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The simplest phospholipid, lysophosphatidic acid (LPA), is a heat stable 

component of serum known for its proliferative and migratory activities in cancer cells. 

Strong evidence suggests that LPA production and expression of its receptors are 

dysregulated in multiple human malignancies. The mechanism behind LPA-mediated 

tumor cell growth and oncogenesis remains poorly understood. In this thesis project I 

used ovarian and other cancer cells as a model system to examine the hypothesis that 

LPA present in the tumor microenvironment is a pathophysiological determinant of 

hyperactive de novo lipogenesis and aerobic glycolysis, two hallmarks of cancer cells.  

 We demonstrated that LPA induced proteolytic activation of sterol regulatory 

element binding proteins (SREBPs) in a cancer specific manner, leading to activation of 

the SREBP-FAS (fatty acid synthase) lipogenic pathway. Treatment of cancer cell lines 

with LPA also led to dephosphorylation and inhibition of AMP-activated kinase (AMPK), 

thereby activating acetyl CoA carboxylase (ACC). Moreover, these effects of LPA were 

mediated by LPA2, a receptor subtype overexpressed in multiple cancers, providing an 

explanation for the cancer specific regulation of FAS and ACC by LPA. Downstream of 

the LPA2 receptor, we identified the Gα12-Rho-Rock pathway to activate SREBPs and the 

Gαq-PLC (phospholipase C) pathway to inactivate AMPK. Consistent with LPA mediated 

activation of the key lipogenic enzymes FAS and ACC, LPA stimulated de novo lipid 

synthesis via LPA2, leading to accumulation of intracellular triacylglycerol and 

phospholipids. Pharmacological and molecular inhibition of LPA2, FAS or ACC 



xviii 
 

attenuated LPA-dependent cell proliferation, indicating that upregulation of lipid 

synthesis is an integral component of the proliferative response to LPA. In further support 

of this, downregulation of LPA2 expression led to dramatic inhibition of anchorage-

dependent and –independent growth of ovarian cancer cells.  

To support increased biomass generation, rapidly proliferating cancer cells 

enhance carbon influx by activating glycolysis. In the next part of the study, we 

investigated if LPA signaling was also involved in activating aerobic glycolysis in cancer 

cells. LPA indeed activated glycolysis in ovarian and other cancer cells but failed to elicit 

this response in non-transformed cells, suggesting a cancer specific role of LPA in 

regulation of glucose metabolism. While LPA had no effect on glucose uptake, we found 

that LPA altered expression of multiple genes involved in glucose metabolism. The most 

significant observation was that LPA treatment dramatically upregulated expression of 

HK-2, one of the rate-limiting glycolytic enzymes. We explored the underlying 

mechanism and found that LPA activates HK-2 transcription through LPA2-mediated 

activation of SREBP-1. Two sterol regulator elements (SREs) on the human HK-2 

promoter were identified to be responsible for LPA activation of the promoter. DNA 

pulldown and chromatin immunoprecipitation assays confirmed that SREBP-1 bound to 

these SREs in LPA-treated cells. Although in ovarian cancer cells, LPA treatment also 

stabilized Hif-1α protein, an established activator of HK-2 and glycolysis, LPA-regulated 

HK-2 expression and glycolysis was largely independent of Hif-1α. These results 

established that LPA stimulates glycolysis via the LPA2-SREBP-HK-2 cascade in 

neoplastic cells.  



xix 
 

Taken together, this dissertation provides the first evidence for regulation of 

cancer cell metabolism by LPA. The results indicate that LPA signaling is causally linked 

to lipogenic and glycolytic phenotypes of cancer cells. Therefore, targeting the key LPA2 

receptor could offer a novel and innovative approach to blocking tumor-specific 

metabolism. 
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CHAPTER 1 

GENERAL INTRODUCTION 
 

1.0 OVERVIEW 

Ovarian cancer is the most lethal gynecological malignancy. It is estimated that in 

the Unites States, 22,280 women will be diagnosed with ovarian cancer and 15,500 of 

them will die of the disease in this year alone (1). Ovarian cancer is a heterogeneous 

neoplastic group primarily originating from the ovarian surface epithelium. Based on the 

microscopic morphologies, ovarian cancer can be classified as serous, endometrioid, 

clear cell and mucinous subtypes (2). At Stage I, when the tumor is found only within the 

ovary, or Stage II, when the tumor has spread only to pelvic organs, ovarian cancer is 

highly curable, with an overall 5-year survival rate of greater than 80%. However, 

ovarian cancer is usually diagnosed at advanced stages when malignant tumor cells have 

spread to the abdomen (Stage III) or beyond the peritoneal cavity (Stage IV), where the 

survival rate drops to 26.9%. The poor prognosis of ovarian cancer is primarily due to 

lack of early detection and effective therapies for late stages of ovarian cancer. Thus it is 

imperative to identify early markers for ovarian cancer in order to diagnose the disease at 

curable stages.  
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Less than 10% of ovarian cancers are linked to germline mutations of BRCA1 

(breast cancer type 1 susceptibility protein) and BRCA2 genes (3). Most ovarian cancers 

are sporadic, and like other epithelial cancers, are clonal in nature (4), accumulating 

series of mutations during disease progression. Mutations in a number of tumor 

suppressors and oncogenes have been implicated in ovarian cancer development and 

progression. The tumor suppressor gene tumor protein 53 (TP53) has been found to be 

mutated in 10-15% of low grade and 40-50% of high grade ovarian cancers (5) and its 

expression is directly correlated with therapeutic responsiveness (6). Somatic mutations 

in other tumor suppressors such as PTEN (Phosphatase and tensin homolog) and 

BRCA1/2 have a low incidence. However, additional genes that have been suggested to 

act as tumor suppressors exhibit reduced expression in ovarian cancer cancers by 

epigenetic and other mechanisms (Table 1.1). Along with loss of tumor suppressor genes, 

several oncogenes have also been found to be mutated, amplified or overexpressed in 

ovarian cancers (Table 1.2). Thus based on the mutational profiling, ovarian cancers can 

be divided into either low grade tumors, with mutations in KRAS (V-Ki-ras2 Kirsten rat 

sarcoma viral oncogene homolog), BRAF (v-Raf murine sarcoma viral oncogene 

homolog B1) and PIK3CA (phosphoinositide-3-kinase, catalytic, alpha polypeptide), and 

LOH (loss of heterozygosity) on Xq, or high grade tumors with mutations in TP53, 

BRCA1, BRCA2 and LOH on 7q and 9p (2,5). 
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Table 1.1 Altered expressions of tumor suppressor genes in ovarian cancer 
 

Gene Percent alteration 
Mechanism of 

altered expression 
Reference 

TP53 10-50% 
Mutation, loss of 

function 
(5) 

ARHI 60-75% 
Imprinting; LOH; 

promoter 
methylation 

(5,7,8) 

RASSF1A 50-70% 
Promoter 

methylation 
(9,10) 

PEG3 75% 
LOH; promoter 

methylation 
(8,11) 

 
 

Table 1.2 Altered expressions of oncogenes in ovarian cancer 
 

Gene Percent alteration
Mechanism of altered 

expression 
Reference 

RAB25 54-89% Overexpression (12,13) 
MYC 29% Overexpression (14,15) 

EGFR 28-62% 
Overexpressed,activation 

mutations 
 

ERBB2 8-11% 
Overexpression, 

activation mutation 
(16,17) 

KRAS 30-52% 
Overexpression, 

activation mutation 
(18,19) 

 

In addition to abnormal expression of oncogenes and tumor suppressor genes, a 

variety of autocrine and paracrine growth factors influence ovarian cancer progression. A 

prototype growth factor pathway involved in promotion of ovarian cancer progression is 

the EGF-EGFR (Epidermal growth factor- Epidermal growth factor receptor) system (20). 

Substantial evidence suggests that overexpression or mutations of EGFR is seen in a 
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significant percentage of ovarian cancer 28-62% (21,22). HER2 (Human Epidermal 

Growth Factor Receptor 2), another member of the EGFR family, is also abnormally 

overexpressed (38-52%) or activated in ovarian cancers, resulting in more aggressive 

tumor behavior and a poor prognosis (23,24). Recently, the anti-EGFR or HER2 small 

inhibitors and antibodies have been used alone or in combination with chemotherapies for 

treatment of a variety of solid tumors with significant improvement of patient survival, 

confirming the importance of the EGFR family in maintaining cancer cell growth and 

survival (25).  

In contrast to these receptor tyrosine kinases (RTKs), the significance of G-

protein coupled receptor (GPCR), the largest family of cell surface receptors, in 

regulation of cancer cells has not been as well appreciated, although numerous 

publications suggest that many GPCR/ligand systems stimulate proliferation of normal 

and neoplastic cells. The most important GPCR/ligand system in ovarian oncogenesis is 

lysophosphatidic acid (LPA) and its GPCRs. Many ovarian cancers exhibit aberrant LPA 

production, receptor expression or signal transduction (5). In spite of ample evidence for 

LPA to promote proliferation, migration and invasion of ovarian tumor cells, the 

molecular players involved in LPA-mediated regulation of these processes and ovarian 

oncogenesis remains poorly understood. We have undertaken this study to test a novel 

hypothesis that LPA is a pathophysiological factor present in the tumor 

microenvironment to drive hyperactive lipogenesis and glycolysis, which are hallmarks 

of malignant cells. Our results presented in Chapter 1 and Chapter 2 indeed provide 

strong evidence to support this previously unrecognized role of LPA in ovarian and other 
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cancer cells. We have also gained evidence that LPA promotion of lipogenesis and 

glycolysis is an integral component of the cellular proliferative program. Thus this thesis 

study provides a link from LPA signaling to regulation of cellular metabolic processes, 

proliferation and malignant phenotypes.  

1.1 LYSOPHOSPHATIDIC ACID  

LPA (1-acyl-2-hydroxy-sn-glycero-3-phosphate) is the simplest naturally 

occurring phospholipid. It is comprised of a glycerol backbone with one phosphate group 

at sn-3 position and a fatty acyl chain at either the sn-1 or sn-2 position. Fatty acyl chains 

found in LPA are either saturated (C16:0, C18:0) or unsaturated (C18:1, C20:4) long 

chain fatty acids which are linked to the glycerol backbone by acyl or alky linkages. LPA 

is a component of serum, reaching concentrations of 1-5 μM (26), and is found attached 

to albumin with a stoichiometry of 3 mole of LPA/mole of albumin (27). Binding with 

albumin is necessary for LPA to elicit its activity and albumin-bound LPA is often 

regarded as the heat stable and lysophospholipase sensitive component of serum’s 

mitogenic activity (28,29). Apart from serum, LPA is also found in other body fluids 

such as plasma, saliva, hair follicles and malignant effusions (30).  

1.1.1 LPA METABOLISM  

LPA production is an enzyme-catalyzed process and, depending on the site of 

production, can be catalyzed by different cascades of enzymes. LPA is primarily 

produced and secreted in extracellular fluids. However, LPA in small amounts can also 

be produced intracellularly. LPA is an intermediate product of triacyl glyceride synthesis 
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and can be generated by glycerol-3-phosphate acyltransfeases (GPAT) in the 

mitochondria and endoplasmic reticulum by acylation of glyceraldehyde-3-phosphate. 

LPA produced by this route is rapidly converted to phosphatidic acid (PA) which serves 

as the precursor for synthesis of other glycerol phospholipids (31). Till date there has 

been no direct evidence that this intracellular pool of LPA is secreted out of the cell and 

acts as a ligand of cell surface LPA receptors.  

There are two major pathways that contribute to extracellular LPA production 

depending on the starting substrate (Figure 1.1). One route is mediated by the action of 

phospholipase A2 (PLA2) or phospholipase A1 (PLA1) on phospholipids, followed by 

conversion of resulting lysophospholipids to LPA by lysophospholipase D (lysoPLD). 

The identity of this mysterious lyso PLD enzyme remained elusive for a long time, even 

though several observations suggested the presence of such an enzyme. Extended 

incubation of rat plasma (32) or human follicular fluid (33) lead to generation of LPA 

with a concomitant decrease of lysophosphocholine (LPC). Moreover, incubation of 

fibroblasts with phospholipase D from Streptomyces chromofuscus lead to rapid release 

of LPA and a reduction of LPC (34). These studies provided evidence for the presence of 

a secreted enzyme that could use LPC either in circulation or from the outer leaflet of cell 

membranes as its substrate to generate LPA. This enzyme was later discovered as 

autotaxin (ATX) (35), an eco-enzyme of the nucleotide pyrophosphatase/ 

phosphodiesterase (NPP) family. This route involving ATX is generally believed to be 

the primary source of LPA production in cancer and by activated platelets in blood 

circulation (36). Subsequently, mice heterozygous for ATX have been shown to have 50% 
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less LPA plasma levels as compared to their wild type counterparts, suggesting the 

importance of ATX in physiological production of LPA (37). ATX is an enigmatic 

enzyme which is known for its role in tumor invasion, neovascularization and metastasis 

(38-40). The crystal structure of ATX has recently been determined which offers new 

understanding about the substrate recognition and its mechanism of action. ATX has 

multiple domains, one of which is an atypical phosphodiesterase catalytic domain that is 

responsible for LPA production, while two N-terminal somatomedin B (SMB) like 

domains and the C-terminal nuclease-like (NUC) domain aid in substrate specificity and 

presentation (41,42). Moreover, it was also suggested that ATX could attach itself to β3-

integrins and deliver LPA directly to its receptors via a hydrophobic channel (42). It 

could be thus speculated that the actual concentrations of LPA around the tumor cells 

could be more than the serum or plasma LPA levels in cancer patients.  

The second less studied route of LPA generation is by the action of 

monoacylglycerol kinase (MAG-kinase) on monoacylglycerol (43), this pathway has also 

been suggested to be active in cancer cells (44).  

 

 
 

 
 

Figure 1.1 Two major routes for LPA production.  
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The effective concentration of LPA is regulated both by its production and by its 

degradation. The important players in the degradation processes are lipid phosphate 

phosphatases (LPPs). Three different isoforms of LPPs (LPP-1, LPP-2 and LPP-3) have 

been identified to date which are capable of dephosphorylating LPA, PA, sphingosine-1-

phosphate (S1P), ceramide-1-phosphate and diacylglycerol pyrrophospate (DGPP) 

(45,46). Several publications have, shown LPP-1 to specifically inactivate LPA in vitro 

and in vivo (46-48) . These LPPs are membrane associated enzymes with their catalytic 

domain facing the extracellular environments and as their name suggests, they cleave off 

the phosphate group from LPA, generating monoacyl glycerol (MAG). Another 

mechanism for reducing LPA concentrations is by converting LPA to PA by the acylation 

reaction carried out by LPA acyl transferases (LPAAT) (49,50). 

1.1.2 LPA RECEPTORS  

  LPA has numerous biological functions in physiological and pathophysiological 

conditions (reviewed in Table 1.3). These effects of LPA are mediated by signaling 

through its membrane-associated GPCRs. Seven LPA receptors have been identified to 

date. The expression patterns of these receptors vary in their relative amounts and from 

one tissue to another, thereby leading to a complex regulation of cellular processes by 

LPA in a tissue dependent manner. In cancer, LPA signaling is heightened due to 

increased levels of ligand (LPA) or receptor expression, influencing processes such as 

cancer cell proliferation, survival, migration, and invasion. LPA receptors fall into two 
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sub-groups, the endothelial differentiation gene (Edg) family of LPA receptors and non-

Edg LPA receptors. 

 
 

Table 1.3 Physiological and pathophysiological effects of LPA 
 

Effect Cell type/remarks 

Cell proliferation and survival Many cell types, normal and transformed (51) 

Cell migration and invasion Many cell types, normal and transformed (51) 

Tumor progression 
Mouse xenografts (overexpression or knockdown 
of LPA receptors) (51,52) 

Wound healing in vivo Skin (53); intestinal epithelium (54) 

Cell contraction Smooth muscle cells; myofibroblasts (55) 

Platelet activation and 
aggregation 

LPA in atherosclerotic plaques; synergy with ADP 
(56,57) 

Cytokine production 
Fibroblasts; astrocytes; leukocytes; epithelial and 
endothelial cells; carcinoma cells (51) 

Stabilization of embryonic vessels Mouse allantois explant culture (58) 

Neurite retraction, 
collapse/turning of growth cones 

Neuroblastoma cells (28); primary neurons (59) 

Inhibition/reversal of 
differentiation 

Neuroblastoma and glioma cells (60); astrocytes 
(61) vascular smooth muscle cells (62); pre-
adipocytes (63) 

Cerebral cortex growth and 
folding ex vivo 

Action on neural progenitor cells; not observed in 
LPA1/LPA2-deficient mice (64) 

Initiation of neuropathic pain and 
demyelination of the dorsal 
root in vivo 

Reduced in LPA1-deficient mice (65) 

Demyelination of the dorsal 
root ex vivo 

Direct action on myelinating Schwann cells (66) 

Membrane depolarization 
(chloride efflux-mediated) 

Neuronal cells (67); fibroblasts (68) 

Blastocyst implantation (timing 
and spacing) 

LPA3-mediated (69) 
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  The Edg LPA receptors (LPA1/Edg2, LPA2/Edg4 and LPA3/Edg7) have been 

extensively studied. They are structurally similar with 46-50% amino acid homology 

between them (70). However the non-Edg subgroup of LPA receptors 

(LPA4/GPR23/P2Y9, LPA5/GPR92 and LPA6/P2Y5) are phylogenetically distinct with 

less than 15% sequence homology among the family members (70) (Figure 1.2).  

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.2 A phylogenetic tree of human GPCRs, depicting the phylogenetic 
difference between Edg and non-Edg GPCR receptors of LPA. (Adapted from 
Yanagida, K., and Ishii, S. (2011) Non-Edg family LPA receptors: the cutting 
edge of LPA research. J Biochem 150, 223-232). 

LPA
7
 /GPR87 
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LPA1/Edg2 was the first LPA receptor to be identified. In an effort to identify 

GPCRs regulating cortical neurogenesis, Chun and colleagues identified a GPCR 

expressed in the cortical neurogenic region and named it ventricular zone gene-1 (VZG-

1). They overexpressed this gene in neuronal cells and observed cell rounding and adenyl 

cyclase inhibition specifically in response to LPA among other ligands including lipids 

(71), providing evidence for  identification of the first LPA receptor. LPA1 in humans is 

expressed in a variety of adult tissues including heart, small intestine, pancreas, kidney, 

prostate, ovary, and testis, but the highest expression of LPA1 had been observed in the 

mouse brain (70,71). Hence the role of LPA1 in the developing nervous system is a major 

focus of research. LPA1 has been shown to be important for neurogenesis in the dentate 

gyrus, synapse formation in the hippocampus and for overall cortical development (72-

74). The importance of LPA1 was evident from studies using LPA1 knockout mice which 

had a semi lethal phenotype (50% neonatal deaths). Among the mice that survived, some 

displayed craniofacial deformities, frontal hemorrhages and defects in suckling behavior 

(75). By subjecting the LPA1 knockout mice to pathophysiological conditions, its roles in 

initiation of neuropathic pain (65), and in pulmonary and renal fibrosis have been 

established (76,77).  

LPA2/Edg4 was identified from GenBank searches of orphan GPCRs and its high 

amino acid sequence similarity to LPA1 (55%) (78). In humans, LPA2 gene is located on 

chromosome 19 and encodes for a 39 kd protein (79). The expression of LPA2 as 

compared to LPA1 is relatively restricted. In adult mice, LPA2 is expressed in lung, 

spleen, stomach, testis and kidney (80), and in humans, its expression has been detected 
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in pancreas, thymus, testis, spleen and leukocytes (81). LPA2 knockout mice are viable, 

grossly normal and display no apparent breeding abnormality. Moreover the LPA1 and 

LPA2 double knockout mice did not show any phenotype additional to LPA1 knockout 

mice, except for a minor increase in frontal hematomas (82). Thus it can be speculated 

that under physiological conditions, LPA2 may not play a significant role and its 

functions might be redundant to LPA1. However, LPA2 has been found to be upregulated 

in various cancers and may contribute to pathogenesis of ovarian cancer, colorectal 

cancer and other malignancies (83,84).  

LPA3/Edg7 was initially identified as an orphan receptor using degenerate PCR-

based cloning. Based on its responsiveness to LPA and its homology to LPA1-2 receptors 

(53.7 and 48.8% for LPA1 and LPA2 respectively), it was identified as the third Edg LPA 

receptor (85,86). The LPA3 gene is located on chromosome 1 and encodes for a 40 kd 

protein. In human, LPA3 expression is detectable in a number of tissues including heart, 

testis, prostate, pancreas, lung, ovary, and brain (85,86). In mice, LPA3 is highly 

expressed in the uterus, and during post pregnancy almost exclusively in the luminal 

endometrial epithelium (69,70). Its expression has also been shown to be regulated by 

progesterone and estrogen (87). In accordance to its expression and potential hormone-

mediated regulation, LPA3 female knockout mice had a dramatic phenotype in the 

reproductive system. Loss of LPA3 resulted in delayed implantation and an alteration in 

embryo spacing resulting in reduced litter size (69). It is, however, notable that LPA3 

knockout mice had no observable phenotype in the nervous system, in spite of its 

expression in brain.  
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 LPA4/GPR23/P2Y9 was the first non-Edg family LPA receptor to be identified. 

As part of their “de-orphaning” project, Noguchi et al. identified GPR23/P2Y9, a 

receptor of the purinergic sub-family of GPCRs as the fourth LPA receptor (88). Human 

LPA4 is expressed in a variety of tissues, with highest expression observed in the ovary 

(88). It is located on the X chromosome and encodes a 42 kd protein. We were the first 

group to generate and characterize LPA4 knockout mice. The LPA4 null mice were viable 

and had no phenotypic abnormality. However, we demonstrated that the loss of LPA4 

sensitizes mouse embryonic fibroblasts (MEFs) to LPA-induced migration and tumor cell 

invasion (89), a process involving the inhibition of LPA1 receptor activity. This study 

was the first evidence for functional antagonism between LPA receptors. Following our 

study, Sumida et al also generated LPA4 knockout mice and reported partial lethality and 

defects in blood vessel formation in their LPA4 knockout mice (90). Although we did not 

observe any phenotypic defects in our LPA4 null mice, the difference in phenotype could 

arise from difference in genetic backgrounds of mice used.  

 LPA5/GPR97 is a recently identified LPA receptor that shares 35% homology 

with LPA4 and is structurally distant from the Edg LPA receptors (91). The LPA5 gene is 

located on chromosome 12 and codes for a 41 kd protein. Using mouse and human tissue 

samples, LPA5 has been shown to be expressed in small intestine, colon, stomach, spleen, 

heart and embryonic brain, with highest expression observed in the small intestine of 

mice and spleen of humans (91,92). Very few studies have been carried out on LPA5, but 

it has been suggested to play a role in platelet activation (93) and cyclooxygenase (Cox-2) 

induction in some ovarian cancer cell lines (94).  
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The LPA6/P2Y5 gene is located on chromosome 13 at a locus (q14.11-13q21.33) 

and is linked to an autosomal recessive form of hypotrichosis, which lead to its discovery 

(95). Pasternack et al. has subsequently shown that LPA6 is the expressed in the hair 

follicle and is required to maintain hair growth (95).  

LPA7/GPR87 is the last known LPA receptor. The LPA7 gene is present on 

chromosome 3 in both mouse and humans. It has been shown that LPA7 is expressed in 

placenta, ovary, testis, prostate, brain, and skeletal muscles in mice (96). Other GPCRs 

such as P2Y10 (97) and GPR35 (97) have been proposed as additional LPA receptors but 

they have not been validated by independent studies. 

1.1.3 LPA RECEPTORS AND CANCER 

LPA is known for its proliferative and migratory effects on a variety of cell types, 

and since LPA levels are elevated in cancer patients, LPA signaling is known to be 

heightened in cancer cells as well. LPA receptors are upregulated in a number of cancer 

types, thereby contributing to elevated LPA signaling in cancer.  

Although LPA1 is expressed in a wide range of human and mouse tissues, analysis 

of LPA1 mRNA expression data from tumor samples failed to conclusively prove 

overexpression of this receptor in major cancers (98). Moreover several groups have 

suggested LPA1 to be downregulated in cancers of the ovary, colon, vulva, thyroid, and 

testis compared with corresponding normal tissues (99-101). Irrespective of its 

expression changes in cancer, there is strong evidence that LPA1 is involved in oncogenic 

processes, especially in promotion of tumor cell invasion and metastasis. Overexpression 
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of LPA1 in cell lines where LPA receptors are either absent or had very low expression 

(B103, Rh7777 and SkBr3), resulted in increased proliferative and migratory responses to 

LPA and increased metastasis to the bone when injected into nude mice (56,102,103). 

The role of LPA1 in enhancing migratory and metastatic potential of cancer cells was also 

supported by the observation that, Nm23-H1 (a metastatic suppressor) inhibited 

expression of LPA1 (104,105).  

Unlike LPA1, expression of LPA2 is known to be upregulated in a variety 

of cancers and is generally believed to be the major LPA receptor contributing to 

carcinogenesis. Our lab was the first to report overexpression of this reporter in 

ovarian cancer lines and primary ovarian cancer (106,107), following which 

several groups have identified overexpression of this receptor in other cancer 

types including breast (108), gastric (109), colorectal (110), and thyroid cancers 

(111). There are several lines of evidence that support a role of LPA2 in driving 

tumorigenesis. Overexpression of LPA2 in ovarian cancer cell lines increased 

production of oncogenic factors such as interleukin-6 (IL-6), interleukin-8 (IL-8), 

and vascular endothelial growth factor (VEGF), leading to an increased  tumor 

burden in mice when these cells were injected subcutaneously (83). Breast tissue 

specific expression of LPA2 (driven by the MMTV promoter) in mice was found 

to increase the incidence of mammary tumors, as compared to wild type litter 

mates. Moreover, LPA2 knockout mice were found to be resistant to intestinal 

tumor formation in both the Adenomatous polyposis coli (APC)+/- mouse model 

(112) and dextran sulfate sodium model (113). It is thus evident that LPA2 plays a 
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major role in tumor development. However, the exact mechanism by which LPA2 

regulates oncogenic processes remains elusive.  

The role of LPA3 in cancer is not fully understood. It has been found to be 

overexpressed in ovarian (107) and prostate (114) cancers but downregulated in 

some breast cancers (101). However in ovarian cancer, LPA3 has been found to 

contribute to tumorigenicity (83). In other cancers such as colon cancers, there 

are conflicting reports. Although it is downregulated in colon cancer (99), there 

is experimental evidence that LPA3 contributes to LPA-driven proliferation of 

these cells (115). In addition, LPA3 negatively regulates LPA1-driven migration 

of rat lung cancer cells (116). It is evident that further studies are required in 

order to clarify the role of LPA3 in cancer.  

As compared to the Edg LPA receptors, the contributions of non-Edg receptors in 

tumorigenesis have not been elaborately studied. LPA4, the first non-Edg family receptor 

to be identified, is expressed at low levels as compared to other LPA receptors or is 

undetectable in a majority of cancer cell lines. Analysis of expression data from some 

cancer studies failed to provide any significant difference in LPA4 levels between cancers 

and their corresponding non cancer tissues (Figure 1.3). Thus it is imperative to study 

LPA4 expression in individual cancer types separately. We have recently shown that 

LPA4 expression levels are reduced after Ras transformation, suggesting that reduced 

expression of this receptor is one of the molecular changes associated with oncogenic 

transformation (117).  
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Roles of LPA5, LPA6 and LPA7 in cancer have not been adequately studied. 

However, expression analysis suggests their expression could be deregulated in cancer 

(Figure 1.3).  
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1. Colon (10)  
2. Colon Carcinoma (5)  

1. Bladder (48)  
2. Superficial Bladder Cancer (28) 

1. Ovary (4)  
2. Ovarian Serous Adenocarcinoma 

(41)  

1. Lung (30)  
2. Lung Adenocarcinoma (27)  

1. Breast (9)  
2. Invasive Ductal Breast Carcinoma 

(33)  

Figure 1.3 Expression of LPA receptors in cancer. Expression patterns of LPA 
receptors are depicted as normal vs. tumor of their log2 median-centered intensity. The 
Oncomine™ (Compendia Bioscience, Ann Arbor, MI) was used for analysis and 
visualization. 
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1.1.4 LPA RECETOR MEDIATED SIGNALING  

Like other GPCRs, LPA receptors couple to multiple G-proteins. G-proteins are 

hetrotrimeric proteins (composed of α-, β- and γ- subunits) that transduce signals from 

the receptors to various effectors. In the inactive state, G-proteins remain attached to 

GDP (guanosine diphosphate); on activation, the GDP gets replaced by GTP (guanosine 

triphosphate) resulting in release of the α-subunit from βγ-subunits. These subunits then 

go on to activate various signaling pathways. As shown in Figure 1.4, LPA receptors are 

majorly known to couple to Gαi, Gαq, Gα12/13 and in certain cases Gαs. LPA1 and LPA2 

receptors couple to Gαi, Gαq, and Gα12/13, whereas LPA3 couples to Gαi and Gαq. The non-

Edg LPA receptors are not known to activate Gαi but are known to activate Gαs instead. 

This is a significant difference as coupling to Gαs leads to activation of adenly cyclase 

(AC) and hence leads to increase in cAMP (cyclic-adenosine monophosphate), whereas 

as Gαi mediates inhibition of AC. LPA via Gαi inhibits cAMP accumulation, activates 

Ras-MAPK (mitogen-activated protein kinase) pathways, Rac GTPases via TIAM1 (a 

GDP/GTP exchange factor) and the PI3K-AKT pathway (102,118-121). LPA mediated 

activation of Gαq is linked to activation of phospholipase C (PLC), which catalyzes 

hydrolysis of phosphoinositol biphosphate (PIP2) to diacylglycerol (DAG) and inositol 

triphosphate (IP3) with subsequent release of intracellular calcium and activation of 

PKCs (protein kinase C) (118). LPA via Gα12/13 activates RhoA leading to cytoskeletal 

changes and cell rounding (122). Thus LPA via Gαi regulates cell proliferation and 

survival, via Gαq regulates the production of secondary messengers and by combined 

actions of Gαi and Gα12/13 regulates cell migration and invasion. 
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Apart from the Gα- subunit, Gβγ-subunits have also been shown to activate 

signaling pathways. Upon LPA stimulation, Gβγ-subunit has been shown to associate 

with Rab11a-containing early and late endosomes, leading to recruitment and activation 

of the PI3K-AKT pathway (123).  

 

 
 

 
 

1.1.5 LPA AND CELL PROLIFERATION  

The mitogenic effect of LPA was first discovered in fibroblasts (118); 

subsequently, LPA has been found to increase cellular proliferation in cells of multiple 

lineages including transformed cells. The proliferative effect of LPA is generally 

Figure 1.4 LPA receptor mediated signaling 
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regarded to be driven by the pertussis toxin (PTX) sensitive Gαi pathway (118,120), 

however possible contribution by RhoA signaling has also been suggested (124).  

Although LPA activates the Gαq-PLC pathway, this pathway is not required for 

proliferation (118). Downstream of Gαi, the Ras-MAPK and the PI3K-AKT pathways 

have been known to mediate LPA-induced cell proliferation (120,125). These pathways 

are also involved in promotion of cell survival (126,127). 

All Edg receptors coupled to Gαi are capable of enhancing cell proliferation when 

analyzed individually in ovarian cancer cell lines (83). However, Edg LPA receptors are 

often found to be co-expressed, making it difficult to link a biological response to a 

specific receptor. The crosstalk among the Edg LPA receptors likely plays an important 

role in the proliferative response to LPA. Studies using mouse embryonic fibroblasts 

have showed that LPA1 and LPA2 have redundant functions in terms of cellular 

proliferation. Loss of both receptors caused a dramatic inhibition of LPA-dependent cell 

proliferation (82). In transformed cells, there is emerging evidence that implicates LPA2 

in driving cell proliferation and tumorigenesis. LPA2 has been shown to activate a 

number of cell cycle regulators and oncogenic proteins including IL-6, VEGF, HIF1α, c-

Myc, cyclin D1, kruppel-like factor 5, and Cox-2 (112,113,128-131). These protein 

factors could be important mediators of LPA2’s biological functions. LPA is known to 

transactivate epidermal growth factor receptor (EGFR), platelet derived growth factor 

receptor (PDGFR) and hepatocyte growth factor receptor (c-Met). A signal input from 

these receptor tyrosine kinases seems to be required for maximum induction of 

proliferation by LPA in various cellular contexts (132-134).  
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1.2 CANCER CELL METABOLISM  

Cell metabolism refers to complex biochemical reactions within a cell that use 

nutrients as substrates to generate macromolecules (such as protein, DNA and lipids) and 

energy (Adenosine-5’-triphosphate, ATP). ATP inside a cell is generated by glycolysis, 

fatty acid β-oxidation and the tricarboxylic acid cycle (TCA). During glycolysis, glucose 

is converted into pyruvate with the net output of 2 ATP molecules, and in the absence of 

oxygen, lactate becomes the end product. However, if oxygen is in abundance, pyruvate 

enters the TCA cycle and subsequently a total of 36 molecules of ATP can be generated 

from complete catabolism of one glucose molecule. These processes are tightly 

coordinated and anabolic or catabolic processes are activated to meet the cellular 

requirements. Cancer cells have evolved an altered metabolic profile that is well suited 

for an increased rate of cellular proliferation.  

 The first evidence of an altered metabolic program in cancer cells was provided 

by Otto Warburg in 1920s. He showed that transformed cells continue to use glycolysis 

even in the presence of oxygen as the major ATP generation process, which later came to 

be known as the Warburg effect (135). This observation has been demonstrated in a 

variety of cancers and has been exploited in the detection of cancer by 

fluorodeoxyglucose positron emission tomography (FDG-PET). The Warburg effect 

initially provided a paradox as cancer cells by definition are rapidly proliferating cells 

and preferential use of glycolysis would generate less ATP per molecule of glucose. 

However, recent observations suggests that cancer cells utilize glycolysis to preferentially 

increase carbon flux inside the cells which is required to generate biomass needed to meet 
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the demand for rapid cellular proliferation. Thus cancer cells are characterized by an 

increased rate of glycolysis, highly active DNA and protein synthesis and hyperactive de 

novo lipogenesis.  

1.2.1 DE NOVO LIPOGENEIS 

Fatty acids are important constituents of cell membranes, signaling molecules, 

and secondary messengers. There are two sources of fatty acids for cellular metabolism, 1) 

external fatty acids obtained from diet and 2) endogenously synthesized fatty acids. The 

majority of cells in humans rely on dietary fats to meet their requirements and hence the 

inherent process of fatty acid synthesis (de novo lipogenesis) is generally inhibited. In 

contrast, cancer cells heavily depend on fatty acids from de novo synthesis. Using radio 

isotopes, it has been showed that more than 90% of fatty acids are generated by cancer 

cells themselves and only a minor fraction is contributed by cellular uptake of 

extracellular fatty acids (136). Fatty acid synthesis is carried out in the cytosol from 

acetyl CoA which acts as the carbon donor (Figure 1.5). The first step in fatty acid 

synthesis is the generation of malonyl CoA by carboxylation of acetyl CoA, which is 

carried out by acetyl CoA carboxylase (ACC). Sequential addition of 2 carbon unit leads 

to the generation of long chain fatty acids, catalyzed by a multi-functional protein known 

as fatty acid synthase (FAS).  
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1.2.2 KEY MEDIATORS OF LIPOGENESIS IN CANCER 

Generation of fatty acids in the cytosol depends on the ability of cells to generate 

cytosolic acetyl CoA catalyzed by ATP citrate lyase (ACL), as acetyl CoA generated in 

the mitochondria cannot be directly transported to the cytoplasm. The acetyl CoA thus 

produced feeds into fatty acid synthesis, cholesterol synthesis and in acetylation reactions, 

suggesting the importance of this enzyme in multiple processes. In humans, ACL has 

been found to be abundantly expressed in liver and adipose tissues (137,138) and is often 

seen upregulated in lung, prostate, bladder, breast, liver, stomach, and colon tumors (139-

145). The importance of ACL in de novo lipogenesis and proliferation of cancer cells is 

suggested by the observation that pharmacological and RNA interference (RNAi) 

Figure 1.5 An illustration of fatty acid synthesis  
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mediated inhibition of ACL leads to reduced cell growth, survival and tumorigenesis of 

cancer cells (146,147).  

 The second enzyme in fatty acid synthesis is ACC. It catalyzes the first committed 

step in fatty acid synthesis. Mammalian ACC consists of multi-functional domains (biotin 

carboxylase, biotin carboxyl carrier, and carboxyltransferase). ACC has two isoforms, 

ACC1 and ACC2; the former is the predominant one present in lipogenic tissues (liver, 

adipose tissue, lactating mammary glands) and cancer cells, and the latter is expressed in 

skeletal muscle, heart and liver (148). ACC1 has been shown to be upregulated in cancer 

of prostate, breast and liver (141,149,150). Interestingly, pre-neoplastic lesions with 

increased expression of ACC1 have been shown to have a higher chance of developing 

into breast cancers (150). Knockdown of ACC1 in cancer cells results in reduced 

proliferation and viability (151,152).  

 In 1994, Kuhajda and colleagues identified the oncogenic antigen-519 (OA-519) 

as FAS (153), and several subsequent studies showed OA-519 overexpression to correlate 

with poor patient outcomes (154). FAS has been shown to be upregulated in cancers of 

breast, colorectum, prostate, bladder, ovary, esophagus, stomach, lung, oral tongue, oral 

cavity, head and neck, thyroid and endometrium (154-156). There are two possible 

mechanisms by which FAS can be upregulated in cancer. The first involves the activity 

of growth factor receptors. In particular, the EGF family receptors ERBB1 and ERBB2 

have been shown to regulate FAS transcriptionally (157-159), via PI3K or MAPK 

pathways (160-162). The second route is via a post-translational mechanism, supported 

by the observation that in prostate cancer cells FAS has been found to interact with 
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ubiquitin specific proteases USP2a. USP2a protected FAS from ubiquitin-mediated 

degradation, and knockdown of USP2a reduced FAS levels (163). Correlation between 

FAS and USP2a expression can also be seen in microarray analyses (164). It should be 

noted that to date such regulation of FAS has not been reported in any type of cancer 

cells.   

1.2.3 REGULATION OF LIPOGENESIS IN CANCER 

 The lipogenic process in cancer cells shares certain similarities with non-

transformed cells (liver and adipose tissue). In both cases, FAS expression is regulated by 

sterol regulatory element binding proteins (SREBPs). The SREBP family of transcription 

factors comprises three members SREBP-1a, SREBP-1c, and SREBP-2 (165,166). 

SREBP-1a and SREBP-1c are produced from one gene by the use of alternative 

promoters (166-168), and SREBP-2 is a product of another gene with no known other 

isoforms (169). Each SREBP has three domains: 1) a N-terminal transactivation domain, 

2) a hydrophobic transmembrane region, and 3) a C-terminal regulatory domain (170). 

Although SREBPs have similar consensus DNA binding sites, there seems to be some 

specificity in transactivation of target genes. Studies using liver specific expression of 

SREBPs in mice have suggested that SREBP-1a and SREBP-1c regulate genes involved 

in fatty acid synthesis (171,172), while SREBP-2 regulates multiple genes in cholesterol 

synthesis (173).  

 SREBPs can be regulated by three possible mechanisms 1) transcriptional, 2) 

proteolytic cleavage of SREBP precursors, and (3) post-translational modification of 
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nuclear SREBPs. Studies involving fasting/refeeding regimes in rodents showed that 

changes in nutritional status regulated the expression of SREBP-1c in liver, white adipose 

tissue and skeletal muscles (174-177). The expression of SREBP-1c was found to be 

reduced during starvation and increased when fed carbohydrate rich diets. Consistent 

with these observations, insulin and glucagon were found to be the upstream modulators 

of the increase or decrease in SREBP-1c transcription respectively (172,178). SREBP-1c 

has also been shown to be regulated by activation of androgens (179), progesterone (180) 

and the nuclear hormone receptor LXRα (181). SREBP-1a and SREBP-2 also are 

regulated to a minor extent by transcriptional mechanisms, and under reduced sterol 

concentrations both proteins can be transcriptionally upregulated (170).  

 Proteolytic cleavage of SREBP is a highly complicated process as depicted in 

Figure 1.6. Following translation; SREBPs are localized to the endoplasmic reticulum 

(ER). When cholesterol and 25-hydroxycholesterol are present in adequate amounts, 

SREBPs forms a complex with sterol regulatory element binding protein cleavage 

activating protein (SCAP) and insulin-induced gene (INSIG) proteins (182,183). A fall in 

intracellular cholesterol levels leads to disruption of the complex, unmasking the sorting 

signal in SCAP. The SCAP-SREBP complex is then transported to the Golgi via COPII-

mediated vesicular transport (182). In the Golgi, two proteases, site 1 protease (S1P) 

(184,185) and site 2 protease (S2P) (186), sequentially cleave the precursor forms of 

SREBPs thereby releasing the active N-termini, which translocates to the nucleus to bind 

and activate their target genes .  
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 Inside the nucleus, the transcriptional activity of SREBPs is regulated by covalent 

modifications or by interactions with other proteins. Studies in cell lines suggest that 

insulin via the MAPK pathway leads to phosphorylation of SREBPs at several sites, 

which have been shown to increases transactivation capacities of SREBPs (187,188). In 

addition to MAPK, mammalian target of rapamycin (mTOR) has been recently found to 

influence the transcriptional activity of SREBPs (189). mTORC1 phosphorylates Lipin1 

and prevents its nuclear entry.  Since nuclear Lipin1 decreases transcriptional activities of 

both SREBP-1 and SREBP-2, activated mTOR enhances the transactivation potential of 

SREBP proteins. Reduced activities of SREBPs have also reported to be caused by 

sumoylation (190) and by degradation via an ubiquitin-proteasome pathway (191).  

 
 Figure 1.6 Proteolytic activation of SREBP. 



29 
 

1.2.4 AEROBIC GLYCOLYSIS  

  Glycolysis is a biochemical process that converts glucose to pyruvate, generating 

2 molecules of ATP per molecule of glucose. The steps of the process and the enzymes 

involved are depicted in Figure 1.7. All living cells need energy (ATP) to maintain 

cellular homeostasis. Transformed cells, however, have increased requirements for 

energy and intracellular nutrients to carry on non-spontaneous anabolic reactions that 

support heightened cell growth. It is thus believed that to satisfy the above requirements, 

cancer cells have undergone a shift to aerobic glycolysis. Aerobic glycolysis generates 

less ATP but leads to increased carbon flux (as nutrients) in the cell, so to make up for 

the inefficiency in ATP generation, cancer cells have a heightened rate of glucose uptake. 

Hence by selection of glycolysis over oxidative phosphorylation, cancer cells have been 

able to maintain a balance between ATP generation and biomass production. It is 

interesting to note that some unicellular organisms also prefer glycolysis. For example, 

when fermentative yeast Saccharomyces cerevisiae was grown in media where glucose is 

not the primary source of carbon, oxidative phosphorylation was preferred, but when 

glucose was added, they rapidly shifted to the glycolytic pathway and this change 

resulted in a faster growth rate (192,193). However, the same is not true for aerobic yeast 

Yarrowia lipolytica or for aerobic bacteria Escherichia coli (194,195).  
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Figure 1.7 Enzymes involved in the glycolytic process. 
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Thus it can be said that increased glucose uptake for glycolytic ATP generation or 

anabolic reactions offers the following advantages to facilitate tumor cell growth: 

1) Intermediates of the glycolytic pathway can be used for anabolic reactions thus 

branching into different pathways. For example glucose 6-phosphate can 

contribute to ribose 5-phosphate synthesis. Dihydroxyacetone phosphate can lead 

to triacylglyceride and phospholipid synthesis. 3-phosphoglycerate can contribute 

to cysteine, glycine, and serine synthesis and pyruvate can generate alanine and 

malate (193). 

2) Lactate is the principle end product of glycolysis secreted outside the cell, which 

leads to acidification of the tumor microenvironments. This acidification aids in 

tumor cell invasion (196) and immune modulation (197) facilitating tumor growth.  

3) A part of the glucose can be diverted to the pentose phosphate pathway (PPP), 

generating NADPH which is required for fatty acid synthesis.  

4) Reliance on glycolysis could provide cancer cells with a survival advantage under 

reduced oxygen concentrations, which would be fatal for cells relying on 

oxidative phosphorylation (198). 

1.2.5 KEY REGULATORS OF GLYCOLYSIS IN CANCERS 

Several studies suggest that control over glycolytic flux primarily resides at the 

glucose transport and phosphorylation steps of glycolysis (199-201) and thus the key 

players regulating glycolysis in cancer are glucose transporter 1 (GLUT1), hexokinase 2 

(HK-2) and pyruvate kinase muscle isozyme (PKM2).  
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 GLUT1 is the most widely expressed, high affinity glucose transporter and has 

been reported to be upregulated in various malignancies (202-208). Abnormal expression 

of GLUT1 occurs early during tumorigenesis and RAS or SRC mediated cell 

transformation is associated with GLUT1 upregulation (209). In addition, GLUT1 

overexpression is linked to poor prognosis of cancer (208,210). 

 HK-2 catalyzes the irreversible first step of glycolysis, converting glucose to 

glucose-6-phosphate. This is an important step as phosphorylation prevents exit of 

glucose from the cell. There are four different isoforms of hexokinases. HK-2 and to a 

lesser extent HK1 are the only enzymes that have been typically associated with cancer. 

The switch from HK4 expressed in liver to HK-2 in cancer cells is one of the earliest 

adaptations observed during tumorigenesis (211-213). Upregulation of HK-2 is seen in a 

variety of cancers and consequently inhibition of HK-2 is often regarded as a possible 

therapy against cancer (214,215). HK-2 is localized to the outer membrane of 

mitochondria and is thought to be attached to the voltage-dependent anion channel 

(VDAC) (216). This interaction between HK-2 and VDAC not only ensures an efficient 

supply of ATP to HK-2 but is also critical for prevention of apoptosis (217,218). Thus 

HK-2 regulates both cell proliferation and survival (219). 

 Pyruvate kinase (PK) regulates the conversion of phosphoenolpyruvate (PEP) to 

pyruvate. There are four types of PK. Type l is found in the liver and kidneys, type R in 

erythrocytes, type M1 in muscle and brain, and type M2 in self-renewing cells such as 

embryonic and adult stem cells and cancer cells (220,221). While PKM1 is known for its 

high activity and rapid generation of ATP, PKM2 in cancers has lower activity and 
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reduces the amount of ATP generated by glycolysis (222,223). A recent study by 

Christofk et al. showed that PKM2 provides an alternative path for the transfer of a 

phosphate group, transferring it to PGAM1 (Phosphoglyceric acid mutase 1) instead of 

ADP (Adenosine diphosphate) (224), providing explanation for the loss of ATP. This 

mechanism thus uncouples ATP generation from glycolysis, thereby allowing glycolytic 

intermediates to accumulate and enter other subsidiary pathways, including the 

hexosamine pathway, uridinediphosphate (UDP)–glucose synthesis, glycerol synthesis 

and the hexose monophosphate shunt.  

1.2.6 REGULATION OF GLYCOLYSIS IN CANCER CELLS: CURRENT 

UNDERSTANDING 

Cancers cells are known to change their surrounding environment to better suit 

their needs. As tumor mass increases, accessibility of tumor cells to oxygen reduces, 

leading to a hypoxic state which has a dramatic effect on metabolism. Hypoxia leads to 

stabilization of hypoxia inducible factor -1 (Hif-1) proteins, which regulate almost all 

genes of the glycolytic pathway (225). Hif-1 is heterodimeric transcription factor 

composed of α and β subunits; the β-subunit is constitutively expressed but the α-subunit 

is regulated by the levels of oxygen (226,227). Under normoxic conditions, Hif-1α gets 

hydroxylated by prolyl hydroxylase domain protein 2 (PHD2) on proline residue 402 

and/or 564, and this modification leads to binding of the von Hippel–Lindau tumor 

suppressor protein (VHL). VHL recruits an E3 ubiquitin ligase that degrades Hif-1α. 

Under hypoxic conditions, the proline hydroxylation is inhibited, leading to accumulation 
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of Hif-1α protein, which then binds to Hif-1β and activates transcription of its target 

genes (225,228). In addition to stabilization under hypoxic conditions, under normoxic 

conditions Hif-1α may be stabilized by mutations in tumor suppressor proteins such as 

VHL (229,230), succinate dehydrogenase (SDH) (231) and fumarate hydratase (FH) 

(232). Hif-1α, once present in sufficient amounts, will transactivate glucose transporters 

(GLUT1, GLUT3) and enzymes contributing to increased glycolytic phenotype (HKI, 

HKII, PFK-L, ALD-A, ALD-C, PGK1, ENO-alpha, PYK-M2, LDH-A, PFKFB-3) (233). 

In addition to the tumor microenvironment, oncogenes, tumor suppressor genes 

and their associated signaling pathways also play an important role in regulation of 

aerobic glycolysis. Activated PI3K and Ras pathways have been shown to activate 

glycolysis via regulating expression of various glycolytic genes (234). AKT, the 

downstream effector of PI3K, enhances the rate of glycolysis by multiple mechanisms 

including increased expression and membrane translocation of glucose transporters and 

by phosphorylating key glycolytic enzymes, such as hexokinase and 

phosphofructokinase-1(235,236).  

Another oncogene with wide-ranging effects on glycolytic enzymes is c-Myc. It 

has been shown that c-Myc coordinately regulates genes such as HK-2 and pyruvate 

dehydrogenase kinase 1, along with Hif-1α (237). In addition to oncogenes, tumor 

suppressor genes such as TP53 have been shown to upregulate expression of TIGAR 

(TP53-induced glycolysis and apoptosis regulator), which as its name suggested, prevents 

glycolysis by decreasing levels of fructose-2, 6-bisphosphate, an allosteric regulator of 

phosphofructokinase-1. Thus, loss of TP53 in tumor cells leads to increased glycolysis. 
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CHAPTER 2 

 

LYSOPHOSPHATIDIC ACID ACTIVATES LIPOGENIC PATHWAYS AND DE 
NOVO LIPID SYNTHESIS IN OVARIAN CANCER CELLS 

 

Part of the work presented in this Chapter has been published in Journal of Biological 

Chemistry J Biol Chem. 2012 Jun 3. [Epub ahead of print] 

 

2.0 ABSTRACT  

One of the most common molecular changes in cancer is the increased 

endogenous lipid synthesis, mediated primarily by overexpression and/or hyperactivity of 

fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC). The changes in these key 

lipogenic enzymes are critical for the development and maintenance of the malignant 

phenotype. Previous efforts to control oncogenic lipogenesis have been focused on 

pharmacological inhibitors of FAS and ACC. Although they show anti-tumor effects in 

culture and in mouse models, these inhibitors are non-selective blockers of lipid synthesis 

in both normal and cancer cells. To target lipid anabolism in tumor cells specifically, it is 

important to identify the mechanism governing hyperactive lipogenesis in malignant cells. 

In the current study, we demonstrate that lysophosphatidic acid (LPA), a growth factor-
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like mediator present at high levels in ascites of ovarian cancer patients, regulates the 

sterol regulatory element binding protein (SREBP)-FAS and AMP-activated protein 

kinase (AMPK)-ACC pathways in ovarian cancer cells but not in normal or immortalized 

ovarian epithelial cells. Activation of these lipogenic pathways is linked to increased de 

novo lipid synthesis. The pro-lipogenic action of LPA is mediated through LPA2, a LPA 

receptor subtype overexpressed in ovarian cancer and other malignancies. Downstream of 

LPA2, the Gα12/13 and Gαq signaling cascades mediate LPA-dependent SREBP activation 

and AMPK inhibition, respectively. Moreover, inhibition of de novo lipid synthesis 

dramatically attenuated LPA-induced cell proliferation. These results demonstrate that 

LPA signaling is causally linked to the hyperactive lipogenesis in ovarian cancer cells, 

which can be exploited for development of new anti-cancer therapies.  

2.1 INTRODUCTION  

One of the most common molecular changes in tumor cells is the heightened rate 

of de novo lipid synthesis compared to their normal counterparts. The aberrant 

lipogenesis in cancer cells is mediated by increased expression and activity of key 

lipogenic enzymes primarily fatty acid synthase (FAS) and acetyl-CoA carboxylase 

(ACC). Interestingly, the alterations in these key lipogenic enzymes are critical for the 

development and maintenance of the malignant phenotype (238). It occurs at early stages 

of tumorigenesis and becomes more pronounced in advanced cancers (238,239). 

Overexpression of FAS correlates with poor prognosis in several types of human 

malignancies including ovarian cancer (240,241). Furthermore, tumor cells depend 
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heavily on or are “addicted to” de novo lipid synthesis to meet their energetic and 

biosynthetic needs, irrespective of the nutritional supplies in the circulation (238). 

Consistent with this, pharmaceutical inhibitors of FAS suppress tumor cell proliferation 

and survival, and enhance cytotoxic killing by therapeutic agents (158,242-246). 

However, one barrier to cancer patient application of these inhibitors is their non-

selective suppression of fatty acid synthesis in both normal and malignant tissues, which 

could contribute to weight loss, anorexia, fatigue and other cancer-associated 

complications. To target lipid anabolism in tumors specifically, it is important to identify 

the mechanism for the hyperactive lipogenesis in cancer cells, which is, however, poorly 

understood. 

Lysophosphatidic acid (LPA), the simplest phospholipid, has been long known as 

a mediator of oncogenesis (36). LPA is present at high levels in ascites of ovarian cancer 

patients and other malignant effusions (36,247,248). LPA is a ligand of at least six G 

protein-coupled receptors (GPCRs) (70). The LPA1/Edg2, LPA2/Edg4 and LPA3/Edg7 

receptors are members of the endothelial differentiation gene (Edg) family, sharing 46 -

50% amino acid sequence identity (70). GPR23/P2Y9/LPA4 of the purinergic receptor 

family and the related GPR92/LPA5 and P2Y5/LPA6 have been identified as additional 

LPA receptors, which are structurally distant from the LPA1-3 receptors (70,249). The 

Edg LPA receptors, in particular LPA2, are overexpressed in many types of human 

malignancies including ovarian cancer (36,107). Strong evidence implicates LPA2 in the 

pathogenesis of ovarian, breast and intestine tumors (83,107,113), although the exact 

oncogenic processes involved remain elusive. 
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 In the present study, we observed that LPA stimulated proteolytic activation of two 

isoforms of the sterol regulatory element binding proteins (SREBPs), transcription factors 

involved in regulation of FAS and other lipogenic enzymes for biosynthesis of fatty acid 

and cholesterol. In addition, LPA induces dephosphorylation of AMPKα at Thr-172 and 

concomitant dephosphorylation of ACC at Ser-79. The dephosphorylation of ACC at Ser-

79 is associated with activation of the enzyme (250). These LPA-induced changes in the 

lipogenic enzymes occurred hours after exposure to LPA and the effects were sustained 

for many hours. Consistent with LPA activating these lipogenic pathways, LPA increased 

de novo lipid synthesis. We identified LPA2, the receptor subtype overexpressed in 

ovarian cancer and other human malignancies, as the key receptor responsible for 

delivery of the lipogenic effect of LPA. The intracellular Gα12/13-Rho signaling cascade is 

critical for LPA activation of the SREBP while Gαq-PLC is involved in LPA-mediated 

dephosphorylation and inhibition of AMPK. These findings reveal a novel mode of the 

cancer cell-specific regulation of lipogenesis by an intercellular factor present in the 

circulation and tumor microenvironments.  

2.2 EXPERIMENTAL PROCEDURES 

Reagents – LPA (1-oleoly, 18:1) was obtained from Avanti Polar Lipids, Inc. (Alabaster, 

AL). Prior to use, LPA was dissolved in PBS containing 0.5% fatty acid-free bovine 

serum albumin (BSA) purchased from Roche (Indianapolis, IN). Acetic acid (1-14C) was 

obtained from Moravek Biochemicals (Brea, CA). Plasmid DNA was purified using the 

endo-free purification kit from Qiagen (Valencia, CA). The transfection reagent 
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Dharmafect 1 was obtained from Dharmacon, Inc. (Lafayette, CO) and TransIT-TKO 

was obtained from Mirus Bio (Madison, WI). Luciferase assay reagents were obtained 

from Promega (Madison, WI). Anti-SREBP-1 and anti-SREBP-2 antibodies were 

obtained from BD Biosciences (San Jose, CA). Anti-phospho-AMPKα (Thr-172), anti-

AMPKα, anti-phospho-ACC (Ser-79), anti-ACC, and anti-FAS antibodies were obtained 

from Cell Signaling (Danvers, MA). Anti-Tubulin antibody was obtained from 

EMD4Biosciences (Gibbstown, NJ). BODIPY 493/503 and cell culture reagents were 

purchased from Invitrogen Inc. (Carlsbad, CA). The TaqMan Universal PCR Master Mix 

and qPCR probes for LPA1, LPA2, LPA3, 3-Hydroxy-3-methylglutaryl-CoA (HGM-CoA) 

reductase and GAPDH were obtained from Applied Biosystems (Carlsbad, CA). Calpain 

I inhibitor, water soluble cholesterol, the FAS inhibitor C75, the ACC inhibitor TOFA 

and sodium palmitate were purchased from Sigma-Aldrich (St. Louis, MO). 

Cell Culture – The sources of ovarian cancer cell lines used in the study were described 

previously (251). These cells were cultured in RPMI medium supplemented with 10% 

FBS, 100 U/ml penicillin, and 100 µg/ml streptomycin. IOSE-29 was originally obtained 

from Dr. N. Auersperg (University of British Columbia, Canada) and cultured as 

described previously (252). 

siRNA, plasmids and transfection – The siRNA oligos for LPA1, LPA2 LPA3, and FAS 

were obtained from Applied Biosystems. These siRNAs were transfected into cells using 

Dharmafect 1 following the manufacturer’s protocol. In brief, cells were plated in 6-well 

plates to reach 50-60% confluence before transfection. Cells were then transfected with 
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target specific siRNA or non-targeting control siRNA (150 picoM) with Dharmafect 1 (4 

µL) for 12-16 hours. Approximately 48 hours post transfection, the cells were serum 

starved overnight before LPA treatment. Lentiviruses carrying short hairpin RNA 

(shRNA) for LPA1-3 receptors were kind gifts from Dr. S. Huang (Medical College of 

Georgia) (253). The expression vector pcDNA3 expressing dominant negative form of 

Gαi was provided by Dr. P. Hylemon (Virginia Commonwealth University) (254,255). 

The Gαq and Gα12 cDNAs were provided by Dr. RD Ye (University of Illinois at 

Chicago). The dominant-negative mutants of Gαq (G208A) and Gα12 (G228A) (256-258) 

in pcDNA3 were made using the QuikChange XL site directed mutagenesis kit 

(Stratagene, Santa Clara, CA). The plasmids and the vectors expressing N19Rho and 

Botulinum toxin C3 were described previously (259,260). These plasmids were 

transfected into ovarian cancer cell lines using Lipofectamine LTX plus (Invitrogen) 

following the manufacturer’s instruction. 

Luciferase assays – The SREBP responsive luciferase reporter vector (pGL2–3xSREBP-

TK-Luc) was generated by cloning 3 repeats of the SREBP consensus sequence 

(AAAATCACC CCACTGCAAACTCCTCCCCCTGC) (261,262) into the NheI 

and HindIII sites in front of the herpes simplex virus thymidine kinase (TK) gene 

promoter (–35 to +50) in the pGL2-TK-Luc vector (128). Ovarian cancer cell lines were 

transfected with the luciferase vector using TransIT-TKO according to the 

manufacturer’s protocol. About 48 hours after transfection, the cells were starved 

overnight and treated with LPA or vehicle (BSA) for 12 hours. Cell extracts were 

prepared and assayed for luciferase activity using the luciferase assay kits from Promega.  
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Western blotting – Cells were lysed as previously described (263). Total cellular 

proteins were resolved by SDS-PAGE, transferred to immunoblot membrane 

(polyvinylidene difluoride) (BIO-RAD, Hercules, CA), and immunoblotted with 

antibodies following the protocols of manufacturers. Immunocomplexes were visualized 

with an enhanced chemiluminescence detection kit from Amersham (Piscataway, NJ). 

Quantitative PCR (qPCR) – Total cellular RNA was isolated from cultured cells using 

Trizol (Invitrogen). Complementary DNA (cDNA) was synthesized using the High-

Capacity cDNA Reverse Transcription Kit (Applied Biosystems). The relative levels of 

LPA1, LPA2, LPA3, HMG-CoA reductase and GAPDH were determined by qPCR using 

gene specific probes, the TaqMan Universal PCR Master Mix, and the Applied 

Biosystems 7900HT Real-Time PCR System.  

Measurement of de novo lipid synthesis – Cells were grown in 6-well plates and serum 

starved prior to treatment with LPA or vehicle for 24 hours. The cells were labeled with 

14C acetic acid (5 μCi/ml) for the last 6 hours of incubation. The cells were then washed 

twice with PBS and lysed with lysis buffer (25 mM HEPES, 150 mM NaCl, 0.1% SDS, 1% 

Triton X-100, 0.2 mM EDTA, 0.5% sodium deoxycholate, 20 mM glycerophosphate, 1 

mM sodium vanadate, 1 mM PMSF, 10 μg/ml leupeptin and 10 μg/ml aprotinin). Lipids 

were extracted using a chloroform: methanol solution (2:1). Phase separation was 

achieved by centrifugation at 3200 x g for 10 minutes. The organic phase was extracted 

and dried with speed vacuum. Lipids were dissolved in Ultima Gold Cocktail (Perkin 

Elmer, Waltham, MA) and counted using Beckman LS 6500 scintillation counter. Each 
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measurement was performed in triplicate and normalized to cell numbers. 

Lipid staining – Cells were grown and serum starved prior to treatment with LPA or 

vehicle for 24 hours. Cells were then stained with BODIPY 493/503 at final 

concentration of 0.5 μg/ml in PBS at 37°C for 30 minutes, followed by counter staining 

with Hoechst (10 μg/ml) for 15 minutes. Cells were then fixed with 2% 

paraformaldehyde and visualized with fluorescence microscopy. 

Quantification of triacylglycerols (TAG) and phospholipids – TAG and phospholipids 

were extracted and quantified with the EnzyChrom Triglyceride Assay kit and the 

EnzyChrom Phospholipid Assay kit (BioAssay Systems, Hayward, CA), respectively, 

according to the manufacturer.  

HPLC analysis of ATP/AMP ratio – Cells were serum starved for 16-18 hours prior to 

LPA treatment. Nucleotides were extracted using 5% perchloric acid. Samples were then 

subjected to HPLC analysis using BioBasic AX column. The phases A and B were 5 mM 

KH2PO4 and 750 mM KH2PO4, respectively. The pH of both solutions (which both 

solutions?) was adjusted to 3.2 using phosphoric acid. Nucleotides were separated using a 

gradient of 0-100% of phase B in 30 min, at the flow rate of 1 ml/min and detected at 254 

nm. The retention time for the AMP and ATP were obtained by running specific 

standards, based on which corresponding peaks of samples were identified. Data 

acquisition and analysis were carried out using the Shimadzu LC solution.  

 

Anchorage-independent growth - Anchorage independent growth of cells was 
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determined by soft agar assays in 6-well plates. Briefly, bottom layer of 0.6% soft agar in 

complete medium was prepared. Following which and a top layer of 0.3% soft agar 

including 3000 cells were applied into each well. After incubating the plates for 14 days, 

colonies were stained with crystal violet solution and colonies were counted under 

microscope. 

Statistics – All numerical data were presented as mean ± SD. The statistical significances 

of differences were analyzed using Student's t test where p<0.05 was considered 

statistically significant. In all figures, the statistical significances were indicated with * if 

p < 0.05 or ** if p < 0.01.  

2.3 RESULTS  

2.3.1 LPA INDUCES PROTEOLYTIC CLEAVAGE AND ACTIVATION OF 

SREBP IN A CHOLESTEROL-SENSITIVE MANNER  

Hyperactive lipogenesis is a hallmark of tumor cells (154,238). To identify 

pathophysiological mechanisms driving the lipogenic program in cancer cells, we 

examined the potential role of LPA, an endogenous regulator of many cellular functions 

in ovarian cancer and other human malignancies. We first assessed whether LPA was 

capable of activating the SREBP transcription factors that play crucial roles in regulating 

expression of lipogenic enzymes. Treatment of Caov-3, OVCA-432 and other ovarian 

cancer cell lines including OVCAR-3 with LPA induced cleavage of the precursor forms 

of SREBP-1 and SREBP-2 in a time-dependent manner (Figure. 2.1). The cleaved, 

mature forms of SREBP-1 and SREBP-2 were detectable at 4 hours and peaked at 12 
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hours post LPA treatment. In contrast to the ovarian cancer cell lines, LPA failed to 

activate SREBP-1 or SREBP-2 in the immortalized ovarian surface epithelial cell line 

IOSE-29 (Fig. 2.1) or normal ovarian epithelial cells (data not shown), suggesting a 

cancer cell-specific mechanism for SREBP activation by LPA in ovarian cancer cells.  

 
 

 

 

 

 

Under physiological conditions, SREBP-1 and SREBP-2 are regulated by the 

intracellular sterol content. In their precursor forms, SREBPs are attached to the 

endoplasmic reticulum (ER). Specific signaling cues such as reduced cholesterol levels 

trigger SREBP cleavage-activating protein (SCAP)-mediated transport of SREBP from 

Figure 2.1 LPA activates SREBP in ovarian cancer cells. Ovarian cancer cell lines 
and IOSE-29 cells were treated with LPA (10 μM) for indicated periods of time. The 
calpain inhibitor I (25 μg/ml) was added to cells for the last 2 hours. Expression of 
SREBP-1 and SREBP-2 was analyzed by immunoblotting with antibodies that 
recognize both precursor (p) and active/mature (m) forms of SREBP-1 and SREBP-2.
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the ER to the Golgi, where they are cleaved by proteases S1P and S2P to release the 

mature/active form (264). At high sterol concentrations, the SREBP/SCAP complex is 

retained in the ER due to increased binding to INSIG proteins (265). To determine 

whether LPA activation of SREBP could bypass cholesterol regulation, we preloaded 

Caov-3 and OVCA-432 cells with cholesterol (10 μg/ml) complexed with 0.1% fraction 

V fatty acid-free BSA in PBS, and then assessed activation of SREBP-1 in response to 

LPA. As shown in Fig. 2.2A, cholesterol treatment reduced both basal and LPA-induced 

active SREBP-1 levels, indicating that activation of SREBP by LPA remains sensitive to 

cholesterol availability.  

To determine whether LPA-induced SREBP cleavage is sufficient to activate 

SREBP transcriptional activity, Caov-3 and OVCA-432 cells were transfected with the 

SREBP responsive reporter pGL2–3xSREBP-TK-Luc. As shown in Fig. 2.2B, treatment 

of transfected cells with LPA significantly enhanced luciferase activity in these cells. 

Similar to the SREBP cleavage, SREBP-dependent luciferase activity was also sensitive 

to cholesterol treatment (Fig. 2.2B). 
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Figure 2.2 LPA activation of SREBP remains sensitive to cholesterol availability. 
In A, Caov-3 and OVCA-432 cells were preloaded with or without cholesterol (10 
μg/ml). The cells were treated with LPA and analyzed for expression of precursor and 
mature forms of SREBP as in Fig. 2.1. In B, Caov-3 and OVCA-432 cells were 
transfected with pGL2–3xSREBP-TK-Luc and loaded with or without cholesterol 
before stimulation with LPA (10 μM) for 12 hours. The luciferase activity in cell 
extracts was determined as described in Experimental Procedures and the results 
presented as relative luciferase units (RLU).  
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2.3.2 LPA INDUCES EXPRESSION OF THE SREBP TARGET GENES FAS, 

ACC AND HMG-COA REDUCTASE 

To substantiate the biological significance of SREBP activation by LPA, we 

monitored expression levels of FAS, ACC, and HMG-CoA reductase. These are well-

known targets of SREBP-1 and SREBP-2 involved in biosynthesis of fatty acid and 

cholesterol. Treatment of Caov-3, OVCA-432 and OVCAR-3 cells with LPA increased 

expression levels of FAS and ACC proteins as shown in Fig. 2.3A. The mRNA levels of 

these key enzymes for fatty acid synthesis (data not shown) and the rate-limiting enzyme 

for cholesterol synthesis HMG-CoA reductase were also significantly increased by 

treatment of ovarian cancer cell lines with LPA (Fig. 2.3B), providing evidence that 

activation of SREBP-1 and SREBP-2 by LPA is sufficient to increase expression of key 

endogenous lipogenic enzymes in ovarian cancer cells.  
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2.3.3 LPA INDUCES DEPHOSPHORYLATION OF AMPK AND ACC  

In addition to transcriptional upregulation, the activity of ACC is inhibited by 

AMPK mediated phosphorylation. AMPK, a highly conserved protein serine/threonine 

kinase, acts as an energy sensor and regulator of cellular metabolism, shutting down 

energy-consuming anabolic processes and activating energy-yielding catabolic processes 

(266). AMPK is activated through phosphorylation of Thr-172 within the activation 

Figure 2.3 LPA induces expression of the SREBP target genes FAS, ACC and 
HMG-CoA reductase. Caov-3, OVCA-432 and OVCAR-3 cells were treated with or 
without LPA (10 μM) for 16 hours prior to immunoblotting analysis of FAS and ACC 
(A). Total cellular RNA was isolated from parallel samples and subjected to RT-qPCR 
analysis of expression of HMG-CoA reductase mRNA (B). The results were presented 
as fold increase relative to the value in the vehicle-treated cells (defined as 1). 
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domain of the α-subunit (267). To determine the effect of LPA on AMPK and its 

downstream target ACC, we analyzed the phosphorylation status of AMPKα at this 

residue as a surrogate of activation of the enzyme. Treatment of Caov-3 and OVCA-432 

cells with LPA induced a late onset and sustained dephosphorylation of AMPKα (Fig. 

2.4A). The decrease in AMPKα phosphorylation was detectable at 8 hours and became 

prominent at 12 hours. Consistent with a predominant role of AMPKα in phosphorylation 

of ACC, AMPKα dephosphorylation in LPA-treated cells was accompanied by a 

decrease in ACC phosphorylation at Ser-79 (Fig. 2.4A). Dephosphorylation of this site is 

known to enhance ACC enzymatic activity. The effects of LPA on dephosphorylation of 

AMPKα and ACC were not detected in IOSE-29 cells (data not shown). These results 

establish that, in ovarian cancer cells, LPA signaling is coupled to activation of ACC via 

inhibition of AMPK. Moreover, we used HPLC to measure AMP/ATP ratios in Caov-3 

cells treated with LPA for 12 hours. As seen in Fig 2.4B, LPA treatment led to a 

significant decrease in cellular AMP/ATP ratio. The decreased the AMP/ATP ratio could 

trigger the dephosphorylation/inactivation of AMPK seen in LPA-treated cells.  
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2.3.4 LPA PROMOTES DE NOVO LIPID SYNTHESIS  

Few studies have examined the role of exogenous factors in regulation of 

lipogenesis in cancer cells (157,158). We next examined whether LPA-induced activation 

of lipogenic enzymes is functionally sufficient to stimulate de novo lipid synthesis. The 

ovarian cancer cell lines Caov-3 and OVCA-432, and the immortalized IOSE-29 cells 

were treated with LPA or BSA as vehicle control and pulse labeled with 14C acetic acid to 

monitor new lipid synthesis. As demonstrated in Fig. 2.5 (left), LPA treatment led to a 

significant increase in 14C incorporation into the cellular lipid fractions, reflecting an 

Figure 2.4 LPA induces dephosphorylation of AMPKα and ACC. A. Caov-3 and 
OVCA-432 cells were treated with or without LPA (10 μM) for the indicated periods 
of time. The cell lysates were analyzed with immunoblotting for phosphorylation 
status of AMPKα and ACC using their phospho-specific antibodies recognizing 
AMPKα phosphorylated at Thr-172 or ACC phosphorylated at Ser-79. B. Caov3 cells 
were serum starved overnight prior to LPA (10 μM) treatment for 12 hours. 
Nucleotides were extracted and analyzed with HPLC as described in Experimental 
Procedures. 
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increase in newly synthesized lipids in response to LPA. The lipogenic effect of LPA was 

specifically detected in multiple ovarian cancer cell lines but not in the non-transformed 

IOSE-29 cells, wherein LPA failed to induce SREBP activation or AMPK 

dephosphorylation. Since these cells were treated with LPA in serum-free medium 

lacking extracellular fatty acids, we wanted to determine if the increase in lipogenesis in 

response to LPA was influenced by availability of extracellular lipids. As shown in Fig. 

2.5 (right), exogenously supplemented palmitate slightly reduced LPA-driven lipogenesis. 

However, the reduction was statistically insignificant, indicating that the lipogenic role of 

LPA is largely independent of availability of extracellular fatty acids.  

 

 

 

 

 

 

 

Figure 2.5 LPA stimulates de novo lipid synthesis independently of availability of 
extracellular fatty acids. Caov-3, OVCA-432 and IOSE-29 cells were treated with 
LPA (10 μM) or BSA (vehicle) for 24 hours. In the last 6 hours of incubation, the cells 
were pulse labeled with 5 μCi/ml of 14C acetic acid before lipid extraction as 
described in Experimental Procedures. The incorporation of 14C into lipid fractions 
was determined by scintillation counting. The results were presented as CPM per 1 x 
106 cells (left). Caov-3 and OVCA-432 cells were treated with LPA in serum-free 
medium supplemented with palmitate (10 μM) and BSA (0.01 %). LPA-induced 
lipogenesis was measured as described above (right). 
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Consistent with the pro-lipogenic action of LPA, staining with a lipophilic dye 

BODIPY 493/503 revealed that LPA induced moderate increases in the intracellular 

contents of neutral lipids in Caov-3 and OVCA-432 cells but not in IOSE-29 cells (Fig. 

2.6A). These results were further supported by the increases in both cellular TAG and 

phospholipids following LPA treatment (Fig. 2.6B & 2.6C).  

 

 

 

 

 

 

 

Figure 2.6 LPA increases neutral and phospholipid contents. A. Cells in 6-well 
plates were stained with BODIPY 493/503 fluorescent dye (0.5 μg/ml) for 30 minutes, 
followed by staining with Hoechst (10 μg/ml) for 15 minutes to monitor neutral lipid 
accumulation. Shown were fluorescence microscopic photographs of IOSE-29, Caov-
3 and OVCA-432 cells treated with or without LPA (x 80 magnification). Total TAG 
(B) and phospholipids (D) in control and LPA-treated Caov-3 and OVCA-432 cells 
were determined as described in Experimental Procedures. The results were presented 
as amounts of lipids per well, or normalized on cell numbers to represent amounts of 
lipids per million cells. 
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2.3.5 LPA2 IS THE MAJOR RECEPTOR SUBTYPE RESPONSIBLE FOR 

REGULATION OF SREBP AND AMPK  

 Caov-3, OVCA-432 and other ovarian cancer cell lines express the Edg LPA 

receptors LPA1, LPA2, and LPA3 (Fig. 2.7A). The other non-Edg LPA receptors are 

either absent or expressed inconsistently in ovarian cancer cells (94,268). Thus, we 

focused on the potential role of LPA1-3 in the regulation of lipogenesis. We used siRNA 

to knockdown expression of LPA1, LPA2, and LPA3 in Caov-3 cells and examined 

SREBP activation and AMPKα dephosphorylation in response to LPA treatment. 

Interestingly, only knockdown of LPA2 significantly attenuated LPA-induced cleavage of 

SREBP-1, dephosphorylation of AMPKα at Thr-172 (Fig. 2.7B), and expression of FAS 

and ACC (Fig. 2.7C). There was minimal inhibitory effect on SREBP-1 activation, 

AMPKα dephosphorylation and expression of FAS and ACC in conjunction with LPA1 

or LPA3 knockdown. We encountered a technical difficulty in achieving efficient 

knockdown of LPA receptors with transient siRNA in OVCA-432 cells. However, similar 

results were obtained from OVCA-432 cells when LPA receptors were stably knocked 

down by lentivirus-transduced shRNA (Fig. 2.7B & 2.7C). These results support a 

primary role of the LPA2 receptor in LPA-dependent activation of SREBP-1 and 

inhibition of AMPKα. However, overexpression of LPA2 in IOSE-29 cells was not 

sufficient to activate LPA-dependent induction of FAS and ACC (data not shown), 

suggesting that additional signaling player(s) present specifically in malignant cells is 

involved. 
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To verify this receptor subtype-specific regulation of lipogenesis, we examined 

the effect of LPA2 knockdown on LPA-driven lipogenesis. The de novo lipid synthesis in 

LPA receptor knockdown and control cells was assessed as described earlier. The 

endogenous lipid synthesis induced by LPA was strongly attenuated by siRNA- or 

shRNA-mediated downregulation of LPA2 (Fig 2.7D). In contrast, knockdown of LPA3 

(Fig. 2.7D) or LPA1 (data not shown) did not inhibit LPA-induced lipid synthesis. 
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2.3.6 LPA2 SIGNALING BIFURCATES TO REGULATE SREBP-1 AND AMPKα  

We next examined the signaling effectors downstream of LPA2 responsible for 

cleavage of SREBP-1 and dephosphorylation of AMPKα. The LPA1-3 receptors couple to 

Gαi and Gαq, while only LPA1 and LPA2 couple to Gα12/13 (269). We transfected dominant 

negative forms of these G proteins into highly transfectable Caov-3 cells in an effort to 

screen for G proteins critical for LPA-dependent SREBP-1 cleavage and AMPKα 

dephosphorylation. As shown in Fig. 2.8A, expression of the dominant negative Gα12 

attenuated LPA-induced SREBP-1 cleavage but not LPA-induced dephosphorylation of 

AMPKα. In contrast, expression of dominant negative Gαq inhibited AMPKα 

dephosphorylation but not SREBP-1 cleavage induced by LPA. Thus, different G protein 

cascades are implicated in the regulation of SREBP and AMPK by LPA. Since a 

Figure 2.7 LPA2 mediates the lipogenic effect of LPA. A. Expression of mRNAs of 
LPA1-3 receptors in IOSE-29, Caov-3 and OVCA-432 cells was determined by qPCR 
analysis as detailed in Experimental Procedures. The results were presented as fold 
difference relative to the mRNA levels of LPA receptors in IOSE-29 cells (defined as 
1). B. Caov-3 cells were transfected with siRNA for each LPA receptor (LPA1si, 
LPA2si and LPA3si) or with non-targeting control siRNA (Csi). Expression of each 
LPA receptor in OVCA-432 cells was downregulated by lentivirus-transduced 
shRNA. The knockdown efficiencies for each LPA receptor in both cell lines range 
from 60 to 80% as determined by RT-qPCR analysis (data not shown). The cells were 
stimulated with LPA (10 μM) for 12 hours before immunoblotting analysis of SREBP-
1 and phospho-AMPKα. In C, the effects of LPA2 knockdown on FAS and ACC 
induction in Caov-3 and OVCA-432 cells were examined by immunoblotting analysis. 
In D, the effects on lipid synthesis of siRNA or shRNA knockdown of LPA1, LPA2 or 
LPA3 receptor in Caov-3 and OVCA-432 cells were measured as described in Figure 
2.5. 
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prominent effector of Gα12/13 is the Rho GTPase, we examined whether Rho is required 

for LPA activation of SREBP. As expected, expression of dominant negative Rho 

(N19Rho) or Botulinum toxin C3, a specific inhibitor of Rho GTPase, suppressed LPA-

induced cleavage of SREBP-1 (Fig. 2.8B) as compared to vector-transfected cells. The 

results demonstrate that LPA2 promotes SREBP activation in a Rho-dependent pathway. 

To determine the downstream effector of Rho that activates SREBP, we used inhibitors 

for various pathways to determine their effect on LPA-induced SREBP transcriptional 

activity. As shown in Figure 2.8C, Y-27632 (Rho-associated protein kinase, Rock 

inhibitor) abrogated LPA-driven SREBP activity.  

To elucidate the regulatory network leading to AMPK dephosphorylation, we 

used pharmacological inhibitors of signaling molecules downstream of Gαq. As shown in 

Fig. 2.8D, the PLC inhibitor U73122, but not it’s inactive analog U73433, blocked 

AMPKα dephosphorylation induced by LPA. The data supports a Gαq-PLC-dependent 

mechanism to control phosphorylation and activity of AMPKα in LPA-treated cells.  
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Figure 2.8 LPA regulates SREBP and AMPK through different G protein 
cascades. Caov-3 cells were transfected to express dominant negative forms of Gαi, 
Gαq and Gα12 or the control vector. The transfected cells were treated with LPA (10 
μM) for 12 hours before immunoblotting analysis of SREBP-1 cleavage and AMPKα 
dephosphorylation (A). In B dominant negative Rho (N19Rho) or C3 toxin expression 
vector was transfected into Caov-3 and OVCA-432 cells. The effects of N19Rho and 
C3 toxin on LPA-induced SREBP-1 cleavage were analyzed by immunoblotting. In C, 
Caov3 cells were transfected with pGL2-3XSRE-TK-luc construct and treated with 
(10 μM) LPA alone or in the presence of the indicated inhibitors for 12 hours and 
subsequently assayed for luciferase activity. Concentrations of inhibitors used are as 
follows: PD98059 (10 μM), rapamycin (0.1 nM), Y-27632 (10 μM). In D, Caov-3 and 
OVCA-432 cells were treated with LPA in the presence of the PLC inhibitor U73122 
or its inactive analog U73433 (10 μM). LPA-induced AMPKα dephosphorylation was 
analyzed by immunoblotting. 
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2.3.7 LPA-DRIVEN CELL PROLIFERATION REQUIRES LPA2 AND DE NOVO 

LIPID SYNTHESIS  

 LPA is a mitogen that stimulates proliferation of ovarian cancer cells (52,270-

272). To understand the biological significance of LPA-induced lipogenesis, we 

examined whether the pro-lipogenic activity of LPA contributes to LPA-driven 

proliferation of ovarian cancer cells. C75 and TOFA are well characterized, specific 

inhibitors of FAS and ACC, respectively (273,274). The presence of C75 dramatically 

decreased cell numbers of Caov-3 and OVCA-432 in serum-free medium supplemented 

with LPA as a growth factor (Fig. 2.9A), suggesting that the blockade of de novo 

lipogenesis could attenuate LPA-induced cell proliferation. Similar effects were observed 

in the presence of the ACC inhibitor TOFA (data not shown). At the concentrations we 

used, C75 and TOFA did not induce significant increases in apoptosis or appreciable 

decreases in cell viability (data not shown), suggesting that these inhibitors mainly 

targeted cell proliferation rather than cell survival. We also tested if exogenously added 

palmitate could reverse the effect of C75 on LPA-induced cell proliferation. At 10 μM, 

palmitate partially prevented the effect of C75 (Fig. 2.9B). This ability of palmitate, 

however, was not seen at 20 μM, suggesting a possible cytotoxic effect of high 

concentrations of palmitate. To obtain molecular evidence for the involvement of FAS in 

LPA-induced cell proliferation, we used siRNA to knockdown FAS expression in Caov-3 

and OVCA-432 cells. Downregulation of FAS expression indeed prevented proliferation 

of these cells induced by LPA (Fig. 2.9C).  
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Figure 2.9 Inactivation of FAS attenuates LPA-induced cell proliferation. Caov-3 
and OVCA-432 cells in 6-well plates were incubated for 48 hours in serum-free 
medium supplemented with 10 μM LPA in the presence of indicated concentrations of 
the FAS inhibitor C75 (A). In B, Caov-3 and OVCA-432 cells were incubated with 
LPA (10 μM) and C75 in the presence of the indicated concentrations of palmitate. 
BSA was kept at a final concentration of 0.01% for all treatments. In C, expression of 
FAS was downregulated by siRNA knockdown in Caov-3 and OVCA-432 cells to 
examine LPA-induced cell proliferation after 48 hours of incubation with 10 μM LPA. 
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Finally, since LPA2 is the key receptor subtype required for LPA activation of 

lipogenesis, we knocked down its expression to determine whether LPA2 is an integral 

component of LPA-induced cell proliferation. As shown in Fig. 2.10A, following 

downregulation of LPA2, both cell lines exhibited a significant decrease in growth rate 

when the cells were incubated in serum-free medium containing LPA. Since LPA is a 

component of serum, we wondered if LPA signaling contributed to proliferation under a 

physiological setting.  We observed that stable knockdown of LPA2 resulted in reduced 

growth of OVCA-432 cells grown in serum containing media (Fig. 2.10B). LPA2 was 

also critical for anchorage-independent growth of ovarian cancer cells, as stable 

knockdown of LPA2 in OVCA-432 cells inhibited the numbers and sizes of colonies 

grown in soft agar (Fig. 2.10C). Thus LPA2 and its associated lipogenesis-promoting 

activity are critical for anchorage-dependent and independent growth of ovarian cancer 

cells.  
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Figure 2.10 LPA2 is required for cell proliferation and anchorage-independent 
growth. A. LPA2 was downregulated by siRNA or shRNA in Caov-3 and OVCA-432 
cells. The growth of these cells in serum-free medium supplemented with 10 μM LPA 
was examined after 48 hours of incubation. Cell numbers were quantitated with 
Coulter counter and presented as mean ± SD of triplicate assays, representative of 
three independent experiments. B. OVCA-432 cells were plated in 12 wells dishes in 
equal numbers and cell numbers were counted every 24 hours using coulter counter. 
C. OVCA-432 cells were plated in 6-well plates (3000 cells/well) coated with 0.6% 
soft agar and allowed to grow for two weeks. After which photographs were taken 
under microscope and colony numbers were quantified. Bar represents 2000 µM.  
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2.4 DISCUSSION 

The majority of adult tissues depend on dietary fat to meet their nutritional needs. 

In contrast, cancer cells depend on de novo lipid synthesis for generation of fatty acids, 

irrespective of the available extracellular supplies. Malignant cells typically show a high 

rate of de novo fatty acid synthesis (136,275). Intracellular fatty acids in rapidly dividing 

cancer cells not only supply energy through beta oxidation but more importantly, serve as 

precursors for biosynthesis of membrane phospholipids, signaling lipids and secondary 

messengers (155). The lipogenic phenotype of cancer cells has been primarily attributed 

to increased expression or aberrant activity of the major lipogenic enzymes FAS and 

ACC. In particular, FAS, originally recognized as a tumor specific antigen present in 

serum of cancer patients (154), is overexpressed in a variety of human malignancies. 

However, the cellular mechanisms by which lipogenic enzymes are upregulated in cancer 

cells remain poorly understood, except for a few studies suggesting that steroid hormones 

and Her family ligands could increase FAS expression via the PI3K or MAPK pathways 

(160,161,276,277).  

In the present study, we describe a novel LPA-mediated mechanism activating de 

novo lipogenesis in ovarian cancer cells. We demonstrated that treatment of ovarian 

cancer cell lines with LPA activates the SREBP-FAS and AMPK-ACC lipogenic 

cascades, culminating in increased de novo lipid synthesis. The lipogenic effect of LPA 

was specifically observed in cancer cells as LPA failed to induce de novo lipogenesis in 

non-transformed IOSE-29 cells. LPA has been long known as a mediator of ovarian 
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cancer. It is present at high concentrations in tumor microenvironments such as ascites of 

ovarian cancer patients and other malignant effusions (247,248). The present study 

highlights the possibility that LPA is an etiological factor in tumor microenvironments to 

promote lipogenesis in ovarian cancer cells, although the effect of LPA in other cancer 

cells remains to be determined. 

A significant finding of the present work is the selective role of the LPA2 receptor 

in LPA activation of the lipogenic pathways and LPA-driven lipogenesis. We and others 

have previously shown that LPA2 and LPA3 are overexpressed in significant fractions of 

ovarian cancers and in most ovarian cancer cell lines (107,272). LPA1, which is 

expressed by both normal and malignant ovarian epithelial cells, is dispensable for the 

pro-lipogenic activity of LPA in ovarian cancer cells. It is somewhat surprising that in 

both Caov-3 and OVCA-432 cells, knockdown of LPA3 slightly potentiated the lipogenic 

effect of LPA (Fig. 2.7D). The results imply that the crosstalk among co-expressed LPA 

receptors is important in the control of biological outcomes of LPA. The specific role of 

LPA2 in the promotion of lipogenesis in tumor cells is consistent with the increased 

expression of this receptor in various malignancies (107,108,110,111). Although LPA1 

and LPA3 have also been reported to be up or down-regulated in some cancers, 

overexpression of LPA2 is most commonly seen in almost all cancer types examined 

(107,108,110,111). There is also strong evidence from xenograft mouse models and 

transgenic mice that LPA2 is more oncogenic compared to LPA1 and LPA3 (83,84). The 

compelling evidence for the implication of LPA2 as an oncogene stems from recent 

studies by Yun’s group who showed the LPA2-deficient mice were more resistant to 
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intestinal tumorigenesis induced by colitis or by ApcMin mutation (112,113). However, 

the molecular mechanisms for the oncogenic activity of LPA2 are not well understood. 

Most previous studies have been focused on the ability of LPA2 to stimulate expression 

of oncogenic protein factors including IL-6, VEGF, HIF1α, c-Myc, cyclin D1, kruppel-

like factor 5, and Cox-2 (112,113,128,129,131,278). LPA2 seems to be more potent than 

other LPA receptors in driving the transcriptional effects of LPA on these LPA target 

genes. The current study links LPA2 to the lipogenic phenotype of ovarian tumor cells. 

The role of LPA2 in lipid metabolism provides a new avenue to explore the oncogenic 

role of LPA. 

Different G proteins downstream of LPA2 are involved in regulation of the 

SREBP-FAS and AMPK-ACC pathways in LPA-treated cells. Our results showed that 

SREBP cleavage/activation lies downstream of the G12/13-Rho pathway, while AMPK 

dephosphorylation/inhibition is mediated by the Gq-PLC cascade. LPA stimulated 

cleavage of the precursor SREBP into mature and active forms in a time-dependent 

manner, which was accompanied by increases in SREBP-dependent transcriptional 

activity and upregulation of endogenous SREBP target genes. In addition, the effect of 

LPA on SREBP cleavage and activation remains sensitive to cholesterol-mediated 

regulation, indicating that the sterol sensing machinery involved in SREBP cleavage is 

not disrupted by LPA. The proteolytic cleavage of SREBP is controlled by the combined 

action of SCAP and INSIG proteins (279). An increase in SCAP or decrease in INSIG 

proteins could lead to activation of SREBP. Since androgens and insulin have been 

shown to regulate expression or stability of SCAP or INSIG proteins (179,280), it will be 
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of interest to determine whether LPA modulates these proteins or their ratios to activate 

SREBP. This possibility is consistent with the observation that SREBP cleavage occurs 

hours after exposure of ovarian cancer cells to LPA.  

It is yet to be determined how the Gq-PLC pathway is linked to dephosphorylation 

and inhibition of AMPKα. Obviously, our observation does not agree with Kim et al. who 

recently reported that LPA stimulated transient phosphorylation of AMPKα at Thr-172 

within the first 10 minutes of LPA treatment in the SKOV-3 ovarian cancer cell line 

(281). In our experiments involving multiple ovarian cancer cell lines, there was little 

change in AMPKα phosphorylation status at the early time points. Instead, we observed a 

time-dependent decrease in phospho-AMPKα levels, which maximized after 12 hours of 

incubation with LPA. The serine-threonine kinase LKB1, encoded by the Peutz-Jeghers 

syndrome tumor suppressor gene, is believed to be the primary AMPK kinase as 

suggested by LKB1 knockout studies (282-284). LKB1 possesses a nuclear localization 

domain and is located predominantly in the nucleus. Upon phosphorylation, LKB1 

translocates to the cytoplasm where it forms an active complex with Ste20-related 

adaptor (STRAD) and mouse protein 25 (MO25) (285). LPA may downregulate LKB1 

activity via modulation of its phosphorylation, nuclear-cytoplasmic translocation or 

association with STRAD-MO25 in the cytosol. In addition, AMPK phosphorylation 

could be downregulated by inhibition of other candidate AMPK kinases such as 

calmodulin-dependent protein kinase kinase-beta (CAMKKβ) (285) or by activation of 

unknown AMPK phosphatase(s). A decrease in the AMP/ATP ratio in LPA-treated cells 

as shown in Fig. 2.4B could also change the conformation of AMPK to prevent the active 
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site (Thr-172) on the α-subunit from being exposed and phosphorylated by AMPK 

kinases. 

 

 

CHAPTER 3 

 

LYSOPHOSPHATIDIC ACID ACTIVATES HEXOKINASE-2 EXPRESSION 
AND GLYCOLYSIS IN CANCER CELLS 

 

3.0 ABSTRACT  

Most malignancies exhibit the “Warburg effect”- a phenomenon characterized by 

an enhanced glycolytic rate, thereby replacing oxidative phosphorylation as the major 

ATP generating process. Hyperactive glycolysis leads to increased carbon flux and 

abundant metabolic precursors which are required to maintain the high rate of 

biosynthesis of structural and signaling lipids and other cellular components required 

during rapid tumor cell division. Glycolytic enzymes are classically activated by hypoxia 

and its principal mediator hypoxia-inducible factor (Hif-1α). Here we describe regulation 

of this process under normoxic conditions by lysophosphatidic acid (LPA). We showed 

that LPA dose-dependently enhanced the glycolytic rate and subsequent lactate efflux in 

ovarian, breast and lung cancer cells, but failed to elicit these effects in non-transformed 

epithelial cells, suggesting a cancer cell-specific regulation of glucose metabolism by 
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LPA. We found that the LPA receptor 2, a receptor subtype overexpressed in various 

malignancies including ovarian and breast cancer, was the major LPA receptor 

underlying the pro-glycolytic action of LPA. RT-qPCR array analysis revealed a number 

of glycolytic genes up- or down- regulated in response to LPA. Among them, hexokinase 

2 (HK-2) was the most dramatically induced by LPA and promoted the glycolytic 

activation in LPA-treated ovarian cancer cells. Mutation and deletion analysis of the 

human HK-2 gene promoter identified two sterol regulator elements (SREs) responsible 

for LPA activation of the promoter. Moreover, DNA pull down assays demonstrated that 

these SREs bound to sterol regulatory element binding protein-1 (SREBP-1) in LPA-

treated cells where SREBPs were proteolytically activated by LPA, as we described 

recently. Binding of SREBP-1 to the native HK-2 promoter upon LPA stimulation was 

further confirmed by chromatin immunoprecipitation assays. In addition to activation of 

the SREBP-1-HK-2 cascade, LPA treatment also stabilized Hif-1α protein in cancer cell 

lines. However, LPA enhanced HK-2 expression and glycolysis largely independently of 

Hif-1α. These results established a novel role of LPA in regulation of glucose metabolism 

via LPA2-SREBP-1-dependent activation of HK-2 expression in neoplastic cells. 

Combined with our recent discovery of LPA’s lipogenic effect (CHAPTER 2), our results 

indicate that aberrant LPA signaling is causally linked to the lipogenic and glycolytic 

phenotypes of cancer cells. 
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3.1 INTRODUCTION 

 Hyperactive glycolysis is one of the fundamental changes observed in 

transformed cells. First identified by Otto Warburg in 1920s, this observation suggests 

that cancer cells preferentially utilize glycolysis to generate ATP, even in the presence of 

oxygen, resulting in enhanced lactate efflux (135). Recent studies, however, indicate that 

ATP production is probably secondary to the effect that glycolysis has on biomass 

generation (193) . Transformed cells have a high rate of proliferation and to sustain this 

effect, cells need to upregulate their synthetic machinery. Glycolysis serves as a primary 

route for carbon influx, which is required to generate complex macromolecules and 

organelles in the cell. The molecular mechanisms regulating aerobic glycolysis vary 

among cancers and a fundamental cause remains to be elucidated. However, upregulation 

and mutational activation of certain metabolic enzymes along with deregulated growth 

factor signaling have been found to affect cancer cell metabolism (286,287). Several 

glycolytic enzymes have been found to be upregulated in various cancers, and one of the 

most frequently upregulated enzymse is Hexokinase 2 (HK-2) (219,288). HK-2 catalyzes 

one of the rate limiting steps of glycolysis, converting glucose to glucose-6-phosphate at 

the expense of one ATP molecule. In mammals, there are four isozymes of hexokinase 

which vary in their affinity for glucose, tissue distribution and their physiological 

functions (289). HK-2 is localized to the mitochondrial outer membrane and has been 

reported to be associated with the voltage-dependent ion channel (VDAC) (216), thereby 

gaining access to ATP from the inner mitochondrial ATP synthase (290).  
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 LPA is an oncogenic lysophospholipid mediator, elevated in the circulation and 

malignant effusions of cancer patients (30). LPA is known to regulate diverse biological 

processes including proliferation, migration, invasion, and cell survival (51). These 

effects of LPA are mediated via binding to its cognate G-protein coupled receptors 

(GPCRs). LPA1, LPA2 and LPA3 are LPA receptors that belong to the endothelial gene 

(Edg) subfamily of GPCRs. The purinergic family receptor LPA4 and related LPA5, LPA6 

and LPA7 receptors constitute the non-Edg subgroup of LPA receptors, which are 

structurally distant from the Edg LPA receptors (70). These LPA receptors are expressed 

differentially in adult tissues (70). Accumulating evidence suggests that LPA receptors 

are not functionally identical (70), hence the cellular effects of LPA depend on the 

combination of various LPA receptors present in a cell. Among LPA receptors, LPA2 has 

been the most consistently shown to be upregulated in diverse human malignancies 

including cancers of ovary, breast (108), stomach (109), colorectal (110) and thyroid 

(111). LPA2 mediated signaling has been shown to induce pro-oncogenic factors such as 

IL-6, IL-8, VEGF and to increase ovarian cancer cell proliferation and tumor burden in 

xenograft studies (83). Overexpression of LPA2 has also been linked to proliferation of 

colon and breast cancer cells and mesothelioma cells (84,99,291). Although LPA2 is 

known to activate various mitogenic and pro-survival pathways, the exact mechanism 

responsible for its oncogenic role is yet to be determined.  

 In this study, we provide evidence that LPA signaling contributes to the Warburg 

effect in various cancer cells. We show that LPA activates glycolysis and lactate efflux in 

cancer cells but not in non-transformed, immortalized epithelial cells. We identified HK-
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2 as a major glycolytic enzyme upregulated by LPA to promote glycolysis. The detailed 

analysis of the HK-2 gene promoter led to identification of SREBP-1 as the key 

transcription factor to mediate LPA induction of HK-2. The effects of LPA on HK-2 and 

glycolysis were independent of Hif-1α, a major regulator of glycolytic enzymes under 

hypoxic conditions (233). Furthermore, we identified LPA2 to be the primary LPA 

receptor subtype mediating the effects of LPA on HK-2 expression and glycolysis. These 

findings provide a novel route for upregulating aerobic glycolysis in cancer cells by a 

previously unrecognized pro-glycolytic factor LPA.  

3.2 EXPERIMENTAL PROCEDURES 

Reagents – LPA (1-oleoly, 18:1) was obtained from Avanti Polar Lipids, Inc. (Alabaster, 

AL). Prior to use, LPA was dissolved in PBS containing 0.5% fatty acid-free bovine 

serum albumin (BSA) purchased from Roche (Indianapolis, IN). Plasmid DNA was 

purified using the endo-free purification kit from Qiagen (Valencia, CA). The 

transfection reagent Dharmafect 1 was obtained from Dharmacon, Inc. (Lafayette, CO) 

and TransIT-TKO was obtained from Mirus Bio (Madison, WI). Luciferase assay 

reagents were obtained from Promega (Madison, WI). Anti-SREBP-1, SREBP-2 and Hif-

1α antibodies were obtained from BD Biosciences (San Jose, CA). Anti-HK-2 antibody 

was obtained from Cell Signaling (Danvers, MA). Anti-Tubulin antibody was obtained 

from EMD4Biosciences (Gibbstown, NJ). The TaqMan Universal PCR Master Mix and 

qPCR probes for HK-2, PGK1 and GAPDH were obtained from Applied Biosystems 
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(Carlsbad, CA). Calpain I inhibitor was purchased from Sigma-Aldrich (St. Louis, MO). 

D-[5-3H(N)]-glucose was purchased from Perkin Elmer (Boston, MA).  

Cell Culture – The sources of ovarian and breast cancer cell lines used in the study were 

described previously (251). Lung cancer cells H838, H2347 and NHBE cells were kindly 

provided by Dr. Charles Chalfant, VCU. These cancer cell lines were cultured in RPMI 

medium supplemented with 10% FBS, 100 U/ml penicillin, and 100 μg/ml streptomycin. 

The non-transformed NHBE cells were cultured in keratinocyte serum free medium 

(Invitrogen, Carlsbad, CA).  

siRNA, plasmids and transfection – The siRNA oligos for LPA1, LPA2 LPA3, Hif-1α, 

SREBP-1 and HK-2 were obtained from Applied Biosystems. These siRNAs were 

transfected into cells using Dharmafect 1 following the manufacturer’s protocol. In brief, 

cells were plated in 6-well plates to reach 50-60% confluence before transfection. Cells 

were then transfected with target specific siRNA or non-targeting control siRNA (150 

picoM) with Dharmafect 1 (4 μL) for 12-16 hours. Approximately 48 hours post 

transfection; the cells were serum starved overnight before LPA treatment.  

Western blotting – Cells were lysed as previously described (263). Total cellular 

proteins were resolved by SDS-PAGE, transferred to immunoblot membrane 

(polyvinylidene difluoride) (BIO-RAD, Hercules, CA), and immunoblotted with 

antibodies following the protocols of manufacturers. Immunocomplexes were visualized 

with an enhanced chemiluminescence detection kit from Amersham (Piscataway, NJ). 
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Quantitative PCR (qPCR) – Total cellular RNA was isolated from cultured cells using 

Trizol (Invitrogen). Complementary DNA (cDNA) was synthesized using the High-

Capacity cDNA Reverse Transcription Kit (Applied Biosystems). The relative levels of 

LPA1, LPA2, LPA3, HK-2 and GAPDH were determined by reverse transcription (RT) 

followed by qPCR using gene specific probes, the TaqMan Universal PCR Master Mix, 

and the Applied Biosystems 7900HT Real-Time PCR System. 

Luciferase vectors and luciferase assays- The human HK-2 promoter sequence (-1476 

to +73) was PCR amplified and cloned into the pGL2-Basic-Luc vector to construct the 

luciferase reporter vector pGL2-1476-HK-2-Luc. The PCR product was inserted into 

pGL2-Basic-Luc at XhoI and HindIII sites. The truncated forms (-478 to +73 and -273 to 

+73) were made by PCR amplification of the corresponding fragments from pGL2-1476-

HK-2-Luc and re-inserted into the pGL2-Basic-Luc at the XhoI and HindIII sites. The 

promoter sequences in these plasmids were verified by automatic sequencing. Two 

potential SREBP consensus sites (CCAGTCGCCCACACC and 

CACGCTCCCCCCACCA) within pGL2-1476-HK-2-Luc were converted into inactive 

(CCAGGTGTCTTACACC and CACGCGTCTCTTACCA) sequences by site-directed 

mutagenesis using Lightning Site-Directed Mutagenesis Kit (Stratagene) following 

the manufacturer’s protocol. Primers used for these mutant constructs were listed in 

Table 3.1. Caov3 cells were transfected with the luciferase vector using TransIT-TKO 

according to the manufacturer’s protocol. About 48 hours after transfection, the cells 

were starved overnight and treated with LPA or vehicle (BSA) for 12 hours. Cell extracts 
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were prepared and assayed for luciferase activity using the luciferase assay kits from 

Promega. 

PCR array - Human glucose metabolism, RT2 profiler PCR Array were obtained from 

SABiosciences (Qiagen). Caov-3 cells were treated with LPA or vehicle control for 12 

hours before RNA isolation using RNeasy mini kit (Qiagen). The Tissue Scan TM Cancer 

and Normal cDNA arrays for human lung cancer (HLRT102) were obtained from 

Origene and qPCR was performed using the Taqman mix and probes for LPA2 and HK-2. 

The results were normalized to the levels of β-actin. 

Measurement of glycolytic rate – Glycolysis was measured as describes (292) with a 

few modifications. Briefly, cells were plated in 12 well dishes, serum starved and treated 

with vehicle (BSA) or LPA for 16 hours. At the 12th hour of LPA treatment, 5-3H (N) 

glucose was added to the medium at a concentration of 1μCi/ml and incubated for the 

remaining 4 hours. Post treatment, hydrochloric acid was added to the medium at a final 

concentration of 0.2 N to terminate all biological reactions. The acidified medium was 

collected in a 15 ml tube. A 0.5 ml micro centrifuge tube containing 0.25 ml distilled 

water was uncapped and inserted into the 15 ml tube. Precautions were taken to make 

sure the two liquids remained separate. The 15 ml tubes were sealed to allow diffusion 

between two liquid phases for more than 24 hours. The glycolytic rate was calculated 

based on the ratio of the radioactivities present in water and in medium determined by 

liquid scintillation counting (293) .  
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Lactate measurement – Cells were treated with LPA or vehicle (BSA) for 16 hours 

before the culture supernatants were collected. The lactate contents were then determined 

using the lactate assay kit (Eton Bioscience, San Diego, CA) following the 

manufacturer’s protocol. 

Hexokinase activity assay –Cells were lysed with a lysis buffer containing 15 mM Tris 

pH 7.8, 0.25 mM sucrose, 0.5 mM dithiothreitol (DTT), 1 mM aminohexanoic acid, 1 

mM phenylmethylsulfonyl fluoride (PMSF) and 2 μg/ml leupeptin. The lysates were then 

sonicated (5 time for 30 seconds each) in a water bath, followed by centrifugation at 2000 

g at 4°C for 5 min. The cell extracts (50 µl) were added to 950 µl of reaction buffer (100 

mM Tris-HCl, pH 7.8, 5 mM ATP, 10 mM MgCl2, 10 mM glucose, 0.4 mM NADP, and 

0.15 U/ml of G6PD (Sigma-Aldrich) and incubated at 37°C. HK enzymatic activity was 

determined by following the G6P-dependent conversion of NADP to NADPH 

spectrophotometrically at 340 nm. One unit of activity was defined as micromoles of 

NADPH per milligram of protein per minute at 37°C. 

DNA pull-down assay –Nuclear proteins was isolated from vehicle (BSA) or LPA 

treated cells as described previously (133). Equal amounts of nuclear proteins were 

incubated with 4 µg of biotinylated double-stranded oligonucleotides which contains wild 

type HK-2 promoter sequence or its mutated counterpart (Table 3.1) for 16 hours at 4 °C. 

The M-280 Streptavidin Dynabeads (Invitrogen) (30 µl) were then added to each sample 

and incubated for another hour at 4 °C. The Dynabeads were washed three times with 

PBS before western analysis of SREBP-1 and SREBP-2.  
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Chromatin immunoprecipitation (ChIP) assay - Vehicle or LPA treated cells were 

cross-linked with 1% formaldehyde for 10 minutes at room temperature. The cells were 

then lysed for 10 minutes in ice-cold lysis buffer (5 mM HEPES, pH 8.0, 80 mM KCl, 1% 

NP40 and protease inhibitors). The nuclear pellet was recovered by centrifugation (5 

minutes at 5000×g) and resuspended in a nuclear lysis buffer (50 mM HEPES, pH 8.0, 10 

mM EDTA, 1% SDS, protease inhibitors) and sonicated on ice to achieve an average 

chromatin length of 200-1000 bp. The sonicated samples were pre-cleared by incubation 

with Protein G Dynabeads (Invitrogen) and protein concentrations were determined by 

BCA protein estimation kit (Pierce). Equal amounts of proteins were incubated for 16 

hours at 4 °C with 2 μg of either normal rabbit IgG (Santa Cruz) or rabbit anti-SREBP-1 

antibody. Protein G Dynabeads was subsequently added and incubated for 2 hours. The 

DNA-protein-beads were washed sequentially once with a low salt buffer (20 mM Tris, 

pH 8.0, 150 mM NaCl, 2 mM EDTA, 0.1% SDS, 1% Triton 100), once with a high salt 

buffer (20 mM Tris, pH 8.0, 500 mM NaCl, 2 mM EDTA, 0.1% SDS, 1% Triton 100), 

once with LiCl buffer (10 mM Tris-HCl, pH 8.0, 0,25 M LiCl, 1 mM EDTA, 1% 

deoxycholate, 1% NP-40), and finally twice with TE buffer (10 mM Tris-HCl, pH 8, 1 

mM EDTA). The specifically bound complexes were eluted from the Protein G 

Dynabeads by incubation twice with TE elution buffer (10 mM Tris-HCl, pH 8, 1 

mM EDTA, 1% SDS) at 65 °C for 15 minutes. The immunoprecipitated complexes and 

the inputs were the reverse cross linked by incubating samples overnight at 65 °C. The 

samples were then treated with RNase A and proteinase K and subsequently DNA was 

purified using the QIAquick Spin Columns and analyzed by PCR amplification of the 
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HK-2 promoter sequence using primers listed in Table 3.1.  

Statistics - All numerical data were presented as mean ± SD of triplicate assays, 

representative of three independent experiments. The statistical significances were 

analyzed using Student's t test, unless otherwise stated, p<0.05 was considered 

statistically significant. In all figures, the statistical significances were indicated with * if 

p<0.05 or ** if p<0.01.  

Table 3.1 Oligonucleotides used in study 

Luciferase primers 

-1476 fwd 5’-GCACTCGAGGGATTATGATTTTTGTTTATTTTTCCT-3’ 

+73 rvs 5’-GCAAAGCTTCGGATTTTCTTAGCTGGGTG-3’ 

-478 fwd 5’-GCACTCGAGCCGGCCGTGCTACAATAG-3’ 

-273 fwd 5’ -GCACTCGAGCTCATGCGCCTTTCCGTC-3’ 

SRE1 Mut fwd 5’-CAGAGGCCCGTTTTTCCAGGTGTCTTACACCCCGGGTCC 
GCGAT-3’ 

SRE1 Mut rvs 5’-ATCGCGGACCCGGGGTGTAAGACACCTGGA AAA ACG 
GGC CTC TG-3’ 

SRE2 Mut fwd 5’-GGGTCCGCGATCACGCGTCTCTTACCCATAGCCGAGCCTG-
3’ 

SRE2 Mut rvs 5’-
CAGGCTCGGCTATGGGTAAGAGACGCGTGATCGCGGACCCG-
3’ 

DNA pull-down oligonucleotides 

HK-2 WT fwd 5’-
CGTTTTTCCAGTCGCCCCACACCCCGGGTCCGCGATCACGCT
CCCCCCACCCATAG CCGA-3’ 

HK-2 WT rvs 5’-
TCGGCTATGGGTGGGGGGAGCGTGATCGCGGACCCGGGGTG
TGGGGCGACTGGAAAAACG -3’ 

HK-2 Mut fwd 5’-
CGTTTTTCCAGGTGTCTTACACCCCGGGTCCGCGATCACGCG
TCTCTTACCCATAGCCG -3’ 
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HK-2 Mut rvs 5’-
TCGGCTATGGGTAAGAGACGCGTGATCGCGGACCCGGGGTG
TAAGACACCTGGAAAAACG -3’ 

ChIP primers 

-478 SRE fwd 5’- AGAGGCCCGTTTTTCCAGTCG -3’ 

-478 SRE rvs 5’- GCTAAAGGCTGGGACGGAAAGG -3’ 

-1476 SRE fwd 5’- GGAAGTTTTGCTGAGAGGCT -3’ 
-1476 SRE rvs 5’- AAGATGAAGGTCTGCCATGTTC -3’ 
  
 

3.3 RESULTS 

3.3.1 LPA ACTIVATES GLYCOLYSIS IN OVARIAN CANCER CELLS 

 LPA is found in abundance in ascites of ovarian cancer patients (248,294). In this 

study, we examined whether LPA signaling promotes aerobic glycolysis, a hallmark of 

ovarian and other cancer cells. During glycolysis, one molecule of water is released as 2-

phosphoglycerate is converted to phosphoenolpyruvate. By labeling cells with 3H-glucose 

we were able to quantitate the glycolytic rate by measuring generation of 3H water in 

culture supernatants. We treated a panel of ovarian cancer cell lines and an immortalized 

ovarian surface epithelial cell line IOSE-80 with (10 μM) LPA and labeled the cells with 

5-3H-glucose. As shown in Figure 3.1A, LPA treatment led to a dramatic increase in 

glycolytic rate in ovarian cancer cell lines, but failed to elicit this effect in the non-

transformed IOSE-80 cells. The LPA mediated increase in glycolysis was concurrent 

with a significant increase in lactate efflux from ovarian cancer cell lines. Consistent with 

the lack of stimulation of glycolysis by LPA in IOSE-80 cells, no net increase in lactate 

production was observed (Figure 3.1B). Moreover, the effect of LPA on glycolysis in 
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ovarian cancer cell lines was dose dependent (Fig. 3.1C), with significant stimulation 

observed at as low as 1 μM. The optimal activity was observed with 10 μM LPA.  

 

 

 

 

 

 

 

Figure 3.1 LPA activates glycolysis in ovarian cancer cells. A. IOSE-80 and 
ovarian cancer cell lines were treated with LPA (10 μM) or BSA (vehicle) for 16 
hours. In the last 4 hours of incubation, cells were pulse labeled with 1μCi/ml of 3H 
glucose before glycolytic rate was measured as described in Experimental Procedures. 
The results were presented as relative fold increase over vehicle treated control cells 
(defined as 1.0). B. Culture supernatants of the cell lines treated with LPA or BSA for 
16 hours were collected and lactate concentrations were determined as described in 
Experimental Procedures. C. Caov-3 cells were treated with indicated concentrations 
of LPA and glycolytic rate was measured and presented as in A.   
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3.3.2 LPA ACTIVATES TRANSCRIPTION OF GENES INVOLVED IN 

GLUCOSE METABOLISM  

 LPA is known to transactivate a variety of pro-oncogenic protein factors such as 

VEGF, COX-2, IL-6, IL-8, cyclin D1 and kruppel-like factor 5 (112,113,128,129,131). 

We wanted to determine if LPA transcriptionally activated genes involved in the 

glycolytic pathway, which could explain the enhanced glycolytic flux observed in ovarian 

cancer cell lines. We treated Caov-3 cells with LPA or its vehicle control for 12 hours 

and isolated RNA to determine the effect of LPA on glucose metabolism using an RT-

qPCR array for genes involved in glucose metabolism (SABioscience). LPA treatment 

had dramatic effects on expression of multiple genes involved in glycolysis, the pentose 

phosphate pathway, the TCA cycle and gluconeogenesis, as shown in Figure 3.2A. 

However, HK-2 was the only glycolytic target gene that was strongly upregulated by 

LPA (Figure 3.2).  
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3.3.3 HK-2 IS A TARGET OF LPA SIGNALING AND REQUIRED FOR LPA 

DRIVEN GLYCOLYSIS 

 To confirm LPA upregulation of HK-2 expression, we treated Caov-3, OVCAR-3 

and OVCA-432 cells with LPA and examined expression of HK-2 mRNA and protein. 

Figure 3.2 LPA regulates expression of genes involved in glucose metabolism. 
Caov-3 cells were treated with LPA (10 μM) or BSA (vehicle control) for 12 hours. 
cDNA was prepared from RNA followed by qPCR array as described in Experimental 
Procedures.  
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Indeed, LPA upregulated HK-2 mRNA (Figure 3.3A) and protein levels (Figure 3.3B) in 

a time dependent manner. While the mRNA levels peaked around 8-12 hours, the protein 

levels reached a plateau between 12-16 hours post LPA treatment.  

 

 

 

 

 

 

The majority of HK-2 protein in a cell is attached to the mitochondria (216) and 

mitochondria-associated HK-2 is often regarded as the active form of the enzyme, 

contributing significantly to the glycolytic activity (219). LPA increased accumulation of 

Figure 3.3 LPA upregulates HK-2 mRNA and protein expression in ovarian 
cancer cells. A. ovarian cancer cell lines were treated with LPA (10 μM) for indicated 
times (hours) and RT-qPCR analysis was carried out to determine HK-2 mRNA 
levels. The results were presented as fold increase relative to the mRNA level of 
untreated control cells. B. ovarian cancer cells lines were treated with LPA (10 μM) 
for indicated numbers of hours before immunoblotting analysis of HK-2 protein and 
tubulin (loading control).  
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both cytosolic and mitochondrial HK-2 (Figure 3.4A). Consequently, LPA dramatically 

increased cellular hexokinase activity in ovarian cancer cell lines (Figure 3.4B).  

To confirm the biological significance of HK-2 induction by LPA, we 

downregulated HK-2 expression induced by LPA in Caov-3 cells with HK-2 siRNA. As 

shown in Figure 3.5, we experienced technical difficulty in achieving high levels of HK-2 

knockdown, probably due to the necessity of a basal level of HK-2 for cell proliferation 

or survival. However, even partial downregulation of HK-2 in Caov-3 cells was sufficient 

to significantly reduce LPA-driven glycolysis as shown in Figure 3.5. 

 

 

 

 

 

 

 

 

 

Figure 3.4 LPA induces HK-2 expression and cellular HK activity. A. Caov-3 cells 
were treated with LPA (10 μM) for 16 hours. Cytosolic and mitochondrial protein 
fractions were isolated and immunoblotted for HK-2, VDAC1 (mitochondrial marker) 
and tubulin (cytosolic protein). B. Ovarian cancer cell lines were treated with LPA (10 
μM) for 16 hours before assaying for hexokinase activity as described in Experimental 
Procedures. Hexokinase activity is presented as NADPH (n moles)/mg ptn/min. 
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3.3.4 LPA2 IS THE MAJOR RECEPTOR THAT UPREGULATES HK-2 

EXPRESSION AND GLYCOLYSIS 

 Caov-3, OVCA-432 and other ovarian cancer cell lines express the Edg LPA 

receptors LPA1, LPA2, and LPA3 (295), while the non-Edg receptors are either absent or 

are expressed inconsistently in ovarian cancer cells (94). Thus to identify the LPA 

receptor responsible for the pro-glycolytic effect of LPA, we focused on the Edg LPA 

receptors. We used siRNA to knockdown expression of LPA1, LPA2, and LPA3 in Caov-

3 cells. Only knockdown of LPA2 led to significant inhibition of LPA-induced HK-2 

expression and glycolysis. (Figure 3.6A & Figure 3.6B). Similar observations were made 

in OVCA-432 cells where LPA receptors were stably knocked down using lentivirus-

mediated shRNA (Figure 3.6A & Figure 3.6B). These results provided strong evidence 

Figure 3.5 Downregulation of HK-2 attenuates LPA-induced glycolysis. Caov-3 
cells were transfected with HK-2 siRNA or with non-targeting control siRNA. Cells 
were treated with LPA (10 μM) or vehicle and glycolytic rate was measured as 
described in Figure. 3.1. Cell lysates were analyzed with immunoblotting to determine 
efficiency of HK-2 knockdown.  
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that LPA2 is the major LPA receptor subtype accounting for LPA-driven HK-2 induction 

and glycolysis in ovarian cancer cells.  

 

 

 

 

 

Figure 3.6 LPA2 is the major LPA receptor subtype responsible for HK-2 
induction (A) and glycolysis (B). Each of LPA1-3 receptors was knocked down by 
siRNA in Caov-3 cells or by lentivirus-transduced shRNA in OVCA-432 cells. The 
cells were treated with LPA (10 μM) or vehicle for 16 hours before immunoblotting 
analysis of HK-2 expression (A) and quantification of glycolysis (B).  
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3.3.5 LPA ENHANCES HK-2 EXPRESSION AND GLYCOLYSIS IN A HIF-1Α 

INDEPENDENT MANNER 

 Hypoxia inducible factor (Hif) is the principle regulator of glycolysis under 

hypoxic conditions, upregulating expression of most glycolytic enzymes and their 

regulators, including HK-2 (233). We wondered if LPA mediated HK-2 induction and 

glycolysis are mediated by Hif-1α. We and others have shown that LPA increased Hif-1α 

protein levels (260). In addition to HK-2 induction and glycolysis, LPA treatment indeed 

increased Hif-1α levels in a time-dependent manner in all ovarian cancer cell lines 

examined (Figure 3.7A). However, when Hif-1α expression was downregulated by 

siRNA, LPA stimulation of HK-2 mRNA was unaffected in Caov-3 cells (Figure 3.7B). 

In contrast, LPA induction of another glycolytic gene, PGK1 (phosphoglycerate kinase-1), 

was dramatically reduced by Hif-1a knockdown in these cells (Figure 3.7C). Further, we 

examined whether HIF-1α knockdown compromised LPA-dependent glycolysis. As 

shown in Figure 3.7D, there was only slight inhibition of LPA-induced glycolysis, 

suggesting that LPA promotes glycolysis essentially via a HIF-1α-independent 

mechanism.  
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Figure 3.7 Hif-1α is not required for LPA induction of HK-2 and glycolysis. A. 
Ovarian cancer cell lines were treated with LPA (10 μM) for the indicated periods of 
time (hours) before immunoblotting analysis of Hif-1α protein. Hif-1α was knocked 
down by siRNA in Caov-3 cells. LPA-induced HK-2 mRNA expression (B), PGK1 
mRNA expression (C) and glycolysis (D) were examined and compared between HK-
2 knockdown cells and non-target control siRNA-transfected cells. 
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3.3.6 LPA STIMULATES HK-2 EXPRESSION THROUGH SREBP-1-MEDIATED 

TRANSCRIPTIONAL ACTIVATION  

 Since Hif-1α is not involved in LPA-mediated activation of HK-2 expression, we 

next investigated the underlying mechanism by analyzing the human HK-2 gene 

promoter. We cloned a fragment (-1476-+73) of the HK-2 promoter into the pGL2-Basic 

luciferase reporter vector. Further 5’ deletion generated truncation mutants containing -

478-+73 and -273-+73 fragments of the promoter. These luciferase reporter constructs 

were transfected into Caov-3 cells and LPA-induced luciferase activity was determined 

by luciferase assays. As illustrated in Figure 3.8, LPA treatment led to a robust increase 

in luciferase activity in Caov-3 cells transfected with the vector containing the full -1476-

+73 fragment. The LPA-induced increase in luciferase activity remained intact when the 

HK-2 promoter sequence was shortened to -478-+73. However, further deletion to -273-

+73 resulted in drastic loss of the response to LPA (Figure 3.8), suggesting that the major 

regulatory element(s) resided within the sequence between -478 to -273. Insilico analysis 

disclosed several potential transcription factor binding sites within this region, including 

cAMP-responsive element binding proteins (CREB), Hypoxia inducible factor (Hif-1α), 

Nuclear factor 1 (NF1), Kruppel-like factor 7 (KLF7), Specificity Protein 1 (SP1) and 

SREBP. The existence of two sterol regulator elements (SRE) within the responsive 

region and strong activation of SREBP by LPA prompted us to examine the potential role 

of SREBP in transcriptional activation of HK-2. As evident from Figure 3.8, point 

mutation of either SRE sites significantly reduced LPA-driven luciferase activity. 

Simultaneous mutation of both SRE sites led to a further reduction in the luciferase 
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activity but failed to eliminate the response to LPA completely. The remaining activity of 

the double mutant was similar to that of the -273 deletion mutant. These results indicated 

that the two SREs are necessary regulatory components of maximal activation of the HK-

2 promoter by LPA. 

 

 

 

 

 

3.3.7 LPA INDUCES BINDING OF SREBP-1 TO SRES OF THE HK-2 GENE 

PROMOTER 

  We have recently shown that LPA activates SREBP-1 and SREBP-2 transcription 

factors in ovarian cancer cells (295) & Chapter 2. To determine whether SREBP proteins 

are indeed capable of binding the SREs of the HK-2 promoter to activate transcription, 

we carried out a DNA pull down assay with a DNA sequence harboring the two wild type 

SREs (SRE2/3) or their mutated forms (see details of the sequences in Table 3.1). As 

Figure 3.8 LPA activates the HK-2 gene promoter. Caov-3 cells were transfected 
with the indicated reporter constructs and luciferase activities were measured 12 hours 
after LPA (10 μM) treatment as described in Experimental Procedures.  
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demonstrated in Figure 3.9A, increased binding of nuclear SREBP-1 to the wild type 

oligo was detected in LPA-treated Caov-3 cells compared to vehicle control cells. The 

LPA-stimulated binding of SREBP-1 was abrogated when the SREs of the oligo were 

mutated. In contrast, SREBP-2 was found to nonspecifically bind to both wild type and 

mutated oligos, which was not altered by LPA treatment of the cells (Figure 3.9A).  

  To confirm the binding of SREBP-1 to the native HK-2 gene promoter, we 

performed a chromatin immunoprecipitation (ChIP) assay. Following 

immunoprecipitation of SREBP-1 from LPA-treated Caov-3 cells, we were able to PCR 

amplify a 114 bp fragment corresponding to the region containing the SREs of the HK-2 

promoter (Fig. 3.9B). Using the same precipitates, we were unable to amplify another 

region around -1478 bp (SRE1). In further support of an essential role of SREBP-1 in 

stimulation of HK-2 expression, siRNA knockdown of SREBP-1 in Caov-3 cells 

inhibited LPA-induced expression of HK-2 mRNA and protein (Fig. 3.10).  
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Figure 3.9 LPA induces SREBP-1 binding to the HK-2 promoter. Caov-3 cells 
were treated with LPA (10 μM) for 12 hours. DNA pull-down (A) was performed 
using nuclear extracts and biotin labeled oligonucleotides harboring the SREs from the 
HK-2 promoter (SRE2/3) or mutated form (SRE2/3 mutated). The SREBP-1 and 
SREPB-2 proteins bound to the oligos were examined by immunoblotting. LPA-
induced binding of SREBP-1 to the native HK-2 promoter was analyzed with ChIP 
assays (B). Two regions containing SRE 2/3 SREs SRE 1, respectively, were PCR 
amplified.  
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3.3.8 LPA STIMULATES GLYCOLYSIS IN BREAST, COLON AND LUNG 

CANCER CELLS: A GENERAL PHENOMENON 

 Since LPA2, the major receptor that regulates glycolysis in ovarian cancer cells, is 

also overexpressed in other types of cancers including breast (108) and colon cancers 

(99), we wanted to determine whether LPA could increase glycolysis in these cancer cells. 

As shown in Figure 3.14, LPA treatment promoted glycolysis in breast (MDA-MB-231 

and MCF-7), colon (DLD-1) and lung cancer cells lines (H838).  

 

Figure 3.10 SREBP-1 is required for LPA-induced expression of HK-2 mRNA 
and protein. Caov-3 cells were transfected with SREBP-1 siRNA or non-targeting 
control siRNA. HK-2 mRNA (A) and protein (B) in the cells treated with LPA (10 

M) or vehicle for 16 hours were analyzed with RT-qPCR or immunoblotting.  
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3.3.9 THE LPA2 RECEPTOR AND HK-2 ARE ABERRANTLY 

OVEREXPRESSED IN LUNG  

A significant finding of our studies described in Chapter 2 and herein (Chapter 3) 

is the important role of LPA2 in lipid (Chapter 2) and glucose metabolism (Chapter 3) of 

cancer cells. This LPA receptor subtype has been reported to be overexpressed in ovarian, 

breast, colorectal and gastric cancers. In this last part of the Chapter, we examined 

expression and biological functions of LPA2 in lung cancer, the most common human 

malignancy that causes more deaths than any other type of cancer. Non-small cell lung 

cancer (NSCLC) cell lines expressed LPA2 mRNA at higher levels than non-transformed 

normal human bronchial-epithelial (NHBE) cells (Figure 3.12A). We further compared 

Figure 3.11 LPA activates glycolysis in multiple cancer cell lines. Cells were plated 
in 12-well plates and relative fold increase in glycolysis was determined as in 
experiments described earlier in ovarian cancer cell lines. 
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LPA2 expression in lung cancer and in normal lung tissues using the TissueScan™ 

Cancer and Normal Tissue cDNA Arrays (OriGene). As shown in Figure 3.12B, 

expression of LPA2 mRNA was significantly increased in all stages of lung cancers 

including Stage I. Consistent with potential regulation of HK-2 via LPA2 signaling, these 

lung cancer specimens also showed overexpression of HK-2 mRNA when compared with 

normal lung tissues. (Figure 3.12C).  
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Figure 3.12 LPA2 and HK-2 are abnormally overexpressed in lung cancer. A. RT-
qPCR was carried out to determine the relative levels of LPA2 in lung cancer cell lines 
and NHBE cells. Expression of LPA2 (B) and HK-2 (C) in primary lung cancer and 
normal lung tissues was analyzed using the TissueScan™ Cancer and Normal Tissue 
cDNA Arrays (OriGene) as described in Experimental Procedures. For lung cancer 
TissueScan™ Cancer and Normal Tissue cDNA Arrays, the Mann Whitney test was 
performed to analyze significance between normal and tumor samples, and the 
Kruskal-Wallis ANOVA test was carried out to determine significance between 
samples of different stages. 
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3.4 DISCUSSION 

 Cancer cells exhibit an altered metabolic profile, exemplified by the Warburg 

Effect, which suggests that these cells utilize glycolysis, an inefficient pathway to 

generate ATP, instead of the more productive TCA cycle. This seemingly contradictory 

route of proliferative cells provides an elevated level of cellular nutrients and biosynthetic 

precursors to sustain a high cellular proliferation rate. Intracellular ATP concentration is 

often correlated with cell growth, particularly in bacteria, however, the correlation does 

not hold in mammalian cells especially tumor cells. Calculations based on cellular energy 

requirements clearly indicate that as opposed to unicellular organisms, a majority of 

cellular ATP is used to maintain cellular homeostasis in tumor cells (296). Moreover, 

cancer cells have been found to consume ATP to drive glycolytic processes and thus 

proliferation (297), which is consistent with the observation that high ATP is inhibitory 

for glycolytic processes. Thus, targeting this altered metabolic profile is often regarded as 

a potential therapeutic strategy for cancer treatment. Although multiple studies have been 

focused on understanding the regulation of the glycolytic process, to date no consensus 

mechanism has been identified to explain cancer-specific regulation of this process.  

 In this study, we provide a potential LPA-mediated mechanism for cancer specific 

regulation of the Warburg effect. We show that LPA, a bioactive lipid mediator, present 

at high levels in ascites of ovarian cancer and other malignant effusions (248,294) 

enhanced the glycolytic process in ovarian, breast, colon and lung cancers. This effect of 

LPA was cancer specific and undetectable in non-transformed ovarian IOSE-80 and 
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breast MCF10A (data not shown) epithelial cells, which lack the LPA2 receptor that is 

critically involved in LPA-mediated activation of glycolysis.  

This study thus provides evidence that LPA is one of the potential etiological 

factors in the tumor microenvironment that maintains hyperactive glycolysis in cancer 

cells. Many oncogenic factors and intracellular pathways, such as insulin and the PI3K-

AKT or RAS-MAPK pathways, are known to enhance glucose uptake in cancer cells, 

thereby increasing glucose consumption (292,298,299). On the other hand, LPA does not 

increase glucose uptake (data not shown) but strongly enhances glycolysis via 

transcriptional activation of HK-2, the enzyme that catalyzes the first step of glycolysis. 

HK-2-mediated phosphorylation of glucose not only primes glucose for breakdown to 

generate ATP and metabolic intermediates, the step also prevents glucose from exiting 

the cell. Therefore, deregulated LPA signaling and other oncogenic pathways such as 

PI3K and RAS act in concert to promote distinct steps of glucose utilization in cancer 

cells.  

Tumors at advanced stages often experience hypoxia, leading to stabilization of 

Hif-1α protein, a major regulator of almost all the glycolytic enzymes (233). However, 

hypoxia is not the causal factor underlying the glycolytic phenotype that occurs in both 

hypoxic and oxygenated regions of a tumor. Tumor cells in vitro also glycolyse when 

cultured in normoxic and neutral conditions. Ras, Akt, and c-Myc have been reported to 

upregulate expression of various glycolytic enzymes (300,301). In contrast, loss of the 

tumor suppressor TP53 inhibits the mitochondrial respiratory chain via suppression of 
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SCO2 (the synthesis of cytochrome c oxidase protein) and promotes glycolysis via 

TIGAR, a p53-inducible regulator of glycolysis and apoptosis (302). In addition, the 

mitochondrial respiratory function can be negatively affected by mutations in 

mitochondrial DNA. However, these defects are present only in some of human tumors 

and do not explain the generally altered glucose metabolism in a wide spectrum of 

cancers. Other unrecognized mechanisms are likely important in the development and 

maintenance of the glycolytic phenotype of malignant cells. Here we provided evidence 

for regulation of glycolysis in cancer cells by the LPA-LPA2-SREBP-1-HK-2 pathway.  

SREBP-1 is a master regulator of lipid metabolism regulating de novo lipogenesis 

in liver and in cancer cells (238). We have recently shown that LPA activates SREBP-1 

in ovarian cancer cells, thereby leading to an increase in de novo lipogenesis in these cells 

(295). Taken together, these studies suggest that SREBP-1 serves as a convergence point 

of LPA signaling to regulate both lipid and glucose metabolism in cancer cells.  

 A major finding of this study is that LPA2, a receptor subtype overexpressed in 

many malignancies including ovarian cancer (106,108-111), was the major receptor 

promoting glycolysis. LPA1, which is expressed by both normal and malignant ovarian 

epithelial cells, was found to be dispensable for the effect of LPA on glycolysis in Caov-3 

cells or to have only a minor contribution in OVCA-432 cells. In contrast, silencing of 

LPA2 completely inhibited LPA-dependent glycolysis, suggesting a primary role of LPA2 

in the process. Given the importance of LPA2 in cancer cell metabolism and the non-

essential physiological role of this receptor in mice, inhibition of LPA2 could thus be an 

ideal therapeutic strategy against cancer. This study thus provides a novel LPA signaling 
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mechanism linked to aerobic glycolysis in cancer cells, which can be exploited for cancer 

intervention.  
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CHAPTER 4 

GENERAL DISCUSSION 

In cancer cells, the control of proliferation is perturbed resulting in uncontrolled 

cell growth, one of the hallmarks of malignant cells (303). The classical notion of 

tumorigenesis is based on the premise that dysregulated oncogenes and tumor suppressor 

genes directly regulate cell cycle progression, maintain proliferative signals and help cells 

overcome growth suppression and cell death. However, recent advances in cancer cell 

metabolism suggest an alternative route for regulation of cell proliferation. Oncogenes 

and tumor suppressor genes could alter patterns of cellular metabolism and subsequently 

promote cell proliferation. There are several lines of evidences to support this proposition. 

A cell must pass though the interphase (G1, S and G2) before it enters the mitotic phase 

and cell division occurs. But before a cell divides, intracellular amounts of carbohydrates, 

lipids, nucleotides and amino acids must be sufficient for duplication of cellular contents, 

including DNA, cellular organelles and membranes. Since intracellular concentrations of 

these macromolecules could serve as limiting factors, it is not difficult to imagine the 

possibility of metabolic regulation of cell cycle. Yalcin et al. have recently shown that 

nuclear overexpression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 

isoenzyme 3 (PFKFB3) favors transition from G1 to S phase and this subsequently 

upregulates cyclinD3, and M phase-promoting phosphatase Cdc25C, and reduces 
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expression of cell cycle inhibitor p27 (304). PFKFBs are enzymes that catalyze 

conversion of fructose-6-phosphate to fructose-2, 6-bisphosphate (Fru-2,6-BP), which is 

an allosteric activator of phosphofructokinase 1 (PFK1), thereby activating glycolysis. 

Consistent with the regulation of transition from G1 through M phase of the cell cycle by 

PFKFBs, activation of APC/CCdh1 at the end of M phase has been found to degrade two 

critical enzymes involved in cellular metabolism, PFKFB3 and GLS1 (glutaminase 1) 

which regulates glycolysis and glutaminolysis, respectively (305). These studies highlight 

the roles of metabolic pathways in coordinated regulation of cell cycle.  

 An altered metabolic profile in cancer has been known for over nine decades 

since Otto Warburg’s observation that cancer cells preferentially utilized glycolysis over 

oxidative phosphorylation to generate ATP (135). This observation was seen to be a 

paradox for quite some time, as glycolysis by itself is an inefficient process for 

generation of ATP. Recent observations, however, have demonstrated that the primary 

requirement of transformed cells is an abundance of precursors for biosynthetic processes, 

which are provided by a high glycolytic rate (193). It can thus be said that the 

requirement for ATP is secondary to that for intracellular biosynthetic precursors, 

providing an explanation for the paradoxical use of glycolysis by cancer cells. The 

heightened influx of carbon (as glucose), is utilized by transformed cells to generate fatty 

acids by de novo lipid synthesis. The fatty acids not only serve as precursors for protein 

lipidation reactions and as secondary messengers, they are also major constituents of cell 

membranes. Since a rapidly proliferating cell requires large amounts of membrane 

constituents for intracellular organelles and for plasma membranes, de novo lipogenesis is 
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often found to be a determinant in regulating cell proliferation and survival 

(147,151,153,306,307). Thus hyperactive glycolysis and enhanced de novo lipogenesis 

are two hallmarks of cancer cells. 

 Although growth factor mediated proliferation of cancer cells has been studied in 

detail, most of the focus has been on signaling from the receptor tyrosine kinases (such as 

EGFR, ERB2, PDGF, FGF and insulin receptor). Only recently, with the discovery of 

overexpressed GPCRs and their ligands in cancer, GPCR-mediated regulation of cell 

proliferation is being considered an important regulatory mechanism. One such class of 

GPCR ligands are bioactive phospholipids, such as LPA, and it related cousin 

sphingosin-1-phosphate (S1P). LPA is known for its role as an oncogenic lipid regulating 

various cellular processes including cell proliferation (36). Seven GPCRs for LPA have 

been identified to date, and both LPA and some of its receptors have been found to be 

upregulated in cancer. Our lab was the first to show overexpression of LPA2 and LPA3 in 

ovarian cancer (107,120), and subsequently several labs have provided evidence for 

overexpression of LPA2 in various other malignancies. LPA2 couples to Gαi, Gαq and 

Gα12/13 G-proteins. Pertussis toxin sensitive Gαi-driven signaling has been shown to 

regulate LPA-mediated cell proliferation (118,120). Downstream of Gαi, the Ras-MAPK 

and the PI3K-AKT pathways have been shown to be involved in LPA induced cell 

proliferation (120,125). However, no conclusive mechanism has been elucidated that 

would explain how LPA regulates proliferation of cancer cells. In this study we wanted to 

determine if LPA had an effect on cancer cell metabolism and if this could explain the 

mitogenic role of LPA.  
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 Since de novo lipogenesis has a direct impact on the cell cycle, we wondered if 

LPA could activate this process in cancer cells. As a model system, we chose ovarian 

cancer, as LPA mediated effects have been studied in great detail in this cancer type. We 

observed a dramatic increase in LPA mediated lipogenesis in ovarian cancer cells. 

However, LPA failed to activate this process in non-transformed cells, suggesting a 

cancer-specific action of LPA. This increase in lipid synthesis was not due to the increase 

in cell numbers as the results were normalized to the activity of a fixed numbers of cells. 

The lipid contents within cells were also increased dramatically after LPA treatment, as 

visualized by BODIPY 493/503 staining of neutral lipids and biochemical quantitation of 

different classes of intracellular lipids. It is important to note that the most significant 

increase in lipids was detected as TAG. There was also less dramatic increase in the 

content of phospholipids, which correlated with increases in cell number. Liver and 

adipogenic tissues are known to accumulate fat as lipid droplets which can then be 

broken down by β-oxidation to release energy. Such a mechanism can provide 

considerable advantages to cancer cells, such as reducing their dependence on growth 

factors and energy production, and promoting self-sufficiency as observed in co-culture 

experiment of adipocytes and cancer cells (308). Indeed, several studies have shown that 

there is increased lipid accumulation in breast (309), brain (310), lung metastasis (311) 

and in adenomas of the adrenal gland (312). Moreover, accumulation of lipids in cells in 

proximity to cancer cells has an indirect effect on carcinogenesis; for examples, lipid 

accumulation in dendritic cells has been shown to promote cancer metastasis (313).   
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Similar to lipogenic tissues (liver or adipose tissue), LPA mediated lipogenesis in 

cancer cells was found to be regulated by activation of SREBP proteins. In most cancer 

cell lines we analyzed, LPA was found to activate SREBP proteins by facilitating 

proteolytic cleavage of their precursor forms. Since both SREBP-1 and SREBP-2 are 

activated in a similar manner, LPA treatment led to the accumulation of mature forms of 

both proteins in nuclei. LPA-induced activation of SREBP proteins is sufficient to 

increase expression levels of critical lipogenic targets of SREBP proteins - SREBP-1 

mediated FAS and ACC and SREBP-2 mediated HMGCoA reductase. Unlike activation 

of SREBP proteins by receptor tyrosine kinases (RTK), LPA induced activation of 

SREBP and lipogenesis was found to be dependent on the Rho-Rock pathway. This is the 

first report that implicates the Rho-Rock pathway in the activation of SREBP. This 

observation is significant as it indicates that multiple SREBP-activating pathways need to 

be inhibited to block SREBP-dependent lipogenesis in cancer cells.  

The exact mechanism by which LPA activates SREBP proteins remains to be 

fully elucidated. We hypothesize that LPA facilitates transport of SREBP proteins from 

the ER to the Golgi, where constitutively active proteases S1P and S2P process SREBP 

to release its active form. This effect of LPA could be achieved by increasing the ratio of 

SCAP to INSIG proteins in cells. It will be interesting to test this hypothesis when 

appropriate antibodies against SCAP and INSIG become commercially available. 

Lipogenesis is regulated at multiple levels. One such critical regulator is the 

serine threonine kinase AMPK, which is known to be activated by an increase in the 
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AMP: ATP ratio, indicative of reduced ATP levels in cells. AMPK is a master regulator 

that shuts down anabolic processes to activate energy yielding catabolic processes. It is 

known to inhibit lipogenesis by targeting various components of the pathway with the 

most classical target being ACC. Active AMPK phosphorylates ACC at Ser-79 to inhibit 

its activity, thereby attenuating lipogenic processes. Consistent with the activation of 

lipogenesis, LPA treatment was found to inhibit AMPK phosphorylation in a Gq-PLC 

dependent manner. LPA was also found to modestly reduce AMP: ATP levels, a possible 

mechanism leading to inactivation of AMPK in LPA-treated cells.  

 A significant finding of this study was the identification of LPA2 as the major 

receptor regulating these processes. LPA2 is the Edg LPA receptor known to be most 

often overexpressed in various cancer types including, ovarian cancer. The cell lines used 

in the study express several fold higher level of LPA2 than non-transformed IOSE-29 

cells. This could explain the LPA2-specific activation of SREBP proteins and lipogenesis 

in ovarian cancer cells. It was interesting that LPA2-mediated these processes selectively 

in the presence of other co-expressed receptors. In particular, although highly expressed 

in OVCA-432 cells, LPA3 was not involved in LPA-mediated lipogenesis. On the 

contrary, downregulation of LPA3 was consistently associated with slight potentiation of 

LPA-induced lipogenesis, indicating possible crosstalk between LPA2 and potentially 

negative LPA3 in modulation of the lipogenic response to LPA.  

Another question we asked is whether LPA mediated cell proliferation depended 

on de novo lipogenesis. We inhibited lipogenesis in ovarian cancer cell lines by targeting 
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critical lipogenic enzymes FAS and ACC that were upregulated by LPA treatment. 

Chemical inhibitors and molecular approaches against these two proteins led to complete 

attenuation of LPA-induced cell growth. Also, since LPA2 was the receptor responsible 

for the LPA-driven lipogenesis, inhibition of LPA2 also caused a dramatic reduction of 

cell proliferation. These results indicate a causal role for de novo lipid synthesis in LPA-

driven cell proliferation. Hence LPA signaling, especially LPA2 receptor linked to 

activation of lipogenic enzymes, can be targeted as possible therapeutic approaches 

against cancer.  

Since de novo lipogenesis is an important determinant in LPA driven proliferation, 

we extended the study to understand the lipogenic phenotype of cancer cells. The first 

step of fatty acid synthesis involves carboxylation of acetyl-CoA to malonyl-CoA, which 

is carried out by ACC. FAS then carries out the next steps of synthesis, generating long 

chain fatty acids by the subsequent addition of 2 carbon units. Acetyl-CoA thus acts as 

the limiting factor in this process, and so cells need to increase acetyl-CoA levels in the 

cytosol for lipogenesis to proceed. One of the primary routes for generation of acetyl-

CoA is by glucose metabolism. Pyruvate generated via glycolysis is converted into 

acetyl-CoA by the pyruvate dehydrogenase complex in mitochondria. Since acetyl-CoA 

cannot exit the mitochondria, it is used to generate citrate, which can exit the 

mitochondria and is then converted to acetyl-CoA in the cytosol by ATP citrate lyase. 

Hence, the rate of glycolysis can control lipogenesis in cells, and not surprisingly cancer 

cells are known to have hyperactive glycolysis. We thus asked if LPA can activate 

glycolysis in cancer cells to ultimately lead to an increase in lipogenesis.  
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LPA treatment was found to dramatically activate glycolytic processes in cancer 

cells; this effect was not seen in non-transformed cells (IOSE-80 and MCF-10A), an 

observation similar to LPA mediated regulation of lipogenesis. This indicated that LPA 

regulated both lipogenesis and closely associated glycolytic metabolism. As a 

consequence of increased glycolysis, treatments with LPA lead to concomitant lactate 

efflux from cells, which were again observed only in cancer cells. Lactate efflux leads to 

acidification of the tumor microenvironment, favoring tumor cell invasion (196) and 

immune modulation (197) which facilitates tumor growth. Hyperactive glycolysis is often 

associated with enhanced glucose uptake mediated by increased expression of glucose 

transporters (such as Glut1). Glucose uptake has been shown to be upregulated by Hif-1α, 

c-Myc, and ATK (298,314,315). Although growth factors including LPA have been 

shown to regulate all of these mediators, the LPA-mediated increase in glycolysis could 

not be explained by changes in Glut1 expression. In fact, LPA did not increase glucose 

uptake in ovarian cancer cell lines (data not shown). Instead, our results demonstrate that 

LPA enhances glycolysis through transcriptional activation of HK-2, one of the 

glycolytic genes widely upregulated in cancers (219). This increase in HK-2 levels was 

functionally sufficient to promote glycolysis in cancer cell lines. 

Using an RT-PCR array, we were able to profile transcriptional changes in 

glycolytic genes induced by LPA. The effect of LPA was not limited to glycolysis as 

LPA was found to alter mRNA levels of genes involved in various pathways of glucose 

metabolism including gluconeogenesis, the TCA cycle, the pentose phosphate pathway 

and glycogen metabolism. In was interesting to observe that there was a concomitant 
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reduction in transcripts of several genes involved in the TCA cycle such as malate 

dehydrogenase 1B (MDH1B), pyruvate dehydrogenase kinase 2 (PDK2) and pyruvate 

dehydrogenase kinase 4 (PDK4). It remains, however, to determine if LPA treatment 

inhibits the TCA cycle in cancer cells. Consistent with the role of LPA in activation of 

biosynthetic processes, genes involved in the reductive pentose phosphate pathway (PPP), 

such as phosphoribosyl pyrophosphate synthetase 1-like 1 (PRPS1L1) and Ribose-5-

phosphate isomerase (RPIA), were also upregulated based on the data of RT-PCR array, 

which could lead to regeneration of glycolytic intermediates. However, the most 

significant effect of LPA on glucose metabolic genes was found to be on HK-2. 

HK-2 is a well-established target of Hif-1α and c-Myc transcription factors 

(237,316). In this study, LPA increased HK-2 expression in cancer cells via SREBP-1 

transcription factors, which are master regulators of fatty acid synthesis. Regulation of 

HK-2 by SREBP-1 is not an unknown phenomenon. There have been a few studies that 

connect SREBP activation to HK-2 expression. SREBP-1 has been reported to bind to the 

HK-2 promoter and activate its expression in human myocytes (317,318) and in rat liver, 

adipose tissue, and skeletal muscle. (319). However, SREBP-1 regulation of the HK-2 

promoter activity and expression has not been observed in cancer cells. Here we show 

that LPA induced SREBP-1 binding to the -340 to -296 region of the HK-2 promoter, 

leading to its transactivation. It was interesting that this region had two potential SREs 

(SRE 2/3), located very close to each other. Mutation of either of the two sites impaired 

LPA-induced HK-2 promoter activity, indicating that both SREBP-1 sites contribute to 

optimal activation of the HK-2 promoter in LPA-treated cells. It is also possible that the 
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two closely linked SREs form a complex with more than one molecule of SREBP-1. 

Although SREBP-1 functions as the major transcription factor driving HK-2 expression 

in response to LPA, our mutational analysis of the HK-2 promoter suggest possible 

involvement of other transcriptional factors that could contribute to LPA- induced HK-2 

expression, as the double SRE mutant remained partially responsive to LPA treatment. 

In our study, LPA-mediated glycolysis was found to be independent of Hif-1α. 

Hif-1α is the principal regulator of hypoxia-mediated gene regulation. Hif-1α has been 

shown to play a major role in regulation of glycolysis in hypoxia. However, hyperactive 

glycolysis occurs in tumor cells in both hypoxic and normoxic conditions. Although 

oncogenic pathways such as PI3K (320,321), mutations in VHL (230), succinate 

dehydrogenase (SDH) (231) and fumarate hydratase (FH) (232) have been shown to 

stabilize Hif-1α under normoxic conditions, the amount of Hif-1α generated by these 

effects may not be enough to elicit a transcriptional response, and the majority of tumor 

samples possess modest amounts of Hif-1α (322). Thus, alternative pathways might exist 

that could activate glycolysis under normoxic conditions. LPA, by an unidentified 

mechanism, does lead to stabilization of Hif-1α proteins, but its effect on glycolysis was 

found to be independent of Hif-1α. These observations indicate that LPA could be one of 

the causative factors underlying the glycolytic phenotype of cancer cells under normoxic 

conditions.  

Another significant finding from this study was the regulation of LPA-induced 

HK-2 expression and enhanced glycolysis by LPA2, providing yet another piece of 

evidence for coupling of glycolytic and lipogenic processes via a co-regulator. 
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Interestingly, LPA2 and to some extent LPA1, contributed to stabilization of Hif-1α 

proteins (data not shown), yet the mechanism involved in activation of glycolysis was 

found to be independent of Hif-1α protein. Our lab has previously demonstrated that 

LPA-mediated upregulation of VEGF an established Hif-1α target, in ovarian cancer cells 

is independent of Hif-1α (260). These studies point to alternative Hif-1α-independent 

pathways mediated by LPA receptors as critical mediators of carcinogenesis. Moreover 

we provided evidence that the glycolytic effect of LPA was not limited to ovarian cancer. 

The effect was also observed in cancers of breast, colon and lung. The general effect of 

LPA in these cancers is consistent with overexpression of the LPA2 receptor in these 

cancers. LPA2 expression in lung cancer has not been studied previously. We here 

showed for the first time that LPA2 is overexpressed in lung cancer cell lines as well as in 

primary lung carcinomas. Further, LPA induced expression of HK-2 and glycolysis in 

lung cancer cell lines.  

Taken together, the results presented in this thesis provide compelling evidence 

that LPA induces both de novo lipid synthesis and glycolysis in diverse types of cancer 

cells. These effects of LPA are mediated by LPA2, an LPA receptor subtype 

overexpressed in many types of human cancers. We have also presented evidence that 

LPA induction of lipogenesis and glycolysis in cancer cells is an integral component of 

the cellular proliferative program. Thus our studies have elucidated a novel role of LPA 

and its receptor LPA2 in regulation of cancer cell metabolism and cell proliferation. 

These studies therefore open a new avenue for research in LPA and cancer cell biology. 
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Figure 4.1 General Model of LPA mediated regulation of cancer cell metabolism. 
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