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In human pluripotent stem cell (hPSC) research and applications, the need for a culture 

system devoid of non-human components is crucial. Such a system should exhibit 

characteristics observed in conventional culture systems that have used mouse embryonic 

fibroblast feeders for hPSC self renewal without the requirement of excessive 

supplementation with growth factors. To achieve this, we focused on the identification and 

characterization of extracellular matrix (ECM) substrates for hPSC propagation. ECM 

substrates derived from mouse and human fibroblasts were assessed for their ability to 

support self-renewal of hPSCs. Characterization of hPSCs on ECM-based substrates 
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demonstrated maintenance of pluripotent characteristics based on a) high nuclear-

cytoplasmic ratio b) immunocytochemical analyses for pluripotent markers (Alkaline 

phosphatase, AP, Octamer Binding Transcription Factor-4, OCT4 and Specific surface 

embryonic antigen-4, SSEA4) c) in vitro differentiation potential by embryoid body 

formation d) Real time RT-PCR analysis for pluripotent and germ-layer specific markers 

and e) karyotype analysis for chromosome number. Compositional characterization of the 

ECM substrates using proteomic analysis identified some of the major constituents of the 

matrix that might contribute to hPSC self-renewal. Based on results from the proteomic 

analysis, combinatorial ECM substrates were formulated using commercially available 

proteins and evaluated for applicability in hPSC propagation. Extensive characterization of 

hPSC propagated on the ECM substrates suggest that a combination of heparan sulfate 

proteoglycan and fibronectin was sufficient for the promoting hPSC sef-renewal. Finally, 

an in-direct co-culture system utilizing microporous membranes coated with acellular 

substrates and a physically separated feeder layer was developed as a microenvironment 

for hPSC propagation. Real time conditioning of the growth medium and an ECM-based 

substrate for hPSC adhesion provides a synergy of the biochemical and biophysical cues 

necessary for hPSC self-renewal. hPSCs cultured in this system demonstrated equivalent 

pluripotent characteristics as those propagated in conventional culture systems, and 

provided opportunities for scale up without cell mixing. Overall, these studies could prove 

to be useful in the development of humanized propagation systems for the production of 

stable hPSCs and its derivatives for research and therapeutic applications.
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CHAPTER 1: Background and literature review  

 

Summary 

Human pluripotent stem cells that include embryonic and induced pluripotent stem cells 

hold enormous potential for the treatment of many diseases, due of their ability to generate 

cell types useful for therapeutic applications. Currently, many stem cell culture 

propagation and differentiation systems incorporate animal-derived components for 

promoting self-renewal and differentiation. However, use of these components are labor 

intensive, carry the risk of xenogenic contamination and yield compromised experimental 

results that are difficult to duplicate. From a biomaterials perspective, the generation of an 

animal-free and cell-free bio-mimetic microenvironment that provides the appropriate 

physical and chemical cues for stem cell self-renewal or differentiation into specialized cell 

types would be ideal. This chapter presents the use of natural and synthetic polymers that 

support propagation and differentiation of stem cells, in an attempt to obtain a clear 

understanding of the factors responsible for the determination of stem cell fate. 
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Introduction 

Over the last decade, human pluripotent stem cells (hPSCs) that include human 

embryonic stem cells (hESCs) [1, 2] and more recently, induced pluripotent stem cells 

(iPSCs) [3-5] have garnered a lot of attention due to their inherent self renewal and 

pluripotent capabilities. The pluripotent nature of these cells i.e., the ability to differentiate 

into all somatic cell types, have opened avenues for potential stem cell based regenerative 

therapies, development of drug discovery platforms and as unique in vitro models for the 

study of early human development. To meet specific needs for cell-based therapies, some 

of the key research questions that need to be addressed include a) the elucidation of 

molecular mechanisms that determine the stem cell fates of self-renewal, differentiation, 

apoptosis and quiescence; and (b) bioprocessing strategies to generate bankable and 

uniform populations of undifferentiated cells. The key variables in the development of 

bioprocessing strategies for propagation of pluripotent stem cells involve medium 

formulations and biomaterials as substrates. In this chapter, we present an overview of the 

potential for different biomaterials in determining pluripotent stem cell fate (mouse and 

human) relating to self-renewal and differentiation.  

Mouse embryonic stem cells (mESCs) were one of the first ES cell types derived 

from the inner cell mass (ICM) of pre-implantation blastocysts, and cultured in direct 

contact with mitotically inactivated mouse embryonic fibroblasts (MEF) feeder layers [6]. 

This culture methodology was primarily adopted to provide the cells with the appropriate 

conditions conducive for self-renewal rather than differentiation and has since been 
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employed by many laboratories for the isolation and maintenance of pluripotent stem cells 

of different species. In primates, ES cells were first isolated from rhesus monkeys and 

subsequently from humans, and maintained for extended periods without undergoing 

differentiation in direct co-culture with MEFs. The removal of MEF feeders in the culture 

system triggered spontaneous differentiation into many somatic cell types [2, 7]. 

From a cell-based regenerative therapy perspective, the use of MEFs for the 

propagation of hPSCs is recognized as a potential hurdle by many researchers. It is widely 

acknowledged that mice carry pathogenic parasites, bacteria, and viruses as well as 

endogenous retroviruses in their genome. Some endogenous retroviruses have the 

capability to infect foreign species and have been shown to cause diseases like leukemia in 

immuno-suppressed primates [8]. Researchers in the stem cell community are thus 

presented with the challenge of developing of hPSC propagation systems that do not 

involve the use of other species-derived feeders. 

Biomaterials have been investigated extensively as substrates for cell propagation, 

scaffolds for tissue engineering and as delivery vehicles in many regenerative biomedical 

paradigms. One of the key benefits of using biomaterials for pluripotent stem cell 

propagation is the elimination of direct co-culture with a feeder layer. This removes the 

risk of contamination with xenogenic pathogens and reduces variability in experimental 

outcomes due to feeder layer contribution. Additionally, specialized biomaterials that 

include appropriate chemical (incorporation of growth factors) and physical (topographic 

features) modifications, have contributed to successful differentiation of ES cells to 

multiple cell types.  
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Biomaterials such as hydrogels have been used in mammalian cell culture for over 

30 years, because of its high water absorbability and tissue-like texture. Poly 

methylmethacrylate (PMMA) and Poly lactic glycolic acid (PLGA) are examples of a few 

biocompatible materials used in various tissue culture based applications [9, 10]. In ES cell 

research, polymeric substrates have largely been used as carrier systems for lineage 

specific differentiated cells. Instances of the use of polymeric-based biomaterials employed 

in hPSC self renewal maintenance are few in number. The use of a polymer-based 

substrate that can be synthesized with "off-the shelf" constituents for hPSC culture has 

several advantages, as  a) economic feasibility b) reduction in the labor involved to 

maintain an additional cell line as feeders and c) elimination of the source of potential 

xenogenic contamination. It is expected that advances in biomaterial-based approaches will 

immensely contribute to standardization of culture methodologies, leading to development 

of bioprocesses for hPSC propagation and differentiation. Here, we attempt to present the 

knowledge acquired from the integration of biomaterial engineering and pluripotent stem 

cell biology to chalk out standardized routes for stem cell self-renewal and/or directed 

differentiation. 

Substrates for pluripotent stem cell self-renewal 

The need for an unlimited supply of starting hPSC populations for current research 

and future therapeutic applications fuels this area of research. In this section, we address 

the application of different substrates that are both feeder-dependent and feeder-
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independent systems and have contributed to successful long term propagation of 

pluripotent stem cells in their undifferentiated state.  

Feeder-layer dependent propagation systems 

Mitotically inactivated mouse embryonic fibroblasts (MEFs) have been the 

traditional ‘feeder-layer’ of choice since the isolation and propagation of mESCs [6]. They 

have served as ideal substrates as they provide appropriate physical and chemical cues 

conducive for the maintenance of self-renewal in pluripotent stem cell populations. In a 

few cases, such as those involving rat ES cells and American mink ES cell propagation, it 

was demonstrated that the best feeder-layer were fibroblasts derived from the host animal 

[11, 12]. However, the isolation and propagation of several rodent, non-rodent ES [13-15] 

and non-human primate ES cells [7, 16] required MEFs as feeders for long term 

propagation. MEFs have also been used as the feeder of choice for culture systems that 

were initially developed for propagating hESCs and were shown to be capable of 

maintaining hESCs in their undifferentiated state for > 250 population doublings [1, 2]. 

The successful long term maintenance of ESCs on MEFs has been attributed to 

unidentified physical cues provided by the cellular layer or chemical cues based on 

nutrients released into the growth medium that create an environment suitable for 

proliferation and self-renewal. However, the use of animal cells as a substrate poses risks 

of xenogenic contamination by animal pathogens, which in turn could be transmitted to 

patients. Recent findings have revealed the presence of a non-human carbohydrate moiety 

on the surface of hESCs with the potential of eliciting an immune reaction from humans 

[17] Figure 1.
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.  

Figure 1 

Schematic of the transfer of non-human carbohydrate moiety from mouse feeder layers 
onto the cell surface of human pluripotent stem cells. Contamination of hESCs with a non-
human sialic acid, N-glycolylnueraminic (Neu5Gc) due to its metabolic uptake acid from 
MEFs, animal-based serum and other products in the growth medium. In humans, a 
precursor to Neu5Gc; N-acetylneuraminic acid (Neu5Ac) and circulating antibodies for 
this foreign sugar are present, which might lead to the rejection of specialized cells derived 
from such hESCs 
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Extensive research to propagate hPSCs in culture conditions with reduced or zero 

animal-derived products is being actively pursued. One of the earliest advances towards a 

xeno-free environment was the elimination of serum, specifically fetal bovine serum in 

hESC cultures. Fetal bovine serum has been extensively used in mammalian cell cultures; 

however, the composition of serum is not entirely known and different batches vary in 

their capabilities to support undifferentiated proliferation. A serum replacement, Knockout 

Serum Replacement (KSR) [18] optimized for mESC cultures, was successfully introduced 

in hPSC cultures [19], and is now routinely used as a serum–substitute in many 

laboratories to propagate hPSCs [20, 21]. In attempts to make the hPSC culture conditions 

animal-free, several human fibroblast cell lines have been tested and proven to be suitable 

feeders. Propagation conditions involving human foreskin fibroblasts as feeders in KSR-

supplemented growth medium have been used to maintain hESCs for 70 passages [22], and 

in the derivation of new hESC lines [21]. An advantage to using human foreskin 

fibroblasts as a feeder layer lies is in its ability to be continuously cultured for about 42 

passages unlike MEFs which senesce in 5-7 passages. There was no significant difference 

found in the hESCs propagated on different lines of foreskin fibroblasts obtained from 

several newborns leading to the conclusion that the source of the foreskin fibroblasts does 

not affect the undifferentiated propagation of hESCs [23, 24].   

Other human fibroblast feeders tested include fetal skin and muscle cells, adult 

fallopian tubal epithelial cells, adult skin, muscle, glandular and stromal endometrial cells, 

and commercially available fetal skin, lung and neonatal foreskin cell lines. One general 

observation made by the investigators was that fetal lines were more supportive of long 
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term hESC propagation compared to adult lines [25, 26]. Other examples of human feeders 

tested were human marrow stromal cells[27], human adult uterine endometrial cells, 

human adult breast parenchymal cells, embryonic fibroblasts[28], and human placental 

fibroblasts[29, 30]. To test the efficiency of hESC derived fibroblasts (hES-dF) as possible 

feeders, two different hESC lines (NCLI and H1) were grown on their autogenic as well as 

allogeneic fibroblast derivatives. These studies demonstrated that hESC derived feeders 

were capable of maintaining self renewal in both the parent as well as a foreign hESC line 

[31]. Cynomolgus monkey ES cells grown on human placental feeder layers; amniotic 

epithelial plate cells or chorionic plate cells, remained pluripotent for at least 18 

passages[32]. These studies demonstrated that regardless of the source of the feeder layer, 

certain cell types are more capable of maintaining self-renewal capabilities of pluripotent 

stem cells. Detailed analyses of the similarities and differences between such feeders will 

provide valuable insights on key factors that maintain self-renewal capabilities and prevent 

differentiation of pluripotent stem cells.  

Feeder-layer independent propagation systems 

A few groups have demonstrated that hESCs can be maintained without feeders or 

feeder-conditioned medium, relying on growth medium supplementation with high 

concentrations of basic-fibroblast growth factor (bFGF). Many of these studies helped 

ascertain the molecular mechanisms involved in hESC self-renewal, such as the central 

role played by inhibition of components of the BMP signaling pathway[33, 34]. In this 

section we have focused on the role of natural biopolymers such as Gelatin, Matrigel™, 

naturally derived polymers such as alginate, agarose, and hyaluronic acid and several 
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synthetic polymers that allow controlled modifications and incorporation of physical, 

chemical and mechanical cues for the maintenance of pluripotent stem cells.  

Natural biopolymers for pluripotent stem cell self renewal 

 Gelatin is thermally denatured collagen derived from animal skin and bones, and 

has long been used as a promoter of cell adhesion and proliferation in various cell lines 

[35-37]. mESCs, in the absence of a feeder layer have been maintained on gelatin coated 

dishes and growth medium supplemented with interleukin-6 family member cytokine 

Leukemia Inhibitory Factor (LIF) for extended periods [38-40]. The binding of LIF 

receptor β/gp130 heterodimer and the activation of the JAK/STAT3 signaling pathway has 

been implicated in mESC self-renewal [41]. As a cost-effective alternative to periodic LIF 

supplementation; LIF immobilized photoreactive gelatin demonstrated that mESCs 

maintained pluripotent characteristics after six days of culture [42]. The cells grown on 

gelatin-coated polyamide nanofibers electrospun onto glass coverslips demonstrate 

enhanced proliferation and self-renewal capabilities when compared to cells directly grown 

on gelatin-coated glass coverslips. These effects were correlated to an increase in the 

expression of NANOG, activation of the small GTPase Rac, and the activation of the 

phosphoinositide 3-kinase (PI3K) pathway. The relationship between the PI3K pathway 

and regulation of STAT3 and ERK make it likely that microenvironmental cues are a 

major factor in control of mESC self-renewal [43, 44]. 

In an attempt to move away from MEF-based feeder layers in human pluripotent 

stem cell cultures, an extracellular (ECM) -based substrate, Matrigel™ has been used to 

support hESC cultures. Matrigel™ is an ECM protein based gel derived from the basement 
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membrane of Engelberth-Holm-Swarm (EHS) mouse sarcoma. Matrigel ™ has been found 

to be rich in collagen, laminin, heparin sulfate proteoglycans and growth factors such as 

transforming growth factor β (TGFβ), epidermal growth factor (EGF), fibroblast growth 

factor (FGF) [45-47]. Extensive studies on the efficacy of Matrigel™ and the individual 

components of Matrigel™; such as laminin, collagen IV and fibronectin have been 

investigated for hESC propagation. Collagen IV and fibronectin individually did not 

support hESC propagation whereas laminin was successful in maintaining long-term 

undifferentiated hESC cultures. However, all of these hESCs were propagated in mouse 

embryonic fibroblast conditioned medium (MEF-CM), with the absence of MEF-CM 

leading to extensive spontaneous differentiation of the hESCs [48]. Another study 

demonstrated the successful maintenance of hESC cultures in growth medium containing 

KSR supplemented with high concentrations of bFGF, TGFβ1and LIF, on a fibronectin 

matrix [20]. The premise for the use of these factors was that (a) bFGF is routinely used to 

maintain hESC cultures  [19]; (b) TGFβ1 was found in Matrigel™ [48]; (c) fibronectin 

promotes cell adhesion [49] and (d) leukemia inhibitory factor (LIF) activates the 

JAK/Stat3 pathway and is sufficient for the self-renewal of mESCs [38-40, 50] and might 

elicit the same response in hESCs. However, it was found that neither the addition of LIF 

nor the activation of Stat3 pathway contributed to self-renewal in hESCs [2, 51]. 

Apart from the use of Matrigel™, very few studies have demonstrated the use of 

ECM based substrates for hESC maintenance, with one study reporting the use of human 

serum as a substrate to maintain hESCs for over 27 passages [52]. A recent study that is 

extremely promising has focused on the usefulness of hyaluronic acid (HA) based 
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hydrogels for propagation of hESCs  [53]. HA is a nonsulfated linear polysaccharide of (1-

β-4) D-glucuronic acid and (1-β-3) N-acetyl-D-glucosamine found largely in the ECM of 

undifferentiated cells during early embryogenesis and shows reduced expression on 

differentiation [54]. Hyaluronic acid (HA) is also present in the body as a major constituent 

in ECM in connective, neural and epithelial tissue. Large scale microbial production of HA 

has allowed for the use of this polymer in different therapeutic applications. Such naturally 

derived polysaccharides also considered as synthetic ECM hydrogels can substitute natural 

ECM. The premise for the use of ECM based protein hydrogels is to create a 

microenvironment that mimics the physiological milieu of the inner cell mass (ICM), by 

acting as a host that provides the resident cells with 3-dimensional architecture and 

mechanical support for structured organization and easy diffusibility for nutrients and 

metabolites [55-57]. HESCs that were encapsulated within the HA construct in MEF 

conditioned medium maintained their undifferentiated state for 20 days. The cells were 

released from the hydrogel by treating the constructs with hyalurodinase to digest the HA 

hydrogel, cells showed no adverse effects to extended exposure (24 hours) to the enzyme. 

Although natural biopolymers such as polysaccharides, ECM-based substrates and other 

hydrogels hold great promise as biomaterials for pluripotent stem cell propagation and 

presenting cells with familiar microenvironments, new strategies are required for greater 

control to promote uniform proliferation of stem cells in their undifferentiated state. 

Synthetic Biomaterials for pluripotent stem cell self-renewal 

Replacing natural materials with synthetic polymers allows for controlled modifications; 

such as addition of embryologically relevant growth factors. It is useful to note that 
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mammalian cell culture propagation have traditionally been conducted on flat, rigid 

substrates. However, the three-dimensional microenvironments that the cells encounter in 

the body have a combination of physical, chemical and mechanical cues [58, 59] (Figure 

2). Consequently, the ease with which polymers can be engineered into complex 3D 

structures is a key benefit of using polymers instead of feeder cells in pluripotent 

propagation systems. Poly (α-hydroxy esters), and polyurethane are few examples of 

synthetic polymers that have been used as part of pluripotent stem cell propagation 

systems. Poly(α-hydroxy esters) with enhanced surface hydrophilicity and roughness 

properties [60], and fluorinated hydroxyapatites have been  identified as substrates that can 

maintain mESCs as colonies[61]. Poly (hydroxyethyl methacrylate) p(HEMA), a widely 

used non-degradable biomaterial is another synthetic polymer that supports mESC 

proliferation[62, 63]. mESCs were maintained in their undifferentiated state for a limited 

time period of 4 days, which was confirmed by replating the cells extracted from the 

hydrogel slabs onto gelatin-coated dishes. Cells that were allowed to proliferate for longer 

periods in the p(HEMA) slabs, formed large clusters (6-8 days) and showed reduced 

expression of pluripotent markers when replated on gelatin-coated dishes compared to the 

4-day cultures. mESCs grown on non-woven polyester fabrics from polyethylene 

teraphthalate (PET) initially exhibited high expression of pluripotent markers alkaline 

phosphatase (AP) and Stage-specific embryonic antigen (SSEA-1)[64]. However, reduced 

expression of SSEA-1 was seen in mESCs after 72-96 hours, indicating that PET 

substrates did not facilitate long-term undifferentiated propagation and would be best 

suited for differentiation studies rather than for maintaining self renewal. 
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Figure 2: 
Components of the cellular microenvironment in vitro need to mimic in vivo conditions: 
Synergy of biochemical cues such as signaling molecules and growth factors; biophysical 
cues such as substrates; mechanical cues such as hemodynamic forces, shear forces and 
periodic strains; and cell-cell interactions are required for determination of fate of 
pluripotent stem cells 
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However, another study involving fibrous PET matrices was shown to sustain long-term 

growth of mESCs [65], where matrices with pores 30-60 μm wide caused more rapid cell 

growth than in pores of 60-130 μm in width. This was attributed to greater contact between 

the cells and PET fibers within smaller pores leading to increased attachment and better 

support. Large pores allowed cells to aggregate more easily, which induced mESC 

differentiation. Gelatin coating of the polymers did not improve mESC proliferation and 

self-renewal, though such effects could be due to blocking and partial destruction of the 

pore structure of the PET matrices. One drawback of such a 3D fibrous matrix construct 

for ESC culture is poor oxygen supply at high cell densities. The effects of poor oxygen 

transfer could be seen when cell proliferation slowed and cellular death was seen at or near 

day 14. Thus comparative studies of superporous polymers with varying pore sizes, surface 

charges and hydrophobicity characteristics show that substrates with smaller pores sizes in 

the range of 30μm wide supported proliferation of mESC better than pores of larger 

dimensions(100μm). Neutral or cationic substrates as compared to a negatively charged 

substrate and hydrophobic surfaces compared to a hydrophilic allowed for greater mESCs 

adhesion and aggregation for colony formation [62, 63] The effect of surface roughness on 

mESC culture on poly(α-hydroxy esters) substrates demonstrated that within a certain 

range increase in roughness with a corresponding reduction in hydrophilicity enhanced 

mESC attachment and proliferation[60]. These informative studies demonstrate that 

surface texture modifications can play a role in influencing the self-renewal properties of 

stem cells 
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Studies have demonstrated that presentation of various cell adhesion ligands, 

introduction of roughness and patterned features can influence stem cell fate by stimulating 

cell attachment, proliferation and differentiation [66, 67]. Patterned surfaces of hylauronan 

and poly-L-Lysine (PLL) were shown to maintain mESC in their undifferentiated state 

within a spatially controlled culture system with fibroblasts. In these studies, Hyaluronan 

was lithographically patterned on glass surfaces to create parallel strips alternating with 

glass; fibronectin was selectively deposited on the glass, with poly-L-Lysine on 

hyaluronan permitting differential cell adhesion on the two surfaces. Fibroblasts were 

grown on glass surfaces treated with fibronectin and mESC on PLL surfaces. Such systems 

have a potential advantage over random co-culture where mixing of feeder cells with ESC 

is unavoidable [68]. 

A three-dimensional porous polymer scaffold of elastomer, poly-(glycerolcosebacate)-

acrylate (PGSA) support undifferentiated hESC culture for one week [69]. PGSA is an 

elastic hydrogel that is known to elicit low inflammation in response to in vivo 

transplantation [70, 71] and allows for future applications as a biocompatible and 

biodegradable scaffold. Polyurethane microwells coated with MatrigelTM demonstrated the 

ability to maintain hESCs in for three weeks without the need for routine passaging. The 

cells grown in these conditions maintained their pluripotency and differentiated into the 

three germ layers when cultured in suspension. The use of mouse-derived MatrigelTM as a 

substrate indicated that an ECM modification of the synthetic polymer was essential for 

propagating hESCs [72]. A synthetic 3-D ECM based semi-interpenetrating polymer 

network of poly(N-isopropyl acrylamide-co-acrylic acid) was reported to support short 
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term hESC self-renewal. Modification of the hydrogel polymer with the incorporation of 

synthetic RGD peptides to present the cells with adhesion sites improved cell attachment, 

allowed the formation of colonies and maintained pluripotency for a limited period of five 

days [73]. Recent studies have also investigated the feasibility of culturing hESCs on 

microcarriers in feeder-free, 3-dimensional suspension culture[74, 75]. These studies 

suggest that suspension-based propagation of hESCs on microcarriers may provide unique 

opportunities for bulk hESC production and storage. 

Combinatorial and microarray approaches have been adopted recently in high-

throughput screening of materials to control ESC fate on polymer surfaces. Such high-

throughput approaches also hold much promise in 3-D screening of libraries of 

biofunctional groups such as morphogenetic proteins incorporated within synthetic 3-D 

materials. A vast number of possible combinations of polymers, surface treatments, 

surface-bound ligands, and other substrate modifications need to be investigated in ES cell 

propagation systems. A recent study has demonstrated the potential of high-throughput 

arrays in studying biomaterial- ES cell interactions and provided insights on the role of 

specific polymers in promoting cell attachment, proliferation and differentiation [76]. 

Another combinatorial approach focused on the effects of eighteen different laminin-

derived peptides on proliferation and self-renewal of hESCs. Self assembled monolayers 

(SAMs) were designed which allowed the formation of array elements of well-defined 

shapes and sizes. Five out of the eighteen peptides tested were effective in maintaining the 

undifferentiated state of hESCs for 5-7 days. Further characterization of the five peptides 

with a nanofibers based peptide (RNIAEIIKDI)- amphiphile containing 3D- hydrogel 
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demonstrated their potential in promoting proliferation and maintaining undifferentiated 

hESCs [77].  

Recent developments involving transductions of somatic cells to induce 

pluripotency has been heralded as one of the major breakthroughs in stem cell research; 

primarily due to its potential to advance customized cell-based therapies and the evasion of 

embryo-related ethical debates [3-5]. Although the use of synthetic materials for promoting 

iPSC fate from somatic cells has not been explored, the use of synthetic polymers as gene 

or protein delivery vehicles for inducing pluripotency is a definite possibility. Recent 

studies have demonstrated the potential of poly (amino esters) based biodegradable 

nanoparticulate vectors for gene delivery to efficiently transfect ESCs with low 

cytotoxicity [78, 79]. These methodologies have significant implications in the generation 

of iPSC lines that are free of exogenous viral additions to the genome. Ultimately, the 

development of a completely synthetic substrate to maintain hESC cultures or in the 

induction of pluripotency from somatic cells would present the ideal feeder-free and 

animal-free culture environments for long term undifferentiated and stable hESC 

propagation.  

The culture of pluripotent stem cells on polymeric surfaces with or without 

immobilized proteins opens up avenues for identification of synthetic microenvironments 

that can be easily synthesized and modified to form scaffolds that support the 

differentiation of ES cells into highly ordered 3D structures.In ES-cell studies, biomaterials 

have been frequently used to direct differentiation to specific lineages, in the presence of 

appropriate growth factors. However, maintenance of its undifferentiated state has proven 
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to be a challenge. The use of native and synthetic polymers in promoting ES cell self-

renewal is still in its nascent phase and has great potential as demonstrated by the various 

studies conducted to date (summarized in Table 1).  
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Table 1 

Summary of substrates used for propagation of human and mouse pluripotent stem cells 

Substrate Type Cell Source Substrate Time line of study References 
     
Feeder layer 
based 

hESCs Human foreskin fibroblasts > 70 passages [80] [23, 81] 

  Fetal skin cells 
Fetal muscle cells  
Adult skin fibroblasts 
Adult muscle fibroblasts 
Commercially available fetal skin 
fibroblasts Adult Fallopian tubal 
epithelial fibroblasts 

20 passages 
> 50 passages 
> 30 passages 
> 30 passages 
> 25 passages 
> 20 passages 

[82, 83] 

  Adult marrow cells 13 passages [84] 
  human adult uterine endometrial 

cells (hUECs),  
Human adult breast parenchymal 
cells (hBPCs), 
Human embryonic fibroblasts 
(hEFs) 

90 passages 
50 passages 
80 passages 

[85] 

     
  Human placental fibroblasts > 25 passages [86, 87] 
  HESC derived fibroblasts 44 passages 

30-52 passages 
[88],[89] 

     
Natural substrates mESCs LIF immobilized on gelatin 6 days [90] 
  Gelatin-coated polyamide 

nanofibers 
3 days [43] 

 hESCs Matrigel ~130 passages [91] 
  Human Serum > 27 passages [52] 
  Mouse embryonic fibroblasts ECM > 30 passages [92] 
  Hyaluronic Acid  20 days [93] 
     
Synthetic 
substrates 

mESCs Hydroxyapatites polymers 48 hours (time 
required for 
colonization) 

[94], [95] 

  Poly(hydroxyethyl Methacrylate) 4 days [62] 
  LIF immobilized PET fibers 72-96 hours [64] 
  Gelatin immobilized PET fibers 15 days [96] 
     
 hESCs Poly - (glycerolcosebacate)-

acrylate (PGSA) 
1 Week [97] 

  Polyurethane micro-wells > 21 days [98] 
  Poly(N-isopropyl acrylamide-co-

acrylic acid) sIPN 
5 days [73] 
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Substrates for pluripotent stem cell differentiation 

The excitement in the biomedical community with regard to pluripotent stem cells 

centers on their ability to differentiate into any somatic cell type.  This unique property 

makes it possible to derive rare tissue types in unlimited quantities, which would be of 

immense use in areas such as in vitro drug screening and regenerative medicine. 

Differentiation of ESCs occurs spontaneously either in prolonged cultures or in the 

absence of feeder layers, leading to populations consisting of multiple cell types from 

many different lineages. Directed differentiation involves either a) exposure of ES cells to 

growth factors that mimic natural pathways in embryonic development b) co-culture with 

suitable cytokines secreting feeders or c) replating enriched populations derived from EBs. 

A more commonly used method to induce differentiation is the formation of embryoid 

bodies (EB), which are three-dimensional ES cell aggregates grown in suspension or in an 

environment that does not support cell adhesion [99]. Heterogeneous subpopulations are 

enriched for a cell type of interest, isolated and replated [100-105], with induction of 

differentiation by the addition of growth factors to the medium [106, 107]. Cell types that 

have been derived through use of EB include those of chondrogenic, adipogenic, 

neurogenic, cardiogenic, hematopoietic and myogenic lineages. However, thus far, the 

resulting populations have been largely random in their phenotype and organization. 

Consequently, there exists a need for protocols that can differentiate ES cells to highly 

specific derivatives with increased reproducibility and capacity for scale-up. The 

challenges in directed differentiation protocols are a direct result of the basic lack of 
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understanding of the mechanisms involved in lineage specification. In this section we 

briefly describe feeder-dependent and feeder-free (natural and synthetic polymers) 

approaches to differentiation of ES cells into multiple cell types from the three different 

germ layers (ectoderm, endoderm and mesoderm).  

Endodermal Differentiation 

Of the several cell types that originate from the endoderm, differentiation strategies 

for hepatic and pancreatic cell types have been extensively studied. Induction of hepatic 

and pancreatic differentiation from ESCs has garnered a lot of attention due to possible 

therapeutic applications for diseases such as liver damage and diabetes. Studies of the 

differentiation of ESCs into the pancreatic lineage largely involve formation of EBs 

followed by a sequential and elaborate exposure to endodermal lineage promoting growth 

factors and extracellular matrix proteins [108, 109]. Currently, there are no reports that 

points of the use of polymeric substrates for induction of pancreatic differentiation in 

mouse or human ES cells. However, there have been published reports on the use of both 

feeder layers and polymers in the differentiation towards the hepatic lineage. Co-culture of 

mESCs with primary adult rat hepatocytes has been shown to induce hepatocyte 

differentiation, with enhancement upon addition of hepatotrophic growth factors [110].  

Additional studies for hepatic differentiation have focused on the use of natural polymers 

such as collagen and alginate [111]. Alginate is a biocompatible hydrophilic viscous gum 

derived from algae and has been used in various biomedical applications due to its 

hydrogel and ECM gel-like properties[112, 113]. The use of alginate beads for EB 

formation allows for scale up of hepatocyte derivation and act as a source of cells for a 
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bioartifical liver system [114]. Naturally derived alginate beads were used to form EBs 

from mESCs followed by replating of the dissociated cells in medium supplemented with 

appropriate growth factors to induce hepatocyte differentiation.  

Synthetic polymers such as polyurethane have also been used to promote 

hepatogenesis. For example, a polyurethane foam (PUF) as part of a hepatocyte culture 

system was presented as a hybrid artificial liver [115], with subsequent replacement of 

hepatocytes with ES cells as a cell source within this module. When mESCs were placed in 

the porous PUF, they aggregated into spherical multicellular structures, on further 

exposure to a cocktail of growth factors, differentiated into mature hepatocytes [116]. An 

improvement to this culture system was later introduced by the same group of researchers 

that included a bioreactor consisting of a PUF block with capillaries to aid growth medium 

flow to effect hepatic lineage induction in mouse and cynomolgus monkey ES cells [117, 

118]. 

Hepatocytes have commonly been derived from hESCs by either replating cells 

from EBs or by sequential exposure to different growth factors [119-121]. Similar to 

mESCs, natural ECM-based polymers have been used in hepatic differentiation of hESCs. 

A comparative study between 2D and 3D culture systems that utilized collagen 

demonstrated that 3-D collagen scaffolds induced specification in 5 day old EBs. Further, 

addition of exogenous growth factors to 3-D collagen scaffold allowed for better 

hepatocyte differentiation than collagen coated 2-D dishes [122]. Unlike mESCs, no 

reported studies of synthetic polymers as substrates in hESC hepatogenesis have been 

identified.  
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Mesodermal Differentiation  

Derivatives of the mesoderm that have been successfully differentiated from ESC 

cultures include cardiomyocytes, cells of hematopoietic lineage, endothelial cells, and 

germ line cells [123-129]. The utilization of biomaterials as part of differentiation 

strategies for specialized cells from the mesodermal lineages: hematopoietic, osteogenic, 

chondrogenic and adipogenic, have been extensively studied.  

Feeder dependent and feeder free systems have been extensively used in 

hematopoietic differentiation of mESCs. Cells of the hematopoietic lineage were the first 

reported cell types derived by direct differentiation of mESCs using a bone marrow 

stromal cell based feeder layers, OP9 cells [130] and RP010 [131], in growth medium 

conditioned by fetal liver stromal cells and supplemented with interleukin 6 (IL-6).   

 Natural polymers such as MatrigelTM, fibrin, dextran and collagen have been used 

as substrates for differentiation of mESCs to both the hematopoietic and endothelial 

lineage. Researchers achieved hematopoietic differentiation of mESCs by culture on 

collagen type IV, through a chain of intermediate differentiation steps, with mESCs first 

forming cells from the proximal lateral mesoderm, followed by formation of 

hemangiogenic progenitors, differentiation into hematopoietic precursors and ultimately 

mature blood cells. This study also identified the progression of lineage commitment for 

hematopoietic precursor cells and its was noted that hemangiogenic progenitor constituted 

a critical stage for the divergence of the endothelial and hematopoietic lineage [132, 133]. 

Differentiation of mESCs on Collagen IV substrate was later adapted to generate a pure 
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endothelial progenitor population [134, 135]. However, collagen-based substrates were 

found to be inefficient in differentiating rhesus monkey ES cells to endothelial cells [136].  

 Endothelial and hematopoietic differentiation of ES cells have also been 

demonstrated within three-dimensional fibrin constructs [137]. Researchers demonstrated 

that fibrin polymers reinforced with poly(ethylene glycol) (PEG), promoted a high 

expression of VE(vascular endothelial)-cadherin in encapsulated mESC-derived EBs 

formed within the construct. It has been postulated that PEGylation of fibrin blocks 

antigens, resulting in a reduction of cell-matrix interactions as fibrin gels have the capacity 

to engage cell-adhesion molecules [138], this reduced cell-matrix interaction might be 

involved in promoting differentiation of the ES cells [139]. 3D dextran constructs modified 

with bioactive ECM molecules have also been used to generate EBs from mESCs. 

Addition of vascular endothelial growth factor (VEGF) within the dextran constructs 

yielded cells with increased expression of endothelial markers KDR/Flk-1 and decreased 

expression of ectodermal and endodermal markers. These cells also showed lower 

ectodermal (Nestin) and endodermal (α-fetoprotein) marker expression, indicating a 

preference for mesodermal differentiation of ESCs within the VEGF - dextran culture 

environment. Further specification was achieved by removing the cells from the hydrogels 

and propagating on gelatin-coated dishes in endothelial differentiation medium [140].  

Another study which further highlighted the importance of ECM components in the 

differentiation of mESC-derived EBs involved the used of 3D constructs that consisted of a 

collagen-based semi-interpenetrating polymer networks (SIPNs) with varying 

concentrations of fibronectin (FN) and laminin (LM) [141]. EBs differentiating within the 
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FN-loaded SIPNs formed cord-like structures indicative of endothelial differentiation, 

while LM-loaded SIPNs produced beating cells that provided evidence of increased 

differentiation towards cardiomyocytes.   

 Synthetic polymers have also been used to direct differentiation of ES cells to 

hematopoietic cells based on use of Cytomatrix®, a porous tantalum-based scaffold 

synthesized using chemical vapor deposition of metals onto an open pore carbon scaffold, 

creating a mechanically strong and highly porous scaffold. EBs generated in this scaffold 

produced hematopoietic progenitor cells with a greater efficiency than EBs generated from 

traditional 2D culture dishes, and exhibited a greater propensity to produce dendritic cell-

like myeloid cells. Dynamic culture conditions using spinner flask technology increased 

the efficiency of hematopoietic differentiation within the scaffolds, EBs within the 

scaffolds were less likely to aggregate when covered with an ECM coating.  

These studies demonstrated that differentiation within 3-D microenvironment enhanced 

ECM production, which in turn increased cell-cell and cell-substrate interactions and 

contributed to more efficient hematopoietic differentiation [137, 142]. 

Recent studies that have focused on differentiation of hESCs to hematopoietic cells have 

utilized human feeders and other natural polymers. Direct co-culture of hESCs with 

stromal cells from mouse hematopoietic tissue, bone marrow cells line S17, or a yolk sac 

endothelial line C166 induced differentiation into the hematopoietic lineage [143]. An 

example of the application of natural polymers in mesodermal differentiation involved a 

study that compared three models for differentiation: 2D culture conditions, EBs formed 

within a polymeric (alginate) scaffold and a slow turning lateral vessel bioreactor. 
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Undifferentiated hESCs seeded into the porous scaffolds formed EBs similar to those 

produced by a slow-turning lateral vessel bioreactor, in that they were well-rounded and 

did not form aggregates.  However, alginate scaffolds induced vascular differentiation to a 

greater extent than the 2D culture plates and the bioreactor [144]. Unlike mESCs, no 

reported studies of synthetic polymers as substrates in hESC differentiation to 

hematopoietic and endothelial cells have been identified.  

Feeder layers of similar lineage have been shown to support and induce osteogenic 

differentiation in mESCs and hESCs. For example, fetal murine osteoblasts with mESCs 

[101] and human periodontal ligament fibroblasts (hPLFs) with hESCs have been used in 

co-culture systems to enhance osteogenic differentiation [145].  

Alginate was initially postulated to support chondrogenic proliferation [146, 147] but 

studies showed that EBs formed from mESCs encapsulated within an alginate construct 

with dexamethasone supplementation  showed no enhanced chondrogenic potential when 

compared to intact EBs [148]. Additionally, there was no stimulatory effect of 

dexamethasone on chondrogenic differentiation. However, this report was one of the first 

to demonstrate chondrogenic potential of EBs within a 3-D construct. Successful examples 

of the application of a scaffold for osteogenic differentiation from mESCs include; the use 

of a 3-dimensional self assembling peptide substrate [149] and alginate beads loaded into a 

bioreactor fed with osteogenic inducing growth medium [150].  

Synthetic polymers such as PEG have been successfully used in a recent study that 

reported the induction of chondrogenic differentiation in mESCs within a poly-(ethylene 

glycol) based polymeric 3-D environment. In these studies, 5 -day old EBs prepared in 
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suspension cultures were encapsulated in a photopolymerizable PEG polymer, with 

addition of TGFβ1 and glucosamine to the growth medium, enhancing the chondrogenic 

differentiation capabilities of EBs [151, 152]. Such 3D systems exhibit potential for ES 

cell delivery to the site of injury circumventing issues that arise with low proliferative 

capacity of differentiated chondrocytes as well as loss of phenotype during ex-vivo 

expansion [153]. An inorganic substrate derived from bioactive sol-gel glass initially used 

for the differentiation and proliferation of human and murine osteoblasts was also used to 

promote osteogenic differentiation from mESCs. Temporal and dose dependent 

manipulations of growth factors supplementation further enhanced the positive effect of 

this sol-gel [154, 155].  

For osteogenic and chondrogenic induction of hESCs, researchers have 

demonstrated that pre-differentiated hESCs (5-day old EBs) replated in the presence of 

osteogenic supplements induced differentiation. In vivo implantation of these pre-

differentiated cells within poly-D, L-lactide (PDLLA) scaffolds in severely combined 

immunodeficient (SCID) mice allowed for further differentiation to specialized 

mineralizing tissue [156].  

Substrate based adipogenic differentiation of mESCs have only been demonstrated 

on polycaprolactone (PCL) synthetic polymer. The study reported the use of nanoscale 

fibers from electrospun PCL scaffolds to mimic ECM architecture and induce mESC 

differentiation. mESCs were directly seeded onto the scaffolds and treated with insulin, 

triiodothyronine (T3) and retinoic acid (RA) to induce adipogenesis. On comparing cells 

derived from this 3D culture system to those derived from a 2D system which involved 
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pre-specification with EB formation, it was noted that optimal results were achieved when 

the cellular micro-environments closely resembled in-vivo conditions [157]. 

A high-throughput screening approach utilized microprinting technology to present 

pluripotent cells with combinations of ECM proteins in a microarray [158] and in a 

multiwell format [159]. A commercial arrayer was used to deposit mixtures of varying 

concentrations of collagen I, collagen III, collagen IV, fibronectin, and laminin onto a thin 

custom-made acrylamide gel pad. The ECM was deposited in a highly controlled manner, 

and there were no detected instances of cross-contamination between spots. A multiwell 

format was generated using a slide carrier and gaskets, followed by seeding of mESCs 

within these wells and presentation of twelve different combinations of four growth factors 

known to induce cardiac differentiation. A total of 240 ECM and growth factor signaling 

environments were studied and the results acquired during this expansive run, were 

consistent with published data on cardiogenesis. The nature of the microenvironment that 

comprises of specific physical, chemical and mechanical cues need to be taken into 

account, prior to determining the biomaterial to be used in specific directed differentiation 

strategies. 

Ectodermal differentiation 

Ectodermal derivatives are often seen in spontaneously differentiating cultures and 

are considered as the “default pathway” for differentiation of pluripotent stem cells [160]. 

Several ectodermal derivatives such as oligodendrocytes, dopaminergic neurons and motor 

neurons have been produced using a cocktail of growth factors including FGF2, retinoic 

acid (RA), epidermal growth factor, brain and glial derived neurotrophic factor and sonic 
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hedgehog (SHH) [52, 161-164]. Direct co-culture of mouse and primate ES cells with PA6 

stromal cells induced differentiation into dopaminergic neurons and circumvented the 

formation of multicellular aggregates (EBs) in the differentiation process. These studies 

determined that stromal cell- derived inducing activity (SDIA) was responsible for the 

differentiation, but little was ascertained of its molecular nature or induction mechanism 

[165, 166]. Naturally derived ECMs and synthetic polymers have both been used to 

differentiate mESCs into ectodermal derivatives. A comparative study was conducted to 

determine the effects of 2-D and 3-D fibrin based constructs on neural differentiation of 

EBs from mESCs. These studies showed that intact EBs encapsulated within the 3D fibrin 

gel differentiated more readily that those grown on 2D-fibrin gel into mature neurons and 

astrocytes under specific culture conditions [167]. mESCs cultured in hollow fibers made 

of cellulose triacetate polymer and ethylene vinyl alcohol copolymer in the presence of 

stromal cell conditioned medium differentiated into dopaminergic neurons [168]. This 

study presents a model system for in-vivo delivery of mESCs within scaffolds that promote 

differentiation. Such transplantation strategies might avoid obstacles that arise with 

rejection of implanted cells by the host with the added advantage of the semi-permeable 

membrane permitting the influx of nutrients for the survival of the implanted cells and the 

efflux of dopamine. 

 Few studies have reported the application of synthetic biomaterials for neural 

differentiation of hESCs. When pre-differentiated hESCs as 8-day old EBs were 

dissociated and seeded in a 50/50 blend of poly L-lactic acid) and poly(lactic co-glycolic 

acid) based biomaterial, multilayered rosette like bodies with epithelial cell-lined narrow 
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lumen was induced by supplementing the growth medium with retinoic acid. However, in 

the same construct, mesodermal differentiation was induced by addition of TGFβ and 

endodermal differentiation was induced by addition of Activin A and IGF [169]. Enhanced 

neural differentiation of hESCs was achieved in the construct by addition of RA, nerve 

growth factor (NGF) and neurotrophins [170].  

 As part of a teratoma formation protocol used to investigate pluripotent potential of 

hESCs, researchers investigated the differentiation potential of hESCs seeded in laminin-

coated poly-(lactic-co-glycolic acid) (PLGA) scaffolds [171]. Further analysis of the 

teratomas provided evidence of different cell types that originated from the three germ 

layers. However, close to 38% of the cells, exhibited increased expression of the neuronal 

marker, Nestin, thereby indicating that the nature of pre-transplantation treatment, the site 

of transplantation, and the ECM components in the scaffold could selectively enhance 

neural phenotypes within the teratoma [172].  

The differentiation of mouse and human ES cells into the different lineages and specialized 

cells using different feeder dependent and independent substrates is summarized in Table 

2. 

Based on the different self renewal maintenance and differentiation strategies described in 

this chapter, it is evident that numerous physical, chemical and mechanical factors are at 

play in determining stem cell fate. Taking this into consideration, we attempt to generate 

and study in detail a substrate that will allow for undifferentiatied propagation of hPSCs. 
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Table 2 

Substrates used to induce differentiation in mouse and human pluripotent stem cells. 

Substrate Type Cell 
Source 

Substrate Differentiation 
Lineage 

References 

     
Feeder layer 
based 

mESCs Primary rat hepatocyte Hepatic [173] 

  Mouse stromal cells OP9 and RP010 Hematopoietic [130], [131] 
  Fetal murine osteoblasts Osteogenic [174] 
  Stromal cells PA6 Neuronal [175] 
     
 hESC Mouse bone marrow cells line S17, 

yolk sac endothelial line C166 
Hematopoietic [143] 

  Human periodontal ligament 
fibroblasts 

Osteogenic [145] 

     
Natural substrates mESCs Collagen coated plates Hepatic [111] 
  Alginate Beads Hepatic [114] 
  Collagen type IV Hematopoietic [176] 
  Fibrin polymers reinforced with 

poly(ethylene glycol) 
Endothelial and  
Hematopoietic 

[177] 

  Dextran constructs Endothelial [178] 
  Semi-interpenetrating polymer 

networks (SIPNs) with fibronectin 
(FN) and laminin (LM). 

Endothelial and 
Cardiac 

[179]   

  Alginate construct Chondrogenic [148], [180] 
  Self assembling peptide construct Osteogenic [181] 
  Fibrin polymer construct Neuronal [167] 
     

hESCs Collagen scaffolds Hepatic [122]  
 Alginate scaffolds Hematopoietic [144] 

     
Synthetic 
Substrates 

mESCs Polyurethane foam Hepatic [117, 118] 

  Cytomatrix Hematopoeitic  [177, 182] 
  Poly-(ethylene glycol) Osteogenic [183], [184] 
  Nanoscale fibers based electrospun 

polycaprolactone (PCL) scaffolds  
Adipogenic [185] 

  Copolymer of cellulose triacetate 
polymer and ethylene vinyl alcohol  

Neuronal [186] 

     
 hESCs Poly-D, L-lactide (PDLLA) scaffolds Osteogenic [187] 
  Poly (L-lactic acid) and Poly(lactic co-

glycolic acid) 
     + Retinoic Acid 
     + TGFb 
     + Activin A and IGF 

 
 
Neuronal 
Chondrogenic 
Pancreatic 

[188] 
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Rationale for study 

Human pluripotent stem cells (hPSCs) that include human embryonic stem cells (hESCs) 

and more recently, induced pluripotent stem cells have conventionally been cultured on 

mouse embryonic fibroblasts (MEFs) as feeder layers [1-5] The use of an additional cell-

line as feeders and complex expansion techniques make hPSC culture a labor intensive 

process. In an attempt to engineer hPSC culture conditions devoid of non-human 

components, alternative feeders, mostly involving the use of MEF conditioned medium 

[22-26] or a mouse derived extracellular matrix (ECM)-based substrate: Matrigel™ [48] 

has been extensively studied. Though these strategies are partially successful in 

maintaining undifferentiated hPSC cultures, they do not completely eliminate the use of 

non-human derived products, thus still posing risks of xenogenic contamination.  

Taking into consideration that adherent cell lines require extracellular matrix (ECM) for 

adhesion and proliferation, we hypothesize that the ECM components generated by the 

feeder layer fibroblasts will be sufficient in maintaining the undifferentiated state of 

hPSCs. Towards testing this hypothesis, we propose to characterize ECM substrates 

derived from different fibroblasts and their capability to support self-renewal of hPSCs. 

Further analysis of the ECM substrates will permit the identification of the major 

constituents in the matrix deposited by mouse and human fibroblasts that might be 

responsible for the maintenance of self-renewal of hESCs. The results from this analysis 

will allow the generation of a protein based substrate. 

Our long term goal is the development of feeder-free conditions that utilize the self-

renewal sustainability of ECM to engineer substrates that will provide hPSCs with the 
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appropriate physical and chemical cues required for long term undifferentiated 

propagation. The core hypothesis is that human ECM in controlled microenvironments 

provides sufficient physical cues to maintain hPSCs in their undifferentiated state 

The experiments outlined under three different specific aims to test the hypothesis will 

determine the efficacy of acellular (ECM based) substrates, protein combinations (matrix 

composition based) and in-direct culture systems in supporting the undifferentiated 

proliferation of hPSCs.  

Specific Aim 1) To characterize human fibroblast cell derived ECM as suitable acellular 

substrates for sustained undifferentiated propagation of hPSCs.  

To address this aim, hPSCs will be propagated on two human fibroblasts as feeders. 

Characterization of the hPSCs after 15 passages will involve analyzing the expression of 

key pluripotent markers based on immunocytochemistry and real time PCR. The rationale 

behind using these fibroblast cell lines is based on their human origin and their capacity for 

excessive ECM secretion.  

Specific Aim 2) To formulate a protein substrate based on the proteomic analysis of the 

extracellular matrix (ECM) composition of the acellular substrates 

Proteomic analysis of the acellular ECM substrates that have demonstrated the capability 

of maintaining long term undifferentiated propagation of hPSCs will identify proteins that 

play a role in adhesion and key signaling pathways for self-renewal maintenance. Based on 

results from the proteomic analysis protein based substrates will be formulated and tested 

for hPSC propagation. hPSCs cultured on such protein combinations will be characterized 

for expression of standard pluripotent markers.  
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Specific Aim 3) To incorporate acellular substrates on microporous membranes in an 

indirect co-culture system and assess their capability for hPSC propagation. 

The use of microporous membranes coated with acellular substrates in addition to the 

presence of a physically separated feeder layer will allow for synergistic effects of the 

biochemical and biophysical cues necessary for self renewal maintenance. Such a system 

will allow for scale up of hPSCs without feeder cell contamination. hPSCs cultured in such 

controlled microenviroments will be characterized for expression of standard pluripotent 

markers.  

General experimental analyses of a culture system across the three specific aims involve 

sustained propagation of undifferentiated hPSCs on the substrates for 15 passages, 

followed by characterization studies. Characterization will involve a) morphological 

analyses: high nuclear-cytoplasmic ratio for pluripotent cells b) immunocytochemical 

analyses for pluripotent markers (Alkaline phosphatase, AP, Octamer Binding 

Transcription Factor-4, OCT4, and Stage specific embryonic antigen-4, SSEA4) c) in vitro 

differentiation potential by embryoid body formation and test for the presence of germ 

layer specific markers from all three germ layers (ectoderm, endoderm and mesoderm) 

from pluripotent hPSCs d) Real time RT-PCR analysis for pluripotent and germ-layer 

specific markers and e) karyotype analysis for chromosome number 

Overall, the studies conducted as part of this dissertation research project are expected to 

contribute to the development of propagation systems and controlled microenvironments 

for sustained propagation of undifferentiated and stable hPSCs. 
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CHAPTER 2: Stable propagation of human embryonic and induced pluripotent stem 

cells on decellularized human substrates 

 

Abstract  

Human pluripotent stem cells (hPSCs) that include human embryonic stem cells (hESCs) 

and human induced pluripotent stem cells (hiPSCs) have gained enormous interest as 

potential sources for regenerative biomedical therapies and model systems for studying 

early development. Traditionally, mouse embryonic fibroblasts (MEFs) have been used as 

a supportive feeder layer for the sustained propagation of hPSCs. However, the use of non-

human derived feeders presents concerns about the possibility of xenogenic contamination, 

labor intensiveness and variability in experimental results in hPSC cultures. Towards 

addressing some of these concerns, we report the propagation of three different hPSCs on 

feeder-free extracellular matrix-based substrates derived from human fibroblasts. hPSCs 

propagated in this setting were indistinguishable by multiple criteria, including colony 

morphology, expression of pluripotency protein markers, tri-lineage in-vitro differentiation 

and gene expression patterns, from hPSCs cultured directly on a fibroblast feeder layer. 

Further, hPSCs maintained a normal karyotype when analyzed after fifteen passages in this 

setting. Development of this ECM-based culture system is a significant advance in hPSC 

propagation methods as it could serve a critical component in the development of 
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humanized propagation systems for the production of stable hPSCs and its derivatives for 

research and therapeutic applications. 

Introduction  

Human embryonic stem cells (hESCs) and more recently human induced 

pluripotent stem cells (hiPSCs) are primary examples of human pluripotent stem cells 

(hPSCs) and have garnered a lot of attention in the past decade due to their inherent 

properties of indefinite self renewal and differentiation into multiple cell types [1, 2, 4, 5]. 

Since their derivation, the preferred method of hPSC expansion has been the use of 

mitotically inactivated mouse embryonic fibroblasts (MEF) as feeder layers [2, 189]. The 

success of MEFs as a feeder layer is largely attributed to the presence of a cellular 

substrate for stem cell adhesion mimicking physiological milieu and the nutrients released 

into the medium providing a suitable microenvironment for undifferentiated propagation of 

hPSCs. However, the use of non-human cells as a substrate poses risks of xenogenic 

contamination by the possible introduction of animal retroviruses and other pathogens, 

which could potentially be transmitted to patients when used in biomedical therapies. This 

possibility is reinforced by the report of the presence a non-human carbohydrate moiety on 

the surface of hESCs propagated on MEFs, with the potential of eliciting an immune 

response when used in humans [17]. Additionally, the need to maintain two cell lines 

simultaneously and the mechanical passaging techniques employed to ensure normal 

karyotype in hPSCs [190] renders this culture methodology time consuming and labor 

intensive. The use of a live feeder layer has also presented researchers with challenges 

concerning feeder contamination of experimental data in downstream analysis [191]. 
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Extensive research has introduced various alternate culture conditions; however the key 

factors responsible for the maintenance of the hPSC self-renewal capabilities are not 

evident [48, 192-194]. Studies have implicated the bFGF, Wnt, activin/Nodal pathways in 

the maintenance of pluripotency [192-194], however the interaction of these pathways with 

transcription factors that mediate self-renewal (OCT-4, SOX2, NANOG) is not clear [33]. 

The development of controlled propagation systems to maintain and expand stable hPSC 

populations is key to creating bankable populations of cells required for future research 

geared towards regenerative therapies [195].  

Apart from MEFs, several human fibroblast cell lines have been tested and proven 

suitable feeders [22-25, 196]. It is realistic to state that adhesion based culture of hPSCs 

depend extensively on the extracellular matrices deposited by the feeder cells for their 

attachment and proliferation. Based on this principle, hPSCs were cultured and 

successfully propagated on mouse sarcoma derived protein mix: Matrigel™ and human 

serum deposits [48, 52]. However, such substrates are expensive and also require 

supplementation by way of MEF-conditioned medium (MEF-CM).  

In order to address some of these challenges, our study focused on the potential of 

extracellular matrix (ECM) based substrates from human fibroblasts in the long-term 

maintenance of three different hPSCs in their undifferentiated state. In this study, we report 

the use of two human immortalized fibroblast (foreskin and dermal) lines as sources for the 

ECM-based substrates, thus avoiding the need for recurrent isolations of primary 

fibroblasts as is the case with MEFs. Our studies demonstrate the unique potential of these 

ECM-based substrates in promoting the stable propagation of undifferentiated hPSCs, 
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based on the assessment of multiple criteria for pluripotency. Additionally, this is the first 

report of hPSC propagation in a feeder-free, all human setting without the need for 

conditioned medium of any kind.  

Materials & methods 

Generation of inactivated feeder layers and extracellular matrix-based substrates. Mouse 

embryonic fibroblasts (MEFs) were isolated from embryos derived from 13.5d pregnant 

CF1 mice and maintained in Dulbecco’s modified Eagle’s medium with 4.5 g/L glucose, 

2mM L-Glutamine, 1% Penicillin/Streptomycin and 10% fetal bovine serum. Human 

foreskin fibroblasts (HFFs) were maintained in Dulbecco’s modified Eagle’s medium 

(DMEM) with 4.5 g/L glucose, 2mM L-Glutamine, 1% Penicillin/Streptomycin and 10% 

cosmic calf serum and 2% Medium 199 (10x) to create a blend of basal medium 

comprising of M199 and DMEM. Human dermal fibroblasts (HDFs) were maintained in 

Minimum Essential medium supplemented with 2mM L-Glutamine, 1% 

Penicillin/Streptomycin, 15% fetal bovine serum, non-essential and essential amino acids, 

sodium pyruvate and vitamins. Inactivation of the three fibroblast lines was achieved by 

incubation in 10μg/ml of Mitomycin C, a mitotic inhibitor, for a period of two hours. Post-

incubation, the cells were thoroughly washed with PBS 6 times, followed by trypsinization 

and additional three washes in growth medium to fully remove the mitomycin C. The cells 

were subsequently plated at a density of 300,000 cells/35mm dish.  

Acellular extracellular matrix based substrates were generated by allowing the 

cultures (HFFs and HDFs) to proliferate 6 to 8 days past 100% confluency. The plates 

were washed with sterile distilled water to remove traces of growth medium followed by a 
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short exposure to 20mM NH3 solution to expose the deposited ECM. The substrates were 

thoroughly washed with phosphate buffered saline (PBS) to avoid the deleterious effects of 

the alkaline ammonia solution [197]. For the purposes of application in our different 

experiments, the acellular HFFs (aHFFs) and acellular HDFs (aHDFs) once generated were 

stored at 37°C and used within a week. 

Long term propagation of hPSCs. Karyotypically normal diploid hESC (WA09, 

http://stemcells.nih.gov) [2] and hiPSC (WiCell Research Institute, Madison, WI) [5] were 

routinely passaged on MEFs and transferred onto human feeders and acellular matrices in 

35mm dishes. A rapidly dividing, karyotypically aneuploid cell line BG01v (Bresagen, 

Athens, GA) [198, 199] was also routinely passaged on MEFs and transferred onto human 

feeders and acellular matrices. WA09 and hiPSCs were passaged as colonies by 

mechanical dissociation while BG01v was enzymatically passaged every 3-4 days at 

subculturing ratios of 1:4. All the hPSCs were maintained in DMEM/F12 supplemented 

with 20% knockout serum replacement, 0.1mM β-mercaptoethanol, 1% non-essential 

amino acids, 100U/ml penicillin, 100mg/ml streptomycin and 4ng/ml basic fibroblast 

growth factor (bFGF). All reagents were obtained from Invitrogen (Carlsbad, CA) unless 

otherwise noted.  

Alkaline Phosphatase assay. Staining for alkaline phosphatase was performed as per 

manufacturer instructions (Vector Labs, Burlingame, CA). Briefly, the hPSCs were 

washed with deionized water to remove traces of growth medium. The final solution was 

prepared by the addition of the three constituents in 0.2M Tris HCl buffer, pH 8.0. The 

hPSCs were incubated in the final mixture for 40 minutes in the dark and images were 
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acquired using a Nikon Coolpix 5000 camera mounted on a Nikon TS100 Microscope 

(Nikon, Melville, NY).  

Antibodies and Immunocytochemical analysis. hPSCs cultured on the acellular substrates 

were transferred onto 4 chambered glass slides. 4% paraformaldehyde in PBS was used for 

fixation, permeabilization for intracellular markers was achieved with 0.2% Triton X-100 

in PBS and blocked with normal goat serum. Fixed cells were incubated with primary 

antibodies: OCT4 (Santa Cruz Biotechnology, Santa Cruz, CA) and SSEA-4 (Millipore, 

Temecula, CA). Goat anti-mouse IgG conjugated to Alexa 488 (Molecular Probes, Eugene, 

OR) were used as secondary antibodies. Fluorescent images were acquired using a 

CoolSnap EZ camera (Photometrics, Tucson, AZ) mounted on a Nikon Eclipse TE 2000-S 

inverted microscope (Nikon, Melville, NY) with attached image analysis software. All 

image settings were controlled for uniform acquisition between samples. Specifically, 

uniform exposure time was maintained for images acquired from experimental samples as 

well as negative controls for background subtraction. 

In vitro differentiation of hPSCs and histology of hPSC-derived embryoid bodies. To 

generate embryoid bodies (EBs), hPSCs were dissociated using collagenase and 

resuspended in growth medium devoid of bFGF. EB formation was facilitated using 

suspension culture by a hanging drop method, where cells at a density of 25,000 cells/ml 

were suspended from a petri-dish lid in 20μl droplets. After 5 days, the EBs were 

transferred to agarose plates at a density of 25 – 30 EBs per 10mls to facilitate further 

differentiation with media changes every 3-4 days for a total differentiation duration of 15 

days. EBs were prepared for morphological analysis by fixation in 3.7% paraformaldehyde 



41 

(PFA) in 1.5ml microfuge tubes at approximately 15-25 EBs per tube. Once fixed 

overnight, EBS were rinsed with PBS to remove PFA, resuspended in 200μl melted 4% 

low melting point agarose (Sigma Aldrich) at 42ºC and incubated for 2 hours to allow 

settling. Final pelleting and agarose solidification was performed with brief room 

temperature centrifugation at 500g. Agarose embedded samples were removed as single 

plugs and processed by dehydration with increasing ethanol concentration to 100% 

followed by xylene and paraffination in a Leica TP1020 tissue processor. Hematoxylin and 

Eosin (H&E) staining was performed on microscope slide mounted 5μm sections in a 

Leica Autostainer XL workstation (Leica Microsystems, Richmond, IL). Images were 

acquired using an Olympus BX51 microscope (Olympus, Center Valley, PA) using the 

default imaging parameters. 

RNA isolation, real time reverse transcription polymerase chain reaction and gene 

expression analysis. RNA was isolated from hPSCs propagated for 15 passages under 

different conditions and from EBs after 15 days in suspension using Trizol (Invitrogen, 

Carlsbad, CA) and quantified using BioMate3 UV-VIS Spectrophotometer (Thermo 

Scientific, Waltham, MA). cDNA was synthesized from 1μg of RNA using cDNA reverse 

transcription kit (Applied Biosystems, Foster City, CA). Expression of pluripotent genes 

and differentiation markers (Table 3) within undifferentiated and differentiated samples 

were analyzed using quantitative real time RT-PCR (QPCR). QPCR was performed in an 

ABI HT7900 system (Applied Biosystems, Foster City, CA) and the data was acquired 

using Sequence Detection System software (SDS v2.2.1, Applied Biosystems, Foster City, 

CA). 
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Table 3 

List of primers used for determination of relative gene expression of pluripotency and 

germ-layer specific genes as part of quantitative real-time PCR analysis 

 

 

 

Gene 
Name Primer sequence 
  Forward Reverse 
POU5F1/
OCT-4 GAAGGTATTCAGCCAAAC CTTAATCCAAAAACCCTGG 

NANOG 
GATCGGGCCCGCCACCATGAGTGTG
GATCCAGCTTG 

GATCGAGCTCCATCTTCACAC
GTCTTCAGGTTG 

SOX2 GCGGAAAGCGTTTTCTTTG TAATCTGACTTCTCCTCCC 

Neuro D GTCCTTCGATAGCCATTCAC CTTTGATCCCCTGTTTCTTCC 

IGF2 TCCTCCCTGGACAATCAGAC AGAAGCACCAGCATCGACTT 

AFP AGAACCTGTCACAAGCTGTG GACAGCAAGCTGAGGATGTC 
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Gene expression data (three replicates) were acquired and SDS software was used to 

estimate differential gene expression using ΔCT quantification methods. Endogenous 18S 

ribosomal RNA was used for normalization. Relative gene expression for hPSCs 

propagated on acellular substrates was assessed against hPSCs propagated on MEFs. 

Relative gene expression of differentiated EBs obtained from different conditions was 

assessed against hPSCs propagated under the original condition. Expression Index (EI) 

was used to determine the relative differentiation state of cells [200] and was based on the 

average CT values from triplicate measurements. An expression ratio of two or more genes 

was determined using a mathematical model based on the geometric average of assessed 

genes, previously described in detail [201], given by the following equation: 
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E is the PCR efficiency calculated from dilution series of purified PCR products, CT is the 

threshold cycle, and m and n are the numbers of genes that are up and down regulated upon 

differentiation respectively. KRS is the relative sensitivity constant and was not determined 

as it does not affect relative comparisons between samples.   

Preparation of hPSC for karyotype analysis. hPSCs propagated on acellular substrates for 

> 15 passages were subjected to cytogenetic karyotype analysis as per earlier published 

protocols [190]. Briefly, hPSCs were incubated with Ethidium Bromide (12 μg/ml) for 40 

min at 37ºC, 5% CO2, followed by 120ng/ml of colcemid (Invitrogen, Carlsbad, CA) 

treatment for 20 min. The cells were treated with 0.25% trypsin, and dislodged cells were 

centrifuged at 200g for 8 min at room temperature. The cell pellet was gently resuspended 
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in 0.075 M KCl solution, and fixed in a solution containing 3:1 of methyl alcohol and 

glacial acetic acid. Fixed cells were dropped on wet slides, air dried and baked at 90°C for 

1 hour. G-banding was performed for visualizing chromosomes using Trypsin-EDTA and 

Lieshman Stain (Giemsa/Trypsin/Lieshman technique, GTL) by immersing slides in 1X 

Trypsin-EDTA with 2 drops of 0.4N Sodium Phosphate (Na2HPO4) for 20 to 30 seconds, 

rinsed in distilled water and stained with Lieschman Stain (Sigma) for 1.5 minutes, rinsed 

in distilled water, and air dried. Twenty metaphases of each sample were examined.   

 

Results 

Extracellular matrix based decellularized substrates allows expansion of hPSCs. 

Decellularization using ammonia solution lyses the cells leaving behind an extensive 

ECM-based network that contributes to hPSC adhesion and propagation. A schematic of 

the procedure for generating extracellular matrix-based substrate is shown in Figure 3. 

Karyotypically normal hPSCs (WA09 and hiPSC) used in this study were cultured on 

MEFs for < 60 passages, while the aneuploid BG01v was cultured on MEFs for <75 

passages prior to transfer onto acellular substrates. Upon transition of the three hPSCs onto 

the acellular substrates, minimal spontaneous differentiation was observed during culture 

condition transition. hPSCs formed both undifferentiated colonies with tight boundaries as 

well as heterogeneous colonies containing a population of differentiated cells at the colony 

boundaries and between colonies as seen in earlier studies [20, 48]. However, the transition 

effect diminished within 2-3 passages and undifferentiated colonies with tight boundaries 

were observed that continued through subsequent passages. The culture conditions permit  
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Figure 3:  
Schematic of the preparation of acellular substrates for hPSC propagation. Feeder cells are 
allowed to grow past 100% confluency for ECM deposition. Treatment with 20mM 
ammonia solution for 5 min lyses the cells to expose the ECM layer onto which hPSCs are 
seeded 
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uniform hPSC propagation during subsequent passages, resulting in very few differentiated 

cells in the later passages. The aneuploid BG01v cultured on acellular substrates did not 

exhibit typical morphological characteristics as when propagated on MEFs. BG01v formed 

a continuous layer of spindle shaped or fibroblastic cells on acellular substrates, without 

losing any of its core pluripotent characteristics (Appendix A). The normal hPSC lines 

(WA09 and hiPSC) however exhibited similar morphology on acellular substrates when 

compared to their respective MEF based cultures (Figure 4 a-f). The hPSCs formed 

colonies with distinct boundaries and demonstrated high nuclear to cytoplasmic ratio. This 

difference in cell morphology between the two types could be due to the difference in 

passaging techniques; BG01v cells were enzymatically passaged leading to formation of 

single cell suspension, whereas the normal lines were maintained as clusters during 

passaging. It was observed that the hPSC colonies were flat and enlarged compared to 

those propagated on feeders. The larger size of the colony, while maintaining normal 

morphology on the acellular substrates, could be attributed to the availability of more 

surface area for spreading and propagation. hPSCs were successfully cultured on 

inactivated HFFs and HDFs feeder layers for 15 passages (Figure 5); however, in all our 

analyses, cultures of the three different hPSCs on MEF feeders were used as controls. 

Under the passage conditions adopted, the doubling time for the hPSCs passaged on 

acellular substrates was in the range of 24-30 hours, which is comparable to what was 

observed in other MEF and feeder-free studies [20, 48, 202].  
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Figure 4: 
hPSCs maintain embryonic characteristics on acellular substrates: WA09 hESCs and 
hiPSCs maintain high nuclear to cytoplasmic ratio and tight boundaries on control, MEFs 
(a, d) and on acellular HFF (b,e) and HDF substrates (c, f). Positive expression of alkaline 
phosphatase in WA09 (g, h, i) and hiPSC (j, k, l) propagated for 15 passages on MEF (g,j), 
aHFF (h,k) and aHDF (i,l) was observed, Scale bar = 100 μm 
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Figure 5: 
WA09 hESCs maintain high nuclear to cytoplasmic ratio and tight boundaries on 
inactivated HFFs (iHFFs) (A) and on inactivated HDFs (iHDFs) (B). Positive expression 
of alkaline phosphatase in WA09 (C) propagated for 15 passages on iHFFs (C) and iHDF 
(D) was observed, Scale bar = 100 μm 
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hPSCs cultured on MatrigelTM (as a negative control) without the additional 

supplementation of the growth medium led to heterogeneous populations of 

undifferentiated and differentiated colonies (Figure 6 ), similar to what has been observed 

in previous studies [192]. 

Acellular substrates maintains undifferentiated state of hPSCs 

Validation of the acellular substrates for stable undifferentiated hPSC propagation was 

based on alkaline phosphatase staining and immunocytochemical analysis for expression 

of transcription factor OCT4 and the cell surface marker SSEA4. hPSCs propagated on 

different acellular substrates were assessed for their expression at 5, 10 and 15 passages 

post-transfer from feeders. Positive robust expression of alkaline phosphatase, a reliable 

marker of pluripotency [203], is indicative of sustained maintenance of the undifferentiated 

state of hPSCs (Figure 4). At intermittent passages as well as on passage 15, positive 

expression for pluripotency markers tested was observed (Figure 7). Further, monitoring 

the expression of the nuclear marker 4',6-diamidino-2-phenylindole (DAPI) under all the 

acellular conditions served the purpose of staining any nuclear/DNA material left behind 

from the decellularization process. The absence of additional staining within the substrate 

was indicative of an efficient lysis and post-decellularization wash procedure (Figure 8).  
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Figure 6: 
Differentiation seen in hPSC maintained on Matrigel: WA09 hESCs maintained on 
MatrigelTM in growth medium without additional supplementation produce (A) 
heterogeneous undifferentiated and differentiated cells within the colonies (A) and stain 
positive/negative for alkaline phosphatase (B). Scale bar = 100 μm. 
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Figure 7: 
Pluripotent markers expressed in hPSCs maintained on acellular substrates: Positive 
expression of stage specific embryonic antigen (SSEA4) (a-f) in WA09 (a, b, c) and hiPSC 
(d, e, f) propagated for 15 passages on MEF (a, d), aHFF (b, e) and aHDF (c, f). 
Expression of OCT4 (g-l) in WA09 (g, h, i) and hiPSC (j, k, l) propagated for 15 passages 
on MEF (g,j), aHFF (h,k) and aHDF (i,l) was observed. All slides were stained with DAPI 
(blue) to identify cell nuclei. Scale bar = 50 μm. 
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Figure 8: 
Decellularization causes loss of nuclear material. (A) Fibroblasts stain positive for DAPI 
indicating intact nuclei. (B) Acellular fibroblasts and (C) MatrigelTM exhibit minimal 
staining for DAPI, indicating absence of nuclear material. Scale bar = 50 μm. 
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Gene expression analysis validates acellular substrates for stable undifferentiated hPSC 

propagation 

Differential expression of pluripotency markers (POU5F1, NANOG and SOX2) was 

expressed as CT values normalized against the 18S rRNA housekeeping gene for each 

sample. For the purposes of the comparisons across the different experimental conditions, 

the ΔCT values of each marker within each experimental sample are presented against that 

of MEFs, as this eliminates the requirement for normalization with the calibrator.  

Comparable ΔCT values of all the pluripotent genes across different culture conditions and 

cell lines are indicative of the maintenance of undifferentiated state of hPSCs on acellular 

substrates (Figure 9). Statistical analyses indicated no significant difference (p>0.05) in the 

12 different comparisons for the pluripotency markers tested between hPSCs propagated 

on the acellular substrates and those propagated on MEFs. However, a significant 

difference (p<0.05) was observed for only one comparison in the case of POU5F1 

expression within hiPSCs grown on aHFFs. In this particular case, there was a three-fold 

decrease in POU5F1 expression; however the expression of NANOG and SOX2 within 

this experimental condition was comparable to that of those on MEFs.  

Acellular substrates maintains in vitro differentiation potential 

Functional pluripotency of the hPSCs was assessed by in vitro differentiation (ectoderm, 

endoderm and mesoderm) via formation of embryoid bodies. Differential expression of 

germ layer specific markers Neurogenic differentiation 1 (NEUROD1), Insulin-like 

Growth Factor 2 (IGF2) and α-Fetoprotein (AFP) were expressed as CT values normalized 

against the 18S rRNA housekeeping gene for each sample.  
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Figure 9: 
Normalized gene expression of undifferentiated markers in WA09 (a) on MEFs (A); 
WA09 on acellular HFF (B) and WA09 on acellular HDFs (C). Normalized gene 
expression of undifferentiated markers in hIPSCs (b) on MEFs (A’); hiPSCs on acellular 
HFF (B’) and hiPSCs (b) on acellular HDFs (C’). Significant difference (p<0.05) between 
the group is indicated by the asterisk. 
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Statistical analyses indicated that the EBs generated from the WA09 and hiPSC on the 

different acellular substrates demonstrated significantly greater expression (p<0.01) of all 

three germ layer specific markers analyzed (Figure 10 a, b) compared to their 

undifferentiated cells cultured in the same experimental conditions. Here, it is important to 

note that ΔCT values (normalized against 18S) should be interpreted counter-intuitively; 

where a lower value indicated higher expression. Comparative gene expression analysis 

based on fold change calculations also demonstrate increased expression of germ-layer 

specific markers in EBs generated from the WA09 and hiPSC on the different acellular 

substrates (Table 4). Further, the differentiation state of the hPSCs was quantified using the 

‘expression index’ as a metric to compare the undifferentiated hPSCs against the EBs 

generated from the hPSCs grown under the same condition. For the two cell lines (WA09 

and hiPSC) analyzed, the expression index of the undifferentiated sample (15 passages) 

was 251 and 612 on aHFFs (Figure 11 a, b) and 180 and 50 on aHDFs (Figure 11c, d), 

while the expression index of the 15-day old EBs was found to be 1.5 and 2 on aHFFs 

(Figure 11a, b) and 1.1 and 2.3 on aHDFs (Figure 11c, d).    

In addition to the gene expression of markers indicative of germ layer formation in 

EBs, histological studies were performed to assess the morphology of the differentiated 

tissue. As shown in Figure 12 (a-r), histologic evidence of tri-lineage maturation was 

present in the EB-sections from hPSCs propagated on acellular substrates and on MEFs. 

Specifically, neuroepithelial differentiation was observed as mature-type neuroepithelial 

rosettes (Figure 12, a, d, g, j, m and p). Mesodermal differentiation was evident as fibrous 
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connective tissue (Figure 12 b, e, h, k, n and q), while endodermal differentiation was 

evident as secretory intestinal-type epithelia (Figure 12 c, f, i, l, o and r). 

Cytogenetic analysis confirms feasibility of acellular substrates for stable hPSC 

undifferentiated. 

In order to determine the stability of hPSCs propagated continuously on the acellular 

substrates, cytogenetic analysis was performed on twenty G-banded metaphase spreads 

from WA09 and hiPSC cells after 15 passages on acellular substrates.  Nineteen cells from 

the WA09 sample demonstrated a normal female karyotype of 46,XX (Figure 13a), while 

one cell demonstrated a non-clonal chromosome aberration; 46,X,t(X;19)(q22, q13.3), 

which is most likely a technical artifact. In the case of hiPSCs, all twenty cells 

demonstrated a normal male karyotype of 46,XY (Figure 13b). None of the samples 

exhibited trisomies for chromosome 12 and/or 17, which are considered to be the common 

abnormalities observed in hPSC cultures [190]. 
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Figure 10: 
Normalized gene expression of germ layer specific markers in (a) WA09 on acellular 
HFFs (P); EBs generated from WA09 on acellular HFFs (Q); hiPSC on acellular HFFs (R); 
and EBs generated from hiPSC on acellular HFFs (S). Normalized gene expression of 
germ layer specific markers in (b) WA09 on acellular HDFs (P’); EBs generated from 
WA09 on acellular HDFs (Q’); hiPSC on acellular HDFs (R’); and EBs generated from 
hiPSC on acellular HDFs (S’). Significant differential gene expression (p<0.01) in all three 
lineage specific markers was observed. 
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Table 4: 
Increase in gene expression of germ layer specific markers in embryoid bodies compared 
to their undifferentiated counterparts on different substrates is represented as fold change 
values. FC = Fold change, SD = Standard deviation 
 

Fold change values of germ layer specific genes in embryoid bodies 
compared to their undifferentiated counterparts. 

Substrates/Cell Line FC ± SD 

α-Fetoprotein -- Endodermal marker 

aHFF – WA09 34.61 ± 3.47 

aHDF –WA09 523.9 ± 204.2 

aHFF – hiPS 87.67 ± 2.51 

aHDF - hiPS 9.26 ± 0.72 

Insulin like growth factor 2 -- Mesodermal marker 

aHFF – WA09 1.58 ± 0.28 

aHDF – WA09 25.9 ± 8.7 

aHFF – hiPS 240 ± 33.9 

aHDF - hiPS 5.9 ± 0.04 

Neurogenic Differentiation marker 1-- Ectodermal marker 

aHFF – WA09 30.9 ± 1.7 

aHDF – WA09 18866.4 ± 7266.3 

aHFF – hiPS 1.5 ± 0.35 

aHDF - hiPS 12.7 ± 1.4 
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Figure 11: 
QPCR analysis of undifferentiated hPSCs and differentiated EBs derived from hPSCs. 
Differential expression index of a) WA09 hPSC and WA09-derived EBs from acellular 
HFFs, b) WA09 hPSC and WA09-derived EBs from acellular HDFs, c) hiPSC and hiPSC-
derived EBs from acellular HFFs and d) from acellular HDFs based on analysis of six 
genes (POU5F1, NANOG, SOX2, AFP, IGF2 and NEUROD1). 
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Figure 12: 
Histologic evidence of tri-lineage differentiation in embryoid bodies generated from hPSCs.  
Shown are images of hematoxylin and eosin-stained histologic sections of EBs from WA09 
propagated on MEFs as a positive control (top row, a-c); WA09 cells propagated on the acellular 
HFFs (second row, d-f) and acellular HDFs (third row, g-i) and hiPSC propagated on MEFs (fourth 
row, j-l) hiPSC propagated on acellular HFFs (fifth row m-o) and hiPSC propagated on acellular 
HDFs (bottom row p-r).  Tri-lineage potential is demonstrated as ectodermal (neuroepithelial) 
differentiation (a, d, g, j, m and p); mesodermal (fibrous connective) differentiation (b, e, h, k, n 
and q) and endodermal (intestinal) differentiation (c, f, I, l, o and r). Magnification is 200x total 
(10x ocular, 20x objective). Each scale bar represents 50 μm in length. 
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Figure 13: 
Cytogenetic analysis on 20 metaphase spreads was performed on WA09 (a) and hiPSC (b) 
cultured on acellular HFFs. The G-banding karyotype of WA09 hESC after 15 passages on 
decellularized HFFs was 46,XX and that of hiPSCs was 46,XY. 
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Discussion 

This study involves the development of a feeder-free system for stable undifferentiated 

hPSC propagation that demonstrates several significant steps towards the improvement of 

hPSC culture systems. The system developed was effective in its generation of a substrate 

of human origin and offered a viable alternative to traditional mouse feeder layer based 

systems. Further, other feeder-free systems have relied heavily on supplementation with 

excess basic fibroblast growth factor (bFGF) or MEF-CM for long term maintenance of 

hPSCs in their undifferentiated state. Given the cost inffectiveness and the use of non-

human derived components in those systems, our study has utilized growth medium 

without the need for conditioning prior to use on the acellular substrates. Furthermore, 

previous studies have reported the variability that exists between different hPSCs and the 

usefulness of comparing experimental outcomes across distinct hPSCs [202]. To 

demonstrate the efficacy of the acellular substrates, we used hPSCs from two embryonic 

(BG01v and WA09) in addition to an induced pluripotent stem cell from human fibroblasts 

in our studies. Positive expression of key pluripotent markers based on quantitative PCR 

and immunocytochemical analyses is a clear indicator of the sustained maintenance of self 

renewal of hPSCs on the acellular substrates. Quantitative PCR experimental outcomes 

validate the comparable expression of pluripotent genes, within the two hPSCs evaluated 

on the two different acellular substrates. Gene expression values of germ-layer specific 

markers analyzed within undifferentiated populations of cells related to high CT values are 

indicative of low differentiation within the hPSC colonies. Furthermore, the values based 
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on the EI demonstrate high values for undifferentiated hPSCs compared to differentiated 

samples (EBs) obtained from the hPSCs on the different substrates. A collective expression 

index based on up and down-regulated genes at any stage of hPSC culture is an attempt to 

quantify the level of differentiation in cells grown in different culture conditions. In this 

study, six markers; three pluripotency and three germ layer makers were used, with the 

robustness of such a metric increasing with the inclusion of more reporter genes. This 

method of PCR data representation is not susceptible to small changes in CT values and 

delivers a quality control indicator for the optimization of novel substrates in stable 

undifferentiated hPSC propagation. The expression indexes of hPSCs maintained on 

feeder-free substrates is comparatively lower than that of hPSCs propagated on MEFs 

(data not shown), as observed in this study and elsewhere [200]. The reason for this 

discrepancy is unknown; however the hPSCs maintained on acellular substrates display all 

characteristics of self-renewal and pluripotency that include tri-lineage differentiation 

potential as shown by histological analysis and are indistinguishable from each other in 

that regard. 

In this study, we have used MEF-based feeder systems as a control for evaluating 

the usefulness of the human acellular substrates developed. Two immortalized human 

fibroblasts (foreskin and dermal) and decellularized substrates derived from the human 

fibroblasts were extensively characterized for stable hPSC propagation. Since MEFs have 

been used for the isolation, derivation and expansion of many of the existing hPSCs, we 

speculate that most of the hPSCs have developed a dependency on MEFs and MEF 

secreted components. The observed temporary transition effect related to some detectable 
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background differentiation during the early passages on the acellular substrates could have 

been a direct result of the period required for acclimatization of the hPSCs to the acellular 

substrates. However these transition effects subside for all hPSCs after the third passage on 

all the acellular substrates evaluated. In our culture system, the hPSCs were propagated in 

standard medium supplemented with 4ng/ml of bFGF, as opposed to 50-100 ng/ml bFGF 

in other reported feeder-free systems that have used MEF-CM or more defined medium 

[20, 192, 204]. The minimal requirement of supplementation demonstrates the efficacy of 

the acellular substrates in maintaining the undifferentiated state of the hPSCs without the 

need for conditioning of the medium or addition of higher bFGF concentrations. However, 

future efforts with regard to optimization of medium formulations might improve the 

propagation of stable hPSCs on the acellular substrates.  

Previous studies have demonstrated the relevance of culture and passaging 

conditions on the genomic stability of hPSCs. Aneuploid cells have been observed in long-

term culture of hESCs under feeder-free conditions, with trisomy 20 as the most frequent 

mutation [202], and trisomy 12 and 17 under feeder-based conditions [190]. In our studies, 

cytogenetic analyses conducted on hPSCs propagated on the acellular substrates 

demonstrate the absence of gross chromosomal abnormalities.  

In conclusion, we have demonstrated the development and characterization of a 

human acellular substrate based feeder-free system as providing unique and functional 

benefits for stable undifferentiated hPSC propagation, as opposed to the common murine-

based MatrigelTM substrate, that include reduced contamination potential due to extensive 

culture manipulations of parallel stem and feeder cultures, the potential for xeno-free scale-
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up based on a thorough characterization of the substrate components and the reduced need 

for factor additives or medium conditioning. Further, the acellular substrate based system 

is devoid of non-human derived products and actively promotes long term propagation of 

hPSCs while maintaining self-renewal, and pluripotent characteristics and most 

importantly the genomic stability. It is possible that the matrix proteins might bind and 

sequester essential growth factors from the culture medium or might contain factors from 

fibroblasts which aid in the maintenance of self-renewal. Though this study does not 

eliminate the need for an additional cell line to be maintained in parallel, we are in the 

process of characterizing the core components of the ECM that will permit us to create 

defined matrices leading to elimination of maintenance of dual cultures. Alternately, 

lyophilization of the extracted substrates permit long-term storage for incorporation in 

hPSC culture as and when desired (Appendix D). Further understanding of the mechanism 

of action, modifications and optimization of the system will rely on a detailed 

characterization of the components of the extracellular matrix of the substrates and will 

contribute to a better understanding of the key physical cues required for hPSC self-

renewal and for routine adaptation of the substrates for stable hPSC propagation. 
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CHAPTER 3: Characterization and application of human fibroblast-derived 

extracellular matrix for human pluripotent stem cell propagation 

 

Abstract 

Recent studies from our laboratory have shown that acellular substrates generated from 

human fibroblasts successfully maintained human pluripotent stem cells (hPSCs) in their 

undifferentiated state for extended periods. Towards better characterization of the core 

components in the substrates, we conducted proteomic analyses to identify the extracellular 

matrix (ECM) proteins in mouse embryonic and two human fibroblasts. Our studies 

identified heparan sulfate proteoglycan (HSPG) along with other major ECM proteins as 

core components of the substrates derived from mouse and human fibroblasts, these results 

were validated immunocytochemically. In our attempt to synthesize substrates that mimic 

the biological activity of fibroblast-deposited ECM, combinations of HSPG and other core 

ECM proteins were formulated and assessed for hPSC self-renewal. WA09 and BG01v 

hPSCs maintained on these substrates exhibit multiple characteristics of pluripotency that 

include (a) tight colony formation with typical stem cell morphology (b) positive 

expression of alkaline phosphatase (c) positive expression of SSEA3, SSEA4 and OCT4 

based on immunocytochemical analyses (d) POU5F1, NANOG and SOX2 mRNA 

expression and (e) in-vitro differentiation and expression of germ-layer specific markers. 
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Our studies also reveal that although HSPG by itself does not support hPSC self-renewal, a 

substrate that combines HSPG and fibronectin is sufficient for undifferentiated propagation 

of hPSCs. These studies form the basis for identification and development of appropriate 

ECM components in a substrate that synergistically promotes activation of adhesion and 

signaling pathways responsible for hPSC self-renewal.  

Introduction 

Human pluripotent stem cells (hPSCs) that include human embryonic stem cells (hESCs) 

and human induced pluripotent stem cells (hiPSCs) have the capacity to self-renew 

indefinitely or differentiate into the three primary germ layers and subsequently form 

specialized cell types [1, 2, 4, 5]. These unique characteristics of hPSCs make them 

suitable for use in regenerative biomedical therapies, drug testing platforms and as in vitro 

models for developmental biology studies. However, one of the major hurdles facing stem 

cell researchers is the ability to efficiently produce stable hPSCs prior to their use in 

different applications. Current methodologies provide limited opportunities for generating 

stable hPSC populations due to the lack of a thorough understanding of biochemical and 

biophysical cues required for unlimited self-renewal. Identification and characterization of 

key signaling factors, molecular pathways and extracellular matrix components responsible 

for self-renewal thus provide opportunities for the development of bioprocessing strategies 

for hPSC propagation systems [195]. 

Traditional methods for the derivation and subsequent propagation of hPSCs have 

involved the use of mouse embryonic fibroblasts (MEFs) as feeder layers, supplemented 
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with culture medium containing non-human derived serum [2, 189] . The risk of 

contamination with xenogenic pathogens under these culture conditions have led to the 

incorporation of growth factors such as basic fibroblast growth factor (bFGF) and serum 

replacers in hPSC propagation systems. Culture systems that use human feeders have also 

been identified to minimize association of hPSCs with nonhuman factors so as to develop 

propagation systems suitable for therapeutic applications [20]. Within an hPSC culture 

system, signaling molecules like basic fibroblast growth factor (FGF2) [34], Activin A 

[205], and noggin [206] have been shown to repress spontaneous differentiation rather than 

maintain self-renewal. Given that Activin A has also been shown to induce hPSC 

differentiation to the mesodermal lineage [106], there is a definite need for a better 

understanding of the mechanisms employed by the hPSCs to self-renew and/or 

differentiate.  

Successful use of culture medium conditioned by mouse or human feeder cells in 

the maintenance of hPSCs demonstrates that the trophic factors secreted in the growth 

medium or the matrix deposited by the feeder layers [48], [207] play an important role in 

hPSC self-renewal. Proteomic analysis of mouse and human fibroblast conditioned 

medium have provided some preliminary insights into the feeder-derived factors that 

contribute to hPSC self-renewal[208, 209]. In these studies, a number of proteins of 

extracellular and intracellular origin of known biological functions have been detected, 

with the overall goal of identification of biological pathways responsible for hPSC self-

renewal. However, given the consensus in the stem cell community of the absence of a 
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defined system for hPSC maintenance, it is believed that a number of unidentified factors 

may be required to maintain hPSC self-renewal [210]. 

Our current study utilized proteomic approaches to isolate and identify the proteins 

within the extracellular matrix in three well characterized feeder layers, human foreskin 

fibroblasts (HFF), human dermal fibroblasts (HDF) and mouse embryonic fibroblasts 

(MEF). Peptide identification involved two step liquid chromatography (LC) separation 

utilizing strong cation exchange (SCX) and reverse-phase sequential step elution followed 

by peptide sequence analysis using tandem mass spectrometry. Immunocytochemical 

analysis was used to validate the presence of key extracellular matrix proteins in the 

different feeder layers. To assess the efficacy of the ECMs identified, commercially 

available proteins were used to formulate ECM-protein based substrates (EPBS) and their 

ability to maintain undifferentiated hPSCs based on multiple evaluation criteria for 

pluripotency was studied. Our studies identified heparan sulfate proteoglycan (HSPG) as a 

core component of the EPBS developed for hPSC self-renewal with additional studies 

indicating that a combination of HSPG and fibronectin as being sufficient for hPSC self-

renewal. Our results suggest that ECM components that contribute to adhesion and 

activation of pluripotency-related signaling pathways will play a critical role in the 

development of substrates for long-term stable hPSC propagation. 

Materials and Methods 

2.1 Preparation of acellular substrates from mouse and human feeders 

Mouse embryonic fibroblasts (MEFs) were isolated from embryos derived from 13.5d CF1 

pregnant mice, and maintained in Dulbecco’s modified Eagle’s medium with 4.5 g/L 
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glucose, 2mM L-Glutamine, 1% Penicillin/Streptomycin and 10% fetal bovine serum. 

Human foreskin fibroblasts (HFFs) were maintained in Dulbecco’s modified Eagle’s 

medium with 4.5 g/L glucose, 2mM L-Glutamine, 1% Penicillin/Streptomycin and 10% 

cosmic calf serum and 2% Medium 199 (10x) to create a blend of basal medium 

comprising of M199 and DMEM. Human dermal fibroblasts (HDFs) were maintained in 

Minimum Essential medium supplemented with 2mM L-Glutamine, 1% 

Penicillin/Streptomycin, 15% fetal bovine serum, non-essential and essential amino acids, 

sodium pyruvate and vitamins. 

Acellular substrates were generated by allowing the cultures (HFFs and HDFs) to 

proliferate 6 to 8 days past 100% confluency. In the case of MEFs, inactivated 6-8-day old 

MEFs seeded at a density of 300,000/ 35mm dish was used to generate acellular substrates. 

The plates were washed with sterile distilled water to remove traces of growth medium 

followed by a short exposure to 20mM NH3 solution to lyse the fibroblasts leaving behind 

the deposited ECM. The substrates were thoroughly washed with phosphate buffered 

saline (PBS) to avoid the deleterious effects of the alkaline ammonia solution.  

2.2 Preparation of samples derived from acellular substrates for proteomic analysis 

Post acellularization as described above, the exposed extracellular protein matrix was 

scrapped off the tissue culture plate for processing. Given that different methodologies 

developed for protein processing and analysis can lead to different results, we decided to 

employ two independent methodologies as part of our proteomic analysis on the ECM 

substrates and pool together the data obtained. However, for the purposes of our studies, 

we only focused on ECM-proteins that were common in all three substrates that were 
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analyzed. The first method involved processing of the protein pellets and analysis based on 

previously published protocols [211, 212]. Proteins were denatured with 8M urea, reduced 

with DTT, alkylated with iodoacetamide and then digested overnight with trypsin in 

ammonium bicarbonate buffer. Resulting tryptic peptides were desalted on C8 cartridges 

(Michrom BioResources) and subjected to 2D Nano LC/MS/MS analyses on a Dionex 

nano LC system. For the first dimension separation we used  300 μm ID SCX column 

(PolyLC Polysulfoethyl A 150X.3mm, 5 um, 200 A) using a 15 ammonium formate (in-

house made, 0.8M solution) step gradient (0-100%, pH3.6-6.5) at flow rate 5 μl/min. 

Peptides eluted from SCX column are trapped on C4 precolumn (Dionex PepMap300, 5 

μm, 300A, 300μm ID X 5 mm), desalted (0.1% formic acid, 2% ACN) and then separated 

on 75 μm ID C18 column (Dionex NAN75-15-03-C18 PepMap100 stationary phase, 3 

μm) using acetonitrile gradient at flow rate 200 nl/min and electrospayed to LCQDeca XP 

Plus ion trap mass spectrometer. The mass spectrometer was operated in data-dependent 

mode. Survey full scan MS spectra were acquired from m/z 350 to 2000 and the four most 

abundant ions in were selected and fragmented to produce tandem mass spectra. The target 

ions already selected twice for MS/MS were dynamically excluded for 3 min. A 

normalized collision energy of 35% was used for peptide dissociation. The MS/MS spectra 

were recorded in the profile mode. The MS/MS data were analyzed using the SEQUEST 

search algorithm (Bioworks 3.2, Thermo) program against NCBI human and mouse 

protein database and its reversed complements, with a 1% false-positive rate used to obtain 

the peptide IDs. Spectra were searched allowing maximum mass deviation of 3 amu and 2 

missed cleavage sites and only peptides showing fully tryptic termini were considered. 
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As part of the second independent method employed for proteomic analyses, the 

protein pellets were dissolved using 8M Urea in 10mM Tris Buffer at pH 8.0 followed by 

separation in 10% SDS-PAGE gel to filter out cellular debris. The gel section with the 

separated proteins was then divided into four pieces, for a crude reduction of sample 

complexity for use in mass spectrometric analysis. The gel pieces were transferred to a 

siliconized tube, washed and destained in 200 µL 50% methanol overnight. The pieces 

were subsequently dehydrated in acetonitrile, rehydrated in 30 µL of 10 mM dithiolthreitol 

(DTT) in 0.1 M ammonium bicarbonate and reduced at room temperature for 0.5 h. After 

removal of the DTT solution, samples were alkylated in 30 µL 50 mM iodoacetamide in 

0.1 M ammonium bicarbonate at room temperature for 30 min. This was followed by 

dehydration of the gel pieces in 100 µL acetonitrile, and rehydration in 100 µL 0.1 M 

ammonium bicarbonate, followed by complete drying by vacuum centrifugation. Further 

rehydration in 50 mM ammonium bicarbonate (20 ng/µL trypsin) on ice for 10 min was 

followed by removal of excess trypsin solution and addition of 20 µL 50 mM ammonium 

bicarbonate solution.  The sample was digested overnight at 37 oC and the peptides formed 

extracted from the polyacrylamide in two 30 µL aliquots of 50% acetonitrile/5% formic 

acid. These extracts were combined and evaporated to 15 µL for MS analysis.   

2.3 Proteomic analysis 

The Liquid Chromatography-Mass spectrometry (LC-MS) system consisted of a Thermo 

Electron Deca XP Plus mass spectrometer system with a nanospray ion source interfaced 

to a self-packed 8 cm x 75 μm ID Phenomenex Jupiter (Torrance, CA) 10 μm C18 

reversed-phase capillary column. 5 µL of the extract was injected onto the column using 
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pressure and the peptides eluted from the column by an acetonitrile/0.1 M acetic acid 

gradient at a flow rate of 0.4 µL/min over 80 minutes. The nanospray ion source was 

operated at 2.8 kV. The digest was analyzed using the double play capability of the 

instrument acquiring full scan mass spectra to determine peptide molecular weights and 

product ion spectra to determine amino acid sequence in sequential scans. The data were 

analyzed by database searching using the Sequest search algorithm (Bioworks 3.2, 

Thermo) against IPI human and IPI mouse database (European Bioinformatics Institute). 

2.4 Immunocytochemical validation of extracellular matrix proteins 

Fibroblasts and acellular substrates derived from the fibroblasts were fixed using 4% 

paraformaldehyde in PBS. Fixed cells and substrates were incubated with primary 

antibodies: collagen I, collagen III, fibronectin and heparan sulfate proteoglycan (Abcam, 

Cambridge, MA). Goat anti-mouse IgG conjugated to Alexa 488 (Molecular Probes, 

Eugene, OR) was used as the secondary antibody for the collagens and fibronectin. Goat 

anti rat IgG conjugated to Alexa 594 (Molecular Probes, Eugene, OR) was used for HSPG. 

Fluorescent images were acquired using CoolSnap EZ camera (Photometrics, Tucson, AZ) 

mounted on a Nikon Eclipse TE 2000-S inverted microscope (Nikon, Melville, NY) with 

attached image analysis software. All image settings were controlled for uniform 

acquisition between samples. Specifically, uniform exposure time was maintained for 

images acquired from experimental samples as well as negative controls for background 

subtraction. All primary antibodies were obtained from Santa Cruz (Santa Cruz, CA), 

unless otherwise stated. 

2.5 Formulation of different ECM-protein based substrates for hPSC propagation. 
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Commercially available proteins corresponding to basement membrane of Engelbreth-

Holm-Swarm mouse sarcoma derived heparan sulfate proteoglycan (HSPG) and laminin at 

concentrations of 10ng/cm2 and 1mg/cm2 respectively; human plasma derived Fibronectin 

(Fn) (Millipore, Billerica, MA) and Vitronectin (Vn) at concentrations of 3μg/cm2 and 

10ng/cm2 respectively were used to formulate the combinatorial ECM protein based 

substrates (EPBS) for evaluation in hPSC propagation. Different concentrations of the 

ECM proteins were initially tested to determine the appropriate combinations for use in the 

testing for hPSC maintenance. Tissue culture plates were treated with the different 

formulations and allowed to incubate for one hour at room temperature prior to seeding 

with hPSCs. The different combinations of the four ECM proteins tested were HSPG-Fn 

(HF), HSPG-Ln (HL), HSPG-Vn (HV), HSPG-Fn-Ln (HFL), HSPG-Fn-Vn (HFV), 

HSPG-Ln-Vn (HLV) and HSPG-Fn-Ln-Vn (HFLV). The purpose of this combinatorial 

study was to examine the specific effects of HSPG in promoting adhesion and maintenance 

of pluripotent capabilities of two different hPSCs. All proteins were acquired from Sigma 

unless otherwise specified. 

2.6 Evaluation of pluripotent capabilities of hPSCs on ECM-based substrates 

Human pluripotent stem cells (karyotypically normal WA09s and karyotypically abnormal 

BG01v) were routinely maintained in direct co-culture with MEFs in DMEM/F12 

supplemented with 20% knockout serum replacement, 0.1mM β-mercaptoethanol, 1% non-

essential amino acids, 100U/ml penicillin, 100mg/ml streptomycin and 4 ng/ml basic 

fibroblast growth factor. For the purposes of testing, WA09 and BG01v hPSCs were 

transferred from MEFs onto 35mm dishes coated with different EPBS in growth medium 
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supplemented with 100ng/ml of bFGF, and subcultured by treatment with collagenase for 

upto 5 passages. 

 Routine staining for alkaline phosphatase was performed as per manufacturer 

instructions (Vector Labs) and as published previously [213]. Immunostaining of hPSCs 

on the EPBS and in suspension for cytospin applications was also based on previously 

published protocols [214]. Fixed cells were incubated with primary antibodies: OCT4 

(Santacruz Biotechnology, Santa cruz, CA), SSEA3 and SSEA-4 (Millipore, Temecula, 

CA). Goat anti-mouse IgG conjugated to Alexa 488 for OCT4 and SSEA4 and goat anti-

mouse IgM conjugated to Alexa flour 594 for SSEA3 (Molecular Probes, Eugene, OR) 

were used as secondary antibodies. Fluorescent images were acquired using a Nikon 

Eclipse TE 2000-S inverted microscope (Nikon) with attached image analysis software. 

All image settings were controlled for uniform acquisition between samples. Specifically, 

uniform exposure time was maintained for images acquired from experimental samples as 

well as negative controls for background subtraction. 

The cytospin apparatus was assembled and used based on previously published protocols 

[215]. A plastic slide, in this case the plastic base of a 4 well Permanox® chamber slide 

was used, holes were punched to facilitate the formation of a monolayer of cells onto a 

cleaned glass slide. 3MM filter paper (Whatman Int. Ltd., Maidstone, England) with holes 

corresponding to those on the plastic slide with 0.1-10 μl micropipette cut in half was 

wedged between the slides. A second uncut micropipette tip is inserted into the first and a 

small volume of the cell suspension was deposited into the apparatus followed by 

centrifugation at 1000rpm for the generation of the monolayer. Fluorescent images were 
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acquired using a Nikon Eclipse TE 2000-S inverted microscope (Nikon) with attached 

image analysis software. All image settings were controlled for uniform acquisition 

between samples as described earlier. For a quantitative analysis of SSEA3/SSEA4 

expression on two different EPBS, the number of positively stained cells within three 

independent regions of interest was counted and the mean values reported. (Appendix D) 

In vitro differentiation potential of hPSCs propagated on EPBS was assessed by the 

generation of embryoid bodies (EBs). To generate embryoid bodies (EBs), hPSC colonies 

were divided into clumps of about 100-300 cells and resuspended in ultra-low attachment 

conditions, in growth medium devoid of bFGF, with media changes every 3-4 days for 15 

days.  

mRNA for gene expression analyses was isolated from hPSCs propagated under different 

conditions and from EBs after 15 days in suspension using Trizol (Invitrogen, Carlsbad, 

CA) and quantified using BioMate3 UV-VIS Spectrophotometer (Thermo Scientific, 

Waltham, MA). cDNA was synthesized from 1μg of RNA using cDNA reverse 

transcription kit (Applied Biosystems, Foster City, CA). Expression of pluripotent genes 

Octamer Binding Transcription Factor-4 (POU5F1), SRY (Sex Determining Region-Y) 

Box-2 (SOX2), NANOG, and germ layer specific genes, Neurogenic differentiation 1 

(NEUROD1), Insulin-like Growth Factor 2 (IGF2) and α-Fetoprotein (AFP) (Table 3) was 

analyzed using quantitative real time RT-PCR. (qPCR). qPCR was performed in an ABI 

HT7900 system and the data was acquired using Sequence Detection System software 

(SDS v2.2.1, Applied Biosystems). Gene expression data (three replicates) were acquired 

and SDS software was used to estimate relative fold change values using ΔCT quantitation 
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methods. Endogenous 18S ribosomal RNA was used for normalization in all the samples. 

Relative gene expression for hPSCs propagated on EPBS was assessed against hPSCs 

propagated on MEFs. Relative gene expression of differentiated EBs obtained from 

different conditions was assessed against undifferentiated hPSCs propagated under the 

original condition. Expression Index (EI) was used to determine the relative differentiation 

state of cells, and was based on the average CT values from triplicate measurements. 

Expression Index (EI) was used to determine the relative differentiation state of cells [200, 

201] and was based on the average CT values from triplicate measurements. An expression 

ratio of two or more genes was determined using a mathematical model based on the 

geometric average of assessed genes, previously described in detail,[201] given by the 

following equation: 
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E is the PCR efficiency calculated from dilution series of purified PCR products, CT is the 

threshold cycle, and m and n are the numbers of genes that are up and down regulated upon 

differentiation respectively. KRS is the relative sensitivity constant and was not determined 

as it does not affect relative comparisons between samples. 
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Results 

Proteomic analysis of acellular substrates. 

Proteomic analysis of acellular MEFs, HFFs and HDFs were conducted given the ability of 

these acellular substrates to maintain multiple hPSCs in their undifferentiated state [207]. 

In our previous study, hPSCs propagated on acellular substrates were indistinguishable by 

multiple criteria, including colony morphology, expression of pluripotency protein 

markers, tri-lineage in-vitro differentiation potential and gene expression patterns, from 

hPSCs cultured directly on a fibroblast feeder layer. It was thus postulated that proteomic 

analyses of ECM components of the feeders would provide insights into proteins involved 

in adhesion and activation of key signaling pathways. ECM proteins were acquired by 

decellularizing post-confluent feeder cells, followed by digestion with urea, and analysis 

using LC – MS/MS. 

A total of 519, 426 and 514 proteins were identified in acellular MEF, HFFs and 

HDFs respectively, with only peptides identified as possessing fully tryptic termini with 

cross-correlation scores greater than 1.8 for singly charged peptides, 2.25 for doubly 

charged peptides, 3.0 for triply charged peptides and 3.75 for quadruple charged and higher 

used for peptide identification. The proteins were GO annotated into broad classifications 

of cellular compartment (CC), biological function (BP) and molecular function (MF) using 

PIPE (Protein Information and Property Explorer at http://pipe.systemsbiology.net [216] 

Further annotation of the identified proteins to increasing levels of specificity was 

performed using PIPE (Figure 14).  
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Figure 14: 
Functional biological and cellular profiles of the proteins identified in the  three acellular 
substrates of MEF, HFFs and HDFs. The circles in the figure depict the molecular function 
(a), biological function (b) and cellular compartment (c) in acellular HDF (inner circle), 
acellular HFF (middle circle) and acellular MEFs (outer circle). 
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Our analysis primarily focused on membrane and extracellular matrix proteins in 

order to identify key proteins and signaling pathways involved in the maintenance of hPSC 

self- renewal. We observed that 75, 16 and 25 of the cellular compartment annotated 

proteins originated from the extracellular matrix, while 132, 114, 66 proteins were 

annotated as membrane proteins in MEFs, HFFs and HDFs respectively. The remaining 

proteins identified and annotated were non-membranous, originating from intracellular 

organelles. In each substrate analyzed, there were approximately 100 proteins that did not 

correspond to a GO annotation and it is expected that in-depth annotation will reveal their 

biological relevance within the cell. 

In total, acellular MEFs, HFFs and HDFs had 112 proteins in common, among which 20, 8 

and 8 were extracellular matrix proteins and 30, 24 and 24 were membrane proteins 

respectively. Our analysis seems to indicate that the mouse substrate is richer in 

extracellular and membranous proteins than the human substrates analyzed. Proteins 

common to all three substrates constituted 11.8%, those that were common to two 

substrates ranged between 5.1 to 10.7%, where proteins common between HDF-HFF 

constituted 5.1%, between HDF-MEF 6.3% and between HFF-MEF 10.7% of the total 

proteins identified Figure 15 . 

The three broad categories were further classified into a) cellular processes, 

developmental processes, metabolism, stimulus response and transport in BP; b) binding, 

structural molecular activity and catalytic activity in MF; and c) extracellular space and 

matrix, intracellular and cell parts, membrane and macromolecular complex in CC. 

Comparisons within each functional group clearly indicate the similarities between the 
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human substrates (Figure 14, inner circles). This study was primarily conducted to identify 

extracellular matrix proteins involved in self-renewal and maintenance of pluripotency 

within both mouse and human substrates. Table 5 lists several proteins that constituted the 

extracellular matrix and plasma membrane of the feeder layers. Based on the 

comprehensive list of proteins, a summary of the ECM proteins as well as 

growth/differentiation factors that might actively contribute to long term pluripotentiality 

of hPSCs was also generated (Table 6).  

Immunocytochemical validation of ECM components  

Since mass spectrometry is at best a semi-quantitative analytical method, we have 

attempted to corroborate the results obtained using immunostaining for some of the major 

ECM proteins identified. Antibodies were used against major ECM proteins identified in 

all three substrates; Collagen I, Collagen III, Fibronectin and HSPG. Results confirmed the 

presence of these proteins using immunofluroscence within the ECM of the human 

fibroblast feeders and their acellular substrates (Figure 16 i,ii).  Our results also indicate 

that minimal residual nuclear material was observed based on the absence of 4',6-

diamidino-2-phenylindole (DAPI) stain within the acellular substrates (Figure 16 iii,iv).  

Similar results were observed in MEF and MEF derived acellular substrates (Figure 17 ). 
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Figure 15: 
Distribution of 1015 proteins identified in the three acellular substrates, acellular HDFs, 
acellular HFFs and acellular MEFs. (A). Distribution of 109 extracellular matrix proteins 
found in the acellular substrates of HDFs, HFFs, MEFs. (B). 
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Table 5: 

List of proteins in the three acellular substrates pertaining to cellular compartment 

identified using LC-MS/MS 

Protein identified and biological classification 
(In all three substrates) 

Extracellular 
matrix, 
space and 
plasma 
membrane 

Collagen, type I, alpha 1 
Collagen, type I, alpha 2 
Collagen, VI, alpha 3 
Collagen, XII, alpha 1 
Fibronectin 1 
Gelsolin 
Integrin beta 1 (fibronectin receptor 
beta) 
Keratin 1 
Keratin 2 
Keratin 8 
Keratin 10 
Lectin, galactose binding, soluble 3 
Thrombospondin 1 
Heparan sulfate proteoglycan/Perlacan 
Serpin peptidase inhibitor 
Scavenger receptor class B, member 2 
 

Heat Shock 
proteins 

Heat shock 70kDa protein 1-like 
Heat shock 70kDa protein 2 
Heat shock 70kDa protein 5 
Heat shock 70kDa protein 8 
Heat shock protein 90kDa alpha  
Heat shock 60kDa protein 1 
Heat shock protein 90, beta 

Intracellular 
and 
cytoplasm 
 

Actin, alpha 2,  
Actin, beta, 
Actin, gamma 1 
Annexin A1 
Annexin A2 
Annexin A5 
Annexin A6 
Calreticulin 
Calumenin 
Calnexin 
Caveolin 1 
Cofilin 1 
Filamin A 
Filamin C 
Glyceraldehyde-3-phosphate dehydrogenase 
Lamin A/C 
Septin 2 
Plectin 1 
Transgelin 
Vimentin 
Elastin microfibril interfacer 1 

Protein identified and biological classification 
(In aHFF and aHDF) 

Extracellular 
matrix, 
space and 
plasma 
membrane 

Activated leukocyte cell adhesion 
molecule 
CD 44 molecule 
CD59 molecule 
CD99 molecule 
CD26 
Tenascin C (hexabrachion) 

Heat Shock 
proteins 

Heat shock 70kDa protein 7 
Heat shock 70kDa protein 9 
Heat shock 27kDa protein 1 

Intracellular 
and 
cytoplasm 
 

Actin, gamma 2 
Actinin, alpha 1 
Actinin, alpha 4 
Eukaryotic translation elongation factor 1 
gamma 
Filamin B, beta  
Lactate dehydrogenase A 
Protein kinase C substrate 
Keratin 9 
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Table 6: 

Proteins of interest that might contribute to the maintenance of self renewal in hPSCs 

 

Collagens Required for the structural integrity of the matrix. 
Previously used in ES cultures both as an additive to the 
growth medium and a substrate. Found in secreted 
medium as well as the deposited ECM layer 

[208-210, 
217] 

TGFb family Related signaling proteins latent TGFb binding protein 
(LTBP) 2 and 3 were found to be present in the 
substrates and have been implicated in the critical role 
of controlling and targeting TGFb to sites of storage or 
activation. The TGFb superfamily include: Bone 
morphogenetic proteins (BMPs), Growth and 
differentiation factors (GDFs), Anti-müllerian hormone 
(AMH), Activin, Nodal and TGFβ's, with several of 
these implicated in the maintenance of hPSC self-
renewal 

[194, 
205, 206, 
218-221] 

Thrombospondin Thrombospondin 1 is an adhesive glycoprotein, 
mediates cell-cell and cell-matrix interactions. Multiple 
domains bind to a number of ECM proteins including 
fibronectin and collagens. Associated with various 
biologial functions such as cell attachment, cell 
aggregation and angiogenesis and involved in the 
activation of TGFβ.Increased expression of 
thrombospondin1 has been observed in response to 
platelet derived growth factor, FGF2 and TGFβ 

[208, 
222, 223] 

Biglycan Biglycan and decorin are small proteoglycans known to 
interact with collagens and growth factors as 
TGFβ. Interactions of these proteoglycans with growth 
factors are known to modulate the function of growth 
factors. 

[224-228]

Periostin Osteoblast specific factor was found in proteomic 
analyses of both feeder layer conditioned medium and 
deposited ECM. Perisotin is known to bind to heparin 
and induces cell attachment and spreading 

[208, 
209, 229, 
230] 

Follistatin Follistatin is known to bind and regulate the activity of 
TGFb family members 

[231, 
232] 
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Figure 16: 
Immunocytochemical validation of the presence of major constituents of the extracellular 
matrix; Collagen I (A), Collagen III (B), Fibronectin (C), and heparan sulfate proteoglycan 
(D) on HFFs (i), acellular HFFs (ii), HDFs (iii) and acellular HDFs (iv). 
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Figure 17: 
Immunocytochemical validation of the presence of major constituents of the extracellular 
matrix; Collagen I (A ), Collagen IV (B), Fibronectin (C), and heparan sulfate 
proteoglycan (D), on MEFs (i), acellular MEFs (ii). 
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3.3. hPSC adhesion and propagation on ECM-protein based substrates. 

Furthermore, we attempted to generate a combinatorial EBPS of commerically available 

proteins that mimic naturally deposited ECM, and test their ability to maintain 

pluripotency in hPSCs for extended periods. In our study, given that HSPG and Fn was 

identified in all three substrates, we used these proteins in combination with other 

previously tested ECM proteins; Ln [233] and Vn[234]. Different combinations of HSPG, 

Fn, Ln and Vn was investigated with the primary focus on HSPG. Karyotypically normal 

WA09 and aneuploid BG01v hPSCs were cultured on MEFs prior to transfer onto the 

EPBS substrates. The hPSCs propagated on specific EPBS maintained a high nuclear to 

cytoplasmic ratio, representative of actively dividing cells (Figure 18). Positive expression 

of alkaline phosphatase (AP) at each passage is indicative of the ability of the EPBS to 

maintain hPSCs for extended periods (Figure 18). Of all the different combinations tested, 

HF showed the maximum colony attachment and proliferation based on quantitative 

analysis of AP expression (Figure 19). In the combinations that did not include Fn, (HL, 

HV, HLV), cell attachment progressively decreased over passaging time. Our results 

suggest that the addition of Ln and Vn to the HF mixture (i.e. HFL, HFV and HFLV) 

presented suitable substrates for propagation however did not contribute to the 

enhancement of the attachment and proliferative properties of the HF mixture. The number 

of AP positive colonies in the HFLV substrate was similar to that on HF, hence we can 

conclude that the use of HF is sufficient for a suitable and a cost-effective ECM substrate 

for hPSC propagation. Individual testing of HSPG and Fn for their attachment and 

proliferation capabilities demonstrated that HSPG alone did not support attachment 
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whereas although Fn permitted hPSC adhesion, in the absence of any other ECM protein 

tgreater differentiation was observed within the colonies (Figure 20). Our preliminary 

studies involving hPSC propagation on EPBS was conducted in growth medium containing 

4ng/ml of bFGF. However, the hPSC colonies did not express the standard pluripotent 

characteristic of in vitro differentiation potential. In order to ensure the maintenance of 

pluripotent characteristics, higher concentrations of bFGF were used in our studies.  
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Figure 18:  
Phase constrast images of human pluripotent stem cells, WA09 (a,e) and BG01v (c,g) and 
positive expression of alkaline phosphatase in WA09 (b.f) and BG01v (d,h) grown on 
ECM-based protein substrates Heparan sulfate proteoglycan – Fibronectin (HF) (a-d) and 
Heparan sulfate proteoglycan-Fibronectin-Laminin-Vitronectin, (HFLV) (e-h). 
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Figure 19:  
Percentage of Alkaline Phosphatase positve colonies within different combinatorial-ECM-
protein based substrates namely Heparan sulfate proteoglycan-Fibronectin (HF), Heparan 
sulfate proteoglycan-Fibronectin-Laminin (HFL), Heparan sulfate proteoglycan-
Fibronectin-Vitronectin (HFV) and Heparan sulfate proteoglycan-Fibronectin-Laminin –
Vitronectin (HFLV) 
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Figure 20: 

Progressive differentiation of hPSCs propagated on fibronectin substrates. The absence of 
alkaline phosphatase staining in sections of the colony is indicative of loss of stemness. 
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Characterization of hPSCs on ECM-protein based substrates. 

Further characterization of the hPSCs cultured on the different EPBS was based on 

immunocytochemical analysis for detection of pluripotent markers SSEA4 and OCT4.  

Results demonstrate that WA09 cells maintained tight colony boundaries while BG01v 

cells were observed to have taken a more fibroblastic spindle shape (Figure 21 a,c,e,g). 

Though BG01v cells do not appear morphologically similar to normal hPSCs, 

characterization using immunocytochemistry and gene expression using qPCR indicate no 

loss of stemness. Using the cytospin apparatus, we also quantified the percentage of hPSCs 

that were positive for cell surface markers SSEA3 and SSEA4 expression. Results showed 

comparable expression of these markers in hPSCs grown on both HF and HFLV 

substrates. WA09 cells cultured on HF showed that 91% and 89.7% of the cell population 

stained for SSEA3 and SSEA4, whereas 81.4% and 80.4% were positively stained on 

HFLV substrates (Figure 22 a). Similarly, in BG01v hPSCs, 98.2 and 93% were positive 

for SSEA3 and SSEA4 on HF substrates and 94.9 and 89.6% for SSEA3 and SSEA4 on 

HFLV substrates (Figure 22 b). 
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Figure 21:  
Immunofluorescence staining of hPSCs for pluripotency markers stage specfic embryonic 
antigen 4 (SSEA4) in WA09 (a,e) and BG01v (c,g) and transcription factor OCT4 WA09 
(b.f) and BG01v (d,h) grown on ECM-protein based substrates  Heparan sulfate 
proteoglycan-Fibronectin (HF) (a-d) and Heparan sulfate proteoglycan-Fibronectin-
Laminin –Vitronectin (HFLV) (e-h). Scale bar = 50μm. 
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Figure 22: 
Quantitative expression of pluripotency markers SSEA3 and SSEA4 on ECM-protein 
based substrates Heparan sulfate proteoglycan-Fibronectin (HF) and Heparan sulfate 
roteoglycan-Fibronectin-Laminin-Vitronectin (HFLV) in WA09 (A) and BG01v (B) 
hPSCs. 
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Differential expression of pluripotency markers (POU5F1, NANOG and SOX2) was 

presented as CT values normalized against the 18S rRNA housekeeping gene for each 

experimental condition. For the purposes of the comparisons, the ΔCT values of each 

marker within the different experimental sample are presented against that of MEFs. This 

eliminates the requirement for normalization with the calibrator. Comparable ΔCT values 

of OCT4 and SOX2 genes were seen across different culture conditions and are indicative 

of the maintenance of the undifferentiated state of hPSCs on protein substrates; HF and 

HFLV (Figure 23 a). Statistical analyses using Student’s t-test indicated no significant 

difference (p>0.05) in the different comparisons for the pluripotency markers tested 

between hPSCs propagated on the EPBS and those propagated on MEFs. However in the 

case of NANOG,there was reduced expression on both the HF and HFLV substrates when 

compared to those propagated on MEFs (Figure 23 a). Functional pluripotency of the 

hPSCs via the formation of embryoid bodies was assessed by in vitro differentiation 

(ectoderm, endoderm and mesoderm). Differential expression of germ layer specific 

markers NEUROD1 (ectoderm), IGF2 (mesoderm) and AFP (endoderm) were presented as 

CT values normalized against the 18S rRNA housekeeping gene for each sample and 

further compared to undifferentiated cells cultured in the same experimental conditions. 

Statistical analyses indicated that the EBs generated from the WA09 on the different ECM 

protein substrates demonstrated significantly greater expression (p<0.01) of all three germ 

layer specific markers analyzed (Figure 23 b) compared to the undifferentiated cells. Here, 

it is important to note that ΔCT values (normalized against 18S) should be interpreted 

counter-intuitively; where a lower value indicated higher expression and vice versa. 
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Figure 23: 

Normalized gene expression of undifferentiated markers in WA09 on MEFS (A) WA09 on 
Heparan sulfate proteoglycan-Fibronectin (HF) (B) and WA09 on Heparan sulfate 
proteoglycan-Fibronectin-Laminin –Vitronectin (HFLV) (C). Significant difference 
(p<0.05) between the group is shown by (*). (b) Normalized gene expression of germ layer 
specific markers in WA09 on Heparan sulfate proteoglycan-Fibronectin (P), EB generated 
from WA09 on Heparan sulfate proteoglycan-Fibronectin (Q), WA09 on Heparan sulfate 
proteoglycan-Fibronectin-Laminin –Vitronectin and EB generated from WA09 on Heparan 
sulfate proteoglycan-Fibronectin-Laminin –Vitronectin. Significant differential gene 
expression (p<0.01) in all three lineage specific markers was observed 
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Further, the differentiation state of the hPSCs was quantified using the ‘expression index’ 

as a metric to compare the undifferentiated hPSCs against the EBs generated from the 

hPSCs grown under the same condition as well as across different culture conditions. For 

the karyotypically normal WA09 hPSC, the expression index of the undifferentiated 

sample was 2859 on HF and 3411 on HFLV while the expression index of the 15-day old 

EBs derived from WA09 was found to be 0.03 and 0.02 on HF and HFLV respectively 

(Figure 24). Although the EI values for hPSCs on HFLV were higher when compared to 

those grown on HF substrates, there is no difference in the potential of HF substrates for 

hPSC maintenance compared to HFLV substrates, based on all other characterization 

studies. A summary of the different protein combinations tested and the response of hPSCs 

to the substrates is tabulated in Table 7 
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Figure 24: 
Differential expression index of a) WA09 hPSC and WA09 EBs derived from Heparan 
sulfate proteoglycan-Fibronectin (HF) substrates and b) WA09 hPSC and WA09 derived 
EBs from Heparan sulfate proteoglycan-Fibronectin-Laminin –Vitronectin (HFLV) based 
on analysis of six genes (POU5F1, NANOG, SOX2, AFP, IGF2 and NEUROD1). 
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Table 7: 

A tabulated summary of the different ECM combination tested and hPSC response to these 
substrate with respect to adhesion, differentiation and pluripotency markers 
 

 



100 

Discussion 

Till date, there have been few reports that have focused on the identification and 

characterization of secreted factors from MEFs, HFFs, HDFs [208, 209] that contribute to 

hPSC self-renewal. Our study is the first to employ a proteomics approach to identify 

components of the ECM that maintain hPSC self-renewal. The substrates revealed a 

complex network of extracellular and intracellular proteins of varying biological functions. 

The presence of cytosolic and nuclear proteins in our results is indicative of the difficulties 

in isolating a pure ECM sample. In conditioned medium proteomic studies, the highest 

percentage of proteins identified comprised of ECM components [208, 209]. Of the 

proteins identified in the conditioned medium,  heparan sulfate proteoglycan (HSPG), 

Biglycan, Periostin, Fibronectin and Collagens were concurrently found within the 

acellular substrates (Table 5). Since both acellular substrates and conditioned media can 

support hPSC self- renewal independently of each other and has the aforementioned 

proteins in common, we can speculate that core ECM proteins in the human fibroblasts are 

sufficient in promoting hPSC self-renewal. In our studies, HSPG was found to be present 

in all three substrates and a critical component of the ECM substrate that promoted hPSC 

self-renewal. HSPGs are present in the extracellular matrix and cell membranes 

ubiquitously and covalently attach to several core proteins[235]. Several growth factors, 

cytokines and physiological revelant molecules have been shown to bind to the sulfated 

regions of HS chains[236]. HS chains have also been shown to regulate various biological 

signaling pathways such as fibroblast growth factors (FGFs), Wnt and hedgehog (Hh) and 
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BMP[237], pathways that have been implicated in maintenance of hPSC self-renewal. 

FGF2 has been previously shown to be extremely important in maintaining pluripotency in 

hPSCs[192]. HS increases the affinity of FGF2 to its receptor [238-240] and allows for 

stabilization of FGF2 within the growth medium, which is subsequently responsible for 

maintenance of hPSC self-renewal [241]. Additionally, HSPG regulates the extrinsic 

signaling pathways of the βcatenin/Wnt pathway required for the expression of NANOG, 

which is essential for the maintenance of pluripotency in mESCs[242], and a core 

component of the pluripoteny transcription network in hESCs [243]. 

In our studies, fibronectin was found to be present in all three substrates and a 

critical component of the ECM substrate that promoted hPSC self-renewal. Fibronectin is a 

high molecular weight glycoprotein secreted and organised by fibroblast cells into an 

insoluble component of the extracellular matrix[244]. The ability of fibronectin to maintain 

undifferentiated hPSCs has been previously reported with supplementation using 

conditioned medium or high FGF2 concentrations in growth medium [20, 245]. The 

interaction between fibronectin and hPSC has been demonstrated to be through integrin 

α5β1, a major receptor for fibronectin [246]. Several integrins subunits (α5, α6, αv, β1 

and β2) were shown to be highly expressed in hPSCs indicating the active role of several 

ECM proteins in the cell-extracellular matrix interaction for attachment and propagation 

[20, 48, 234, 247, 248]. 

Other important adhesive proteins and signaling molecules were identified in our 

analysis are listed in Table 6 [194, 217-232]. In our studies, immunocytochemical analyses 

validated the presence of multiple ECM proteins in both the cellular as well as acellular 
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substrates and allows us to qualitatively conclude that the decellularization process causes 

minimal lose of ECM (Fn, Collagens and HSPG). From all the different EPBS 

combinations tested, our results suggest that the combinatorial use of HSPG and Fn is 

sufficient for the maintenance of hPSC self-renewal. Although previous studies have 

shown that Ln and Vn individually [233, 234], as well as in combination with HSPG and 

Fn in our studies have been shown to support self renewal, the use of HSPG-Fn as a 

substrate provides a cost-effective and sufficient alternative to the use of feeder layer or 

feeder conditioned medium. The property of Fn to elicit an adhesion response from most 

fibroblasts is attributed to intergrin binding domains, however heparan binding domains on 

Fn is known to contribute to the adhesion of normal fibroblasts, in melanoma and 

neuroblastoma cells[249-251]. Integrins such as α5β1 are the key mediators of integrin-

ligand interaction in Fn through primary receptors as the RGD motif of repeat III10[252]. 

Signaling through proteoglycans such as syndecan-4 in addition to integrin signaling is 

required for rearrangement of the actin cytoskeleton into bundled stress fibers and focal 

adhesion formation[253, 254]. Focal adhesions are signaling complexes that result in stable 

cell-matrix interactions and contributes not only to cell adhesion but to dynamic changes in 

gene expression, apoptosis regulation, and control of the cell cycle[255]. In addition to 

HSPG as a co-factor in FGF signaling, recent studies have shown that the addition of HS 

increases the binding affinity of FGF to its receptors by several fold [238, 241].Several 

modeling studies describe the interaction as a dimer of FGF ligands bound to a dimer of 

FGF receptors stabilized by a cell surface-anchored HSPG[256, 257]. Thus, the presence of 

HSPG in the EBPS as well as endogenous cell surface HSPG that contribute to FGF2 
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sequestration and cell-matrix focal adhesion formations might be an important component 

of the substrate involved in hPSC self-renewal (Figure 25).  

Conclusions 

This study provides the first detailed characterization of acellular substrates that have 

demonstrated the propensity to maintain hPSC self-renewal for extended periods, followed 

by generation of EPBS based on the data obtained from proteomic analyses. In an attempt 

to design a substrate that mimics naturally occurring biological substrates, we have 

observed that HSPG plays an important role in the maintenance of hPSC self-renewal. In 

conjunction with Fn, HSPG yields a substrate that can maintain hPSCs in their 

undifferentiated state over multiple passages. Our results also showed that the presence of 

other ECM proteins in the EPBS did not contribute to any additional benefit to the HSPG-

Fn combination. However any EBPS combination lacking Fn did not support hPSC 

adhesion and propagation without any supplementation of the growth medium. Our 

understanding is that the combinatorial effects of the interactions of HSPG with Fn to 

create a matrix on the tissue culture polystyrene (TCPS) surface, cell membrane bound 

HSPG with Fn that allow for focal adhesion contacts on the matrix as well as the ability of 

HSPG sequester growth factors such as FGF2 and TGFβ which in turn activate various 

downstream self-renewal activators play a critical role in the ability of HSPG-Fn substrate 

to maintain undifferentiated hPSCs (Figure 25). Growth factors and other cytokines that 

are present in small quantities are not detected either due to the stringent search parameters 

or due to the MS instrument selecting only the most abundant ions for sequencing. It is 
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known that hPSC pluripotency relies heavily on exogenous supplementation of the culture 

medium with growth factors. Thus the identification of growth factors present in the 

acellular substrates and sequestered within the matrix is vital. Further analysis of the 

substrates that maintain hPSC pluripotency using techniques involving the quantification 

of proteins such as isotope-coded affinity tags (ICAT) or isobaric tag for relative and 

absolute quantitation (iTRAQ) would allow for better understanding of the dose dependent 

effects of proteins and growth factors. Furthermore, information on the relative abundance 

of proteins and their inhibitors would be of great significance in the development of 

substrates that synergistically promotes activation of adhesion and signaling pathways 

responsible for hPSC self-renewal.   
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CHAPTER 4: Propagation of human embryonic and induced pluripotent stem cells 

in an indirect co-culture system 

 

Abstract  

We have developed and validated a microporous poly(ethylene terephthalate) membrane-

based indirect co-culture system for human pluripotent stem cell (hPSC) propagation, 

which allows real-time conditioning of the culture medium with human fibroblasts while 

maintaining the complete separation of the two cell types. The propagation and pluripotent 

characteristics of the hESC human embryonic stem cell (hESC) line and a human induced 

pluripotent stem cell (hiPSC) line were studied in prolonged culture in this system. We 

report that hPSCs cultured on membranes by indirect co-culture with fibroblasts were 

indistinguishable by multiple criteria from hPSCs cultured directly on a fibroblast feeder 

layer. Thus this co-culture system is a significant advance in hPSC culture methods, 

providing a facile stem cell expansion system with continuous medium conditioning while 

preventing mixing of hPSCs and feeder cells.  This membrane culture method will enable 

testing of novel feeder cells and differentiation studies using co-culture with other cell 

types, and will simplify stepwise changes in culture conditions for staged differentiation 

protocols 
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Introduction  

Human pluripotent stem cells (hPSCs) that include human embryonic stem cells 

(hESCs) and human induced pluripotent stem cells (hiPSCs) are capable of self-renewal 

and differentiation into multiple cell types [1, 2, 4, 5]. Traditional culturing of hPSCs 

involves direct contact with a supporting feeder cell layer, such as mouse embryonic 

fibroblasts (MEFs), to support their undifferentiated growth [258]. These feeder cells not 

only secrete extracellular matrix (ECM) components crucial for attachment of hPSCs, but 

also contribute yet unidentified essential nutrients and growth factors to help maintain 

hPSCs in a pluripotent state. Because of their potential in tissue engineering and clinical 

applications, there is a great deal of interest in improving methods for the scalable 

expansion and differentiation of hPSCs. Feeder cell layers provide an excellent growth 

substrate for the proper attachment of hPSCs that generally do not adhere to tissue culture 

treated plastic. One issue of hESC and hiPSC lines propagation in direct contact with a 

feeder layer however, is that it allows for the intermixing of cell types [17]. Recent culture 

improvements include using human rather than mouse fibroblasts as feeder layers [20, 22, 

23, 259] to eliminate potential cross-species pathogen contamination, however separation 

of the feeder from the stem cells for passage or other manipulations still remains a 

technical challenge.  On this front, progress in the development of feeder-free methods has 

been made using purified substrates such as Matrigel, fibronectin or laminin to allow for 

attachment [48]. In these feeder-free culture systems, hPSCs are propagated in growth 

medium previously pre-conditioned separately by fibroblast feeder cells then transferred to 

the hPSC culture. Commercially available culture media have recently been offered as 
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alternatives to conditioned medium[204].  However, these media are expensive and use 

exceedingly high levels of synthetic growth factors (e.g., as much as 100 ng/mL bFGF, 

IGF, BMPs, etc) to achieve maintenance of undifferentiated hPSC cultures limiting their 

cost effectiveness for scale-up. In addition to cost concerns of these additives, there 

remains concern that prolonged continuous culture in completely feeder-free culture may 

lead to undesirable changes in hPSC karyotype or phenotype [260].  

In an effort to simplify hPSC culture without compromising the quality of the cells, 

we have evaluated a microporous membrane-based indirect co-culture (MBIC) system that 

physically separates hPSCs from the feeder layer, while allowing for continuous 

conditioning of the medium by the feeder cells. It was recently reported that 

undifferentiated hESCs could be successfully cultured on microporous membranes 

separated from a MEF feeder layer attached directly to the opposite side of the membranes 

[261]. In their study, the investigators concluded that direct contact was still necessary 

where a membrane pore size of 3.0 μm was required that allowed direct contact between 

the feeders and the hESCs through cellular extensions across the pores.  

In this study, we report the first use of an MBIC method for maintaining 

undifferentiated hPSCs, in which cell type mixing between the stem cells and the feeder 

cells is eliminated due to the absence of physical contact between the two. We show that 

hPSCs cultured across a membrane from human feeder cells are indistinguishable from 

those cultured in contact with the feeders, based on colony morphology, expression of 

pluripotency protein markers, in-vitro differentiation into the three different germ layers 

and global gene expression profiles. Use of a MBIC system for the expansion of human 
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hPSCs, where the stem cells and the feeder cells are separated by a microporous membrane 

partition, allows for an economical alternative to synthetic media-based feeder free system 

that is amenable to scale up. In addition, the complete separation of the feeders simplifies 

the testing of multiple culture conditions for optimal hPSC growth, by enabling rapid 

changes in conditions, such as testing differentiation factors and/or other types of co-

cultured cells, without having to dissociate and replate the cells 

Materials and methods  

Generation of inactivated human feeder layers and acellular substrates from human 

feeders. Human foreskin fibroblasts (HFFs) were maintained in Dulbecco’s modified 

Eagle’s medium with 4.5 g/L glucose, 2mM L-Glutamine, 1% Penicillin/Streptomycin and 

10% cosmic calf serum (HyClone, Logan, UT) and 2% Medium 199 (10x) (Gibco, 

Gaithersburg, MD) to create a basal media blend of DMEM and M199. Inactivation of the 

feeders was achieved by incubation in 10μg/ml of Mitomycin C (MMc), a mitotic inhibitor 

for 2 hours. Post-incubation, the cells were thoroughly washed with PBS 6 times, followed 

by trypsinization and additional 3 washes in media. The cells were then plated at a density 

of 300,000 cells/35mm dish.  

Acellular substrates were generated by allowing the HFF cultures to proliferate 6-8 days 

past 100% confluency within the 6-well tissue culture dishes (Sigma-Aldrich) of a 

Millicell® 1.0µm polyethylene terephthalate (PET) inserts with hanging geometry 

(Millipore, Billerica, MA). The inserts were washed with sterile distilled water to remove 

traces of growth medium followed by a short exposure to 20mM NH3 solution to expose 

the deposited ECM. The substrates were thoroughly washed with phosphate buffered 
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saline (PBS) to avoid the deleterious effects of the alkaline ammonia solution. A schematic 

depicting the microporous membrane culture system within a 6-well dish is shown in 

Figure 26. 

Propagation of hPSCs and hPSC-derived cells. Karyotypically normal diploid stem cell 

lines WA09 and hiPSC (WiCell Research Institute, Madison, WI) were transferred from 

mouse feeder layers onto the acellular matrices within the inserts. Parallel studies were also 

carried out using fibronectin coating supporting BG01v cells (Bresagen, Athens, GA), a 

rapidly dividing, karyotypically aneuploid cell line [198, 199, 213], within the inserts. For 

fibronectin coating, the inserts were incubated for 24 hours at 37˚C with 30 μg/mL human 

fibronectin (Millipore) diluted in 0.2% porcine gelatin (Sigma-Aldrich). The hPSCs were 

maintained in DMEM/F12 supplemented with 20% knockout serum replacement, 0.1mM 

β-mercaptoethanol, 1% non-essential amino acids, 100U/ml penicillin, 100mg/ml 

streptomycin and 4ng/ml basic fibroblast growth factor, bFGF (Gibco, Gaithersburg, MD). 

Cells were subcultured by either mechanical dissociation or by gentle trituration; the 

colonies were split into clumps of 100-200 cells and transferred to a fresh substrate coated 

insert.  

WA09-derived extraembryonic endoderm-like (XE) cells utilized for global gene 

expression comparisons were generated using the method described [262]. XE cells are 

polygonal, flat cells that grow in monolayer and resemble fibroblasts in morphology.  XE 

cells were grown in DMEM+10% FBS at 37oC/5% CO2. XE cells were fed on alternate 

days and passaged weekly with 0.05% trypsin (Gibco). 
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Figure 26: 
Schematic of a Microporous Membrane-based indirect co-culture system. HPSCs attach to 
extracellular matrix (ECM) coated microporous membranes of transwell inserts, which 
hang inside a 6-well tissue culture dish by plastic projections. HFF- Human foreskin 
fibroblast. 
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Alkaline Phosphatase assay. Staining for alkaline phosphatase was performed as per 

manufacturer instructions (Vector Labs). Briefly, the cells were washed with deionized 

water to remove traces of media. The final solution was prepared by the addition of the 

three constituents provided in 0.2M Tris HCl buffer, pH 8.0. The hPSCs were incubated in 

the final mixture for 40 minutes in the dark and images acquired using a Nikon TS100 

Microscope.  

Antibodies and Immunocytochemical analysis. hPSCs cultured on the acellular substrates 

were transferred onto 4 chambered glass slides. 4% paraformaldehyde in PBS was used for 

fixation, permeabilization for intracellular markers was achieved with 0.2% Triton X-100 

in PBS and blocked with normal goat serum. Fixed cells were incubated with primary 

antibodies: OCT4 (Santacruz Biotechnology) and SSEA-4 (Chemicon, Temecula, CA). 

Goat anti-mouse IgG conjugated to Alexa 488 (Molecular Probes, Eugene, OR) was used 

as secondary antibody Fluorescent images were acquired using a CoolSnap EZ camera 

(Photometrics, Tucson, AZ) mounted on a Nikon Eclipse TE 2000-S inverted microscope 

(Nikon, Melville, NY) with attached image analysis software. All image settings were 

controlled for uniform acquisition between samples. Specifically, uniform exposure time 

was maintained for images acquired from experimental samples as well as negative 

controls for background subtraction 

In vitro differentiation of hPSCs and histology of hPSC-derived embryoid bodies. To 

generate embryoid bodies (EBs), hPSCs were dissociated using collagenase and 

resuspended in growth medium devoid of bFGF. EB formation was facilitated using 

suspension culture, where cells at a density of 25,000 cells/ml were suspended from a 
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petri-dish lid in 20μl droplets. After 5 days, the EBs were transferred to agarose plates to 

facilitate further differentiation with media changes every 3-4 days for a total 

differentiation duration of 15 days. EBs were prepared for morphological analysis by 

fixation in 3.7% paraformaldehyde (PFA) in 1.5ml microfuge tubes at approximately 15-

25 EBs per tube. Once fixed overnight, EBS were rinsed with PBS to remove PFA, 

resuspended in 200μl melted 4% low melting point agarose (Sigma Aldrich) at 42ºC and 

incubated for 2 hours to allow settling. Final pelleting and agarose solidification was 

performed with brief room temperature centrifugation at 500g. Agarose embedded samples 

were removed as single plugs and processed by dehydration with increasing ethanol 

concentration to 100% followed by xylene and paraffination in a Leica TP1020 tissue 

processor. Hematoxylin and Eosin (H&E) staining was performed on microscope slide 

mounted 5μm sections in a Leica Autostainer XL workstation. Images were acquired using 

an Olympus BX51 microscope using the default imaging parameters. 

RNA isolation and real time reverse transcription polymerase chain reaction. RNA was 

isolated from hPSCs and propagated for 15 passages under different conditions and from 

EBs after 15 days in suspension using Trizol (Invitrogen, Carlsbad, CA) and quantified 

using BioMate3 UV-VIS Spectrophotometer (Thermo Scientific, Waltham, MA). cDNA 

was synthesized from 1μg of RNA using cDNA reverse transcription kit (Applied 

Biosystems, Foster City, CA). Expression of pluripotent genes and differentiation markers 

(Table 3) within undifferentiated and differentiated samples was analyzed using 

quantitative real time RT-PCR. PCR was performed in an ABI HT7900 system and the 
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data was acquired using Sequence Detection System software (SDS v2.2.1, Applied 

Biosystems). 

 Gene expression data (three replicates) were acquired and SDS software was used 

to estimate relative fold change values using ΔCT quantitation methods. Endogeneous 18S 

ribosomal RNA was used for normalization. Relative gene expression for hPSCs 

propagated in the MBIC system was assessed against hPSCs propagated on acellular HFFs. 

However, relative gene expression of differentiated EBs obtained from different conditions 

was assessed against hPSCs propagated under the original condition. Expression Index 

(EI) was used to determine the relative differentiation state of cells [200]. EI was based on 

the average CT values from triplicate measurements. An expression ratio of two or more 

genes was determined using a mathematical model based on the geometric average of 

assessed genes, previously described in detail [201], given by the following equation: 
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E is the PCR efficiency calculated from dilution series of purified PCR products, Ct is the 

threshold cycle, and m and n are the numbers of genes that are up and down regulated upon 

differentiation respectively. KRS is the relative sensitivity constant and was not determined 

as it does not affect relative comparisons between samples.   

Scanning Electron Microscopy (SEM) analysis of membranes and hPSC colonies. To 

verify that matrix coating did not clog the pores of the MBIC system, transwell insert 

samples were prepared for SEM analysis. Briefly, PET insert membrane samples were 

washed twice with PBS to remove any excess ECM, culture medium, or cell debris. 
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Samples were then fixed in 2% glutaraldehyde in 0.1 M sodium cacodylate buffer and 

subsequently dehydrated in increasing concentrations of ethanol. Following dehydration, 

samples were dried, mounted on an aluminum stub, sputter coated with platinum, and 

examined with a Zeiss EVO 50 XVP Scanning Electron Microscope (Zeiss, Thornwood, 

NJ). SEM analysis of hPSC colonies was performed by fixation in 4% gluteraldehyde 

followed by three washes in 0.1M Cacodylate Buffer pH 7.2 with 0.1M Sucrose. Cells 

were treated with 1% Osmium Tetroxide in 0.1M Cacodylate Buffer pH 7.2 followed by a 

0.1M Cacodylate Buffer pH 7.2 rinse. Samples were dried by incubation in increasing 

percentage of ethanol (25 to 100%). SEM images were acquired by coating with ~ 150Å 

gold for contrast enhancement and electrical continuity. Membranes were removed from 

inserts with a scalpel before microscopy. Representative images were collected in the FEI 

Quanta FEG ESEM 200 under high vacuum at 15 keV. 

Gene expression profiling, data collection and analysis. Whole-genome gene expression 

data was obtained in duplicate from karyotypically normal WA09 hESCs maintained for 

10 passages in (a) direct co-culture with HFF, (b) microporous membrane-based indirect 

co-culture with hFFs, and (c) feeder-free in HFF-conditioned medium. In addition, we 

profiled three replicates of WA09-derived differentiated XE cells, and two replicates of 

hFFs. Total RNA was extracted using the Mirvana Total RNA extraction kit (Ambion). 

mRNA labeling and amplification was performed using the Totalprep kit. Whole-genome 

gene expression profiling was then performed using Illumina human WGA-6 version 2 

gene expression arrays according to the manufacturer’s protocol. Data processing and 
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normalization was performed in BeadStudio (Illumina). Clustering and statistical analyses 

were performed using MATISSE, based on previously developed methods [263]. 

Results 

In-direct co-culture allows expansion of hPSCs without feeder-cell contact  

Our initial experiments focused on developing appropriate culture conditions in which the 

hPSCs would successfully attach to the membranes, prior to use in MBIC studies. Our 

studies showed that hPSC lines did not attach to tissue culture-treated 1.0 μm PET inserts 

without prior treatment, whereas coating the inserts with 30 μg/mL fibronectin diluted in 

0.2% porcine gelatin for 24 hours or generation of human acellular substrates within the 

inserts allowed for hPSC attachment.  

To test the feasibility of MBIC to support undifferentiated growth of WA09 hESC and iPS 

lines using standard growth medium, we first demonstrated that both hPSC lines could be 

successfully cultured for over 10 generations on 1.0 μm PET inserts in co-culture with 

MEFs and subsequently with HFFs as shown in the SEM micrographs (Figure 27). In all of 

our studies, the feeder cells were attached to the bottom of the well, rather than the bottom 

of the microporous membrane. hPSCs cultured in the MBIC system retained cell and 

colony morphology characteristics of undifferentiated cultures. 
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Figure 27: 
Scanning electron micrograph of WA09 hESCs co-cultured and passaged five times with 
human foreskin fibroblasts on plastic (A), feeder free on plastic with conditioned media 
(B) or by indirect co-culture on 1mm PET membrane (C). 
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Specifically, these cells maintained a high nuclear to cytoplasmic ratio representative of 

rapidly dividing undifferentiated hPSCs, and have distinct colony boundaries. Positive 

expression of alkaline phosphatase, a reliable marker of pluripotency [264], is indicative of 

sustained stemness in the hPSCs maintained on the inserts (Figure 28 a,b). 

In-direct co-culture maintains undifferentiated state of three different hPSCs 

Attachment and long term undifferentiated propagation of hPSCs on acellular substrates 

within the MBIC system was validated by the expression of transcription factor OCT4 and 

cell surface marker SSEA4 immunocytochemically and mRNA expression. At intermittent 

passages as well as on passage 10, karyotypically normal hPSCs within the MBIC system 

expressed all pluripotency markers (Figure 28 c, d e and f). To evaluate the relative gene 

expression of pluripotency as well as germ layer specific genes, RNA from hPSCs 

maintained within the MBIC system for 15 passages was isolated and analyzed by 

quantitative RT-PCR. Samples were obtained in triplicates from hPSCs within the MBIC 

system and directly compared to hPSCs propagated on acellular substrates on tissue culture 

polystyrene (TCPS). Expression of pluripotency markers (OCT4, SOX2, NANOG) was 

presented as CT values normalized against the 18S housekeeping gene for each sample. As 

shown in Figure 29 c, comparable ΔCT values across different culture conditions and cell 

lines is indicative of maintenance of the undifferentiated state in the MBIC system. 

Statistical analyses indicated no significant difference (p>0.05) between hPSCs propagated 

in the MBIC system and those propagated on acellular substrates on TCPS. Further, the 

differentiation state of the hPSCs was quantified using the ‘expression index’ as a metric to 

compare the undifferentiated hPSCs against EBs obtained in the MBIC system. Using the 
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CT values and corresponding PCR efficiency for the transcript of interest, a ratio of the 

geometric averages of the up-regulated and the down-regulated genes in the appropriate 

undifferentiated/differentiated sample was obtained. For the two cell lines (WA09 and 

hiPSC) analyzed, the expression index of the undifferentiated sample (15 passages) was 90 

and 137, while the expression index of the 15-day old EBs was found to be 0.4 and 0.55 

(Figure 29 a &b).  

In-direct co-culture maintains in vitro differentiation potential 

Functional pluripotency of the hPSCs cultured on acellular substrates was tested by in vitro 

differentiation by embryoid body formation and germ layer identification (ectoderm, 

endoderm and mesoderm). hPSC colonies were manually cut into clumps of about 100-300 

cells and resuspended in ultra-low attachment conditions, an agarose coated Petri dish. 

Within 5-6 days, cystic EBs were formed with high efficiency. After 15 days, total RNA 

was isolated from the EBs and analyzed by real time PCR. Statistical analyses indicated 

that the EBs generated under the MBIC system demonstrated significantly high expression 

(p <0.01) of all germ layer specific markers analyzed (Figure 29d). In addition to the 

expression of markers indicative of germ layer formation in the EBs, histological studies 

were performed to assess the morphology of the differentiated tissue. Detailed examination 

of the EB-sections from hPSCs propagated under direct co-culture and in the MBIC system 

demonstrates the formation of complex structures such as neuroepithelial tubes, fibrous 

connective tissue and intestinal gut (Figure 30). 
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Figure 28: 
Morphology and pluripotency markers on hPSCs grown within the millicell culture 
system: WA09 hESCs and hiPSCs maintain alkaline phosphatase, Stage specific 
embryonic antigen (SSEA4) and POU5F1 expression after 10 passages in membrane-based 
culture. WA09 (a,c,e) and hiPSC (b,d,f) grown in direct co-culture with HFFs are positive 
for alkaline phosphates (a,b), SSEA4 (c,d) and POU5F1 (e,f). Scale bar = 100 μm. 
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Figure 29: 
Quantitative real time polymerase chain reaction (QPCR) analysis of undifferentiated 
hPSCs and differentiated EBs derived from hPSCs. Differential expression index of a) 
WA09 hPSC and WA09-derived EBs and b) hiPSC and hiPSC-derived EBs, based on 
analysis of six genes (OCT4, NANOG, SOX2, AFP, IGF2 and NEUROD1). (c) 
Normalized gene expression of undifferentiated markers in WA09 on acellular HFF (A); 
WA09 in MBIC system (B); hiPSC on acellular HFF (C) and hiPSC in MBIC system (D). 
There is no significant difference (p>0.01) between the groups (n=3) indicating 
comparable pluripotent gene expression. (d) Normalized gene expression of differentiated 
markers in WA09 in MBIC system (A’); EBs generated from WA09 in MBIC system (B’); 
hiPSC in MBIC system (C’); and EBs generated from hiPSC in MBIC system (D’). 
Significant differential gene expression (p<0.01) in all three lineage specific markers was 
observed.   
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Figure 30:  
Histologic Evidence of Tri-Lineage Differentiation in embryoid bodies generated from 
hPSCs.  Shown are images of hematoxylin and eosin-stained histologic sections of EBs 
from WA09 propagated on MEFs as a positive control (top row, a-c); WA09 cells 
propagated on the MBIC system (middle row, d-f) and hiPSC propagated in the MBIC 
system (bottom row, g-i).  Tri-lineage potential is demonstrated as ectodermal 
(neuroepithelial) differentiation (a, d, and f); mesodermal (fibrous connective) 
differentiation (b, e, and g) and endodermal (intestinal) differentiation (c, f, and i). 
Magnification is 200x total (10x ocular, 20x objective).  Each scale bar represents 50 μm 
in length. 
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Global gene expression analysis validates indirect co-culture for hPSC propagation.  

Genome-wide gene expression profiles of undifferentiated karyotypically normal WA09  

hESCs in direct co-culture with HFF feeder cells (standard), in indirect co-culture (MBIC), 

and feeder-free in HFF-conditioned media (feeder-free) were very similar (Figure 31). The 

correlation coefficients among the three culture conditions were very high (Table 8), with a 

limited number of genes showing differential expression among them (Figure 32, top 

diagram). The XE cells are fibroblast-like cells differentiated from the WA09 hESC line. 

The numbers of differentially expressed genes (Figure 31) and the correlation coefficients 

among the three cell types (Table 8) support the notion that the XE cells have a phenotype 

between that of undifferentiated hESCs and HFFs, but more closely related to the HFF 

phenotype. The large majority of the genes differentially expressed between 

undifferentiated hESCs and XE cells are also differentially expressed between hESCs and 

HFFs (2741 out of 3057, or 91%, Figure 32.). Similar results are found when the 

comparisons are performed against hESCs grown under the three culture conditions 

(Figure 32). The expression profiles for the hESCs grown under the MBIC and feeder-free 

conditions were more closely related to each other than those grown under standard 

conditions (Figure 31). This result is not entirely unexpected, as the hESCs in the feeder-

free and MBIC conditions are exposed to HFF-generated soluble factors without direct 

contact with HFFs, while the hESCs in the standard condition have both access to soluble 

factors and direct contact with HFFs.  Differentially expressed genes were examined for 

enrichment in GO categories and targets of ESC-related transcriptional regulators (14 

transcriptional regulators examined, listed with references in Table 9). 
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Figure 31: 
Agglomerative hierarchical clustering by average distance, using the Pearson correlation 
coefficient as the distance measure.  The lengths of the branches on the dendrogram are 
proportional to the average distance in global expression between sample types, and the 
heatmap showing expression displays row-normalized intensity values for the 7,373 genes 
significantly differentially expressed between at least two sample types. XE: WA09-
derived extraembryonic endoderm-like cells.  HFF: human foreskin fibroblasts.  
Undifferentiated WA09 hESCs were maintained with HFFs in indirect coculture 
(Millicell), on Matrigel with HFF-conditioned media (Feeder-Free), and on an HFF feeder 
layer (Standard).   
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Table 8: 
R2 correlation coefficients between expression profiles of different culture conditions (in 
pink boxes) and numbers of significantly differentially expressed genes (FDR < 0.05, 
minimum fold-change of 1.3) between pairs of culture conditions (in violet boxes). 
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Figure 32: 
Venn diagrams indicating the overlap between the sets of genes significantly differentially 
expressed (FDR<0.05) between pairs of samples.  The top diagram shows results for the 
hESCs cultured in the three different conditions.  The lower three diagrams show results 
among hESCs, HFFs and XE cells, with the data for each hESC culture conditions shown 
in a separate diagram.  The sizes of the circles are proportional to the number of genes 
represented 
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Table 9: 

14 transcriptional regulators examined in the enrichment analysis in Figure 6. Lists of 
target genes were extracted from the referenced papers, which identified targets of 
transcriptional regulators from ChIP-Chip data 
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Two significantly enriched GO categories (Development and Cell communication) were 

found (Table 10). Moreover, there was significant enrichment for targets of the 

pluripotency-associated transcription factors OCT4/POU5F1, NANOG, DAX1, and TCF3 

in the set of genes expressed at significantly higher levels in cells cultured under Feeder-

Free or MBIC conditions compared to the Standard condition.   OCT4/POU5F1 and 

NANOG are of course two of the transcription factors most closely associated with 

pluripotency.  In mouse ES cells, DAX1 has been shown to physically interact with SOX2 

and NANOG [243, 265], as well as to have predicted promoter binding sites for the core 

pluripotency-associated transcription factors [266].  OCT4/POU5F1, NANOG, SOX2, and 

TCF3 co-occupy the promoter regions of a large number of pluripotency-associated and 

lineage-specific genes, and it has recently been suggested that TCF3 be added to the short 

list of core transcription factors thought to be critical to the maintenance of the pluripotent 

state [265, 267]. Although the number of differentially expressed genes between the 

hESCs grown in standard vs. MBIC and Standard vs. feeder-free conditions were small, 

the enrichment of targets of these transcription factors in the set of genes more highly 

expressed in the MBIC and feeder-Free conditions suggests that, if anything, they are more 

conducive to the maintenance of pluripotency than the standard condition involving direct 

co-culture with feeders.  
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Table 10:  

TF-targets and GO categories enriched in sets of genes differentially expressed among the 
three hESC culture conditions. The numbers of genes in each category are listed in the 
second column (e.g. there are 36 genes expressed at significantly lower levels in the 
Standard culture condition compared to the Feeder-Free condition).  Enrichments for genes 
in particular Gene Ontology (GO) categories are listed in column 3 (with the associated p-
values in column 4), and enrichments for targets of transcription factors are indicated in the 
fifth column (with the associate p-values in column 6). p-values are Bonferroni corrected 
for multiple testing.  NS = not significant. 
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Discussion 

This study demonstrates several important steps towards hPSC culture improvement. First, 

the MBIC system was effective in segregating hPSCs from feeder layers. Alkaline  

phosphatase analysis of feeder layers below showed negative AP staining, thus indicating 

that hPSCs did not traverse the microporous membranes (data not shown). In addition to 

successful physical separation of cell types, we have demonstrated MEFs can be replaced 

with HFFs, which eliminates any potential exposure to xenotropic pathogens. Previous 

studies have reported the variability that exists between different pluripotent stem cells and 

the need to compare experimental results between two distinct cell lines [271]. To 

demonstrate the ubiquity of the MBIC methods, we used hPSCs from multiple embryonic 

as well as an induced stem cell from human fibroblasts in our studies. 

Furthermore, in contrast to conventional conditioned medium protocols, where feeder-

secreted nutrients and growth factors in the conditioned medium have a limited storage 

capability once removed from the feeder cells resulting in the requirement to be produced 

in parallel to the hPSCs culture in which they will be used, the MBIC system achieves a 

dynamic and sustained conditioning of the medium – similar to that achieved by direct 

contact cultures – while simultaneously achieving clean and thorough cell segregation. 

While many of the essential nutritive factors secreted by feeder layers have not been 

identified, this system demonstrates that hPSCs attached to a substrate only need access to 

the nutrients in the medium, and do not require direct interaction with feeder cells. Another 

important component of hPSC culture is the passaging technique used for expansion. 
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Traditional methods have involved labor-intensive mechanical passaging or use of bulk 

dissociation agents like collagenase, trypsin or EDTA-based reagents. There is published 

data to demonstrate that bulk passaging methods, although easy to adopt for hPSC culture 

has a tendency to result in chromosomal abnormalities in long-term culture. It is useful to 

note that the passaging methodology developed in the MBIC system involves a simple step 

of gently washing and triturating the hPSCs with medium and transfer onto fresh inserts. 

This passaging methodology within the MBIC system has potential for the reduction of 

chromosomal abnormalities on hPSCs in long-term culture and propagation. The bench 

scale demonstration of feasibility of the MBIC culture system presented here has scope for 

refinement and scale up that could facilitate the design of culture systems for both self-

renewal and differentiation of hPSCs.  

Our findings are in contradiction to those presented in an earlier study, where results 

suggested that a porous membrane based system only functions in the propagation of 

hESCs plated to the apical (top) face of the membrane if the feeder cells are grown directly 

on the basolateral (bottom) face of the insert[261]. Though the two studies are somewhat 

similar, the previous study used different feeder layers (STO strain MEFs[261] vs. CF-1 

strain MEFs derived in-house, used in our study), which could potentially contribute to the 

differences observed between our two studies. The results from the previous MBIC based 

study suggests that there exists intrinsic sensitivity to a variety of parameters such as cell 

types, cell seeding densities, media change schedule, etc. that would require optimization. 

However, the study presented here clearly demonstrates, based on multiple measured 

experimental outcomes that the MBIC system can propagate hPSCs in long term culture 
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without the feeder layer attached to the opposing membrane side as well as without any 

physical contact. 

Global gene expression profiling of our samples using whole-genome gene expression 

microarrays revealed that hESCs cultured under Standard, Feeder-Free, and MBIC 

conditions were very similar. However, a small but significant set of genes demonstrated 

differences in gene expression among undifferentiated hESCs grown in the three different 

conditions, particularly between cells cultured in the Standard vs. MBIC and Standard vs. 

Feeder-Free conditions. Our results also suggest that the XE cell phenotype lies between 

that of undifferentiated hESCs and HFFs, but is much closer to the HFF phenotype. 

We envision cells as occupying discrete phenotypic states, stabilized by networks of 

interacting regulatory molecules, such as transcription factors, epigenetic marks, and 

miRNAs. If the cells are perturbed sufficiently (e.g. if undifferentiated cells are exposed to 

chemicals such as retinoic acid or TPA), they can be induced to change phenotypic states. 

However, small perturbations can be compensated for by subtle changes in the regulatory 

network. We believe that we may be seeing evidence for these mechanisms at work in the 

hPSCs cultured under different conditions, with the differences in culture conditions 

causing small changes in gene expression of pluripotency-associated genes, but no change 

in the overall pluripotent phenotype. The relative phenotypes of the cell types studied can 

be illustrated in the model (Figure 33), where the hPSCs cultured under the Feeder-Free 

and MBIC conditions lie at slightly different positions in the same general phenotypic state 

as hPSC cultured under standard conditions, the HFFs occupy a markedly different 

phenotypic state, and the XEs are located between the hPSCs and HFFs, but closer to the 
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HFFs. Our findings also support the notion that global gene expression may be a more 

sensitive method for detecting subtle but potentially biologically important differences 

between cell populations than standard phenotypic assays [272]. There are several ways to 

improve this new MBIC system, particularly in the area of cell attachment. In this study, 

we used a mixture of fibronectin and gelatin for promoting cell attachment in our initial 

assessment of the system. A traditional substrate used for hPSC involves use of Matrigel, 

which includes laminin and peptidoglycans in addition to the collagen found in porcine 

gelatin. [204]. Our study has demonstrated use of acellular substrates derived from human 

fibroblasts that provide the relevant physical cues for attachment within the MBIC system. 

We believe that the acellular substrates present the hPSCs with an environment that is 

molecularly similar to what is used in direct co-culture systems. Furthermore, use of the 

same fibroblast line as a feeder to provide the chemical cues for real time conditioning of 

the media renders the MBIC system an economically feasible alternate to use of other 

purified ECMs like fibronectin or laminin. It is important to note that during the transition 

stages from direct co-culture to the MBIC system, a certain level of spontaneous 

differentiation is observed, hPSCs formed both undifferentiated colonies with tight 

boundaries as well as heterogeneous colonies containing a population of differentiated 

cells at the colony boundaries and between colonies as seen in earlier studies [20, 48]. 

However, the hPSCs recovered quickly to maintain their undifferentiated state over many 

passages in the MBIC system. 
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Development and characterization of defined substrates for hPSC propagation should 

greatly enhance the ability of hPSCs to attach to the insert surface [195]. 

Two considerations for improvement in the MBIC system are the polymer type that 

constitutes the insert, and pore size. For this study, we used a PET membrane, but other 

commercially available polymers deserve further analysis. As shown by the previous 

study, [261] , pore size clearly can have an effect on the diffusion of nutrients across the 

membrane, in addition to having an effect on the topography of the insert. The membrane 

surface in the MBIC system is fundamentally different than the surface of TCPS dishes 

that are widely used in tissue culture, and different polymer variations need to be explored 

to develop an economically feasible system for hPSC propagation.  

Importantly, the potential uses of the MBIC system extend beyond expansion of 

undifferentiated hPSCs. It is expected that this system will find applications in expansion 

of any pluripotent cell type as we have shown with hiPSC that are propagated under 

similar culture conditions used for hESCs [4, 5]. In addition to the pluripotent expansion of 

hPSCs, the applicability of the MBIC system is amenable to the directed differentiation to 

adult stem cells into specific, mature cell types [273]. Similar methodologies could be 

developed for controlling the differentiation of hPSCs, as well as gaining an increased 

understanding of the nuances of the differentiation process such as defining cues that 

require direct contact and/or soluble factors. For example, the use of OP9 mouse stromal 

cell co-culture has been demonstrated for obtaining enriched populations of hESC-derived, 

CD34+ hematopoietic progenitors [274]. The ability to utilize the MBIC system to induce 

differentiation of hPSCs by co-culture with inducing cell types would eliminate the 
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inevitable mixing of cells, resulting in a more purified cell population. Furthermore, if a 

human stromal cell type or other inducing cell types could substitute the widely used 

animal stromal lines for differentiation pathways, the MBIC system would assist with cell 

segregation to a degree where the resulting hPSC derivatives might be clinically useful.  

 

Conclusions 

In conclusion, we have demonstrated the characterization of the MBIC system as providing 

functional and unique benefits over prior innovations in the undifferentiated propagation of 

hPSCs including reducing the burden of expensive purified factor additives, contamination 

potential due to extensive culture manipulations of parallel stem and feeder cultures, and 

the amenability to scale-up to larger culture systems composed of separated hPSC 

expansion and media conditioning compartments separated by a porous membrane 

partition. Thus, the MBIC system presented provides a versatile and cost-effective solution 

for eliminating cell mixing in hPSC co-cultures while retaining the benefits of the presence 

of feeder cells in their conditioning of the media and providing essential factors to promote 

pluripotency. Further modifications and optimization of this system and a detailed 

characterization of hPSCs in long-term cultures should allow for routine adaptation of the 

MBIC system in hPSC propagation and directed differentiation. 
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CHAPTER 5: Conclusions and Future Directions 
 

Conclusions  

The impetus for this study was the identification and development of substrates that were 

devoid of non-human components for long term undifferentiated propagation of human 

pluripotent stem cells (hPSCs). To achieve this, the ECM deposited by mouse and human 

feeder layers were analyzed and characterized for cellular compatibility. Further 

characterization based on mass spectrometry revealed proteins involved in maintenance of 

self-renewal. The information was in turn used to generate defined substrates from 

commercially available proteins, and evaluated for maintenance of hPSC self-renewal. The 

study was conducted in three parts.  

First, the capability of the acellular substrates to maintain long term undifferentiated 

propagation of two embryonic and one induced pluripotent stem cell lines was investigated 

(Chapter 2 and Appendix A). Characterization studies were based on morphological, 

immunocytochemical expression of pluripotent markers, gene expression of pluripotent 

and germ layer specific markers and in vitro differentiation. Results from these 

experiments supported the following conclusions: 

• Human fibroblast derived ECM based substrate can maintain undifferentiated 

propagation of stable hPSCs.  
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• Absence of additional supplementation of the growth medium such as increased 

concentration of growth factors or the use of conditioned medium suggests that 

human acellular substrates are sufficient for maintenance of hPSC self-renewal in 

the long-term. 

Second, to elucidate the composition of the substrates and identify key proteins or 

growth factors involved in hPSC self-renewal, proteomic analysis was performed on the 

substrates derived from human fibroblasts. The results obtained from proteomic analysis 

and further characterization of the ECM components supported the following conclusions:  

• Heparan sulfate proteoglycan and fibronectin are core components of the ECM in 

all fibroblasts analyzed (MEFs, HFFs and HDFs).   

• The use of commercially available HSPG and Fn to synthesize ECM-based 

substrates have demonstrated the potential to develop defined substrates that 

exhibit equivalent capabilities to maintain hPSC self-renewal as that exhibited by 

the acellular substrates.  

• The combination of HSPG and Fn contribute to the synergistic activation of 

adhesion and signaling pathways that are necessary for  hPSC self-renewal.  

Third, the acellular substrates within microporous membrane-based inserts were 

evaluated in the development of indirect co-culture systems and controlled 

microenvironments for hPSC self-renewal. Results from these experiments supported the 

following conclusions: 

• The application of acellular substrate coated microporous membranes provides a 

microenvironment that contributes to the synergistic action of biophysical and 
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biochemical cues (from the ECM coated membrane and real-time conditioning of 

the growth medium) for hPSC self-renewal.  

• This system provides a versatile and cost-effective solution that prevents cell 

mixing in hPSC co-cultures for pluripotency and differentiation studies without 

feeder cell contamination. 

 

Future directions 

The studies conducted in this research have opened avenues for further investigation in the 

following areas a) characterization of signaling molecules and ECM proteins that 

contribute to hPSC self-renewal, b) design, synthesis and incorporation of peptides that 

represent biologically active sites in key proteins within the culture system and c) design of 

microenvironment that will contribute to efficient sub-culturing methodologies for hPSC 

propagation. These studies could be accomplished through the following specific aims:  

 

Specific Aim 1: Analyze the acellular substrates using methodologies capable of 

measuring concentrations of relevant proteins across substrates.  

 The purpose of this aim will be to improve upon the results acquired from the 

proteomic analyses presented in this dissertation. Concentration dependence of growth 

factors such as bFGF on hPSC self-renewal is indicative of the need to detect 

concentration of proteins and the growth factors in substrates. Results from quantification 

techniques such as isotope-coded affinity tags (ICAT) or isobaric tag for relative and 
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absolute quantitation (iTRAQ) might be useful in determining the abundance of proteins 

and subsequent translation of that information to the synthesis of ECM substrates using 

commercially available proteins[209]. 

 

Specific Aim 2: Design and generate peptide based substrates that support adhesion and 

undifferentiated propagation of hPSCs 

 Based on results obtained from ECM-based substrates for hPSC attachment and 

propagation, synthetic peptides can be designed that can recapitulate the different 

combinations of protein required for hPSC self-renewal. A library of peptides based on the 

active sites of core ECM proteins such as fibronectin, heparan sulfate proteoglycan, 

vitronectin, laminin and collagens could be probed to arrive at the best combination that 

engage the appropriate integrins and allow for hPSC adhesion. Engaging syndecan on 

hPSC cell membranes have been shown to allow cell attachment onto peptide treated 

surfaces and support undifferentiated hPSC propagation[275]. Results obtained from the 

proposed experiments have the potential to provide further evidence in support of the 

results presented in this dissertation (Chapter 3).  

 

Specific Aim 3: Design controlled microenvironments for propagation and maintenance of 

hPSCs within a 3D microwell based culture system.  

 Microwell slides that house 600 microwells of 100 x 100 μm lateral dimensions 

coated with non-human Matrigel(TM) have been shown to be capable of supporting long 

term undifferentiated cultures of hPSCs [72]. Preliminary studies using microwell slides 
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coated with murine fibroblast derived acellular substrates have demonstrated the potential 

to sustain hPSCs for a period of 60 days (Appendix D). It is expected that use of human 

fibroblast-derived acellular substrates or the appropriate combination of proteins/peptides 

will elicit similar results and lead to the generation of a humanized system. Such a system 

will also lead to the development of a viable alternative to current labor-intensive and 

inefficient subculturing techniques used.  
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Additional Figures for Chapter 2 
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Figure 1: Karyotypically abnormal BG01v hESCs maintain high nuclear to cytoplasmic ratio and tight boundaries on 
control, MEFs (a) and spread out to form a continuous layer on acellular HFF (b) and HDF substrates (c). Positive expression 
of alkaline phosphatase in BG01v ES cells propagated for 15 passages on MEF (d), aHFF (e) and aHDF (f) was observed, 
Scale bar = 100 μm. 
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Figure 2: Positive expression of stage specific embryonic antigen (SSEA4) (a-c) in BG01v ES cells propagated for 15 
passages on MEF (a), aHFF (b) and aHDF (c). Expression of OCT4 (d-f) in BG01v cells propagated for 15 passages on MEF 
(d), aHFF (e) and aHDF (f) was observed, Scale bar = 100 μm. 
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Figure 3: Normalized gene expression of undifferentiated markers in BG01v on MEFs (A); BG01v on acellular HFF (B) and 
WA09 on acellular HDFs (C). There is no significant difference (p>0.01) between the groups (n=3) indicating comparable 
pluripotent gene expression. 
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Appendix B 

Tables of proteins identified in proteomic analysis in all three substrates acellular MEFs, acellular HFFs and acellular HDFs. 

 



190 
Results acquired from proteomic analysis of acellular MEFs 
 

Proteins Gene Symbol Description Biological Process_max Molecular Function_max Cellular Component_max 

11459 Acta1 actin, alpha 1, skeletal muscle muscle contraction (GO:0006936) ATP binding (GO:0005524) actin cytoskeleton (GO:0015629) 

11461 Actb actin, beta, cytoplasmic ATP binding (GO:0005524) cytosol (GO:0005829) 

11657 Alb albumin transport (GO:0006810) copper ion binding (GO:0005507) cytoplasm (GO:0005737) 

11749 Anxa6 annexin A6 calcium ion transport (GO:0006816) calcium ion binding (GO:0005509) 
perinuclear region of cytoplasm 
(GO:0048471) 

11946 Atp5a1 
ATP synthase, H+ transporting, mitochondrial F1 
complex, alpha subunit, isoform 1 

ATP synthesis coupled proton transport 
(GO:0015986) 

hydrogen ion transporting ATP synthase 
activity, rotational mechanism (GO:0046933) 

mitochondrial inner membrane 
(GO:0005743) 

12306 Anxa2 annexin A2 fibrinolysis (GO:0042730) phospholipase inhibitor activity (GO:0004859) stress fiber (GO:0001725) 

12406 Serpinh1 
serine (or cysteine) peptidase inhibitor, clade H, 
member 1 response to stress (GO:0006950) 

serine-type endopeptidase inhibitor activity 
(GO:0004867) endoplasmic reticulum (GO:0005783) 

12842 Col1a1 collagen, type I, alpha 1 phosphate transport (GO:0006817) 
extracellular matrix structural constituent 
(GO:0005201) cytoplasm (GO:0005737) 

12843 Col1a2 collagen, type I, alpha 2 phosphate transport (GO:0006817) 
extracellular matrix structural constituent 
(GO:0005201) cytoplasm (GO:0005737) 

13346 Des desmin muscle development (GO:0007517) 
structural constituent of cytoskeleton 
(GO:0005200) Z disc (GO:0030018) 

13628 Eef1a2 eukaryotic translation elongation factor 1 alpha 2 anti-apoptosis (GO:0006916) GTPase activity (GO:0003924) nucleus (GO:0005634) 

14115 Fbln2 fibulin 2  calcium ion binding (GO:0005509) 
proteinaceous extracellular matrix 
(GO:0005578) 

14118 Fbn1 fibrillin 1  calcium ion binding (GO:0005509) microfibril (GO:0001527) 

14268 Fn1 fibronectin 1 
transmembrane receptor protein tyrosine kinase 
signaling pathway (GO:0007169) heparin binding (GO:0008201) apical plasma membrane (GO:0016324) 

14735 Gpc4 glypican 4   anchored to membrane (GO:0031225) 

14827 Pdia3 protein disulfide isomerase associated 3 positive regulation of apoptosis (GO:0043065) 
protein disulfide isomerase activity 
(GO:0003756) endoplasmic reticulum (GO:0005783) 

15482 Hspa1l heat shock protein 1-like spermatogenesis (GO:0007283) ATP binding (GO:0005524) 

15530 Hspg2 perlecan (heparan sulfate proteoglycan 2) protein localization (GO:0008104) protein binding (GO:0005515) 
proteinaceous extracellular matrix 
(GO:0005578) 

16412 Itgb1 integrin beta 1 (fibronectin receptor beta) sarcomere organization (GO:0045214) integrin binding (GO:0005178) integrin complex (GO:0008305) 

16661 Krt10 keratin 10  protein binding (GO:0005515) keratin filament (GO:0045095) 

16691 Krt8 keratin 8 
tumor necrosis factor-mediated signaling pathway 
(GO:0033209) protein binding (GO:0005515) Z disc (GO:0030018) 

16905 Lmna lamin A 
nuclear membrane organization and biogenesis 
(GO:0006998) protein binding (GO:0005515) lamin filament (GO:0005638) 

16952 Anxa1 annexin A1 regulation of cell proliferation (GO:0042127) 
phospholipase A2 inhibitor activity 
(GO:0019834) nucleus (GO:0005634) 

17254 Slc3a2 
solute carrier family 3 (activators of dibasic and 
neutral amino acid transport), member 2 amino acid transport (GO:0006865) cation binding (GO:0043169) integral to membrane (GO:0016021) 

17880 Myh11 myosin, heavy polypeptide 11, smooth muscle smooth muscle contraction (GO:0006939) ATP binding (GO:0005524) striated muscle thick filament (GO:0005863) 

17886 Myh9 myosin, heavy polypeptide 9, non-muscle 
meiotic spindle organization and biogenesis 
(GO:0000212) 

actin-dependent ATPase activity 
(GO:0030898) cell-cell adherens junction (GO:0005913) 

19132 Prph peripherin 
intermediate filament cytoskeleton organization and 
biogenesis (GO:0045104) protein binding (GO:0005515) neurofilament (GO:0005883) 

21825 Thbs1 thrombospondin 1 negative regulation of angiogenesis (GO:0016525) heparin binding (GO:0008201) extracellular space (GO:0005615) 
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21838 Thy1 thymus cell antigen 1, theta retinal cone cell development (GO:0046549) 

anchored to external side of plasma 
membrane (GO:0031362) 

22073 Prss3 protease, serine, 3 
serine-type endopeptidase activity 
(GO:0004252) cellular_component (GO:0005575) 

22186 Uba52 
ubiquitin A-52 residue ribosomal protein fusion 
product 1 protein modification process (GO:0006464) 

structural constituent of ribosome 
(GO:0003735) nucleus (GO:0005634) 

22352 Vim vimentin intermediate filament-based process (GO:0045103) protein binding (GO:0005515) type III intermediate filament (GO:0045098) 

54652 Cacna1f 
calcium channel, voltage-dependent, alpha 1F 
subunit cellular calcium ion homeostasis (GO:0006874) 

voltage-gated calcium channel activity 
(GO:0005245) 

integral to membrane of membrane fraction 
(GO:0000299) 

66395 Ahnak AHNAK nucleoprotein (desmoyokin) intracellular signaling cascade (GO:0007242) intercellular junction (GO:0005911) 

71853 Pdia6 protein disulfide isomerase associated 6 cell redox homeostasis (GO:0045454) 
protein disulfide isomerase activity 
(GO:0003756) endoplasmic reticulum (GO:0005783) 

77579 Myh10 myosin, heavy polypeptide 10, non-muscle 
substrate-bound cell migration, cell extension 
(GO:0006930) 

actin-dependent ATPase activity 
(GO:0030898) stress fiber (GO:0001725) 

81601 Htatip HIV-1 tat interactive protein, homolog (human) 
positive regulation of transcription from RNA 
polymerase II promoter (GO:0045944) 

histone acetyltransferase activity 
(GO:0004402) chromatin (GO:0000785) 

101706 Numa1 nuclear mitotic apparatus protein 1 tubulin binding (GO:0015631) nucleus (GO:0005634) 

109624 Cald1 caldesmon 1 
regulation of smooth muscle contraction 
(GO:0006940) actin binding (GO:0003779) actin cap (GO:0030478) 

223915 Krt73 keratin 73  structural molecule activity (GO:0005198) intermediate filament (GO:0005882) 

223917 Krt79 keratin 79  structural molecule activity (GO:0005198) intermediate filament (GO:0005882) 

230594 Zcchc11 zinc finger, CCHC domain containing 11 
negative regulation of NF-kappaB transcription factor 
activity (GO:0032088) zinc ion binding (GO:0008270) nucleus (GO:0005634) 

236892 EG236892 predicted gene, EG236892  

238831 Ppwd1 
peptidylprolyl isomerase domain and WD repeat 
containing 1 mRNA processing (GO:0006397) 

peptidyl-prolyl cis-trans isomerase activity 
(GO:0003755) spliceosome (GO:0005681) 

11464 Actc1 actin, alpha, cardiac muscle thin filament assembly (GO:0030240) ATP binding (GO:0005524) actin cytoskeleton (GO:0015629) 

11632 Aip aryl-hydrocarbon receptor-interacting protein protein folding (GO:0006457) transcription cofactor activity (GO:0003712) membrane fraction (GO:0005624) 

11750 Anxa7 annexin A7 cellular calcium ion homeostasis (GO:0006874) calcium ion binding (GO:0005509) nucleus (GO:0005634) 

11757 Prdx3 peroxiredoxin 3 oxidation reduction (GO:0055114) identical protein binding (GO:0042802) mitochondrion (GO:0005739) 

11853 Rhoc ras homolog gene family, member C 
small GTPase mediated signal transduction 
(GO:0007264) GTP binding (GO:0005525) nucleus (GO:0005634) 

11947 Atp5b 
ATP synthase, H+ transporting mitochondrial F1 
complex, beta subunit 

ATP synthesis coupled proton transport 
(GO:0015986) 

hydrogen-exporting ATPase activity, 
phosphorylative mechanism (GO:0008553) 

mitochondrial inner membrane 
(GO:0005743) 

12317 Calr calreticulin 
cortical actin cytoskeleton organization and 
biogenesis (GO:0030866) zinc ion binding (GO:0008270) microsome (GO:0005792) 

12330 Canx calnexin protein folding (GO:0006457) calcium ion binding (GO:0005509) endoplasmic reticulum (GO:0005783) 

12331 Cap1 
CAP, adenylate cyclase-associated protein 1 
(yeast) receptor-mediated endocytosis (GO:0006898) actin binding (GO:0003779) cortical actin cytoskeleton (GO:0030864) 

12336 Capns1 calpain, small subunit 1 
calcium-dependent cysteine-type 
endopeptidase activity (GO:0004198) cytoplasm (GO:0005737) 

12345 Capzb 
capping protein (actin filament) muscle Z-line, 
beta barbed-end actin filament capping (GO:0051016) actin binding (GO:0003779) intercalated disc (GO:0014704) 

12417 Cbx3 chromobox homolog 3 (Drosophila HP1 gamma) chromatin assembly or disassembly (GO:0006333) chromatin binding (GO:0003682) 
nuclear centromeric heterochromatin 
(GO:0031618) 

12419 Cbx5 chromobox homolog 5 (Drosophila HP1a) chromatin assembly or disassembly (GO:0006333) chromatin binding (GO:0003682) nuclear heterochromatin (GO:0005720) 

12492 Scarb2 scavenger receptor class B, member 2 cell adhesion (GO:0007155) receptor activity (GO:0004872) lysosome (GO:0005764) 

12540 Cdc42 cell division cycle 42 homolog (S. cerevisiae) filopodium formation (GO:0046847) GTPase activity (GO:0003924) filopodium (GO:0030175) 
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12631 Cfl1 cofilin 1, non-muscle actin filament organization (GO:0007015) actin binding (GO:0003779) cortical actin cytoskeleton (GO:0030864) 

12751 Tpp1 tripeptidyl peptidase I proteolysis (GO:0006508) 
serine-type endopeptidase activity 
(GO:0004252) lysosome (GO:0005764) 

12814 Col11a1 collagen, type XI, alpha 1 phosphate transport (GO:0006817) 
extracellular matrix structural constituent 
(GO:0005201) cytoplasm (GO:0005737) 

12825 Col3a1 collagen, type III, alpha 1 phosphate transport (GO:0006817) 
extracellular matrix structural constituent 
(GO:0005201) cytoplasm (GO:0005737) 

12831 Col5a1 collagen, type V, alpha 1 phosphate transport (GO:0006817) heparin binding (GO:0008201) collagen type V (GO:0005588) 

12866 Cox7a2 cytochrome c oxidase, subunit VIIa 2 cytochrome-c oxidase activity (GO:0004129) 
mitochondrial inner membrane 
(GO:0005743) 

12903 Crabp1 cellular retinoic acid binding protein I transport (GO:0006810) retinal binding (GO:0016918) cytoplasm (GO:0005737) 

12934 Dpysl2 dihydropyrimidinase-like 2 nervous system development (GO:0007399) hydrolase activity (GO:0016787) mitochondrion (GO:0005739) 

13030 Ctsb cathepsin B proteolysis (GO:0006508) 
cysteine-type endopeptidase activity 
(GO:0004197) lysosome (GO:0005764) 

13040 Ctss cathepsin S proteolysis (GO:0006508) 
cysteine-type endopeptidase activity 
(GO:0004197) lysosome (GO:0005764) 

13205 Ddx3x DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 3, X-linked ATP binding (GO:0005524) nucleus (GO:0005634) 

13207 Ddx5 DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 mRNA processing (GO:0006397) ATP binding (GO:0005524) nucleus (GO:0005634) 

13627 Eef1a1 eukaryotic translation elongation factor 1 alpha 1 translation (GO:0006412) GTP binding (GO:0005525) cytoplasm (GO:0005737) 

13629 Eef2 eukaryotic translation elongation factor 2 translation (GO:0006412) GTPase activity (GO:0003924) cytoplasm (GO:0005737) 

13885 Esd esterase D/formylglutathione hydrolase 
S-formylglutathione hydrolase activity 
(GO:0018738) 

cytoplasmic membrane-bounded vesicle 
(GO:0016023) 

14230 Fkbp10 FK506 binding protein 10 protein folding (GO:0006457) 
peptidyl-prolyl cis-trans isomerase activity 
(GO:0003755) endoplasmic reticulum (GO:0005783) 

14314 Fstl1 follistatin-like 1 heparin binding (GO:0008201) extracellular space (GO:0005615) 

14319 Fth1 ferritin heavy chain 1 cellular iron ion homeostasis (GO:0006879) ferric iron binding (GO:0008199) 

14376 Ganab alpha glucosidase 2 alpha neutral subunit N-glycan processing (GO:0006491) glucosidase activity (GO:0015926) endoplasmic reticulum (GO:0005783) 

14678 Gnai2 
guanine nucleotide binding protein (G protein), 
alpha inhibiting 2 

G-protein signaling, adenylate cyclase inhibiting 
pathway (GO:0007193) GTPase activity (GO:0003924) 

14679 Gnai3 
guanine nucleotide binding protein (G protein), 
alpha inhibiting 3 

G-protein coupled receptor protein signaling pathway 
(GO:0007186) GTPase activity (GO:0003924) 

heterotrimeric G-protein complex 
(GO:0005834) 

14688 Gnb1 
guanine nucleotide binding protein (G protein), 
beta 1 phototransduction, visible light (GO:0007603) GTPase activity (GO:0003924) 

heterotrimeric G-protein complex 
(GO:0005834) 

14693 Gnb2 
guanine nucleotide binding protein (G protein), 
beta 2 

G-protein coupled receptor protein signaling pathway 
(GO:0007186) GTPase activity (GO:0003924) 

heterotrimeric G-protein complex 
(GO:0005834) 

14696 Gnb4 
guanine nucleotide binding protein (G protein), 
beta 4 

G-protein coupled receptor protein signaling pathway 
(GO:0007186) GTPase activity (GO:0003924) 

heterotrimeric G-protein complex 
(GO:0005834) 

14824 Grn granulin 
positive regulation of epithelial cell proliferation 
(GO:0050679) phospholipase A2 activity (GO:0004623) mitochondrion (GO:0005739) 

14828 Hspa5 heat shock protein 5 ER overload response (GO:0006983) ATP binding (GO:0005524) endoplasmic reticulum (GO:0005783) 

15382 Hnrnpa1 heterogeneous nuclear ribonucleoprotein A1 mRNA processing (GO:0006397) RNA binding (GO:0003723) nucleus (GO:0005634) 

15387 Hnrnpk heterogeneous nuclear ribonucleoprotein K mRNA processing (GO:0006397) DNA binding (GO:0003677) nucleus (GO:0005634) 

15388 Hnrnpl heterogeneous nuclear ribonucleoprotein L mRNA processing (GO:0006397) RNA binding (GO:0003723) pronucleus (GO:0045120) 

15481 Hspa8 heat shock protein 8 
chaperone cofactor-dependent protein folding 
(GO:0051085) ATPase activity, coupled (GO:0042623) cytoplasm (GO:0005737) 

15510 Hspd1 heat shock protein 1 (chaperonin) protein folding (GO:0006457) ATP binding (GO:0005524) 
mitochondrial inner membrane 
(GO:0005743) 
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15512 Hspa2 heat shock protein 2 response to stress (GO:0006950) ATP binding (GO:0005524) mitochondrion (GO:0005739) 

15516 Hsp90ab1 
heat shock protein 90kDa alpha (cytosolic), class 
B member 1 protein folding (GO:0006457) ATP binding (GO:0005524) mitochondrion (GO:0005739) 

15519 Hsp90aa1 
heat shock protein 90, alpha (cytosolic), class A 
member 1 

positive regulation of cytotoxic T cell differentiation 
(GO:0045585) ATP binding (GO:0005524) cytosol (GO:0005829) 

16211 Kpnb1 karyopherin (importin) beta 1 ribosomal protein import into nucleus (GO:0006610) protein transporter activity (GO:0008565) nucleus (GO:0005634) 

16592 Fabp5 fatty acid binding protein 5, epidermal 
phosphatidylcholine biosynthetic process 
(GO:0006656) lipid binding (GO:0008289) cytoplasm (GO:0005737) 

16665 Krt15 keratin 15  structural molecule activity (GO:0005198) intermediate filament (GO:0005882) 

16678 Krt1 keratin 1  structural molecule activity (GO:0005198) intermediate filament (GO:0005882) 

16681 Krt2 keratin 2  structural molecule activity (GO:0005198) intermediate filament (GO:0005882) 

16687 Krt6a keratin 6A intermediate filament organization (GO:0045109) structural molecule activity (GO:0005198) intermediate filament (GO:0005882) 

16777 Lamb1-1 laminin B1 subunit 1 cell adhesion (GO:0007155) enzyme binding (GO:0019899) laminin-10 complex (GO:0043259) 

16852 Lgals1 lectin, galactose binding, soluble 1 myoblast differentiation (GO:0045445) galactose binding (GO:0005534) extracellular space (GO:0005615) 

16854 Lgals3 lectin, galactose binding, soluble 3 skeletal development (GO:0001501) IgE binding (GO:0019863) nucleus (GO:0005634) 

16976 Lrpap1 low density lipoprotein receptor-related protein associated protein 1 heparin binding (GO:0008201) endoplasmic reticulum (GO:0005783) 

17118 Marcks myristoylated alanine rich protein kinase C substrate actin binding (GO:0003779) germinal vesicle (GO:0042585) 

17534 Mrc2 mannose receptor, C type 2 endocytosis (GO:0006897) calcium ion binding (GO:0005509) integral to membrane (GO:0016021) 

17931 Ppp1r12a protein phosphatase 1, regulatory (inhibitor) subunit 12A 
phosphoprotein phosphatase activity 
(GO:0004721) cytoplasm (GO:0005737) 

17975 Ncl nucleolin  DNA binding (GO:0003677) nucleus (GO:0005634) 

18102 Nme1 
non-metastatic cells 1, protein (NM23A) 
expressed in GTP biosynthetic process (GO:0006183) ATP binding (GO:0005524) microsome (GO:0005792) 

18103 Nme2 
non-metastatic cells 2, protein (NM23B) 
expressed in GTP biosynthetic process (GO:0006183) ATP binding (GO:0005524) mitochondrion (GO:0005739) 

18148 Npm1 nucleophosmin 1 
regulation of DNA damage response, signal 
transduction by p53 class mediator (GO:0043516) rRNA binding (GO:0019843) nucleus (GO:0005634) 

18220 Nucb1 nucleobindin 1 calcium ion binding (GO:0005509) Golgi apparatus (GO:0005794) 

18451 P4ha1 

procollagen-proline, 2-oxoglutarate 4-
dioxygenase (proline 4-hydroxylase), alpha 1 
polypeptide 

peptidyl-proline hydroxylation to 4-hydroxy-L-proline 
(GO:0018401) 

procollagen-proline 4-dioxygenase activity 
(GO:0004656) endoplasmic reticulum (GO:0005783) 

18452 P4ha2 

procollagen-proline, 2-oxoglutarate 4-
dioxygenase (proline 4-hydroxylase), alpha II 
polypeptide 

peptidyl-proline hydroxylation to 4-hydroxy-L-proline 
(GO:0018401) 

procollagen-proline 4-dioxygenase activity 
(GO:0004656) endoplasmic reticulum (GO:0005783) 

18453 P4hb prolyl 4-hydroxylase, beta polypeptide 
peptidyl-proline hydroxylation to 4-hydroxy-L-proline 
(GO:0018401) 

procollagen-proline 4-dioxygenase activity 
(GO:0004656) microsome (GO:0005792) 

18477 Prdx1 peroxiredoxin 1 
regulation of NF-kappaB import into nucleus 
(GO:0042345) peroxiredoxin activity (GO:0051920) nucleus (GO:0005634) 

18483 Palm paralemmin 
negative regulation of cAMP biosynthetic process 
(GO:0030818) D3 dopamine receptor binding (GO:0031750) cytoplasm (GO:0005737) 

18537 Pcmt1 
protein-L-isoaspartate (D-aspartate) O-
methyltransferase 1 protein amino acid methylation (GO:0006479) 

protein-L-isoaspartate (D-aspartate) O-
methyltransferase activity (GO:0004719) cytoplasm (GO:0005737) 

18746 Pkm2 pyruvate kinase, muscle glycolysis (GO:0006096) pyruvate kinase activity (GO:0004743) mitochondrion (GO:0005739) 

19025 Ctsa cathepsin A proteolysis (GO:0006508) serine carboxypeptidase activity (GO:0004185) lysosome (GO:0005764) 

19156 Psap prosaposin sphingolipid metabolic process (GO:0006665) lysosome (GO:0005764) 

19170 Psmb1 proteasome (prosome, macropain) subunit, beta ubiquitin-dependent protein catabolic process threonine endopeptidase activity (GO:0004298) nucleus (GO:0005634) 
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type 1 (GO:0006511) 

19173 Psmb5 
proteasome (prosome, macropain) subunit, beta 
type 5 

proteasomal ubiquitin-dependent protein catabolic 
process (GO:0043161) threonine endopeptidase activity (GO:0004298) nucleus (GO:0005634) 

19186 Psme1 
proteasome (prosome, macropain) 28 subunit, 
alpha 

antigen processing and presentation of exogenous 
antigen (GO:0019884) proteasome activator activity (GO:0008538) cytosol (GO:0005829) 

19205 Ptbp1 polypyrimidine tract binding protein 1 mRNA processing (GO:0006397) RNA binding (GO:0003723) nucleus (GO:0005634) 

19326 Rab11b RAB11B, member RAS oncogene family 
small GTPase mediated signal transduction 
(GO:0007264) GTP binding (GO:0005525) 

cytoplasmic membrane-bounded vesicle 
(GO:0016023) 

19656 Rbmxrt 
RNA binding motif protein, X chromosome 
retrogene mRNA processing (GO:0006397) RNA binding (GO:0003723) nucleus (GO:0005634) 

19983 Rpl5 ribosomal protein L5 translation (GO:0006412) 5S rRNA binding (GO:0008097) nucleus (GO:0005634) 

20102 Rps4x ribosomal protein S4, X-linked translation (GO:0006412) rRNA binding (GO:0019843) 
cytosolic small ribosomal subunit 
(GO:0022627) 

20194 S100a10 S100 calcium binding protein A10 (calpactin) calcium ion binding (GO:0005509) 

20333 Sec22b 
SEC22 vesicle trafficking protein homolog B (S. 
cerevisiae) ER to Golgi vesicle-mediated transport (GO:0006888) Golgi membrane (GO:0000139) 

20334 Sec23a SEC23A (S. cerevisiae) 
ER to Golgi vesicle-mediated transport 
(GO:0006888) zinc ion binding (GO:0008270) COPII vesicle coat (GO:0030127) 

20362 8-Sep septin 8 cell cycle (GO:0007049) GTP binding (GO:0005525) septin complex (GO:0031105) 

20740 Spna2 spectrin alpha 2 barbed-end actin filament capping (GO:0051016) actin binding (GO:0003779) fascia adherens (GO:0005916) 

20742 Spnb2 spectrin beta 2 barbed-end actin filament capping (GO:0051016) actin binding (GO:0003779) nucleus (GO:0005634) 

20867 Stip1 stress-induced phosphoprotein 1 response to stress (GO:0006950) binding (GO:0005488) nucleus (GO:0005634) 

20901 Strap 
serine/threonine kinase receptor associated 
protein 

negative regulation of transcription from RNA 
polymerase II promoter (GO:0000122) receptor binding (GO:0005102) nucleus (GO:0005634) 

20911 Stxbp2 syntaxin binding protein 2 vesicle docking during exocytosis (GO:0006904) syntaxin binding (GO:0019905) 

21881 Tkt transketolase regulation of growth (GO:0040008) transketolase activity (GO:0004802) 

22027 Hsp90b1 heat shock protein 90, beta (Grp94), member 1 protein folding (GO:0006457) ATP binding (GO:0005524) endoplasmic reticulum (GO:0005783) 

22074 Try4 trypsin 4  serine-type endopeptidase activity (GO:0004252) cellular_component (GO:0005575) 

22154 Tubb5 tubulin, beta 5 spindle assembly (GO:0051225) GTPase activity (GO:0003924) microtubule (GO:0005874) 

22240 Dpysl3 dihydropyrimidinase-like 3 nervous system development (GO:0007399) hydrolase activity (GO:0016787) cytoplasm (GO:0005737) 

22333 Vdac1 voltage-dependent anion channel 1 apoptosis (GO:0006915) 
voltage-gated anion channel activity 
(GO:0008308) 

mitochondrial outer membrane 
(GO:0005741) 

22334 Vdac2 voltage-dependent anion channel 2 anion transport (GO:0006820) 
voltage-gated anion channel activity 
(GO:0008308) 

mitochondrial outer membrane 
(GO:0005741) 

22627 Ywhae 

tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, epsilon 
polypeptide 

negative regulation of protein amino acid 
dephosphorylation (GO:0035308) monooxygenase activity (GO:0004497) mitochondrion (GO:0005739) 

26388 Ifi202b interferon activated gene 202B nucleus (GO:0005634) 

26433 Plod3 
procollagen-lysine, 2-oxoglutarate 5-dioxygenase 
3 protein modification process (GO:0006464) iron ion binding (GO:0005506) endoplasmic reticulum (GO:0005783) 

26442 Psma5 
proteasome (prosome, macropain) subunit, alpha 
type 5 

ubiquitin-dependent protein catabolic process 
(GO:0006511) threonine endopeptidase activity (GO:0004298) nucleus (GO:0005634) 

26949 Vat1 
vesicle amine transport protein 1 homolog (T 
californica) oxidation reduction (GO:0055114) zinc ion binding (GO:0008270) 

27041 G3bp1 
Ras-GTPase-activating protein SH3-domain 
binding protein 1 transport (GO:0006810) ATP binding (GO:0005524) nucleus (GO:0005634) 

52398 SEPT11 septin 11 cell cycle (GO:0007049) GTP binding (GO:0005525) septin complex (GO:0031105) 
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53328 Pgrmc1 progesterone receptor membrane component 1 transition metal ion binding (GO:0046914) microsome (GO:0005792) 

53379 Hnrnpa2b1 heterogeneous nuclear ribonucleoprotein A2/B1 mRNA processing (GO:0006397) RNA binding (GO:0003723) nucleus (GO:0005634) 

53857 Tuba8 tubulin, alpha 8 
microtubule cytoskeleton organization and 
biogenesis (GO:0000226) GTPase activity (GO:0003924) microtubule (GO:0005874) 

54401 Ywhab 

tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, beta 
polypeptide protein targeting (GO:0006605) monooxygenase activity (GO:0004497) cytoplasm (GO:0005737) 

54609 Ubqln2 ubiquilin 2 protein modification process (GO:0006464) nucleus (GO:0005634) 

55944 Eif3d eukaryotic translation initiation factor 3, subunit D translation (GO:0006412) translation initiation factor activity (GO:0003743) 

56085 Ubqln1 ubiquilin 1 protein modification process (GO:0006464) intermediate filament binding (GO:0019215) nucleus (GO:0005634) 

56491 Vapb vesicle-associated membrane protein, associated protein B and C structural molecule activity (GO:0005198) integral to membrane (GO:0016021) 

56692 Map2k1ip1 
mitogen-activated protein kinase kinase 1 
interacting protein 1 activation of MAPKK activity (GO:0000186) kinase activity (GO:0016301) late endosome (GO:0005770) 

56735 Krt71 keratin 71 
cytoskeleton organization and biogenesis 
(GO:0007010) 

structural constituent of cytoskeleton 
(GO:0005200) intermediate filament (GO:0005882) 

66073 Txndc12 
thioredoxin domain containing 12 (endoplasmic 
reticulum) cell redox homeostasis (GO:0045454) 

protein-disulfide reductase (glutathione) activity 
(GO:0019153) endoplasmic reticulum (GO:0005783) 

66427 Cyb5b cytochrome b5 type B transport (GO:0006810) iron ion binding (GO:0005506) 
mitochondrial inner membrane 
(GO:0005743) 

66870 Serbp1 Serpine1 mRNA binding protein 1 RNA binding (GO:0003723) nucleus (GO:0005634) 

67300 Cltc clathrin, heavy polypeptide (Hc) intracellular protein transport (GO:0006886) protein binding (GO:0005515) 
clathrin coat of trans-Golgi network 
vesicle (GO:0030130) 

67454 1200009F10Rik RIKEN cDNA 1200009F10 gene induction of apoptosis (GO:0006917) protein binding (GO:0005515) endoplasmic reticulum (GO:0005783) 

68585 Rtn4 reticulon 4 negative regulation of axon extension (GO:0030517) protein binding (GO:0005515) 
integral to endoplasmic reticulum 
membrane (GO:0030176) 

68682 Slc44a2 solute carrier family 44, member 2 transport (GO:0006810) integral to membrane (GO:0016021) 

68794 Flnc filamin C, gamma (actin binding protein 280) actin filament-based process (GO:0030029) actin binding (GO:0003779) actin cytoskeleton (GO:0015629) 

69162 Sec31a SEC31 homolog A (S. cerevisiae) protein transport (GO:0015031) endosome (GO:0005768) 

69386 Hist1h4h histone cluster 1, H4h nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

71679 Atp5h 
ATP synthase, H+ transporting, mitochondrial F0 
complex, subunit d 

ATP synthesis coupled proton transport 
(GO:0015986) 

hydrogen ion transporting ATP synthase activity, 
rotational mechanism (GO:0046933) 

mitochondrial inner membrane 
(GO:0005743) 

71770 Ap2b1 adaptor-related protein complex 2, beta 1 subunit intracellular protein transport (GO:0006886) clathrin binding (GO:0030276) transport vesicle (GO:0030133) 

72333 Palld palladin, cytoskeletal associated protein actin binding (GO:0003779) nucleus (GO:0005634) 

77055 Krt76 keratin 76   intermediate filament (GO:0005882) 

80294 Pofut2 protein O-fucosyltransferase 2 fucose metabolic process (GO:0006004) 
peptide-O-fucosyltransferase activity 
(GO:0046922) endoplasmic reticulum (GO:0005783) 

81910 Rrbp1 ribosome binding protein 1 
intracellular protein transport across a membrane 
(GO:0065002) receptor activity (GO:0004872) 

integral to endoplasmic reticulum 
membrane (GO:0030176) 

83397 Akap12 A kinase (PRKA) anchor protein (gravin) 12 protein targeting (GO:0006605) 
receptor signaling complex scaffold activity 
(GO:0030159) cytoskeleton (GO:0005856) 

93695 Gpnmb glycoprotein (transmembrane) nmb cell adhesion (GO:0007155) heparin binding (GO:0008201) 
integral to plasma membrane 
(GO:0005887) 

97122 Hist2h4 histone cluster 2, H4 nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

97908 Hist1h3g histone cluster 1, H3g nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

98238 Lrrc59 leucine rich repeat containing 59 protein binding (GO:0005515) microsome (GO:0005792) 
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109168 5730596K20Rik RIKEN cDNA 5730596K20 gene GTPase activity (GO:0003924) integral to membrane (GO:0016021) 

109672 Cyb5 cytochrome b-5 fatty acid metabolic process (GO:0006631) stearoyl-CoA 9-desaturase activity (GO:0004768) microsome (GO:0005792) 

109754 Cyb5r3 cytochrome b5 reductase 3 sterol biosynthetic process (GO:0016126) cytochrome-b5 reductase activity (GO:0004128) 
mitochondrial inner membrane 
(GO:0005743) 

110611 Hdlbp high density lipoprotein (HDL) binding protein steroid metabolic process (GO:0008202) RNA binding (GO:0003723) nucleus (GO:0005634) 

114228 Prss1 protease, serine, 1 (trypsin 1)  

192176 Flna filamin, alpha 
early endosome to late endosome transport 
(GO:0045022) protein kinase C binding (GO:0005080) trans-Golgi network (GO:0005802) 

208263 Tor1aip1 torsin A interacting protein 1 lamin binding (GO:0005521) nucleus (GO:0005634) 

216197 Ckap4 cytoskeleton-associated protein 4 protein binding (GO:0005515) endoplasmic reticulum (GO:0005783) 

227613 Tubb2c tubulin, beta 2c microtubule-based movement (GO:0007018) GTPase activity (GO:0003924) microtubule (GO:0005874) 

229279 Hnrnpa3 heterogeneous nuclear ribonucleoprotein A3 mRNA processing (GO:0006397) RNA binding (GO:0003723) nucleus (GO:0005634) 

230257 Rod1 ROD1 regulator of differentiation 1 (S. pombe) mRNA processing (GO:0006397) RNA binding (GO:0003723) nucleus (GO:0005634) 

235072 SEPT7 septin 7 cell cycle (GO:0007049) GTP binding (GO:0005525) synaptosome (GO:0019717) 

4232 MEST mesoderm specific transcript homolog (mouse) mesoderm development (GO:0007498) protein binding (GO:0005515) integral to membrane (GO:0016021) 

11363 Acadl acyl-Coenzyme A dehydrogenase, long-chain fatty acid metabolic process (GO:0006631) 
long-chain-acyl-CoA dehydrogenase activity 
(GO:0004466) mitochondrion (GO:0005739) 

11429 Aco2 aconitase 2, mitochondrial tricarboxylic acid cycle (GO:0006099) aconitate hydratase activity (GO:0003994) mitochondrion (GO:0005739) 

11465 Actg1 actin, gamma, cytoplasmic 1 sarcomere organization (GO:0045214) ATP binding (GO:0005524) actin cytoskeleton (GO:0015629) 

11472 Actn2 actinin alpha 2 muscle contraction (GO:0006936) 
thyroid hormone receptor coactivator activity 
(GO:0030375) Z disc (GO:0030018) 

11475 Acta2 actin, alpha 2, smooth muscle, aorta ATP binding (GO:0005524) cytoskeleton (GO:0005856) 

11555 Adrb2 adrenergic receptor, beta 2 
G-protein signaling, adenylate cyclase activating 
pathway (GO:0007189) beta2-adrenergic receptor activity (GO:0004941) nucleus (GO:0005634) 

11669 Aldh2 aldehyde dehydrogenase 2, mitochondrial oxidation reduction (GO:0055114) 
aldehyde dehydrogenase (NAD) activity 
(GO:0004029) mitochondrion (GO:0005739) 

11740 Slc25a5 
solute carrier family 25 (mitochondrial carrier, 
adenine nucleotide translocator), member 5 transport (GO:0006810) transporter activity (GO:0005215) 

mitochondrial inner membrane 
(GO:0005743) 

11746 Anxa4 annexin A4 kidney development (GO:0001822) calcium ion binding (GO:0005509) apical plasma membrane (GO:0016324) 

11747 Anxa5 annexin A5 negative regulation of coagulation (GO:0050819) calcium ion binding (GO:0005509) 

11773 Ap2m1 adaptor protein complex AP-2, mu1 intracellular protein transport (GO:0006886) protein binding (GO:0005515) clathrin coat of coated pit (GO:0030132) 

11820 App amyloid beta (A4) precursor protein 
smooth endoplasmic reticulum calcium ion 
homeostasis (GO:0051563) 

serine-type endopeptidase inhibitor activity 
(GO:0004867) Golgi apparatus (GO:0005794) 

11886 Asah1 N-acylsphingosine amidohydrolase 1 ceramidase activity (GO:0017040) lysosome (GO:0005764) 

11928 Atp1a1 
ATPase, Na+/K+ transporting, alpha 1 
polypeptide regulation of cellular pH (GO:0030641) 

sodium:potassium-exchanging ATPase activity 
(GO:0005391) microsome (GO:0005792) 

11938 Atp2a2 
ATPase, Ca++ transporting, cardiac muscle, slow 
twitch 2 cellular calcium ion homeostasis (GO:0006874) 

calcium-transporting ATPase activity 
(GO:0005388) microsome (GO:0005792) 

11944 Atp4a 
ATPase, H+/K+ exchanging, gastric, alpha 
polypeptide potassium ion transport (GO:0006813) 

hydrogen:potassium-exchanging ATPase activity 
(GO:0008900) integral to membrane (GO:0016021) 

11949 Atp5c1 
ATP synthase, H+ transporting, mitochondrial F1 
complex, gamma polypeptide 1 

ATP synthesis coupled proton transport 
(GO:0015986) 

hydrogen ion transporting ATP synthase activity, 
rotational mechanism (GO:0046933) 

mitochondrial inner membrane 
(GO:0005743) 

11950 Atp5f1 
ATP synthase, H+ transporting, mitochondrial F0 
complex, subunit b, isoform 1 

ATP synthesis coupled proton transport 
(GO:0015986) 

hydrogen ion transporting ATP synthase activity, 
rotational mechanism (GO:0046933) 

mitochondrial inner membrane 
(GO:0005743) 

12034 Phb2 prohibitin 2 
regulation of transcription, DNA-dependent 
(GO:0006355) receptor activity (GO:0004872) 

mitochondrial inner membrane 
(GO:0005743) 
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12304 Pdia4 protein disulfide isomerase associated 4 cell redox homeostasis (GO:0045454) protein disulfide isomerase activity (GO:0003756) endoplasmic reticulum (GO:0005783) 

12313 Calm1 calmodulin 1 positive regulation of DNA binding (GO:0043388) calcium ion binding (GO:0005509) 

12314 Calm2 calmodulin 2 
G-protein coupled receptor protein signaling pathway 
(GO:0007186) calcium ion binding (GO:0005509) cytoplasm (GO:0005737) 

12315 Calm3 calmodulin 3 
G-protein coupled receptor protein signaling pathway 
(GO:0007186) calcium ion binding (GO:0005509) cytoplasm (GO:0005737) 

12321 Calu calumenin  calcium ion binding (GO:0005509) endoplasmic reticulum (GO:0005783) 

12385 Ctnna1 catenin (cadherin associated protein), alpha 1 
negative regulation of neuroblast proliferation 
(GO:0007406) actin filament binding (GO:0051015) zonula adherens (GO:0005915) 

12387 Ctnnb1 catenin (cadherin associated protein), beta 1 
negative regulation of osteoclast differentiation 
(GO:0045671) double-stranded DNA binding (GO:0003690) fascia adherens (GO:0005916) 

12388 Ctnnd1 catenin (cadherin associated protein), delta 1 
regulation of transcription, DNA-dependent 
(GO:0006355) protein binding (GO:0005515) nucleus (GO:0005634) 

12389 Cav1 caveolin, caveolae protein 1 inactivation of MAPK activity (GO:0000188) protease activator activity (GO:0016504) 
integral to plasma membrane 
(GO:0005887) 

12390 Cav2 caveolin 2 
negative regulation of endothelial cell proliferation 
(GO:0001937) protein homodimerization activity (GO:0042803) 

integral to plasma membrane 
(GO:0005887) 

12520 Cd81 CD 81 antigen positive regulation of B cell proliferation (GO:0030890) integral to membrane (GO:0016021) 

12527 Cd9 CD9 antigen 
fusion of sperm to egg plasma membrane 
(GO:0007342) protein binding (GO:0005515) integral to membrane (GO:0016021) 

12797 Cnn1 calponin 1 
actomyosin structure organization and biogenesis 
(GO:0031032) actin binding (GO:0003779) 

12816 Col12a1 collagen, type XII, alpha 1 phosphate transport (GO:0006817) protein binding (GO:0005515) cytoplasm (GO:0005737) 

12835 Col6a3 collagen, type VI, alpha 3 structural molecule activity (GO:0005198) extracellular space (GO:0005615) 

12837 Col8a1 collagen, type VIII, alpha 1 phosphate transport (GO:0006817) protein binding (GO:0005515) cytoplasm (GO:0005737) 

12858 Cox5a cytochrome c oxidase, subunit Va iron ion binding (GO:0005506) 
mitochondrial inner membrane 
(GO:0005743) 

12861 Cox6a1 cytochrome c oxidase, subunit VI a, polypeptide 1 cytochrome-c oxidase activity (GO:0004129) mitochondrion (GO:0005739) 

12974 Cs citrate synthase tricarboxylic acid cycle (GO:0006099) citrate (Si)-synthase activity (GO:0004108) mitochondrion (GO:0005739) 

13200 Ddost 
dolichyl-di-phosphooligosaccharide-protein 
glycotransferase 

protein amino acid N-linked glycosylation via 
asparagine (GO:0018279) 

dolichyl-diphosphooligosaccharide-protein 
glycotransferase activity (GO:0004579) endoplasmic reticulum (GO:0005783) 

13382 Dld dihydrolipoamide dehydrogenase regulation of membrane potential (GO:0042391) FAD binding (GO:0050660) acrosomal matrix (GO:0043159) 

13427 Dync1i2 dynein cytoplasmic 1 intermediate chain 2 motor activity (GO:0003774) microtubule (GO:0005874) 

13717 Eln elastin stress fiber formation (GO:0043149) 
extracellular matrix structural constituent 
(GO:0005201) 

proteinaceous extracellular matrix 
(GO:0005578) 

13849 Ephx1 epoxide hydrolase 1, microsomal aromatic compound catabolic process (GO:0019439) epoxide hydrolase activity (GO:0004301) microsome (GO:0005792) 

14089 Fap fibroblast activation protein proteolysis (GO:0006508) serine-type endopeptidase activity (GO:0004252) integral to membrane (GO:0016021) 

14113 Fbl fibrillarin rRNA processing (GO:0006364) methyltransferase activity (GO:0008168) Cajal body (GO:0015030) 

14119 Fbn2 fibrillin 2 embryonic limb morphogenesis (GO:0030326) calcium ion binding (GO:0005509) microfibril (GO:0001527) 

14251 Flot1 flotillin 1   integral to membrane (GO:0016021) 

14433 Gapdh glyceraldehyde-3-phosphate dehydrogenase glycolysis (GO:0006096) 
glyceraldehyde-3-phosphate dehydrogenase 
(phosphorylating) activity (GO:0004365) mitochondrion (GO:0005739) 

14660 Gls glutaminase glutamine catabolic process (GO:0006543) glutaminase activity (GO:0004359) 

14661 Glud1 glutamate dehydrogenase 1 
transmembrane receptor protein tyrosine kinase 
signaling pathway (GO:0007169) ATP binding (GO:0005524) 

mitochondrial inner membrane 
(GO:0005743) 

14674 Gna13 guanine nucleotide binding protein, alpha 13 Rho protein signal transduction (GO:0007266) GTPase activity (GO:0003924) heterotrimeric G-protein complex 
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(GO:0005834) 

14694 Gnb2l1 
guanine nucleotide binding protein (G protein), 
beta polypeptide 2 like 1 activation of protein kinase C activity (GO:0007205) GTPase activity (GO:0003924) 

heterotrimeric G-protein complex 
(GO:0005834) 

14719 Got2 
glutamate oxaloacetate transaminase 2, 
mitochondrial aspartate biosynthetic process (GO:0006532) aspartate transaminase activity (GO:0004069) 

mitochondrial inner membrane 
(GO:0005743) 

14886 Gtf2i general transcription factor II I 
regulation of transcription, DNA-dependent 
(GO:0006355) DNA binding (GO:0003677) nucleus (GO:0005634) 

14919 Gucy2e guanylate cyclase 2e cGMP biosynthetic process (GO:0006182) ATP binding (GO:0005524) integral to membrane (GO:0016021) 

14950 H13 histocompatibility 13 
aspartic-type endopeptidase activity 
(GO:0004190) endoplasmic reticulum (GO:0005783) 

14957 Hist1h1d histone cluster 1, H1d nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

14958 H1f0 H1 histone family, member 0 nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

15211 Hexa hexosaminidase A ganglioside catabolic process (GO:0006689) 
beta-N-acetylhexosaminidase activity 
(GO:0004563) lysosome (GO:0005764) 

15289 Hmgb1 high mobility group box 1 
regulation of transcription, DNA-dependent 
(GO:0006355) heparin binding (GO:0008201) chromatin (GO:0000785) 

15364 Hmga2 high mobility group AT-hook 2 
regulation of transcription, DNA-dependent 
(GO:0006355) DNA binding (GO:0003677) nuclear chromosome (GO:0000228) 

15369 Hmox2 heme oxygenase (decycling) 2 heme oxidation (GO:0006788) iron ion binding (GO:0005506) microsome (GO:0005792) 

15441 Hp1bp3 heterochromatin protein 1, binding protein 3 nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

15502 Dnaja1 DnaJ (Hsp40) homolog, subfamily A, member 1 androgen receptor signaling pathway (GO:0030521) zinc ion binding (GO:0008270) membrane (GO:0016020) 

15951 Ifi204 interferon activated gene 204 

DNA damage response, signal transduction by p53 
class mediator resulting in induction of apoptosis 
(GO:0042771) transcription cofactor activity (GO:0003712) nucleus (GO:0005634) 

16906 Lmnb1 lamin B1  structural molecule activity (GO:0005198) lamin filament (GO:0005638) 

16971 Lrp1 low density lipoprotein receptor-related protein 1 apoptotic cell clearance (GO:0043277) calcium ion binding (GO:0005509) nucleus (GO:0005634) 

16997 Ltbp2 
latent transforming growth factor beta binding 
protein 2 metabolic process (GO:0008152) calcium ion binding (GO:0005509) extracellular region (GO:0005576) 

16998 Ltbp3 
latent transforming growth factor beta binding 
protein 3 

transforming growth factor beta receptor signaling 
pathway (GO:0007179) calcium ion binding (GO:0005509) 

proteinaceous extracellular matrix 
(GO:0005578) 

17150 Mfap2 microfibrillar-associated protein 2 microfibril (GO:0001527) 

17257 Mecp2 methyl CpG binding protein 2 
negative regulation of transcription, DNA-dependent 
(GO:0045892) mRNA binding (GO:0003729) heterochromatin (GO:0000792) 

17276 Mela melanoma antigen transposition (GO:0032196) 
RNA-directed DNA polymerase activity 
(GO:0003964) integral to membrane (GO:0016021) 

17448 Mdh2 malate dehydrogenase 2, NAD (mitochondrial) glycolysis (GO:0006096) L-malate dehydrogenase activity (GO:0030060) 
mitochondrial inner membrane 
(GO:0005743) 

17470 Cd200 Cd200 antigen protein binding (GO:0005515) integral to membrane (GO:0016021) 

17709 COX2 cytochrome c oxidase subunit II transport (GO:0006810) copper ion binding (GO:0005507) mitochondrion (GO:0005739) 

17758 Mtap4 microtubule-associated protein 4 negative regulation of microtubule depolymerization (GO:0007026) microtubule (GO:0005874) 

17904 Myl6 
myosin, light polypeptide 6, alkali, smooth muscle 
and non-muscle muscle filament sliding (GO:0030049) calcium ion binding (GO:0005509) 

unconventional myosin complex 
(GO:0016461) 

17995 Ndufv1 NADH dehydrogenase (ubiquinone) flavoprotein 1 
mitochondrial electron transport, NADH to ubiquinone 
(GO:0006120) 

NADH dehydrogenase (ubiquinone) activity 
(GO:0008137) 

mitochondrial inner membrane 
(GO:0005743) 

18000 SEPT2 septin 2 cytokinesis (GO:0000910) GTPase activity (GO:0003924) synaptosome (GO:0019717) 

18186 Nrp1 neuropilin 1 negative regulation of axon extension (GO:0030517) semaphorin receptor activity (GO:0017154) integral to membrane (GO:0016021) 

18194 Nsdhl NAD(P) dependent steroid dehydrogenase-like sterol biosynthetic process (GO:0016126) 
3-beta-hydroxy-delta5-steroid dehydrogenase 
activity (GO:0003854) integral to membrane (GO:0016021) 
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18242 Oat ornithine aminotransferase 

ornithine-oxo-acid transaminase activity 
(GO:0004587) mitochondrion (GO:0005739) 

18596 Pdgfrb 
platelet derived growth factor receptor, beta 
polypeptide 

regulation of peptidyl-tyrosine phosphorylation 
(GO:0050730) 

vascular endothelial growth factor receptor activity 
(GO:0005021) integral to membrane (GO:0016021) 

18654 Pgf placental growth factor ureteric bud branching (GO:0001658) growth factor activity (GO:0008083) extracellular space (GO:0005615) 

18673 Phb prohibitin DNA replication (GO:0006260) 
mitochondrial inner membrane 
(GO:0005743) 

18674 Slc25a3 
solute carrier family 25 (mitochondrial carrier, 
phosphate carrier), member 3 transport (GO:0006810) symporter activity (GO:0015293) 

mitochondrial inner membrane 
(GO:0005743) 

18810 Plec1 plectin 1  actin binding (GO:0003779) cytoskeleton (GO:0005856) 

18984 Por P450 (cytochrome) oxidoreductase oxidation reduction (GO:0055114) iron ion binding (GO:0005506) microsome (GO:0005792) 

19012 Ppap2a phosphatidic acid phosphatase 2a diacylglycerol biosynthetic process (GO:0006651) 
phosphatidate phosphatase activity 
(GO:0008195) 

integral to plasma membrane 
(GO:0005887) 

19035 Ppib peptidylprolyl isomerase B protein folding (GO:0006457) 
peptidyl-prolyl cis-trans isomerase activity 
(GO:0003755) endoplasmic reticulum (GO:0005783) 

19223 Ptgis prostaglandin I2 (prostacyclin) synthase prostaglandin biosynthetic process (GO:0001516) iron ion binding (GO:0005506) endoplasmic reticulum (GO:0005783) 

19353 Rac1 RAS-related C3 botulinum substrate 1 
embryonic olfactory bulb interneuron precursor 
migration (GO:0021831) GTPase activity (GO:0003924) 

cytoplasmic membrane-bounded vesicle 
(GO:0016023) 

19384 Ran RAN, member RAS oncogene family protein import into nucleus (GO:0006606) GTPase activity (GO:0003924) nucleus (GO:0005634) 

19672 Rcn1 reticulocalbin 1 calcium ion binding (GO:0005509) endoplasmic reticulum (GO:0005783) 

19896 Rpl10a ribosomal protein L10A translation (GO:0006412) structural constituent of ribosome (GO:0003735) ribosome (GO:0005840) 

19899 Rpl18 ribosomal protein L18 translation (GO:0006412) structural constituent of ribosome (GO:0003735) cytoplasm (GO:0005737) 

19921 Rpl19 ribosomal protein L19 translation (GO:0006412) RNA binding (GO:0003723) 
cytosolic large ribosomal subunit 
(GO:0022625) 

19944 Rpl29 ribosomal protein L29 translation (GO:0006412) structural constituent of ribosome (GO:0003735) ribosome (GO:0005840) 

19951 Rpl32 ribosomal protein L32 translation (GO:0006412) RNA binding (GO:0003723) 
cytosolic large ribosomal subunit 
(GO:0022625) 

19988 Rpl6 ribosomal protein L6 translation (GO:0006412) structural constituent of ribosome (GO:0003735) ribosome (GO:0005840) 

19989 Rpl7 ribosomal protein L7 translation (GO:0006412) RNA binding (GO:0003723) large ribosomal subunit (GO:0015934) 

20014 Rpn2 ribophorin II 
protein amino acid N-linked glycosylation via 
asparagine (GO:0018279) 

dolichyl-diphosphooligosaccharide-protein 
glycotransferase activity (GO:0004579) endoplasmic reticulum (GO:0005783) 

20044 Rps14 ribosomal protein S14 translation (GO:0006412) RNA binding (GO:0003723) 
cytosolic small ribosomal subunit 
(GO:0022627) 

20068 Rps17 ribosomal protein S17 translation (GO:0006412) structural constituent of ribosome (GO:0003735) 
cytosolic small ribosomal subunit 
(GO:0022627) 

20091 Rps3a ribosomal protein S3a translation (GO:0006412) structural constituent of ribosome (GO:0003735) nucleus (GO:0005634) 

20116 Rps8 ribosomal protein S8  ribosome (GO:0005840) 

20195 S100a11 S100 calcium binding protein A11 (calgizzarin) spermatogenesis (GO:0007283) cytokine activity (GO:0005125) cytoplasm (GO:0005737) 

20340 Glg1 golgi apparatus protein 1 fibroblast growth factor binding (GO:0017134) Golgi apparatus (GO:0005794) 

20501 Slc16a1 
solute carrier family 16 (monocarboxylic acid 
transporters), member 1 organic anion transport (GO:0015711) 

secondary active monocarboxylate 
transmembrane transporter activity (GO:0015355) integral to membrane (GO:0016021) 

20818 Srprb signal recognition particle receptor, B subunit GTP binding (GO:0005525) endoplasmic reticulum (GO:0005783) 

21345 Tagln transgelin cytoskeleton organization and biogenesis (GO:0007010) cytoplasm (GO:0005737) 

21402 Skp1a S-phase kinase-associated protein 1A 
ubiquitin-dependent protein catabolic process 
(GO:0006511) kinase activity (GO:0016301) 

SCF ubiquitin ligase complex 
(GO:0019005) 

21762 Psmd2 proteasome (prosome, macropain) 26S subunit, non-ATPase, 2 cytosol (GO:0005829) 
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21894 Tln1 talin 1 

cortical actin cytoskeleton organization and 
biogenesis (GO:0030866) actin binding (GO:0003779) focal adhesion (GO:0005925) 

21917 Tmpo thymopoietin regulation of transcription (GO:0045449) hormone activity (GO:0005179) chromatin (GO:0000785) 

22004 Tpm2 tropomyosin 2, beta muscle contraction (GO:0006936) actin binding (GO:0003779) cytoskeleton (GO:0005856) 

22121 Rpl13a ribosomal protein L13a translation (GO:0006412) structural constituent of ribosome (GO:0003735) large ribosomal subunit (GO:0015934) 

22143 Tuba1b tubulin, alpha 1B microtubule-based movement (GO:0007018) GTPase activity (GO:0003924) microtubule (GO:0005874) 

22146 Tuba1c tubulin, alpha 1C microtubule-based movement (GO:0007018) GTPase activity (GO:0003924) microtubule (GO:0005874) 

22187 Ubb ubiquitin B protein modification process (GO:0006464) protein binding (GO:0005515) nucleus (GO:0005634) 

22335 Vdac3 voltage-dependent anion channel 3 nerve-nerve synaptic transmission (GO:0007270) 
voltage-gated anion channel activity 
(GO:0008308) 

mitochondrial outer membrane 
(GO:0005741) 

22385 Baz1b bromodomain adjacent to zinc finger domain, 1B chromatin remodeling (GO:0006338) zinc ion binding (GO:0008270) 
centromeric heterochromatin 
(GO:0005721) 

22608 Ybx1 Y box protein 1 mRNA processing (GO:0006397) single-stranded DNA binding (GO:0003697) nucleus (GO:0005634) 

23825 Banf1 barrier to autointegration factor 1 provirus integration (GO:0019047) DNA binding (GO:0003677) nucleus (GO:0005634) 

23876 Fbln5 fibulin 5 cell adhesion (GO:0007155) calcium ion binding (GO:0005509) extracellular space (GO:0005615) 

23937 Mab21l2 mab-21-like 2 (C. elegans) camera-type eye development (GO:0043010) nucleus (GO:0005634) 

23943 Mbc2 membrane bound C2 domain containing protein integral to membrane (GO:0016021) 

26914 H2afy H2A histone family, member Y nucleosome assembly (GO:0006334) DNA binding (GO:0003677) Barr body (GO:0001740) 

26942 Spag1 sperm associated antigen 1 single fertilization (GO:0007338) GTP binding (GO:0005525) cytoplasm (GO:0005737) 

26961 Rpl8 ribosomal protein L8 translation (GO:0006412) rRNA binding (GO:0019843) 
cytosolic large ribosomal subunit 
(GO:0022625) 

27050 Rps3 ribosomal protein S3 translation (GO:0006412) RNA binding (GO:0003723) small ribosomal subunit (GO:0015935) 

27061 Bcap31 B-cell receptor-associated protein 31 apoptosis (GO:0006915) receptor activity (GO:0004872) 
integral to plasma membrane 
(GO:0005887) 

27176 Rpl7a ribosomal protein L7a translation (GO:0006412) structural constituent of ribosome (GO:0003735) polysomal ribosome (GO:0042788) 

27367 Rpl3 ribosomal protein L3 translation (GO:0006412) structural constituent of ribosome (GO:0003735) cytoplasm (GO:0005737) 

27425 Atp5l 
ATP synthase, H+ transporting, mitochondrial F0 
complex, subunit g 

ATP synthesis coupled proton transport 
(GO:0015986) 

hydrogen-exporting ATPase activity, 
phosphorylative mechanism (GO:0008553) 

mitochondrial inner membrane 
(GO:0005743) 

28080 Atp5o 
ATP synthase, H+ transporting, mitochondrial F1 
complex, O subunit 

ATP synthesis coupled proton transport 
(GO:0015986) 

hydrogen-exporting ATPase activity, 
phosphorylative mechanism (GO:0008553) mitochondrion (GO:0005739) 

28185 Tomm70a translocase of outer mitochondrial membrane 70 homolog A (yeast) receptor activity (GO:0004872) mitochondrion (GO:0005739) 

28295 D10Jhu81e DNA segment, Chr 10, Johns Hopkins University 81 expressed mitochondrion (GO:0005739) 

30960 Vapa vesicle-associated membrane protein, associated protein A structural molecule activity (GO:0005198) endoplasmic reticulum (GO:0005783) 

50706 Postn periostin, osteoblast specific factor 
extracellular matrix organization and biogenesis 
(GO:0030198) heparin binding (GO:0008201) 

proteinaceous extracellular matrix 
(GO:0005578) 

50790 Acsl4 acyl-CoA synthetase long-chain family member 4 fatty acid metabolic process (GO:0006631) 
long-chain-fatty-acid-CoA ligase activity 
(GO:0004467) peroxisome (GO:0005777) 

51788 H2afz H2A histone family, member Z nucleosome assembly (GO:0006334) DNA binding (GO:0003677) Barr body (GO:0001740) 

52377 Rcn3 reticulocalbin 3, EF-hand calcium binding domain calcium ion binding (GO:0005509) endoplasmic reticulum (GO:0005783) 

53322 Nucb2 nucleobindin 2 cellular calcium ion homeostasis (GO:0006874) calcium ion binding (GO:0005509) nuclear outer membrane (GO:0005640) 

53421 Sec61a1 Sec61 alpha 1 subunit (S. cerevisiae) 
intracellular protein transport across a membrane 
(GO:0065002) 

P-P-bond-hydrolysis-driven protein 
transmembrane transporter activity (GO:0015450) endoplasmic reticulum (GO:0005783) 
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54637 Praf2 PRA1 domain family 2 protein transport (GO:0015031) integral to membrane (GO:0016021) 

56334 Tmed2 
transmembrane emp24 domain trafficking protein 
2 protein transport (GO:0015031) protein binding (GO:0005515) Golgi apparatus (GO:0005794) 

56401 Lepre1 leprecan 1 protein metabolic process (GO:0019538) 
procollagen-proline 3-dioxygenase activity 
(GO:0019797) nucleus (GO:0005634) 

56428 Mtch2 mitochondrial carrier homolog 2 (C. elegans) transport (GO:0006810) binding (GO:0005488) 
mitochondrial inner membrane 
(GO:0005743) 

56451 Suclg1 
succinate-CoA ligase, GDP-forming, alpha 
subunit tricarboxylic acid cycle (GO:0006099) 

succinate-CoA ligase (ADP-forming) activity 
(GO:0004775) 

mitochondrial inner membrane 
(GO:0005743) 

56454 Aldh18a1 aldehyde dehydrogenase 18 family, member A1 proline biosynthetic process (GO:0006561) glutamate 5-kinase activity (GO:0004349) mitochondrion (GO:0005739) 

56457 Clptm1 
cleft lip and palate associated transmembrane 
protein 1 regulation of T cell differentiation in the thymus (GO:0033081) 

external side of plasma membrane 
(GO:0009897) 

56463 Snd1 
staphylococcal nuclease and tudor domain 
containing 1 RNA interference (GO:0016246) nuclease activity (GO:0004518) nucleus (GO:0005634) 

56702 Hist1h1b histone cluster 1, H1b nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

57170 Dolpp1 dolichyl pyrophosphate phosphatase 1 
protein amino acid N-linked glycosylation 
(GO:0006487) dolichyldiphosphatase activity (GO:0047874) 

integral to endoplasmic reticulum 
membrane (GO:0030176) 

57377 Gcs1 glucosidase 1 oligosaccharide metabolic process (GO:0009311) 
mannosyl-oligosaccharide glucosidase activity 
(GO:0004573) endoplasmic reticulum (GO:0005783) 

59021 Rab2a RAB2A, member RAS oncogene family 
small GTPase mediated signal transduction 
(GO:0007264) GTP binding (GO:0005525) endoplasmic reticulum (GO:0005783) 

64660 Mrps24 mitochondrial ribosomal protein S24 structural constituent of ribosome (GO:0003735) 
mitochondrial small ribosomal subunit 
(GO:0005763) 

65019 Rpl23 ribosomal protein L23 ribosomal protein import into nucleus (GO:0006610) structural constituent of ribosome (GO:0003735) nucleolus (GO:0005730) 

65106 Arl6ip5 ADP-ribosylation factor-like 6 interacting protein 5 L-glutamate transport (GO:0015813) protein binding (GO:0005515) endoplasmic reticulum (GO:0005783) 

65970 Lima1 LIM domain and actin binding 1 zinc ion binding (GO:0008270) actin cytoskeleton (GO:0015629) 

65973 Asph aspartate-beta-hydroxylase peptidyl-amino acid modification (GO:0018193) 
peptide-aspartate beta-dioxygenase activity 
(GO:0004597) 

integral to endoplasmic reticulum 
membrane (GO:0030176) 

66052 Sdhc 
succinate dehydrogenase complex, subunit C, 
integral membrane protein tricarboxylic acid cycle (GO:0006099) iron ion binding (GO:0005506) mitochondrion (GO:0005739) 

66141 Ifitm3 interferon induced transmembrane protein 3 negative regulation of cell proliferation (GO:0008285) integral to membrane (GO:0016021) 

66241 Tmem9 transmembrane protein 9 transport (GO:0006810) lysosome (GO:0005764) 

66480 Rpl15 ribosomal protein L15 translation (GO:0006412) structural constituent of ribosome (GO:0003735) ribosome (GO:0005840) 

66525 Timm50 
translocase of inner mitochondrial membrane 50 
homolog (yeast) 

release of cytochrome c from mitochondria 
(GO:0001836) 

phosphoprotein phosphatase activity 
(GO:0004721) mitochondrion (GO:0005739) 

66656 Eef1d 
eukaryotic translation elongation factor 1 delta 
(guanine nucleotide exchange protein) translational elongation (GO:0006414) 

translation elongation factor activity 
(GO:0003746) 

eukaryotic translation elongation factor 1 
complex (GO:0005853) 

66673 Sorcs3 sortilin-related VPS10 domain containing receptor 3 integral to membrane (GO:0016021) 

66861 Dnajc10 DnaJ (Hsp40) homolog, subfamily C, member 10 protein folding (GO:0006457) heat shock protein binding (GO:0031072) endoplasmic reticulum (GO:0005783) 

66881 Pcyox1 prenylcysteine oxidase 1 prenylcysteine catabolic process (GO:0030328) prenylcysteine oxidase activity (GO:0001735) lysosome (GO:0005764) 

66890 Lman2 lectin, mannose-binding 2 protein transport (GO:0015031) calcium ion binding (GO:0005509) Golgi apparatus (GO:0005794) 

66945 Sdha 
succinate dehydrogenase complex, subunit A, 
flavoprotein (Fp) tricarboxylic acid cycle (GO:0006099) 

succinate dehydrogenase (ubiquinone) activity 
(GO:0008177) 

mitochondrial inner membrane 
(GO:0005743) 

67003 Uqcrc2 ubiquinol cytochrome c reductase core protein 2 proteolysis (GO:0006508) metalloendopeptidase activity (GO:0004222) 
mitochondrial inner membrane 
(GO:0005743) 

67040 Ddx17 DEAD (Asp-Glu-Ala-Asp) box polypeptide 17 ATP binding (GO:0005524) nucleus (GO:0005634) 

67097 Rps10 ribosomal protein S10 structural constituent of ribosome (GO:0003735) cytoplasm (GO:0005737) 
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67115 Rpl14 ribosomal protein L14 translation (GO:0006412) structural constituent of ribosome (GO:0003735) ribosome (GO:0005840) 

67154 Mtdh Metadherin 
regulation of transcription, DNA-dependent 
(GO:0006355) DNA binding (GO:0003677) tight junction (GO:0005923) 

67166 Arl8b ADP-ribosylation factor-like 8B 
small GTPase mediated signal transduction 
(GO:0007264) GTP binding (GO:0005525) lysosome (GO:0005764) 

67186 Rplp2 ribosomal protein, large P2 translational elongation (GO:0006414) structural constituent of ribosome (GO:0003735) ribosome (GO:0005840) 

67273 Ndufa10 
NADH dehydrogenase (ubiquinone) 1 alpha 
subcomplex 10 

nucleobase, nucleoside, nucleotide and nucleic acid 
metabolic process (GO:0006139) ATP binding (GO:0005524) mitochondrion (GO:0005739) 

67458 Ergic1 
endoplasmic reticulum-golgi intermediate 
compartment (ERGIC) 1 vesicle-mediated transport (GO:0016192) endoplasmic reticulum (GO:0005783) 

67460 Decr1 2,4-dienoyl CoA reductase 1, mitochondrial oxidation reduction (GO:0055114) 
2,4-dienoyl-CoA reductase (NADPH) activity 
(GO:0008670) mitochondrion (GO:0005739) 

67552 H2afy3 H2A histone family, member Y3 DNA binding (GO:0003677) nucleus (GO:0005634) 

67622 Mxra7 matrix-remodelling associated 7 integral to membrane (GO:0016021) 

67671 Rpl38 ribosomal protein L38 translation (GO:0006412) structural constituent of ribosome (GO:0003735) ribosome (GO:0005840) 

67834 Idh3a isocitrate dehydrogenase 3 (NAD+) alpha tricarboxylic acid cycle (GO:0006099) 
isocitrate dehydrogenase (NAD+) activity 
(GO:0004449) mitochondrion (GO:0005739) 

67891 Rpl4 ribosomal protein L4 translation (GO:0006412) structural constituent of ribosome (GO:0003735) ribosome (GO:0005840) 

67938 Mylc2b myosin light chain, regulatory B calcium ion binding (GO:0005509) myosin complex (GO:0016459) 

68028 Rpl22l1 ribosomal protein L22 like 1 translation (GO:0006412) structural constituent of ribosome (GO:0003735) ribosome (GO:0005840) 

68045 2700060E02Rik RIKEN cDNA 2700060E02 gene nucleus (GO:0005634) 

68117 Apool apolipoprotein O-like  
mitochondrial inner membrane 
(GO:0005743) 

68194 Ndufb4 
NADH dehydrogenase (ubiquinone) 1 beta 
subcomplex 4 transport (GO:0006810) 

NADH dehydrogenase (ubiquinone) activity 
(GO:0008137) 

mitochondrial inner membrane 
(GO:0005743) 

68294 Mfsd10 major facilitator superfamily domain containing 10 apoptosis (GO:0006915) transporter activity (GO:0005215) integral to membrane (GO:0016021) 

68428 Steap3 STEAP family member 3 iron ion transport (GO:0006826) ferric-chelate reductase activity (GO:0000293) multivesicular body (GO:0005771) 

68564 Nufip2 nuclear fragile X mental retardation protein interacting protein 2 nucleus (GO:0005634) 

68581 Tmed10 
transmembrane emp24-like trafficking protein 10 
(yeast) vesicle targeting, to, from or within Golgi (GO:0048199) 

zymogen granule membrane 
(GO:0042589) 

68796 1110039B18Rik RIKEN cDNA 1110039B18 gene calcium ion binding (GO:0005509) integral to membrane (GO:0016021) 

69617 Pitrm1 pitrilysin metallepetidase 1 proteolysis (GO:0006508) metalloendopeptidase activity (GO:0004222) mitochondrion (GO:0005739) 

70152 Mettl7a1 methyltransferase like 7A1 methyltransferase activity (GO:0008168) 

70186 2310056P07Rik RIKEN cDNA 2310056P07 gene integral to membrane (GO:0016021) 

70350 Basp1 
brain abundant, membrane attached signal 
protein 1 

regulation of transcription, DNA-dependent 
(GO:0006355) DNA binding (GO:0003677) nucleus (GO:0005634) 

70361 Lman1 lectin, mannose-binding, 1 
ER to Golgi vesicle-mediated transport 
(GO:0006888) sugar binding (GO:0005529) sarcomere (GO:0030017) 

70456 Brp44 brain protein 44  mitochondrion (GO:0005739) 

70508 Bbx bobby sox homolog (Drosophila) 
regulation of transcription, DNA-dependent 
(GO:0006355) DNA binding (GO:0003677) nucleus (GO:0005634) 

70575 Gfod2 
glucose-fructose oxidoreductase domain 
containing 2 oxidation reduction (GO:0055114) electron carrier activity (GO:0009055) extracellular region (GO:0005576) 

70804 Pgrmc2 progesterone receptor membrane component 2 transition metal ion binding (GO:0046914) integral to membrane (GO:0016021) 

71514 Sfpq 
splicing factor proline/glutamine rich 
(polypyrimidine tract binding protein associated) mRNA processing (GO:0006397) DNA binding (GO:0003677) nucleus (GO:0005634) 
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71960 Myh14 myosin, heavy polypeptide 14 regulation of cell shape (GO:0008360) actin-dependent ATPase activity (GO:0030898) stress fiber (GO:0001725) 

72960 Top1mt DNA topoisomerase 1, mitochondrial DNA unwinding during replication (GO:0006268) DNA topoisomerase type I activity (GO:0003917) 

73124 Golim4 golgi integral membrane protein 4 transport (GO:0006810) endosome (GO:0005768) 

74122 Tmem43 transmembrane protein 43 integral to membrane (GO:0016021) 

74205 Acsl3 acyl-CoA synthetase long-chain family member 3 fatty acid metabolic process (GO:0006631) 
long-chain-fatty-acid-CoA ligase activity 
(GO:0004467) peroxisome (GO:0005777) 

74551 Pck2 
phosphoenolpyruvate carboxykinase 2 
(mitochondrial) gluconeogenesis (GO:0006094) 

phosphoenolpyruvate carboxykinase (GTP) 
activity (GO:0004613) mitochondrion (GO:0005739) 

74776 Ppa2 pyrophosphatase (inorganic) 2 phosphate metabolic process (GO:0006796) inorganic diphosphatase activity (GO:0004427) mitochondrion (GO:0005739) 

74840 Armet arginine-rich, mutated in early stage tumors growth factor activity (GO:0008083) extracellular space (GO:0005615) 

75909 Tmem49 transmembrane protein 49 integral to membrane (GO:0016021) 

76267 Fads1 fatty acid desaturase 1 
unsaturated fatty acid biosynthetic process 
(GO:0006636) iron ion binding (GO:0005506) endoplasmic reticulum (GO:0005783) 

76293 Mfap4 microfibrillar-associated protein 4 signal transduction (GO:0007165) calcium ion binding (GO:0005509) microfibril (GO:0001527) 

76299 Txndc4 
thioredoxin domain containing 4 (endoplasmic 
reticulum) response to unfolded protein (GO:0006986) endoplasmic reticulum (GO:0005783) 

76453 Prss23 protease, serine, 23 proteolysis (GO:0006508) serine-type endopeptidase activity (GO:0004252) extracellular space (GO:0005615) 

76577 Ubxd8 UBX domain containing 8 cytoplasm (GO:0005737) 

76808 Rpl18a ribosomal protein L18A translation (GO:0006412) structural constituent of ribosome (GO:0003735) ribosome (GO:0005840) 

76936 Hnrnpm heterogeneous nuclear ribonucleoprotein M mRNA processing (GO:0006397) transmembrane receptor activity (GO:0004888) 
integral to plasma membrane 
(GO:0005887) 

77053 Unc84a unc-84 homolog A (C. elegans) 
nuclear membrane organization and biogenesis 
(GO:0006998) zinc ion binding (GO:0008270) 

integral to nuclear inner membrane 
(GO:0005639) 

77134 Hnrnpa0 heterogeneous nuclear ribonucleoprotein A0 nucleic acid binding (GO:0003676) ribonucleoprotein complex (GO:0030529) 

78920 Dlst 
dihydrolipoamide S-succinyltransferase (E2 
component of 2-oxo-glutarate complex) tricarboxylic acid cycle (GO:0006099) 

dihydrolipoyllysine-residue succinyltransferase 
activity (GO:0004149) mitochondrion (GO:0005739) 

80838 Hist1h1a histone cluster 1, H1a nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

93736 Aff4 AF4/FMR2 family, member 4 regulation of transcription, DNA-dependent (GO:0006355) nucleus (GO:0005634) 

97212 Hadha 

hydroxyacyl-Coenzyme A dehydrogenase/3-
ketoacyl-Coenzyme A thiolase/enoyl-Coenzyme A 
hydratase (trifunctional protein), alpha subunit fatty acid beta-oxidation (GO:0006635) 

3-hydroxyacyl-CoA dehydrogenase activity 
(GO:0003857) 

mitochondrial inner membrane 
(GO:0005743) 

100494 Zfand2a zinc finger, AN1-type domain 2A zinc ion binding (GO:0008270) nucleus (GO:0005634) 

100952 Emilin1 elastin microfibril interfacer 1 phosphate transport (GO:0006817) 
extracellular matrix constituent conferring 
elasticity (GO:0030023) cytoplasm (GO:0005737) 

101739 Psip1 PC4 and SFRS1 interacting protein 1 
regulation of transcription, DNA-dependent 
(GO:0006355) DNA binding (GO:0003677) nucleus (GO:0005634) 

103080 SEPT10 septin 10 
regulation of transcription, DNA-dependent 
(GO:0006355) GTP binding (GO:0005525) nucleus (GO:0005634) 

103963 Rpn1 ribophorin I protein amino acid glycosylation (GO:0006486) 
dolichyl-diphosphooligosaccharide-protein 
glycotransferase activity (GO:0004579) endoplasmic reticulum (GO:0005783) 

104721 Ddx1 DEAD (Asp-Glu-Ala-Asp) box polypeptide 1 spliceosome assembly (GO:0000245) ATPase activity (GO:0016887) 

105245 Txndc5 thioredoxin domain containing 5 cell redox homeostasis (GO:0045454) isomerase activity (GO:0016853) endoplasmic reticulum (GO:0005783) 

108037 Shmt2 serine hydroxymethyltransferase 2 (mitochondrial) 
one-carbon compound metabolic process 
(GO:0006730) 

glycine hydroxymethyltransferase activity 
(GO:0004372) 

mitochondrial inner membrane 
(GO:0005743) 

108075 Ltbp4 
latent transforming growth factor beta binding 
protein 4 

transforming growth factor beta receptor signaling 
pathway (GO:0007179) calcium ion binding (GO:0005509) 

proteinaceous extracellular matrix 
(GO:0005578) 
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108989 Tpr translocated promoter region nuclear envelope (GO:0005635) 

109154 2410014A08Rik RIKEN cDNA 2410014A08 gene protein targeting (GO:0006605) integral to membrane (GO:0016021) 

109905 Rap1a RAS-related protein-1a 
small GTPase mediated signal transduction 
(GO:0007264) GTPase activity (GO:0003924) intracellular (GO:0005622) 

110052 Dek DEK oncogene (DNA binding) DNA binding (GO:0003677) nucleus (GO:0005634) 

110253 Triobp TRIO and F-actin binding protein actin binding (GO:0003779) nucleus (GO:0005634) 

110446 Acat1 acetyl-Coenzyme A acetyltransferase 1 metabolic process (GO:0008152) 
acetyl-CoA C-acetyltransferase activity 
(GO:0003985) 

mitochondrial inner membrane 
(GO:0005743) 

110842 Etfa 
electron transferring flavoprotein, alpha 
polypeptide transport (GO:0006810) FAD binding (GO:0050660) 

mitochondrial electron transfer 
flavoprotein complex (GO:0017133) 

110911 Cds2 
CDP-diacylglycerol synthase (phosphatidate 
cytidylyltransferase) 2 phospholipid biosynthetic process (GO:0008654) 

phosphatidate cytidylyltransferase activity 
(GO:0004605) mitochondrion (GO:0005739) 

110954 Rpl10 ribosomal protein 10 translation (GO:0006412) structural constituent of ribosome (GO:0003735) ribosome (GO:0005840) 

140481 Man2a2 mannosidase 2, alpha 2 mannosidase activity (GO:0015923) 

195434 Utp14b 
UTP14, U3 small nucleolar ribonucleoprotein, 
homolog B (yeast) rRNA processing (GO:0006364) nucleus (GO:0005634) 

216136 Ilvbl ilvB (bacterial acetolactate synthase)-like magnesium ion binding (GO:0000287) integral to membrane (GO:0016021) 

223650 Eppk1 epiplakin 1 structural molecule activity (GO:0005198) cytoskeleton (GO:0005856) 

223697 Unc84b unc-84 homolog B (C. elegans) 
nuclear membrane organization and biogenesis 
(GO:0006998) protein binding (GO:0005515) 

condensed nuclear chromosome 
(GO:0000794) 

226646 Ndufs2 
NADH dehydrogenase (ubiquinone) Fe-S protein 
2 transport (GO:0006810) 

NADH dehydrogenase (ubiquinone) activity 
(GO:0008137) mitochondrion (GO:0005739) 

227197 Ndufs1 
NADH dehydrogenase (ubiquinone) Fe-S protein 
1 

mitochondrial electron transport, NADH to ubiquinone 
(GO:0006120) 

NADH dehydrogenase (ubiquinone) activity 
(GO:0008137) mitochondrion (GO:0005739) 

227753 Gsn gelsolin barbed-end actin filament capping (GO:0051016) actin binding (GO:0003779) actin cytoskeleton (GO:0015629) 

230709 Zmpste24 
zinc metallopeptidase, STE24 homolog (S. 
cerevisiae) prenylated protein catabolic process (GO:0030327) metalloendopeptidase activity (GO:0004222) endoplasmic reticulum (GO:0005783) 

230753 Thrap3 thyroid hormone receptor associated protein 3 
positive regulation of transcription from RNA 
polymerase II promoter (GO:0045944) ATP binding (GO:0005524) nucleus (GO:0005634) 

230866 C230096C10Rik RIKEN cDNA C230096C10 gene integral to membrane (GO:0016021) 

231086 Hadhb 

hydroxyacyl-Coenzyme A dehydrogenase/3-
ketoacyl-Coenzyme A thiolase/enoyl-Coenzyme A 
hydratase (trifunctional protein), beta subunit fatty acid beta-oxidation (GO:0006635) 

acetyl-CoA C-acyltransferase activity 
(GO:0003988) 

mitochondrial inner membrane 
(GO:0005743) 

231633 Tmem119 transmembrane protein 119 integral to membrane (GO:0016021) 

233870 Tufm Tu translation elongation factor, mitochondrial translational elongation (GO:0006414) GTPase activity (GO:0003924) 
mitochondrial inner membrane 
(GO:0005743) 

233908 Fus 
fusion, derived from t(12;16) malignant 
liposarcoma (human) 

positive regulation of transcription from RNA 
polymerase II promoter (GO:0045944) zinc ion binding (GO:0008270) nucleus (GO:0005634) 

235339 Dlat 
dihydrolipoamide S-acetyltransferase (E2 
component of pyruvate dehydrogenase complex) glycolysis (GO:0006096) 

dihydrolipoyllysine-residue acetyltransferase 
activity (GO:0004742) 

mitochondrial pyruvate dehydrogenase 
complex (GO:0005967) 

238880 Actbl2 actin, beta-like 2 ATP binding (GO:0005524) actin cytoskeleton (GO:0015629) 

241226 Itga8 integrin alpha 8 
positive regulation of transforming growth factor beta 
receptor signaling pathway (GO:0030511) calcium ion binding (GO:0005509) integrin complex (GO:0008305) 

242050 Igsf10 immunoglobulin superfamily, member 10 protein amino acid phosphorylation (GO:0006468) 
vascular endothelial growth factor receptor activity 
(GO:0005021) extracellular region (GO:0005576) 

268301 Ankrd57 ankyrin repeat domain 57  

268977 Ltbp1 
latent transforming growth factor beta binding 
protein 1 

transforming growth factor beta receptor signaling 
pathway (GO:0007179) calcium ion binding (GO:0005509) 

proteinaceous extracellular matrix 
(GO:0005578) 

276770 Eif5a eukaryotic translation initiation factor 5A translational initiation (GO:0006413) translation initiation factor activity (GO:0003743) nucleus (GO:0005634) 
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319168 Hist1h2ah histone cluster 1, H2ah nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

319178 Hist1h2bb histone cluster 1, H2bb nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

319195 Rpl17 ribosomal protein L17 translation (GO:0006412) structural constituent of ribosome (GO:0003735) large ribosomal subunit (GO:0015934) 

328092 6530401N04Rik RIKEN cDNA 6530401N04 gene D-amino acid catabolic process (GO:0019478) 
hydrolase activity, acting on ester bonds 
(GO:0016788) cytoplasm (GO:0005737) 

338350 9330129D05Rik RIKEN cDNA 9330129D05 gene oxidation reduction (GO:0055114) acyl-CoA dehydrogenase activity (GO:0003995) extracellular space (GO:0005615) 

384009 Glipr2 GLI pathogenesis-related 2 Golgi apparatus (GO:0005794) 

404634 H2afy2 H2A histone family, member Y2 nucleosome assembly (GO:0006334) DNA binding (GO:0003677) Barr body (GO:0001740) 
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Results acquired from proteomic analysis of acellular HFF 

Proteins 
Gene 
Symbol Description Biological Process_max Molecular Function_max Cellular Component_max 

37 ACADVL 
acyl-Coenzyme A dehydrogenase, very long 
chain fatty acid beta-oxidation (GO:0006635) 

long-chain-acyl-CoA dehydrogenase activity 
(GO:0004466) 

mitochondrial inner membrane 
(GO:0005743) 

59 ACTA2 actin, alpha 2, smooth muscle, aorta ATP binding (GO:0005524) cytoskeleton (GO:0005856) 

60 ACTB actin, beta sensory perception of sound (GO:0007605) ATP binding (GO:0005524) 
NuA4 histone acetyltransferase complex 
(GO:0035267) 

197 AHSG alpha-2-HS-glycoprotein negative regulation of bone mineralization (GO:0030502) cysteine protease inhibitor activity (GO:0004869) extracellular space (GO:0005615) 

231 AKR1B1 
aldo-keto reductase family 1, member B1 (aldose 
reductase) carbohydrate metabolic process (GO:0005975) aldehyde reductase activity (GO:0004032) cytosol (GO:0005829) 

290 ANPEP 

alanyl (membrane) aminopeptidase 
(aminopeptidase N, aminopeptidase M, 
microsomal aminopeptidase, CD13, p150) proteolysis (GO:0006508) aminopeptidase activity (GO:0004177) 

integral to plasma membrane 
(GO:0005887) 

292 SLC25A5 
solute carrier family 25 (mitochondrial carrier; 
adenine nucleotide translocator), member 5 transport (GO:0006810) 

adenine transmembrane transporter activity 
(GO:0015207) 

mitochondrial inner membrane 
(GO:0005743) 

301 ANXA1 annexin A1 anti-apoptosis (GO:0006916) phospholipase A2 inhibitor activity (GO:0019834) cornified envelope (GO:0001533) 

302 ANXA2 annexin A2 skeletal development (GO:0001501) phospholipase inhibitor activity (GO:0004859) melanosome (GO:0042470) 

304 ANXA2P2 annexin A2 pseudogene 2  

307 ANXA4 annexin A4 anti-apoptosis (GO:0006916) phospholipase inhibitor activity (GO:0004859) cytoplasm (GO:0005737) 

308 ANXA5 annexin A5 anti-apoptosis (GO:0006916) phospholipase inhibitor activity (GO:0004859) cytoplasm (GO:0005737) 

309 ANXA6 annexin A6 calcium ion binding (GO:0005509) melanosome (GO:0042470) 

310 ANXA7 annexin A7 voltage-gated calcium channel activity (GO:0005245) 

311 ANXA11 annexin A11 immune response (GO:0006955) calcium ion binding (GO:0005509) melanosome (GO:0042470) 

476 ATP1A1 
ATPase, Na+/K+ transporting, alpha 1 
polypeptide regulation of cellular pH (GO:0030641) 

sodium:potassium-exchanging ATPase activity 
(GO:0005391) melanosome (GO:0042470) 

477 ATP1A2 
ATPase, Na+/K+ transporting, alpha 2 (+) 
polypeptide regulation of cellular pH (GO:0030641) 

sodium:potassium-exchanging ATPase activity 
(GO:0005391) integral to membrane (GO:0016021) 

483 ATP1B3 ATPase, Na+/K+ transporting, beta 3 polypeptide potassium ion transport (GO:0006813) 
sodium:potassium-exchanging ATPase activity 
(GO:0005391) melanosome (GO:0042470) 

487 ATP2A1 
ATPase, Ca++ transporting, cardiac muscle, fast 
twitch 1 

positive regulation of fast-twitch skeletal muscle fiber 
contraction (GO:0031448) 

calcium-transporting ATPase activity 
(GO:0005388) 

sarcoplasmic reticulum membrane 
(GO:0033017) 

488 ATP2A2 
ATPase, Ca++ transporting, cardiac muscle, slow 
twitch 2 calcium ion transport (GO:0006816) 

calcium-transporting ATPase activity 
(GO:0005388) microsome (GO:0005792) 

493 ATP2B4 ATPase, Ca++ transporting, plasma membrane 4 calcium ion transport (GO:0006816) 
calcium-transporting ATPase activity 
(GO:0005388) 

integral to plasma membrane 
(GO:0005887) 

498 ATP5A1 
ATP synthase, H+ transporting, mitochondrial F1 
complex, alpha subunit 1, cardiac muscle ATP synthesis coupled proton transport (GO:0015986) 

hydrogen ion transporting ATP synthase activity, 
rotational mechanism (GO:0046933) mitochondrial matrix (GO:0005759) 

506 ATP5B 
ATP synthase, H+ transporting, mitochondrial F1 
complex, beta polypeptide ATP synthesis coupled proton transport (GO:0015986) 

hydrogen-exporting ATPase activity, 
phosphorylative mechanism (GO:0008553) mitochondrial matrix (GO:0005759) 

509 ATP5C1 
ATP synthase, H+ transporting, mitochondrial F1 
complex, gamma polypeptide 1 ATP synthesis coupled proton transport (GO:0015986) 

hydrogen ion transporting ATP synthase activity, 
rotational mechanism (GO:0046933) mitochondrial matrix (GO:0005759) 

513 ATP5D 
ATP synthase, H+ transporting, mitochondrial F1 
complex, delta subunit 

mitochondrial ATP synthesis coupled proton transport 
(GO:0042776) 

hydrogen ion transporting ATP synthase activity, 
rotational mechanism (GO:0046933) mitochondrial matrix (GO:0005759) 

521 ATP5I 
ATP synthase, H+ transporting, mitochondrial F0 
complex, subunit E ATP synthesis coupled proton transport (GO:0015986) 

hydrogen ion transporting ATP synthase activity, 
rotational mechanism (GO:0046933) mitochondrion (GO:0005739) 

522 ATP5J 
ATP synthase, H+ transporting, mitochondrial F0 
complex, subunit F6 ATP synthesis coupled proton transport (GO:0015986) 

hydrogen ion transporting ATP synthase activity, 
rotational mechanism (GO:0046933) mitochondrion (GO:0005739) 

539 ATP5O 

ATP synthase, H+ transporting, mitochondrial F1 
complex, O subunit (oligomycin sensitivity 
conferring protein) 

mitochondrial ATP synthesis coupled proton transport 
(GO:0042776) 

hydrogen ion transporting ATP synthase activity, 
rotational mechanism (GO:0046933) mitochondrial matrix (GO:0005759) 
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540 ATP7B ATPase, Cu++ transporting, beta polypeptide cellular copper ion homeostasis (GO:0006878) copper-exporting ATPase activity (GO:0004008) late endosome (GO:0005770) 

567 B2M beta-2-microglobulin 
antigen processing and presentation of peptide antigen 
via MHC class I (GO:0002474) protein binding (GO:0005515) 

early endosome membrane 
(GO:0031901) 

682 BSG basigin (Ok blood group) 
cell surface receptor linked signal transduction 
(GO:0007166) mannose binding (GO:0005537) melanosome (GO:0042470) 

811 CALR calreticulin cellular calcium ion homeostasis (GO:0006874) zinc ion binding (GO:0008270) endoplasmic reticulum (GO:0005783) 

813 CALU calumenin  calcium ion binding (GO:0005509) melanosome (GO:0042470) 

821 CANX calnexin protein folding (GO:0006457) calcium ion binding (GO:0005509) melanosome (GO:0042470) 

836 CASP3 caspase 3, apoptosis-related cysteine peptidase induction of apoptosis (GO:0006917) cysteine-type peptidase activity (GO:0008234) nucleoplasm (GO:0005654) 

857 CAV1 caveolin 1, caveolae protein, 22kDa cholesterol homeostasis (GO:0042632) cholesterol binding (GO:0015485) 
integral to plasma membrane 
(GO:0005887) 

871 SERPINH1 

serpin peptidase inhibitor, clade H (heat shock 
protein 47), member 1, (collagen binding protein 
1) response to unfolded protein (GO:0006986) 

serine-type endopeptidase inhibitor activity 
(GO:0004867) endoplasmic reticulum (GO:0005783) 

919 CD247 CD247 molecule 
cell surface receptor linked signal transduction 
(GO:0007166) transmembrane receptor activity (GO:0004888) integral to membrane (GO:0016021) 

960 CD44 CD44 molecule (Indian blood group) cell-matrix adhesion (GO:0007160) hyaluronic acid binding (GO:0005540) 
integral to plasma membrane 
(GO:0005887) 

966 CD59 CD59 molecule, complement regulatory protein 
cell surface receptor linked signal transduction 
(GO:0007166) protein binding (GO:0005515) anchored to membrane (GO:0031225) 

975 CD81 CD81 molecule phosphatidylinositol biosynthetic process (GO:0006661) protein binding (GO:0005515) 
integral to plasma membrane 
(GO:0005887) 

989 SEPT7 septin 7 protein heterooligomerization (GO:0051291) GTP binding (GO:0005525) stress fiber (GO:0001725) 

1012 CDH13 cadherin 13, H-cadherin (heart) 
positive regulation of survival gene product expression 
(GO:0045885) calcium ion binding (GO:0005509) caveola (GO:0005901) 

1072 CFL1 cofilin 1 (non-muscle) anti-apoptosis (GO:0006916) actin binding (GO:0003779) nucleus (GO:0005634) 

1244 ABCC2 
ATP-binding cassette, sub-family C (CFTR/MRP), 
member 2 transport (GO:0006810) ATPase activity (GO:0016887) 

integral to plasma membrane 
(GO:0005887) 

1329 COX5B cytochrome c oxidase subunit Vb respiratory gaseous exchange (GO:0007585) zinc ion binding (GO:0008270) 
mitochondrial inner membrane 
(GO:0005743) 

1340 COX6B1 
cytochrome c oxidase subunit Vib polypeptide 1 
(ubiquitous) oxidation reduction (GO:0055114) cytochrome-c oxidase activity (GO:0004129) mitochondrion (GO:0005739) 

1345 COX6C cytochrome c oxidase subunit VIc 
generation of precursor metabolites and energy 
(GO:0006091) cytochrome-c oxidase activity (GO:0004129) 

mitochondrial inner membrane 
(GO:0005743) 

1603 DAD1 defender against cell death 1 
protein amino acid N-linked glycosylation via asparagine 
(GO:0018279) 

dolichyl-diphosphooligosaccharide-protein 
glycotransferase activity (GO:0004579) integral to membrane (GO:0016021) 

1727 CYB5R3 cytochrome b5 reductase 3 iron ion transport (GO:0006826) cytochrome-b5 reductase activity (GO:0004128) 
mitochondrial outer membrane 
(GO:0005741) 

1738 DLD dihydrolipoamide dehydrogenase cell redox homeostasis (GO:0045454) FAD binding (GO:0050660) mitochondrial matrix (GO:0005759) 

1743 DLST 
dihydrolipoamide S-succinyltransferase (E2 
component of 2-oxo-glutarate complex) tricarboxylic acid cycle (GO:0006099) 

dihydrolipoyllysine-residue succinyltransferase 
activity (GO:0004149) mitochondrial matrix (GO:0005759) 

1917 EEF1A2 eukaryotic translation elongation factor 1 alpha 2 translational elongation (GO:0006414) GTPase activity (GO:0003924) nucleus (GO:0005634) 

2197 FAU 
Finkel-Biskis-Reilly murine sarcoma virus (FBR-
MuSV) ubiquitously expressed translational elongation (GO:0006414) RNA binding (GO:0003723) 

cytosolic small ribosomal subunit 
(GO:0022627) 

2335 FN1 fibronectin 1 
transmembrane receptor protein tyrosine kinase 
signaling pathway (GO:0007169) heparin binding (GO:0008201) 

ER-Golgi intermediate compartment 
(GO:0005793) 

2597 GAPDH glyceraldehyde-3-phosphate dehydrogenase glycolysis (GO:0006096) 
glyceraldehyde-3-phosphate dehydrogenase 
(phosphorylating) activity (GO:0004365) cytoplasm (GO:0005737) 

2923 PDIA3 protein disulfide isomerase family A, member 3 protein import into nucleus (GO:0006606) phospholipase C activity (GO:0004629) melanosome (GO:0042470) 

3005 H1F0 H1 histone family, member 0 nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

3006 HIST1H1C histone cluster 1, H1c nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 
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3009 HIST1H1B histone cluster 1, H1b nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

3032 HADHB 

hydroxyacyl-Coenzyme A dehydrogenase/3-
ketoacyl-Coenzyme A thiolase/enoyl-Coenzyme A 
hydratase (trifunctional protein), beta subunit fatty acid beta-oxidation (GO:0006635) 

acetyl-CoA C-acyltransferase activity 
(GO:0003988) mitochondrial matrix (GO:0005759) 

3039 HBA1 hemoglobin, alpha 1 oxygen transport (GO:0015671) iron ion binding (GO:0005506) hemoglobin complex (GO:0005833) 

3046 HBE1 hemoglobin, epsilon 1 oxygen transport (GO:0015671) iron ion binding (GO:0005506) hemoglobin complex (GO:0005833) 

3105 HLA-A major histocompatibility complex, class I, A 
antigen processing and presentation of peptide antigen 
via MHC class I (GO:0002474) MHC class I receptor activity (GO:0032393) 

integral to plasma membrane 
(GO:0005887) 

3119 HLA-DQB1 
major histocompatibility complex, class II, DQ 
beta 1 

antigen processing and presentation of peptide or 
polysaccharide antigen via MHC class II (GO:0002504) GTP binding (GO:0005525) integral to membrane (GO:0016021) 

3136 HLA-H 
major histocompatibility complex, class I, H 
(pseudogene) 

antigen processing and presentation of peptide antigen 
via MHC class I (GO:0002474) MHC class I receptor activity (GO:0032393) 

integral to plasma membrane 
(GO:0005887) 

3159 HMGA1 high mobility group AT-hook 1 nucleosome disassembly (GO:0006337) 
ligand-dependent nuclear receptor transcription 
coactivator activity (GO:0030374) chromatin (GO:0000785) 

3309 HSPA5 heat shock 70kDa protein 5 (glucose-regulated protein, 78kDa) ATP binding (GO:0005524) endoplasmic reticulum (GO:0005783) 

3329 HSPD1 heat shock 60kDa protein 1 (chaperonin) protein import into mitochondrial matrix (GO:0030150) ATP binding (GO:0005524) mitochondrial matrix (GO:0005759) 

3336 HSPE1 heat shock 10kDa protein 1 (chaperonin 10) caspase activation (GO:0006919) ATP binding (GO:0005524) mitochondrial matrix (GO:0005759) 

3673 ITGA2 
integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-
2 receptor) integrin-mediated signaling pathway (GO:0007229) magnesium ion binding (GO:0000287) integrin complex (GO:0008305) 

3688 ITGB1 

integrin, beta 1 (fibronectin receptor, beta 
polypeptide, antigen CD29 includes MDF2, 
MSK12) integrin-mediated signaling pathway (GO:0007229) protein heterodimerization activity (GO:0046982) melanosome (GO:0042470) 

3833 KIFC1 kinesin family member C1 microtubule-based movement (GO:0007018) ATP binding (GO:0005524) early endosome (GO:0005769) 

3848 KRT1 keratin 1 (epidermolytic hyperkeratosis) fibrinolysis (GO:0042730) receptor activity (GO:0004872) cytoskeleton (GO:0005856) 

3849 KRT2 
keratin 2 (epidermal ichthyosis bullosa of 
Siemens) epidermis development (GO:0008544) 

structural constituent of cytoskeleton 
(GO:0005200) intermediate filament (GO:0005882) 

3855 KRT7 keratin 7 DNA replication (GO:0006260) protein binding (GO:0005515) intermediate filament (GO:0005882) 

3857 KRT9 
keratin 9 (epidermolytic palmoplantar 
keratoderma) intermediate filament organization (GO:0045109) 

structural constituent of cytoskeleton 
(GO:0005200) intermediate filament (GO:0005882) 

3858 KRT10 
keratin 10 (epidermolytic hyperkeratosis; 
keratosis palmaris et plantaris) epidermis development (GO:0008544) protein binding (GO:0005515) intermediate filament (GO:0005882) 

4000 LMNA lamin A/C  protein binding (GO:0005515) nucleus (GO:0005634) 

4158 MC2R 
melanocortin 2 receptor (adrenocorticotropic 
hormone) 

G-protein signaling, coupled to cyclic nucleotide second 
messenger (GO:0007187) 

adrenocorticotropin receptor activity 
(GO:0004978) 

integral to plasma membrane 
(GO:0005887) 

4191 MDH2 malate dehydrogenase 2, NAD (mitochondrial) glycolysis (GO:0006096) L-malate dehydrogenase activity (GO:0030060) mitochondrial matrix (GO:0005759) 

4256 MGP matrix Gla protein regulation of bone mineralization (GO:0030500) calcium ion binding (GO:0005509) 
proteinaceous extracellular matrix 
(GO:0005578) 

4257 MGST1 microsomal glutathione S-transferase 1 glutathione transferase activity (GO:0004364) 
mitochondrial outer membrane 
(GO:0005741) 

4267 CD99 CD99 molecule cell adhesion (GO:0007155) protein binding (GO:0005515) 
integral to plasma membrane 
(GO:0005887) 

4513 COX2 cytochrome c oxidase II 
mitochondrial electron transport, cytochrome c to oxygen 
(GO:0006123) copper ion binding (GO:0005507) mitochondrion (GO:0005739) 

4637 MYL6 
myosin, light chain 6, alkali, smooth muscle and 
non-muscle muscle filament sliding (GO:0030049) actin-dependent ATPase activity (GO:0030898) 

unconventional myosin complex 
(GO:0016461) 

4697 NDUFA4 
NADH dehydrogenase (ubiquinone) 1 alpha 
subcomplex, 4, 9kDa 

mitochondrial electron transport, NADH to ubiquinone 
(GO:0006120) 

NADH dehydrogenase (ubiquinone) activity 
(GO:0008137) mitochondrion (GO:0005739) 

4710 NDUFB4 
NADH dehydrogenase (ubiquinone) 1 beta 
subcomplex, 4, 15kDa 

mitochondrial electron transport, NADH to ubiquinone 
(GO:0006120) 

NADH dehydrogenase (ubiquinone) activity 
(GO:0008137) mitochondrion (GO:0005739) 

4722 NDUFS3 
NADH dehydrogenase (ubiquinone) Fe-S protein 
3, 30kDa (NADH-coenzyme Q reductase) induction of apoptosis (GO:0006917) 

NADH dehydrogenase (ubiquinone) activity 
(GO:0008137) mitochondrion (GO:0005739) 
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4907 NT5E 5'-nucleotidase, ecto (CD73) nucleotide catabolic process (GO:0009166) 5'-nucleotidase activity (GO:0008253) anchored to membrane (GO:0031225) 

5033 P4HA1 

procollagen-proline, 2-oxoglutarate 4-
dioxygenase (proline 4-hydroxylase), alpha 
polypeptide I protein metabolic process (GO:0019538) 

procollagen-proline 4-dioxygenase activity 
(GO:0004656) endoplasmic reticulum (GO:0005783) 

5034 P4HB 

procollagen-proline, 2-oxoglutarate 4-
dioxygenase (proline 4-hydroxylase), beta 
polypeptide 

peptidyl-proline hydroxylation to 4-hydroxy-L-proline 
(GO:0018401) 

procollagen-proline 4-dioxygenase activity 
(GO:0004656) melanosome (GO:0042470) 

5144 PDE4D 

phosphodiesterase 4D, cAMP-specific 
(phosphodiesterase E3 dunce homolog, 
Drosophila) signal transduction (GO:0007165) 

3',5'-cyclic-AMP phosphodiesterase activity 
(GO:0004115) centrosome (GO:0005813) 

5245 PHB prohibitin histone deacetylation (GO:0016575) protein binding (GO:0005515) 
mitochondrial inner membrane 
(GO:0005743) 

5250 SLC25A3 
solute carrier family 25 (mitochondrial carrier; 
phosphate carrier), member 3 

generation of precursor metabolites and energy 
(GO:0006091) phosphate carrier activity (GO:0015320) 

mitochondrial inner membrane 
(GO:0005743) 

5355 PLP2 proteolipid protein 2 (colonic epithelium-enriched) 
cytokine and chemokine mediated signaling pathway 
(GO:0019221) 

ion transmembrane transporter activity 
(GO:0015075) endoplasmic reticulum (GO:0005783) 

5375 PMP2 peripheral myelin protein 2 transport (GO:0006810) lipid binding (GO:0008289) cytoplasm (GO:0005737) 

5378 PMS1 
PMS1 postmeiotic segregation increased 1 (S. 
cerevisiae) mismatch repair (GO:0006298) ATP binding (GO:0005524) nucleus (GO:0005634) 

5479 PPIB peptidylprolyl isomerase B (cyclophilin B) protein folding (GO:0006457) 
peptidyl-prolyl cis-trans isomerase activity 
(GO:0003755) melanosome (GO:0042470) 

5630 PRPH peripherin  structural molecule activity (GO:0005198) intermediate filament (GO:0005882) 

5742 PTGS1 

prostaglandin-endoperoxide synthase 1 
(prostaglandin G/H synthase and 
cyclooxygenase) prostaglandin biosynthetic process (GO:0001516) iron ion binding (GO:0005506) microsome (GO:0005792) 

5862 RAB2A RAB2A, member RAS oncogene family ER to Golgi vesicle-mediated transport (GO:0006888) GTPase activity (GO:0003924) melanosome (GO:0042470) 

5879 RAC1 
ras-related C3 botulinum toxin substrate 1 (rho 
family, small GTP binding protein Rac1) actin filament polymerization (GO:0030041) GTPase activity (GO:0003924) melanosome (GO:0042470) 

5908 RAP1B RAP1B, member of RAS oncogene family 
small GTPase mediated signal transduction 
(GO:0007264) GTP binding (GO:0005525) cytoplasm (GO:0005737) 

5932 RBBP8 retinoblastoma binding protein 8 
regulation of transcription from RNA polymerase II 
promoter (GO:0006357) protein binding (GO:0005515) nucleus (GO:0005634) 

6129 RPL7 ribosomal protein L7 translational elongation (GO:0006414) RNA binding (GO:0003723) 
cytosolic large ribosomal subunit 
(GO:0022625) 

6141 RPL18 ribosomal protein L18 translational elongation (GO:0006414) RNA binding (GO:0003723) 
cytosolic large ribosomal subunit 
(GO:0022625) 

6175 RPLP0 ribosomal protein, large, P0 translational elongation (GO:0006414) RNA binding (GO:0003723) 
cytosolic large ribosomal subunit 
(GO:0022625) 

6181 RPLP2 ribosomal protein, large, P2 translational elongation (GO:0006414) RNA binding (GO:0003723) 
cytosolic large ribosomal subunit 
(GO:0022625) 

6182 MRPL12 mitochondrial ribosomal protein L12 transcription from mitochondrial promoter (GO:0006390) RNA binding (GO:0003723) 
mitochondrial large ribosomal subunit 
(GO:0005762) 

6184 RPN1 ribophorin I 
protein amino acid N-linked glycosylation via asparagine 
(GO:0018279) 

dolichyl-diphosphooligosaccharide-protein 
glycotransferase activity (GO:0004579) melanosome (GO:0042470) 

6185 RPN2 ribophorin II 
protein amino acid N-linked glycosylation via asparagine 
(GO:0018279) 

dolichyl-diphosphooligosaccharide-protein 
glycotransferase activity (GO:0004579) endoplasmic reticulum (GO:0005783) 

6201 RPS7 ribosomal protein S7 translational elongation (GO:0006414) RNA binding (GO:0003723) 
cytosolic small ribosomal subunit 
(GO:0022627) 

6227 RPS21 ribosomal protein S21 translational elongation (GO:0006414) RNA binding (GO:0003723) 
cytosolic small ribosomal subunit 
(GO:0022627) 

6233 RPS27A ribosomal protein S27a protein modification process (GO:0006464) zinc ion binding (GO:0008270) ribosome (GO:0005840) 

6263 RYR3 ryanodine receptor 3 cellular calcium ion homeostasis (GO:0006874) 
ryanodine-sensitive calcium-release channel 
activity (GO:0005219) 

integral to plasma membrane 
(GO:0005887) 

6275 S100A4 S100 calcium binding protein A4 epithelial to mesenchymal transition (GO:0001837) calcium ion binding (GO:0005509) 

6281 S100A10 S100 calcium binding protein A10 signal transduction (GO:0007165) calcium ion binding (GO:0005509) 
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6282 S100A11 S100 calcium binding protein A11 negative regulation of DNA replication (GO:0008156) calcium ion binding (GO:0005509) nucleus (GO:0005634) 

6342 SCP2 sterol carrier protein 2 steroid biosynthetic process (GO:0006694) 
propanoyl-CoA C-acyltransferase activity 
(GO:0033814) peroxisome (GO:0005777) 

6554 SLC10A1 
solute carrier family 10 (sodium/bile acid 
cotransporter family), member 1 sodium ion transport (GO:0006814) bile acid:sodium symporter activity (GO:0008508) 

integral to plasma membrane 
(GO:0005887) 

6648 SOD2 superoxide dismutase 2, mitochondrial response to superoxide (GO:0000303) manganese ion binding (GO:0030145) mitochondrial matrix (GO:0005759) 

6745 SSR1 
signal sequence receptor, alpha (translocon-
associated protein alpha) 

cotranslational protein targeting to membrane 
(GO:0006613) calcium ion binding (GO:0005509) endoplasmic reticulum (GO:0005783) 

6748 SSR4 
signal sequence receptor, delta (translocon-
associated protein delta) intracellular protein transport (GO:0006886) calcium ion binding (GO:0005509) endoplasmic reticulum (GO:0005783) 

7070 THY1 Thy-1 cell surface antigen retinal cone cell development (GO:0046549) Rho GTPase activator activity (GO:0005100) 
integral to plasma membrane 
(GO:0005887) 

7184 HSP90B1 
heat shock protein 90kDa beta (Grp94), member 
1 anti-apoptosis (GO:0006916) ATP binding (GO:0005524) melanosome (GO:0042470) 

7385 UQCRC2 ubiquinol-cytochrome c reductase core protein II proteolysis (GO:0006508) metalloendopeptidase activity (GO:0004222) mitochondrion (GO:0005739) 

7416 VDAC1 voltage-dependent anion channel 1 apoptotic program (GO:0008632) 
voltage-gated anion channel activity 
(GO:0008308) 

mitochondrial outer membrane 
(GO:0005741) 

7417 VDAC2 voltage-dependent anion channel 2 anion transport (GO:0006820) 
voltage-gated anion channel activity 
(GO:0008308) 

mitochondrial outer membrane 
(GO:0005741) 

7431 VIM vimentin cell motility (GO:0006928) 
structural constituent of cytoskeleton 
(GO:0005200) cytoskeleton (GO:0005856) 

7855 FZD5 frizzled homolog 5 (Drosophila) 
G-protein coupled receptor protein signaling pathway 
(GO:0007186) 

non-G-protein coupled 7TM receptor activity 
(GO:0004926) 

integral to plasma membrane 
(GO:0005887) 

7857 SCG2 secretogranin II (chromogranin C) induction of positive chemotaxis (GO:0050930) cytokine activity (GO:0005125) extracellular space (GO:0005615) 

7879 RAB7A RAB7A, member RAS oncogene family endocytosis (GO:0006897) GTPase activity (GO:0003924) lysosome (GO:0005764) 

8340 HIST1H2BL histone cluster 1, H2bl nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

8349 HIST2H2BE histone cluster 2, H2be nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

8803 SUCLA2 succinate-CoA ligase, ADP-forming, beta subunit tricarboxylic acid cycle (GO:0006099) 
succinate-CoA ligase (ADP-forming) activity 
(GO:0004775) mitochondrion (GO:0005739) 

8904 CPNE1 copine I lipid metabolic process (GO:0006629) phosphatidylserine binding (GO:0001786) 

9113 LATS1 
LATS, large tumor suppressor, homolog 1 
(Drosophila) 

negative regulation of cyclin-dependent protein kinase 
activity (GO:0045736) 

protein serine/threonine kinase activity 
(GO:0004674) centrosome (GO:0005813) 

9119 KRT75 keratin 75  structural molecule activity (GO:0005198) intermediate filament (GO:0005882) 

9131 AIFM1 
apoptosis-inducing factor, mitochondrion-
associated, 1 

DNA damage response, signal transduction resulting in 
induction of apoptosis (GO:0008630) FAD binding (GO:0050660) nucleus (GO:0005634) 

9341 VAMP3 
vesicle-associated membrane protein 3 
(cellubrevin) protein complex assembly (GO:0006461) integral to membrane (GO:0016021) 

9377 COX5A cytochrome c oxidase subunit Va iron ion binding (GO:0005506) 
mitochondrial inner membrane 
(GO:0005743) 

9554 SEC22B 
SEC22 vesicle trafficking protein homolog B (S. 
cerevisiae) ER to Golgi vesicle-mediated transport (GO:0006888) protein binding (GO:0005515) melanosome (GO:0042470) 

9555 H2AFY H2A histone family, member Y nucleosome assembly (GO:0006334) DNA binding (GO:0003677) Barr body (GO:0001740) 

9902 MRC2 mannose receptor, C type 2 endocytosis (GO:0006897) calcium ion binding (GO:0005509) integral to membrane (GO:0016021) 

10130 PDIA6 protein disulfide isomerase family A, member 6 protein folding (GO:0006457) protein disulfide isomerase activity (GO:0003756) melanosome (GO:0042470) 

10211 FLOT1 flotillin 1  protein binding (GO:0005515) melanosome (GO:0042470) 

10398 MYL9 myosin, light chain 9, regulatory regulation of muscle contraction (GO:0006937) calcium ion binding (GO:0005509) muscle myosin complex (GO:0005859) 

10409 BASP1 brain abundant, membrane attached signal protein 1 cytoskeleton (GO:0005856) 
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10632 ATP5L 

ATP synthase, H+ transporting, mitochondrial F0 
complex, subunit G ATP synthesis coupled proton transport (GO:0015986) 

hydrogen ion transporting ATP synthase activity, 
rotational mechanism (GO:0046933) mitochondrion (GO:0005739) 

10791 VAMP5 
vesicle-associated membrane protein 5 
(myobrevin) skeletal muscle development (GO:0007519) Golgi apparatus (GO:0005794) 

10857 PGRMC1 progesterone receptor membrane component 1 transition metal ion binding (GO:0046914) microsome (GO:0005792) 

10874 NMU neuromedin U neuropeptide signaling pathway (GO:0007218) receptor binding (GO:0005102) extracellular region (GO:0005576) 

10960 LMAN2 lectin, mannose-binding 2 protein transport (GO:0015031) calcium ion binding (GO:0005509) endoplasmic reticulum (GO:0005783) 

10970 CKAP4 cytoskeleton-associated protein 4 integral to membrane (GO:0016021) 

11161 C14orf1 chromosome 14 open reading frame 1 sterol biosynthetic process (GO:0016126) transport vesicle (GO:0030133) 

11331 PHB2 prohibitin 2 
regulation of transcription, DNA-dependent 
(GO:0006355) estrogen receptor binding (GO:0030331) 

mitochondrial inner membrane 
(GO:0005743) 

23049 SMG1 PI-3-kinase-related kinase SMG-1 phosphoinositide phosphorylation (GO:0046854) 
protein serine/threonine kinase activity 
(GO:0004674) nucleus (GO:0005634) 

26135 SERBP1 SERPINE1 mRNA binding protein 1 regulation of mRNA stability (GO:0043488) mRNA 3'-UTR binding (GO:0003730) nucleus (GO:0005634) 

28958 CCDC56 coiled-coil domain containing 56 integral to membrane (GO:0016021) 

29058 C20orf30 chromosome 20 open reading frame 30 integral to membrane (GO:0016021) 

29123 ANKRD11 ankyrin repeat domain 11 nucleus (GO:0005634) 

29964 PRICKLE4 prickle homolog 4 (Drosophila) zinc ion binding (GO:0008270) 

51449 PCYOX1 prenylcysteine oxidase 1 prenylated protein catabolic process (GO:0030327) prenylcysteine oxidase activity (GO:0001735) lysosome (GO:0005764) 

51603 KIAA0859 KIAA0859 metabolic process (GO:0008152) methyltransferase activity (GO:0008168) 

54732 TMED9 
transmembrane emp24 protein transport domain 
containing 9 transport (GO:0006810) endoplasmic reticulum (GO:0005783) 

55035 NOL8 nucleolar protein 8 DNA replication (GO:0006260) RNA binding (GO:0003723) nucleus (GO:0005634) 

55379 LRRC59 leucine rich repeat containing 59 protein binding (GO:0005515) microsome (GO:0005792) 

55697 VAC14 Vac14 homolog (S. cerevisiae) signal transduction (GO:0007165) receptor activity (GO:0004872) cellular_component (GO:0005575) 

55780 C6orf70 chromosome 6 open reading frame 70 integral to membrane (GO:0016021) 

55970 GNG12 
guanine nucleotide binding protein (G protein), 
gamma 12 

G-protein coupled receptor protein signaling pathway 
(GO:0007186) signal transducer activity (GO:0004871) 

heterotrimeric G-protein complex 
(GO:0005834) 

56926 NCLN nicalin homolog (zebrafish) protein processing (GO:0016485) endoplasmic reticulum (GO:0005783) 

57142 RTN4 reticulon 4 negative regulation of axon extension (GO:0030517) protein binding (GO:0005515) 
integral to endoplasmic reticulum 
membrane (GO:0030176) 

57486 NLN neurolysin (metallopeptidase M3 family) proteolysis (GO:0006508) metalloendopeptidase activity (GO:0004222) mitochondrion (GO:0005739) 

57620 STIM2 stromal interaction molecule 2 
negative regulation of calcium ion transport via store-
operated calcium channel (GO:0032235) calcium ion binding (GO:0005509) 

integral to endoplasmic reticulum 
membrane (GO:0030176) 

57653 KIAA1529 KIAA1529   integral to membrane (GO:0016021) 

58472 SQRDL sulfide quinone reductase-like (yeast) oxidoreductase activity (GO:0016491) mitochondrion (GO:0005739) 

58505 DC2 DC2 protein  integral to membrane (GO:0016021) 

58528 RRAGD Ras-related GTP binding D GTP binding (GO:0005525) nucleus (GO:0005634) 

59338 PLEKHA1 pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1 phospholipid binding (GO:0005543) nucleus (GO:0005634) 

60559 SPCS3 
signal peptidase complex subunit 3 homolog (S. 
cerevisiae) signal peptide processing (GO:0006465) microsome (GO:0005792) 
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79026 AHNAK AHNAK nucleoprotein nervous system development (GO:0007399) protein binding (GO:0005515) nucleus (GO:0005634) 

79759 ZNF668 zinc finger protein 668 
regulation of transcription, DNA-dependent 
(GO:0006355) zinc ion binding (GO:0008270) nucleus (GO:0005634) 

81855 SFXN3 sideroflexin 3 iron ion transport (GO:0006826) iron ion binding (GO:0005506) mitochondrion (GO:0005739) 

84669 USP32 ubiquitin specific peptidase 32 
ubiquitin-dependent protein catabolic process 
(GO:0006511) ubiquitin thiolesterase activity (GO:0004221) membrane (GO:0016020) 

84709 OSAP ovary-specific acidic protein integral to membrane (GO:0016021) 

85235 HIST1H2AH histone cluster 1, H2ah nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

90990 KIFC2 kinesin family member C2 microtubule-based movement (GO:0007018) ATP binding (GO:0005524) microtubule (GO:0005874) 

91368 
CDKN2AIP
NL CDKN2A interacting protein N-terminal like 

91662 NLRP12 NLR family, pyrin domain containing 12 
release of cytoplasmic sequestered NF-kappaB 
(GO:0008588) ATP binding (GO:0005524) cytoplasm (GO:0005737) 

94081 SFXN1 sideroflexin 1 iron ion transport (GO:0006826) iron ion binding (GO:0005506) mitochondrion (GO:0005739) 

94239 H2AFV H2A histone family, member V nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

112752 C14orf179 chromosome 14 open reading frame 179 

112802 KRT71 keratin 71  structural molecule activity (GO:0005198) intermediate filament (GO:0005882) 

116496 FAM129A family with sequence similarity 129, member A cellular_component (GO:0005575) 

121457 IKIP IKK interacting protein induction of apoptosis (GO:0006917) protein binding (GO:0005515) endoplasmic reticulum (GO:0005783) 

126328 NDUFA11 
NADH dehydrogenase (ubiquinone) 1 alpha 
subcomplex, 11, 14.7kDa transport (GO:0006810) mitochondrion (GO:0005739) 

139322 APOOL apolipoprotein O-like  extracellular region (GO:0005576) 

140465 MYL6B 
myosin, light chain 6B, alkali, smooth muscle and 
non-muscle muscle filament sliding (GO:0030049) calcium ion binding (GO:0005509) muscle myosin complex (GO:0005859) 

162962 ZNF836 zinc finger protein 836 
regulation of transcription, DNA-dependent 
(GO:0006355) zinc ion binding (GO:0008270) nucleus (GO:0005634) 

221613 HIST1H2AA histone cluster 1, H2aa nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

254528 C16orf73 chromosome 16 open reading frame 73 

255626 HIST1H2BA histone cluster 1, H2ba nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

284119 PTRF polymerase I and transcript release factor 
transcription initiation from RNA polymerase I promoter 
(GO:0006361) rRNA primary transcript binding (GO:0042134) microsome (GO:0005792) 

345651 ACTBL2 actin, beta-like 2 ATP binding (GO:0005524) cytoskeleton (GO:0005856) 

376940 ZC3H6 zinc finger CCCH-type containing 6 zinc ion binding (GO:0008270) 

606495 LOC606495 hypothetical protein LOC606495 cytochrome-b5 reductase activity (GO:0004128) 

47 ACLY ATP citrate lyase ATP catabolic process (GO:0006200) 
succinate-CoA ligase (ADP-forming) activity 
(GO:0004775) cytosol (GO:0005829) 

71 ACTG1 actin, gamma 1 sensory perception of sound (GO:0007605) ATP binding (GO:0005524) cytoskeleton (GO:0005856) 

81 ACTN4 actinin, alpha 4 
positive regulation of sodium:hydrogen antiporter activity 
(GO:0032417) actin filament binding (GO:0051015) nucleus (GO:0005634) 

87 ACTN1 actinin, alpha 1 regulation of apoptosis (GO:0042981) actin binding (GO:0003779) focal adhesion (GO:0005925) 

88 ACTN2 actinin, alpha 2 microspike biogenesis (GO:0030035) FATZ 1 binding (GO:0051374) focal adhesion (GO:0005925) 

143 PARP4 poly (ADP-ribose) polymerase family, member 4 protein amino acid ADP-ribosylation (GO:0006471) 
NAD+ ADP-ribosyltransferase activity 
(GO:0003950) nucleus (GO:0005634) 
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214 ALCAM activated leukocyte cell adhesion molecule signal transduction (GO:0007165) receptor binding (GO:0005102) 

integral to plasma membrane 
(GO:0005887) 

226 ALDOA aldolase A, fructose-bisphosphate glycolysis (GO:0006096) fructose-bisphosphate aldolase activity (GO:0004332) 

396 ARHGDIA Rho GDP dissociation inhibitor (GDI) alpha anti-apoptosis (GO:0006916) 
Rho GDP-dissociation inhibitor activity 
(GO:0005094) cytoskeleton (GO:0005856) 

515 ATP5F1 
ATP synthase, H+ transporting, mitochondrial F0 
complex, subunit B1 ATP synthesis coupled proton transport (GO:0015986) 

hydrogen ion transporting ATP synthase activity, 
rotational mechanism (GO:0046933) mitochondrial matrix (GO:0005759) 

538 ATP7A 
ATPase, Cu++ transporting, alpha polypeptide 
(Menkes syndrome) T-helper cell differentiation (GO:0042093) copper-exporting ATPase activity (GO:0004008) 

trans-Golgi network transport vesicle 
(GO:0030140) 

800 CALD1 caldesmon 1 muscle contraction (GO:0006936) actin binding (GO:0003779) cytoskeleton (GO:0005856) 

832 CAPZB 
capping protein (actin filament) muscle Z-line, 
beta barbed-end actin filament capping (GO:0051016) actin binding (GO:0003779) cytoplasm (GO:0005737) 

928 CD9 CD9 molecule fusion of sperm to egg plasma membrane (GO:0007342) protein binding (GO:0005515) 
platelet alpha granule membrane 
(GO:0031092) 

950 SCARB2 scavenger receptor class B, member 2 cell adhesion (GO:0007155) receptor activity (GO:0004872) lysosomal membrane (GO:0005765) 

1147 CHUK conserved helix-loop-helix ubiquitous kinase I-kappaB phosphorylation (GO:0007252) IkappaB kinase activity (GO:0008384) nucleus (GO:0005634) 

1173 AP2M1 adaptor-related protein complex 2, mu 1 subunit 
regulation of defense response to virus by virus 
(GO:0050690) protein binding (GO:0005515) peroxisomal membrane (GO:0005778) 

1212 CLTB clathrin, light chain (Lcb) intracellular protein transport (GO:0006886) calcium ion binding (GO:0005509) 
clathrin coat of trans-Golgi network 
vesicle (GO:0030130) 

1213 CLTC clathrin, heavy chain (Hc) intracellular protein transport (GO:0006886) protein binding (GO:0005515) 
clathrin coat of trans-Golgi network 
vesicle (GO:0030130) 

1265 CNN2 calponin 2 
actomyosin structure organization and biogenesis 
(GO:0031032) actin binding (GO:0003779) intercellular junction (GO:0005911) 

1277 COL1A1 collagen, type I, alpha 1 phosphate transport (GO:0006817) 
extracellular matrix structural constituent 
(GO:0005201) collagen type I (GO:0005584) 

1278 COL1A2 collagen, type I, alpha 2 phosphate transport (GO:0006817) 
extracellular matrix structural constituent 
(GO:0005201) collagen type I (GO:0005584) 

1293 COL6A3 collagen, type VI, alpha 3 phosphate transport (GO:0006817) 
serine-type endopeptidase inhibitor activity 
(GO:0004867) collagen type VI (GO:0005589) 

1303 COL12A1 collagen, type XII, alpha 1 phosphate transport (GO:0006817) 
extracellular matrix structural constituent 
conferring tensile strength (GO:0030020) collagen type XII (GO:0005595) 

1315 COPB1 coatomer protein complex, subunit beta 1 COPI coating of Golgi vesicle (GO:0048205) protein binding (GO:0005515) Golgi-associated vesicle (GO:0005798) 

1429 CRYZ crystallin, zeta (quinone reductase) visual perception (GO:0007601) NADPH:quinone reductase activity (GO:0003960) cytoplasm (GO:0005737) 

1465 CSRP1 cysteine and glycine-rich protein 1 zinc ion binding (GO:0008270) nucleus (GO:0005634) 

1495 CTNNA1 
catenin (cadherin-associated protein), alpha 1, 
102kDa apical junction assembly (GO:0043297) vinculin binding (GO:0017166) actin cytoskeleton (GO:0015629) 

1528 CYB5A cytochrome b5 type A (microsomal) 
generation of precursor metabolites and energy 
(GO:0006091) aldo-keto reductase activity (GO:0004033) 

mitochondrial outer membrane 
(GO:0005741) 

1639 DCTN1 dynactin 1 (p150, glued homolog, Drosophila) mitosis (GO:0007067) protein binding (GO:0005515) spindle pole (GO:0000922) 

1650 DDOST 
dolichyl-diphosphooligosaccharide-protein 
glycosyltransferase 

protein amino acid terminal N-glycosylation 
(GO:0006496) 

dolichyl-diphosphooligosaccharide-protein 
glycotransferase activity (GO:0004579) microsome (GO:0005792) 

1781 DYNC1I2 dynein, cytoplasmic 1, intermediate chain 2 microtubule-based movement (GO:0007018) microtubule motor activity (GO:0003777) microtubule (GO:0005874) 

1803 DPP4 
dipeptidyl-peptidase 4 (CD26, adenosine 
deaminase complexing protein 2) 

regulation of cell-cell adhesion mediated by integrin 
(GO:0033632) aminopeptidase activity (GO:0004177) integral to membrane (GO:0016021) 

1808 DPYSL2 dihydropyrimidinase-like 2 nervous system development (GO:0007399) dihydropyrimidinase activity (GO:0004157) cytoplasm (GO:0005737) 

1915 EEF1A1 eukaryotic translation elongation factor 1 alpha 1 translational elongation (GO:0006414) GTPase activity (GO:0003924) cytosol (GO:0005829) 

1933 EEF1B2 eukaryotic translation elongation factor 1 beta 2 translational elongation (GO:0006414) 
translation elongation factor activity 
(GO:0003746) cytosol (GO:0005829) 

1936 EEF1D 
eukaryotic translation elongation factor 1 delta 
(guanine nucleotide exchange protein) 

positive regulation of I-kappaB kinase/NF-kappaB 
cascade (GO:0043123) 

translation elongation factor activity 
(GO:0003746) cytosol (GO:0005829) 
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1937 EEF1G eukaryotic translation elongation factor 1 gamma translational elongation (GO:0006414) 

translation elongation factor activity 
(GO:0003746) cytosol (GO:0005829) 

1938 EEF2 eukaryotic translation elongation factor 2 translational elongation (GO:0006414) GTPase activity (GO:0003924) cytoplasm (GO:0005737) 

2040 STOM stomatin protein homooligomerization (GO:0051260) protein binding (GO:0005515) melanosome (GO:0042470) 

2271 FH fumarate hydratase tricarboxylic acid cycle (GO:0006099) fumarate hydratase activity (GO:0004333) mitochondrial matrix (GO:0005759) 

2274 FHL2 four and a half LIM domains 2 androgen receptor signaling pathway (GO:0030521) androgen receptor binding (GO:0050681) nucleus (GO:0005634) 

2314 FLII flightless I homolog (Drosophila) 
regulation of transcription, DNA-dependent 
(GO:0006355) actin binding (GO:0003779) centrosome (GO:0005813) 

2316 FLNA filamin A, alpha (actin binding protein 280) 
positive regulation of transcription factor import into 
nucleus (GO:0042993) actin filament binding (GO:0051015) actin cytoskeleton (GO:0015629) 

2317 FLNB filamin B, beta (actin binding protein 278) skeletal muscle development (GO:0007519) actin binding (GO:0003779) actin cytoskeleton (GO:0015629) 

2318 FLNC filamin C, gamma (actin binding protein 280) actin binding (GO:0003779) actin cytoskeleton (GO:0015629) 

2495 FTH1 ferritin, heavy polypeptide 1 cellular iron ion homeostasis (GO:0006879) ferric iron binding (GO:0008199) plasma membrane (GO:0005886) 

2547 XRCC6 
X-ray repair complementing defective repair in 
Chinese hamster cells 6 (Ku autoantigen, 70kDa) 

double-strand break repair via nonhomologous end 
joining (GO:0006303) double-stranded DNA binding (GO:0003690) nucleus (GO:0005634) 

2697 GJA1 gap junction protein, alpha 1, 43kDa sensory perception of sound (GO:0007605) 
ion transmembrane transporter activity 
(GO:0015075) 

integral to plasma membrane 
(GO:0005887) 

2744 GLS glutaminase glutamine catabolic process (GO:0006543) glutaminase activity (GO:0004359) mitochondrial matrix (GO:0005759) 

2746 GLUD1 glutamate dehydrogenase 1 glutamate catabolic process (GO:0006538) ATP binding (GO:0005524) mitochondrial matrix (GO:0005759) 

2747 GLUD2 glutamate dehydrogenase 2 glutamate metabolic process (GO:0006536) glutamate dehydrogenase activity (GO:0004352) mitochondrial matrix (GO:0005759) 

2782 GNB1 
guanine nucleotide binding protein (G protein), 
beta polypeptide 1 

acetylcholine receptor signaling, muscarinic pathway 
(GO:0007213) GTPase activity (GO:0003924) 

2804 GOLGB1 golgin B1, golgi integral membrane protein Golgi organization and biogenesis (GO:0007030) protein binding (GO:0005515) Golgi stack (GO:0005795) 

2934 GSN gelsolin (amyloidosis, Finnish type) barbed-end actin filament capping (GO:0051016) actin binding (GO:0003779) actin cytoskeleton (GO:0015629) 

2950 GSTP1 glutathione S-transferase pi anti-apoptosis (GO:0006916) glutathione transferase activity (GO:0004364) cytoplasm (GO:0005737) 

3007 HIST1H1D histone cluster 1, H1d nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

3010 HIST1H1T histone cluster 1, H1t nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

3017 HIST1H2BD histone cluster 1, H2bd nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

3024 HIST1H1A histone cluster 1, H1a nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

3094 HINT1 histidine triad nucleotide binding protein 1 signal transduction (GO:0007165) protein kinase C binding (GO:0005080) nucleus (GO:0005634) 

3106 HLA-B major histocompatibility complex, class I, B 
antigen processing and presentation of peptide antigen 
via MHC class I (GO:0002474) MHC class I receptor activity (GO:0032393) 

integral to plasma membrane 
(GO:0005887) 

3107 HLA-C major histocompatibility complex, class I, C 
antigen processing and presentation of peptide antigen 
via MHC class I (GO:0002474) MHC class I receptor activity (GO:0032393) axonemal dynein complex (GO:0005858) 

3146 HMGB1 high-mobility group box 1 
negative regulation of transcriptional preinitiation 
complex assembly (GO:0017055) DNA bending activity (GO:0008301) condensed chromosome (GO:0000793) 

3181 
HNRNPA2B
1 heterogeneous nuclear ribonucleoprotein A2/B1 nuclear mRNA splicing, via spliceosome (GO:0000398) 

single-stranded telomeric DNA binding 
(GO:0043047) nucleus (GO:0005634) 

3184 HNRNPD 
heterogeneous nuclear ribonucleoprotein D (AU-
rich element RNA binding protein 1, 37kDa) nuclear mRNA splicing, via spliceosome (GO:0000398) DNA binding (GO:0003677) 

chromosome, telomeric region 
(GO:0000781) 

3185 HNRNPF heterogeneous nuclear ribonucleoprotein F nuclear mRNA splicing, via spliceosome (GO:0000398) RNA binding (GO:0003723) nucleus (GO:0005634) 

3295 HSD17B4 hydroxysteroid (17-beta) dehydrogenase 4 fatty acid metabolic process (GO:0006631) 
3-hydroxyacyl-CoA dehydrogenase activity 
(GO:0003857) peroxisomal matrix (GO:0005782) 

3305 HSPA1L heat shock 70kDa protein 1-like response to unfolded protein (GO:0006986) ATP binding (GO:0005524) 
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3306 HSPA2 heat shock 70kDa protein 2 male meiosis (GO:0007140) ATP binding (GO:0005524) cell surface (GO:0009986) 

3308 HSPA4 heat shock 70kDa protein 4 response to unfolded protein (GO:0006986) ATP binding (GO:0005524) cytoplasm (GO:0005737) 

3311 HSPA7 heat shock 70kDa protein 7 (HSP70B) response to unfolded protein (GO:0006986) ATP binding (GO:0005524) cellular_component (GO:0005575) 

3312 HSPA8 heat shock 70kDa protein 8 protein folding (GO:0006457) ATPase activity, coupled (GO:0042623) melanosome (GO:0042470) 

3313 HSPA9 heat shock 70kDa protein 9 (mortalin) anti-apoptosis (GO:0006916) ATP binding (GO:0005524) mitochondrion (GO:0005739) 

3315 HSPB1 heat shock 27kDa protein 1 anti-apoptosis (GO:0006916) identical protein binding (GO:0042802) nucleus (GO:0005634) 

3320 HSP90AA1 
heat shock protein 90kDa alpha (cytosolic), class 
A member 1 

positive regulation of nitric oxide biosynthetic process 
(GO:0045429) ATP binding (GO:0005524) melanosome (GO:0042470) 

3326 HSP90AB1 
heat shock protein 90kDa alpha (cytosolic), class 
B member 1 

positive regulation of nitric oxide biosynthetic process 
(GO:0045429) ATP binding (GO:0005524) melanosome (GO:0042470) 

3382 ICA1 islet cell autoantigen 1, 69kDa neurotransmitter transport (GO:0006836) protein binding (GO:0005515) 
secretory granule membrane 
(GO:0030667) 

3417 IDH1 isocitrate dehydrogenase 1 (NADP+), soluble tricarboxylic acid cycle (GO:0006099) 
isocitrate dehydrogenase (NADP+) activity 
(GO:0004450) peroxisome (GO:0005777) 

3609 ILF3 interleukin enhancer binding factor 3, 90kDa 
negative regulation of transcription, DNA-dependent 
(GO:0045892) double-stranded RNA binding (GO:0003725) nucleus (GO:0005634) 

3611 ILK integrin-linked kinase protein amino acid phosphorylation (GO:0006468) 
protein serine/threonine kinase activity 
(GO:0004674) cell junction (GO:0030054) 

3675 ITGA3 
integrin, alpha 3 (antigen CD49C, alpha 3 subunit 
of VLA-3 receptor) integrin-mediated signaling pathway (GO:0007229) calcium ion binding (GO:0005509) integrin complex (GO:0008305) 

3685 ITGAV 
integrin, alpha V (vitronectin receptor, alpha 
polypeptide, antigen CD51) integrin-mediated signaling pathway (GO:0007229) calcium ion binding (GO:0005509) integrin complex (GO:0008305) 

3704 ITPA 
inosine triphosphatase (nucleoside triphosphate 
pyrophosphatase) nucleotide metabolic process (GO:0009117) 

nucleoside-triphosphate diphosphatase activity 
(GO:0047429) cytoplasm (GO:0005737) 

3799 KIF5B kinesin family member 5B vesicle transport along microtubule (GO:0047496) ATP binding (GO:0005524) kinesin complex (GO:0005871) 

3843 IPO5 importin 5 
NLS-bearing substrate import into nucleus 
(GO:0006607) Ran GTPase binding (GO:0008536) nucleus (GO:0005634) 

3856 KRT8 keratin 8 cytoskeleton organization and biogenesis (GO:0007010) protein binding (GO:0005515) intermediate filament (GO:0005882) 

3895 KTN1 kinectin 1 (kinesin receptor) microtubule-based movement (GO:0007018) receptor activity (GO:0004872) 
integral to plasma membrane 
(GO:0005887) 

3939 LDHA lactate dehydrogenase A anaerobic glycolysis (GO:0019642) L-lactate dehydrogenase activity (GO:0004459) cytosol (GO:0005829) 

3958 LGALS3 lectin, galactoside-binding, soluble, 3 IgE binding (GO:0019863) nucleus (GO:0005634) 

3998 LMAN1 lectin, mannose-binding, 1 protein folding (GO:0006457) mannose binding (GO:0005537) Golgi membrane (GO:0000139) 

4008 LMO7 LIM domain 7 protein ubiquitination (GO:0016567) zinc ion binding (GO:0008270) nucleus (GO:0005634) 

4082 MARCKS 
myristoylated alanine-rich protein kinase C 
substrate cell motility (GO:0006928) actin filament binding (GO:0051015) actin cytoskeleton (GO:0015629) 

4478 MSN moesin cell motility (GO:0006928) receptor binding (GO:0005102) cytoskeleton (GO:0005856) 

4627 MYH9 myosin, heavy chain 9, non-muscle 
membrane protein ectodomain proteolysis 
(GO:0006509) actin-dependent ATPase activity (GO:0030898) stress fiber (GO:0001725) 

4629 MYH11 myosin, heavy chain 11, smooth muscle muscle thick filament assembly (GO:0030241) ATP binding (GO:0005524) 
striated muscle thick filament 
(GO:0005863) 

4638 MYLK myosin light chain kinase protein amino acid phosphorylation (GO:0006468) myosin light chain kinase activity (GO:0004687) 

4691 NCL nucleolin angiogenesis (GO:0001525) DNA binding (GO:0003677) nucleus (GO:0005634) 

4735 SEPT2 septin 2 cell cycle (GO:0007049) GTP binding (GO:0005525) nucleus (GO:0005634) 

4736 RPL10A ribosomal protein L10a translational elongation (GO:0006414) structural constituent of ribosome (GO:0003735) cytosol (GO:0005829) 

4841 NONO non-POU domain containing, octamer-binding mRNA processing (GO:0006397) DNA binding (GO:0003677) nucleus (GO:0005634) 
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4869 NPM1 

nucleophosmin (nucleolar phosphoprotein B23, 
numatrin) anti-apoptosis (GO:0006916) transcription coactivator activity (GO:0003713) centrosome (GO:0005813) 

4914 NTRK1 neurotrophic tyrosine kinase, receptor, type 1 activation of adenylate cyclase activity (GO:0007190) 
transmembrane receptor protein tyrosine kinase 
activity (GO:0004714) 

integral to plasma membrane 
(GO:0005887) 

5052 PRDX1 peroxiredoxin 1 skeletal development (GO:0001501) peroxiredoxin activity (GO:0051920) melanosome (GO:0042470) 

5223 PGAM1 phosphoglycerate mutase 1 (brain) glycolysis (GO:0006096) 
bisphosphoglycerate 2-phosphatase activity 
(GO:0004083) cytosol (GO:0005829) 

5230 PGK1 phosphoglycerate kinase 1 glycolysis (GO:0006096) ATP binding (GO:0005524) cytoplasm (GO:0005737) 

5339 PLEC1 
plectin 1, intermediate filament binding protein 
500kDa 

cytoskeletal anchoring at plasma membrane 
(GO:0007016) actin binding (GO:0003779) cytoskeleton (GO:0005856) 

5351 PLOD1 
procollagen-lysine 1, 2-oxoglutarate 5-
dioxygenase 1 hydroxylysine biosynthetic process (GO:0046947) iron ion binding (GO:0005506) 

rough endoplasmic reticulum membrane 
(GO:0030867) 

5589 PRKCSH protein kinase C substrate 80K-H protein kinase cascade (GO:0007243) calcium ion binding (GO:0005509) endoplasmic reticulum (GO:0005783) 

5682 PSMA1 
proteasome (prosome, macropain) subunit, alpha 
type, 1 

anaphase-promoting complex-dependent proteasomal 
ubiquitin-dependent protein catabolic process 
(GO:0031145) threonine endopeptidase activity (GO:0004298) nucleus (GO:0005634) 

5686 PSMA5 
proteasome (prosome, macropain) subunit, alpha 
type, 5 

anaphase-promoting complex-dependent proteasomal 
ubiquitin-dependent protein catabolic process 
(GO:0031145) threonine endopeptidase activity (GO:0004298) nucleus (GO:0005634) 

5689 PSMB1 
proteasome (prosome, macropain) subunit, beta 
type, 1 

anaphase-promoting complex-dependent proteasomal 
ubiquitin-dependent protein catabolic process 
(GO:0031145) threonine endopeptidase activity (GO:0004298) nucleus (GO:0005634) 

5693 PSMB5 
proteasome (prosome, macropain) subunit, beta 
type, 5 

anaphase-promoting complex-dependent proteasomal 
ubiquitin-dependent protein catabolic process 
(GO:0031145) threonine endopeptidase activity (GO:0004298) nucleus (GO:0005634) 

5705 PSMC5 
proteasome (prosome, macropain) 26S subunit, 
ATPase, 5 

anaphase-promoting complex-dependent proteasomal 
ubiquitin-dependent protein catabolic process 
(GO:0031145) ATPase activity (GO:0016887) nucleus (GO:0005634) 

5708 PSMD2 
proteasome (prosome, macropain) 26S subunit, 
non-ATPase, 2 

anaphase-promoting complex-dependent proteasomal 
ubiquitin-dependent protein catabolic process 
(GO:0031145) protein binding (GO:0005515) cytosol (GO:0005829) 

5713 PSMD7 
proteasome (prosome, macropain) 26S subunit, 
non-ATPase, 7 

anaphase-promoting complex-dependent proteasomal 
ubiquitin-dependent protein catabolic process 
(GO:0031145) protein binding (GO:0005515) cytosol (GO:0005829) 

5813 PURA purine-rich element binding protein A DNA unwinding during replication (GO:0006268) 
double-stranded telomeric DNA binding 
(GO:0003691) 

nuclear chromosome, telomeric region 
(GO:0000784) 

5814 PURB purine-rich element binding protein B 
regulation of transcription, DNA-dependent 
(GO:0006355) single-stranded DNA binding (GO:0003697) nucleus (GO:0005634) 

5887 RAD23B RAD23 homolog B (S. cerevisiae) 
proteasomal ubiquitin-dependent protein catabolic 
process (GO:0043161) single-stranded DNA binding (GO:0003697) nucleus (GO:0005634) 

6117 RPA1 replication protein A1, 70kDa 
nucleotide-excision repair, DNA damage removal 
(GO:0000718) single-stranded DNA binding (GO:0003697) PML body (GO:0016605) 

6119 RPA3 replication protein A3, 14kDa 
nucleotide-excision repair, DNA damage removal 
(GO:0000718) single-stranded DNA binding (GO:0003697) nucleus (GO:0005634) 

6122 RPL3 ribosomal protein L3 translational elongation (GO:0006414) RNA binding (GO:0003723) 
cytosolic large ribosomal subunit 
(GO:0022625) 

6124 RPL4 ribosomal protein L4 translational elongation (GO:0006414) RNA binding (GO:0003723) 
cytosolic large ribosomal subunit 
(GO:0022625) 

6125 RPL5 ribosomal protein L5 translational elongation (GO:0006414) 5S rRNA binding (GO:0008097) 
cytosolic large ribosomal subunit 
(GO:0022625) 

6128 RPL6 ribosomal protein L6 
regulation of transcription, DNA-dependent 
(GO:0006355) DNA binding (GO:0003677) 

cytosolic large ribosomal subunit 
(GO:0022625) 

6160 RPL31 ribosomal protein L31 translational elongation (GO:0006414) RNA binding (GO:0003723) 
cytosolic large ribosomal subunit 
(GO:0022625) 

6165 RPL35A ribosomal protein L35a translational elongation (GO:0006414) tRNA binding (GO:0000049) 
cytosolic large ribosomal subunit 
(GO:0022625) 

6176 RPLP1 ribosomal protein, large, P1 translational elongation (GO:0006414) RNA binding (GO:0003723) 
cytosolic large ribosomal subunit 
(GO:0022625) 
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6188 RPS3 ribosomal protein S3 translational elongation (GO:0006414) RNA binding (GO:0003723) 

cytosolic small ribosomal subunit 
(GO:0022627) 

6189 RPS3A ribosomal protein S3A induction of apoptosis (GO:0006917) RNA binding (GO:0003723) 
cytosolic small ribosomal subunit 
(GO:0022627) 

6206 RPS12 ribosomal protein S12 translational elongation (GO:0006414) RNA binding (GO:0003723) 
cytosolic small ribosomal subunit 
(GO:0022627) 

6209 RPS15 ribosomal protein S15 translational elongation (GO:0006414) structural constituent of ribosome (GO:0003735) 
cytosolic small ribosomal subunit 
(GO:0022627) 

6238 RRBP1 
ribosome binding protein 1 homolog 180kDa 
(dog) 

intracellular protein transport across a membrane 
(GO:0065002) receptor activity (GO:0004872) 

integral to endoplasmic reticulum 
membrane (GO:0030176) 

6251 RSU1 Ras suppressor protein 1 signal transduction (GO:0007165) protein binding (GO:0005515) 

6421 SFPQ 
splicing factor proline/glutamine-rich 
(polypyrimidine tract binding protein associated) mRNA processing (GO:0006397) DNA binding (GO:0003677) nucleus (GO:0005634) 

6449 SGTA small glutamine-rich tetratricopeptide repeat (TPR)-containing, alpha protein binding (GO:0005515) cytoplasm (GO:0005737) 

6520 SLC3A2 
solute carrier family 3 (activators of dibasic and 
neutral amino acid transport), member 2 calcium ion transport (GO:0006816) calcium:sodium antiporter activity (GO:0005432) melanosome (GO:0042470) 

6708 SPTA1 spectrin, alpha, erythrocytic 1 (elliptocytosis 2) barbed-end actin filament capping (GO:0051016) actin filament binding (GO:0051015) cytoskeleton (GO:0005856) 

6709 SPTAN1 spectrin, alpha, non-erythrocytic 1 (alpha-fodrin) barbed-end actin filament capping (GO:0051016) actin binding (GO:0003779) cytosol (GO:0005829) 

6711 SPTBN1 spectrin, beta, non-erythrocytic 1 barbed-end actin filament capping (GO:0051016) actin binding (GO:0003779) nucleolus (GO:0005730) 

6810 STX4 syntaxin 4 intracellular protein transport (GO:0006886) SNAP receptor activity (GO:0005484) vacuole (GO:0005773) 

6876 TAGLN transgelin muscle development (GO:0007517) actin binding (GO:0003779) cytoplasm (GO:0005737) 

7057 THBS1 thrombospondin 1 nervous system development (GO:0007399) heparin binding (GO:0008201) 
platelet alpha granule lumen 
(GO:0031093) 

7086 TKT transketolase (Wernicke-Korsakoff syndrome) metabolic process (GO:0008152) transketolase activity (GO:0004802) cytosol (GO:0005829) 

7158 TP53BP1 tumor protein p53 binding protein 1 
positive regulation of transcription, DNA-dependent 
(GO:0045893) DNA binding (GO:0003677) nucleus (GO:0005634) 

7162 TPBG trophoblast glycoprotein cell motility (GO:0006928) protein binding (GO:0005515) 
integral to plasma membrane 
(GO:0005887) 

7169 TPM2 tropomyosin 2 (beta) regulation of ATPase activity (GO:0043462) actin binding (GO:0003779) cytoskeleton (GO:0005856) 

7171 TPM4 tropomyosin 4 cell motility (GO:0006928) actin binding (GO:0003779) cytoskeleton (GO:0005856) 

7203 CCT3 chaperonin containing TCP1, subunit 3 (gamma) protein folding (GO:0006457) ATP binding (GO:0005524) cytoskeleton (GO:0005856) 

7295 TXN thioredoxin signal transduction (GO:0007165) protein binding (GO:0005515) cytosol (GO:0005829) 

7296 TXNRD1 thioredoxin reductase 1 signal transduction (GO:0007165) FAD binding (GO:0050660) nucleus (GO:0005634) 

7317 UBA1 ubiquitin-like modifier activating enzyme 1 DNA replication (GO:0006260) ATP binding (GO:0005524) 

7345 UCHL1 
ubiquitin carboxyl-terminal esterase L1 (ubiquitin 
thiolesterase) protein deubiquitination (GO:0016579) ubiquitin thiolesterase activity (GO:0004221) cytoplasm (GO:0005737) 

7407 VARS valyl-tRNA synthetase valyl-tRNA aminoacylation (GO:0006438) valine-tRNA ligase activity (GO:0004832) cytoplasm (GO:0005737) 

7408 VASP vasodilator-stimulated phosphoprotein cell motility (GO:0006928) actin binding (GO:0003779) actin cytoskeleton (GO:0015629) 

7414 VCL vinculin lamellipodium biogenesis (GO:0030032) actin binding (GO:0003779) focal adhesion (GO:0005925) 

7415 VCP valosin-containing protein caspase activation (GO:0006919) ATPase activity (GO:0016887) microsome (GO:0005792) 

7424 VEGFC vascular endothelial growth factor C positive regulation of cell proliferation (GO:0008284) growth factor activity (GO:0008083) 
platelet alpha granule lumen 
(GO:0031093) 

7430 EZR ezrin actin filament bundle formation (GO:0051017) actin filament binding (GO:0051015) cortical cytoskeleton (GO:0030863) 

7520 XRCC5 
X-ray repair complementing defective repair in 
Chinese hamster cells 5 (double-strand-break 

double-strand break repair via nonhomologous end 
joining (GO:0006303) ATP binding (GO:0005524) nucleus (GO:0005634) 
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rejoining; Ku autoantigen, 80kDa) 

7529 YWHAB 

tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, beta 
polypeptide activation of pro-apoptotic gene products (GO:0008633) monooxygenase activity (GO:0004497) melanosome (GO:0042470) 

7532 YWHAG 

tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, gamma 
polypeptide 

negative regulation of protein kinase activity 
(GO:0006469) protein kinase C binding (GO:0005080) cytoplasm (GO:0005737) 

7534 YWHAZ 

tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, zeta 
polypeptide anti-apoptosis (GO:0006916) transcription factor binding (GO:0008134) melanosome (GO:0042470) 

8087 FXR1 fragile X mental retardation, autosomal homolog 1 skeletal muscle development (GO:0007519) RNA binding (GO:0003723) nucleolus (GO:0005730) 

8218 CLTCL1 clathrin, heavy chain-like 1 receptor-mediated endocytosis (GO:0006898) signal transducer activity (GO:0004871) 
clathrin coat of trans-Golgi network 
vesicle (GO:0030130) 

8290 HIST3H3 histone cluster 3, H3 nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

8335 HIST1H2AB histone cluster 1, H2ab nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

8411 EEA1 early endosome antigen 1 vesicle fusion (GO:0006906) phosphatidylinositol binding (GO:0005545) 
early endosome membrane 
(GO:0031901) 

8531 CSDA cold shock domain protein A 
negative regulation of transcription from RNA 
polymerase II promoter (GO:0000122) double-stranded DNA binding (GO:0003690) nucleus (GO:0005634) 

8615 USO1 USO1 homolog, vesicle docking protein (yeast) vesicle fusion with Golgi apparatus (GO:0048280) protein transporter activity (GO:0008565) Golgi membrane (GO:0000139) 

8661 EIF3A eukaryotic translation initiation factor 3, subunit A regulation of translational initiation (GO:0006446) translation initiation factor activity (GO:0003743) cytosol (GO:0005829) 

8662 EIF3B eukaryotic translation initiation factor 3, subunit B translational initiation (GO:0006413) translation initiation factor activity (GO:0003743) cytosol (GO:0005829) 

8666 EIF3G eukaryotic translation initiation factor 3, subunit G regulation of translational initiation (GO:0006446) translation initiation factor activity (GO:0003743) cytosol (GO:0005829) 

8668 EIF3I eukaryotic translation initiation factor 3, subunit I regulation of translational initiation (GO:0006446) translation initiation factor activity (GO:0003743) cytosol (GO:0005829) 

8971 H1FX H1 histone family, member X nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

9093 DNAJA3 DnaJ (Hsp40) homolog, subfamily A, member 3 protein folding (GO:0006457) zinc ion binding (GO:0008270) mitochondrial matrix (GO:0005759) 

9218 VAPA 
VAMP (vesicle-associated membrane protein)-
associated protein A, 33kDa 

positive regulation of I-kappaB kinase/NF-kappaB 
cascade (GO:0043123) protein heterodimerization activity (GO:0046982) tight junction (GO:0005923) 

9219 MTA2 metastasis associated 1 family, member 2 chromatin assembly or disassembly (GO:0006333) zinc ion binding (GO:0008270) 
histone deacetylase complex 
(GO:0000118) 

9230 RAB11B RAB11B, member RAS oncogene family 
small GTPase mediated signal transduction 
(GO:0007264) GTPase activity (GO:0003924) plasma membrane (GO:0005886) 

9276 COPB2 
coatomer protein complex, subunit beta 2 (beta 
prime) COPI coating of Golgi vesicle (GO:0048205) protein binding (GO:0005515) COPI vesicle coat (GO:0030126) 

9590 AKAP12 A kinase (PRKA) anchor protein (gravin) 12 protein targeting (GO:0006605) protein kinase A binding (GO:0051018) cytoskeleton (GO:0005856) 

9601 PDIA4 protein disulfide isomerase family A, member 4 protein secretion (GO:0009306) protein disulfide isomerase activity (GO:0003756) melanosome (GO:0042470) 

9706 ULK2 unc-51-like kinase 2 (C. elegans) axonogenesis (GO:0007409) protein serine/threonine kinase activity (GO:0004674) 

9761 KIAA0152 KIAA0152   integral to membrane (GO:0016021) 

9782 MATR3 matrin 3  zinc ion binding (GO:0008270) nuclear inner membrane (GO:0005637) 

9871 SEC24D 
SEC24 related gene family, member D (S. 
cerevisiae) ER to Golgi vesicle-mediated transport (GO:0006888) zinc ion binding (GO:0008270) COPII vesicle coat (GO:0030127) 

9943 OXSR1 oxidative-stress responsive 1 protein amino acid phosphorylation (GO:0006468) protein serine/threonine kinase activity (GO:0004674) 

9961 MVP major vault protein mRNA transport (GO:0051028) nucleus (GO:0005634) 

10095 ARPC1B 
actin related protein 2/3 complex, subunit 1B, 
41kDa cell motility (GO:0006928) actin binding (GO:0003779) cytoplasm (GO:0005737) 
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10109 ARPC2 

actin related protein 2/3 complex, subunit 2, 
34kDa regulation of actin filament polymerization (GO:0030833) actin binding (GO:0003779) cytoskeleton (GO:0005856) 

10483 SEC23B Sec23 homolog B (S. cerevisiae) ER to Golgi vesicle-mediated transport (GO:0006888) zinc ion binding (GO:0008270) COPII vesicle coat (GO:0030127) 

10487 CAP1 
CAP, adenylate cyclase-associated protein 1 
(yeast) activation of adenylate cyclase activity (GO:0007190) actin binding (GO:0003779) plasma membrane (GO:0005886) 

10528 NOL5A nucleolar protein 5A (56kDa with KKE/D repeat) rRNA processing (GO:0006364) RNA binding (GO:0003723) nucleus (GO:0005634) 

10540 DCTN2 dynactin 2 (p50) microtubule-based process (GO:0007017) protein binding (GO:0005515) centrosome (GO:0005813) 

10574 CCT7 chaperonin containing TCP1, subunit 7 (eta) protein folding (GO:0006457) ATP binding (GO:0005524) cytoplasm (GO:0005737) 

10575 CCT4 chaperonin containing TCP1, subunit 4 (delta) protein folding (GO:0006457) ATP binding (GO:0005524) melanosome (GO:0042470) 

10576 CCT2 chaperonin containing TCP1, subunit 2 (beta) protein folding (GO:0006457) ATP binding (GO:0005524) cytosol (GO:0005829) 

10606 PAICS 

phosphoribosylaminoimidazole carboxylase, 
phosphoribosylaminoimidazole 
succinocarboxamide synthetase 'de novo' IMP biosynthetic process (GO:0006189) ATP binding (GO:0005524) 

phosphoribosylaminoimidazole 
carboxylase complex (GO:0009320) 

10611 PDLIM5 PDZ and LIM domain 5 protein kinase C binding (GO:0005080) actin cytoskeleton (GO:0015629) 

10801 9-Sep septin 9 protein heterooligomerization (GO:0051291) GTPase activity (GO:0003924) stress fiber (GO:0001725) 

10935 PRDX3 peroxiredoxin 3 
positive regulation of NF-kappaB transcription factor 
activity (GO:0051092) 

alkyl hydroperoxide reductase activity 
(GO:0008785) mitochondrion (GO:0005739) 

10938 EHD1 EH-domain containing 1 GTPase activity (GO:0003924) 
early endosome membrane 
(GO:0031901) 

10963 STIP1 
stress-induced-phosphoprotein 1 (Hsp70/Hsp90-
organizing protein) response to stress (GO:0006950) binding (GO:0005488) nucleus (GO:0005634) 

10992 SF3B2 splicing factor 3b, subunit 2, 145kDa nuclear mRNA splicing, via spliceosome (GO:0000398) nucleic acid binding (GO:0003676) nucleus (GO:0005634) 

11034 DSTN destrin (actin depolymerizing factor) 
actin polymerization and/or depolymerization 
(GO:0008154) actin binding (GO:0003779) actin cytoskeleton (GO:0015629) 

11316 COPE coatomer protein complex, subunit epsilon COPI coating of Golgi vesicle (GO:0048205) protein binding (GO:0005515) COPI vesicle coat (GO:0030126) 

11328 FKBP9 FK506 binding protein 9, 63 kDa protein folding (GO:0006457) 
peptidyl-prolyl cis-trans isomerase activity 
(GO:0003755) endoplasmic reticulum (GO:0005783) 

11335 CBX3 
chromobox homolog 3 (HP1 gamma homolog, 
Drosophila) chromatin remodeling (GO:0006338) protein domain specific binding (GO:0019904) 

nuclear centromeric heterochromatin 
(GO:0031618) 

22872 SEC31A SEC31 homolog A (S. cerevisiae) ER to Golgi vesicle-mediated transport (GO:0006888) protein binding (GO:0005515) COPII vesicle coat (GO:0030127) 

22995 CEP152 centrosomal protein 152kDa centrosome (GO:0005813) 

23022 PALLD palladin, cytoskeletal associated protein cytoskeleton organization and biogenesis (GO:0007010) muscle alpha-actinin binding (GO:0051371) nucleus (GO:0005634) 

23193 GANAB glucosidase, alpha; neutral AB carbohydrate metabolic process (GO:0005975) 
glucan 1,3-alpha-glucosidase activity 
(GO:0033919) melanosome (GO:0042470) 

23307 FKBP15 FK506 binding protein 15, 133kDa protein folding (GO:0006457) cytoplasm (GO:0005737) 

23345 SYNE1 spectrin repeat containing, nuclear envelope 1 nuclear organization and biogenesis (GO:0006997) actin binding (GO:0003779) nucleus (GO:0005634) 

23446 SLC44A1 solute carrier family 44, member 1 choline transport (GO:0015871) 
choline transmembrane transporter activity 
(GO:0015220) integral to membrane (GO:0016021) 

23461 ABCA5 
ATP-binding cassette, sub-family A (ABC1), 
member 5 transport (GO:0006810) ATPase activity (GO:0016887) lysosomal membrane (GO:0005765) 

23499 MACF1 microtubule-actin crosslinking factor 1 cell cycle arrest (GO:0007050) microtubule binding (GO:0008017) cytoskeleton (GO:0005856) 

23603 CORO1C coronin, actin binding protein, 1C phagocytosis (GO:0006909) actin binding (GO:0003779) actin cytoskeleton (GO:0015629) 

26509 FER1L3 fer-1-like 3, myoferlin (C. elegans) muscle contraction (GO:0006936) nucleus (GO:0005634) 

26986 PABPC1 poly(A) binding protein, cytoplasmic 1 mRNA polyadenylation (GO:0006378) poly(A) binding (GO:0008143) nucleus (GO:0005634) 
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27020 NPTN neuroplastin 

positive regulation of long-term neuronal synaptic 
plasticity (GO:0048170) cell adhesion molecule binding (GO:0050839) integral to membrane (GO:0016021) 

29766 TMOD3 tropomodulin 3 (ubiquitous) actin binding (GO:0003779) cytoskeleton (GO:0005856) 

30846 EHD2 EH-domain containing 2 GTPase activity (GO:0003924) nucleus (GO:0005634) 

51087 YBX2 Y box binding protein 2 
transcription from RNA polymerase II promoter 
(GO:0006366) DNA binding (GO:0003677) nucleus (GO:0005634) 

51350 KRT76 keratin 76 cytoskeleton organization and biogenesis (GO:0007010) structural molecule activity (GO:0005198) intermediate filament (GO:0005882) 

51742 ARID4B AT rich interactive domain 4B (RBP1-like) chromatin assembly or disassembly (GO:0006333) DNA binding (GO:0003677) chromatin (GO:0000785) 

54997 TESC tescalcin  magnesium ion binding (GO:0000287) nucleus (GO:0005634) 

55075 UACA 
uveal autoantigen with coiled-coil domains and 
ankyrin repeats viral reproduction (GO:0016032) nucleus (GO:0005634) 

55299 BXDC2 brix domain containing 2 ribosome biogenesis and assembly (GO:0042254) protein binding (GO:0005515) nucleus (GO:0005634) 

55752 SEPT11 septin 11 protein heterooligomerization (GO:0051291) GTP binding (GO:0005525) stress fiber (GO:0001725) 

55917 CTTNBP2NL CTTNBP2 N-terminal like actin cytoskeleton (GO:0015629) 

56005 C19orf10 chromosome 19 open reading frame 10 extracellular region (GO:0005576) 

56911 C21orf7 chromosome 21 open reading frame 7 protein binding (GO:0005515) nucleus (GO:0005634) 

56969 RPL23AP13 ribosomal protein L23a pseudogene 13 nucleotide binding (GO:0000166) ribosome (GO:0005840) 

57222 ERGIC1 
endoplasmic reticulum-golgi intermediate 
compartment (ERGIC) 1 ER to Golgi vesicle-mediated transport (GO:0006888) protein binding (GO:0005515) Golgi membrane (GO:0000139) 

60681 FKBP10 FK506 binding protein 10, 65 kDa protein folding (GO:0006457) 
peptidyl-prolyl cis-trans isomerase activity 
(GO:0003755) endoplasmic reticulum (GO:0005783) 

63971 KIF13A kinesin family member 13A microtubule-based movement (GO:0007018) ATP binding (GO:0005524) microtubule (GO:0005874) 

64098 PARVG parvin, gamma cell-matrix adhesion (GO:0007160) actin binding (GO:0003779) cytoskeleton (GO:0005856) 

65992 C20orf116 chromosome 20 open reading frame 116 protein binding (GO:0005515) extracellular region (GO:0005576) 

66005 CHID1 chitinase domain containing 1 chitin catabolic process (GO:0006032) chitinase activity (GO:0004568) lysosome (GO:0005764) 

81035 COLEC12 collectin sub-family member 12 phosphate transport (GO:0006817) scavenger receptor activity (GO:0005044) integral to membrane (GO:0016021) 

81567 TXNDC5 thioredoxin domain containing 5 anti-apoptosis (GO:0006916) isomerase activity (GO:0016853) endoplasmic reticulum (GO:0005783) 

84936 ZFYVE19 zinc finger, FYVE domain containing 19 zinc ion binding (GO:0008270) 

113026 PLCD3 phospholipase C, delta 3 intracellular signaling cascade (GO:0007242) 
phosphoinositide phospholipase C activity 
(GO:0004435) cytoplasm (GO:0005737) 

127829 ARL8A ADP-ribosylation factor-like 8A 
small GTPase mediated signal transduction 
(GO:0007264) GTPase activity (GO:0003924) lysosome (GO:0005764) 

140597 TCEAL2 transcription elongation factor A (SII)-like 2 regulation of transcription, DNA-dependent (GO:0006355) nucleus (GO:0005634) 

145165 FAM10A4 family with sequence similarity 10, member A4 pseudogene binding (GO:0005488) cytoplasm (GO:0005737) 

153562 MARVELD2 MARVEL domain containing 2 sensory perception of sound (GO:0007605) tight junction (GO:0005923) 

158358 KIAA2026 KIAA2026    

255101 CCDC108 coiled-coil domain containing 108 structural molecule activity (GO:0005198) integral to membrane (GO:0016021) 

255738 PCSK9 proprotein convertase subtilisin/kexin type 9 protein autoprocessing (GO:0016540) calcium ion binding (GO:0005509) extracellular space (GO:0005615) 

283149 BCL9L B-cell CLL/lymphoma 9-like regulation of transcription, DNA-dependent (GO:0006355) nucleus (GO:0005634) 
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338773 TMEM119 transmembrane protein 119 integral to membrane (GO:0016021) 

348654 GEN1 Gen homolog 1, endonuclease (Drosophila) DNA repair (GO:0006281) endonuclease activity (GO:0004519) nucleus (GO:0005634) 

360132 FKBP9L FK506 binding protein 9-like protein folding (GO:0006457) calcium ion binding (GO:0005509) endoplasmic reticulum (GO:0005783) 

388474 LOC388474 similar to ribosomal protein L7a translation (GO:0006412) structural constituent of ribosome (GO:0003735) ribosome (GO:0005840) 

388697 HRNR hornerin multicellular organismal development (GO:0007275) calcium ion binding (GO:0005509) 

440686 HIST2H3PS2 histone cluster 2, H3, pseudogene 2 nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

440733 LOC440733 similar to insulinoma protein (rig) translation (GO:0006412) structural constituent of ribosome (GO:0003735) small ribosomal subunit (GO:0015935) 

440915 FKSG30 kappa-actin ATP binding (GO:0005524) cytoskeleton (GO:0005856) 

441531 PGAM4 phosphoglycerate mutase family member 4 glycolysis (GO:0006096) bisphosphoglycerate 2-phosphatase activity (GO:0004083) 

554313 HIST2H4B histone cluster 2, H4b nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

641455 P704P prostate-specific P704P protein binding (GO:0005515) 

646821 LOC646821 similar to beta-actin protein binding (GO:0005515) 

653852 LOC653852 similar to Filamin-C (Gamma-filamin) (Filamin-2) (Protein FLNc) (Actin-binding-like protein) (ABP-L) (ABP-280-like protein) 

72 ACTG2 actin, gamma 2, smooth muscle, enteric ATP binding (GO:0005524) cytoskeleton (GO:0005856) 

213 ALB albumin 
hemolysis by symbiont of host red blood cells 
(GO:0019836) copper ion binding (GO:0005507) 

platelet alpha granule lumen 
(GO:0031093) 

3371 TNC tenascin C (hexabrachion) signal transduction (GO:0007165) receptor binding (GO:0005102) 
proteinaceous extracellular matrix 
(GO:0005578) 

11117 EMILIN1 elastin microfibril interfacer 1 phosphate transport (GO:0006817) 
extracellular matrix structural constituent 
(GO:0005201) cytoplasm (GO:0005737) 

26154 ABCA12 
ATP-binding cassette, sub-family A (ABC1), 
member 12 lipid transport (GO:0006869) ATPase activity (GO:0016887) integral to membrane (GO:0016021) 

55239 OGFOD1 
2-oxoglutarate and iron-dependent oxygenase 
domain containing 1 protein metabolic process (GO:0019538) iron ion binding (GO:0005506) 

374454 KRT77 keratin 77  structural molecule activity (GO:0005198) intermediate filament (GO:0005882) 
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Results acquired from proteomic analysis of acellular HDF 
 
Proteins Gene Symbol Description Biological Process_max Molecular Function_max Cellular Component_max 

290 ANPEP alanyl (membrane) aminopeptidase (aminopeptidase N, 
aminopeptidase M, microsomal aminopeptidase, CD13, 
p150) 

proteolysis (GO:0006508) aminopeptidase activity (GO:0004177) integral to plasma membrane 
(GO:0005887) 

309 ANXA6 annexin A6  calcium ion binding (GO:0005509) melanosome (GO:0042470) 

483 ATP1B3 ATPase, Na+/K+ transporting, beta 3 polypeptide potassium ion transport (GO:0006813) sodium:potassium-exchanging ATPase 
activity (GO:0005391) 

melanosome (GO:0042470) 

493 ATP2B4 ATPase, Ca++ transporting, plasma membrane 4 calcium ion transport (GO:0006816) calcium-transporting ATPase activity 
(GO:0005388) 

integral to plasma membrane 
(GO:0005887) 

857 CAV1 caveolin 1, caveolae protein, 22kDa cholesterol homeostasis (GO:0042632) cholesterol binding (GO:0015485) integral to plasma membrane 
(GO:0005887) 

960 CD44 CD44 molecule (Indian blood group) cell-matrix adhesion (GO:0007160) hyaluronic acid binding (GO:0005540) integral to plasma membrane 
(GO:0005887) 

1072 CFL1 cofilin 1 (non-muscle) anti-apoptosis (GO:0006916) actin binding (GO:0003779) nucleus (GO:0005634) 

1277 COL1A1 collagen, type I, alpha 1 phosphate transport (GO:0006817) extracellular matrix structural constituent 
(GO:0005201) 

collagen type I (GO:0005584) 

1291 COL6A1 collagen, type VI, alpha 1 phosphate transport (GO:0006817) protein binding (GO:0005515) collagen type VI (GO:0005589) 

1292 COL6A2 collagen, type VI, alpha 2 phosphate transport (GO:0006817) protein binding, bridging (GO:0030674) cytoplasm (GO:0005737) 

1293 COL6A3 collagen, type VI, alpha 3 phosphate transport (GO:0006817) serine-type endopeptidase inhibitor activity 
(GO:0004867) 

collagen type VI (GO:0005589) 

1915 EEF1A1 eukaryotic translation elongation factor 1 alpha 1 translational elongation (GO:0006414) GTPase activity (GO:0003924) cytosol (GO:0005829) 

1917 EEF1A2 eukaryotic translation elongation factor 1 alpha 2 translational elongation (GO:0006414) GTPase activity (GO:0003924) nucleus (GO:0005634) 

2200 FBN1 fibrillin 1 skeletal development (GO:0001501) transmembrane receptor activity 
(GO:0004888) 

microfibril (GO:0001527) 

2316 FLNA filamin A, alpha (actin binding protein 280) positive regulation of transcription factor 
import into nucleus (GO:0042993) 

actin filament binding (GO:0051015) actin cytoskeleton (GO:0015629) 

2335 FN1 fibronectin 1 transmembrane receptor protein tyrosine 
kinase signaling pathway (GO:0007169) 

heparin binding (GO:0008201) ER-Golgi intermediate compartment 
(GO:0005793) 

2597 GAPDH glyceraldehyde-3-phosphate dehydrogenase glycolysis (GO:0006096) glyceraldehyde-3-phosphate 
dehydrogenase (phosphorylating) activity 
(GO:0004365) 

cytoplasm (GO:0005737) 

2778 GNAS GNAS complex locus G-protein signaling, adenylate cyclase 
activating pathway (GO:0007189) 

GTPase activity (GO:0003924) heterotrimeric G-protein complex 
(GO:0005834) 

3105 HLA-A major histocompatibility complex, class I, A antigen processing and presentation of 
peptide antigen via MHC class I 
(GO:0002474) 

MHC class I receptor activity (GO:0032393) integral to plasma membrane 
(GO:0005887) 

3136 HLA-H major histocompatibility complex, class I, H 
(pseudogene) 

antigen processing and presentation of 
peptide antigen via MHC class I 
(GO:0002474) 

MHC class I receptor activity (GO:0032393) integral to plasma membrane 
(GO:0005887) 

3309 HSPA5 heat shock 70kDa protein 5 (glucose-regulated protein, 78kDa) ATP binding (GO:0005524) endoplasmic reticulum (GO:0005783) 

3339 HSPG2 heparan sulfate proteoglycan 2 cell adhesion (GO:0007155) protein binding (GO:0005515) basement membrane (GO:0005604) 

3688 ITGB1 integrin, beta 1 (fibronectin receptor, beta polypeptide, 
antigen CD29 includes MDF2, MSK12) 

integrin-mediated signaling pathway 
(GO:0007229) 

protein heterodimerization activity 
(GO:0046982) 

melanosome (GO:0042470) 

3849 KRT2 keratin 2 (epidermal ichthyosis bullosa of Siemens) epidermis development (GO:0008544) structural constituent of cytoskeleton 
(GO:0005200) 

intermediate filament (GO:0005882) 

3857 KRT9 keratin 9 (epidermolytic palmoplantar keratoderma) intermediate filament organization 
(GO:0045109) 

structural constituent of cytoskeleton 
(GO:0005200) 

intermediate filament (GO:0005882) 

3858 KRT10 keratin 10 (epidermolytic hyperkeratosis; keratosis 
palmaris et plantaris) 

epidermis development (GO:0008544) protein binding (GO:0005515) intermediate filament (GO:0005882) 
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3888 KRT82 keratin 82  protein binding (GO:0005515) intermediate filament (GO:0005882) 

4000 LMNA lamin A/C  protein binding (GO:0005515) nucleus (GO:0005634) 

4627 MYH9 myosin, heavy chain 9, non-muscle membrane protein ectodomain proteolysis 
(GO:0006509) 

actin-dependent ATPase activity 
(GO:0030898) 

stress fiber (GO:0001725) 

5315 PKM2 pyruvate kinase, muscle glycolysis (GO:0006096) pyruvate kinase activity (GO:0004743) cytosol (GO:0005829) 

5630 PRPH peripherin  structural molecule activity (GO:0005198) intermediate filament (GO:0005882) 

6184 RPN1 ribophorin I protein amino acid N-linked glycosylation via 
asparagine (GO:0018279) 

dolichyl-diphosphooligosaccharide-protein 
glycotransferase activity (GO:0004579) 

melanosome (GO:0042470) 

6513 SLC2A1 solute carrier family 2 (facilitated glucose transporter), 
member 1 

glucose transport (GO:0015758) sugar:hydrogen symporter activity 
(GO:0005351) 

melanosome (GO:0042470) 

7011 TEP1 telomerase-associated protein 1 telomere maintenance via recombination 
(GO:0000722) 

telomerase activity (GO:0003720) chromosome, telomeric region 
(GO:0000781) 

7057 THBS1 thrombospondin 1 nervous system development (GO:0007399) heparin binding (GO:0008201) platelet alpha granule lumen 
(GO:0031093) 

7070 THY1 Thy-1 cell surface antigen retinal cone cell development (GO:0046549) Rho GTPase activator activity 
(GO:0005100) 

integral to plasma membrane 
(GO:0005887) 

7277 TUBA4A tubulin, alpha 4a microtubule-based movement (GO:0007018) GTPase activity (GO:0003924) microtubule (GO:0005874) 

7431 VIM vimentin cell motility (GO:0006928) structural constituent of cytoskeleton 
(GO:0005200) 

cytoskeleton (GO:0005856) 

8295 TRRAP transformation/transcription domain-associated protein histone acetylation (GO:0016573) transcription cofactor activity (GO:0003712) NuA4 histone acetyltransferase 
complex (GO:0035267) 

23332 CLASP1 cytoplasmic linker associated protein 1 negative regulation of microtubule 
depolymerization (GO:0007026) 

microtubule plus-end binding 
(GO:0051010) 

kinetochore microtubule (GO:0005828)

25923 ATL3 atlastin 3  GTPase activity (GO:0003924) integral to membrane (GO:0016021) 

27127 SMC1B structural maintenance of chromosomes 1B meiosis (GO:0007126) ATPase activity (GO:0016887) nucleus (GO:0005634) 

27253 PCDH17 protocadherin 17 homophilic cell adhesion (GO:0007156) calcium ion binding (GO:0005509) integral to membrane (GO:0016021) 

54734 RAB39 RAB39, member RAS oncogene family small GTPase mediated signal transduction 
(GO:0007264) 

GTP binding (GO:0005525) plasma membrane (GO:0005886) 

57653 KIAA1529 KIAA1529   integral to membrane (GO:0016021) 

79026 AHNAK AHNAK nucleoprotein nervous system development (GO:0007399) protein binding (GO:0005515) nucleus (GO:0005634) 

219770 GJD4 gap junction protein, delta 4, 40.1kDa cell communication (GO:0007154) integral to membrane (GO:0016021) 

284119 PTRF polymerase I and transcript release factor transcription initiation from RNA polymerase I 
promoter (GO:0006361) 

rRNA primary transcript binding 
(GO:0042134) 

microsome (GO:0005792) 

81 ACTN4 actinin, alpha 4 positive regulation of sodium:hydrogen 
antiporter activity (GO:0032417) 

actin filament binding (GO:0051015) nucleus (GO:0005634) 

87 ACTN1 actinin, alpha 1 regulation of apoptosis (GO:0042981) actin binding (GO:0003779) focal adhesion (GO:0005925) 

214 ALCAM activated leukocyte cell adhesion molecule signal transduction (GO:0007165) receptor binding (GO:0005102) integral to plasma membrane 
(GO:0005887) 

226 ALDOA aldolase A, fructose-bisphosphate glycolysis (GO:0006096) fructose-bisphosphate aldolase activity (GO:0004332) 

274 BIN1 bridging integrator 1 regulation of endocytosis (GO:0030100) protein binding (GO:0005515) actin cytoskeleton (GO:0015629) 

301 ANXA1 annexin A1 anti-apoptosis (GO:0006916) phospholipase A2 inhibitor activity 
(GO:0019834) 

cornified envelope (GO:0001533) 

302 ANXA2 annexin A2 skeletal development (GO:0001501) phospholipase inhibitor activity 
(GO:0004859) 

melanosome (GO:0042470) 

311 ANXA11 annexin A11 immune response (GO:0006955) calcium ion binding (GO:0005509) melanosome (GO:0042470) 

522 ATP5J ATP synthase, H+ transporting, mitochondrial F0 
complex, subunit F6 

ATP synthesis coupled proton transport 
(GO:0015986) 

hydrogen ion transporting ATP synthase 
activity, rotational mechanism 
(GO:0046933) 

mitochondrion (GO:0005739) 
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538 ATP7A ATPase, Cu++ transporting, alpha polypeptide (Menkes 

syndrome) 
T-helper cell differentiation (GO:0042093) copper-exporting ATPase activity 

(GO:0004008) 
trans-Golgi network transport vesicle 
(GO:0030140) 

682 BSG basigin (Ok blood group) cell surface receptor linked signal 
transduction (GO:0007166) 

mannose binding (GO:0005537) melanosome (GO:0042470) 

811 CALR calreticulin cellular calcium ion homeostasis 
(GO:0006874) 

zinc ion binding (GO:0008270) endoplasmic reticulum (GO:0005783) 

813 CALU calumenin  calcium ion binding (GO:0005509) melanosome (GO:0042470) 

821 CANX calnexin protein folding (GO:0006457) calcium ion binding (GO:0005509) melanosome (GO:0042470) 

829 CAPZA1 capping protein (actin filament) muscle Z-line, alpha 1 barbed-end actin filament capping 
(GO:0051016) 

actin binding (GO:0003779) F-actin capping protein complex 
(GO:0008290) 

832 CAPZB capping protein (actin filament) muscle Z-line, beta barbed-end actin filament capping 
(GO:0051016) 

actin binding (GO:0003779) cytoplasm (GO:0005737) 

871 SERPINH1 serpin peptidase inhibitor, clade H (heat shock protein 
47), member 1, (collagen binding protein 1) 

response to unfolded protein (GO:0006986) serine-type endopeptidase inhibitor activity 
(GO:0004867) 

endoplasmic reticulum (GO:0005783) 

950 SCARB2 scavenger receptor class B, member 2 cell adhesion (GO:0007155) receptor activity (GO:0004872) lysosomal membrane (GO:0005765) 

966 CD59 CD59 molecule, complement regulatory protein cell surface receptor linked signal 
transduction (GO:0007166) 

protein binding (GO:0005515) anchored to membrane (GO:0031225) 

1192 CLIC1 chloride intracellular channel 1 chloride transport (GO:0006821) voltage-gated chloride channel activity 
(GO:0005247) 

nucleus (GO:0005634) 

1212 CLTB clathrin, light chain (Lcb) intracellular protein transport (GO:0006886) calcium ion binding (GO:0005509) clathrin coat of trans-Golgi network 
vesicle (GO:0030130) 

1278 COL1A2 collagen, type I, alpha 2 phosphate transport (GO:0006817) extracellular matrix structural constituent 
(GO:0005201) 

collagen type I (GO:0005584) 

1465 CSRP1 cysteine and glycine-rich protein 1 zinc ion binding (GO:0008270) nucleus (GO:0005634) 

1528 CYB5A cytochrome b5 type A (microsomal) generation of precursor metabolites and 
energy (GO:0006091) 

aldo-keto reductase activity (GO:0004033) mitochondrial outer membrane 
(GO:0005741) 

1727 CYB5R3 cytochrome b5 reductase 3 iron ion transport (GO:0006826) cytochrome-b5 reductase activity 
(GO:0004128) 

mitochondrial outer membrane 
(GO:0005741) 

1803 DPP4 dipeptidyl-peptidase 4 (CD26, adenosine deaminase 
complexing protein 2) 

regulation of cell-cell adhesion mediated by 
integrin (GO:0033632) 

aminopeptidase activity (GO:0004177) integral to membrane (GO:0016021) 

1808 DPYSL2 dihydropyrimidinase-like 2 nervous system development (GO:0007399) dihydropyrimidinase activity (GO:0004157) cytoplasm (GO:0005737) 

1809 DPYSL3 dihydropyrimidinase-like 3 nervous system development (GO:0007399) dihydropyrimidinase activity (GO:0004157) cytoplasm (GO:0005737) 

1936 EEF1D eukaryotic translation elongation factor 1 delta (guanine 
nucleotide exchange protein) 

positive regulation of I-kappaB kinase/NF-
kappaB cascade (GO:0043123) 

translation elongation factor activity 
(GO:0003746) 

cytosol (GO:0005829) 

2023 ENO1 enolase 1, (alpha) glycolysis (GO:0006096) transcription corepressor activity 
(GO:0003714) 

nucleus (GO:0005634) 

2027 ENO3 enolase 3 (beta, muscle) glycolysis (GO:0006096) phosphopyruvate hydratase activity 
(GO:0004634) 

phosphopyruvate hydratase complex 
(GO:0000015) 

2271 FH fumarate hydratase tricarboxylic acid cycle (GO:0006099) fumarate hydratase activity (GO:0004333) mitochondrial matrix (GO:0005759) 

2274 FHL2 four and a half LIM domains 2 androgen receptor signaling pathway 
(GO:0030521) 

androgen receptor binding (GO:0050681) nucleus (GO:0005634) 

2317 FLNB filamin B, beta (actin binding protein 278) skeletal muscle development (GO:0007519) actin binding (GO:0003779) actin cytoskeleton (GO:0015629) 

2318 FLNC filamin C, gamma (actin binding protein 280) actin binding (GO:0003779) actin cytoskeleton (GO:0015629) 

2734 GLG1 golgi apparatus protein 1 fibroblast growth factor binding 
(GO:0017134) 

Golgi membrane (GO:0000139) 

2923 PDIA3 protein disulfide isomerase family A, member 3 protein import into nucleus (GO:0006606) phospholipase C activity (GO:0004629) melanosome (GO:0042470) 

2934 GSN gelsolin (amyloidosis, Finnish type) barbed-end actin filament capping 
(GO:0051016) 

actin binding (GO:0003779) actin cytoskeleton (GO:0015629) 

2950 GSTP1 glutathione S-transferase pi anti-apoptosis (GO:0006916) glutathione transferase activity 
(GO:0004364) 

cytoplasm (GO:0005737) 

3012 HIST1H2AE histone cluster 1, H2ae   
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3017 HIST1H2BD histone cluster 1, H2bd nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

3106 HLA-B major histocompatibility complex, class I, B antigen processing and presentation of 
peptide antigen via MHC class I 
(GO:0002474) 

MHC class I receptor activity (GO:0032393) integral to plasma membrane 
(GO:0005887) 

3107 HLA-C major histocompatibility complex, class I, C antigen processing and presentation of 
peptide antigen via MHC class I 
(GO:0002474) 

MHC class I receptor activity (GO:0032393) axonemal dynein complex 
(GO:0005858) 

3181 HNRNPA2B1 heterogeneous nuclear ribonucleoprotein A2/B1 nuclear mRNA splicing, via spliceosome 
(GO:0000398) 

single-stranded telomeric DNA binding 
(GO:0043047) 

nucleus (GO:0005634) 

3184 HNRNPD heterogeneous nuclear ribonucleoprotein D (AU-rich 
element RNA binding protein 1, 37kDa) 

nuclear mRNA splicing, via spliceosome 
(GO:0000398) 

DNA binding (GO:0003677) chromosome, telomeric region 
(GO:0000781) 

3187 HNRNPH1 heterogeneous nuclear ribonucleoprotein H1 (H) nuclear mRNA splicing, via spliceosome 
(GO:0000398) 

poly(U) binding (GO:0008266) nucleus (GO:0005634) 

3190 HNRNPK heterogeneous nuclear ribonucleoprotein K nuclear mRNA splicing, via spliceosome 
(GO:0000398) 

DNA binding (GO:0003677) nucleus (GO:0005634) 

3191 HNRNPL heterogeneous nuclear ribonucleoprotein L nuclear mRNA splicing, via spliceosome 
(GO:0000398) 

RNA binding (GO:0003723) nucleus (GO:0005634) 

3305 HSPA1L heat shock 70kDa protein 1-like response to unfolded protein (GO:0006986) ATP binding (GO:0005524) 

3306 HSPA2 heat shock 70kDa protein 2 male meiosis (GO:0007140) ATP binding (GO:0005524) cell surface (GO:0009986) 

3311 HSPA7 heat shock 70kDa protein 7 (HSP70B) response to unfolded protein (GO:0006986) ATP binding (GO:0005524) cellular_component (GO:0005575) 

3312 HSPA8 heat shock 70kDa protein 8 protein folding (GO:0006457) ATPase activity, coupled (GO:0042623) melanosome (GO:0042470) 

3313 HSPA9 heat shock 70kDa protein 9 (mortalin) anti-apoptosis (GO:0006916) ATP binding (GO:0005524) mitochondrion (GO:0005739) 

3315 HSPB1 heat shock 27kDa protein 1 anti-apoptosis (GO:0006916) identical protein binding (GO:0042802) nucleus (GO:0005634) 

3320 HSP90AA1 heat shock protein 90kDa alpha (cytosolic), class A 
member 1 

positive regulation of nitric oxide biosynthetic 
process (GO:0045429) 

ATP binding (GO:0005524) melanosome (GO:0042470) 

3326 HSP90AB1 heat shock protein 90kDa alpha (cytosolic), class B 
member 1 

positive regulation of nitric oxide biosynthetic 
process (GO:0045429) 

ATP binding (GO:0005524) melanosome (GO:0042470) 

3329 HSPD1 heat shock 60kDa protein 1 (chaperonin) protein import into mitochondrial matrix 
(GO:0030150) 

ATP binding (GO:0005524) mitochondrial matrix (GO:0005759) 

3371 TNC tenascin C (hexabrachion) signal transduction (GO:0007165) receptor binding (GO:0005102) proteinaceous extracellular matrix 
(GO:0005578) 

3848 KRT1 keratin 1 (epidermolytic hyperkeratosis) fibrinolysis (GO:0042730) receptor activity (GO:0004872) cytoskeleton (GO:0005856) 

3856 KRT8 keratin 8 cytoskeleton organization and biogenesis 
(GO:0007010) 

protein binding (GO:0005515) intermediate filament (GO:0005882) 

3921 RPSA ribosomal protein SA translational elongation (GO:0006414) structural constituent of ribosome 
(GO:0003735) 

cytosolic small ribosomal subunit 
(GO:0022627) 

3958 LGALS3 lectin, galactoside-binding, soluble, 3 IgE binding (GO:0019863) nucleus (GO:0005634) 

4082 MARCKS myristoylated alanine-rich protein kinase C substrate cell motility (GO:0006928) actin filament binding (GO:0051015) actin cytoskeleton (GO:0015629) 

4267 CD99 CD99 molecule cell adhesion (GO:0007155) protein binding (GO:0005515) integral to plasma membrane 
(GO:0005887) 

4637 MYL6 myosin, light chain 6, alkali, smooth muscle and non-
muscle 

muscle filament sliding (GO:0030049) actin-dependent ATPase activity 
(GO:0030898) 

unconventional myosin complex 
(GO:0016461) 

4676 NAP1L4 nucleosome assembly protein 1-like 4 nucleosome assembly (GO:0006334) unfolded protein binding (GO:0051082) nucleus (GO:0005634) 

4691 NCL nucleolin angiogenesis (GO:0001525) DNA binding (GO:0003677) nucleus (GO:0005634) 

4830 NME1 non-metastatic cells 1, protein (NM23A) expressed in GTP biosynthetic process (GO:0006183) ATP binding (GO:0005524) nucleus (GO:0005634) 

4841 NONO non-POU domain containing, octamer-binding mRNA processing (GO:0006397) DNA binding (GO:0003677) nucleus (GO:0005634) 

4914 NTRK1 neurotrophic tyrosine kinase, receptor, type 1 activation of adenylate cyclase activity 
(GO:0007190) 

transmembrane receptor protein tyrosine 
kinase activity (GO:0004714) 

integral to plasma membrane 
(GO:0005887) 

4924 NUCB1 nucleobindin 1  calcium ion binding (GO:0005509) ER-Golgi intermediate compartment 
(GO:0005793) 
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4925 NUCB2 nucleobindin 2  calcium ion binding (GO:0005509) ER-Golgi intermediate compartment 

(GO:0005793) 
5034 P4HB procollagen-proline, 2-oxoglutarate 4-dioxygenase 

(proline 4-hydroxylase), beta polypeptide 
peptidyl-proline hydroxylation to 4-hydroxy-L-
proline (GO:0018401) 

procollagen-proline 4-dioxygenase activity 
(GO:0004656) 

melanosome (GO:0042470) 

5052 PRDX1 peroxiredoxin 1 skeletal development (GO:0001501) peroxiredoxin activity (GO:0051920) melanosome (GO:0042470) 

5223 PGAM1 phosphoglycerate mutase 1 (brain) glycolysis (GO:0006096) bisphosphoglycerate 2-phosphatase activity 
(GO:0004083) 

cytosol (GO:0005829) 

5230 PGK1 phosphoglycerate kinase 1 glycolysis (GO:0006096) ATP binding (GO:0005524) cytoplasm (GO:0005737) 

5232 PGK2 phosphoglycerate kinase 2 glycolysis (GO:0006096) ATP binding (GO:0005524) cytosol (GO:0005829) 

5339 PLEC1 plectin 1, intermediate filament binding protein 500kDa cytoskeletal anchoring at plasma membrane 
(GO:0007016) 

actin binding (GO:0003779) cytoskeleton (GO:0005856) 

5478 PPIA peptidylprolyl isomerase A (cyclophilin A) provirus integration (GO:0019047) peptidyl-prolyl cis-trans isomerase activity 
(GO:0003755) 

nucleus (GO:0005634) 

5479 PPIB peptidylprolyl isomerase B (cyclophilin B) protein folding (GO:0006457) peptidyl-prolyl cis-trans isomerase activity 
(GO:0003755) 

melanosome (GO:0042470) 

5589 PRKCSH protein kinase C substrate 80K-H protein kinase cascade (GO:0007243) calcium ion binding (GO:0005509) endoplasmic reticulum (GO:0005783) 

5686 PSMA5 proteasome (prosome, macropain) subunit, alpha type, 
5 

anaphase-promoting complex-dependent 
proteasomal ubiquitin-dependent protein 
catabolic process (GO:0031145) 

threonine endopeptidase activity 
(GO:0004298) 

nucleus (GO:0005634) 

5713 PSMD7 proteasome (prosome, macropain) 26S subunit, non-
ATPase, 7 

anaphase-promoting complex-dependent 
proteasomal ubiquitin-dependent protein 
catabolic process (GO:0031145) 

protein binding (GO:0005515) cytosol (GO:0005829) 

5725 PTBP1 polypyrimidine tract binding protein 1 nuclear mRNA splicing, via spliceosome 
(GO:0000398) 

poly-pyrimidine tract binding (GO:0008187) nucleus (GO:0005634) 

6125 RPL5 ribosomal protein L5 translational elongation (GO:0006414) 5S rRNA binding (GO:0008097) cytosolic large ribosomal subunit 
(GO:0022625) 

6128 RPL6 ribosomal protein L6 regulation of transcription, DNA-dependent 
(GO:0006355) 

DNA binding (GO:0003677) cytosolic large ribosomal subunit 
(GO:0022625) 

6147 RPL23A ribosomal protein L23a translational elongation (GO:0006414) rRNA binding (GO:0019843) cytosolic large ribosomal subunit 
(GO:0022625) 

6176 RPLP1 ribosomal protein, large, P1 translational elongation (GO:0006414) RNA binding (GO:0003723) cytosolic large ribosomal subunit 
(GO:0022625) 

6206 RPS12 ribosomal protein S12 translational elongation (GO:0006414) RNA binding (GO:0003723) cytosolic small ribosomal subunit 
(GO:0022627) 

6233 RPS27A ribosomal protein S27a protein modification process (GO:0006464) zinc ion binding (GO:0008270) ribosome (GO:0005840) 

6238 RRBP1 ribosome binding protein 1 homolog 180kDa (dog) intracellular protein transport across a 
membrane (GO:0065002) 

receptor activity (GO:0004872) integral to endoplasmic reticulum 
membrane (GO:0030176) 

6281 S100A10 S100 calcium binding protein A10 signal transduction (GO:0007165) calcium ion binding (GO:0005509) 

6421 SFPQ splicing factor proline/glutamine-rich (polypyrimidine 
tract binding protein associated) 

mRNA processing (GO:0006397) DNA binding (GO:0003677) nucleus (GO:0005634) 

6648 SOD2 superoxide dismutase 2, mitochondrial response to superoxide (GO:0000303) manganese ion binding (GO:0030145) mitochondrial matrix (GO:0005759) 

6709 SPTAN1 spectrin, alpha, non-erythrocytic 1 (alpha-fodrin) barbed-end actin filament capping 
(GO:0051016) 

actin binding (GO:0003779) cytosol (GO:0005829) 

6711 SPTBN1 spectrin, beta, non-erythrocytic 1 barbed-end actin filament capping 
(GO:0051016) 

actin binding (GO:0003779) nucleolus (GO:0005730) 

6876 TAGLN transgelin muscle development (GO:0007517) actin binding (GO:0003779) cytoplasm (GO:0005737) 

7086 TKT transketolase (Wernicke-Korsakoff syndrome) metabolic process (GO:0008152) transketolase activity (GO:0004802) cytosol (GO:0005829) 

7170 TPM3 tropomyosin 3 regulation of muscle contraction 
(GO:0006937) 

actin binding (GO:0003779) cytoskeleton (GO:0005856) 

7171 TPM4 tropomyosin 4 cell motility (GO:0006928) actin binding (GO:0003779) cytoskeleton (GO:0005856) 

7184 HSP90B1 heat shock protein 90kDa beta (Grp94), member 1 anti-apoptosis (GO:0006916) ATP binding (GO:0005524) melanosome (GO:0042470) 
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7273 TTN titin regulation of Rho protein signal transduction 

(GO:0035023) 
protein serine/threonine kinase activity 
(GO:0004674) 

condensed nuclear chromosome 
(GO:0000794) 

7307 U2AF1 U2 small nuclear RNA auxiliary factor 1 nuclear mRNA splicing, via spliceosome 
(GO:0000398) 

zinc ion binding (GO:0008270) Cajal body (GO:0015030) 

7381 UQCRB ubiquinol-cytochrome c reductase binding protein aerobic respiration (GO:0009060) ubiquinol-cytochrome-c reductase activity 
(GO:0008121) 

mitochondrion (GO:0005739) 

7415 VCP valosin-containing protein caspase activation (GO:0006919) ATPase activity (GO:0016887) microsome (GO:0005792) 

7416 VDAC1 voltage-dependent anion channel 1 apoptotic program (GO:0008632) voltage-gated anion channel activity 
(GO:0008308) 

mitochondrial outer membrane 
(GO:0005741) 

7417 VDAC2 voltage-dependent anion channel 2 anion transport (GO:0006820) voltage-gated anion channel activity 
(GO:0008308) 

mitochondrial outer membrane 
(GO:0005741) 

7520 XRCC5 X-ray repair complementing defective repair in Chinese 
hamster cells 5 (double-strand-break rejoining; Ku 
autoantigen, 80kDa) 

double-strand break repair via 
nonhomologous end joining (GO:0006303) 

ATP binding (GO:0005524) nucleus (GO:0005634) 

7529 YWHAB tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, beta polypeptide 

activation of pro-apoptotic gene products 
(GO:0008633) 

monooxygenase activity (GO:0004497) melanosome (GO:0042470) 

7532 YWHAG tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, gamma polypeptide

negative regulation of protein kinase activity 
(GO:0006469) 

protein kinase C binding (GO:0005080) cytoplasm (GO:0005737) 

7534 YWHAZ tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, zeta polypeptide 

anti-apoptosis (GO:0006916) transcription factor binding (GO:0008134) melanosome (GO:0042470) 

8335 HIST1H2AB histone cluster 1, H2ab nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

8339 HIST1H2BG histone cluster 1, H2bg   

8343 HIST1H2BF histone cluster 1, H2bf   

8344 HIST1H2BE histone cluster 1, H2be   

8346 HIST1H2BI histone cluster 1, H2bi   

8347 HIST1H2BC histone cluster 1, H2bc nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

8348 HIST1H2BO histone cluster 1, H2bo nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

8411 EEA1 early endosome antigen 1 vesicle fusion (GO:0006906) phosphatidylinositol binding (GO:0005545) early endosome membrane 
(GO:0031901) 

8546 AP3B1 adaptor-related protein complex 3, beta 1 subunit endocytosis (GO:0006897) protein binding (GO:0005515) Golgi apparatus (GO:0005794) 

8570 KHSRP KH-type splicing regulatory protein mRNA processing (GO:0006397) RNA splicing factor activity, 
transesterification mechanism 
(GO:0031202) 

nucleus (GO:0005634) 

8826 IQGAP1 IQ motif containing GTPase activating protein 1 regulation of small GTPase mediated signal 
transduction (GO:0051056) 

Ras GTPase activator activity 
(GO:0005099) 

actin filament (GO:0005884) 

8880 FUBP1 far upstream element (FUSE) binding protein 1 transcription from RNA polymerase II 
promoter (GO:0006366) 

single-stranded DNA binding (GO:0003697) nucleus (GO:0005634) 

9217 VAPB VAMP (vesicle-associated membrane protein)-
associated protein B and C 

endoplasmic reticulum unfolded protein 
response (GO:0030968) 

beta-tubulin binding (GO:0048487) endoplasmic reticulum (GO:0005783) 

9218 VAPA VAMP (vesicle-associated membrane protein)-
associated protein A, 33kDa 

positive regulation of I-kappaB kinase/NF-
kappaB cascade (GO:0043123) 

protein heterodimerization activity 
(GO:0046982) 

tight junction (GO:0005923) 

9991 ROD1 ROD1 regulator of differentiation 1 (S. pombe) mRNA processing (GO:0006397) RNA binding (GO:0003723) nucleus (GO:0005634) 

10092 ARPC5 actin related protein 2/3 complex, subunit 5, 16kDa actin cytoskeleton organization and 
biogenesis (GO:0030036) 

actin binding (GO:0003779) cytoplasm (GO:0005737) 

10146 G3BP1 GTPase activating protein (SH3 domain) binding 
protein 1 

Ras protein signal transduction (GO:0007265) ATP binding (GO:0005524) nucleus (GO:0005634) 

10151 HNRNPA3P1 heterogeneous nuclear ribonucleoprotein A3 pseudogene 1 

10236 HNRNPR heterogeneous nuclear ribonucleoprotein R nuclear mRNA splicing, via spliceosome 
(GO:0000398) 

RNA binding (GO:0003723) nucleus (GO:0005634) 

10250 SRRM1 serine/arginine repetitive matrix 1 nuclear mRNA splicing, via spliceosome 
(GO:0000398) 

RNA splicing factor activity, 
transesterification mechanism 
(GO:0031202) 

nuclear speck (GO:0016607) 
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10382 TUBB4 tubulin, beta 4 microtubule-based movement (GO:0007018) GTPase activity (GO:0003924) cytoskeleton (GO:0005856) 

10424 PGRMC2 progesterone receptor membrane component 2 steroid hormone receptor activity 
(GO:0003707) 

integral to membrane (GO:0016021) 

10487 CAP1 CAP, adenylate cyclase-associated protein 1 (yeast) activation of adenylate cyclase activity 
(GO:0007190) 

actin binding (GO:0003779) plasma membrane (GO:0005886) 

10493 VAT1 vesicle amine transport protein 1 homolog (T. 
californica) 

cell growth (GO:0016049) zinc ion binding (GO:0008270) synaptic vesicle (GO:0008021) 

10540 DCTN2 dynactin 2 (p50) microtubule-based process (GO:0007017) protein binding (GO:0005515) centrosome (GO:0005813) 

10549 PRDX4 peroxiredoxin 4 I-kappaB phosphorylation (GO:0007252) thioredoxin peroxidase activity 
(GO:0008379) 

cytoplasm (GO:0005737) 

10581 IFITM2 interferon induced transmembrane protein 2 (1-8D) immune response (GO:0006955) protein binding (GO:0005515) integral to membrane (GO:0016021) 

10726 NUDC nuclear distribution gene C homolog (A. nidulans) mitosis (GO:0007067) protein binding (GO:0005515) nucleus (GO:0005634) 

10857 PGRMC1 progesterone receptor membrane component 1 transition metal ion binding (GO:0046914) microsome (GO:0005792) 

10935 PRDX3 peroxiredoxin 3 positive regulation of NF-kappaB transcription 
factor activity (GO:0051092) 

alkyl hydroperoxide reductase activity 
(GO:0008785) 

mitochondrion (GO:0005739) 

10959 TMED2 transmembrane emp24 domain trafficking protein 2 protein transport (GO:0015031) protein binding (GO:0005515) zymogen granule membrane 
(GO:0042589) 

10963 STIP1 stress-induced-phosphoprotein 1 (Hsp70/Hsp90-
organizing protein) 

response to stress (GO:0006950) binding (GO:0005488) nucleus (GO:0005634) 

10970 CKAP4 cytoskeleton-associated protein 4 integral to membrane (GO:0016021) 

10971 YWHAQ tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, theta polypeptide 

negative regulation of transcription, DNA-
dependent (GO:0045892) 

protein kinase C inhibitor activity 
(GO:0008426) 

cytoplasm (GO:0005737) 

11034 DSTN destrin (actin depolymerizing factor) actin polymerization and/or depolymerization 
(GO:0008154) 

actin binding (GO:0003779) actin cytoskeleton (GO:0015629) 

11052 CPSF6 cleavage and polyadenylation specific factor 6, 68kDa mRNA processing (GO:0006397) RNA binding (GO:0003723) paraspeckles (GO:0042382) 

11171 STRAP serine/threonine kinase receptor associated protein mRNA processing (GO:0006397) protein binding (GO:0005515) nucleus (GO:0005634) 

11328 FKBP9 FK506 binding protein 9, 63 kDa protein folding (GO:0006457) peptidyl-prolyl cis-trans isomerase activity 
(GO:0003755) 

endoplasmic reticulum (GO:0005783) 

11335 CBX3 chromobox homolog 3 (HP1 gamma homolog, 
Drosophila) 

chromatin remodeling (GO:0006338) protein domain specific binding 
(GO:0019904) 

nuclear centromeric heterochromatin 
(GO:0031618) 

22948 CCT5 chaperonin containing TCP1, subunit 5 (epsilon) protein folding (GO:0006457) ATP binding (GO:0005524) cytoplasm (GO:0005737) 

23193 GANAB glucosidase, alpha; neutral AB carbohydrate metabolic process 
(GO:0005975) 

glucan 1,3-alpha-glucosidase activity 
(GO:0033919) 

melanosome (GO:0042470) 

23673 STX12 syntaxin 12 cholesterol efflux (GO:0033344) SNAP receptor activity (GO:0005484) phagocytic vesicle (GO:0045335) 

26237      

26355 FAM162A family with sequence similarity 162, member A integral to membrane (GO:0016021) 

26509 FER1L3 fer-1-like 3, myoferlin (C. elegans) muscle contraction (GO:0006936) nucleus (GO:0005634) 

29978 UBQLN2 ubiquilin 2 protein modification process (GO:0006464) binding (GO:0005488) nucleus (GO:0005634) 

29979 UBQLN1 ubiquilin 1 protein modification process (GO:0006464) kinase binding (GO:0019900) nucleus (GO:0005634) 

50809 HP1BP3 heterochromatin protein 1, binding protein 3 nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

51060 TXNDC12 thioredoxin domain containing 12 (endoplasmic 
reticulum) 

cell redox homeostasis (GO:0045454) protein-disulfide reductase (glutathione) 
activity (GO:0019153) 

endoplasmic reticulum (GO:0005783) 

51087 YBX2 Y box binding protein 2 transcription from RNA polymerase II 
promoter (GO:0006366) 

DNA binding (GO:0003677) nucleus (GO:0005634) 

51132 RNF12 ring finger protein 12 regulation of transcription, DNA-dependent 
(GO:0006355) 

transcription corepressor activity 
(GO:0003714) 

transcriptional repressor complex 
(GO:0017053) 

54344 DPM3 dolichyl-phosphate mannosyltransferase polypeptide 3 protein amino acid C-linked glycosylation via 
2'-alpha-mannosyl-L-tryptophan 

dolichyl-phosphate beta-D-
mannosyltransferase activity (GO:0004582)

integral to endoplasmic reticulum 
membrane (GO:0030176) 
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(GO:0018406) 

55752 11-Sep septin 11 protein heterooligomerization (GO:0051291) GTP binding (GO:0005525) stress fiber (GO:0001725) 

55970 GNG12 guanine nucleotide binding protein (G protein), gamma 
12 

G-protein coupled receptor protein signaling 
pathway (GO:0007186) 

signal transducer activity (GO:0004871) heterotrimeric G-protein complex 
(GO:0005834) 

56254 RNF20 ring finger protein 20 chromatin modification (GO:0016568) zinc ion binding (GO:0008270) nucleus (GO:0005634) 

56969 RPL23AP13 ribosomal protein L23a pseudogene 13 nucleotide binding (GO:0000166) ribosome (GO:0005840) 

57142 RTN4 reticulon 4 negative regulation of axon extension 
(GO:0030517) 

protein binding (GO:0005515) integral to endoplasmic reticulum 
membrane (GO:0030176) 

57153 SLC44A2 solute carrier family 44, member 2 positive regulation of I-kappaB kinase/NF-
kappaB cascade (GO:0043123) 

choline transmembrane transporter activity 
(GO:0015220) 

integral to membrane (GO:0016021) 

65992 C20orf116 chromosome 20 open reading frame 116 protein binding (GO:0005515) extracellular region (GO:0005576) 

80184 CEP290 centrosomal protein 290kDa eye photoreceptor cell development 
(GO:0042462) 

microtubule minus-end binding 
(GO:0051011) 

centrosome (GO:0005813) 

81567 TXNDC5 thioredoxin domain containing 5 anti-apoptosis (GO:0006916) isomerase activity (GO:0016853) endoplasmic reticulum (GO:0005783) 

81873 ARPC5L actin related protein 2/3 complex, subunit 5-like regulation of actin filament polymerization 
(GO:0030833) 

actin binding (GO:0003779) cytoskeleton (GO:0005856) 

90462 ZNF605 zinc finger protein 605 regulation of transcription, DNA-dependent 
(GO:0006355) 

zinc ion binding (GO:0008270) nucleus (GO:0005634) 

92689 FAM114A1 family with sequence similarity 114, member A1 cytoplasm (GO:0005737) 

113146 AHNAK2 AHNAK nucleoprotein 2 keratinization (GO:0031424) protein binding (GO:0005515) nucleus (GO:0005634) 

114799 ESCO1 establishment of cohesion 1 homolog 1 (S. cerevisiae) DNA repair (GO:0006281) zinc ion binding (GO:0008270) nucleus (GO:0005634) 

114990 VASN vasorin  protein binding (GO:0005515) integral to membrane (GO:0016021) 

126961 HIST2H3C histone cluster 2, H3c   

140465 MYL6B myosin, light chain 6B, alkali, smooth muscle and non-
muscle 

muscle filament sliding (GO:0030049) calcium ion binding (GO:0005509) muscle myosin complex (GO:0005859)

140576 S100A16 S100 calcium binding protein A16 calcium ion binding (GO:0005509) 

158358 KIAA2026 KIAA2026    

167227 DCP2 DCP2 decapping enzyme homolog (S. cerevisiae) nuclear-transcribed mRNA catabolic process, 
nonsense-mediated decay (GO:0000184) 

manganese ion binding (GO:0030145) nucleus (GO:0005634) 

222068 TMED4 transmembrane emp24 protein transport domain 
containing 4 

positive regulation of I-kappaB kinase/NF-
kappaB cascade (GO:0043123) 

signal transducer activity (GO:0004871) integral to membrane (GO:0016021) 

287023   mRNA processing (GO:0006397) single-stranded DNA binding (GO:0003697) nucleus (GO:0005634) 

343069 HNRNPCL1 heterogeneous nuclear ribonucleoprotein C-like 1 RNA binding (GO:0003723) nucleus (GO:0005634) 

345651 ACTBL2 actin, beta-like 2  ATP binding (GO:0005524) cytoskeleton (GO:0005856) 

347701 LOC347701 calgizzarin-like    

360132 FKBP9L FK506 binding protein 9-like protein folding (GO:0006457) calcium ion binding (GO:0005509) endoplasmic reticulum (GO:0005783) 

375775 PNPLA7 patatin-like phospholipase domain containing 7 lipid metabolic process (GO:0006629) hydrolase activity (GO:0016787) integral to membrane (GO:0016021) 

440055      

440686 HIST2H3PS2 histone cluster 2, H3, pseudogene 2 nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

440915 FKSG30 kappa-actin  ATP binding (GO:0005524) cytoskeleton (GO:0005856) 

441531 PGAM4 phosphoglycerate mutase family member 4 glycolysis (GO:0006096) bisphosphoglycerate 2-phosphatase activity (GO:0004083) 

641455 P704P prostate-specific P704P protein binding (GO:0005515) 
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642461 LOC642461 similar to Isoleucyl-tRNA synthetase, mitochondrial precursor (Isoleucine--tRNA ligase) (IleRS) 

646821 LOC646821 similar to beta-actin protein binding (GO:0005515) 

653852 LOC653852 similar to Filamin-C (Gamma-filamin) (Filamin-2) (Protein FLNc) (Actin-binding-like protein) (ABP-L) (ABP-280-like protein) 

850981 SMD2 Core Sm protein Sm D2; part of heteroheptameric 
complex (with Smb1p, Smd1p, Smd3p, Sme1p, Smx3p, 
and Smx2p) that is part of the spliceosomal U1, U2, U4, 
and U5 snRNPs; homolog of human Sm D2 

nuclear mRNA splicing, via spliceosome 
(GO:0000398) 

RNA splicing factor activity, 
transesterification mechanism 
(GO:0031202) 

nucleus (GO:0005634) 

30 ACAA1 acetyl-Coenzyme A acyltransferase 1 (peroxisomal 3-
oxoacyl-Coenzyme A thiolase) 

fatty acid metabolic process (GO:0006631) acetyl-CoA C-acyltransferase activity 
(GO:0003988) 

peroxisome (GO:0005777) 

38 ACAT1 acetyl-Coenzyme A acetyltransferase 1 (acetoacetyl 
Coenzyme A thiolase) 

metabolic process (GO:0008152) acetyl-CoA C-acetyltransferase activity 
(GO:0003985) 

mitochondrial matrix (GO:0005759) 

47 ACLY ATP citrate lyase ATP catabolic process (GO:0006200) succinate-CoA ligase (ADP-forming) activity 
(GO:0004775) 

cytosol (GO:0005829) 

59 ACTA2 actin, alpha 2, smooth muscle, aorta ATP binding (GO:0005524) cytoskeleton (GO:0005856) 

60 ACTB actin, beta sensory perception of sound (GO:0007605) ATP binding (GO:0005524) NuA4 histone acetyltransferase 
complex (GO:0035267) 

71 ACTG1 actin, gamma 1 sensory perception of sound (GO:0007605) ATP binding (GO:0005524) cytoskeleton (GO:0005856) 

72 ACTG2 actin, gamma 2, smooth muscle, enteric ATP binding (GO:0005524) cytoskeleton (GO:0005856) 

160 AP2A1 adaptor-related protein complex 2, alpha 1 subunit regulation of defense response to virus by 
virus (GO:0050690) 

protein binding (GO:0005515) clathrin coat of trans-Golgi network 
vesicle (GO:0030130) 

163 AP2B1 adaptor-related protein complex 2, beta 1 subunit regulation of defense response to virus by 
virus (GO:0050690) 

protein binding (GO:0005515) cytosol (GO:0005829) 

205 AK3L1 adenylate kinase 3-like 1 nucleobase, nucleoside, nucleotide and 
nucleic acid metabolic process (GO:0006139) 

ATP binding (GO:0005524) mitochondrial matrix (GO:0005759) 

238 ALK anaplastic lymphoma receptor tyrosine kinase protein amino acid N-linked glycosylation 
(GO:0006487) 

transmembrane receptor protein tyrosine 
kinase activity (GO:0004714) 

integral to plasma membrane 
(GO:0005887) 

293 SLC25A6 solute carrier family 25 (mitochondrial carrier; adenine 
nucleotide translocator), member 6 

apoptosis (GO:0006915) ATP:ADP antiporter activity (GO:0005471) mitochondrion (GO:0005739) 

308 ANXA5 annexin A5 anti-apoptosis (GO:0006916) phospholipase inhibitor activity 
(GO:0004859) 

cytoplasm (GO:0005737) 

372 ARCN1 archain 1 COPI coating of Golgi vesicle (GO:0048205) protein binding (GO:0005515) COPI vesicle coat (GO:0030126) 

498 ATP5A1 ATP synthase, H+ transporting, mitochondrial F1 
complex, alpha subunit 1, cardiac muscle 

ATP synthesis coupled proton transport 
(GO:0015986) 

hydrogen ion transporting ATP synthase 
activity, rotational mechanism 
(GO:0046933) 

mitochondrial matrix (GO:0005759) 

509 ATP5C1 ATP synthase, H+ transporting, mitochondrial F1 
complex, gamma polypeptide 1 

ATP synthesis coupled proton transport 
(GO:0015986) 

hydrogen ion transporting ATP synthase 
activity, rotational mechanism 
(GO:0046933) 

mitochondrial matrix (GO:0005759) 

633 BGN biglycan  extracellular matrix structural constituent 
(GO:0005201) 

transport vesicle (GO:0030133) 

800 CALD1 caldesmon 1 muscle contraction (GO:0006936) actin binding (GO:0003779) cytoskeleton (GO:0005856) 

976 CD97 CD97 molecule neuropeptide signaling pathway 
(GO:0007218) 

G-protein coupled receptor activity 
(GO:0004930) 

integral to plasma membrane 
(GO:0005887) 

1213 CLTC clathrin, heavy chain (Hc) intracellular protein transport (GO:0006886) protein binding (GO:0005515) clathrin coat of trans-Golgi network 
vesicle (GO:0030130) 

1282 COL4A1 collagen, type IV, alpha 1 phosphate transport (GO:0006817) extracellular matrix structural constituent 
(GO:0005201) 

cytoplasm (GO:0005737) 

1289 COL5A1 collagen, type V, alpha 1 phosphate transport (GO:0006817) heparin binding (GO:0008201) collagen type V (GO:0005588) 

1303 COL12A1 collagen, type XII, alpha 1 phosphate transport (GO:0006817) extracellular matrix structural constituent 
conferring tensile strength (GO:0030020) 

collagen type XII (GO:0005595) 

1314 COPA coatomer protein complex, subunit alpha COPI coating of Golgi vesicle (GO:0048205) hormone activity (GO:0005179) microsome (GO:0005792) 

1329 COX5B cytochrome c oxidase subunit Vb respiratory gaseous exchange (GO:0007585) zinc ion binding (GO:0008270) mitochondrial inner membrane 
(GO:0005743) 
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1495 CTNNA1 catenin (cadherin-associated protein), alpha 1, 102kDa apical junction assembly (GO:0043297) vinculin binding (GO:0017166) actin cytoskeleton (GO:0015629) 

1508 CTSB cathepsin B proteolysis (GO:0006508) cysteine-type endopeptidase activity 
(GO:0004197) 

lysosome (GO:0005764) 

1778 DYNC1H1 dynein, cytoplasmic 1, heavy chain 1 mitotic spindle organization and biogenesis 
(GO:0007052) 

ATPase activity, coupled (GO:0042623) cytoplasmic dynein complex 
(GO:0005868) 

1832 DSP desmoplakin peptide cross-linking (GO:0018149) protein binding, bridging (GO:0030674) cell-cell adherens junction 
(GO:0005913) 

1937 EEF1G eukaryotic translation elongation factor 1 gamma translational elongation (GO:0006414) translation elongation factor activity 
(GO:0003746) 

cytosol (GO:0005829) 

1938 EEF2 eukaryotic translation elongation factor 2 translational elongation (GO:0006414) GTPase activity (GO:0003924) cytoplasm (GO:0005737) 

1973 EIF4A1 eukaryotic translation initiation factor 4A, isoform 1 translation (GO:0006412) ATP binding (GO:0005524) cytosol (GO:0005829) 

2025 ENO1P enolase 1, (alpha) pseudogene glycolysis (GO:0006096) phosphopyruvate hydratase activity 
(GO:0004634) 

phosphopyruvate hydratase complex 
(GO:0000015) 

2058 EPRS glutamyl-prolyl-tRNA synthetase glutamyl-tRNA aminoacylation (GO:0006424) glutamate-tRNA ligase activity 
(GO:0004818) 

soluble fraction (GO:0005625) 

2194 FASN fatty acid synthase fatty acid biosynthetic process (GO:0006633) oleoyl-(acyl-carrier-protein) hydrolase 
activity (GO:0004320) 

melanosome (GO:0042470) 

2199 FBLN2 fibulin 2  calcium ion binding (GO:0005509) proteinaceous extracellular matrix 
(GO:0005578) 

2539 G6PD glucose-6-phosphate dehydrogenase glucose 6-phosphate utilization (GO:0006010) glucose-6-phosphate dehydrogenase 
activity (GO:0004345) 

cytosol (GO:0005829) 

2617 GARS glycyl-tRNA synthetase glycyl-tRNA aminoacylation (GO:0006426) glycine-tRNA ligase activity (GO:0004820) soluble fraction (GO:0005625) 

2673 GFPT1 glutamine-fructose-6-phosphate transaminase 1 fructose 6-phosphate metabolic process 
(GO:0006002) 

glutamine-fructose-6-phosphate 
transaminase (isomerizing) activity 
(GO:0004360) 

cytoplasm (GO:0005737) 

2876 GPX1 glutathione peroxidase 1 anti-apoptosis (GO:0006916) SH3 domain binding (GO:0017124) mitochondrion (GO:0005739) 

3008 HIST1H1E histone cluster 1, H1e nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

3009 HIST1H1B histone cluster 1, H1b nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

3030 HADHA hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-
Coenzyme A thiolase/enoyl-Coenzyme A hydratase 
(trifunctional protein), alpha subunit 

fatty acid beta-oxidation (GO:0006635) acetyl-CoA C-acetyltransferase activity 
(GO:0003985) 

mitochondrion (GO:0005739) 

3032 HADHB hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-
Coenzyme A thiolase/enoyl-Coenzyme A hydratase 
(trifunctional protein), beta subunit 

fatty acid beta-oxidation (GO:0006635) acetyl-CoA C-acyltransferase activity 
(GO:0003988) 

mitochondrial matrix (GO:0005759) 

3151 HMGN2 high-mobility group nucleosomal binding domain 2 establishment and/or maintenance of 
chromatin architecture (GO:0006325) 

DNA binding (GO:0003677) chromatin (GO:0000785) 

3159 HMGA1 high mobility group AT-hook 1 nucleosome disassembly (GO:0006337) ligand-dependent nuclear receptor 
transcription coactivator activity 
(GO:0030374) 

chromatin (GO:0000785) 

3182 HNRNPAB heterogeneous nuclear ribonucleoprotein A/B positive regulation of gene-specific 
transcription (GO:0043193) 

transcription factor activity (GO:0003700) nucleus (GO:0005634) 

3418 IDH2 isocitrate dehydrogenase 2 (NADP+), mitochondrial tricarboxylic acid cycle (GO:0006099) isocitrate dehydrogenase (NADP+) activity 
(GO:0004450) 

mitochondrion (GO:0005739) 

3615 IMPDH2 IMP (inosine monophosphate) dehydrogenase 2 GMP biosynthetic process (GO:0006177) IMP dehydrogenase activity (GO:0003938) cytosol (GO:0005829) 

3799 KIF5B kinesin family member 5B vesicle transport along microtubule 
(GO:0047496) 

ATP binding (GO:0005524) kinesin complex (GO:0005871) 

3895 KTN1 kinectin 1 (kinesin receptor) microtubule-based movement (GO:0007018) receptor activity (GO:0004872) integral to plasma membrane 
(GO:0005887) 

3915 LAMC1 laminin, gamma 1 (formerly LAMB2) positive regulation of epithelial cell 
proliferation (GO:0050679) 

extracellular matrix structural constituent 
(GO:0005201) 

laminin-1 complex (GO:0005606) 

3939 LDHA lactate dehydrogenase A anaerobic glycolysis (GO:0019642) L-lactate dehydrogenase activity 
(GO:0004459) 

cytosol (GO:0005829) 

4017 LOXL2 lysyl oxidase-like 2 protein modification process (GO:0006464) protein-lysine 6-oxidase activity 
(GO:0004720) 

extracellular space (GO:0005615) 
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4191 MDH2 malate dehydrogenase 2, NAD (mitochondrial) glycolysis (GO:0006096) L-malate dehydrogenase activity 

(GO:0030060) 
mitochondrial matrix (GO:0005759) 

4430 MYO1B myosin IB  ATP binding (GO:0005524) myosin complex (GO:0016459) 

4628 MYH10 myosin, heavy chain 10, non-muscle regulation of cell shape (GO:0008360) actin-dependent ATPase activity 
(GO:0030898) 

stress fiber (GO:0001725) 

4629 MYH11 myosin, heavy chain 11, smooth muscle muscle thick filament assembly (GO:0030241) ATP binding (GO:0005524) striated muscle thick filament 
(GO:0005863) 

4632 MYL1 myosin, light chain 1, alkali; skeletal, fast muscle filament sliding (GO:0030049) calcium ion binding (GO:0005509) muscle myosin complex (GO:0005859)

4701 NDUFA7 NADH dehydrogenase (ubiquinone) 1 alpha 
subcomplex, 7, 14.5kDa 

mitochondrial electron transport, NADH to 
ubiquinone (GO:0006120) 

NADH dehydrogenase (ubiquinone) activity 
(GO:0008137) 

mitochondrion (GO:0005739) 

4735 2-Sep septin 2 cell cycle (GO:0007049) GTP binding (GO:0005525) nucleus (GO:0005634) 

4904 YBX1 Y box binding protein 1 nuclear mRNA splicing, via spliceosome 
(GO:0000398) 

double-stranded DNA binding 
(GO:0003690) 

nucleus (GO:0005634) 

4907 NT5E 5'-nucleotidase, ecto (CD73) nucleotide catabolic process (GO:0009166) 5'-nucleotidase activity (GO:0008253) anchored to membrane (GO:0031225) 

5033 P4HA1 procollagen-proline, 2-oxoglutarate 4-dioxygenase 
(proline 4-hydroxylase), alpha polypeptide I 

protein metabolic process (GO:0019538) procollagen-proline 4-dioxygenase activity 
(GO:0004656) 

endoplasmic reticulum (GO:0005783) 

5106 PCK2 phosphoenolpyruvate carboxykinase 2 (mitochondrial) gluconeogenesis (GO:0006094) phosphoenolpyruvate carboxykinase (GTP) 
activity (GO:0004613) 

mitochondrion (GO:0005739) 

5236 PGM1 phosphoglucomutase 1 glucose metabolic process (GO:0006006) phosphoglucomutase activity 
(GO:0004614) 

cytosol (GO:0005829) 

5250 SLC25A3 solute carrier family 25 (mitochondrial carrier; 
phosphate carrier), member 3 

generation of precursor metabolites and 
energy (GO:0006091) 

phosphate carrier activity (GO:0015320) mitochondrial inner membrane 
(GO:0005743) 

5270 SERPINE2 serpin peptidase inhibitor, clade E (nexin, plasminogen 
activator inhibitor type 1), member 2 

regulation of proteolysis (GO:0030162) serine-type endopeptidase inhibitor activity 
(GO:0004867) 

extracellular region (GO:0005576) 

5591 PRKDC protein kinase, DNA-activated, catalytic polypeptide double-strand break repair via 
nonhomologous end joining (GO:0006303) 

DNA-dependent protein kinase activity 
(GO:0004677) 

nucleus (GO:0005634) 

5596 MAPK4 mitogen-activated protein kinase 4 protein amino acid phosphorylation 
(GO:0006468) 

MAP kinase activity (GO:0004707) 

5866 RAB3IL1 RAB3A interacting protein (rabin3)-like 1 guanyl-nucleotide exchange factor activity (GO:0005085) 

5954 RCN1 reticulocalbin 1, EF-hand calcium binding domain calcium ion binding (GO:0005509) endoplasmic reticulum (GO:0005783) 

5965 RECQL RecQ protein-like (DNA helicase Q1-like) DNA repair (GO:0006281) ATP binding (GO:0005524) nucleus (GO:0005634) 

6124 RPL4 ribosomal protein L4 translational elongation (GO:0006414) RNA binding (GO:0003723) cytosolic large ribosomal subunit 
(GO:0022625) 

6133 RPL9 ribosomal protein L9 translational elongation (GO:0006414) RNA binding (GO:0003723) cytosol (GO:0005829) 

6134 RPL10 ribosomal protein L10 translational elongation (GO:0006414) structural constituent of ribosome 
(GO:0003735) 

cytosolic large ribosomal subunit 
(GO:0022625) 

6135 RPL11 ribosomal protein L11 translational elongation (GO:0006414) rRNA binding (GO:0019843) cytosolic large ribosomal subunit 
(GO:0022625) 

6138 RPL15 ribosomal protein L15 translational elongation (GO:0006414) RNA binding (GO:0003723) cytosol (GO:0005829) 

6139 RPL17 ribosomal protein L17 positive regulation of I-kappaB kinase/NF-
kappaB cascade (GO:0043123) 

RNA binding (GO:0003723) cytosol (GO:0005829) 

6141 RPL18 ribosomal protein L18 translational elongation (GO:0006414) RNA binding (GO:0003723) cytosolic large ribosomal subunit 
(GO:0022625) 

6146 RPL22 ribosomal protein L22 translational elongation (GO:0006414) heparin binding (GO:0008201) cytosolic large ribosomal subunit 
(GO:0022625) 

6156 RPL30 ribosomal protein L30 translational elongation (GO:0006414) RNA binding (GO:0003723) cytosolic large ribosomal subunit 
(GO:0022625) 

6157 RPL27A ribosomal protein L27a translational elongation (GO:0006414) RNA binding (GO:0003723) cytosolic large ribosomal subunit 
(GO:0022625) 

6159 RPL29 ribosomal protein L29 translational elongation (GO:0006414) heparin binding (GO:0008201) cytosolic large ribosomal subunit 
(GO:0022625) 

6175 RPLP0 ribosomal protein, large, P0 translational elongation (GO:0006414) RNA binding (GO:0003723) cytosolic large ribosomal subunit 
(GO:0022625) 
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6181 RPLP2 ribosomal protein, large, P2 translational elongation (GO:0006414) RNA binding (GO:0003723) cytosolic large ribosomal subunit 

(GO:0022625) 
6185 RPN2 ribophorin II protein amino acid N-linked glycosylation via 

asparagine (GO:0018279) 
dolichyl-diphosphooligosaccharide-protein 
glycotransferase activity (GO:0004579) 

endoplasmic reticulum (GO:0005783) 

6187 RPS2 ribosomal protein S2 translational elongation (GO:0006414) RNA binding (GO:0003723) cytosolic small ribosomal subunit 
(GO:0022627) 

6191 RPS4X ribosomal protein S4, X-linked translational elongation (GO:0006414) rRNA binding (GO:0019843) cytosolic small ribosomal subunit 
(GO:0022627) 

6201 RPS7 ribosomal protein S7 translational elongation (GO:0006414) RNA binding (GO:0003723) cytosolic small ribosomal subunit 
(GO:0022627) 

6207 RPS13 ribosomal protein S13 translational elongation (GO:0006414) RNA binding (GO:0003723) cytosolic small ribosomal subunit 
(GO:0022627) 

6209 RPS15 ribosomal protein S15 translational elongation (GO:0006414) structural constituent of ribosome 
(GO:0003735) 

cytosolic small ribosomal subunit 
(GO:0022627) 

6427 SFRS2 splicing factor, arginine/serine-rich 2 nuclear mRNA splicing, via spliceosome 
(GO:0000398) 

transcription corepressor activity 
(GO:0003714) 

PML body (GO:0016605) 

6520 SLC3A2 solute carrier family 3 (activators of dibasic and neutral 
amino acid transport), member 2 

calcium ion transport (GO:0006816) calcium:sodium antiporter activity 
(GO:0005432) 

melanosome (GO:0042470) 

7045 TGFBI transforming growth factor, beta-induced, 68kDa visual perception (GO:0007601) integrin binding (GO:0005178) proteinaceous extracellular matrix 
(GO:0005578) 

7058 THBS2 thrombospondin 2 cell adhesion (GO:0007155) heparin binding (GO:0008201) platelet alpha granule lumen 
(GO:0031093) 

7094 TLN1 talin 1 cytoskeletal anchoring at plasma membrane 
(GO:0007016) 

actin binding (GO:0003779) focal adhesion (GO:0005925) 

7120 TMSL6 thymosin-like 6 (pseudogene)   

7168 TPM1 tropomyosin 1 (alpha) regulation of muscle contraction 
(GO:0006937) 

actin binding (GO:0003779) sarcomere (GO:0030017) 

7169 TPM2 tropomyosin 2 (beta) regulation of ATPase activity (GO:0043462) actin binding (GO:0003779) cytoskeleton (GO:0005856) 

7203 CCT3 chaperonin containing TCP1, subunit 3 (gamma) protein folding (GO:0006457) ATP binding (GO:0005524) cytoskeleton (GO:0005856) 

7278 TUBA3C tubulin, alpha 3c microtubule-based movement (GO:0007018) GTPase activity (GO:0003924) microtubule (GO:0005874) 

7284 TUFM Tu translation elongation factor, mitochondrial translational elongation (GO:0006414) GTPase activity (GO:0003924) mitochondrion (GO:0005739) 

7385 UQCRC2 ubiquinol-cytochrome c reductase core protein II proteolysis (GO:0006508) metalloendopeptidase activity 
(GO:0004222) 

mitochondrion (GO:0005739) 

7408 VASP vasodilator-stimulated phosphoprotein cell motility (GO:0006928) actin binding (GO:0003779) actin cytoskeleton (GO:0015629) 

7414 VCL vinculin lamellipodium biogenesis (GO:0030032) actin binding (GO:0003779) focal adhesion (GO:0005925) 

7791 ZYX zyxin signal transduction (GO:0007165) zinc ion binding (GO:0008270) focal adhesion (GO:0005925) 

8294 HIST1H4I histone cluster 1, H4i   

8301 PICALM phosphatidylinositol binding clathrin assembly protein receptor-mediated endocytosis (GO:0006898) phosphatidylinositol binding (GO:0005545) Golgi apparatus (GO:0005794) 

8407 TAGLN2 transgelin 2 muscle development (GO:0007517) protein binding (GO:0005515) 

8802 SUCLG1 succinate-CoA ligase, alpha subunit tricarboxylic acid cycle (GO:0006099) succinate-CoA ligase (ADP-forming) activity 
(GO:0004775) 

mitochondrial matrix (GO:0005759) 

8815 BANF1 barrier to autointegration factor 1 provirus integration (GO:0019047) DNA binding (GO:0003677) nucleus (GO:0005634) 

8968 HIST1H3F histone cluster 1, H3f nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

8974 P4HA2 procollagen-proline, 2-oxoglutarate 4-dioxygenase 
(proline 4-hydroxylase), alpha polypeptide II 

protein metabolic process (GO:0019538) procollagen-proline 4-dioxygenase activity 
(GO:0004656) 

endoplasmic reticulum (GO:0005783) 

9260 PDLIM7 PDZ and LIM domain 7 (enigma) receptor-mediated endocytosis (GO:0006898) zinc ion binding (GO:0008270) cytoskeleton (GO:0005856) 

9551 ATP5J2 ATP synthase, H+ transporting, mitochondrial F0 
complex, subunit F2 

ATP biosynthetic process (GO:0006754) hydrogen ion transmembrane transporter 
activity (GO:0015078) 

mitochondrion (GO:0005739) 

9601 PDIA4 protein disulfide isomerase family A, member 4 protein secretion (GO:0009306) protein disulfide isomerase activity 
(GO:0003756) 

melanosome (GO:0042470) 
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9689 BZW1 basic leucine zipper and W2 domains 1 regulation of transcription, DNA-dependent 

(GO:0006355) 
binding (GO:0005488) cytoplasm (GO:0005737) 

9948 WDR1 WD repeat domain 1 sensory perception of sound (GO:0007605) actin binding (GO:0003779) cytoskeleton (GO:0005856) 

10095 ARPC1B actin related protein 2/3 complex, subunit 1B, 41kDa cell motility (GO:0006928) actin binding (GO:0003779) cytoplasm (GO:0005737) 

10097 ACTR2 ARP2 actin-related protein 2 homolog (yeast) cell motility (GO:0006928) ATP binding (GO:0005524) cytoplasm (GO:0005737) 

10105 PPIF peptidylprolyl isomerase F (cyclophilin F) protein folding (GO:0006457) peptidyl-prolyl cis-trans isomerase activity 
(GO:0003755) 

mitochondrial matrix (GO:0005759) 

10109 ARPC2 actin related protein 2/3 complex, subunit 2, 34kDa regulation of actin filament polymerization 
(GO:0030833) 

actin binding (GO:0003779) cytoskeleton (GO:0005856) 

10130 PDIA6 protein disulfide isomerase family A, member 6 protein folding (GO:0006457) protein disulfide isomerase activity 
(GO:0003756) 

melanosome (GO:0042470) 

10226 M6PRBP1 mannose-6-phosphate receptor binding protein 1 vesicle-mediated transport (GO:0016192) endosome (GO:0005768) 

10376 TUBA1B tubulin, alpha 1b microtubule-based movement (GO:0007018) GTPase activity (GO:0003924) microtubule (GO:0005874) 

10383 TUBB2C tubulin, beta 2C microtubule-based movement (GO:0007018) GTPase activity (GO:0003924) cytoskeleton (GO:0005856) 

10399 GNB2L1 guanine nucleotide binding protein (G protein), beta polypeptide 2-like 1 receptor binding (GO:0005102) cytoplasm (GO:0005737) 

10409 BASP1 brain abundant, membrane attached signal protein 1 cytoskeleton (GO:0005856) 

10492 SYNCRIP synaptotagmin binding, cytoplasmic RNA interacting 
protein 

mRNA processing (GO:0006397) RNA binding (GO:0003723) microsome (GO:0005792) 

10514 MYBBP1A MYB binding protein (P160) 1a regulation of transcription, DNA-dependent 
(GO:0006355) 

DNA-directed DNA polymerase activity 
(GO:0003887) 

nucleus (GO:0005634) 

10525 HYOU1 hypoxia up-regulated 1 response to stress (GO:0006950) ATP binding (GO:0005524) endoplasmic reticulum (GO:0005783) 

10575 CCT4 chaperonin containing TCP1, subunit 4 (delta) protein folding (GO:0006457) ATP binding (GO:0005524) melanosome (GO:0042470) 

10594 PRPF8 PRP8 pre-mRNA processing factor 8 homolog (S. 
cerevisiae) 

nuclear mRNA splicing, via spliceosome 
(GO:0000398) 

RNA splicing factor activity, 
transesterification mechanism 
(GO:0031202) 

nuclear speck (GO:0016607) 

10631 POSTN periostin, osteoblast specific factor skeletal development (GO:0001501) heparin binding (GO:0008201) proteinaceous extracellular matrix 
(GO:0005578) 

10694 CCT8 chaperonin containing TCP1, subunit 8 (theta) protein folding (GO:0006457) ATPase activity, coupled (GO:0042623) cytoplasm (GO:0005737) 

10787 NCKAP1 NCK-associated protein 1 apoptosis (GO:0006915) protein binding (GO:0005515) integral to membrane (GO:0016021) 

10979 FERMT2 fermitin family homolog 2 (Drosophila) regulation of cell shape (GO:0008360) protein binding (GO:0005515) stress fiber (GO:0001725) 

10985 GCN1L1 GCN1 general control of amino-acid synthesis 1-like 1 
(yeast) 

regulation of translation (GO:0006417) translation factor activity, nucleic acid 
binding (GO:0008135) 

cytoplasm (GO:0005737) 

10989 IMMT inner membrane protein, mitochondrial (mitofilin) protein binding (GO:0005515) mitochondrial inner membrane 
(GO:0005743) 

11098 PRSS23 protease, serine, 23 proteolysis (GO:0006508) serine-type endopeptidase activity 
(GO:0004252) 

nucleus (GO:0005634) 

11117 EMILIN1 elastin microfibril interfacer 1 phosphate transport (GO:0006817) extracellular matrix structural constituent 
(GO:0005201) 

cytoplasm (GO:0005737) 

11316 COPE coatomer protein complex, subunit epsilon COPI coating of Golgi vesicle (GO:0048205) protein binding (GO:0005515) COPI vesicle coat (GO:0030126) 

22872 SEC31A SEC31 homolog A (S. cerevisiae) ER to Golgi vesicle-mediated transport 
(GO:0006888) 

protein binding (GO:0005515) COPII vesicle coat (GO:0030127) 

22874 PLEKHA6 pleckstrin homology domain containing, family A member 6 

22995 CEP152 centrosomal protein 152kDa  centrosome (GO:0005813) 

23451 SF3B1 splicing factor 3b, subunit 1, 155kDa nuclear mRNA splicing, via spliceosome 
(GO:0000398) 

RNA splicing factor activity, 
transesterification mechanism 
(GO:0031202) 

nuclear speck (GO:0016607) 

23474 ETHE1 ethylmalonic encephalopathy 1 zinc ion binding (GO:0008270) mitochondrial matrix (GO:0005759) 
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23603 CORO1C coronin, actin binding protein, 1C phagocytosis (GO:0006909) actin binding (GO:0003779) actin cytoskeleton (GO:0015629) 

25796 PGLS 6-phosphogluconolactonase pentose-phosphate shunt (GO:0006098) 6-phosphogluconolactonase activity (GO:0017057) 

28298 Rpl32 ribosomal protein L32 translation (GO:0006412) structural constituent of ribosome 
(GO:0003735) 

cytosolic large ribosomal subunit 
(GO:0022625) 

28972 SPCS1 signal peptidase complex subunit 1 homolog (S. 
cerevisiae) 

proteolysis (GO:0006508) integral to endoplasmic reticulum 
membrane (GO:0030176) 

29956 LASS2 LAG1 homolog, ceramide synthase 2 regulation of transcription, DNA-dependent 
(GO:0006355) 

transcription factor activity (GO:0003700) nucleus (GO:0005634) 

29995 LMCD1 LIM and cysteine-rich domains 1 zinc ion binding (GO:0008270) cellular_component (GO:0005575) 

30846 EHD2 EH-domain containing 2 GTPase activity (GO:0003924) nucleus (GO:0005634) 

30968 STOML2 stomatin (EPB72)-like 2 receptor binding (GO:0005102) cytoskeleton (GO:0005856) 

55226 NAT10 N-acetyltransferase 10 metabolic process (GO:0008152) N-acetyltransferase activity (GO:0008080) nucleus (GO:0005634) 

55324 ABCF3 ATP-binding cassette, sub-family F (GCN20), member 3 ATPase activity (GO:0016887) 

55379 LRRC59 leucine rich repeat containing 59 protein binding (GO:0005515) microsome (GO:0005792) 

57455 REXO1 REX1, RNA exonuclease 1 homolog (S. cerevisiae) regulation of transcription, DNA-dependent 
(GO:0006355) 

exonuclease activity (GO:0004527) chromatin (GO:0000785) 

58477 SRPRB signal recognition particle receptor, B subunit GTP binding (GO:0005525) endoplasmic reticulum (GO:0005783) 

63905 MANBAL mannosidase, beta A, lysosomal-like integral to membrane (GO:0016021) 

64098 PARVG parvin, gamma cell-matrix adhesion (GO:0007160) actin binding (GO:0003779) cytoskeleton (GO:0005856) 

64307 Rpl24 ribosomal protein L24 translation (GO:0006412) structural constituent of ribosome 
(GO:0003735) 

ribosome (GO:0005840) 

79068 FTO fat mass and obesity associated determination of left/right symmetry (GO:0007368) 

79664 NARG2 NMDA receptor regulated 2  nucleus (GO:0005634) 

79709 GLT25D1 glycosyltransferase 25 domain containing 1 lipopolysaccharide biosynthetic process 
(GO:0009103) 

transferase activity, transferring glycosyl 
groups (GO:0016757) 

endoplasmic reticulum (GO:0005783) 

81876 RAB1B RAB1B, member RAS oncogene family regulation of transcription, DNA-dependent 
(GO:0006355) 

ATP binding (GO:0005524) Golgi apparatus (GO:0005794) 

84617 TUBB6 tubulin, beta 6 microtubule-based movement (GO:0007018) GTPase activity (GO:0003924) microtubule (GO:0005874) 

84790 TUBA1C tubulin, alpha 1c microtubule-based movement (GO:0007018) GTPase activity (GO:0003924) microtubule (GO:0005874) 

85443 DCLK3 doublecortin-like kinase 3 protein amino acid phosphorylation 
(GO:0006468) 

protein serine/threonine kinase activity 
(GO:0004674) 

nucleus (GO:0005634) 

92755 LOC92755 hypothetical gene LOC92755   

94081 SFXN1 sideroflexin 1 iron ion transport (GO:0006826) iron ion binding (GO:0005506) mitochondrion (GO:0005739) 

94239 H2AFV H2A histone family, member V nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

112464 PRKCDBP protein kinase C, delta binding protein negative regulation of cell cycle (GO:0045786) 

167681 PRSS35 protease, serine, 35 proteolysis (GO:0006508) serine-type endopeptidase activity 
(GO:0004252) 

extracellular region (GO:0005576) 

203068 TUBB tubulin, beta microtubule-based movement (GO:0007018) GTPase activity (GO:0003924) cytoskeleton (GO:0005856) 

347733 TUBB2B tubulin, beta 2B microtubule-based movement (GO:0007018) GTPase activity (GO:0003924) microtubule (GO:0005874) 

388474 LOC388474 similar to ribosomal protein L7a translation (GO:0006412) structural constituent of ribosome 
(GO:0003735) 

ribosome (GO:0005840) 

392447 hCG_1644323 hCG1644323 translation (GO:0006412) structural constituent of ribosome 
(GO:0003735) 

ribosome (GO:0005840) 
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402221 LOC402221 actin pseudogene  protein binding (GO:0005515) 

554313 HIST2H4B histone cluster 2, H4b nucleosome assembly (GO:0006334) DNA binding (GO:0003677) nucleus (GO:0005634) 

562774   collagen catabolic process (GO:0030574) oxidoreductase activity, acting on single donors with incorporation of molecular 
oxygen, incorporation of two atoms of oxygen (GO:0016702) 

641293 LOC641293 ribosomal protein L21 pseudogene translation (GO:0006412) structural constituent of ribosome 
(GO:0003735) 

ribosome (GO:0005840) 
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Appendix C 
Protocols used for background subtraction from fluorescence inages acquired using CoolSnap EZ camera (Photometrics, 

Tucson, AZ) mounted on a Nikon Eclipse TE 2000-S inverted microscope (Nikon, Melville, NY) 



238 
Acquiring images  

•  Start  Program NIS Elements F  nis_f.exe  

•  Be sure that the ‘Live’ button is clicked in the Camera section within the left hand side panel  

•  Focus the microscope on your sample  Click on ‘Autoexposure’  Note the autoexposure value  Click on  

 “Capture”  

•  Save the image (top panel - ‘save as’) as a TIFF file.  

•  Now acquire an image of your control at the same autoexposure value as your sample image…..NOTE this step  

 is important to be able to compare the two images and subtract your background.  

Photoshop steps  

File  Open  open both your sample and the control image.  

NOTE: if you want to overlay DAPI along with your stain, you will have to open 4 images:  

a)  Stain_sample  

b)  Stain_control  

c)  DAPI_sample…same precise spot,  

d)  DAPI_control…not necessarily the same spot as your stain_control image (just a reference)  
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Things to note:  

The images should be at a 100% …the title bar of the image will 

 read xxxyyy.tif@100%(Gray) All the images should be the same size.  

Right Click on the title bar  Image size, Note image size.  

 Prefered - Width - 696 pixels , Height - 520 pixels  
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Open a new image--- File  New  

Within the ‘New’ Window, make sure that the Width and Height match with your image size and in Mode - 

RGB color must be selected 
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Background subtraction  

Click on your control image  

Go to image on the menu-bar and click on histogram. Note the value of the mean intensity, click OK. In older versions of 

photoshop the way to get the histogram is by Windows  Histogram 

 

 

 

 

 

 

 

 

 

Click on your sample image  

Go to Image  Adjustments  Levels  

In the ‘Levels’ window, within the Input levels boxes, enter the mean noted in the control image.  
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There will be a reduction in the background of the sample image.  

Now copy the content of the background subtracted image (Select the image by Ctrl+A followed by copy Ctrl+C)  

Click on the window of the new image, click on the appropriate channel and paste the image in image window. For eg select 

channel Green for FITC. Your image will not show up green, it will when you select RGB 

 

 

 

 

 

 

 

 

 

Similarly subtract background for DAPI and copy the image and select the blue channel of the new image and paste the blue 

image 

Unselect the RGB as well the RED channel so as to view the colours of the stains 
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Before saving your final image do not forget to delete the red (unused channel)  

Select the red channel 

Go to Image  Adjustments  Levels  

Set output values as 0 to 0 

Save.  
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Appendix D 

A) Preliminary results for microwell studies 

B) Representative image for quantification of positive expression of pluripotent markers SSEA3 and SSEA4 using cytospin 

C) Representative images of hPSCs cultured on lyophilized acellular substrates 
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A) Preliminary results for microwell studies 

 

Figure 1: Schematic of the microwell slide fabrication [72] 

 

 

 

 

 

 

 

Figure 2: Representative images of hPSCs grown in the microwell with regular media changes (A), cells collected from the 
media on Day 40 were plated on MEF formed colonies (B) and stained positive for alkaline phosphatase (C), Scale bar = 
100μm.  
 

A B C 
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Figure 3: Representative images of hPSCs grown in the microwell,  collected on Day 40 and plated on MEFs formed colonies 
that stained positive for SSEA4 (A) and OCT$ (B), Scale bar = 100μm 
 

 

 

 

 

 

Figure 4: Live dead assay was performed on cells in 100 and 300 μm microwell slide, Scale bar = 100μm 
 Green dye stains for live cells,,Red dye stains for dead cells 

B 

A B 

A 
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B) Representative image for quantification of positive expression of pluripotent markers SSEA3 and SSEA4 using 

cytospin 
 

                        
Figure 1: Representative images of hPSCs, BG01v (A,B) and WA09 (C,D) stained for pluripotent markers SSEA3 (A, C) and 
SSEA4 (B,D) for quantification of marker expression. Scale bar = 100μm 
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C) Representative images of hPSCs cultured on lyophilized acellular substrates 

                             
Figure 1: Representative images of hPSCs, BG01v (A,C) and WA09 (B,D) stained for pluripotent markers alkaline 
phosphatase (C,D). Scale bar = 100μm 
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