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SEGMENTATION AND FRACTURE DETECTION IN X-RAY IMAGES FOR
TRAUMATIC PELVIC INJURY
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Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2010

Major Director: Kayvan Najarian
Associate Professor, Department of Computer Science

Due to the risk of complications such as hemorrhage, severe pelvic trauma is associated with a

high mortality rate. Prompt medical treatment is therefore vital. However, the complexity of the

injuries can make successful diagnosis and treatment challenging. By generating predictions and

recommendations based on patient data, computer-aided decision support systems have the poten-

tial to assist physicians in improving outcomes. However, no current system considers features

automatically extracted from medical images. This dissertation describes a system to extract di-

agnostic features from pelvic X-ray images that can be used as input to the prediction process;

specifically, the presence of fracture and quantitative measures of displacement.

Feature extraction requires prior identification of separate structures of interest within the

pelvis. The proposed system therefore incorporates a hierarchical segmentation algorithm which is

xi



able to automatically extract multiple structures in a single pass, using a combination of anatomical

knowledge and computational techniques such as directed Hough Transform. This algorithm also

applies a novel Spline/ASM segmentation method which combines cubic spline interpolation with

a deformable model approach which maintains curved contours and provides local control over

segmentation. In order for the proposed system to be used as a component in a computerized deci-

sion support system, segmentation is designed to be entirely automatic. Furthermore, Spline/ASM

is suitable for many other segmentation applications where the objects of interest show curved con-

tours. After successful segmentation, fracture detection is performed on the pelvic ring and pubis

structures, using an algorithm based on wavelet transform, anatomical information and boundary

tracing. A method is also developed to calculate quantitative measures of symphysis pubis dis-

placement that may indicate pelvic instability and prove useful in identifying fracture patterns.

Finally, X-ray features are combined with patient demographics and physiological scores for gen-

eration of predictive rules for injury severity, with promising current results. This indicates the

potential diagnostic value of the extracted features, and in turn the usefulness of the proposed

radiograph analysis component in a larger decision support system.

xii



Executive Summary and Contributions

Due to its strong association with traffic accidents, pelvic trauma affects a relatively young age

range. It is also challenging to treat, and poses both a high mortality rate and the risk of life-long

disability among survivors. Complications such as hemorrhage can quickly prove fatal, making

early stabilization of patients vital in improving outcomes. Computer-aided decision support sys-

tems can assist surgeons and physicians in this task by generating treatment recommendations and

outcome predictions, based on rapid extraction of key features from the large volume of data avail-

able for an individual patient. However, current decision-making systems for trauma are limited

in scope and the variables they consider. Crucially, they do not consider the diagnostic importance

of medical imaging. This dissertation describes a framework for automated processing of pelvic

X-ray images which includes:

1. A novel extension to the Active Shape Model algorithm commonly used in radiograph pro-

cessing, which incorporates the use of controlled spline interpolation to maintain curved

contours and emphasize structure integrity. This is explained in Chapter 3.

2. A hierarchical initialization algorithm that performs automatic segmentation of multiple pelvic

structures in a single pass, using the output from one step as input to the next. This is

explained in Chapter 3.4

3. A method to detect fractures of the pelvic ring and horizontal fractures of the pubis and ischium

using windowing and the Stationary Discrete Wavelet Transform. Details are provided in

xiii



Chapter 5.

4. A method to automatically calculate quantitative measures of displacement based on the results

of structure segmentation, which provides useful input to model generation and has potential

use in identification of injury patterns. This is also explained in Chapter 5.

5. A rule-generation method that combines the extracted image features with other patient infor-

mation such as demographics and physiological measures to predict injury severity. More

details can be found in Chapter 7.

The proposed system is designed as a key component of a larger decision-making system for

trauma, allowing rapid extraction of image features that may be missed by visual inspection or that

may prove time-consuming to manually calculate, and representing them in a form suitable for use

in predictive modeling. However, it has potential use as a system in its own right, particularly in

remote areas where advanced resources and equipment may not be available. Furthermore, the

framework of fracture detection can be applied to other body regions, and potentially adapted

for industrial applications where X-ray images are widely used. Finally, the developed combined

Spline/ASM algorithm has value beyond the field of medical image segmentation, as it can be

applied to detection of any object with curved contours.
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CHAPTER 1 Introduction

1.1 Traumatic Pelvic Injury and Decision Support Systems

Fractures of the pelvis are among the most severe injuries that can be suffered by a major trauma

patient, with the most severe cases typically occurring in the context of high-energy impact injuries

such as those incurred in motor vehicle collisions (MVCs) [5]. They are therefore associated with

a younger demographic and polytrauma (i.e. traumatic injuries to multiple areas of the body).

Various studies have estimated that 50−60% of pelvic trauma cases are due to MVCs, rising to 65−

75% if car-pedestrian accidents are included [65]. High-energy trauma is becoming increasingly

common; in 1986, one study reported that over 300 patients with pelvic fracture were seen in a

three year period at the University of Maryland Trauma Shock Center [74], and this number has

doubtlessly risen in the ensuing years.

Since pelvic fracture can lead to laceration of the surrounding organs and vascular structures,

patients are at high risk of complications, which are responsible for the majority of deaths in

pelvic trauma (as opposed to the original injury itself) [23]. The most common complication

is hemorrhage. Patients with hemorrhagic shock have an estimated mortality rate of between

36 − 54% versus the 5.6 − 9.5% associated with general pelvic fracture [65]. In such cases,

the patient may die from the hemorrhage itself, via exsanguination and shock, or due to other

conditions resulting from hemorrhage such as severe infection [6]. More specifically, one survey

of multiple studies found that mortality among hemodynamically unstable patients with closed

1
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pelvic fractures stands at an average of 27%, increasing to an average of 55% for those with open

pelvic fractures [27]. These deaths typically occur within the first 24 hours of injury, making early

identification of at-risk patients crucial in improving outcomes [17]. Example predictors include

physiological response to resuscitation, pelvic hematoma as seen on computed tomography (CT)

scans, and pelvic fracture patterns presented in X-ray radiographs [23, 45]. Prompt recognition of

these patterns has been shown to allow early and effective stabilization [12].

However, due to the complexity of the injuries and the many variables involved, as well as the

high pace and pressure in a trauma center environment, quick and accurate diagnosis and treat-

ment presents a challenge to physicians. This has led to considerable interest in the development

of computer-assisted decision making systems - or decision support systems - which can analyze

large volumes of patient information in a very short time to generate recommendations for treat-

ment and predictions of patient outcome.

As well as potentially improving outcomes and resource allocation, these systems may also re-

duce the overall cost of care, which is severely impacted by inaccurate diagnoses. This was demon-

strated in a study of blunt pelvic trauma, which found routine radiography to be a cost-effective

method of detecting fractures that were not associated with significant clinical findings and might

otherwise have remained undiagnosed [33]. Missed injuries are common in major trauma; one

study conducted at a Danish level 1 trauma center found that over a three year period, 64 out of

786 patients had a total of 86 undiagnosed injuries, for an average rate of 1.3 missed injuries per

patient [28]. Furthermore, injuries went undetected at multiple stages of trauma management. A

decision support system capable of automatically detecting potential presence of injury and cre-

ating recommendations for treatment may be of great potential use in reducing the prevalence of

these missed injuries in trauma patients.
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Existing examples of computer-aided decision-making systems are described in Section 2.2,

but none possess all of the following key abilities:

1. Use of all available patient data to generate and dynamically update predictions and recom-

mendations at every stage of care.

2. Presentation of the reasoning behind these recommendations in an easily-understood form.

3. Incorporation of information automatically extracted from medical images.

The work in this dissertation addresses item 3, as a component used in development of a gen-

eral trauma decision-support system. Prior work on this project has focused on the use of common

measurements such as GCS, ISS and demographic information in prediction of patient outcome

using a transparent rule generation approach [69, 31]. Although the resulting rule-bases showed

high accuracy, it is vital that information from medical images be incorporated. Medical imaging

is a key diagnostic tool for clinicians and surgeons and is used in a wide variety of applications

including diagnosis of injury, tracking the progress of disease, planning surgical procedures, and

evaluating recovery. Information that may prove of potential diagnostic and therapeutic worth in

training predictive rule-bases can be extracted in quantitative form using computational methods.

However, if a decision support system is to be useful in a trauma center environment, it must re-

quire only a minimal level of user input. For this reason, feature extraction must be automated as

much as possible. This dissertation focuses specifically on the development of a module that an-

alyzes and processes pelvic radiographs to extract a number of potentially useful image features,

in a form that can be combined with other patient information and used as input in predictive

model generation. The final system is intended to be deployed during initial triage, but will con-
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tinue to be used to assess patient condition throughout every stage of care - generating updated

recommendations and predictions as the patient’s state changes and more data becomes available.

1.2 The Pelvic Structure

The bony pelvis comprises the midline posterior sacrum and two lateral bones, each consisting of

the ilium, ischium and pubis. These two halves are joined frontally by the symphysis pubis and

sacroiliac ligaments to form a stable ring structure. Damage to these ligaments incurred in pelvic

trauma may be associated with other severe injuries, such as those to the internal iliac artery - and

even more importantly, it may indicate pelvic instability [60, 11]. For example, in cases where

the anterior symphysis pubis ligaments are disrupted, diastasis of 2.5 can occur only up to 2.5cm

before stability is lost, provided the posterior ligaments remain intact [66]. Furthermore, a healthy

pelvis should be approximately symmetric, and asymmetry may be considered a mark of severe

injury [10]. Figure 1.1 provides a labeled diagram of some pelvic structures relevant to this work.

This is a very brief and general overview of pelvic anatomy but is useful in understanding the

major tasks this dissertation explores.

1.3 Motivation Behind Study of X-Ray Images

Plain film X-ray imaging is the oldest of the imaging modalities used in modern medicine and

arguably the most prevalent, with seven out of ten US citizens having received at least one X-ray

examination during their lifetime [32]. The resulting images provide a quick, low-cost means of

screening and diagnosis, particularly in cases of fracture. Over the last forty years, radiography

has expanded from the analysis of simple plain film images to include more sophisticated modal-

ities such as computed tomography (CT) and positron emission tomography (PET). These offer

improved image quality and definition, though at the cost of some speed and ease of collection
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Figure 1.1: A brief overview of relevant pelvic structures.

[32].

A brief explanation of the theory behind X-ray imaging is useful in understanding some of

its limitations. Medical radiographs are generated by exposing a region of the body to ionizing

radiation in the form of a beam generated by an X-ray tube. The patient being examined lies

between this tube (the source) and an X-ray film (the detector). Different anatomical structures

absorb varying amounts of radiation from the beam, and the photons that are not absorbed pass

through these structures to be sensed by the X-ray film. Visual characteristics of these structures

are therefore determined by the degree to which they can block the X-rays. In the final X-ray

image, bright (i.e. high intensity) regions are those exposed to fewer photons, and therefore cor-

respond to radiopaque matter (i.e. that absorbing radiation). This includes the bone matter of the

skeleton. However, since the X-ray beam effectively images anatomical structures by projecting

them as shadows on the film, depth information is lost. There is no way to determine whether
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one anatomical structure is in front of another, and so they overlap on the resulting image. This

causes difficulties in interpretation - and, more relevantly to this dissertation, means that more

complicated methods are required to process X-ray images. CT and magnetic resonance imaging

(MRI) scans avoid this issue by generating a cross-section of the body as a sequence of consecutive

images. X-ray images, meanwhile, present a 2-D view of a 3-D structure.

It may therefore seem wiser to rely solely on CT imaging in diagnosing trauma; it can be used

to generate 3D models, offers a higher level of detail and provides clear delineation of bone from

soft tissue. For these reasons, the total number of CT scans performed annually in the United

States has risen over the past thirty years from approximately 3 million to almost 70 million [1].

However, there are caveats. The additional exposure to ionizing radiation associated with CT

may pose an additional cancer risk to patients, particularly those who receive multiple scans (as

can happen in follow-up care for trauma). For example, a chest CT scan typically delivers over

100 times the radiation of a conventional frontal and lateral chest radiograph [42]. While the

FDA estimates that a CT scan is associated with an increased cancer risk of approximately 1

in 2000, other studies have found the risk to be as high as 1 in 80 among young women who

undergo multiphase abdomen and pelvis CT imaging [62]. Though further analysis and studies

are required, current results suggest that limiting the number of CT examinations may be wise

until the risks are fully understood.

There are also issues specific to the use of CT in trauma. CT scans take longer to perform

than conventional radiographs, and while they pose less disruption to the patient than a MRI scan,

they may still be unsuitable for use in unstable patients with severe traumatic injuries. Conflicting

opinions exist as to the utility of anteroposterior (AP) radiographs in pelvic injury, with proponents

of CT imaging pointing to its ability to detect bone fragments and hemorrhage; as an example, a
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2006 study found that the sensitivity of routine pelvic radiographs was 78% of that of CT scans in

identifying fracture across multiple bone structures. However, the authors also stated that patients

who are hemodynamically unstable or critically injured should undergo plain-film X-ray imaging

to aid in prompt stabilization [47]. Another study conducted in 2007 evaluated the success rate

of radiographs in identifying fractures to specific pelvic structures. Results showed that while AP

radiographs were not useful in detecting fractures of the sacrum and iliac wing, they showed good

sensitivity in identifying anterior injuries such as those to the pubic rami [38]. Resnik et al. found

that AP radiographs are an efficient way to quickly determine the need for external fixation in

cases of acute pelvic trauma, and can identify most clinically significant fractures and dislocations

[54]. Finally, Niwa et al. recommend the use of plain film radiography in predicting hemorrhage

sites in hemodynamically unstable patients; in keeping with the findings in [38], accuracy was

highest in patients with anterior fracture [46]. Though these studies differ in their overall findings,

the general agreement is that in cases of traumatic pelvic injury, particularly in the larger setting

of polytrauma, pelvic radiography is a useful initial diagnostic step. This group covers the most

severely injured patients, some of whom are at risk of hemorrhage due to pelvic instability and/or

require stabilization prior to CT imaging. In these situations, X-ray images allow prompt visual

evaluation while minimizing disruption to the patient, and may indicate the need for angiography

if hemorrhage is suspected. The Advanced Trauma Life Support Protocol used by many trauma

centers therefore includes an AP view pelvic radiograph as an adjunct to primary survey of poly-

trauma [48]. For these reasons, a module for the analysis of X-ray images should be considered a

fundamental component of a computer-aided decision support system for traumatic injury.
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1.4 Significance of this Study

The significance of this study has both clinical and computational aspects. In a clinical setting,

the major contribution lies in the development of an x-ray image analysis component intended for

use in a larger computerized decision support system for trauma. If potentially useful diagnostic

features can be extracted from pelvic radiographs, they can then be combined with patient vari-

ables from other sources and used as input to predictive models. The resulting computer-assisted

decision support system can thus evaluate a patient’s state at every stage of care and provide dy-

namically generated predictions and recommendations to physicians. Though similar systems and

predictive models have been designed which incorporate image features into their generated deci-

sions, they rely on human visual inspection - such as requiring a radiologist to interpret the image

and then answer a series of simple yes/no questions about their findings (CITE). A decision sup-

port system with the ability to automatically extract key features directly from medical images

would truly be novel in the field.

The work in this dissertation also offers a useful extension to the existing array of deformable

model segmentation techniques. The use of B-spline interpolation to control a model’s deforma-

tion and maintain curvature is a novel technique that can be applied to other imaging modalities

and to applications outside the medical field. Prior use of splines has been confined to active con-

tour models with no statistical component. Furthermore, only one other study has so far attempted

to address the shortcomings of ASM in preserving smooth curves.

Finally, the techniques developed for automated fracture detection in radiographs offer clinical

and non-clinical innovations. This is a problem that has received relatively little attention in the

past, and those studies that exist have focused on simple anatomical structures. Automation also
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remains challenging and is frequently dependent on pre-calibrated images (as described in Chapter

2). Though the solution described in this dissertation is specific to pelvic radiographs, the concept

of hierarchical segmentation can be generalized to other areas. More significantly, the techniques

developed for fracture detection have potential value in industrial applications.

1.5 Aims of this Study

The ultimate aim of this study is to develop an image analysis component for a computer-assisted

trauma DSS which can extract potentially useful diagnostic features from plain-film pelvic radio-

graphs. These will later be combined with demographic information, physiological measurements

and features extracted from images created via other modalities to form a dataset characterizing

a patient’s condition. By applying these techniques to a large set of prior cases, a dataset can be

created to train multiple predictive models. When given images and signals collected from a new

patient, the system will use the same methods to extract relevant features which will be fed as

input to the trained models, generating treatment recommendations and outcome predictions.

In developing the image analysis module, this work focuses on the following tasks:

1. Segmentation and detection of key pelvic structures

2. Calculation of quantitative displacement measures

3. Detection of fracture in the pelvic ring and pubis

4. Identification of potential injury patterns

This comprises a set of potentially useful features that are likely to be visible in pelvic ra-

diographs and can be represented in a form suitable for machine learning (e.g. as categorical or
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numerical variables). Although other features such as the presence of sacral fracture are important

in diagnosing pelvic trauma, AP radiographs may not provide sufficient detail [38]. This informa-

tion is instead more likely to be obtained using a separate CT image analysis component.

It is vital to remember that the methods developed for these tasks must be fully automated if

they are to be of use in a computerized DSS for trauma. Furthermore, since different structures

will be analyzed for different visual characteristics, segmentation must be performed before any

other analysis can take place. This creates the need for an automated segmentation approach

able to handle pathological cases and the complications inherent in x-ray imaging, which will be

described in Chapter 4.

The remaining chapters in this dissertation are organized as follows. Chapter 2 provides a

survey of related work in the field and a detailed explanation of the basic Active Shape Model

(ASM) segmentation algorithm which this work extends. The nature of this extension is described

in Chapter 3, which explores a novel combination of cubic B-splines and ASM which controls

model deformation in order to maintain curvature of detected structures. Chapter 4 presents a hi-

erarchical algorithm which automates the segmentation process in the presence of multiple image

artifacts and uncertain position of structures. Automatic fracture detection of the pubis and pelvic

ring is explained in Chapter 5, along with a method used to calculate quantitative measurements

that may be of use in identifying injury patterns. Results are presented in Chapter 6. Although

it is not the primary focus of this dissertation, creating predictive rule-bases is the ultimate goal

of the overall system; Chapter 7 therefore describes two recent experiments which combined the

extracted X-ray features with other patient information to create predictive models of injury sever-

ity. The final chapter presents the conclusions of this study, along with suggestions for future

enhancements.
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CHAPTER 2 Related Work and Approach

2.1 Overview

This chapter provides an overview of relevant previous work in medical image analysis, focusing

specifically on segmentation and fracture detection. Though X-ray analysis is the primary concern,

studies involving the CT and MRI modalities are also examined. Computer-aided decision-support

systems are briefly discussed, and the chapter concludes with a detailed description of the standard

Active Shape Model (ASM) algorithm, which this dissertation adapts and incorporates into the X-

ray segmentation approach in order to overcome certain key limitations.

2.2 Computer-Aided Decision Making Systems

As stated in Section 1.1, computer-aided decision-making systems - or decision support systems

(DSS) - have attracted a great deal of interest as a potential means to significantly improve patient

diagnosis, treatment, and outcomes. This is of particular relevance in the field of trauma care,

which requires rapid decisions based on a complex array of patient information consisting of many

variables. Computerized systems provide a means to rapidly process large volumes of such data

and offer advice to physicians based on the knowledge extracted from prior cases.

The theory of medical decision support systems involves the generation of predictive models

that take patient data (or subsets of data) as input and, based on a large database of prior cases,

evaluates the likelihood of specific outcomes. Individual models are typically specialized toward

11
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specific tasks, such as predicting whether a patient will survive or whether they will benefit from

a certain drug. The combination of multiple models, each able to answer some relevant question,

forms a decision support system. Relevance is determined by the overall goal of the system and

the field in which it is to be applied. Currently, no DSS has been designed for pelvic trauma in

particular. However, several studies have developed models intended to predict the survival of pa-

tients with traumatic brain injuries (TBI), including two basic examples proposed by Signorini [59]

and Rovlias [55]. Although both are efficient and simple to use, they incorporate only a limited

range of patient variables, severely restricting their ability to output accurate and reliable predic-

tions. Despite this, Rovlias still demonstrated the potential usefulness of the CART decision tree

algorithm in creating transparent recommendations and allowing visualization of its predictions.

Several recent studies have explored the use of logistic regression and feed-forward neural

networks, again in the field of TBI [36, 29, 56]. The results suggest that neural networks may

outperform logistic regression; however, both methods remain questionable in their statistical re-

liability. Furthermore, neural networks adopt a ‘black-box’ approach that obscures the knowledge

extracted from the input data. Logistic regression models present similar difficulties due to their

focus on probabilities and numerical output. This lack of transparency may have a negative im-

pact on physician trust in the final DSS, as there is no simple method by which a human user

can view the reasoning behind its predictions. As stated above, the grammatical rules created by

decision tree algorithms such as CART offer transparency by explaining which patient variables

influenced a given prediction or recommendation. Due to this transparency and their level of accu-

racy, decision tree methods are popular in medical applications for predictive tasks. For example,

a 2007 study examined the performance of multiple machine learning methods in predicting the

outcome of TBI, and found that logistic regression and decision tree analysis offered the best re-
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sults [50]. A similar study on TBI outcome prediction found that decision tree analysis confirmed

some results of logistic regression and challenged others, and concluding that applying decision

trees to observational data can potentially uncover additional diagnostic knowledge [2]. Chapter

7 provides more detail on both the CART and C4.5 decision tree algorithms, and how they can be

employed in decision-support tasks. The use of CART has been emphasized in previous studies,

along with other methods such as multivariate adaptive regression splines (MARS) [57, 34]. Both

approaches provide informative models and easy visualization, rendering them highly suited to

medical application.

As technology improves and more sources of patient data become available, the limitations

of systems that use only a small subset of information will become increasingly clear. Currently,

there is no widely-used DSS capable of integrating and processing all relevant patient information

to generate accurate decisions - and more specifically, there is no system which incorporates clin-

ically relevant features automatically extracted from medical images. Few systems acknowledge

the importance of medical imaging in the diagnostic process at all, and those that do require man-

ual inspection of images and input of observations into the predictive model [64, 24]. Omitting

medical images fundamentally restricts the performance of any DSS - and if the system is to be

automated, features must be extracted via computational methods rather than by sight. Section 1.3

described the numerous imaging modalities available to physicians, each of which requires differ-

ent techniques for extraction of key information in quantitative form. However, a common theme

in processing these images is the need to detect structures of diagnostic and therapeutic interest.

The following section therefore presents a brief overview of medical image segmentation, with

particular focus on the techniques previously applied to radiographs.



14

2.3 Medical Image Segmentation

Medical image segmentation has many practical applications, whether as part of a decision support

system or as some other diagnostic or quantitative analysis tool. It has consequently attracted a

great deal of attention resulting in a vast literature of published studies and computational methods.

A comprehensive review is beyond the scope of this dissertation; however, a brief overview of

general techniques will provide useful context for the specific area of X-ray image segmentation.

2.3.1 General Approaches to Segmentation

In their most general sense, medical image segmentation methods can be broken down into three

categories: automated, semi-automated, and manual. Manual segmentation covers the traditional

techniques used by human experts, which are typically accurate but also time-consuming. Semi-

automated segmentation requires a degree of user input, such as in the initialization process or

evaluation of results; an example would be specifying parameters to a pixel clustering algorithm.

Automatic segmentation is the most difficult of the three to achieve, as it must be performed

without any human input. However, it is arguably also the most useful; not only does it provide

the only practical means of processing large numbers of images, but it also has the potential to

be much faster than segmentation involving human input, provided that the algorithms used are

suitably efficient [58]. While the first benefit is not strictly necessary in the application described

in this dissertation, the second is crucial in a busy trauma center environment.

In a recent review of methods for medical image segmentation, Withey divides them into

three generations where each adds an additional level of algorithmic complexity [71]. The first

generation groups together low-level techniques based primarily on pixel intensity values, such as

binary thresholding using Otsu’s selection method [49], edge tracing, and region growing based
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on homogeneity of adjacent pixels. These approaches make no use of prior information and are

of limited use in segmenting structures which show intensity inhomogeneity and/or have intensity

values to other unrelated objects. Methods of the second generation incorporate statistical analysis

and elements of uncertainty - for example, mixture models which model each pixel in an image as

belonging to a known class of a predefined set, and neural networks for image pattern recognition.

This group also includes deformable models such as active contours or snakes, which expand

and contract in order to converge toward specific features in an image [40]. The third generation

expands on this approach through the design of deformable models which incorporate a prior

information; two of the best known are Active Shape Model (ASM) and Active Appearance Model

(AAM) [16]. Both are supervised learning methods, and require a set of labeled training images in

which some structure of interest is represented by a series of landmarks manually placed along its

boundaries. Shape and intensity information is extracted across the training set to form a statistical

model representing the desired structure. As the algorithm searches for the same structure in a new,

unseen image, this model is used to evaluate the plausibility of each possible deformation. This use

of higher-level knowledge addresses a key limitation of the second generation deformable models,

which are more vulnerable to variations between images and the effects of noise, and has led to

the widespread use of ASM, AAM and many proposed variants in medical image segmentation

[22, 41, 76]. The majority of recently developed methods for segmenting radiographs are based

on these algorithms, as will be discussed in the following section.

2.3.2 Segmentation of X-ray Radiographs

Compared to other imaging modalities, segmentation of radiographs has received relatively little

attention. This may be due to the additional complexities and significant variability in quality

inherent to X-ray images. For instance, statistical fluctuations in the photon density of the X-ray
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beam itself generate ‘quantum noise’, resulting in contrast and intensity variations that reduce the

quality of the resulting image [4]. Furthermore, different tissues may have similar absorption rates,

leading to blurred edges and no clear distinction between organs, skin and bone. Other challenges

relate to the patient; for example, bone density varies between individuals, so radiographs of the

same region of bone from two different patients may show very different intensity characteristics.

A patient with osteoporosis will have reduced bone density, and bone matter in the affected area

will therefore appear darker than normal in X-ray images. Similarly, though the general structure

remains the same, precise shape of bones may differ from one patient to the next. This is compli-

cated further by pose variability. In cases of traumatic injury, it may not be feasible to move the

patient into the ideal position when taking X-ray images, particularly if he/she is in an unstable

condition or has sustained multiple trauma. The location and orientation of specific structures may

therefore vary from one X-ray image to the next, even when collected from the same patient. An

issue of particular relevance in pelvic radiographs is overlap between bones, which causes blurred

boundaries and difficulty delineating bone matter from soft tissue and organs. Pelvic X-rays are

prone to another specific complication: the presence of gas inside the colon, which causes dark

shadows to appear over the iliac fossa.

One early attempt at radiograph segmentation by Manos [39] employs region-growing and

merging according to size, similarity, and connectivity, then assigns labels corresponding to each

region’s intensity characteristics. The effectiveness of this approach is limited as it considers

neither spatial information nor existing knowledge of anatomy. Another group of early studies

addresses the problem of identifying lung regions in chest radiographs, applying methods such as

Markov random field models [70], rule-based heuristics [51], and classifiers based on local fea-

tures [21] with varying levels of success. In recent years, however, statistical deformable models
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have become the dominant approach in both automated and semi-automated methods. Example

applications include detecting vertebrae fracture [43] and isolating lung fields in chest radiographs

[68, 72]. Chen et al. apply ASM to automatic segmentation of the patella from lateral radiographs

of the knee joint [13], initializing the model with a genetic algorithm that determines the correct

starting position for the model. However, the patella is a relatively simple structure with clearly

defined edges in the X-ray image, and it is unclear how well the method would perform in the

presence of multiple overlapping structures and poorly defined bone boundaries. Unfortunately,

this caveat applies to many of the studies that use ASM or AAM to detect objects of interest in

pelvic X-ray images. For example, the automated segmentation method proposed by Boukala [7]

treats the pelvis as a single structure and cannot distinguish between individual bones; further-

more, the shape context descriptors it uses to initialize the model are vulnerable to spurious edges

in the input images. Ding [19] explores the use of an atlas-based approach in automatically seg-

menting the femurs from AP pelvic radiographs. The atlas defines the left and right femurs and a

third shape that combines the bony pelvic structure, and the algorithm searches for correspondence

between these shapes and the edges in the X-ray image. Results are promising, but the success

of the method is dependent on the edges extracted from the X-ray, and it may prove difficult to

determine parameters for the edge extraction operator which can produce similar results across a

wide range of images. Furthermore, the femur is a relatively simple structure. The atlas approach

is less suitable for segmentation of pelvic bones since it relies on integrity of the desired structure;

an unreasonable assumption in pathological cases. The method of Chen et al. [15] also segments

femurs from pelvic X-ray images, this time using an active contour model (or snake model) with

a curvature constraint. Automatic initialization is achieved based on the position of the femoral

shafts, using a technique similar to that described later in this dissertation, and is reasonably accu-
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rate. However, the vulnerability of the snake model to false edges occasionally leads to incorrect

structure detection; an effect which is likely to be far more pronounced in segmenting pelvic bones

due to the complexity of the structure. Two other studies explore the use of texture analysis in frac-

ture detection - but as with several of the other studies presented here, focus only on the femurs

[73, 37]. Finally, Dong and Zheng propose an approach which automatically segments the femurs

from 2-D pelvic radiographs using 3-D statistical models [20]. Since dense 3-D meshes make

automation computationally expensive, the algorithm represents the 3-D structure using a simple

component model; however, their method requires pre-calibrated X-rays and performs poorly in

the presence of occluded edges, which could impact performance in pelvic structure segmentation.

Although these studies represent only a portion of the literature concerning ASM/AAM and

radiograph segmentation, they follow a general trend: namely, the focus on detecting relatively

simple structures with well-defined edges. Images of more complex regions with multiple over-

lapping bones present a greater technical challenge, which may explain the decision to treat the

bony pelvis as a single shape in two of the studies mentioned in the previous paragraph. This

shortcoming is addressed by the method presented in this dissertation, which is able to automati-

cally extract the individual structures that comprise the pelvis using a novel adaptation of the ASM

model. The following section therefore provides a brief overview of the standard ASM algorithm,

as background to the new approach.

2.4 Active Shape Model

As stated in 2.3.2, multiple studies have applied deformable models to radiograph segmentation.

In their most general sense, model-based methods locate structures in images using a prior model

of the form this structure is likely to take, based on its characteristics in a set of training images.
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When given a new, unseen image, the algorithm attempts to find the best match to this model.

The exact form of this model depends on the algorithm used; Active Shape Model (ASM) takes

a statistical approach that uses a training set of labeled images to determine plausible variations

of the desired structure. ASM requires the construction of two separate models representing the

structure of interest - one concerning its shape, and the other its appearance. Both of these will

now be described in more detail.

2.4.1 Shape Model

The first step in constructing the shape model is to determine a set of landmark points which

describe the structure of interest in every training image. These are usually placed with the help

of experts, effectively incorporating domain knowledge into the model. The major landmarks

are located at edge junctions and points of high curvature, with intermediate landmarks placed at

equal intervals between them to provide more precise definitions of the structure’s contours. All

landmarks are placed into a vector recording their connectivity. A set of n landmarks defining a

given object can be represented as a 2n element vector x given by

x = [x1, . . . , xn, y1, . . . , yn]T (2.1)

where (xi, yi) provides the coordinates of landmark x. One such vector is generated for each

training image, and so a set of m training images Ii will result in m vectors x j ( j = 1, . . . ,m). At

this stage of training, all landmark positions are still relative to their corresponding image. To

make the shape model independent of scale, position and orientation, a transformation must be

found that aligns the landmark vectors (or shapes) into a common coordinate frame. The best

transformation is one that minimizes the sum of distances D between each shape and the mean,
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calculated as

D =
∑
|xi − x̄|2 (2.2)

First, each shape xi is translated so its center of gravity lies at the origin (0, 0). One shape xi is

then chosen as the starting estimate of the mean, x̄0, with which all other shapes x j (i , j) are then

aligned. A mean of the aligned shapes is estimated as x̄1, aligned with x̄0, and scaled so |x̄1| = 1

(to constrain scale and orientation). This process is repeated until the estimated mean shows no

significant change between iterations. Alignment of an individual shape to the mean is performed

by rotating and scaling the shape in the tangent space to the mean. Mathematically, aligning xi

with x̄ requires finding values for the scale parameter s and rotation angle θ which fulfill

min |Ts,θ(xi) − x̄|2 (2.3)

where Ts,θ is a shape transformation operator defined by s and θ. In other words, values which

minimize the sum of square distances between points on the estimated mean and the transformed

shape. Once the training shapes are aligned, they form a point cloud in a 2n-dimensional space

which can be modeled as a probability distribution, enabling evaluation of the plausibility of new

shapes. To simplify the model, Principle Component Analysis (PCA) is used to reduce the dimen-

sionality of the dataset, after which any shape xi can be approximated by

xi ≈ x̄ + Pb (2.4)

where P contains the eigenvectors of the PCA covariance matrix, and so defines the coordinate

frame aligned with the point cloud. A shape in this frame is defined by b; altering its elements

therefore alters the shape. The degree of these alterations is controlled by applying limits to λi, the

variance of the ith element of b across the entire training set of images.
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Since b defines a shape in model space, a Euclidean transformation is required to map b to

image space. The mapping defines the positions of the shape landmarks as

X = TXt ,Yt ,s,θ(x̄ + Pb) (2.5)

where s and θ are the scale and rotation parameters and (Xt,Yt) defines the translation param-

eter of the transformation operator TXt ,Yt ,s,θ. Together, these form the set of pose parameters Q.

The ‘best’ parameters Q that fit a model instance to a new set of image points Y (representing

the shape in a new image I) is obtained by minimizing the sum of squared distance between the

corresponding model and image points. In other words, finding Q to fulfill

min |Y − TQ(x̄ + Pb)|2 (2.6)

Full details of the algorithm can be found in [16], but a brief description will be provided here.

ASM adopts an iterative approach which initializes the model parameters b to those for the mean

shape x̄. Equation 2.4 is used to generate the positions of the model points, x, which are then

aligned with the points Y found in the image. The image points are then projected into the model

space, so the parameters in b can be updated to match them. The process is repeated until there is

no significant change in b between iterations.

2.4.2 Grey-level Model

Using the approach just described, a set of parameters b can be used to generate an instance of the

shape model in an image I. Since the goal is to locate a target structure in I, a method must be

found to measure how well the shape generated by the parameters b matches this target structure.

In other words, a fitness function F(b) is required; the set of parameters bi which minimizes F

corresponds to the shape in I that best matches the target structure. The simplest approach would
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be to assume that the shape models are constructed around strong edges in the training images.

In this case, F would be based purely on the distance between each model point and the nearest

strong edge in I. However, this does not allow for weaker edges defining internal boundaries or

some other aspect of the desired structure. Instead, ASM builds a statistical grey-level model based

on pixel intensity values around each landmark point in the training set.

When the grey-level model is built, each landmark point li = (xi, yi) is considered in turn.

Assume the process begins with a training image Im. ASM focuses on the intensity values along

the profile normal to the model boundary at li; specifically, k pixels are sampled along this profile

either side of li. The derivatives of this set of 2k + 1 samples are stored in a vector g j (sampling the

derivatives instead of the raw intensity values limits the impact of global intensity changes between

images). This process is repeated for all n images in the training set. Since it is assumed that the

the resulting n normalized vectors gi (i = 1, . . . , n) follow a multivariate Gaussian distribution,

the region around the landmark li can be characterized by their mean ḡ and covariance S g. This

generates an appearance model for each individual landmark in the shape model. The fitness

function F can thus be formulated as

F(gs) = (gs − ḡ)T S −1
g (gs − ḡ) (2.7)

where gs is the sample being tested. It can be seen that F represents the Mahalanobis distance

of the sample from the appearance model mean.

Searching for the target structure in a new image is an iterative process that fits the shape model

X to the image based on this set of grey-level models. Again, each landmark li is considered in

turn. The goal is to find the ‘best’ new position for li by calculating F(gs) for each of a set of

points along its normal profile. The point with the lowest value of F - i.e. the lowest Mahalanobis
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distance from the model mean - is chosen as the new position for li. The Mahalnobis distance is

preferred as it incorporates correlations present within the data and is scale-invariant. The search

process is repeated separately for each landmark point. Figure 2.1, inspired by that presented in

[16], provides a visual explanation.

Profile normal 
to boundary

Model point L

Target Structure

Model 
Boundary

'Best' position for L

Search applies F to each 
pixel along profile

Figure 2.1: The ASM search process calculates the fitness function F(gs) for each of a set of pixels
along the profile to the model point. After multiple iterations, F(gs) should be minimal at the edge
of the target structure.

Finally, the pose parameters Q and shape parameters b are updated to fit the shape model to

the new landmark positions. This process constitutes a single search iteration, and is repeated

until there is no longer any significant change in b (which corresponds to no significant change in

the positions of the landmarks). ASM is often used in a multi-resolution form, where each image

is decomposed across several levels, creating a series of decreasing resolution images, each of

which is a smoothed and subsampled version of the last. These correspond to levels of a Gaussian

pyramid. The search process begins at the highest level of the pyramid, i.e. with the lowest
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resolution image. When deformation converges at some level m, the algorithm progresses to level

m − 1, transferring the intermediate search results into a higher resolution image. In this way, the

location of the identified shape is refined over progessively higher resolutions; the original image is

considered only at the final stage of the process when no major changes are expected in the model

point positions. Multi-resolution analysis offers reduced processing times, as the starting search

space is greatly reduced. It is therefore of use in time-sensitive applications such as analyzing

X-ray images for trauma.

2.5 Approach of this study

The focus of this dissertation is on extracting potentially useful diagnostic features from pelvic

radiographs, such as the presence of fracture and quantitative measures of displacement. If these

features are to be used in an effective trauma decision support system, they must be extracted

quickly and without any user input. This first requires that the key structures of the pelvis be

automatically segmented from the image for separate analysis. Numerous issues complicate this

in a clinical environment; the novelty of the approach described in this dissertation is its ability

to deal with variations in both the relative location of the x-ray machine and the horizontal and

vertical position of the patient on the table. Unlike other segmentation algorithms, the novel

method in this study also performs successfully in the presence of fracture and other pathologies,

as is necessary for clinical use.

Segmentation is performed using a hierarchical approach that begins with identification of the

femoral shafts and uses the information obtained at each successive stage as input to the next.

This process identifies and extracts the left and right iliac bones, the outline of the pelvic ring,

the left and right femurs, and the left and right pubis-ischium structures. Quantitative measures of
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displacement can then be calculated, such as increased width of the symphysis pubis, and struc-

tures can also be analyzed for the presence of fracture. This dissertation focuses on detecting

fractures of the pubis and pelvic ring, as these may prove useful in identifying established pelvic

injury patterns. Figure 2.2 outlines the entire process of X-ray analysis, beginning with an antero-

posterior (AP) X-ray of the pelvis as input. The analysis identifies the presence and location of

fracture in the pelvic ring, along with horizontal fractures of the ischium and pubis, and calculates

quantitative measures of pubis symphysis displacement. These features are combined with other

patient data (such as demographics and physiological scores) and used as input to predictive rule

generation. Although other image information is needed in order to characterize the full range of

patterns, these features may also be potentially useful in identifying basic injury patterns.

The novelties of the approach are as follows:

• The ability to distinguish between the individual components of the pelvic structure, a nec-

essary first step in detecting abnormalities

• A hierarchical initialization process which avoids the need for manual interaction

• Extraction of potentially useful diagnostic features such as fracture and displacement mea-

sures which can be used in the generation of predictive models for patient diagnosis and

treatment outcomes

These three capabilities fulfill the essential needs of an image analysis module in a computer-

ized decision support system. The following chapters will explain each component in more depth,

beginning with the combined Spline/ASM algorithm which introduces an additional constraint on

deformation to address the issue of blurred edges and overlapping bones.
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Figure 2.2: A schematic diagram of the overall X-ray analysis process.
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CHAPTER 3 Combined Spline/ASM Algorithm

3.1 Overview

This chapter presents a novel extension of the basic ASM algorithm outlined in 2.4 which provides

a means to maintain structure curvature in the presence of false edges through the use of spline in-

terpolation. The result is a combined Spline/ASM algorithm that preserves curves along the edges

of objects during the deformation process, which is of particular use in segmentation of pelvic

structures such as the left and right iliac bones, but is also applicable to other curved structures.

Both cubic splines and B-splines are considered. Section 3.2 presents the basic concept behind

the Spline/ASM algorithm, while Section 3.3 provides brief background detail on splines, spline

interpolation, and their use in image segmentation. A detailed description of the algorithm is pre-

sented in Section 3.4, including more details on spline formation, and Section 3.5 summarizes the

algorithm’s approach and impact.

3.2 The Problems of ASM

The use of ASM in segmenting specific pelvic structures has shown promising results [61]. How-

ever, one of the major challenges in segmenting plain-film pelvic radiographs is the wide variation

in image characteristics. In particular, multiple factors affect intensity contrast and sharpness, with

some images appearing blurred and indistinct, and others highlighting variations in both bone tex-

ture and soft tissue. Figures 1(a) and 1(b) provide evidence of the extent of these variations.

Furthermore, the overlap of bones within the pelvis can create false edges in the X-ray im-

age to which standard ASM is particularly vulnerable. Together, these two factors often cause

27
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(a) Example 1 (b) Example 2

Figure 3.1: Two examples of the differences in pelvic radiograph image characteristics.

incorrect convergence and severe distortion of the detected shape. Since the problem lies in over-

deformation of the starting shape model, the most obvious solution is to strongly limit the degree

of deformation by reducing the σ parameter. Unfortunately, this is only an option when the shape

in the image under consideration is highly similar to those used to train the shape model. This

assumption cannot be made for pelvic radiographs, due to the differences in patient and machine

position, individual variations in patient anatomy, and variability in pathological cases.

The example segmentation result presented in Fig. 3.2 hints at the underlying problem. While

the landmarks along the upper edge of the superior pubic ramus are correctly placed, those out-

lining the obturator foramen show incorrect convergence, and the underside of the ischium shows

extreme deformation. However, in the latter case, the three landmarks at either end of the cor-

responding edge are placed with reasonable accuracy. The issue seems to be that during defor-

mation, standard ASM does not put sufficient emphasis on the relationship between neighboring

landmarks. As explained in Section 2.4, the deformation step of the ASM algorithm considers

each landmark point separately and attempts to find its ‘best’ new position. This search depends



29

largely on the grey-level intensity model, with the influence of the shape model being limited to

the overall structure of the shape. Individual landmarks are consequently allowed to move far

from their neighbors, and the deformation of separate edges within the shape (such as the ischium

underside in Fig 3.2) is not sufficiently controlled.

Figure 3.2: Severe distortion of pubis-ischium structure seen in Standard ASM segmentation.

In practice, many different techniques could be used to implement these restrictions. The

choice depends on the general shape of the structure the user wishes to extract from the image. In

the case of pelvic X-ray segmentation, the majority of the structures of interest have curved edges;

for example, the pubis-ischium structure shown in Fig. 3.2, and the pelvic ring and iliac bones

shown in Fig. 1.1. Fracture does not typically disturb the general shape of each structure; excep-

tions are severe cases of pelvic disruption (in which case the severity of injury will be obvious),

and fracture to the left and right pubis (which are therefore subjected to weaker spline constraints

in this study).

Assume a subset of consecutive landmarks S is used to represent one of these curved edges. S

becomes analogous to a sequence of input data points which can be approximated by an interpo-

lating spline - providing a mathematical method to express the connections between one landmark
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and the next. Though multiple forms of spline exist, in a general sense they can all be considered

as mathematical models that associate a continuous representation of a curve or surface with a

discrete set of points in a given space. They are constructed from piecewise polynomials fitted

over the intervals between the specified control points, where the coefficients of each polynomial

dictate the overall shape of the spline. The aim of spline interpolation is to find the polynomi-

als that best fit the control points and thus interpolate some existing function f . This application

focuses on the use of cubic splines, which are described in the following section.

3.3 Splines

3.3.1 Splines in Medical Image Segmentation

One of the most popular uses of B-splines in segmentation are as B-spline snakes, or active con-

tours [9]; they require fewer parameters and also offer local control, as described in Section 3.3.3.

They are also used in image interpolation, where their high precision makes them particularly

suited to analysis of medical images [35]. In one particular application, Stammberger et al [63]

explored their use in measuring cartilage. Another example is the method of Arikidis et al. [3]

which uses B-splines to detect microcalcifications in mammograms, images which present similar

segmentation issues to conventional radiographs.

3.3.2 Cubic Spline Interpolation

A cubic spline is formed from a series of piecewise cubic polynomials passing through a set of

control points, where adjacent points are joined by a single cubic polynomial. Cubic splines are

popular in interpolation tasks, as they can be used to fit a smooth curve to a series of data points.

Consider a set of data points Dk = xk, yk (where 0 ≤ k ≤ n), for some unknown function y = f (x).

This creates n intervals between points. Cubic spline interpolation creates a continuous curve S(x)
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passing through each point can be formed from n piecewise cubic polynomials S k(x) connecting

successive data points, as follows:

S(x) =



S 0(x) x ∈ [x0, x1]

S 1(x) x ∈ [x1, x2]

...

S n−1(x) x ∈ [xk−1, xk]

(3.1)

where S k(x) is defined as:

S k(x) = ak(x − xi)3 + bk(x − xi)2 + ck(x − xi) + di (3.2)

Note that several conditions must be imposed on S(x) for it to be considered a cubic interpo-

lating spline. First, it must pass through all the given data points. To ensure smoothness, it is

also required that each S k(x), its derivative, and its second derivative all be continuous at the two

control points defining its interval. In other words, each spline segment must be smoothly joined

to the next, creating the appearance of a seamless curve.

3.3.3 B-splines

In data interpolation applications, cubic splines can be represented in B-spline form. B-splines

(or basis splines) are generalizations of Bezier curves, and provide a spline representation that

depends only upon a set of control points and the degree of the piecewise polynomial segments

between them [67]. The control points define the shape that the spline should follow and moving

these points therefore alters the shape of the curve. Each control point is associated with a B-

spline basis function, which is non-zero only over a number of adjacent intervals. This allows

local control, one of the main advantages of B-splines over Bezier curves; in other words, moving

a control point only alters the local region of the curve. The shapes of the basis functions are
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defined by a knot vector - or more precisely, the spacing between individual knots. Moving the

knots is therefore another way to change the overall shape of the spline.

Given a set of (n + 1) control points P0, . . . , Pn and a vector of knots u = u0, . . . , um, the cubic

B-spline S(u) is a parametric curve defined as

S(u) =

k−1∑
i=0

Pibi,3(u) (3.3)

where bi,n are the B-spline basis functions, i is the control point number, S(u) consists of (k−2)

spline segments between these points, and m = n + 4. The point on the spline corresponding to a

specific knot is called a knot point, and these divide the spline into segments (each of which is a

cubic Bezier curve).

Consider a set of (n + 1) input data points D0,D1, . . . ,Dn, where Dk = (xk, yk). Cubic inter-

polation of this data requires finding a B-spline curve S(u) with a parameter vector t = t0, . . . , tn,

such that Dk = S(tk) for all 0 ≤ k ≤ n. These parameters are used to compute the knot vector

and so their choice strongly influences the shape of the curve. One selection method is uniform

spacing. Assuming the domain of the curve is [a, b], the parameters are defined as follows:

ti =



a i = 0

a + i
(

b−a
n

)
0 < i < n

b i = n

(3.4)

It can be seen that the parameters (and therefore the computed knots) are equally spaced.

Uniform spacing is the simplest approach and typically offers the tightest interpolation. It also

mimics the spacing of the points on the trained shape model, which are roughly the same distance

apart.

However, there is an intrinsic issue with the use of splines in ASM. All the model shapes
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of pelvic structures constructed during ASM training contain non-distinct data points - i.e. there

may be two different values of y for the same value of x. For example, the pelvic ring forms

a roughly elliptical structure. Standard interpolation between the elements of two vectors x and

y (containing the x-coordinates and y-coordinates of the landmark points respectively) expects

a one-to-one correspondence between x and y values. Figure 3.3 demonstrates this situation;

the spline Sp1 covers a subsequence of the pelvic ring where there is no ‘doubling back’ and

therefore no issue with standard interpolation. However, Sp2 covers a larger subsequence, where

two separate points on the defined curve can share the same x-coordinate but have different y-

coordinates. The interpolating spline is required to pass through every given data-point, which

results in an oscillating function that bears no resemblance to the true shape. Furthermore, consider

two points on a line close to the vertical. Considering this in terms of image coordinates, a small

range of x values will correspond to as many y values as there are pixels in the line, which causes

similar problems in interpolation. This is an issue that is likely to affect any object represented by

a model with a closed contour, and will be addressed in the following section.
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Figure 3.3: An example of standard spline interpolation failing on a circular structure.

3.4 Method

3.4.1 Spline interpolation in ASM deformation

The idea behind the combined Spline/ASM algorithm is to strengthen the connection between

successive model points, where these points form a smooth curved contour. The curve can be

relatively weak; the aim is to create a smooth approximation of the contour in spline form. This

approach is not suitable for objects with hard corners and non-smooth edges, but works well for

the curved structures of the pelvis, particularly the pelvic ring.

Spline/ASM maintains curves by incorporating splines into the ASM quality of fit function

described in Eqn. 2.7 in Section 2.4. When considering a model point li = (xi, yi), where i =

1, . . . , k and k is the total number of points that form the model, an cubic interpolating spline is

constructed using m model points on each side of li (excluding li itself). In other words, a sequence
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of points p is used for interpolation, where:

p = li−m, . . . , li−2, li−1, li+1, li+2, . . . , li+m (3.5)

The exact value of m can be altered by a system user, but is preset to a value appropriate relative

to k. A spline function S(u) is constructed according to the constraints specified in Section 3.3,

with the points in p providing the data Dk to be interpolated. S(u) should form a smooth curve

that passes through each of the points in p. Using xi, the x-coordinate of point li, S(u) predicts a

corresponding value of y along this curve, returning a predicted point location lp = (xp, yp).

When deciding on the best new location for li during an iteration of model deformation, the

difference in position between li and lp is included in the quality of fit function. As in the standard

ASM algorithm, a points q j (where j = 1, . . . , 2a) are sampled along the profile either side of li

and the quality of fit is calculated for each. At each profile point q j = (x j, y j), an error measure e

is obtained between q j and lp as follows:

e = |x j − xp| + |y j − yp| (3.6)

The quality of fit function then becomes:

f (gs) = (gs − ḡ)T S −1
g (gs − ḡ) + α ∗ e (3.7)

where the scaling measure α is chosen via experimental results; since the sample derivatives

used to construct the grey-level model tend to be lower in value than possible pixel distances, α

is typically very small. For the application described in this dissertation, the optimal value of α

was found to be 10−5. Note that although the standard ASM fitness function is calculated using

the Mahalanobis distance measure, this relates to the fit with the statistical shape and grey-level
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models. The spline penalty term is purely spatial in x − y pixel coordinates, and an error measure

based on Euclidean distance is therefore acceptable. Using this approach, li is penalized for strong

movements away from the curve specified by its neighboring points. However, smaller degrees of

movement are allowed, since the interpolating spline S(u) for a given li is recalculated during each

iteration of deformation using the updated model point positions. This provides the local control

that is lacking in standard ASM, which only allows control over deformation of the entire shape

model rather than individual segments. Additionally, splines are calculated using the new locations

of neighboring points calculated during the current iteration. When Spline/ASM is searching for

the best new position for point li, the best positions for points (li−m, . . . , li−2, li−1) have already

been determined. These new positions are used in calculating S(u) rather than the positions at the

previous iteration of deformation.

Spline/ASM introduces several other constraints. First is the concept of control points, which

are specified during training and incorporated into the resulting ASM model. A control point is

a model point that marks a hard angle in the shape. For example, consider the two vertical edges

of the left and right pubis; the transition between these and the smooth curve of the upper ramus

would be labeled as a control point. If a control point ck is encountered when constructing the

sequence p of neighboring points used for interpolation, the sequence ends there. Furthermore,

the interpolation error measure is not applied when considering the best new position for ck. This

performs the opposite task of spline interpolation in maintaining any hard angles of the shape.

Control points also include the first and last points in non-closed shapes.

A second constraint is used to deal with model contours that are approximately vertical, such as

the femoral shafts. When building p for a given model point li, the gradient between neighboring

points is calculated. If this exceeds a predefined threshold, li is considered a vertical point and
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the interpolation measure is not used. This handles one of the situations where non-distinct data

points occur. However, this will not detect whether p ‘doubles back’ - i.e. some members of

p are close in x-position but distant in y-position. Three methods are available to deal with this

problem. The first involves specifying a set of pivot points during model training; these behave

similarly to control points, except that they are subject to the interpolation error penalty. The user

can place these at locations where a curve interpolating a given sequence s is likely to double back

on itself, and they will terminate sequence construction in the same way as control points. The

second choice involves simply not interpolating a point li if its surrounding sequence p contains

non-distinct data points. This is a simple and quick approach that requires no alteration in initial

training. However, it limits curvature preservation.

A third method employs chord length parameterization instead of uniform spacing. A chord

in plane geometry is defined as the line segment joining two points on the same curve. If the

interpolating spline curve closely follows the polygon created by the data points, chord-length pa-

rameterization approximates arc-length parameterization between two adjacent data points. If the

domain is then subdivided according to the distribution of chord lengths, the results approximates

arc-length parameterization for the entire spline.

Let the provided data points around the ASM model be D0,D1, . . . ,Dn. The length between

Di−1 and Di is |Di − Di−1|. The length of the entire polygon, L, is given by:

L =

n∑
i=1

|Di − Di−1| (3.8)

Consider the chord length from D0 to data point Dk, and let Lk be the ratio of this length over

L, given by

Lk =

∑k
i=1 |Di − Di−1|

L
(3.9)
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If the domain of the curve is [0, 1], then parameter tk should be located at the value of Lk. The

parameters used to compute the knot vector are therefore defined as follows:

ti =



0 i = 0

1
L

(∑i
j=1 |D j − D j−1|

)
0 < i < n

1 i = n

(3.10)

As before, during ASM search the spline curve is constructed using m points either side of

li, the control point under consideration, and the polynomial spanning the interval [li−1, li+1] is

extracted. Interpolation is then performed for multiple values in [ti−1, ti+1] (typically around 100)

to generate a vector ts of t-values spanning the interval. This allows the x and y coordinates along

the interval [li−1, li+1] to be considered as separate functions of t:

y = f (t) (3.11)

x = g(t) (3.12)

Cubic spline interpolation is then performed separately for each function, creating two vectors

xs and ys along the polynomial spanning [li−1, li+1]. The y-coordinate of the predicted point lp can

then be found via interpolation using xs, ys and xi (the x coordinate of li). Incorporating the third

parameter t avoids the problem of oscillation affecting the uniform spacing scheme (which treats

y as a function of x) by moving from 2-D to 3-D space, providing monotonic parameterization.

A visual representation is provided in Fig. 3.4. Here, the stars in the plane t = 0 represent

the (x, y) coordinates of the pelvic ring ASM model. As a closed shape, this will be affected by

the ‘doubling back’ problem; it will also fail completely in the situation where a single x-value

corresponds to two y-values. The hollow circles represent the points plotted using the values x j,

y j and t j, where x j and y j are obtained separately using t j as described in Eqn. 3.11.
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Figure 3.4: A 3D plot of the monotonic, strictly increasing function of (x, y, t) generated using
chord-length parameterization.

Figure 3.5 shows successful interpolation of non-distinct data points around the pelvic ring

using chord length parametrization, in contrast to the oscillating function in Fig. 3.3. The results

presented in this dissertation were obtained using the uniform spacing scheme, as the chord-length

approach requires further development. However, it is expected to provide improved performance

in the future.
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Figure 3.5: A spline parameterized on chord-length deals well with curves that ‘double back’.

3.4.2 Considerations during Training

The proposed system is intended to be trained prior to deployment; it then applies the learned

models to new images. One of the important considerations during training is determining how

many landmark points should be used to define each structure. The ASM framework has no stan-

dard method for this, since it depends on the application, the segmentation precision required, the

permitted execution time, and multiple other factors. In this application, speed is the most cru-

cial aspect. Though an increased number of landmark points typically provides smoother detected

shapes, this comes at a cost of increased search time. Since segmentation in this application is

intended as a way to identify general regions for analysis, rather than being an end goal in it-

self, smoothness is a lower priority than speed. The number of landmark points is therefore kept

relatively low for all structures of interest.

Spline/ASM requires additional decisions: specifically, the number of points to be used in
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spline construction. If uniform knot spacing is used, the developer training the system must also

decide on appropriate positions for control and pivot points (another reason why chord-length

parameterization must be further explored). The choice is expected to be task-specific. In this

application, all parameters were determined via experimentation. Though this is a time-consuming

process, it need only be performed prior to system deployment and requires no input from end

users in the trauma center environment.

3.5 Summary

This chapter presents a novel extension of the basic ASM algorithm to incorporate the use of

splines to maintain curvature of the desired structures. The combined Spline/ASM algorithm

preserves curves along object contours during the deformation process by penalizing strong devi-

ations and thus emphasizing the relationship between neighboring model points. This dissertation

focuses on its use in detecting pelvic structures, but it is of potential use in accurate segmentation

of any strongly curved object.
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CHAPTER 4 Hierarchical Approach to Automatic ASM Initialization

4.1 Overview

This chapter introduces a novel hierarchical method that automatically initializes the Spline/ASM

algorithm described in Chapter 3 for all the pelvic structures of interest. Using this method not

only removes the need for manual placement of the structure models, but also enables full seg-

mentation to be performed in a single pass. The approach is based on a combination of directed

Hough Transform (DHT), Spline/ASM, edge detection, gradient filtering and statistical distribu-

tions of structure dimensions. An overview is provided in Section 4.2, followed by a more detailed

description in Section 4.3 and a summary in Section 4.4.

4.2 Objective

Numerous issues complicate the automatic segmentation of plain-film pelvic X-rays in a clinical

environment. These include:

• Uncertain horizontal and vertical position of the patient on the table

• Varying location of the x-ray machine relative to the patient

• The need to avoid disruption to the patient in emergency diagnosis situations

Chapter 3 introduced a novel adaptation and extension of standard ASM that incorporates

spline interpolation to maintain the curvature of structures of interest. This addresses the problem

of convergence to false edges. However, standard ASM suffers from a second disadvantage: its

42
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high sensitivity to initialization. In order to detect a target structure, the corresponding mean shape

model must be assigned a starting position somewhere in the image. The algorithm then attempts

to fit the shape model to the structure over a number of iterations. If the shape model is incorrectly

placed - for example, only partially overlapping the structure of interest - then ASM will instead

converge to the nearest edges matching the corresponding grey-level model. Detection is therefore

likely to fail. This is particularly relevant when dealing with pelvic X-ray images, which typically

have multiple false edges due to overlapping bones. A result of inaccurate ASM initialization can

be seen in Fig. 4.1. To human eyes, the starting position of the shape model does not appear

significantly different to the location of the target structure; however, ASM’s high sensitivity to

false edges results in poor detection, particularly at the top of the pelvic ring.

(a) Initialization (b) Results

Figure 4.1: The effects of poor initialization on pelvic ring detection via standard ASM.

While the Spline/ASM algorithm prevents gross distortion of the model shape, it cannot com-

pensate for an inaccurate starting location. Deformable model algorithms are based on pixel in-

tensity values and target structure shape; they have no knowledge of the structure of the chosen

image. The hierarchical initialization method compensates for this by using anatomical knowl-
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edge and prior segmentation results to sequentially place the mean shape models for each individ-

ual structure of interest, starting with the femoral shafts. The femurs are solid, inflexible bones

with high density, and are therefore clearly visible in the majority of pelvic X-ray images. The

knowledge of each shaft’s width and position is then used in locating the femoral heads. Once

both the head and shaft positions are known, the Spline/ASM femur shape model can be correctly

placed. Spline/ASM detection of the pelvic ring is then performed using multiple reference points,

followed by detection of the left and right pubis-ischium structures. The location of the pelvic ring

is then used to estimate the approximate positions of the left and right ilium, which are used in turn

to place the corresponding Spline/ASM shape models. The schematic diagram in Fig. 4.2 outlines

the initialization process, including how the result of each step is used to initialize the next.

4.3 Method

4.3.1 Detection of Femoral Shafts

The femurs are among the most distinct structures in a pelvic x-ray, and typically suffer little

deformity except in cases of severe femoral fracture. The initialization method therefore uses the

left and right femoral shafts as reference points to determine the patient’s horizontal displacement

from the center, allowing location of the femoral heads and accurate placing of the femur shape

models for Spline/ASM. Since accurate shaft detection is crucial to successful segmentation, this

first stage is the most intricate of the initialization process. Figure 4.3 outlines the individual steps

taken to accurately identify the femoral shafts, which will now be explained in more detail.

4.3.1.1. Constructing the vertical emphasis edge map

Since the femurs are typically located at the base of the X-ray image, the lowest 15% of rows are

extracted as the region of interest I (as shown in Fig. 4(a)). Following analysis of the training
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Figure 4.2: A schematic diagram of the Hierarchical Automatic ASM initialization process.
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Figure 4.3: The multi-step process used in femoral shaft detection.
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set, this was determined as the region most likely to contain a recognizable portion of the femoral

shafts. Two separate operators are then applied in succession. The first, Canny edge detection,

identifies the strongest edges in I by searching for local maxima of its gradient, calculated using

the derivative of a Gaussian filter. Let I = (x, y) be the input image (the region of interest), treated

as a function of x and y, and let G(x, y) = e
−x+y2

2σ2 be a circular 2-D Gaussian function. A smoothed

image Is is formed as:

Is(x, y) = G(x, y) ∗ I(x, y) (4.1)

where ∗ is the discrete convolution operator, given by:

f (x, y) = h(x, y) ∗ g(x, y) =

n∑
i=−n

m∑
j=−m

h(i, j)g(x − i, y − j) (4.2)

In the Gaussian smoothing case, input image I(x, y) is convolved (filtered) with the mask

G(x, y), and n and m define the domain of the kernel - i.e. the size of the pixel neighborhood

involved in smoothing.

This removes noise present in the raw image which might interfere with accurate edge detec-

tion. The gradient magnitude M and gradient angle θ of Is are then calculated for every position

(x, y) in the image, as follows:

M(x, y) =

√
(G2

x + G2
y) (4.3)

θ(x, y) = arctan
[
Gy

Gx

]
(4.4)

where Gx =
δIs
δx and Gy =

δIs
δy . M contains large ridges around local maxima in I which

represent potential edges, which are thinned via non-maxima suppression in the horizontal, vertical



48

and two diagonal directions. A 3×3 grid (the pixel neighborhood mentioned above) is then passed

over every position in M, where a grid center M(x, y) is suppressed if its value is less than either of

its neighbors in the direction specified by the rounded value of θ(x, y). This grid size was chosen

following a series of experiments using a range of dimensions. The suppression process thins

down wide edges to those positions with the highest gradient magnitudes, and the resulting thinned

edge map IN undergoes hysteresis thresholding and connectivity analysis. These techniques detect

‘strong’ and ‘weak’ edge pixels using high and low magnitude thresholds TH and TL. All ‘strong’

pixels are assumed to define edges, with only those ‘weak’ pixels connected to these edges being

retained. In this application, the ratio of TH to TL is set lower than the standard recommendation

made by Canny, and a relatively high standard deviation σ is used to construct G(x, y); this deals

with the noise present in X-ray images and detects only the strongest edges likely to represent

femur contours. Again, TH and TL were determined by a series of experiments using different

threshold values and ratios; the final parameters are set as TH = 0.3 and TL=0.2, with σ = 4 used

to define the Gaussian kernel G(x, y).

However, as can be seen in Fig. 4(b), superfluous edges are still returned that may impact shaft

detection. Although these could be removed by further reducing the threshold ratio, this would

likely result in a loss of generalization. As stated in 2, X-ray radiographs vary greatly in contrast

and sharpness, and if the thresholds TH and TL are too specific then they are likely to give poor

performance on other images. Therefore, a refined edge map is generated by combining the results

of Canny edge detection with the horizontal gradient magnitude of I. The numerical gradient of I

is defined as:

∇I =
δI
δx

î +
δI
δy

ĵ (4.5)

where the x component represents the differences between consecutive pixels across all columns
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of I. Strong positive or negative values indicate gradient discontinuities, as shown in 4(c). The

absolute value of δI
δx corresponds to the horizontal gradient magnitude, and is combined with the

Canny edge map Ec to generate a new vertical discontinuity map EM.

EM =
δI
δx
× Ec (4.6)

This highlights those edges with highest gradient magnitude in the horizontal direction. Figure

4(d) presents an example discontinuity map; the shaft edges are preserved, while the artifact edges

caused by non-bone matter are reduced in strength. When EM is thresholded to a binary map, the

shafts form clear straight lines which can be identified via Directed Hough transform.

4.3.1.2. Locating shaft edge candidates

The Standard Hough Transform is a feature extraction method best suited to detecting regular

geometric shapes with clear parametric forms. The straight lines of the femoral shafts can be

described by the following parametric equation:

ρ = x cos θ + y sin θ (4.7)

where ρ is the distance from the origin to the line along a vector perpendicular to the line and θ

is the angle between this vector and the x-axis. The lines that pass through a point (x, y) in the

image space correspond to a sinusoidal in polar Hough space (the (ρ, θ) plane). If the sinusoidals

for two points (x0, y0) and (x1, y1) overlap, the location where they intersect correspond to lines

in the image space that pass through both points. Therefore, straight lines in the image can be

detected as a series of overlapping sinusoidals which intersect at the same values of ρ and θ (the

parameters for the line). Figure 4(e) shows the lines detected via Hough Transform in the example

femur image. The second stage of Directed Hough Transform filters these lines according to a set
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(a) Starting ROI

(b) Canny edge map

(c) Canny edge map

(d) Canny edge map

(e) Canny edge map

(f) Canny edge map

(g) Canny edge map

Figure 4.4: Images of the intermediate stages in femoral shaft detection, such as extraction of
candidate shaft edges and pair-matching for candidate shafts..
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of predefined criteria:

1. The absolute value of a line’s θ parameter must not exceed 60◦.

2. Lines with outlying θ values are removed.

3. If multiple lines overlap, only the longest is retained.

Condition 2 is implemented by calculating the absolute mean θ value across all detected lines

and removing those which deviate too strongly. This is used in place of a more restrictive threshold

in Condition 1, as it offers more flexibility in cases where the images are rotated and the femurs

appear at an angle. Despite the three conditions, the algorithm should still prove general enough to

correctly detect the majority of femoral shaft edge candidates; the exception would be situations

where one of the femurs is at a drastic angle, which would contravene Condition 1. This filtering

step returns a set of candidate shaft edges.

4.3.1.3. Pairing edges into candidate shafts

The set of candidate edges undergoes filtering according to two criteria. First, they must have the

potential to represent a shaft. This is decided according to a shaft width distribution calculated

across the training set, following the method developed by Chen et al. [15]. Femoral shaft width

varies from patient to patient due to differences in build; however, the probability of two lines

forming a shaft contour can be estimated based on the distance between them across a set of

training images, as modeled by a Gaussian Gw. The probability pi that the pair of lines i in the test

image form a shaft contour based on width alone is given by:

pi = Gw(wi|µw, σw) (4.8)
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where wi is the distance between the two lines in the pair, i.e. the expected shaft width. Chen

proposes incorporating pixel intensity information into the distribution, since it is intuitive that the

intensity gradient of the leftmost shaft edge should change from dark to bright and vice versa for

the rightmost shaft edge. The mean magnitude of these gradients should also be large if the line

represents a true bone contour.

However, the approach proposed in this dissertation instead filters out lines with weak horizon-

tal gradient magnitudes during initial edge map generation. The candidate shaft edge set shown in

Fig. 4(f) is characteristic of most images processed using the initialization algorithm. Furthermore,

the method described in [15] calculates the mean intensity gradient magnitudes only of the points

along the detected line. If the bone contour is blurred or the line does not perfectly correspond to

the image contour, this may cause genuine shaft edge pairs to be incorrectly rejected.

The approach in this dissertation instead evaluates intensity gradient changes via a ‘beam’ ap-

proach, which examines a specified range of columns either side of the detected line and calculates

the average pixel intensity value for each. These are averaged again to give mean intensity values

ml and mr for the left and right sides of each candidate shaft edge. Edges with the highest intensity

differences, calculated as |(ml−mr)|, are favored as these represent the strongest change in intensity

values. This can be used to decide between two candidate edge pairs that exist in close proximity,

as in Fig. 4(f) (where the edge marking the transition between high density and low density bone

will be rejected due to the lower intensity difference). The direction of the change is also taken

into account; a line with a sharp increase in intensity from left to right can never be the rightmost

edge in a shaft pair.
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4.3.1.4. Pairing shafts into candidate femur pairs

After filtering, the candidate edge pairs are ranked by their probability pw (calculated using the

width distribution as described in Eqn. 4.8), and the top four pairs are retained as shafts. Based

on their location, these shafts are then used to build candidate shaft pairs representing the left and

right femurs. In practice, there are typically only two shafts left at this point and candidate shaft

pair filtering is unnecessary.

However, to ensure that the femurs are correctly identified in a situation where more than two

shafts are detected, a probability distribution is constructed based on the distance between the left

and right shafts in each shaft pair. Similar to the shaft width distribution defined in Eqn. 4.8, the

shaft distance distribution is modeled as a Gaussian. The probability p j that a pair of detected

shafts j accurately match the shafts in the actual image is given by:

p j ∝ Gd(d j|µd, σd) (4.9)

where d j is the distance between the inner contours of the left and right femoral shafts. The

shaft pair with the highest value of p j is taken to represent the final detected shafts. The results

presented in Chapter 6 include exactly how many of the test cases required this final filtering step

- but generally speaking, the earlier stages of the shaft detection process are successful in filtering

out all but the two actual femur shafts.

4.3.2 Detection of Femoral Heads

Once the positions of the femoral shafts are known, the patient’s approximate horizontal displace-

ment is calculated as the horizontal distance between the center point of the shafts and the center

of the image. This information is later used in accurate initialization of the pelvic ring Spline/ASM
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model, as it deals successfully with situations where the femoral head may have been pushed in-

side the ring due to impact injury. However, the patient’s vertical position within the X-ray image

can also vary widely; in some images the shafts will cover up to half of the rows, while in others

they may only be visible in the lowest few. This is one reason for the restricted region of interest

used for shaft detection (as described in Section 4.3.1). Additional information is therefore re-

quired to identify the patient’s approximate vertical position, which is obtained via identification

of the femoral heads. Vertically, these are positioned at the base of the pelvic ring and maintain

their structure even in severe injury - making detection relatively simple.

The femoral heads are roughly circular, meaning their approximate shape can be defined via

a parametric equation. Consequently, directed Hough Transform is again a suitable method for

detection. A circle with radius R and center (a, b) can be described with the Cartesian equation:

(x − a)2 + (y − b)2 = r2 (4.10)

which can then be written in the following parametric forms:

x = a + R cos(θ) (4.11)

y = b + R sin(θ) (4.12)

where θ represents the angle that the vector from (x, y) to the origin makes with the x-axis.

For any single pixel (xi, yi), these equations are variable in three dimensions: a, b, and R.

Each edge pixel in the original image therefore corresponds to a cone in the 3-D Hough parameter

space (as can be seen by rearranging Eqn. 4.10). Similar to the Hough line transform, edges are

defined by the overlap of their representations in parameter space; pixels belong to the same circle

in image space if their cones share a common intersection point.
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However, Hough Circle Transform is computationally expensive, due to the higher dimension

of the parameter space. To ensure that circle detection can be performed with sufficient speed in

the chosen application, several restrictions are used. The most intuitive is the restriction on the

(a, b) search space to a limited window around the femoral shafts. This varies depending on the

image, but its width ww and height wh can be defined as:

ww = 3ws; wh = 2Ih; (4.13)

where ws is the pixel width of the detected femoral shaft at the base of the image and Ih

is the total pixel height of the image. These constraints on window size were determined via

experimentation and are relatively lax, but allow for considerable variation in patient position. The

computational cost of the Hough transform can be further reduced by restricting the circle radii

search range. Though multiple searches are conducted across this range, R is fixed during each

individual search. Only a and b must be found, and so each search occurs in 2-D parameter space.

The radii search range S r covers (0.5ws − 1.5ws), again defined in terms of pixels. Searches in

images with wider shafts will consequently involve a wider range and therefore require more time;

however, the constraints still reduced the search time to an average of 2.5 seconds across the test

set, with the longest search taking 3.3 seconds (both rounded to 1 d.p.). The search is performed

on an edge map generated using the Canny detection operator, as described in subsection 4.3.1.

In this situation, the high and low thresholds used in non-maxima suppression are less restrictive,

since the femoral heads are not as well-defined as the shafts. An example result of femoral head

detection is presented in Fig. 4.5, where it can be seen that the approximate position of the femoral

head is correctly identified.
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(a) Edge map (b) Circular Hough Transform

Figure 4.5: The result of applying Canny edge detection to the area of the image containing the
left femoral head, then applying Hough Transform to the edge-detected image.
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4.3.3 Spline/ASM for Femur Detection

The approximate positions of the femoral heads are then used to place the Spline/ASM shape mod-

els for both the left and right femurs. In turn, the located femurs are used to initialize placement

of the models for the pelvic ring and the left and right pubis-ischium structures. A simple method

of placing the femur shape model would be to use the circumference of the circle approximately

covering the femoral head. However, since the Hough Transform is prone to overestimating the

radius of the head due to false edges in the search window, this circumference may be inaccu-

rate. Instead, the model is placed based on the circle center; this requires extra calculations, but

offers a reasonably stable reference point. The change in overall shape is limited to 4σ, allowing

the model to deform to fit femurs at various angles without losing its base structure. Image sub-

sampling using the Gaussian pyramid caused distortion in detection results, and was therefore not

used.

Experiments were performed using two different landmark placement schemes for each struc-

ture. In both schemes, landmark points were placed at roughly equal intervals around the structure

edge; however, the second used only half the points of the first. This was repeated for all structures,

but for reasons outlined in Chapter 6, the increased number of landmarks did not offer significant

benefits. Figure 4.6 presents an example of femur detection using ASM with the reduced landmark

scheme.

4.3.4 Spline/ASM for Pelvic Ring Detection

Identifying the femurs enables correct initialization of pelvic ring and pubis-ischium models.

Across all training images, it was found that the distance between each femoral head and the

pelvic ring (proportional to the image width) fell within a set range. Furthermore, the boundary of
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Figure 4.6: The result of Spline/ASM detection of the right femur

the pelvic ring is marked by a transition from bright bone matter to darker soft tissue. Therefore,

a horizontal ‘beam’ search is conducted for sudden changes in pixel intensity, beginning at the

uppermost landmark on each femur model (located near the top of the femoral head). This search

covers Iw/10 columns and Hr rows, where Iw is the pixel width of the image and Hr is the pixel

radius of the detected femoral head. The Spline/ASM ring model is then placed by matching a

set number of landmarks along the points with the steepest gradient changes. This approach deals

reasonably well with situations where the femoral head is pushed inside the pelvic ring. Note that

prior detection of the femurs is vital for locating the pelvic ring; automatic segmentation cannot

begin with the ring since its horizontal and vertical position in the x-ray image is unknown. De-

formation of the ring shape model is again limited to 4σ, but the search range along the profile

to each point is reduced to prevent the model aligning to the upper edge of the obturator fora-

men (the gap below the superior pubic ramus underneath the pelvic ring). Two pyramid levels are

used to subsample the image, since the simple shape of the ring remains intact at the lower image
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resolution.

4.3.5 Spline/ASM for Pubis and Ischium Detection

During segmentation, the ischium and pubis on each side are treated as a single structure. Unlike

the other structures, in this case the Spline/ASM model consists of two separate contours; one

marking the outer edge of the bones and the other the obturator foramen. Since the pubis-ischium

structure shares a common edge with the pelvic ring, the landmarks detected in the previous step

are used in placement of the shape model. Furthermore, deformation from the points along the

upper edge is penalized more severely. The center of the femoral head is also treated as a reference

point.

4.3.6 Hough Transform and Spline/ASM for Detection of Iliac Bones

The final structures to be detected are the left and right iliac bones. In a standard AP view pelvic X-

ray, these appear approximately circular, and therefore Canny edge detection and directed Hough

transform can again be used to identify their approximate location. The search windows are de-

fined as the top left and top right quadrant of the image, with detection and segmentation being

performed separately for each of the two sides. The range of radii to be searched is harder to

define. Following examination of the dataset, it is set as (0.5hp − 1.5hp), where hp is the distance

between the lowest and highest landmark points on the detected pelvic ring. Since the iliac bones

are much larger than the femoral heads, the computational cost of the search is much higher -

however, this is offset by testing radii at 2-pixel intervals (i.e. r = . . . , 60, 62, 64, . . . ), effectively

halving the range.

As with femur detection, the iliac shape models are placed according to the center of the

located circle to avoid the impact of radius over-estimation. Based on the results of a series of
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experiments, shape deformation is limited to 4σ, since although the edges of the iliac bones are

fairly distinct the model is still vulnerable to image noise and the false edges caused by the iliac

crests. An example result is presented in Fig. 4.7.

Note that if the patient is rotated on the table, one bone may appear smaller in size or hooked

rather than circular. This may cause errors in detection. However, at least one bone maintained a

circular appearance across all images in the dataset; the range of patient pose angles present within

AP pelvic X-rays does not seem sufficient to cause simultaneous distortion of both sides. Since the

pelvis should maintain bilateral symmetry [10], it is intuitive that if the approximate location of

one bone can be identified, this can be used to estimate the position for the opposite side. However,

since severe trauma can result in pelvic asymmetry [30], absolute symmetry cannot be assumed

when placing the model. Instead, a window is identified that is likely to contain the non-detected

iliac bone and an edge map is created to place the Spline/ASM model. This is the final stage of

the hierarchical pelvic segmentation process.

4.4 Summary

This chapter presents a novel hierarchical method for automatic segmentation of key pelvic struc-

tures. Specifically, it combined anatomical knowledge and multiple computational techniques to

deal with the high sensitivity of deformable models to their initialization. Starting with detec-

tion of the femoral shafts, the information obtained at each step of the segmentation process is

then used to begin the next. When applied with the combined Spline/ASM algorithm described in

Chapter 3, this method offers highly accurate detection of key pelvic structures, as supported by

the results presented in Chapter 6.
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(a) Result of edge detection

(b) Result of circular Hough transform

Figure 4.7: An example of automatic detection of the approximate location of the ilium, via edge
detection and circular Hough Transform.
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CHAPTER 5 Fracture Detection and Displacement Measurement

5.1 Overview

This chapter explains the wavelet-based method developed for fracture detection in the pelvic ring

and pubis/ischium structure, to be applied after the segmentation process described in Chapter 4.

It also explores the importance of injury patterns in successful treatment of pelvic trauma, and the

diagnostic signs that can be extracted from AP view radiographs of the pelvis. Section 5.2 presents

an overview of the Discrete Wavelet Transform (DWT), which forms part of the fracture detection

algorithm described in Section 5.3. A method of automatically calculating quantitative measures of

pelvic displacement is explained in Section 5.4, while Section 5.5 describes key patterns of pelvic

injury and how the features extracted can be used in determining the basic form. A summary of

the chapter is presented in Section 5.6.

5.2 The Discrete Wavelet Transform

Understanding the developed method of fracture detection first requires an understanding of the

wavelet transform (WT), which transforms an input signal into a time-frequency representation.

This may be more compact or assist in signal analysis. The one-dimensional continuous wavelet

transform (CWT) of an input signal x(t) is obtained by convolving it with a set of wavelet functions.

These wavelets are shifted and scaled versions of some mother wavelet ψ(t) and are therefore

known as daughter wavelets. Calculating the CWT involves calculating the correlations between

these daughter wavelets and local portions of x(t). Choosing the best mother wavelet for a given

application is an open problem, but a useful heuristic is to pick on similar to the input signal.

62
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The normalized daughter wavelet for given scale and shift parameters a and b can be written

as

ψa,b(t) =
1
√
|a|
ψ

(
t − b

a

)
(5.1)

The WT is then expressed as

T (a, b) =

∫ ∞

−∞

x(t)ψ ∗a,b (t)dt (5.2)

where * represents the complex conjugate operator. Equation 5.2 is equivalent to the convolu-

tion of the wavelet function and the signal x(t). In the CWT, the mother wavelet is continuously

shifted and scaled over x(t), which is not feasible in a digital setting and also carries a high level

of redundancy. The Discrete Wavelet Transform (DWT) circumvents this issue by accepting con-

tinuous signals as input but only applies discrete shift and scale values. If a suitable set of values

is used to sample x(t), then the inverse DWT can be used to reconstruct the original continuous

signal in full. The DWT provides a means of multi-resolution analysis (MRA), applying a scaling

function φ(t) to create a series of approximations of the input signal, each differing in factor 2 from

its nearest neighbors. The wavelets encode the difference in information (i.e. the detail) between

neighboring approximations.

Let m and n be integer values controlling scale and shift respectively. The scaling function is

given by

φm,n(t) = 2
−m
2 φ(2−mt − n) (5.3)

where

φ(t) =
∑

k

ckφ(2t − k) (5.4)

Equation 5.4 is the scaling equation, where φ(2t − k) is a contracted and shifted version of φ
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and ck are the scaling coefficients. The scaling function φm,n is associated with smoothing of the

input, and so is convolved with x(t) to create the approximation coefficients S m,n:

S m,n =

∫ ∞

−∞

ψm,n(t)dt (5.5)

The set of values of S m,n for a specific scale m form the discrete approximation of x(t) at that

scale (or level).

A discretized version of the wavelet function for scale and shift values m and n has the form

ψm,n(t) =
1√
|am

0 |

ψ

( t − nb0am
0

am
0

)
(5.6)

= a
−m
2

0 ψ(a−m
0 t − n) (5.7)

where a0 and b0 are fixed scale and shift step parameters used in discretizing the parameters a

and b used in Eqn. 5.1. The discrete wavelet transform of x(t) can now be written as

Tm,n =

∫ ∞

−∞

ψm,n(t)dt (5.8)

In this case, Tm,n form the set of detail coefficients; x(t) can be expressed by adding the ap-

proximation of x(t) at some arbitrary level m0 to the sum of the detail coefficients created at levels

m0 down to −∞. If the signal detail at level m is written as

dm(t) =

∞∑
−∞

Tm,nψm,n(t) (5.9)

then x(t) is given by

x(t) = xm0(t) +

m0∑
m=−∞

dm(t) (5.10)

This is important in understanding the signal decomposition process used in MRA via DWT.

Assume we have an input signal x(t) which can be written as S 0,n (i.e. the approximation of itself
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at level 0). We compute S 1,n and T1,n as

S 1,n =
1
√

2

∑
k

ckS 0,2n+k (5.11)

T1,n =
1
√

2

∑
k

bkS 0,2n+k (5.12)

where ck and bk are the scaling coefficients used for the scaling and wavelet functions respec-

tively. In the same way, S 2,n and T2,n can then be calculated using S 1,n. At each level m, the

approximation created at level (m − 1) is decomposed using Eqns. 5.11.

The one-dimensional DWT can be extended to 2-D DWT for application to 2-D signals such

as images (where the signal is formed by the image’s array of pixels). This requires 2-D scaling

and wavelet functions which take their parameters from the pixel positions (x, y). Each level of

decomposition m creates a decomposition array which can be divided into four sub-matrices: Sm

(containing the approximation coefficients) and Th
m, Tv

m and Td
m (containing the horizontal, vertical

and diagonal detail coefficients respectively). The detail coefficients can be used to reconstruct

discrete detail arrays at the scale of the input image, defined as Dh
m, Dv

m and Dd
m. The sum of

these arrays forms a combined detail array. Remember that each level of decomposition in 1D-

DWT involved down-sampling the input by factor 2; the same is repeated in 2D-DWT in both

dimensions, hence the creation of four sub-matrices. In other words, if the input image is of size

(i × j), the approximation created at the first level of decomposition is of size ( i
2 ×

j
2 ).

Mallat defined a method of calculating DWT decompositions via a succession of quadrature

mirror filters. Figure 5.1 shows how this approach can be applied to images. Decomposition first

treats the rows of the image as a 1-D signal, then the columns; g[n] and h[n] are the quadrature

mirror filters, where h[n] is a low-pass filter and g[n] is the mirror filter of h[n] (and therefore a

high-pass filter). The process creates an approximation component and three detail components,
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as described in the previous paragraph, which can be reconstructed into arrays at the scale of the

input image.
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Figure 5.1: A single 2D DWT decomposition stage. A low-pass filter h[n] and high-pass filter g[n]
are first applied to the rows of the image, then the columns of the output. Down-sampling by 2
occurs after each step.

5.3 Ring Fracture Detection

This dissertation presents an automated method for detecting fractures around the pelvic ring,

which creates a series of overlapping windows based on the boundaries extracted during initial

Spline/ASM segmentation and tests each one for contour discontinuities which may indicate frac-

ture. The method is also applicable to identifying horizontal fractures of the pubic rami, ischium

and obturator foramen. In particular, the left and right upper pubis form part of the stable ring

structure, and so fractures in that area are detected during analysis of the pelvic ring structure.

Figure 5.2 presents an overview of the fracture detection process.
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Figure 5.2: A schematic diagram of the pelvic ring fracture detection process.
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5.3.1 Windowing

The appearance of ring fractures in an AP pelvic radiograph depends on their severity. Unlike

major fractures, minor fractures may not severely distort the edge of the ring; instead they may

appear as dual edges, or a single edge segment that is slightly blurred compared to its neighbors.

While the Spline/ASM model created during the hierarchical segmentation process (described in

Chapter 4) is capable of detecting large distortions in the ring structure, it is not sufficiently sensi-

tive to subtler changes. The first step in fracture detection is therefore to refine the boundary of the

pelvic ring and obtain a more detailed view of any discontinuities. This is performed via a series

of wavelet transforms for noise reduction and edge detection; however, applying these transforms

to the entire ring is both impractical and unlikely to achieve good results due to local intensity

variations. Instead, the ring boundary is divided into a series of overlapping windows whose size

and location are determined by the coarse boundary detected using the Spline/ASM model. Each

window covers a subsequence of consecutive model landmarks; the length of this subsequence is

decided during initial Spline/ASM training, as the optimal value depends on the number of land-

marks used to describe the models. Although using non-overlapping windows would reduce the

total number of windows to be processed and hence lower the computational cost, fractures cross-

ing the boundaries between windows may not be detected. As shown in Fig. 5.3, each window

has an overlap region at either end set to a specific number of landmarks (again decided during

training). Since individual windows are defined in terms of landmark sequences, their pixel di-

mensions in the unseen image under analysis are dependent on the results of Spline/ASM model

fitting. Sizes are therefore not equal between one window and the next, but this does not appear

to negatively impact performance, and all sections of the ring edge are still processed. After win-

dowing has been performed, three steps - wavelet transform, masking and boundary tracing - are
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performed on each individual window. The windowing method is also applicable to the contours

of the obturator ring and the lower edge of the ischium, since these structures are also outlined by

landmark points after automated Spline/ASM segmentation.

Figure 5.3: Example overlapping windows around the pelvic ring, positioned according to model
points placed during Spline/ASM segmentation.

5.3.2 Wavelet Transform

The input window W is first decomposed using the 2-D Stationary Discrete Wavelet Transform

(SWT). SWT is a redundant, translation-invariant version of DWT which does not decimate the

coefficients at every level of decomposition, and where the filters at level i are up-sampled versions

of those at level (i−1) (where i > 0). As with the 2-D DWT, decomposition outputs approximation

and horizontal, vertical and diagonal detail coefficients. In this application, three levels of decom-

position are applied to window W using the db1 (or Haar) wavelet. First, the level 3 approximation

coefficient is used to reconstruct a smoothed version Ws of the input window W, as shown in Fig.
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5.4

(a) Original window (b) Reconstructed window

Figure 5.4: Reconstruction using the SWT approximation coefficients generates a smoothed win-
dow image.

The level 3 detail coefficients, Th
3, Tv

3 and Td
3, are then extracted and used to reconstruct detail

arrays Dh, Dv and Dd. Figure 5.5 presents example images.

(a) Horizontal detail (b) Vertical detail (c) Diagonal detail

Figure 5.5: Reconstructions of a ring window from vertical, horizontal, and diagonal SWT detail
coefficients

The reconstructed detail arrays highlight high frequency variations in the image - including

the edge of the ring. The coefficient set that best describes the edge depends on the angle of the

edge, and therefore on the location of the window around the ring. It can be seen in Fig. 5(b) that
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the vertical detail coefficients most clearly define the edge in this case. In practice the choice is

handled automatically during the initial windowing process, as each window is labeled according

to the set of coefficients most likely to be suitable for ring contour detection. The labeling scheme

is defined in advance based on prior examples to avoid the need for manual interaction by the user.

5.3.3 Masking and boundary tracing

The next step creates a binary version DB of the chosen detail array (here, the vertical reconstruc-

tion shown in 5(b)). This will contain the pelvic ring contour as a white line but will also include

other extraneous edges. To filter these out, a mask AB is formed by converting the smoothed

window WS to a binary image using Otsu’s threshold [49], then extracting the contour (which ap-

proximates that of the ring). By combining AB and DB, the unwanted edges are removed to create

an edge window WE = AB × DB. Figure 5.6 shows each of these windows.

(a) Binary vertical detail, DB (b) Approximate edge mask, AB (c) Filtered edge window, WE

Figure 5.6: The filtering process used to create the edge window, WE

The final task is to trace the edges in WE and detect any discontinuities. First, morphological

opening is applied to all objects in the image with area below a specific threshold. This was pre-

defined in testing as 0.5% of the window area, but the most suitable value must be decided during

training based on the number of landmarks used to generate each window. Thresholding removes
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small artifacts that may interfere with edge tracing. Finally, the remaining edges are traced using

the 8-neighborhood of each pixel and returned as a matrix of pixel positions. The traced edges

represent the bone contours of the pelvic ring; if there is no fracture, the window will therefore

contain a single uninterrupted boundary. Otherwise, there will be multiple boundaries as shown in

Figure 5.7, depending on the types and number of fracture. Currently, fracture presence is a binary

value (i.e. present or not present). Future work will examine a finer level of fracture classification

based on location and severity, which may provide more useful information in rule generation.

(a) Original window (b) Detected ring contours

Figure 5.7: Example of a detected broken ring boundary, which may indicate a ring fracture.

5.4 Symphysis pubis displacement

Discussion with radiologists and a review of the literature has indicated that the horizontal and ver-

tical displacement of the left and right pubis may be important quantitative measurements in de-

termining pelvic injury severity. At the time these measurements are calculated, it is assumed that

the left and right pubis have been detected using the Spline/ASM algorithm as outlined in Chapter

3. This returns a detected object as a sequence of consecutive landmarks around its boundary, in

(x, y) coordinate form. Two displacement measures between the left and right pubis can therefore
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be calculated based on the positions of these landmarks; specifically, those on the edges bridged

by the symphysis pubis.

The ‘Horizontal Gap’ feature is defined as the horizontal distance between the left and right

pubis. Figure 5.8 describes visually how this is determined. The number of landmarks on the edge

of the gap will vary depending on how the Spline/ASM model was trained prior to the system

being deployed. However, it will always be equal for both the left and right sides.

L1
L2
L3
L4
L5

R1
R2
R3
R4
R5

Figure 5.8: Calculating the width of the pubis symphysis gap using Spline/ASM landmarks.

When measuring displacement, the algorithm considers the landmarks as pairs (Li,Ri), and

calculates the difference in x-coordinates between the pair members. The differences are summed

and averaged over the number of landmarks n (in Fig. 5.8, n = 5). If Li = [xk, yk] and Ri = [x j, y j]

form a landmark pair where i = 1, . . . , (n), let Li[x] and Ri[x] represent the x coordinates of Li and

Ri respectively. The horizontal symphysis gap gH is calculated as:

gH =
1
n

n∑
i=1

|Li[x] − Ri[x]| (5.13)
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Figure 5.9 shows how vertical pubis displacement is determined; to save space, landmarks 2-4

on each side are not labeled, but are still used in calculation. Where Li and Ri are defined as above

and Li[y] and Ri[y] represent their x coordinates, vertical displacement gV is calculated as:

gV =
1
n

n∑
i=1

|Li[y] − Ri[y]| (5.14)

L

R1

1

L

R5

5

Figure 5.9: Calculating the vertical displacement of the left and right pubis using Spline/ASM
landmarks.

Since the sides of the symphysis gap appear as vertical edges in the image, the model defor-

mation process can cause variations in vertical landmark spacing. This is because the vertical

distance between consecutive landmarks can increase and decrease without a significant overall

effect on segmentation, whereas horizontal landmark movement converges to the edge. The verti-

cal differences in landmark position (i.e. differences in y coordinates) can be safely omitted when

calculating the horizontal gap (as in Eqn. 5.13) but are crucial to calculating the vertical displace-
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ment. However, the use of averaging over all landmarks on the edge (as in Eqn. 5.14) should

compensate for these variations. The alternative - using only landmark pairs (L1,R1) and (Ln,Rn)

- is vulnerable to inaccuracies in the model deformation process.

Equations 5.13 and 5.14 return measurements in terms of pixels. Since the area of the ra-

diograph occupied by the pelvic structure can vary from one image to the next, these values are

normalized by the average length of the diagonals crossing the pelvic structure (each defined by

two reference points on the femoral head and the opposite iliac bone). This approach was used in

the experiments described in Chapter 7, as a method of measuring distances in centimeters was

unavailable.

However, this situation has changed as more DICOM (Digital Imaging and Communications

in Medicine) format images have become available. The DICOM standard specifies key aspects

of medical imaging, such as handling of information and transmission protocols. It also defines

a file format to be used in digital image storage which incorporates not only the image data itself

but also related text and numerical information. A DICOM file is formed as a single data object

consisting of multiple attributes - such as the patient ID, the data the scan was collected, and the

imaging modality - where the final attribute contains the image pixel data. The Pixel Spacing

attribute contains the physical distance in the patient corresponding to the distance between the

centers of two immediately neighboring pixels in the image. The radiograph processing compo-

nent currently contains a function which extracts the Pixel Spacing attribute and uses it to convert

the values returned in Eqns. 5.13 and 5.14 to physical distances in the patients, expressed in mil-

limeters. Not only is this form more easily understood in a medical context, but it also prevents

small inaccuracies in segmentation of the iliac bones and the femurs from affecting calculation

of normalized pixel distances. Future experiments will therefore use the millimeter form in rule
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generation. The DICOM format offers other benefits that may prove useful in future development

of the work in this dissertation. For example, images are stored at 12-bit depth rather than the 8-bit

depth used in common file formats such as PNG and JPEG. This can potentially provide better

definition of detail; however, it may not have much impact in low-resolution X-ray images. Test-

ing is needed to determine whether using the 12-bit form will be beneficial. For ease and speed of

processing, the work presented in this dissertation down-samples the images to 8-bit depth. More

information on the DICOM standard can be found in [44].

5.5 Patterns of Pelvic Injury

As stated in the introductory chapter to this dissertation, identification of pelvic fracture patterns is

vital in early stabilization [12, 23]. Numerous classifications of these patterns have been proposed

[10]. One of the mostly widely used is based on the mechanism of injury, as this assists physicians

and surgeons in applying the most appropriate external fixation force [75]. This scheme separates

pelvic trauma by mechanism into three main types: anterior compression, lateral compression, and

vertical shear.

Anterior compression (AP) injuries involve a force applied to the pubis or posterior pelvis,

and are common in motor vehicle collisions (MVCs). Since it typically involves external rotation

of the ilium, the AP pattern is also referred to as ‘open book’. Diagnostic signs include vertical

pubic rami fractures and diastasis of the symphysis pubis and sacroiliac joints. Three AP sub-

types have been defined, according to injury severity; the most severe involves disruption of all

the sacroiliac ligaments and separation of the iliac wing from the sacrum. Lateral compression

(LC) injuries are the most common, caused by a lateral blow to either side of the pelvis resulting

in internal iliac rotation. Again, they are classified into three sub-types, but general diagnostic
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features include: sacral fracture, horizontal or coronal pubic rami fracture, iliac wing fracture,

diastasis of the sacroiliac joints, and overlapping fractures of the pelvic ring. The final group are

vertical shear (VS) injuries, such as those due to falls from a height. Signs include symphysis

pubis and sacroiliac joint diastasis, iliac and sacral fractures, and vertical fractures of the pubic

rami. There are more complex injury patterns, as well as other classification systems, but these

may require more images for full analysis (e.g. CT scans and/or inlet and outlet X-ray views).

The diagnostic signs in this classification scheme include several that are visible on AP radio-

graphs. Detection of pelvic ring and pubis fracture has been described in Chapter 5. Fracture of

the ilium and sacrum are more challenging to detect on AP pelvic X-rays and are left as future

work. However, all three injury types involve some degree of ligament damage; more specifically,

pelvic instability can be defined by two types of displacement, rotational and vertical [65]. In

an AP radiograph of the pelvis, this can be evaluated by comparing the positions of the left and

right bones of the pubis as well as identifying potential abnormalities around the sacroiliac joints.

An axial CT scan offers a clearer view of displacement, particularly concerning the sacroiliac lig-

aments; however, in situations where a scan cannot be obtained, features extracted from X-ray

images may provide useful diagnostic information and should therefore be included as input to the

decision-making process.

The criteria used to define these various patterns suggests that the calculated quantitative dis-

placement measures may prove useful in pattern identification. As stated above, diastasis of the

symphysis pubis may indicate severe injury, and is quantified by the ‘Horizontal Gap’ measure.

Vertical displacement can potentially indicate a vertical shear injury, and is quantified by the ver-

tical displacement measure. Additional work not presented in this dissertation has focused on

detecting diastasis of the sacral joints; as stated, this is associated with multiple patterns of injury
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and pelvic instability. The method is not yet robust enough for evaluation, but shows promise -

particularly if it can be verified via analysis of corresponding CT scans.

5.6 Summary

This chapter describes the extraction of potentially useful diagnostic features after segmentation

of key pelvic structures. Specifically, it presents an algorithm developed to detect fracture of the

pelvic ring and horizontal fracture of the pubis that can be adapted to other regions of the body,

and potentially other X-ray analysis tasks involving discontinuity detection (such as in industrial

applications). It also presents a method for automatic calculation of displacement measures based

on initial segmentation results, and suggests how these features may be useful in a future system

component that identifies injury patterns.
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CHAPTER 6 Results of Image Processing

6.1 Overview

This chapter presents the results of multiple tasks included in the developed X-ray analysis module.

Segmentation is covered in Section 6.2 (including ANOVA evaluation to test the effectiveness of

manual initialization), and fracture detection of the pelvic ring in Section 6.3 fracture detection

of the pelvic ring. Example images are provided of all results. Section 6.5 demonstrates how the

Spline/ASM algorithm can be used in other medical imaging applications, and the chapter ends

with a discussion of the combined results. Note that the results of predictive model generation are

addressed separately in Chapter 7.

6.2 Segmentation

Since the purpose of the hierarchical automatic segmentation algorithm is to automatically ini-

tialize detection of key pelvic structures, performance is compared versus manually initialized

segmentation. A second set of examples was generated by a user manually placing the model tem-

plate within the desired structure in the x-ray image. Both models were trained using Spline/ASM.

Across a set of 20 images taken from male pelvic trauma patients, three key structures - the right

ilium, right femur and pelvic ring - were manually labeled and taken as reference shapes. For each

image, the difference in area between this reference shape and the shape detected via the initializa-

tion algorithm was calculated and normalized by the area of the reference shape. In other words,

where A is the reference shape (i.e. a set of pixels) and B is the shape detected automatically, the

79
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normalized error measure e is calculated as:

e =
(A − B) ∪ (B − A)

area(A)
(6.1)

The same error measure was calculated for the reference shape and the shape detected via

manually-initialized ASM. ANOVA was then performed for all three structures to determine whether

there is a significant difference between results obtained via manual initialization and results ob-

tained using the hierarchical automatic initialization algorithm. When comparing results for pelvic

ring detection, ANOVA calculates a p-value of 0.8431. For iliac crest detection, p = 0.0776, and

for femur detection p = 0.6078. These p-values indicate no significant difference between re-

sults for manual initialization and the automatic method. It should be noted that in all three cases,

the sum of normalized error measure for the automated method is less than the sum for manual

initialization. This is particularly noticeable in detection of the right ilium, explaining the lower

p-value for that ANOVA test. Figures 6.1, 6.2 and 6.3 present ANOVA box-plots for right iliac

bone detection, right femur detection and pelvic ring detection respectively. It can be seen that the

automatic initialization offers slightly more consistent results with lower variance.

Via visual inspection, detection of each structure was classified across the fifteen test images

into three categories: Good, Acceptable, and Unacceptable. These categories were determined

via consultation with a trauma physician, and are subjective. However, the algorithm is trained

on a set of human-labeled images, and since the aim is to mimic manual segmentation, visual

inspection can arguably be considered a gold standard. Results of visual inspection therefore

provide useful feedback on the current performance of the algorithm. Results are presented in

Table 6.1. The crests, femur and pelvic ring are almost always detected to at least an acceptable

standard and segmentation is typically rated as good. The exceptions are the left and right pubis
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Figure 6.1: ANOVA box-plot for detection of right iliac bone.

bones; this may be due to the greater degree of deformation that can occur in severe pubis fracture,

particularly those that are vertical. It is expected that this can be resolved by training on a larger

set of images which better captures plausible shape variations.

Table 6.1: Results of full segmentation testing via visual inspection.

Structure Good Acceptable Unacceptable
Left Iliac Crest 11 4 0

Right Iliac 12 2 1
Pelvic Ring 10 5 0
Left Pubis 9 1 5

Right Pubis 10 1 4
Left Femur 12 3 0

Right Femur 11 3 1

Figures 6.4 and 6.5 present two sample images processed using the automatically initialized
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Figure 6.2: ANOVA box-plot for detection of right femur.

Spline/ASM segmentation. It can be seen by visual inspection that all structures of interest are

successfully detected. Figures 6.6 shows a more problematic case where the left pubis is not

correctly segmented. In situations such as this, symmetry checks can detect failed segmentation.

To illustrate individual performance of Spline/ASM, Fig.6.7 presents two sample results com-

paring the performance of standard ASM with Spline/ASM in segmenting individual structures.

The pelvic ring and right ilium are both structures with strongly curved contours and so are likely

to benefit from Spline/ASM. The difference is most pronounced in iliac bone segmentation, as

shown in Fig. 7(c) and Fig. 7(d). To compare the time required for Spline/ASM segmentation

versus standard ASM, performance across 12 images was compared in pelvic ring segmentation,

with each image being tested twice to account for variations due to other processes running on the

computer.
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Figure 6.3: ANOVA box-plot for detection of pelvic ring.

The significance of the number of landmarks used in defining shape models was also explored.

The right femur, right pubis, right iliac bone and pelvic ring were all assigned two separate land-

mark schemes, with the second using approximately double the landmarks of the first. Each ad-

ditional landmark was placed at equal intervals between pairs of original landmarks. It was found

that the average processing time increased to between 150-200% of the reduced landmark scheme,

with no significant improvement in segmentation results. Although contours were more precisely

defined, the goal of segmentation in this application is to identify structures for further analysis,

such as in fracture detection. Since the final decision-making system is intended for use in trauma

care, increased processing time is unacceptable if there is no significant benefit to analysis.
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Figure 6.4: An example of successful full automatic segmentation using Spline/ASM.
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Figure 6.5: A second example of successful full automatic segmentation using Spline/ASM.
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Figure 6.6: A example of only partially successful full automatic segmentation using Spline/ASM,
showing incorrect detection of the left pubis bone.
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(a) Standard ASM (b) Combined Spline/ASM

(c) Standard ASM (d) Combined Spline/ASM

Figure 6.7: Comparing Standard ASM with Combined Spline/ASM in detection of pelvic ring and
right iliac bone.
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6.3 Fracture Detection

Statistical evaluation of fracture detection is difficult at this stage. At present the algorithm detects

abnormalities that may indicate the presence of fracture, but further input from experts is required

to determine which of these are genuinely fractures. For example, it is necessary to distinguish

between severe ring fractures and those that may be caused by overlapping structures or X-ray ar-

tifacts; for now, such cases are considered only as potential abnormalities. Since there are multiple

types of fracture, full evaluation also requires a larger dataset containing more examples of each

type. However, preliminary results of pelvic ring fracture detection are presented in Table 6.2.

Twenty-four extracted windows were considered, equally divided into three groups (Suspected

Minor Fracture, Suspected Larger Abnormality, and No Fracture) . As stated, the classifications

must be confirmed before further development and future full evaluation can occur. Three visual

examples of ring fracture detection can be seen in Fig. 6.8: the first involving small ring fracture,

the second a larger potential abnormality, and the third no fracture at all. Future testing of this

component should explore sensitivity and specificity measures; the former is more crucial than the

latter in order to avoid missed injuries.

Table 6.2: Preliminary results of abnormality detection via visual inspection.

Type Correctly Detected Not Correctly Detected
Suspected Minor Fracture 6 2

Suspected Larger Abnormality 7 1
No Fracture 6 2
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(a) Original window (b) Minor fracture detected

(c) Original window (d) Potential abnormality detected

(e) Original window (f) No fracture detected

Figure 6.8: Multiple results of fracture detection.
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6.4 Complexity and Processing Time

Testing of Spline/ASM segmentation (as described in Section 6.2) was performed on an Intel quad-

core machine with 4GB RAM. Average run times were very similar: 7.15 seconds for Spline/ASM

versus 7.85 for standard ASM (rounded to 2 d.p.). The slightly lower average for Spline/ASM is

likely due to two images with several prominent false edges around the ring. In these cases,

Spline/ASM maintained ring curvature and quickly converged to the correct contour, whereas

standard ASM attempted to move toward the false edges.

6.5 Testing on Alternative Images

This section presents the results of applying the Spline/ASM algorithm to cardiac MR images

in order to segment the left ventricle, which shows strong curvature. Performance is compared

with that of standard ASM. This experiment gives a general indication of the algorithm’s potential

use in segmentation of other medical images. The dataset consisted of 14 cardiac MR images,

focused on the left ventricle, and was published by the Informatics and Mathematical Modeling

department at the Technical University of Denmark in 2002. Each MR image was first resized to

512x512 pixels, after which five of the images were each labeled with 35 landmark points and used

for training, with nine reserved for testing. Though this is insufficient for full statistical evaluation,

it gives a general impression of the performance of the Spline/ASM algorithm on a different type

of image. Both the basic ASM and combined spline/ASM algorithm were tested, and the results

were compared by sight.

The two algorithms offered comparable and accurate results in five of the test cases, which

indicates that the combined algorithm is as robust as the standard algorithm. In two of the cases,

results for both algorithms were inaccurate. In the two remaining cases, the performance of the
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combined algorithm exceeded that of the original. The results for the first case are presented in

Figure 6.9 (segmentation using combined Spline/ASM algorithm) and Figure 6.10 (segmentation

using basic algorithm). It can be seen by sight that, although both algorithms do capture the bound-

ary, the combined/spline ASM algorithm offers more accurate landmark placement. The results

for the second case are presented in Figure 6.11 (segmentation using combined spline/ASM algo-

rithm) and Figure 6.12 (segmentation using basic algorithm). In this case the difference between

the two is more obvious. Though there are slight inaccuracies in the boundary determined by the

combined algorithm (most noticeably to the left side of the ventricle), the results obtained using

the basic ASM algorithm are noticeably worse.

Figure 6.9: An example of left cardiac ventricle detection in a MR image using the Spline/ASM
algorithm.
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Figure 6.10: An example of left cardiac ventricle detection in a MR image using the standard ASM
algorithm.
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Figure 6.11: A second example of left cardiac ventricle detection in a MR image using the
Spline/ASM algorithm.
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Figure 6.12: A second example of left cardiac ventricle detection in a MR image using the standard
ASM algorithm.
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6.6 Summary and Discussion

The results presented in this chapter show promising performance given the data available, indi-

cating that the basic framework of the system is sound. At this stage further evaluation requires

not only larger datasets, but also extended involvement of experts who can provide information

on dataset images and verify the accuracy of the developed algorithms. Currently, assessment is

based upon a number of images analyzed by a participating radiologist, along with information

provided by him on particular characteristics of fracture and reference images from medical lit-

erature. This has been very useful in verifying the concepts behind the developed algorithms and

demonstrating the tasks that can be performed. The next step in development is to pursue cooper-

ation from experts on a larger scale. This will enable regular comprehensive statistical assessment

of performance as the algorithms are refined and additional processing components are developed.

Current evaluation of the overall automatic segmentation algorithm demonstrates performance

at least as accurate as manual model placement, and a higher level of consistency between images.

This suggests that the Spline/ASM algorithm is performing well in detection of individual struc-

tures, and that the hierarchical initialization algorithm is successfully locating the correct position

for the models at each step. It copes well with labels, text and other artifacts present on a number

of the X-ray images, which presented difficulties at the time of my dissertation proposal. The

proposal also considered the possibility that increasing the number of landmarks might improve

performance; in practice, this offered little benefit versus the increase in processing time. It is

important to remember that segmentation is not the final goal in this application, but a first step

required before individual structures can be separately analyzed; very high precision is therefore

not as crucial as speed, given the intended use in treatment of trauma. Errors may still occur in
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some situations, such as when the femurs are severely fractured. However, it is very likely that

these injuries would be immediately obvious, rather than something observed by the X-ray anal-

ysis component. Time complexity for the segmentation algorithm is acceptable; when tested on

an Intel quad-core machine with 4GB RAM, running time for a single image was approximately

40 seconds. This has been reduced from the 1 minute run-time stated in the dissertation proposal

by imposing additional constraints on Hough circle detection for the left and right ilium (the most

time-consuming step). However, Hough circle detection is still O(n3) in complexity, and is ex-

pected to remain the most time-consuming step of the algorithm. Hough line detection is an O(n2)

operation, while Spline/ASM is of linear complexity (as confirmed by the approximately linear

increase in execution time that results from an increase in the number of landmark points).

As stated, full evaluation of fracture detection performance is not feasible at this stage. How-

ever, preliminary results are promising, and - if the criteria used are correct - show good accuracy.

Potential abnormalities are consistently detected, though these need to be verified as fracture or

non-fracture before they can be firmly classified. The fracture detection algorithm is flexible and

uses a simple set of parameters, suggesting that refining its behavior according to expert opinion

may not be too difficult. Computational complexity is also acceptable; while each transform step

of a matrix-based DWT algorithm is an O(n2) operation, it is typically implemented using a linear

algebra approach which reduces this to O(n).

The next chapter of this dissertation examines the predictive model aspect of this work - or

more specifically, how the extracted image features can be used in generating outcome predictions

for pelvic trauma patients.



97

CHAPTER 7 Image Features in Predictive Models

7.1 Overview

This chapter describes two previous experiments incorporating medical image features into the

generation of predictive models for pelvic injury severity. Experiment 1 was performed and pub-

lished jointly with Wenan Chen [14] and focuses on the combination of X-ray features with demo-

graphic information and physiological scores. Experiment 2 was performed jointly with Simina

Vasilache and has been submitted for publication; it extends the approach of Experiment 1 by also

including image features present in CT scans. As stated in Chapter 1, the work in this dissertation

is intended to form part of a more general system able to generate grammatical rules for outcome

prediction in cases of traumatic injury. The experiments therefore use the CART and C4.5 decision

tree algorithms, which are briefly described in the following section.

7.2 Decision Tree Algorithms

Decision tree algorithms generate predictive models of some target variable based on a specific

set of input variables. These models are formed as trees, where branches express conjunctions of

input variables leading to the final classifications (values of the target variable) at the leaves. Each

of the nodes between the root and leaves corresponds to an input variable which is split on at that

node, and the split creates branches to child nodes or leaves according to specific values (or ranges

of values) of the node variable. Tracing the branches from the root down to a specific leaf thus

generates a predictive IF-THEN rule for that particular leaf, where the THEN-result is some value

of the target variable and the IF-condition is combination of input variables and their split values
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at each of the traversed nodes. The structure of a generated decision tree (and consequently the

extracted rules) depends on the criteria used in choosing the best variable to split on at each node,

which vary between algorithms. CART (Classification And Regression Tree) and C4.5 are two

widely used decision-tree methods and will be explained in more detail.

7.2.1 CART

The CART algorithm constructs binary decision trees (where each node is split into two child

nodes) using concepts from information theory [8]. Gini impurity is used as the splitting criterion

when growing the tree, with the ‘best’ variable to split on being chosen as the one that most

reduces impurity (heterogeneity of the dataset). The Gini impurity of a set of data measures how

often a randomly chosen member of the set would be incorrectly classified if its classification was

randomly chosen according to the distribution of classes in the subset. Assume there are N distinct

classes for the target variable Y , and let fi represent the proportion of items in the dataset of class

k. The Gini impurity index is given by

IG = 1 −
m∑

i=1

f 2
i (7.1)

Even though CART is an older algorithm, its handling of missing data and categorical variables

make it a popular choice in machine learning and data mining, and it is still used in a variety of

clinical research applications [25, 55].

7.2.2 C4.5

Similarly to CART, C4.5 generates binary decision trees using information theory concepts [53].

In this case, the splitting criterion is information gain, or the change in information entropy from

a prior state to a new state incorporating additional information - such as that obtained from a new
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data variable. When constructing a C4.5 tree, variables with high information gain measures are

preferred as they are likely to be most relevant in rapidly reaching a value for the target variable.

The information gain of an input variable X with respect to a target variable Y represents the

reduction in uncertainty about the value of Y caused by knowing the value of X. This uncertainty

is measured using entropy. Information gain IG(Y, X) is given by

IG(Y, X) = H(Y) − H(Y |X) (7.2)

where H(Y) is the entropy of Y and represents the uncertainty about Y’s value, while H(Y |X)

is the conditional entropy of Y given X and represents the uncertainty about Y’s value when X

is known. Information gain can also be expressed in terms of joint entropy H(X,Y). C4.5 is an

extension of the ID3 algorithm, designed to be more computationally efficient and avoid issues

with over-fitting of data [52].

7.3 Experiment 1: X-Ray Features

7.3.1 Experiment Overview

Experiment 1 combines X-ray image features with demographic information and physiological

scores to generate rules for injury severity prediction, based on a patient’s predicted length of stay

in the Intensive Care Unit (ICU). In accordance with a previous study, ‘severe’ corresponds to ≥ 3

days in ICU, and ‘non-severe’ to ≤ 2 days. The rules are generated using the CART algorithm

described in Section 7.2.

7.3.2 Dataset

The dataset used in this experiment was provided by Carolinas Healthcare System and consists of

33 male pelvic trauma patients. All patients were admitted to ICU and survived treatment. Admis-
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sion x-ray images were available for all cases. The dataset features included: Patient Age, Patient

Sex, Injury Severity Score (ISS), Mechanism of Injury (e.g. Fall, MVC), Transport Mode (Ambu-

lance or Helicopter), PH Airway,PH Fluids. All of these were stated to be potentially important

in predicting patient outcome during discussion with experts. These features were combined with

the following features extracted from pelvic radiographs: Horizontal Gap, Vertical Displacement,

Symmetric Displacement, Pelvic Ring Fracture and Pubis-Ischium Fracture.

7.3.3 Results

Due to the small dataset size, CART with leave-one-out selection was used, generating 32 trees in

each run. Since a stable pattern is required to represent the dataset, the most frequently generated

tree was selected - referred to from now on as the dominant tree. Across all 33 runs, 11 distinct

trees were generated; the dominant tree is shown in Figure 7.1 and appeared 20 times. This

tree was then applied to the whole dataset, and the resulting sensitivity, specificity and accuracy

measures were recorded. Note that the dominant tree has only two levels; this is due to the small

dataset used, as including many features when few samples are available is likely to result in

over-specific rules.

C4.5 was then used to verify the extracted rules by generating a tree using the ISS and Hori-

zontal Gap features that appear in the dominant CART tree. The resulting C4.5 tree has the same

structure and the split points are close to those specified by CART. C4.5 and CART generated very

similar rules from the pelvic injury dataset, indicating that the patterns extracted from the data

are genuine and not dependent on the machine learning algorithm used. To check whether CART

offers comparable accuracy to other machine learning techniques in this application, the Support

Vector Machine (SVM) method was also used to classify the dataset using the selected ISS and

Horizontal displacement features with a linear kernel. Again, leave-one-out was used to compen-
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ISS

HG

<=18.5 >18.5

<=0.767 >0.767
ICU<=2

ICU<=2 ICU>2

Figure 7.1: The dominant tree extracted by CART in injury severity prediction for Experiment 1.

sate for the small dataset size. Results for the rules generated by the selected CART decision tree,

rules generated by C4.5 tree, and the SVM method trained on the dataset are presented in table 7.1.

Note that both C4.5 and SVM verification were performed after CART-based feature selection via

extraction of the dominant tree.

Table 7.1: Classification results for Experiment 1 using leave-one-out. SVM and C4.5 testing are
performed for validation purposes only, using the features selected from the dominant CART tree.

Algorithms CART C4.5 SVM
Average Sensitivity 100% 100% 84.2%
Average Specificity 69.2% 61.5% 69.2%
Average Accuracy 87.5% 84.4% 78.1%

The results indicate that the dominant decision tree extracted by the CART algorithm produces

rules with good sensitivity, specificity and accuracy in predicting a patient’s expected length of

ICU stay. Specificity is lower, but this is likely due to the small dataset available at the time of
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the experiment. The results for SVM are poorer than would be expected, even after repeating the

experiment with Gaussian kernels (which gave poorer performance than linear kernel). However,

it must be remembered that SVM classification was applied only to the features extracted from the

dominant CART tree, as previously described. The aim was to use both SVM and C4.5 to verify

the results provided via CART - i.e. to confirm that the extracted pattern is not algorithm-specific

- rather than testing their individual performance in the classification task. Applying SVM with

various Gaussian kernels directly to the dataset typically provided better average performance than

CART. However, SVM is not considered a suitable method for outcome prediction in this task due

to its lack of transparency. It is also likely that CART results will improve as more data becomes

available, allowing a larger and potentially more accurate rule-base to be generated. This will also

enable leave-one-out to be replaced with 10-fold cross-validation during assessment.

Most significantly in terms of the study in this dissertation, the dominant CART tree selected

one of the features extracted from the X-ray image as the second most important variable in pre-

dicting patient’s ICU length of stay. As stated in 5, a change in the horizontal distance between the

left and right pubis bones is a significant component in patterns of pelvic injury, as it can indicate

pelvic instability when combined with other features. This provides a compelling argument for

the incorporation of image features into the decision-making process for diagnosis and treatment.

7.4 Experiment 2: X-Ray and CT Features

7.4.1 Experiment Overview

Experiment 2 combines both X-ray and CT image features with demographic information and

physiological scores, again to generate rules for injury severity prediction. In this case, severity

is based on whether a patient is sent to ICU. The rules are generated using the C4.5 algorithm

described in Section 7.2.
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7.4.2 Dataset

The dataset was again provided by Carolinas Healthcare System. More cases were available, com-

prising a total of 45 pelvic trauma patients of both genders who all survived treatment. Of these

patients, 20 were sent to ICU after initial diagnosis in the E.R., and the remaining 25 were either

sent home or to a hospital ward. Both X-ray images and CT scans taken on the day of admission

are available for each patient. The demographic and physiological features included are: Patient

Age, Patient Sex, Injury Severity Score (ISS), Mechanism of Injury (e.g. Fall, MVC) and Glasgow

Coma Score (GCS). These were combined with the following extracted image features: presence

of pubis fracture, presence of fracture in sacrum, pubic symphysis width, vertical displacement of

pubis, pelvic ring symmetry displacement, and potential presence of hemorrhage.

7.4.3 Results

Since the combined dataset contained a relatively wide range of features for the number of samples

available, feature selection was performed to identify the most useful attributes and remove those

that are irrelevant to the learning task. Feature selection typically results in a more robust predictive

model and helps avoid over-fitting. This experiment used a correlation-based method which selects

a subset of features based on both their individual predictive ability and the degree of redundancy

between them [26]. Results indicated that multiple features extracted from the X-ray and CT

images may prove useful in prediction of injury severity. Ranking of features via correlation-based

subset selection selected ISS, GCS and presence of pubis fracture as the three features statistically

significant for the prediction task. It should be noted that fracture of the sacrum and potential

presence of hemorrhage also ranked in the top six. These results correspond to knowledge of

pelvic injury patterns; as stated in Section 7.3, fracture of the pubis can not only cause damage to
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the surrounding organs and tissues but may also be associated with pelvic instability. The same is

true of damage to the sacrum - and, as stated in Chapter 1, hemorrhage has a significant impact

on patient outcome. Their absence from the filtered feature set may be due to their infrequency in

the dataset. As more data become available, it is likely that there will be more examples of these

conditions, and they are expected to become more statistically significant in predicting patient

outcome.

The three selected features - ISS, GCS, and presence of pubis fracture - were used as input to

the C4.5 algorithm, generating the tree shown in Figure 7.2. To verify the accuracy of the extracted

rules, the same input features were used as input to the CART algorithm, generating a second tree.

This is identical in structure to the C4.5 tree, though ISS and GCS are split on 26.5 and 14.5

respectively. The close correspondence in structure indicates that the patterns extracted from the

data are genuine. The results of both methods were assessed using ten-fold cross-validation, and

the accuracy, specificity and sensitivity values are presented in Table 7.2. It can be seen that C4.5

offers the best performance, with good sensitivity and overall accuracy. Specificity is reduced, but

this is likely due to the relatively small dataset and the imbalance between the two classes.

Table 7.2: Classification results for Experiment 2 using 10FCV

C4.5 CART
Average Sensitivity 84.0% 84.0%
Average Specificity 70.0% 60.0%
Average Accuracy 77.8% 73.3%
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ISS

PF

<=26 >26
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W/H

ICU

GCS

ICUW/H

<=14 >14

Figure 7.2: The decision tree output by the C4.5 algorithm in Experiment 2.‘PF’ indicates presence
of pubis fracture, and ‘ICU’ and ‘W/H’ (Ward/Home) are the two outcomes.

7.5 Summary

The two experiments presented in this chapter offer promising results, and indicate the potential

diagnostic value of X-ray image features in a decision-making system for pelvic trauma. In par-

ticular, Experiment 1 found the width of the symphysis pubis to be significant, which is supported

by anatomical knowledge of pelvic instability. Meanwhile, the pubis fracture feature selected in

Experiment 2 may indicate instability; these fractures can also result in damage to surrounding

soft tissue. Feature extraction for both experiments was impacted by two factors: an insufficient

number of examples of certain injuries, and the inclusion of both genders in the dataset. Since

Spline/ASM models should be trained separately on each gender to account for differences in
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anatomy, this further reduces the number of training examples. It should also be noted that the

dataset used in the first experiment is smaller than the second, as more cases became available in

the period between them. As even more data is obtained in the future it will become important to

repeat these experiments on a regular basis in order to obtain more reliable evaluation of results

and refine the methods used in feature extraction. Furthermore, a larger number of available cases

will enable more features to be considered in the rule generation process, which is likely to result

in a larger and more accurate rule-base.
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CHAPTER 8 Conclusions and Future Work

8.1 Conclusions

This dissertation provides a framework for an X-ray analysis component of a computer-aided

decision-support system, comprising automatic segmentation and extraction of potentially use-

ful diagnostic features. First, a hierarchical initialization algorithm is applied that automatically

detects each structure of interest in the radiograph in a single pass. Approximate structure loca-

tions are identified using directed Hough Transform, with segmentation being performed using

Spline/ASM, an extension of the standard Active Shape Model algorithm which maintains curved

contours through the use of cubic B-spline interpolation. Based on the detected position of the

pubis bones, quantitative measures of symphysis pubis displacement are automatically calculated.

Detection of potential fractures is then performed by creating a series of overlapping windows us-

ing Spline/ASM model points, and analyzing each one for contour discontinuities. The proposed

method offers multiple benefits over existing approaches to pelvic radiograph segmentation and

bone fracture detection, including the ability to detect multiple separate structures rather than a

single object representing the pelvis. It also performs full segmentation of all structure in a single

pass, with no need for any interaction or additional input by the user other than the patient’s gen-

der, and addresses the problem of false edges by introducing additional deformation constraints.

Furthermore, the hierarchical approach to segmentation means that feature extraction algorithms

can be independently designed and improved for each individual structure. Results so far are

promising, with the automated segmentation approach offering consistent performance on the data
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available. Detection of potential fractures is also in a good preliminary state. This indicates that

seeking expert verification in full statistical evaluation is now appropriate, in order to verify char-

acteristics of true fractures and further develop the system to be robust for practical application.

Two experiments have been performed exploring the prediction of injury severity, using datasets

which combine extracted image features with demographic information and physiological scores.

In both experiments, features extracted from X-ray images are shown to be useful in accurately

predicting outcomes.

8.2 Future Work

In order to make it suitable for use in polytrauma, many extensions are being considered for the

trauma decision support system as a whole. These include incorporation of existing modules for

evaluating traumatic brain injuries, and development of techniques for analyzing injuries to other

anatomical regions such as the chest. However, I will focus here on possible extensions to the

X-ray image processing component.

The first goal is to obtain expert assistance from multiple radiologists in labeling the full

dataset. This is likely to prove difficult logistically due to the expected volume of data and the

time demands involved. However, more rigorous testing demands a gold standard, which in this

application is manual evaluation from multiple experts (to compensate for individual variation in

opinions). Since the potential of the system has been demonstrated through experimental testing,

this may encourage future collaborations. Related to this is the need to obtain more examples

concerning sacral ligament damage and established injury patterns. This will allow the injury pat-

tern detection component to be developed in more detail and subjected to full evaluation. It may

also allow the incorporation of clinical signs into injury pattern detection. Although this removes
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full system automation since these signs are based on physical examination of the patient, when

combined with the quantitative measurements provided by the imaging component and a large set

of prior cases, they may prove valuable in verifying suspected patterns based on prior cases.

Concerning the technical aspects, an important future task is to improve the robustness of

the automatic initialization process. Performance is currently very good even in the presence of

artifacts such as labels, text and measurement marks. However, several of the images in the dataset

collected using from portable devices showed extensive patient rotation or non-alignment of the

femurs. Although the capacity to deal with basic rotation has been included in the current system,

further work is needed to handle the cases where the femurs are non-parallel (due to positioning

of the patient’s limbs). Likewise, though the system can determine loss of structure symmetry,

quantitative measurements of these changes would be more useful in generating predictive models.

Finally, the proposed system can be adapted to other X-ray viewing angles, though the potential

clinical utility of doing so must be established first.
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