to refine its 

interface with 30S.  Overall, this dislocation of the C-terminal domain relative to the N-

terminal domain was modest and well within the range of motion known to be possible for 

KsgA131.  The final binding model is shown in Figure 38. The model demonstrates a mode 

of binding which does not rely on helix 45; rather, KsgA binding to the 30S subunit is
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Figure 37. Cleavage patterns produced by the four cysteine mutants. Colors correspond 
to Figure 33. Helix 45 is represented in magenta, with the target adenosines shown as 
magenta spheres. Blue spheres corresponding to cleavage by C68 are hidden by the 
orange spheres.  

180° 
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Figure 38. Model of KsgA binding to 30S. 16S rRNA is shown in yellow; 
ribosomal proteins are orange; KsgA is blue. 
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chiefly determined by interaction with helix 44. The cleavage data virtually exclude helix 

45 as a binding site for KsgA. 

A rotated, close-up view of KsgA, helix 45 and the proximal portion of helix 44 are 

shown in Figure 39. In our model, a long edge of KsgA is aligned with the long axis of 

helix 44 of 16S rRNA and encompasses a footprint extending from the G1497-C1404 

pairing to the G1482/A1418 pairing.  There is good shape complementarity between ksgA 

and helix 44 with alternating minor, major, and minor groove interactions.  

 The model also shows interactions with the loop of helix 45 and the loop of helix 

24a (the so-called 790 loop) of the central domain (Figure 40).  In neither case is the 

observed interaction satisfying.   In the first case, the helix 45 loop is buried into the minor 

groove of helix 44 in such a way that will undoubtedly require a significant rearrangement 

before A1518 and A1519 are brought close enough to the active site of KsgA to support 

methylation.  In the second case, the backbone region of A790 and G791 sterically clashes 

with amino acids 182, 183, and 184 of KsgA. 

The two above problems highlight the most significant shortcoming of our model.  

Namely, the 30S structure used in our docking is from the high Mg2+, translationally active 

conformation, whereas KsgA only operates on the low Mg2+, translationally inactive 

conformation48.  At present the latter conformational state has not been determined 

crystallographically.  However, chemical probing of the two states was done.  In that 

study, the authors pinpointed the residues that undergo conformation change in going from 

the high Mg2+ state to the low Mg2+ state.  Those changes are predominately located within  

the decoding region of 30S, mapping to helix 28 and the P-site52.  Other nearby locations 
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Figure 39. Interaction of KsgA (blue) with helix 44 (orange). Helix 45 is 
shown in magenta; the target adenosines are white. The dashed line in 
KsgA indicates the break between the two domains required for model 
building (see text). 
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Figure 40. Interaction of KsgA with helix 24a (blue) and helix 45 (green). 
Nucleotides 792-793 and 1518-1519 are highlighted. Helix 45 is shown in 
gray. 
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include the interface of the 790 loop and helix 45 loop with the A-site region of helix 44, 

and the interface between helix 27 and helix 44.  Movement of the 790 loop and the helix 

45 loop could relieve the clash present between KsgA and A790 and G791 and allow for 

the required disposition of A1518 and A1519 close to the active site of KsgA.  Indeed, 

A1518 and A1519 are known to be solvent exposed in the low Mg2+ state, but buried in the 

high Mg2+ state53, further supporting the idea that the loop of helix 45 is capable of 

significant conformational flexibility. 

Figure 41 highlights regions in KsgA that fit into the major and minor grooves of 

the helix. Residues 186 and 187 interact with the minor groove in close proximity to helix 

45. These residues are part of the very highly conserved Motif VIII, which helps form the 

adenosine binding pocket in other methyltransferases. In KsgA these residues are lysine 

and valine. The valine is conserved in all KsgA and Dim1 enzymes, and is also conserved 

in mtTFB1 enzymes. The lysine is conserved as a lysine or arginine in KsgA/Dim1, 

although not absolutely. K142 and E143 interact in the same part of the minor groove, just 

below K186 and V187. E143 is conserved in KsgA/Dim1/mtTFB1, while K142 is loosely 

conserved as a positively charged residue. None of these residues are conserved in 

mtTFB2 or mtTFB proteins. The loop consisting of residues 153-156 interacts with the 

major groove below helix 45. The presence of this loop is conserved in KsgA, Dim1 and 

mtTFB enzymes, although there is little sequence conservation in this region. This loop has 

been lost entirely in the Erm family of enzymes, which have evolved to bind to 23S rRNA 

instead of 16S. A third interaction is provided by a group of positive residues in the C-

terminal domain of KsgA, which interact with the minor groove below the 153-156 loop.  
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Figure 41. Interactions between KsgA and the major and minor grooves of helix 44. 
Labels refer to residues discussed in the text. 
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This group consists of R221, R222, K223 and R248. The presence of this cluster of lysine 

and arginine residues is preserved in KsgA/Dim1, even if the exact sequence of the 

residues is not conserved. 

Since the KsgA/30S binding interaction is conserved among disparate organisms, 

we would expect high conservation of the amino acid and nucleotide residues involved in 

binding, and any model of the interaction should display this conservation. Figure 42 

shows that the patterns of conservation in KsgA and helix 44 agree with our model. The 

most conserved region of helix 44 is the base of the helix, where it interacts with KsgA. 

The more distal portion of the helix is not very well conserved. Likewise, the most highly 

conserved residues in KsgA are found in the active site and along the face of the protein 

which interacts with 16S, and the least well conserved residues are on the side opposite 

RNA binding. Further validation of the model was given by the results of a gel-shift 

experiment. We constructed an RNA oligo corresponding to the region of helix 44 which 

should interact with KsgA (Figure 43). As shown in Figure 44, KsgA was clearly able to 

shift this oligo. A final piece of evidence comes from measurements of KsgA binding to 

30S subunits. Poldermans et al. showed that KsgA binds with similar affinity to both 

methylated and unmethylated subunits47. This demonstrates that the target adenosines are 

not determinants for KsgA binding. We have begun using Biacore experiments to 

corroborate this observation, and preliminary data show the two binding affinities to be 

comparable, with KD values of 7 nM and 4 nM for methylated and unmethylated subunits, 

respectively.  
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Figure 42. Conservation of residues in KsgA and helix 44. RNA conservation was 
adapted from the minimal ribosome modeled by Mears et al110; red denotes 
sequences which are greater than 98% conserved; orange denotes sequences which 
are 90-98% conserved; yellow denotes sequences which are less than 90% 
conserved. White denotes sequences which are present in less than 95% of 
organisms. KsgA conservation was measured by the Tcoffee program130 as strength 
of alignment of thirty-four KsgA, Dim1 and mtTFB1 sequences. Red denotes areas 
of strong alignment, and therefore high sequence conservation; orange sequences are 
moderately conserved; yellow sequences are poorly conserved. White denotes areas 
which are not conserved and thus do not align well. 
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Figure 43.  Helix 44 oligo design. (a). h44 oligo. (b) Base of helix 44. Slanted 
lines indicate where the base of the helix joins the rest of the rRNA; straight 
indicate the remaining portion of helix 44, which has been left out for clarity. 
Stars indicates modified nucleotides. (c) Binding model. The portion of helix 
44 corresponding to the h44 oligo is shown in orange. 
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Figure 44. Gel-shift assay with KsgA and h44 oligo. Lane 1 contains h44 
with no KsgA; lanes 2-6 contain increasing amounts of KsgA. 
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Conclusions 

Based on gel-shift analysis and directed hydroxyl radical probing, we have 

constructed a model of KsgA’s binding interaction with 30S, specifically with the base of 

helix 44. This interaction is mediated by numerous contacts between KsgA and the major 

and minor grooves of the helix. Notably, helix 45 does not contribute significantly to KsgA 

binding, and in fact would require a conformational rearrangement in order to bring the 

target adenosines into KsgA’s active site. We believe that the source of this rearrangement 

is the difference between translationally inactive and translationally active subunits. The 

model does not explain earlier observations that KsgA binds to the colicin fragment of 16S 

rRNA159, which contains helix 45 but not helix 44. However, it should be noted that this 

study found a KD value of 200nM for KsgA binding to the colicin fragment, which could 

be explained by a nonspecific binding interaction.   

Our binding model may explain KsgA’s requirement for some assembly of the 

subunit to occur before methylation, despite the fact that KsgA can bind to free 16S 

rRNA46. In this scenario, KsgA binds to pre-16S rRNA early in the ribosome assembly 

process. However, further maturation, including assembly of proteins S4, S6, S8, S11, and 

S15-S18, is required to bring helix 45 into a position where it is accessible from helix 44. 

A similar explanation may lie behind the temporal separation of Dim1’s two functions in 

eukaryotic ribosome biogenesis. Processing of the A1 and A2 cleavage sites requires early 

binding of Dim1 to the pre-rRNA, while methylation is a very late step in assembly, 

probably because of the delay in availability of the target adenosines to Dim1’s binding 

site. 



118 

Experimental 

Mutagenesis 

Mutagenesis was performed as in Chapter 3. Table 9 lists the primers used. 

Protein expression and purification 

Proteins were expressed and purified as in Chapter 2. 

Activity assays 

In vivo activity assays were performed as in Chapter 2. 

Hydroxyl radical probing 

Hydroxyl radical probing and primer extension were performed by Zhili Xu, under the 

direction of Dr. Gloria Culver, as described175. 

Model building 

The KsgA binding model was built manually using the program PyMOL 

(www.pymol.org). Pymol was also used in the generation of Figures 31, 33, 37-42, and 

43c. Structures used were 1QYR131 (KsgA) and 1J5E7 (30S). 
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Table 9. Primers for cysteine mutants. 
Mutant Primer 
C168A 5’- GTC ATG GCG CAA TAC TAT GCC AAT GTG ATC CCG GTA CTG G -3’ 
C258A 5’- CTC TGT CGC GCA ATA TGC CCA GAT GGC GAA CTA TCT GG -3’ 
S154C 5'- GCA GGA CCG AAC TGC AAA GCG TAT GGT CG -3' 
T182C 5'- CCG CCG TCA GCC TTT TGC CCA CCA CCC AAA GTG -3' 
N219C 5'- CCA CCG AAG CCT TTT GCC AGC GTC GTA AAA CAT TCG -3 
N231C 5'- CGT AAC AGC CTC GGC TGC CTG TTT AGC GTC G -3' 
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Ongoing and future work 
 

The KsgA/Dim1 proteins are intimately involved in ribosome biogenesis, a process 

that is fundamental to cellular life. These proteins play a role important enough to have 

been carried along throughout all of evolution. We have characterized this family of 

proteins structurally and biochemically, and have explored their conservation. KsgA 

proteins from distinct evolutionary kingdoms can function in a bacterial system, 

demonstrating a common conservation of both the protein and the key structures of the 30S 

subunit. The next question to ask is whether diverse orthologs can function in a eukaryotic 

system. Eukaryotic Dim1 enzymes are vital for pre-rRNA processing in addition to their 

methyltransferase function. The genesis of this second function is unknown; it is possible 

that bacterial KsgA enzymes have the potential to mediate these pre-RNA cleavage steps, 

and that this is not a “new” function but is rather an undiscovered role played by all 

KsgA/Dim1 enzymes in ribosome biogenesis. Our lab is currently exploring this question 

by two separate approaches. First, we are investigating the ability of the bacterial KsgA 

and the archaeal Dim1 to complement for ScDim1 knockout in yeast. These experiments 

will tell us if evolutionarily distinct orthologs are competent for either or both of Dim1’s 

functions in a eukaryotic system. If KsgA can methylate yeast 40S, that will be further 

evidence of conservation of structural cues recognized by these enzymes. If KsgA can 
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complement for Dim1’s processing function, that would suggest similar processing steps in 

bacterial rRNA maturation. Bacterial and eukaryotic ribosome biogenesis are thought to 

follow very different pathways; evidence of similarities in major assembly steps would be 

very exciting. 

Another ongoing project, which we are performing in collaboration with Dr. Gloria 

Culver’s lab, is an in-depth examination of KsgA in bacterial ribosome maturation. 

Although Leveque et al. showed that KsgA is not strictly essential57, we have hypothesized 

that KsgA may be required under non-optimal conditions such as low temperature. Dr. 

Culver is currently performing experiments with a ksgA- knockout strain, looking for 

effects of knockout aside from lack of methylation at A1518 and A1519. 

Mutation of active site residues had surprisingly little effect on KsgA activity. We 

are currently performing kinetic experiments on these mutant proteins to uncover subtle 

effects on activity, and to help explain the defects in activity that we did see with a few 

residues. The most deleterious mutations were of residues important for SAM binding 

(E66A and D91A) and for target adenosine binding (Y116A). We predicted that mutation 

of N113 would have a large effect, based on analysis of related methyltransferases. This 

residue has been proposed to be important for catalysis, possibly by accepting a proton 

from the target amine, thereby increasing its nucleophilicity. However, the N113A 

mutation had only a moderate effect on activity. Further work is needed to elucidate the 

role of this residue in the methyl transfer, and to understand details of the enzyme’s 

mechanism. The F181A mutation also showed unexpectedly high activity. In other 

methyltransferases, this residue, along with Y116, is important for stabilization of the 



122 

target adenosine. However, in KsgA, only Y116 seemed to be important for activity. This 

might suggest a slightly different mode of adenosine binding in KsgA, a possibility which 

we would like to explore crystallographically. Planned experiments include crystallization 

of KsgA with adenosine and adenosine analogs in an attempt to solve the structure of the 

target adenosine bound into the active site.  

Another outstanding question we would like to address involves the order (if any) 

of methyl transfer. Kinetic studies of wild-type and mutant KsgA proteins may help us 

probe KsgA’s mechanism. A combination of techniques will be used to study the methyl 

transfer in detail. By stopping methylation reactions at early time-points, we can obtain 

snapshots of partially methylated intermediates. HPLC analysis will allow us to determine 

amounts of mono- and dimethylated adenosine; and primer extension will help pinpoint 

which of the two target residues is methylated, since primer extension reactions will not 

read through the modified bases. These three methods used in concert should reveal 

whether the two adenosines are methylated in a specific order, or if the four methyl groups 

are transferred randomly. 

Our model of the binding interaction between KsgA and 30S illuminates aspects of 

KsgA’s activity. This model helps explain KsgA’s complex substrate requirements, and 

may account for the temporal disconnect between Dim1’s rRNA processing and 

methylation functions in eukaryotes. We are currently using this model to direct mutational 

studies, in order to test potential RNA-binding residues in KsgA. Given the large contact 

area between KsgA and helix 44, we expect that drastic mutations will have to be made in 

order to have a significant impact on binding. We would also like to characterize the 
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interaction by NMR and/or X-ray crystallography. We are performing preliminary NMR 

experiments, with the ultimate goal of solving the structure of a KsgA/helix 44 complex, 

using the h44 oligo described in Chapter 4. Future work will consist of crystallographic 

experiments using KsgA bound to the 30S subunit. Results from these structural studies 

will help define binding on a molecular basis, identifying specific amino acid and 

nucleotide residues which mediate the binding interaction. 

The work presented here represents a substantial contribution to the KsgA 

literature, and to the ribosome field in general. We believe that the KsgA/Dim1 family is 

an important factor in the ribosome assembly process in all kingdoms of life, and that a 

better understanding of these enzymes will lead to a more thorough understanding of 

ribosome biogenesis in molecular detail.
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