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Abstract 

Genetic variability, pathogen susceptibility, subspecies identity and conservation 
of the endangered northern flying squirrel (Glaucomys sabrinus) in Virginia. 

James Lincoln Sparks, Jr. 

A thesis submitted in partial fulfillment of the requirements for the degree of 
Master of Science at Virginia Commonwealth University. 

Virginia Commonwealth University, 2005. 

Thesis Directors: Dr. John F. Pagels, Professor 
Dr. Bonnie L. Brown, Professor 
Department of Biology 

I examined the population genetic structure of three known subspecies of 

Glaucomys sabrinus from Appalachia, Washington State, and two previously 

unexamined populations from Mount Rogers National Recreation Area 

(MRNRA), in Southwestern Virginia. Mean FST (0.107) and an AMOVA (P < 

0.001), indicated that G. sabrinus subspecies populations in the southern 

Appalachians are genetically differentiated. Glaucomys sabrinus at MRNRA 

were less inbred than expected. Gene flow, a consensus tree based on Nei's 

genetic distance, elevated heterozygosity and morphometric data suggest that 

the MRNRA G. sabrinus population is an intergrade of the two recognized 

Appalachian subspecies, G. s. fuscus and G. s. coloratus. I compared 

inbreeding and the level of parasite infestation in the two MRNRA populations of 

G. sabrinus and found that Whitetop Mountain (150 ha habitat) was more inbred 

than the population on Mount Rogers (400 ha habitat, P < 0.001). The egg 

counts of the parasitic helminth Strongyloides robustus were greater in the more 

fragmented Whitetop Mountain population, although the difference was not 

statistically significant (P = 0.278). A Mantel comparison of genetic diversity and 

parasite infestation among individuals did show a highly significant negative 

correlation (P < 0.0001). The MRNRA G. sabrinus form a unique insular 

population with high genetic diversity that is nonetheless susceptible to increased 

inbreeding, and elevated parasitism caused by fragmentation. MRNRA G. 

sabrinus should retain endangered species status. 



INTRODUCTION 

The southern Appalachian northern flying squirrel, Glaucomys sabrinus, 

exists in isolated mountaintop Pleistocene relict habitat populations (Fies and 

Pagels 1991 ; Weigl et al. 1992; Browne et al. 1999; Reynolds et al. 1999). Their 

high degree of association with insular, relict habitats encourages vicariance, 

subspeciation, and genetic isolation (Slatkin 1987; Browne et al. 1999). Reduced 

genetic variation has been documented in maritime insular populations of an 

Alaskan northern flying squirrel subspecies, G. s. griseifrons, in the Alexander 

Archipelago (Bidlack and Cook 2001). Furthermore, because inbreeding has 

been linked to increased risk of pathogenic infectious disease (Scott 1988; Ralls 

et al. 1988; Mills and Smouse 1994), it is possible that reductions in genetic 

diversity due to inbreeding may be associated with the level of parasitism by 

Strongyloides robustus. Meagher (1999) correlated reduced genetic variability of 

Pemyscus maniculatus with elevated levels of the nematode parasite Capillaria 

hepatica in Michigan. Loss of genetic variation due to fragmentation and 

insularity is believed to increase the risk of extirpation (Slatkin 1987; Vrijenhoek 

1989; Meagher 1999; Hale et al. 2001). 

The Mount Rogers National Recreation Area population of G. sabrinus is 

the most geographically isolated one in the eastern United States. Mount Rogers 

is 37 km (23 mi) northwest of the nearest population of G. s. coloratus in Long 

Hope Valley, North Carolina (Weigl et al. 1992) and 273 km (170 mi) southeast 

of the nearest G. s. fuscus population in Highland County, Virginia (USFS 1990). 

The late systematist Charles 0. Handley Jr., who originally described G. s. 



coloratus in Tennessee and North Carolina, viewed the G. sabrinus from 

southwestern Virginia as an intergrade between the two subspecies (Fies and 

Pagels 1991). Weigl et al. (1992) recommended revisiting the taxonomic 

standing of G. sabrinus in southwestern Virginia because of the population's 

proximity to G. s. coloratus in North Carolina. 

The Endangered Species Act (ESA) has protected the two northern flying 

squirrel subspecies found in middle and southern Appalachia since 1986 

(USRNS 1990). A potential ESA ruling may down-list G. s. fuscus to threatened 

status (Pagels pers. corn.). The subspecies identity of the MRNRA population is, 

therefore, relevant to local recovery plans. We address the subspecific standing 

of the MRNRA population using analysis of gene flow, genetic distances and 

biometric comparison. 

Evolution of the North American Flying squirrel 

Flying squirrels, family Sciuridae, sub-family Petauristinae, are nocturnal 

tree squirrels that are adapted for gliding as a means of locomotion. This action, 

known as volplaning, is made by extension of a parachute of elastic skin, the 

patagium. The patagium is suspended from a retractable cartilage styliform 

process at the wrist and attached to each corresponding ankle (Gupta 1966). 

The origin of the flying squirrel genus Glaucomys remains obscure (Pratt 

and Morgan 1989; Skwara 1985; Thorington et al. 1996). Paleontological 

evidence suggests the concurrent arrival of two Petauristinae genera, 

Petauristodon and Eomys, from Asia via the Bering isthmus during the second 



Hemingfordian faunal exchange, 18 mya (Webb and Opdyke 1995). Kurten and 

Anderson (1 980) report a single genus and species, Cryptoptems webbi, by the 

late Pliocene, 3 mya. The earliest fossil Glaucomys is G. volans, known from a 

single faunal deposit in Florida 80,000 ybp (Martin 1974). Glaucomys sabrinus 

debuts in the fossil records of northern California and southern Appalachia 

concurrently during the Wisconsinan circa 18,000 ybp (Furlong 1906; Guilday et 

al. 1978). 

The two species of flying squirrel occurring in North America today, the 

northern flying squirrel, G. sabrinus, and the southern flying squirrel, G. volans, 

can be distinguished from each other in the field on the basis of body size and 

coloration. Glaucomys sabrinus, is the larger of the two species (Wells-Gosling 

and Heaney 1984) although large adult G. volans, may infrequently overlap the 

lower size range of sub-adult G. sabrinus (Dolan and Carter 1977). Glaucomys 

sabrinus is further distinguished by ventral coloration. The ventral guard hairs of 

G. sabrinus are tipped white distally and dark gray proximally, with charcoal gray 

under hair (Wells-Gosling and Heaney 1984), while the ventral guard hairs of G. 

volans are uniformly cream colored from base to tip, with plumbeous gray under 

hair occurring only near the legs (Dolan and Carter 1 977). Glaucomys volans 

also possesses a flattened, feather shaped tail (Dolan and Carter 1977), while G. 

sabrinus tail is more like a bottle-brush wells-Gosling and Heaney 1984). 

Hight et al. (1974) described G. sabrinus arising from and belonging to a 

genus distinct from G. volans based on studies using serum immunodifFussion. 

The findings of Thorington et al. (1996) refuted Hight et al. (1974) by employing 



multiple trait phylogenetic systematics to re-assert that a single parent genus did 

diverge into the two extant Glaucomys species. Conversely, Arbogast (1 999) 

used cladistic analysis based on a single conservative trait, cytochrome b 

mitochondria1 DNA (cyt-b mtDNA), to suggest that G. sabrinus was the 

progenitor, in contrast to the fossil evidence (Furlong 1906; Martin 1974; Guilday 

et al. 1978). Since single trait phylogenies have frequently led to homoplastic 

error, the evolutionary history of the flying squirrel in North America is still open to 

debate. 

Ecology and current distribution of northern flying squirrels in Virginia 

Glaucomys sabrinus exhibits a strong affinity for mature mixed boreal 

coniferlhardwood forests throughout its range (Wells-Gosling and Heaney 1984; 

USFWS 1990; Weigl et al. 1992; Carey 1995). This highly specific habitat 

association has contributed to the natural genetic isolation and vicariant sub- 

speciation of G. sabrinus, especially in elevation limited extra-zonal boreal forest 

islands (Slatkin 1987; Browne et al. 1999; Steele and Powell 1999). As a result 

of the tendency for subpopulation isolation, there are 25 recognized subspecies 

of G. sabrinus (Hall 1981 ; Wells-Gosling and Heaney 1984; USFWS 1990). 

The habitat of G. sabrinus in the middle to southern Appalachian 

Mountains has been described as the narrow ecotone band between high 

elevation relict boreal conifer and northern hardwood forests (Payne et al. 1989; 

Fies and Pagels 1991 ; USFWS, 1990; Odom, 1995; Reynolds et al. 1999; 

Menzel2004, Hackett and Pagels 2003, Ford et al. 2004). During the most 



recent glacial maximum, 1 8,000 ybp, G. sabrinus populations were part of a large 

swath of boreal forest that extended well into the Ozark Plateau preceding the 

leading edge of the Laurentide ice shield and the great eastern tundra (Davis 

1969; Guilday 1970; Kurten and Anderson 1980; Delcourt and Delcourt 1984; 

Ehlers and Gibbard 2004). When the climate shifted to post-glacial conditions, 

deciduous broadleaf forests gained dominance over most of the formerly boreal 

terrain (Delcourt and Delcourt 1984). Mid-Atlantic boreal forests retreated to 

higher elevations, above 91 5 m (3,000 ft), where climate conditions have 

remained cool and mesic (Pielke 1981 ; Delcourt and Delcourt 1984). 

These high elevation extra-zonal boreal habitat anomalies have become 

insular refugia for Pleistocene relict communities in the southern Appalachians, 

including G. sabrinus (Steele and Powell 1999; Menzel2004; Ford et al. 2004). 

The palynological record provides strong evidence that boreal forests have 

retreated to even greater degrees of montane insularity during the post- 

Wisconsinan hypsithermal event 4,000-7,000 ybp (Whitehead 1972). Glaucomys 

sabrinus were restricted to higher elevation, more isolated refugia in the southern 

Appalachian Mountains at that time than they are at present (Guilday 1970). 

Periodic isolation, on a geological timescale, appears to be part of the natural 

history of G. sabrinus. Timbering in the early 1900's fragmented naturally 

occurring remnants of insular boreal habitats (Hassinger 1967; Pielke 1981; 

White 1984). 

The diet of G. sabrinus is composed primarily of truffle fungi, lichens, and 

invertebrates (Weigl 1968; Maser et al. 1985; Rosentreter et al. 1997). Truffle 



density has been shown to exhibit a greater influence on G. sabrinus distribution 

than does the availability of cavity nesting sites (Waters and Zabel 1995). 

Ransome and Sullivan (1997) found that sub-optimal habitat in truffle-depleted 

second growth stands required artificial food supplementation to increase 

northern flying squirrel populations in the spruce-fir forests of British Columbia. 

Zabel and Waters (1 997) found that G. sabrinus in northeastern California 

preferred truffles of the genera Gautieria and Alpova to other naturally occurring 

foods, including other truffle species. Glaucomys sabrinus has highly selective 

dietary requirements (Maser et al. 1985). Truffle abundance could be an 

important limiting factor at Mount Rogers National Recreation Area, MRNRA 

(Loeb et al. 2000, Hackett and Pagels, 2003). 

Truffles are mychorhizal fungi that pair in mutualistic relationships with 

specific tree symbionts (Arora 1986). It may be that the summer flush of 

Elaphomyces granulatus, a truffle commonly eaten by G. sabrinus ve ig l  et al. 

1992; Mitchell 2001), and associated with Picea rubens in the southern 

Appalachians (Loeb et al. 2000), acts as a dietary anchor for insular populations 

of G. sabrinus further restricting gene flow during the mild season when 

emigration is most likely. Although the food caching habits of G. sabrinus are 

poorly documented (Wells-Gosling and Heaney 1984), we surmise that they very 

likely do cache food, as this behavior is common to all tree squirrels (Smith and 

Reichman 1984). Animals that cache food stores are more likely to establish and 

defend territories and less likely to abandon those territories during optimal 

foraging seasons (Smith and Reichman 1984). 



Therefore, G. sabrinus should exhibit high degrees of genetic structuring 

even in contiguous habitat, but especially in naturally isolated landscapes that 

have been fragmented. We describe the genetic structure of five isolated 

populations of the two ESA-listed endangered subspecies of G. sabrinus in 

southern and middle Appalachia plus two outgroup populations from a 

contiguous forest in the state of Washington. We assessed gene flow and 

genetic distances in G. sabrinus populations across contiguous, isolated, and 

fragmented habitats. We also assess and compare the relationship between 

inbreeding and parasite resistance in the two MRNRA populations. We 

hypothesize that the smaller Whitetop Mountain population will be more inbred 

and therefore carry a greater parasite burden than the population inhabiting in 

the larger more contiguous habitat on Mount Rogers. We also speculate on an 

alternative origin of pathogenicity in the parasitic relationship between 

Strongyloiide robustus and G. sabrinus. We determine the subspecies standing 

of the MRNRA population in this study. Our results contribute to the growing 

body of knowledge regarding inbreeding, habitat fragmentation, and population 

viability assessment of endangered species. 

MATERIALS AND METHODS 

Study Area 

The primary study area for G. sabrinus was located on Mount Rogers (36" 

39' 3 5  N, 81" 32' 41" W and Whitetop Mountain (36"38'1gnN, 81 "36'20"W) 



in southwest Virginia in the Mount Rogers National Recreation Area (MRNRA). 

These two peaks are of volcanic origin, formed by rhyolite intrusions during the 

late Proterozoic Period, 760 mya (Rankin 1993). Mount Rogers is the tallest 

summit in Virginia at 1,746 m, (5,729 ft). Whitetop Mountain lies 6.4 km (4 mi) to 

the southeast of Mount Rogers and ranks second at 1,658 m (5,540 ft). 

Glaucomys sabrinus habitats at Mount Rogers and Whitetop Mountain were 

contiguous before heavy timbering separated the two peaks, creating Elk Garden 

pasture, in the early 1900's (Hassinger 1967). A secondary oak-hickory sere and 

grazing meadow, 3.2 km (2 mi) wide at the narrowest point, now separates the 

two peaks (Pyle and Shafale 1985). The remnants of the boreal spruce forest in 

southwest Virginia have been protected from industrial logging by steep scarps 

and difficult terrain (Pyle and Shafale 1985). Today there are 400 ha (1.5 mi2) of 

spruce forest remaining on Mount Rogers (MR) and 150 ha (0.6 mi2) of spruce-fir 

forest on Whitetop Mountain 0 (Rheinhardt 1984). The MRNRA population of 

G. sabrinus inhabits portions of the ecotone between mature northern hardwood 

and mature boreal conifer forest (Reynolds et al. 1999; Hackett and Pagels 

2003). The MRNRA population is 37 km (23 mi) from the nearest conspecifics in 

Long Hope, North Carolina (Weigl et al. 1992). 

Picea rubens was found to be the dominant tree in these boreal conifer 

stands. Abies fiaseri was found only on Mount Rogers (Rheinhardt 1984). 

Mature northern hardwood stands at MRNRA are characterized by an overstory 

of Betula lutea, Acer mbmm, and Fagus grandifolia (Payne et al. 1 989). Woody 

understory composition in the ecotone consists of arctic alpine elements, Rubus 



canadensis, Viburnum alnifolium, Acer pennsylvanicum, Rhododendron 

maximum, and Vaccinium erythmcarpum. (R hein hardt and Ware 1 984; 

Stephenson and Adams 1984). The herbaceous layer contains prolific stands of 

Clintonia borealis, Dryopteris campyloptera, and Lycopodium lucidulum 

(Rhein hardt 1 984; Stephenson and Adams 1 984). EIythronium americanum, 

Anemone quinquefolia, Oxalis acetosella, and other boreal relict wild flowers 

were also observed during this survey. 

Outgroup samples of G. sabrinus were collected from 3 subspecies across 

7 sample sites in 3 states. Five sample sites, including MRNRA, were from the 

focus region of southern Appalachia that contains two federally listed 

endangered subspecies of G. sabrinus. Specimens of G. s. coloratus were 

originally collected from 1937 to 1963 on Roan Mountain, Tennessee (RM) 

(36'1 9'42"N, 82O06'84"W; n = 5), located 109 km along a fragmented habitat 

archipelago, from the nearest congeners sampled at Whitetop Mountain, Virginia. 

Specimens of G. s. fuscus originated in West Virginia from Cheat Mountain (CM: 

38°44'08"N, 80°00'24"W; n = I I )  and Blackwater Falls (BW: 39"00'50"N, 

79"4I990'W; n = 5). These two populations are separated by 147 km of severely 

fragmented habitat. The most geographically distant specimens were derived 

from museum specimens collected from two populations 125 km apart in nearly 

pristine contiguous habitat in the state of Washington, Easton (Ea: 47"15'14"N, 

121 '1 1'1 9"; n = I I )  and Keechelus Lake (KL: 47°31'56", 121 "1 0'20"; n = 7). 



Sampling procedure 

We used live traps and nest boxes to capture 43 G. sabrinus in MRNRA 

from October 2002 to August 2004. An additional 21 hair samples, 10 from 

Whitetop and 11 from Mount Rogers were provided by the Virginia Department of 

Game and Inland Fisheries (VDGIF) from an earlier G. sabrinus survey at 

MRNRA (Reynolds et al. 1999). The West Virginia Department of Natural 

Resources (WVDNR) provided 20 hair samples and 7 fecal samples from G. s. 

fuscus. The National Museum of Natural History (NMNH) provided preserved 

tissue specimens of G. s. coloratus from Tennessee and G. s. fuliginosus from 

Washington State. 

Microsatellite DNA analysis 

We extracted DNA samples from three sources, tail tissue and hair 

follicles obtained from live specimens, and tissue from museum specimens. The 

highest quality DNA came from the small amount of tissue sometimes collected 

with hair pulled from the tip of a squirrel's tail. Hair follicles and tissue from 

museum study skins required additional treatment using GenomiPhiTM linear 

DNA amplification product (Amersham Bioscience Piscataway, New Jersey). 

DNA was extracted from all three sources using the PuregeneTM method (Gentra 

Biosystems Minneapolis, Minnesota). We diluted the DNA extracted from tail-tip 

tissue to a 1:10 concentration with 0 .25~ TAE. GenomiPhiTM processed hair 

follicles and tissues from museum skins were likewise diluted to 1 :I000 and 

1 :2000 concentrations, respectively. We used four microsatellite loci presumed 



to be selectively neutral. Three of the loci were initially developed for the 

southern flying squirrel, Glaucomys volans (Fokidis et al. 2003); SFS 3, SFS 7, 

and SFS 14. These primers amplified loci at 235-255, 202-272, and 167-179 

base pairs (bp), respectively. We developed one additional locus; a tetra- 

nucleotide repeat designated GSA 9 (upper 5' TTTCCTGTAAGCATGGTGTGA- 

CCT-3'; lower 3'-CAGlTCGAGGACCAACCGC-5'), which generated amplicons 

in the range of 155-1 71 bp. 

To ampltfy microsatellites we used 6pl reactions consisting of 1.0 pl DNA 

template, 1.2 pl H20, 0.2 pl of 4 mM spermidine, 0.6 pl of 5 pM primer mix and 

3.0 pl Jumpstart RediMixTM Tag DNA polymerase (Sigma-Aldrich St. Louis, 

Missouri). We used MJ Research PTC 100 thermal cyclers (MJ Research 

Waltham, Massachusetts) with 200 pl tubes to perform 'touchdown' Polymerase 

chain reaction (PCR) with an initial annealing temperature of 60° C, as described 

by Fokidis et al. (2003). 

Amplified products were revealed by electrophoresis on 25-lane 7.5% 

native polyacrylimide gels. All gels were stained with SYBRGreenm nucleic acid 

stain (Molecular Probes Eugene, Oregon) and digitally documented using 

ultraviolet transillumination. Fluorescent amplified alleles were scored against a 

20 bp molecular ruler (BioRad Hercules, California) according to corresponding 

published lengths and the number of base pair repeats. 



Parasite assay 

We used a variation of the fecal egg count (FEC) technique to quantify the 

sciurid-specific intestinal parasite Strongyloides robustus in order to estimate 

immune resistance in Glaucomys sabrinus (n = 41 ), G. volans (n = 1 3), and 

Tamiasciurus hudsonicus (n = 13) from MRNRA with an additional sampling of G. 

s. fuscus (n = 7) from West Virginia. Because parasite fecundity and abundance 

is inversely related to the strength of the immune response of the host animal 

(Stear et al. 1997), FEC is assumed to serve as a non-invasive indicator of the 

overall condition of the major histocompatibility complex, MHC (Coltman et al. 

1999; Casinello et al. 2001). The MHC has been identified as one of the primary 

genomic casualties of inbreeding (Yukhi and O'Brien 1990; Hedrick and Parker 

1998; Hedrick et al. 2000). Fecal pellets were collected directly from live 

squirrels or bedding during live trapping and nest box checks. Pellets were 

placed in a dry vial and inspected on the day of collection since freshly expelled 

S. robustus eggs can hatch in as little as 3 h at 25OC (77OF) (Eckerlin 1974; 

Wetzel and Weigl 1994). Fecal pellets from West Virginia were shipped 

overnight on ice based on Wetzel and Weigl (1994) who found that a 

temperature of 10°C (50°F) effectively suppressed the hatching of S. robustus 

eggs for 6-7 days. To estimate the level of S. robustus infestation we used a 

variation of the McMaster FEC method derived from Stoll(1930). Fecal pellets 

were macerated in 30 ml of Feca Med TM (Vedco Inc. St. Joseph, Missouri) 

sodium nitrate solution in a 100 ml beaker. This mixture was poured through a 

kitchen grade strainer to remove macroscopic flotsam and then through a small 



funnel into a 40 ml test tube. Sodium nitrate solution was added to raise the 

meniscus above the top of the test tube and an 18x1 8 mm glass cover slip was 

placed over the meniscus and left untouched for 30-45 minutes to allow the 

parasite eggs to adhere to the cover slip. The cover slip was then placed on a 

standard microscope slide and all S. robustus eggs were counted using a 

standard sweeping S pattern movement of the slide across the 400x lens of a 

compound light microscope set with a calibrated reticule. All parasite eggs were 

identified to genus using the reference manual "Veterinary Clinical Parasitology" 

(Sloss et al. 1994). A voucher drawing was made of each parasite species 

encountered. Mean parasite egg counts were compared using the independent 

samples t-test in SPSSTM version 10 (SPSS Chicago, Illinois). Length and 

diameter of the fecal pellets were measured and cylindrical volume was derived 

using the formula; length x circular area (IT?). The level of infestation was 

calculated by dividing egg count by total fecal volume. 

Statistical methods 

We estimated gene frequency, Hardy-Weinberg equilibrium, genic 

differentiation, allele linkage, probability of fragmentation, and rate of effective 

migration with GENEPOP version 3.1 software (Raymond and Rousset 1995). 

Allele frequency, based on expected numbers of homozygotes and 

heterozygotes, was calculated using Levene's correction to adjust for small 

sample size (Levene 1949). Adherence to the Hardy-Weinberg equilibrium was 

tested with exact P-values based on a Markov chain method analysis of 



heterozygote deficiency for single loci in each population. Genic differentiation 

across population pairs was tested using a Markov chain analysis. Potential 

linkage of alleles was tested with a genotypic disequillibrium probability test 

based on the Markov chain method and P-values (a = 0.05) were determined 

using Fisher's exact test. We confirmed negative results on Hardy-Weinberg 

estimates, allele heterogeneity, linkage disequillibrium, and genic differentiation 

with sequential Bonferroni corrections for Type I errors (Rice 1989). All Markov 

chain parameters were set to 1,000 dememorizations, 100 batches and 1,000 

iterations per batch, all bootstrap and jackknife values were set to 1,000. 

We calculated Wright's inbreeding coefficient F according to Ayres and 

Balding (1 998). F - statistics, based on homozygous allele fixation, were 

described with both GENEPOP and FSTAT (Goudet 1994). Mean population 

fragmentation was extrapolated from pairwise comparisons of the subpopulation 

fixation index FST generated by GENEPOP (Raymond and Rousset 1995). 

Pairwise rates of effective migration (N,m) were calculated using the standard 

relationship (N,m = (l/FST) - 1) / 4) to estimate the number of immigrants per 

generation. We also calculated gene flow with the rare allele method (Barton 

and Slatkin 1986). 

AMOVA analysis, based on QsT, was performed according to Excoffier et 

al. (1992). 

We used the MICROSAT program (Minch 1997) to define Nei's genetic 

distance (Ds) which was in turn used to construct a majority rule strict consensus 

tree using PHYLIP (Felsenstein 1995). Mantel tests (Mantel 1967) of the 



correlation between genetic dissimilarity and geographic distance and between 

genetic dissimilarity and parasite load were conducted according to the matrix 

correspondence algorithm of Smouse et al. (1986). 

RESULTS 

Within and among genetic analyses 

We successfully genotyped 100 out of 107 individual G. sabrinus, plus 17 

G. volans, with up to 4 loci (mean: 3.5 typed loci per sample). All loci were 

polymorphic as follows; SFS-3 had 4 alleles; SFS-7 had 12 alleles, SF-1 4 had 1 1 

alleles, and GSA-9 had 6 alleles distributed among populations (A) as shown in 

Table 1. The mean number of alleles across all loci per population (mean A) 

ranged from 2.25 at RM to 5 at W (Table 1). The overall average number of 

alleles manifested per individual animal sampled was 4. Hardy-Weirrberg 

Equilibrium was  consistent^'^ violated across each locus, even after the 

application of the Bonferroni adjustment (P < 0.013, Table 1). Hardy-Weinberg 

expectations were also violated across each population, except for BW and RM 

(Bonferroni P < 0.05, Table 1). 

A chromosome linkage disequillibrium seemed evident between SFS 3 

and GSA 9 (x2 = 23.79, P = 0.048). This linkage disequillibrium appeared most 

pronounced within the VVT population (P = 0.002). The linkage disequillibrium 

was no longer significant after sequential Bonferroni correction, both across locus 

pairs (P < 0.008) and within populations (P < 0.001 ). Since the linkage 

disequillibrium was barely significant across all populations and manifested only 



in a single population, it is likely that it was merely a sampling artifact. Therefore 

there was no violation of the required assumptions underlying genetic drift and 

there was no impact on the statistical basis of our study. 

Allele frequencies were heterogeneous across all samples, except for WT 

vs. CM (x* = 19.74, calculated P = 0.01 1, Bonferroni P < 0.006). The mean 

estimate for overall allele fixation (FST = 0.090) was significantly less than zero (P 

< 0.001) indicating a moderate intraspecific genetic differentiation among the G. 

sabrinus populations we sampled. AMOVA analysis of aST indicated a high 

degree of genetic differentiation among populations (P > 0.001), most likely 

reflecting the three distinct subspecies in our survey. We considered single locus 

FST > 0.1 50 to represent significant differentiation among populations (Frankham 

et al. 2002). Mean FST among southern Appalachian demes was 0.107. The 

populations with the greatest mean rate of allelic fixation were MR and RM (FST = 

0.188, Table 2). The populations with the least mean rate of allelic fixation were 

MR vs. VVT and EA vs. KL (FST = 0.023 and 0.027, respectively). Pairwise 

estimates of allele fixation between populations are listed in Table 2. 

Gene flow across all populations was Nem = 2.048 (rare alleles) or Nem = 

3.255 (FST), moderate to high. Pairwise comparisons of gene flow Nem (Table 2) 

based on FST were greatest between MR and WT (N,m = 10.388) and least 

between MR and RM (Nem = 1.075). Although MR is closer to RM than CM (1 15 

km vs. 402 km), it has a greater gene flow with more distant CM (Nem = 6.1 27). 

CM has less gene flow with neighboring BW (148 km, N,m = 2.144) than it does 



with MR. Gene flow between contiguous EA and KL (1 25 km, N,m = 8.841) was 

greater than gene flow between fragmented CM and BW over similar distance. 

Subspecies identity 

Estimated Nei's genetic distance (Ds) between population pairs ranged 

from 0.023 f (0.022) between MR and VVT to 1.319 * (1.625) between RM and 

CM (Table 3). The large standard errors most likely are an artifact of the small 

sample size and possibly large standard deviation values from populations 

outside of the primary study site. Mantel correlation of genetic isolation by 

geographic distance was inconclusive (2 c 0.01, P = 0.616). Figure 2 presents a 

neighbor joining (UPGMA) consensus tree based on Ds. RM appears to fall 

outside of the southern Appalachian sub-group bootstrapped to 61.4% 

confidence interval, suggesting that G. s. coloratus may be more closely related 

to the Washington state subspecies, G. s. fuliginosus than the more proximate 

West Virginia subspecies, G. s. fuscus. The population of G. sabrinus residing at 

MRNRA also seems to be distinct from the West Virginia subspecies 

bootstrapped to a 51.9% confidence interval. Strong bootstrap confirmation is 

generally considered to exceed 70% certainty (Hillis and Bull 1993). 

Handley (1953) used tail lengths to distinguish G. s. coloratus (135 mm) 

from G. s. fuscus (1 15 mm). Weigl et al. (1992) found mean tail length of G. s. 

coloratus to be 129 mm. Reynolds et al. (1999) reported MRNRA G. sabrinus tail 

lengths to be 128 mm. We found mean tail lengths of MRNRA G. sabrinus to be 

135 mm (n = 36). It therefore seems likely, given the differing origins suggested 



by the morphological and genetic data, that the population at MRNRA is an 

intergrade between the two subspecies, G. s. fuscus and G. s. coloratus. 

Inbreeding and intensity of parasite infection 

Mean inbreeding across all of the G. sabrinus populations sampled was F 

= 0.103 (Figure 3). The highest level of inbreeding was detected within the G. s. 

coloratus population at RM (F = 0.1 52), indicating that half-sib mating was 

commonplace. The lowest level of inbreeding was detected at MR (F = 0.022), 

suggesting a near absence of consanguineous mating. An ANOVA test revealed 

that the coefficient of inbreeding F for each population differed significantly from 

the overall mean coefficient of inbreeding F (P < 0.001). Least squares 

difference post hoc analysis revealed that the coefficient of inbreeding failed to 

differ between CM, an insular population in a fragmented landscape, and EA, a 

contiguous population within a forested landscape (P = 0.336). 

A significant correlation was observed between genetic dissimilarity and 

parasite load (3 = -0.22, Z = 4726, P = 0.007). We found that the G. sabrinus on 

Whitetop Mountain had a significantly greater estimated inbreeding (Figure 4) 

than did the nearby Mount Rogers population (median F = 0.085 and 0.016, 

respectively; P < 0.001, Figure 4). The more inbred Whitetop Mountain 

population carried a larger mean FEC (0.562 eggs/mm2 f 0.205) than did the 

Mount Rogers population (0.228 eggs/mm2 f 0.071), although the difference was 

not statistically significant (P = 0.278, Figure 5). 



Strongyloides robustus eggs were absent in all four fecal samples 

obtained from BW, West Virginia (F = 0.057), a population that also was 

significantly less inbred than VVT (P < 0.001). Of the two fecal samples that were 

collected at CM (F = 0.144), one had no FEC and the other 0.037 eggs/mm2. 

Sample sizes from individual West Virginia populations were not sufficient to 

determine mean FEC. There was no difference in the level of S. robustus 

infestation among three sympatric arboreal sciurid species that we encountered 

in the boreal coniferlnorthem hardwood ecotone, Figure 6 (P = 0.579). A Mantel 

test of matrix correspondence revealed that there was a correlation between 

pairwise genetic distance and FEC (P = 0.006, p = 0.270). 

DISCUSSION 

Allelic diversity 

Reduction of allelic diversity in isolated wild populations has been well 

established (Soule 1972; Lacy 1987; Stangel et al. 1992; Coltman et al. 1999). 

Maritime insular populations of G. sabrinus in the Alexander Archipelago 

exhibited reduced genetic variation when compared to mainland Alaska 

populations (Bidlack and Cook 2001). Similar effects have been described for 

Pemmyscus maniculatus in the lacustrine islands of Lake Michigan (Meagher 

1999) and P. leucopus on the barrier islands of the Delmarva Peninsula 

(Loxterman et al. 1998). We observed reduced heterozygosity in only two of the 

G. sabrinus populations that we studied. 

Two populations of G. sabrinus exhibited greater mean observed 

heterozygosity than expected, one in the Pacific Northwest and one at our study 



site. Both had very high to panmictic gene flow with one or more neighboring 

populations. The Northwestern population was located in an undisturbed 

contiguous forest in Easton, Washington where greater heterozygosity is to be 

expected because of its lack of insularity (Frankham 1998). The other, Mount 

Rogers, is part of an island that was separated from Whitetop Mountain within 

the last century. Genetic diversity can, initially, appear higher in fragmented 

populations if population fragments experience genetic drift in a uniquely different 

directions (Leberg 1 992), seemingly increasing overall diversity across the 

formerly contiguous range (Frankham et al. 2002). A secondary behavioral 

factor may also come into play under fragmented conditions that could result in 

increased population levels of heterozygosity; G. sabrinus may increase 

movements as a response to proximate fragmentation. For example root voles, 

Microtus oeconomus, traveled corridor-connected habitats more frequently as 

fragmentation increases (Andreassen et al. 1998). Such an effect would explain 

the increased heterozygosity within the fragmented Mount Rogers populations 

due to increased levels of gene flow, while the lack of corridors and smaller 

habitat area contribute to increased isolation and decreased heterozygosity in the 

Whitetop Mountain fragment (Mills and Smouse 1994). Since a subspecies is a 

phenotypically, and presumably genotypically distinct vicariant, intergradation of 

subspecies necessarily increases allelic diversity (Frankham et al. 2002). 

Higher levels of heterozygosity may also be promoted by a combination of 

behavioral avoidance of inbreeding (Howard 1960, May 1979, Johnson and 

Gaines 1990) and balancing selection (Aguilar et al. 2004). Hoogland (1 982) 



observed inbreeding avoidance through juvenile dispersal and parent avoidance 

of fertile offspring in familial coteries of the prairie dog, Cynomys ludovicianus. 

Ground squirrels, Spennophilus columbianus, avoid inbreeding by similar means 

(Weddell 1991). High gene flow results from the state of Washington 

populations (Table 2) suggest that continuity between G. sabrinus populations is 

improved if suitable habitat corridors exist. 

Comparative reductions in heterozygosity that we detected in isolated G. 

sabrinus populations may be associated with genetic bottlenecking. Jaarola and 

Teglestrom (1 996) identified genetic bottlenecking in post-glacial remnant 

populations of the field vole, Microtus agrestis. A similar natural history can be 

ascribed to the majority of southern Appalachian G. sabrinus populations, where 

boreal forests were greatly fragmented by numerous glacial advances and 

retreats (Guilday 1970; Whitehead 1972; Webb and Oppdyke 1995). Federov 

(1 999) described differing bottleneck rates corresponding to varying postglacial 

climate shifts and the ecological plasticity of two genera of Artic lemmings, 

Dicrostonyx and Lemmus. Glaucomys sabrinus is similarly susceptible to the 

reduction of allelic heterozygosity through bottlenecking because of the species 

high degree of niche specialization (Zabel and Waters 1997; Loeb et al. 2000; 

Hackett and Pagels 2003). 

Allelic diversity within populations can be restored by genetic mutation and 

drift in subsequent generations (Wright 1931). According to Lacy (1 987), 

heterozygosity can be restored to a bottlenecked population in 150 generations 

with a minimum of 100 individuals. In G. sabrinus, with a generation time of 2-3 



years (Wells-Gosling and Heaney 1984, Villa et al. 1999), allelic restoration could 

occur in as little as 300 years, providing that sufficient habitat is available. Our 

analysis supports the recommendation of re-establishing habitat contiguity 

(Lande 1988, Frankham 1995, Hess 1996) of the extra-zonal boreal forests 

where they have been fragmented in southern Appalachia. Establishment of 

habitat corridors would increase long-term genetic health of associated boreal 

fauna including G. sabrinus. 

Genetic differentiation 

Population fixation (FST) is the probability of the fixation of homozygous 

alleles at given loci due to inbreeding within subpopulations (Wright 1931; 

Frankham et al. 2002). Isolated populations that are below idealized population 

levels, fragmented, or of singular origin will have elevated FST due to inbreeding 

(Wright 1931; Weir and Cockerham 1984; Frankham et al. 2002). Beaumont and 

Nichols (1996) suggested a minimum sample size of n = 50 individuals and n = 

20 loci for ideal assessment of FST We were limited by the rare nature of our 

subject species (Tear et al. 1 995). 

With our limited samples we found mean genetic differentiation among the 

southern Appalachian populations of G. sabrinus to be around 1 1 % (FST = 

0.1 07). This is comparable to the level of genetic differentiation recorded among 

high elevation boreal relict populations of southern Appalachian red-backed voles 

(FST = 0.100, Reese et al. 2001) and among disjunct prairie dog populations in 

New Mexico (FST = 0.103, Chesser 1983). By way of comparative illustration, a 



similar level of moderate genetic structuring can be found among the three 

aboriginal human populations in Pacific Meganesia (FST = 0.105, Nasidze et al. 

2001). 

Significant genetic differentiation was evident among the G. sabrinus 

populations we sampled. Genetic differentiation between proximate populations 

of rodents has been well documented (Patton and Yang 1977; Chesser 1983; 

Faulkes et al. 1997). Spruce timber harvesting, the major anthropogenic impact 

affecting G. sabrinus distribution, is only a century old (Pielke 1981; White 1984) 

or approximately 50 generations in the life history of the northern flying squirrel 

(Wells-Gosling and Heaney 1984, Villa et al. 1999). We expect that genetic 

differentiation will increase over time given the prevalence of deforestation 

(Whitlock 1992; Frankham 1998). Indeed, elevation restricted extra-zonal boreal 

habitats in southern Appalachia will become further isolated with increased global 

warming (Delcourt and Delcourt 1984) and may, in fact, be extirpated (Delcourt 

and Delcourt 1998). The pending climate change also lends urgency to 

corrective action. 

Overall gene flow was moderate to high for the southern Appalachian G. 

sabrinus populations. Gene flow between the two Washington state populations 

was very high (Table 2). This was expected since both population samples were 

collected in contiguous boreal forests of the northern Cascade Mountains from 

1897 - 1901 (Nelson 1969). There was high gene flow between the populations 

at Blackwater, West Virginia and Cheat Mountain, West Virginia, but it was 

considerably less than the gene flow between the two Washington state 



populations that were nearly the same distance apart (Table 3). We attributed 

this difference to the fragmented nature of the West Virginia habitats (Menzel 

2004). Gene flow was unimpeded, panmictic (N,m > 1 O), between the two 

primary study sites, Mount Rogers and Whitetop Mountain, Virginia (Table 2). 

These two sites are essentially a single potentially isolated G. sabrinus 

population that has been decimated and fragmented within the past century 

(Hassinger 1967; Pielke 1981 ; Rheinhardt 1984). Glaucomys sabrinus on 

Whitetop Mountain are gradually differentiating from those on Mount Rogers, as 

evidenced by the significantly increased inbreeding on Whitetop Mountain 

(Figure 4). 

Population structure and historical biogeography 

Gene flow and genetic distance must be interpreted in the context of 

biogeography and the geologic time scale (Slatkin 1987). High historical gene 

flow was indicated between MRNRA G. sabrinus populations and distant G. s. 

fuscus populations at Cheat Mountain, West Virginia, 402 km away. Gene flow 

across fragmented habitat is not unusual (MacArthur and Wilson 1963; Slatkin 

1987; Lande 1988). However, gene flow between the MRNRA populations of G. 

s. coloratus and those at Roan Mountain, Tennessee, only 116 km away was 

considered only moderate to low (Table 2). The MRNRA populations are more 

closely related to Tennessee G. s. coloratus and Washington state G. s. 

fuliginosus than they are to Cheat Mountain, West Virginia, G. s. fuscus based on 

Nei's genetic distance matrix (Table 3), although, standard error is considerable 



for most pairwise Nei's genetic distance values. The cladogram based on 

bootstrap re-sampling of Nei's Ds reiterates the gene flow analysis, placing G. s. 

coloratus and G. s. fuliginosus together and lumping MRNRA populations with G. 

s. fuscus (Figure 2). These results support the identification of G. sabrinus from 

MRNRA as an intergrade between the two southern Appalachian subspecies. 

There are few historical records regarding the location of boreal conifer 

forests before timbering at the turn of the last century (Pielke 1981; Rheinhardt 

1984; White 1984). Information regarding recent boreal habitat corridors can 

only be inferred. Pielke (1 981) estimated the current potential range of Picea 

rubens to be limited to elevations above 91 5 m (3,000 ft). Glaucomys s. 

coloratus inhabited boreal forests that were once part of a contiguous stand that 

stretched from the northern Unaka - Blue Ridge Mountains across the 732,952 

ha (2,830 mi2) French Broad River Basin (mean elevation 716 m (23507)), to the 

southern Unaka - Great Smoky Mountains during the Wisconsinan period 

(Whitehead 1972; Delcourt and Delcourt 1984). Mount Rogers, in the northern 

Unaka range has been separated from Roan Mountain, in the southern Unaka 

range since the post glacial retreat gave way to mixed mesophytic forests in the 

lower elevation of French Broad River Basin prior to the hypsithermal event, 

7,000 ybp (Whitehead 1972). This provides a likely explanation of how G. s. 

coloratus became stranded on Mount Rogers and Whitetop Mountain in the 

northernmost part of the volcanic Unaka range. Sipe and Browne (2004) used 

the French Broad River Basin as an elevation boundary to define 



phylogeography of boreal conifer associated shrews in the Great Smoky 

Mountains. 

The G. s. coloratus specimens we sampled were more closely related to 

the G. s. fuliginosus from the Cascades than they were to G. s. fuscus from 

Cheat Mountain, West Virginia in the Alleghenies, based on Nei's genetic 

distance and gene flow (Table 3). Although boot strapped values applied to the 

consensus tree and gene flow analysis suggest otherwise, paleogeography 

offers support. West Virginia G. s. fuscus inhabit boreal forests that did not exist 

during the most recent glacial maximum 18,000 ybp (Guilday 1970; Whitehead 

1972; Delcourt and Delcourt 1984). During this time G. s. coloratus was likely 

safely ensconced in a boreal refugia that extended south to the Georgia 

piedmont, but gave way to tundra north of the Unaka Range (Whitehead 1972; 

Delcourt and Delcourt 1984). Similarly the boreal forests of the Cascade Range 

also remained intact (Ehlers and Gibbard 2004). Glaucomys s. coloratus are 

true relicts originating from the super boreal forest that existed prior to the 

Wisconsinan glacial advance (Whitehead 1972; Delcourt and Delcourt 1984; 

Ehlers and Gibbard 2004). Glaucomys s. fuscus most likely belongs to the 

boreal community that reforested the Allegheny tundra during the Wisconsinan 

retreat. This would explain the genetic similarity of distant Unaka and Cascade 

Range populations, and also points to the origin of dissimilarity between more 

proximate subspecies. Thus, our analysis provides additional detail that 

complements the mitochondria1 DNA phylogeography for G. sabrinus as 

proposed by Arbogast (1 999). 



Despite the great difference in Nei's genetic distance, populations of 

Cheat Mountain and MRNRA G. sabrinus had high levels of gene flow and were 

closely related according to the bootstrapped consensus analysis (C.I. < 70%). 

This high gene flow likely contributed to the large standard error in Nei's genetic 

distance and may also be indicative of a population reunion caused by the 

Laurentide glacial retreat. 

The northern Unaka range is separated from the southern Allegheny 

Mountains by the 977,961 ha (3,776 mi2) Holston - New River Basin, mean 

elevation 61 0 m (2,000'). Given the proximity to southern Appalachia and the 

direction of the Laurentide ice shield retreat (Dyke and Prest 1987; Ehlers and 

Gibbard 2004) it is likely that post-glacial G. s. fuscus populations from Cheat 

Mountain, West Virginia enjoyed habitat connectivity with Mount Rogers and 

Whitetop Mountain G. s. coloratus for some time after the other G. s. coloratus 

populations in the southern Unaka range had been disjoined from Mount Rogers 

and Whitetop mountain by the French Broad River basin. 

Historical biogeography often reveals the underlying causes of population 

relationships that are described with indirect molecular genetics techniques 

(Slatkin 1987). For example, although the MRNRA population is currently 

described as G. s. fuscus for legislative purposes, our analyses indicate that the 

G. sabrinus population at MRNRA is an intergrade based on paleobiogeography 

and the molecular genetic data we have compiled. A number of other 

investigators have suggested on the bases of various other data types that the 

population is an intergrade. C. 0. Handley Jr. was the first to propose that the 



MRNRA population was a subspecific intergrade between G. s. coloratus and G. 

s. fuscus based on subtle differences in coloration and caudal metrics (Fies and 

Pagels 1991). Weigl et al. (1992) urged that the MRNRA population be re- 

evaluated and grouped with G. s. coloratus. Our results support Handley's 

contention of intergradation, however we suggest that G. sabrinus populations in 

MRNRA should be managed as G. s. coloratus given their closer geographic 

proximity and greater genetic proximity based on Nei's genetic distance. 

Inbreeding 

The mean level of inbreeding for G. sabrinus (F = 0.103) was seven times 

greater than mean inbreeding described among prairie dogs, Cynomys 

ludovicianus, at Wind Cave National Park, South Dakota (F = 0.014, Dobson et 

al. 1 997) and four times less than inbreeding within naked mole rat, 

Heterocephalus glaber, colonies in Southeast Kenya (F = 0.450, Reeve et al. 

1990). Ralls et al. (1988) found that members of the Order Rodentia exhibited 

high levels of inbreeding tolerance compared to members of other mammalian 

orders she surveyed that are commonly maintained in captivity and pedigreed. 

Given the paleohistorical expansions and contractions of the boreal forest, 

especially in the southern Appalachians (Guilday 1970; Whitehead 1972; 

Delcourt and Delcourt 1984; Ehlers and Gibbard 2004), G. sabrinus may be 

naturally adapted to tolerate levels of inbreeding similar to other rodent species 

(Ralls et al. 1988, Reeve et al. 1990, Dobson et al. 1997). 



Cheat Mountain, West Virginia and Easton, Washington populations of G. 

sabrinus exhibited similar elevated levels of inbreeding, although each is located 

in a vastly different habitat context. The specimens from Easton were collected 

circa 1900, when the northern Cascade boreal forests were largely intact (Nelson 

1969). Conversely, the Cheat Mountain population has existed for a century in 

an anthropogenically-fragmented habitat (Pielke 1981, White 1984). Suitable 

contiguous habitat corridors should facilitate juvenile dispersal, inbreeding 

avoidance and genetic heterogeneity (Gilpin and Soule 1986; Mills and Smouse 

1994), we would expect the more contiguous habitat to be less inbred. 

Given that inbreeding levels are roughly equal between the squirrels of 

Easton and Cheat Mountain it may be that limitations based on caching behavior 

(Smith and Reichman 1984) and strong habitat preference (Wells-Gosling and 

Heaney 1984; Maser et al. 1985; Ransome and Sullivan 1997; Zabel and Waters 

1997; Reynolds et al. 1999, Mitchell 2001) can restrict G. sabrinus dispersal as 

effectively as habitat fragmentation. Washington state squirrels may tolerate 

inbreeding in favor of retaining proximity to rare hardwood/spruce ecotone site- 

specific resources. Glaucomys sabrinus appears to have a population structure 

adapted to some degree of inbreeding tolerance. 

Although inbreeding may improve inclusive fitness and altruistic behavior 

in a population (Dawkins 1976; Wilson 1976; May 1979), it can only be 

advantageous if the fitness cost is low (May 1979; Ralls et al. 1988; Frankham 

1995). It is generally accepted that although some species tolerate inbreeding 

within populations, some minimal level of outbreeding must exist or that 



population will ultimately suffer reduced fitness and risk extinction (Lacy 1987; 

Yukhi and O'Brien 1990; Frankham 1995, Meagher et al. 2000). Even low 

numbers of migrants can keep inbreeding levels below the theoretical threshold, 

provided that the immigrants are sufficiently genetically differentiated from the 

host population (Lacy 1987; Frankham 1995; Frankham et al. 2002). We 

certainly detected evidence of low levels of outbreeding in MR (F < 0, Figure 4). 

Fossorial rodents such as naked mole rats, Heterocephalus glaber (Jarvis et al. 

1994; Faulkes et al. 1997; Clarke and Faulkes 1999), and the pocket gopher, 

Thomomys bottae (Patton and Yang 1977) provide excellent examples of 

inbreeding tolerance and low gene flow in rodent species that are restricted by 

ecological constraints. While G. sabrinus demes within and among populations 

may function in an analogous fashion, in both the montane archipelago habitat of 

the southern Appalachians and the contiguous forests of the northern Cascades, 

inbreeding levels do not naturally approach those of the fossorial rodents. 

Pathogenicity of Strongyloides robustus 

Strongyloides robustus is a ubiquitous parasite of Sciuridae (Parker 1971; 

Eckerlin 1974) and has been documented in G. sabrinus as far north as 

Wisconsin (Pauli et at. 2004) and in G. volans as far south as Florida (Eckerlin 

1974). Its known distribution suggests a much larger range, but there are few 

studies that have been focused on delineating the ranges of sciurid parasites. 

Wetzel and Weigl (1 994) found that low temperature limited reproduction of S. 

robustus in vitro and proposed that this might have some mollrfying effect on its 



distribution within wild G. sabrinus populations at higher elevations in the 

Southern Appalachians. The discovery of S. robustus in G. sabrinus from 

Wisconsin (Pauli et al. 2004) would seem to counter this contention. Mean 

annual temperature in the Southern Superior Uplands of Wisconsin is 10°C 

cooler than it is in the Blue Ridge Mountains (Bailey et al. 1994). 

Parker (1 971) was the first to document S. robustus in gray squirrels, 

Sciurus carolinensis, of Southwestern, Virginia. Licthenfels and Haley (1969) 

reported S. mbustus in Tamiasciunrs hudsonicus in the Allegheny Mountains of 

Maryland. We found S. robustus in 88% of the wild caught G. sabrinus from 

MRNRA. Pagels et al. (1990) report S. mbustus from a G. sabrinus carcass 

found at MRNRA. Although Weigl et al. (1992) did not find S. robustus in wild 

caught G. sabrinus of various subspecific origins between 1968 and 1988, our 

findings suggest that S. robustus is more prevalent than previously perceived. 

Recently S. mbustus has been scrutinized as one of the primary 

pathogenic afflictions affecting G. sabrinus (Weigl 1968; Wells-Gosling and 

Heaney 1980; Pagels et al. 1990; Weigl et al. 1992; Wetzel and Weigl 1994; 

Pauli et al. 2004). Weigl (1 968) documented S. robustus induced mortalities in 

captive G. sabrinus from several different locations within the United States. This 

observation gave rise to the hypothesis that S. robustus is an agent of 

competitive exclusion vectored by G. volans (Weigl 1968; Weigl et al. 1992; 

Wetzel and Weigl 1994; Pauli et al. 2004). The proposed mechanism for 

pathogenicity is that S. robustus is a novel parasite in nai've host populations of 



G. sabrinus (Weigl 1968; Weigl et al. 1992; Wetzel and Weigl 1994; Pauli et al. 

2004). 

For parasite mediated resource competition to occur, one host species 

must be separated from the other long enough for its parasite to evolve qualities 

that are virulent to the competitor yet remain innocuous to the original host (Price 

et al. 1988; Klein and O'hUigin 1994). The fact that sciurid assemblage in the 

eastern boreal forest has been intact since the Wisconsinan, 18,000 ybp (Guilday 

1970; Kurten and Anderson 1980), and that we found similar mean levels of S. 

robustus eggs in all three sciurid species that are sympatric in the boreal ecotone 

at MRNRA; G. sabrinus, G. volans, and Tamiasciurus hudsonicus (P = 0.579). 

The distribution, interspecies ubiquity, and evident climate tolerance of S. 

robustus in situ, belie the necessary conditions for the nai've host hypothesis. 

The origin of pathogenicity in the G. sabrinus 1 S. robustus symbiosis is perhaps 

more likely to be found in the breaching of inbreeding thresholds (Mills and 

Smouse 1994; Klein and O'hUigin 1994; Frankham 1995; Spielman et al. 2004) 

caused by recent deforestation and fragmenation (Pielke 1981 ; White 1984) of 

naturally isolated insular populations (Guilday 1970; Delcourt and Delcourt 1984; 

Weigl et al. 1992). 

Inbreeding, parasites and population health 

Insular populations in a managed landscape are subject to genetic drift 

and cumulative degradation of heterozygosity through in breeding (Lacy 1987, 

Ralls et al. 1988). Mills and Smouse (1 994) identified inbreeding as a critical 



component to demic collapse in stochastic environments. Frankham (1995) 

noted that inbreeding might have little apparent effect in any population until a 

threshold accumulation of deleterious alleles is crossed. At that point the 

population may then begin to collapse with little warning. Parasite loading is 

considered to be a good preliminary metric for assessing immune resistance in 

the major histocompatibility complex (MHC) of populations that are susceptible to 

inbreeding (Coltman et a1.1999; Cassinello et al. 2001). 

The MHC is a region on the vertebrate genome that encodes immune 

response to foreign antigens (Hill 1998) and is sensitive to inbreeding (Yukhi and 

O'Brien 1990; Klein and O1hUigin 1994). Hedrick et al. (2000) documented the 

degradation of the MHC with corresponding disease outbreaks in the genetically 

bottlenecked Arabian oryx, Oryx leucoryx. O'Brien et al. (1 985) found that 

reduced MHC resistance among inbred cheetah, Acionyx jubatus, was revealed 

by their failure to reject extra-familial skin grafts. Cassinello et al. (2001) 

correlated high parasite levels with low individual heterozygosity in Cuvier's 

gazelle, Gazella cuvieri. Coltman et al. (1 999) found greater parasite loads and 

higher mortality in island bound Soay sheep, Ovis aries. Meagher (1999) noted 

an increase in the prevalence of the nematode parasite, Capillaria hepatica, in 

wild populations of deer mice, Peromyscus maniculatus, with decreased 

allozyme heterozygosity. 

In our study we found that Mount Rogers, the larger sized of two 

fragmented habitats we studied (400 ha vs. 150 ha), had significantly less 

inbreeding and a lower mean count of S. robustus eggs per volume of feces. 



Although the difference in absolute parasite count was not statistically significant, 

our observation of a highly significant relationship between genetic constitution 

and parasite load corresponds to similar relationships documenting elevated 

parasitism in inbred populations of free-living sheep (Coltman et al. 1999), 

captive gazelles (Cassinello et al. 2001) and deer mice (Meagher 1999). 

Coltman et al. (1999) has promulgated the idea that mortalities due to 

MHC reduction maybe be one way of improving heterozygosity and disease 

resistance in wild populations. This genetic pruning effect might contribute to the 

relatively high levels of allelic diversity that we found in insular G. sabrinus 

populations. Further study is warranted regarding the distribution of S. robustus 

and its pathogenicity at various in breeding thresholds. Strongyloides robustus 

infestation will increase with greater habitat fragmentation and inbreeding 

severity. Because parasite levels measured by FEC are a reliable, inexpensive 

and non-invasive way to assess population health (Coltman et al. 1999; Meagher 

1999; Cassinello et al. 2001), we believe FEC should be employed in future 

assessments of G. sabrinus throughout its range. 

Management Reccomendations 

The significant relationship between genetic variability and parasite load in 

G. sabrinus at MRNRA, and the elevated levels of inbreeding and S. robustus in 

FEC at the smaller WT site have management implications. Contiguous habitat 

corridors should improve juvenile dispersal and decrease inbreeding (Gilpin and 

Soul6 1986; Mills and Smouse 1994) at the more impacted VVT site. For this 



reason, our recommendation for management is to increase G. sabrinus habitat 

connectivity at MRNRA. 

Although the MRNRA G. sabrinus population is the most geographically 

isolated one in the Appalachian range, we did not find the reduced genetic 

diversity predicted by Browne et al. (1999). We determined that the 

unanticipated increased heterozygosity for the MRNRA population of G. sabrinus 

is an artifact associated with the intergradation of G. s. coloratus and G. s. 

fuscus. Mating between genetically differentiated populations is known to 

increase allelic diversity (Lacy 1987; Frankham 1995; Frankham et al. 2002). 

The Virginia MRNRA G. sabrinus population is a unique genetic resource that 

may function as a reservoir for future conservation of the phenotypically identical 

G. s. coloratus populations. We recommend that the endangered status be 

retained for the MRNRA G. sabrinus because it is a population of special origin 

and importance. 
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TABLE I. Sample sizes, number of alleles, observed and expected 
heterozygosities and P values for Hardy Weinberg Equilibrium in 7 populations of 
3 subspecies of G. sabrinus and 1 population of G. volans. 

Site MRNRA MR VVT RM CM BW KL EA 
Locus Subspp. G. vol. G.s. int. G.s. int. G.s. col. G.s. fus. G.s .fus. G.s. ful. G.s. ful. 

HWE 

SFS 3 0.082 

n 14 26 34 6 11 6 6 9 

A 4 3 5 3 3 3 3 2 

Ho 0.57 0.61 0.67 0.66 0.54 1.00 0.33 0.33 

He 0.69 0.46 0.67 0.50 0.43 0.66 0.59 0.42 

HWE 0.234 0.169 0.004 1.000 1.000 0.198 0.144 1.000 

SFS 7 <0.001 

n 16 18 33 6 12 6 8 12 

A 4 4 4 2 4 4 2 3 

Ho 0.31 0.16 0.09 0.00 0.16 0.33 0.00 0.16 

He 0.52 0.38 0.44 0.54 0.54 0.69 0.53 0.52 

HWE 0.093 0.003 ~0.001 0.021 0.002 0.082 0.005 0.005 

SFS 14 <0.001 

n 14 26 34 6 12 6 8 12 

A 7 5 5 2 4 6 2 2 

Ho 1.00 1.00 0.94 1.00 1.00 1.00 1.00 1.00 

He 0.70 0.66 0.68 0.54 0.60 0.84 0.53 0.52 

HWE <0.001 <0.001 <0.001 0.092 <0.001 0.110 0.026 0.002 

GSA 9 <0.001 

n 12 23 31 6 11 4 3 5 

A 4 5 6 2 4 4 3 4 

Ho 0.41 0.78 0.58 0.33 0.27 0.50 0.66 1 

He 0.68 0.71 0.72 0.54 0.49 0.64 0.73 0.73 

HWE 0.252 ~0.001 ~0.001 0.480 0.035 0.422 1.000 0.739 

Overall 
Mean n 14 23.25 33 6 11.5 5.5 6.25 9.5 

Mean A 4.75 4.25 5 2.25 3.75 4.25 2.5 2.75 

Mean Ho 0.57 0.67 0.57 0.50 0.50 0.72 0.48 0.58 

Mean He 0.64 0.56 0.63 0.53 0.52 0.72 0.57 0.52 

HWE <0.001 ~0.001 <0.001 0.083 <0.001 0.072 0.006 0.002 



TABLE 2. Pairwise estimates of the rate of homozygous allele fixation, FST (upper 
matrix) and effective migration, N,m (lower matrix) based on allele size for each 
population pair across all 4 microsatellite loci of 3 G. sabrinus subspecies 
including mean level of inbreeding (F) table and ANOVA results. 

Site MR WT RM CM BW KL E A 
Subspp. G.s.int. G.s.int. G.s.co1. G.s.fus G.s.fus G.s.ful. G.s.fu1. MeanF 

MR 0.023 0.188 0.039 0.131 0.074 0.073 0.022 
VVT 10.388 0.118 0.056 0.079 0.076 0.048 0.088 
RM 1.075 1.865 0.168 0.172 0.103 0.103 0.152 
CM 6.127 4.143 1.234 0.104 0.112 0.068 0.144 
BW 1.658 2.898 1.199 2.144 0.149 0.155 0.057 
KL 3.132 3.026 2.174 1.98 1.418 0.027 0.117 
Ea 3.169 4.958 2.170 3.404 1.358 8.841 0.141 

AMOVA: P < 0.001 



TABLE 3. Pairwise estimates of Nei's genetic distance, Ds (with standard errors) 
based on allele size and frequency for each population pair of G. sabrinus 
subspecies. Geographic proximity is given in kilometers (lower matrix). 

Site MR WT RM CM BW KL EA 
Subspp. G.s. int. G.s. int. G.s. col. G.s. fus. G.s. fus. G.s. ful. G.s. ful. 

MR 0.023 0.384 0.724 0.240 0.089 0.102 



Figure Legends 

FIG. 1. Geographic range of G. sabrinus with the locations of the 7 sample sites. 

Abbreviations are MR: Mount Rogers, VA (n = 26), VVT: Whitetop Mountain, VA 

(n = 35)) RM: Roan Mountain, TN (n = 5),  CM: Cheat Mountain, WV (n = 1 I) ,  

BW: Blackwater Falls, W (n = 5), Ea: Easton, WA (n= 1 I),  KL: Keechelus Lake 

(n = 7). 

FIG. 2. Consensus tree based on Nei's genetic distances (Ds) among seven G. 

sabrinus populations. Bootstrap values at the nodes indicate the number of 

unambiguous branches at that point out of 1000 re-sampling events indicating 

the percent accuracy of the group consisting of the subspecies that are to the 

right of that fork. Subspecies designations are noted to the right. 

FIG. 3. ANOVA comparison of mean level of inbreeding (F) among five 

populations of G. sabrinus in the southern Appalachian region and two from 

Washington State (P < 0.001). 

FIG. 4. Frequencies of estimated inbreeding coefficients (using 4 microsatellite 

loci) for G. sabrinus populations on Mount Rogers and Whitetop Mountain (P < 

0.001). 



FIG. 5. Independent samples t-test comparison of mean Strongyloides robustus 

eggs per volume of feces in G. sabrinus populations from Mount Rogers (n=l I) 

and Whitetop Mountain (n=23) (P = 0.278). 

FIG. 6. Comparison of mean S. mbustus eggs per volume of feces among three 

species of sympatric arboreal sciurids from MRNRA. G. sabrinus (n = 41), G. 

volans (n = 13) and T. hudsonicus (n = 13) populations (P = 0.579). 
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Observation of an externally situated southern flying squirrel (Glaucomys volans) 

nest depredated by a rat snake (Elaphe obsoleta) in southwest Virginia. 

James L. Sparks Jr., Lynne Hassel and John F. Pagels 

Dept. of Biology, Virginia Commonwealth University, Richmond VA. 23284 

Accounts of externally situated southern flying squirrel (Glaucomys volans) nests 

are rare (Snyder 1921 , Sollberger 1943). Sollberger (1 943) found only three 

outside nests occupied by G. volans over six years of surveying in Ohio and 

Pennsylvania. Only one of these external nests was used for rearing 

young,whereas 35 nursery nests were found in tree cavities (Sollberger 1943). 

Pearson (1 954) reported second hand the only other direct observation of 

southern flying squirrel depredation by a snake. 

We witnessed a black rat snake (Elaphe obsoleta) dislodge a southern 

flying squirrel (Glaucomys volans) nest from an eastern hemlock tree (Tsuga 

canadensis) on 14 August 2003. The event occurred between 1700 and 1800 hr 

in Mount Rogers National Recreation Area, Grayson County, along Fox Creek 

near Fairwood Cemetery, elevation 970 m. The snake, which we later estimated 

to be 150 cm in total length, was wrapped around the nest and fell to the bare 

ground of the hemlock grove with an audible thud. It constricted the nest for 

nearly 15 minutes before it began eating an adult squirrel. We observed the 

event for 30 min and the snake regurgitated the squirrel and fled when we 

inadvertently disturbed it while attempting a photograph. 



Uhler et al. (1 939) surveyed the stomach contents of 18 species of snakes 

in the Virginia piedmont and found G. volans in E. obsoleta, the timber 

rattlesnake (Crotalus honidus), and the black racer (Coluber constrictoi). More 

recently, Mitchell (1994) also documented G. volans in the diet of E. obsoleta. 

The propensity of E. obsoleta to climb trees for the purpose of securing prey is 

well documented (Uhler et al. 1939, Mitchell 1994, Neal et al. 1993, Saenz et al. 

1999). 

The adult squirrel killed by the snake was the mother of three hairless 

nestlings that we found in the nest. All three young were males, and two 

weighed 7.69 and the other 8.09. All had sealed eyes, and we estimated their 

age to be less than 10 days based on mass and pelage state (Booth 1946, 

Linzey & Linzey 1979). It is likely that this was the female's second litter of that 

year; biannual parturition in the southern flying squirrel has long been recognized 

(Dolan & Carter 1977, Sollberger 1943). The largest neonate survived to 

adulthood and is currently being used as a live exhibit in a flying squirrel public 

education program sponsored by Virginia Commonwealth University, Mount 

Rogers National Recreation Area, and the Virginia Department of Conservation 

and Recreation. 

The flying squirrel's nest was woven from shredded hemlock bark and 

appears to have been externally situated, as 'the surface was free of debris. 

Although at first irregularly shaped because of the constriction, the nest was 

easily reshaped to a ball-like fonn with a slight vase-like neck aperture. A 

schematized drawing of the reshaped nest is provided in Figure 2. The outer 



layer of the nest was 18 cm in diameter and approximately 2 cm thick. The outer 

layer was constructed of coarsely shredded bark in lengths of 30 to 50 cm and 

was 0.5 to 1.0 cm wide. The interior chamber comprised of finely shredded bark 

formed a cup-shaped depression 7 cm in diameter. The inner layer was also 

about 2 cm thick. The finely shredded bark was 10 to 15 cm long and 0.05 to 0.2 

cm wide; it was situated nearly opposite the opening and concealed the three 

young squirrels. The bedding was slightly damp and had the odor of urine. 

Snyder (1 921) describes a similar nest composed of red cedar bark (Junipenrs 

virginiana) that contained a single juvenile G. volans in Ontario, Canada. Figure 

2 illustrates the approximate position and scale of the nest materials from 

Grayson County with regard to a single neonate. The base of the nest was 

flattened and compressed. The base of the nest appears to have been the only 

contact point with the tree. 
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Appendix I 

Fig. 1. Schematized drawing of the nest of a southern flying squirrel (Glaucomys 

volans) depredated by a black rat snake (Elaphe obsoleta) in Grayson County, 

Virginia (drawing by Lynne Hassel). 





Spark, the Endangered 

Carolina northern flying 
squirrel from Mount Rogers 
National Recreation Area 

"Canadian Journey" 

The northern flying squirrel in Virginia 
is a rare cousin of the common southern 
flying squirrel. Both creatures are 
active only at  night and also share some 
other traits, like the ability to  glide 
through the air using a webbed 
membrane called patagium. They both 
eat insects, mushrooms and sometimes 
carrion. 

Northern flying squirrels are 
physically and ecologically distinct. 
They are larger than southern flying 
squirrels by about 1.5 ounces. Northern 
flying squirrels have a distinct charcoal 
coloration that underlies white hair on 
the belly, with a cinnamon coat on top. 
Southern flying squirrels have belly 
hairs that are cream colored all the way 
to  the base. 

The northern flying squirrel in 
Virginia is special because they are only 
found in rare spruce forests above 



4,600f t elevation. These high elevation 
islands of habitat are relicts from the last 
glacial advances 20,000 years ago. The 
best examples o f  this habitat today are 
found in northern latitudes such as Canada. 
Alaska and Maine. There is only one place 
in Virginia where the Carolina northern 
flying squirrel can be found, and that  is 
r ight here in Mount Rogers National 
Recreation Area! 

I habitat 

Now, northern flying squirrels like 
Sparky have a special diet that ties them 
to  these spruce islands. They are able t o  

2 

find tasty mushrooms that grow under 
the soil associated with the roots o f  
spruce trees. Sparky loves t o  eat 
truff les! 

When Sparky gets finished eating these 
delectable woodland treats he spreads 
them all over the forest. This prepares 
the soil with fresh truff le spores that 



help the young spruce grow strong and 
healthy. The relationship between a tree 
and a fungus is called a mycorhizal 
symbiosis and it is very important because 
the fungus helps digest minerals and 
nutrients f o r  the tree. Without Sparky 
and his, umm ... dispersal mechanism, the 
spruce forests would take much longer t o  
regenerate. 

Now this all begs the question: how did 
Sparky and a l i t t le piece of Canada wind up 
in the Virginia Blue Ridge? Well the best 
way to  understand this is t o  follow 
Sparky's family history. 

Now a long, long, long time ago, nearly 
2 million years, Sparky's great, great, 
great, great, great, great, great grand 
pappy left  the tall spruce forests of Russia 
and made the brave journey across the 
Bering straits into Alaska. Spruce forests 
a t  that time stretched all the way around 

4 

the north Pacific and deep into North 
America, 

Of course the sea level was lower 
on account of major ice shields being so 
big a t  the time. I t  was a pret ty good 
place f o r  northern flying squirrels a t  
that  time, but the pioneer spirit called. 
The climate was a lo t  cooler then and 
spruce forests reached all the way down 
into the Mid-Atlantic States along the 
Appalachian Mountains. Sparky's 
ancestors traveled all the way across 
Canada and down through the spruce 
into the Carolinas. 

After they had arrived and settled 
in the cold glaciers began t o  retreat 
about 20,000 years ago. The spruce 
forests began t o  climb t o  the coolness 
of  higher elevations. Before they knew 
it, Sparky's f arnily had been isolated 
from their nearest kinfolk in West 
Virginia. Then, the Carolina northern 



flying squirrel started to  change a little. 

The most noticeable thing was that 
their tails started getting longer than just 
about any other sub-species of northern 
flying squirrel. Sparky's family had 
become their own unique sub-species. For 
this reason, and alsg because of the rari ty 
of  their spruce habitat in a southern 

climate zone, the Carolina northern 
flying squirrel was granted protection 
under the endangered species act in 
1985. 
If you have seen a flying squirrel in 

Virginia chances are that it was a 
southern. Since both squirrels are 
nocturnal, most people wi l l  never see 
either. The important ecological role o. 
the northern flying squirrel is best 
witnessed by the healthy regeneration 
of a spruce grove. 

Brought to you by: VCU Mammal tab, USFS, VA Academy of 
Science, VDGIF, VA DCR Grayson Highlands State Park and the 
Explorer's Club Washington Group. 

Illustrations by: Lyn Hassel 

For more information contact the author 
Jim Sparks e-mail: Tayassu@aol.com 
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