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Flow control can lead to saving millions of dollars in fuel costs each year by 

making an aircraft more efficient. Synthetic jets, a device for active flow control, operate 

by introducing small amounts of energy locally to achieve non-local changes in the flow 

field with large performance gains. These devices consist of a cavity with an oscillating 

diaphragm that divides it, into active and passive sides. The active side has a small opening 
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where a jet is formed, whereas and the passive side does not directly participate in the 

fluidic jet. 

Research has shown that the synthetic jet behavior is dependent on the diaphragm 

and the cavity design hence, the focus of this work.  The performance of the synthetic jet is 

studied under various factors related to the diaphragm and the cavity geometry. Four 

diaphragms, manufactured from piezoelectric composites, were selected for this study, 

Bimorph, Thunder®, Lipca and RFD. The overall factors considered are the driving 

signals, voltage, frequency, cavity height, orifice size, and passive cavity pressure. Using 

the average maximum jet velocity as the response variable, these factors are individually 

studied for each actuator and statistical analysis tools were used to select the relevant 

factors in the response variable.  

For all diaphragms, the driving signal was found to be the most important factor, 

with the sawtooth signal producing significantly higher velocities than the sine signal. 

Cavity dimensions also proved to be relevant factors when considering the designing of a 

synthetic jet actuator. The cavities with the smaller orifice produced lower velocities than 

those with larger orifices and the cavities with smaller volumes followed the same trend. 

Although there exist a relationship between cavity height and orifice size, the orifice size 

appears as the dominant factor. 

Driving frequency of the diaphragm was the only common factor to all diaphragms 

studied that was not statistically significant having a small effect on jet velocity. However 

along with waveform, it had a combined effect on jet velocity for all actuators. With the 

sawtooth signal, the velocity remained constant after a particular low frequency, thus 



xiii 

indicating that the synthetic jet cavity could be saturated and the flow choked. No such 

saturation point was reached with the sine signal, for the frequencies tested. Passive cavity 

pressure seemed to have a positive effect on the jet velocity up to a particular pressure 

characteristic of the diaphragm, beyond which the pressure had an adverse effect.  For 

Thunder® and Lipca, the passive cavity pressure that produced a peak was measured at 

approximately 20 and 18kPa respectively independent of the waveform utilized.  For a 

Bimorph and RFD, this effect was not observed. 

Linear models for all actuators with the factors found to be statistically significant 

were developed.  These models should lead to further design improvements of synthetic 

jets. 

 

 



 

 
 
 
 

CHAPTER 1 
 
 
 
 

1. Introduction 

 

  
  

1.1 Motivation 

Methods that attempt to control the motion of fluids have been extensively 

explored in the past.  Some of these methods can be passive or active or both (Gad-el-Hak 

2000). Passive flow control is usually achieved through careful modifications to the 

existing system using steady state tools such as wing flaps, spoilers and vortex generators, 

among others. These techniques, though effective, have marginal power efficiency and are 

not capable of adjusting to the instantaneous flow conditions experienced during flight. 

This limits their implementation in operational applications. 

Active flow control (AFC) methods however, are much more efficient.  AFCs can 

adapt to the constantly changing conditions by introducing small amounts of energy locally 

to achieve non-local changes in the flow field with large performance gains (Amitay et al. 

1998, Gad-el-Hak 2000, Kral et al. 1997, Smith & Glezer 1998).  The feasibility of 

increasing the efficiency and simplifying fluid related systems is very appealing 

considering that a one percent saving in world consumption of jet fuel is worth about 1.25 
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million dollars a day of direct operating costs (Collis et al. 2004). Likewise, such fuel 

savings would lead to reduced environmental impact, although such environmental effects 

are difficult to quantify. McLean et al. evaluated different AFC concepts and candidate 

applications were considered for civil jet transports (McLean et al. 1999). The 

simplification of conventional high lift systems by AFC was identified as a prime 

candidate, possibly providing 0.3% airplane cost reduction, up to 2% weight reduction and 

about 3% cruise drag reduction. Also the advent of MEMS (Micro Electro Mechanical 

Systems) technology in the last two decades has provided a new impetus to the field of 

active control. The MEMS based actuators are easy to mass manufacture and they provide 

a unified framework for implementing flow control including actuation, power 

transmission, sensing and incorporation of control algorithms (Ho & Tai 1996). 

In spite of all the advantages, using active flow control devices usually adds 

complexity in design, increases manufacturing and operation cost, which prevents their 

use. For this reason, many researchers have focused on designing better active flow control 

devices that are easy to manufacture, are small in size and require little power to operate. 

One of the devices that fulfill all of these qualities is called synthetic jets.  

Synthetic jets consist of a cavity with an oscillating diaphragm. When the 

diaphragm oscillates air is pushed out an orifice forming a jet (Smith 1999). The 

interaction of the jets with an external flow leads to the formation of closed re-circulating 

flow regime near the surface. This interaction can act as a "virtual surface" and 

consequently is an apparent modification of the flow boundary (Amitay et al. 1997). An 
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array of such microfabricated devices can produce a large jet velocity if the orifices are at 

the correct spacing and the driving signals are in phase. 

The oscillating diaphragm used in the synthetic jet cavity is usually driven using 

electrical or mechanical power. In the past, researchers have used compressed air or 

regulated blowers as a means of supplying steady or oscillating flow (Seifert et al. 1993, 

Seifert et al. 1996). This adds to the complexity and weight of the system. Piezoelectric 

disks oscillate in the same manner as a piston or a shaker when driven with an AC electric 

signal. Eliminating the shaker or a piston reduces the number of moving parts prone to 

failure. Because of these advantages, several investigators have adopted piezoelectric disks 

as oscillating diaphragms in synthetic jets to attempt to make the systems lighter, increase 

efficiency and save resources (Crook et al. 1999, Rathnasingham & Breuer 1997a,b, Smith 

& Glezer 1998). Piezoelectricity is the ability of certain crystals to generate a voltage in 

response to applied mechanical stress and the converse effect is also true. The most 

commonly used diaphragm consists of a Lead Zirconate Titanate (PZT) disk bonded to a 

metal shim using a conductive epoxy. Although these piezoelectric disks have been 

successful in generating high velocities capable of altering the flow fields, the devices 

operate at high frequencies, consequently requiring high amounts of power. Also it was 

found that after a time, the PZT disk would start to delaminate and/or the output of the 

device would drop and the resonant frequency would change. Part of the degradation of 

performance of the device with time may be due to a combination of small cracks 

appearing in the bondline and the growth of a thin oxide layer between the brass and the 

conductive electrode (Bryant 1996). 
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In the current study, piezoelectric composites are used as active diaphragms in the 

jet cavity. In addition to active piezoelectric layers, they are reinforced with layers of metal 

or other stronger materials that also increase actuator durability. These composites, besides 

being lightweight, have the ability to produce micro scale displacements and provide a 

wide bandwidth response. Such advantages make them suitable for flow control purposes 

as demonstrated by Mossi et al. (Mossi & Bryant 2004a & b, Mossi et al. 2005b).  

The promising potential of piezoelectric synthetic jets for flow control has 

motivated researchers at various universities, industrial laboratories and government 

institutions to continue to invest time and effort into their further development. Synthetic 

jets have potential applications ranging from jet vectoring (Smith & Glezer 1997), mixing 

enhancement (Chen et al. 1999, Davis & Glezer 1999), to active control of separation and 

turbulence in boundary layers (Amitay et al. 1997, Amitay et al. 1998, Crook et al. 1999). 

Yet, the utility of these devices for controlling flows has mostly been shown in laboratory 

setups. Development of practical applications using this technology requires extensive 

research into their performance under various conditions, since performance depends on 

the geometry of the jet cavity, the oscillating diaphragm used, and electrical driving 

conditions amongst other things. There is also a lack of understanding as to how 

performance characteristics scale with these parameters. However promising the 

technology might look, significant barriers exist between the capabilities available to the 

technologist and the successful application. Comprehensive experiments are required to 

close the gap between theory, computations, and real-world applications.  
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Although experimental investigations are capable of providing insight into the 

operation of a synthetic jet, a parametric study of the flow configuration through 

experiments is a time consuming and expensive proposition. Design of experiments theory 

provides an alternate and efficient approach to accomplish the same goals. Through a 

series of screening experiments, the important factors are identified. These selected factors 

are then used in developing a regression model that quantifies the dependence of the 

desired response on the existing factors. Since the performance of the jet is dependant on a 

number of factors, such statistical tools give a direction towards the relevant areas of 

synthetic jet research. The screening experiments and regression models can be used in the 

modeling of response surfaces to optimize the performance of piezoelectric composites as 

synthetic jets.     

 

1.2 Synthetic Jets 

A synthetic jet is a device used to produce an oscillating jet of fluid. The jets are so 

called because they are synthesized from a train of vortex rings or pairs, formed from the 

external fluid, without net mass addition. This is one attractive feature of these devices 

since no hardware is required to obtain mass and flow from a separate source.  The jets are 

formed from the working fluid of the flow system from which they are deployed.  Thus 

linear momentum is transferred to the flow system without net mass injection across the 

system boundary. The interaction of synthetic jets with an external flow near the flow 

boundary can lead to the formation of closed recirculation flow regions and consequently 
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to an apparent modification of the flow boundary (Smith & Glezer 1998, Smith 1999). 

This attribute enables synthetic jets to significantly affect global modifications of the base 

flow on scales that are one to two orders of magnitude larger than the characteristics length 

scales of the jet themselves.  

Jet flows without net mass addition can be produced by an oscillating flow having a 

zero mean velocity through an orifice, provided that the amplitude of oscillations is large 

enough to induce flow separation at the orifice. A number of different designs of synthetic 

jet actuators exist that share the concept of operating with zero net mass flux.  

In the present implementation, the periodic oscillatory motion of a piezoelectric diaphragm 

forms a synthetic jet normal to an orifice. Since the characteristic dimensions of the jet 

scale with the characteristic dimension of the orifice, it is possible to synthesize jets over a 

broad range of length scales. Piezoelectric diaphragms are driven using alternating fields 

such that jets are formed as a result of volumetric displacement within a fluid filled cavity. 

As the actuator oscillates it alternately draws in and blows out the ambient fluid through 

either a high aspect ratio slot or an axisymmetric circular orifice on the cavity. During the 

suction part of the cycle, the diaphragm moves away from the orifice drawing in ambient 

fluid to fill the increasing volume within the cavity. During the ejection cycle, the 

diaphragm moves towards the orifice pushing fluid out of the cavity. Some of the vortices 

formed at the edge of the slit or orifice will travel sufficiently far and escape re-

entrainment during the suction cycle resulting in a synthetic jet with a net momentum and 

zero net mass flux (Smith 1999). During each cycle the net mass flux out of the cavity is 

zero while the linear momentum of the flow system is non zero. The jet must be capable of 
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introducing significant disturbances into the flow. The desired characteristics of actuators 

include low power consumption, high bandwidth, reliability, and low cost. The following 

section provides a brief discussion on the composition and mechanism of the piezoelectric 

diaphragms used in the current study.    

 

 

 

 

 

 

 
 

Orifice 

Diaphragm 

Vortex Rings 

Active Side 

Passive Side 

Figure 1.1 Synthetic Jet 
 
 

1.3 Piezoelectric Ceramics and Composites 

Piezoelectricity is the phenomenon whereby electric polarization is generated in 

certain acentric crystals when they are subjected to mechanical stress, that is, the direct 

effect. Materials showing this phenomenon must also show a geometrical strain or 

displacement, proportional to the applied electric field, known as the converse effect, 

giving them the distinction of being called active materials. Piezoelectric materials are 

characterized by several coefficients. The coefficients are energy ratios describing the 

conversion from mechanical to electrical energy or vice versa. The magnitude of the 
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piezoelectric coefficients depends on oxide ratios, dopants and defect structure, because of 

their influence on domain wall motion. These defects control the nature of the hysteresis 

loop in the piezoelectric ceramic. The interaction of the domains and defects leads to soft 

and hard piezoelectric compositions. Piezoelectrically soft materials are characterized by 

high piezoelectric constants and high hysteresis as a result of relatively mobile domain 

walls. In hard piezoelectric ceramics, the domain wall motion is inhibited, resulting in 

lower piezoelectric constants and reduced hysteresis. Soft piezoelectric materials are 

preferred for most multilayer and bimorph applications because of their high strain. For 

some actuator applications, that require non-hysteretic response, hard piezoelectric 

ceramics can be preferred.  

Natural crystals such as quartz, tourmaline, and zincblende are the classical 

piezoelectric materials. For many years, these materials have served as transducers for 

converting mechanical energy into electrical energy and vice versa (Cady 1964). In 

general, natural crystals have rather low piezoelectric coefficients. Piezoelectric materials 

come in a variety of forms, ranging from rectangular patches, thin disks, and tubes to very 

complex shapes using injection molding (Bowen and French, 1992). Several of these 

active materials have been investigated for aerospace and other applications. Ceramic 

piezoelectric materials were developed in the second half of the 20th century and have 

been constantly improved since then. Lead Zirconate Titanate [Pb(Zr, Ti)O3] ceramics 

(commonly known as PZT) are the leading materials for piezoelectric applications (Jaffe et 

al. 1971). However as the field becomes larger significant hysteresis is exhibited due to 

domain reorientation as the field becomes larger.  
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Among the different types of materials developed are piezoelectric polymers such 

as Polyvinylidene Fluoride (PVDF), electrostrictive materials, such as Lead Magnesium 

Niobate (PMN), shape memory alloys such as Nickel Titanium (Nitinol), and 

magnetostrictive materials such as Terfenol-D, among others. Piezo-polymer films (PVDF) 

are biocompatible, resistive to corrosion, but are highly compliant. Electrostrictive 

materials (PMN) have low hysteresis losses and moderate stiffness, but have poor 

temperature stability, and cannot operate in high voltages due to their high material 

dielectric. Shape memory alloys (Nitinol) are capable of very high strains, but essentially 

one way actuators and are limited to ultra-low bandwidth applications (< 5 Hz) due to heat 

transfer and entropic cooling. Finally, magnetostrictive actuators (Terfenol-D) have similar 

actuation energy density and bandwidth as piezo-ceramics, but are very heavy when the 

coils and flux path materials are accounted for. 

All of these actuators and sensors are incorporated onto and into the host structures 

in many different forms depending upon the environmental and operating requirements of 

the overall system. Beams, truss structures, plate and shell-like structures are frequently 

used host structures for piezoelectric sensors and actuators for vibration and noise control 

applications. Several have been conceived experimentally such as vibration control for 

plates (Bayer et al., 1991); for beams (Bailey and Hubbard, 1985), and buckling control 

(Thompson and Loughlan, 1995). The actuators and sensors could either be surface bonded 

or embedded inside the layers in the form of lamina or fibers (Bent, 1997) of the host 

laminate. 
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Piezoelectric actuators have played a pivotal role in nanotechnology starting with 

their use as positioning elements in scanning tunneling microscopes in 1982 and in atomic 

force microscopes in 1985, and currently they are used in all nanopositioner applications. 

Commercial actuator applications include dot matrix printer heads, auto-tracking devices 

for VCR’s, shutter mechanisms and auto focus motors for cameras, gas igniters, buzzers, 

sonar arrays and hydrophones and accelerometers among others. PZT based Electronic 

Modulated Suspension was introduced by Toyota in 1989 to augment shock absorber 

capabilities. They also play a central role in automotive airbag systems.   

A piezoelectric transducer that can generate large displacement while withstanding 

a sizable load is essential for actuator applications (Newnham & Rushau 1991, Uchino 

2000). However, the electric-field-induced displacements of those materials are much less 

than 1%, and in most cases, they are too small for some applications (Schwartz et al., 

2000). In order to enhance the displacement, various types of actuators based on 

piezoelectric ceramics have been developed. These ceramics are usually of various size 

and shapes. When a voltage is applied across the electrodes the material changes thickness. 

The amplitude of the change is related to the applied voltage through a piezoelectric 

coefficient that, for PZT materials, is less than 600 × 10-12 m/V. One way to increase the 

displacement is to use a bending actuator. Basically, a bending actuator is composed of a 

piezoelectric plate that is bonded to an inactive substrate layer (Smits 1991). When a voltage is 

applied, the piezoelectric plate expands or contracts whereas the non-piezoelectric plate keeps 

the same geometry, causing the actuator to bend as a differential stress field is developed.  
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A number of transducer designs based on this principle have been developed to 

augment strain force, or drive level capabilities of the constituent piezoelectric materials 

through curvature enhancement, pre-stress augmentation or strain enhancement 

mechanisms. The moonie, cymbal, reduced and internally baised dome shaped oxide wafer 

(RAINBOW), thin layer composite unimorph ferroelectric driver and sensor (Thunder®), 

lightweight piezo composite actuator (LIPCA), and the radial field diaphragm (RFD) are 

actuator designs developed in the last 15 years. These designs provide moderate 

displacements in conjunction with moderate generative forces. 

To investigate their performance as SJ diaphragms and to explore the relevant 

parameters for their performance four types of actuators are used as active diaphragms. A 

detailed discussion on the construction of each of these actuators, Bimorph, Thunder®, 

Lipca, and RFD, is given in Chapter 3.  

 

1.4 Problem Statement 

The objective of this research is to characterize synthetic jet actuators formed using 

piezoelectric composites as active diaphragms. For the practical implementation of any 

new technology, it is required that all the physics involved in the mechanism be thoroughly 

investigated. Since many factors may have an effect on the performance of a synthetic jet, 

it is the aim of this study to identify the more relevant factors from a carefully selected 

group. Based on these factors a model will be developed to aid in the future design 

optimization of a synthetic jet. 



12 

Past studies have shown that the synthetic jet is heavily dependent on the actuator 

device (Wlezien et al. 1998, Cattafesta et al. 2001, Schaeffler at al. 2002). Four 

piezoelectric diaphragms, Bimorph, Thunder®, Lipca and RFD, are studied as possible 

active diaphragms in a synthetic jet cavity. Three of these diaphragms have never been 

used in synthetic jet research before and through this study it is attempted to show that 

their performance is comparable if not better than the devices used in the past. The factors 

involved in this study include, driving waveform, voltage, frequency, and the geometrical 

parameters of the cavity and the internal pressures generated in the cavity. It is intended to 

individually study each factor for every diaphragm, and to identify the main factors. Since 

the number of factors considered for this study is large, a statistical approach of fractional 

factorial experimental design is proposed. Through such statistical tools the significant 

factors will be identified and also the individual effect sizes calculated. The critical factors 

will be fitted in a first level linear model to generate an approximation for the desired 

output.  

 

1.5 Organization of Chapters 

The first chapter provides a research background on synthetic jet technology. It 

further gives relevant information about flow control tools and techniques, providing a 

detailed discussion on synthetic jet actuators. A description of the working principles 

involved in this technology are stated and reviewed. The latter part of the chapter details 

piezoelectric actuators and their potential as active diaphragms in a synthetic jet cavity.  
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Chapter 2 gives a brief literature review of the studies conducted in the past.  A 

short timeline is established and the related studies discussed. The following chapter 

begins with a detailed description of each actuator used in the study. Using schematics, 

Chapter 3 also explains the various experimental setups and calibration techniques used 

during the course of the project. The experimental parameters and cavity parameters are 

shown in tables. The factors selected for the study and the analysis tools used are defined. 

Results obtained through the experiments and the subsequent statistical analyses 

are provided in Chapter 4. This chapter has four subsections for each actuator discussing 

the factors individually before conducting a statistical analysis. The last section of the 

chapter gives a summary discussion of the factors and proposes theories for the results 

obtained. Finally, the last two chapters state the conclusions drawn from the study and 

propose future directions that this research could follow. 

 
 



 

 
 
 
 

CHAPTER 2 
 
 
 
 

2. Literature Review 

 

The German engineer Ludwig Prandtl first introduced the world to flow control by 

publishing the boundary layer theory at the beginning of the 20th century. In the period 

leading up to and during World War II, as well as in the cold war era, flow control was 

extensively studied and applied, although primarily to military related flow systems. A 

comprehensive review and analysis was provided by Lachman and more recently by Gad-

el-Hak (Lachman 1961, Gad-el-Hak et al. 1998, Gal-el-Hak 2000). All known flow control 

efforts preceding the pioneering work of Schubauer and Skramstad used steady state tools 

and mechanisms for flow management (Schubauer & Skramstad 1947). Such passive flow 

control techniques have marginal power efficiency, and therefore limit the implementation 

in operational applications. Active flow control (AFC) is a fast growing multi-disciplinary 

science and technology aimed at altering a naturally developing flow system into a more 

desired path. Active flow control using periodic excitation that exploits natural flow 

phenomena has the potential of overcoming the efficiency barrier.  
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Synthetic jets are popular flow control devices capable of causing an apparent 

modification to the flow boundary through periodic oscillations. Their popularity stems 

from their self-contained design, no fluid source, no ducting is required, only an applied 

voltage. The design of the micro scale synthetic jet actuator proposed by Glezer and his co-

workers (Coe et al. 1994) has been adapted widely by a number of researchers. The design 

is very simple consisting of a diaphragm that is driven by an electric field, set within a 

cavity. The diaphragm is made up of a piezo disk glued to a metal shim, a Unimorph.  An 

orifice in the lid of the device allows fluid to be drawn into, and forced out of the cavity. 

To obtain high velocities, the diaphragm has to be driven at its resonant frequency, which 

is in the kHz range.  

Smith and Glezer performed a detailed experimental investigation into the synthetic 

jet created by these devices (Smith & Glezer 1997, 1998). It is claimed, that during the 

outflow cycle a vortex ring is formed at the orifice. This ring then travels away from the 

device under its own self-induced velocity. By the time the fluid is drawn into the cavity, 

the vortex ring has moved sufficiently far away so as to be relatively unaffected. 

Consequently, a train of vortices traveling away from the orifice is generated. In their 

experiments, the vortices rapidly undergo transition and lose their coherence. The resulting 

synthetic jet is turbulent.  The experimental findings of Smith and Glezer were supported 

by Kral et al. who performed a two dimensional numerical study of a laminar synthetic jet 

(Kral et al. 1997). 

 Rathnasingham and Breuer drew attention away from the jet and instead focused 

on the physics within the cavity (Rathnasingham and Breuer 1997a).  It was demonstrated, 
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by the use of experimental and simple numerical models, that there was significant fluid 

structure interaction between the resonant diaphragm and the fluid pressure in the cavity. 

Interest in the cavity was continued by Rizzetta et al. who solved the three-dimensional 

compressible Navier-Stokes equations both inside and outside of the cavity (Rizetta et al. 

1999). It was shown that significant vertical disturbances could be created in the cavity 

during the inflow cycle of the actuator. The cavity dimensions, such as cavity depth, also 

influenced the velocity profile of the jet at the orifice exit. 

The effectiveness of oscillatory blowing in separation control has been established 

experimentally and numerically (Hasan 1998, Donovan et al. 1998, Seifert et al. 1993, 

Seifert & Pack 1999). Active separation control was applied successfully for the first time 

at Reynolds numbers, corresponding to a jetliner at takeoff conditions. Oscillatory blowing 

proved to be an effective and efficient tool for the control of boundary-layer separation 

over a wide range of chord Reynolds numbers, representative of a micro-aerial-vehicle to 

commercial jetliners at takeoff. Using bench-top experiments, accompanied by theoretical 

analysis, it was determined that the level of velocity fluctuations exiting the blowing slot 

was proportional to the cavity pressure fluctuations normalized by the density, for low 

amplitudes (velocity < 10 m/s), whereas for high amplitudes it is proportional to the square 

root of the normalized pressure (Seifert et al. 1999). Based on these results, Seifert et al. 

proposed that a possible approach to closed-loop control of separation is to sense the 

trailing edge pressure and use that as an input to adjust the oscillatory blowing momentum 

coefficient to achieve the desired aerodynamic behavior, while maintaining effective 

frequency as 1 at all times. Effective frequency, as defined by Seifert and Pack, is the 



17 

oscillation of the diaphragm divided by the free stream velocity multiplied by the location 

of the jet on a wing. 

These successful attempts in separation control encouraged the investigation of the 

effect of synthetic jet actuator on simple two dimensional cylinder flows. Amitay et al. 

controlled lift and drag forces successfully by installing a pair of synthetic jet actuators 

side by side radially on the cylinder shell (Amitay et al. 1997 & 1998). Mallinson et al. 

investigated similar control on a cylinder but used a circular orifice instead of a rectangular 

orifice as in the previous case (Mallinson et al. 1999). Again, control over a cylinder was 

performed by Crook et al. also Wood et al., using a spanwise array of synthetic jet 

actuators to delay separation (Crook et al. 1999, Wood et al. 2000). Crook et al. 

constructed a device, a piezoelectric disc bonded to a brass shim, based on preliminary 

analysis by Rathnasingham and Breuer that modeled a thin circular plate as a piston. 

Results showed the model provided a good prediction of the mean value of the velocity in 

the developed jet though the model did not predict the peak centerline jet velocity.  

The standard synthetic jet actuator cavity design proposed by Glezer et al. was 

modified by Bryant et al. (Bryant et al. 1999) to demonstrate the potential benefits of high 

displacement piezoelectric actuators (HGA’s) such as Bimorph and Thunder® in synthetic 

jet actuation. These pre-stressed devices have the advantage of durability and being able to 

produce large deflections at non-resonant driving frequencies. Several studied conducted 

by Mossi et al. (Mossi & Bryant 2004a & b, Mossi et al. 2005b) have shown that the 

diaphragm used in the synthetic jet cavity has a significant effect on the jet velocity, yet its 

performance is highly dependant on geometrical, mechanical, and electrical parameters. 
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The main focus of this study is to gain complete knowledge of the physical details of the 

actuator device and based on the results design an efficient synthetic jet cavity capable of 

performing satisfactorily.  

 



 

 
 
 
 

CHAPTER 3 
 
 
 
 

3. Experimental Setup 

 

The piezoelectric actuators used in this study include Bimorph, Thunder®, Lipca 

and RFD. This section gives a detailed description of the construction of these 

piezoelectric composites. Also, the synthetic jet cavity and the various instruments used for 

the velocity and pressure measurements are described. It has been proven that the boundary 

conditions that a piezoelectric actuator is subjected to, have a significant impact on the 

final performance of the device. For instance Liew stated that different boundary 

conditions and applied voltages affect the shape control of piezo laminated composite 

beams (Liew et al. 2002). For this reason the clamping mechanism used becomes critical to 

the characterization of the synthetic jet and special consideration to its design is utilized. 

 

3.1 Bimorph 

  
  

Series Bimorphs consists of two thin ceramic sheets bonded together with their 

poling directions opposed and normal to the interface. When an electric field is applied to a 

bimorph, one of the plates expands while the other contracts. This mechanism creates a 
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bending mode that mimics piston like displacement. Bimorphs are capable of generating 

large bending displacements of several hundred micrometers on center or edge, but the 

response time (1 ms) and the generative force (1.0 N) are low (Dogan et al. 2001). In the 

current study, the Bimorph used is model T216-A4NO-573X manufactured by 

Piezoelectric Systems Inc. It consists of two nickel electroded PZT 5A discs with 

diameters of 63.5 mm and a total thickness of 0.41mm. They have a 1 kHz capacitance of 

130nF and have been shown to produce displacements up to 0.3 mm at low frequencies 

(Mossi et al. 2005a). A schematic of the disc alignment along with the final shape is shown 

in Figure 3.1. 

 + 

-

Poled for series operation 0.19 mm 

 

 

0.41 mm  

(a)   

 

 

 

 63.5 mm 

 (b) 

Figure 3.1 Bimorph (a) Layer Alignment, (b) Final Shape 
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3.2 Thunder®

Thin layer composite Unimorph ferroelectric Driver and Sensor (Thunder®) was 

developed at NASA Langley Research Center. It is an actuator that exploits the 

coefficients of thermal expansion mismatch between materials (Dausch & Wise 1998, 

Haertling 1994, Mossi et al. 1998, Wise 1998). The significant advantage that Thunder® 

actuators have over other Unimorph benders is their extremely rugged construction. This 

allows them to be more readily used in commercial applications, such as synthetic jets 

(Smith et al., 1999). The mechanical advantage of the Thunder® design is due to the 

increased flexibility of the device and the radial expansion created by the pairing of 

preselected thermally mismatched materials (Hellbaum et al. 1997). Thunder® transducers 

consist of an integrated sandwich of layers. The diaphragm used in the current study is 

made up of five layers. Prestressed metal layers make up the top and bottom and the 

piezoelectric layer is sandwich between them with a hot melt adhesive forming a thin 

bondline between the ceramic and metal layers. A schematic of the Thunder® is shown in 

Figure 3.2. 

Thunder® actuators can be fabricated in virtually any size and thickness (Mossi et 

al. 1998). A circular device manufactured by Face International Inc. is used in the present 

study. It is composed of three main layers, with two additional being the thin bondline; a 

top chemically etched copper layer 0.0254 mm thick, a middle piezoelectric layer of 

thickness 0.254 mm, and a bottom 0.254 mm thick layer of stainless steel. The copper and 

ceramic layers have diameters of 63.5 mm and the steel layer, 68.58 mm leaving a circular 

tab along the edge of 2.54 mm. This additional tab is included in the design to facilitate  
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 (b) 

Figure 3.2 Thunder® (a) Final Shape, (b) Layer Characteristics 
 

clamping of the device. The layers are laminated with a high temperature polyimide 

adhesive (Bryant 1996) through a layering high-temperature bonding process (Mossi et al. 

1998). The resulting actuator is saddle shaped with a capacitance of 110nF as shown in 

Figure 3.2. The piezoelectric ceramic used in both these diaphragms is a soft PZT type 5A. 

Thunder® exhibits its highest displacement at the center of the dome, and displacement 
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decreases drastically towards the edge of the actuator (Mossi & Bryant 2004a). The 

maximum center displacement measured is approximately 0.06 mm with a sawtooth signal 

at 5 Hz (Mossi et al. 2005a). 

 

3.3 Lipca 

Lightweight Piezo-composite Curved Actuator (LIPCA) is a powerful actuator that can be 

used for adaptive structure applications. LIPCA is manufactured by co-curing layers at an 

elevated temperature: glass/epoxy layer, unidirectional carbon/epoxy layer, and ceramic 

layer (Park et al. 2001, Yoon et al. 2002). Differences in coefficient of thermal expansion 

(CTE) of the layers result in the LIPCA’s post cure curvature. Based on the arrangement of 

the layers, the curvature and the displacement varies (Yoon et al. 2003a). The LIPCA 

shown in Figure 3.3(a) is made by Konkuk University, South Korea. It has a high CTE top 

layer of glass/epoxy with diameter 66.0 mm and thickness 0.09 mm, a near zero CTE 

unidirectional carbon/epoxy layer with 66.0 X 1.0 mm dimensions, a layer of PZT 5A 

ceramic 50.0 X 0.18 mm, and another glass/epoxy layer with the same dimensions in the 

bottom as shown by Figure 3.3(b).  

The circular LIPCA is not as curved as the circular Thunder®
 but produces higher 

center displacement of approximately 0.075 mm with a sawtooth driving signal at 25 Hz 

(Mane 2005). The difference in curvature is due to the fact that the processing temperature 

used for the LIPCA is much lower then the Thunder®
 (Yoon et al. 2003b). The capacitance 

is approximately the same as the Thunder®, 100nF.  
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Figure 3.3 LIPCA (a) Layer Arrangement, (b) Final Shape 
 

3.4 RFD 

The Radial Field Diaphragm (RFD) was developed by NASA Langley Research 

Center. It is comprised of a thin circular piezoelectric ceramic disk sandwiched between 

two polyimide “PI” dielectric films with either copper-etched dual intercirculating spiral or 

circular interdigitated ring electrodes (Bryant et al 2004 – JIMSS). For the spiraled 
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electrode pattern, positive and negative electrodes spiral inward to the center of the disk in 

a serpentine manner called Inter-Circulating Electrodes (ICE). As seen in Figure 3.4 this 

electrode pattern induces an electric field into the piezo ceramic that extends out radially 

from the center of the wafer (Bryant et al. 2004). The dielectric film serves as the electrode 

carrier and insulator. Because of its radial electric field, the ICE-RFD exhibits out of plane 

movement, when electrically stimulated, and do not transmit any substantial mechanical 

strain beyond the boundary of the ceramic element. This behavior is distinct from all other 

bender type actuators. The RFD in the current study has a diameter of 63.5 mm and is 

based in the PZT 5A ceramic. It has a very low capacitance of approximately 4nF at 1 kHz 

and can produce displacements up to 0.4 mm (Mossi et al. 2005a).  

 

 
Figure 3.4 RFD & Inter-Circulating Electrodes (ICE) (Bryant et al. 2004) 

 

3.5 Synthetic Jet Cavity 

The synthetic jet cavity is constructed of two 88 mm X 88 mm Plexiglas™ pieces. 

The plastic pieces have a 60.5 mm circular aperture in the center. A 5 mm wide and 1 mm 
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deep groove is machined along the perimeter of the aperture. The actuators are placed in 

between the two grooves reinforced with neoprene rubber on both sides to provide both a 

cushion and a seal as shown in Figure 3.5(a). The plastic pieces are sealed together along 

with a 1.6 mm thick covering plate that provides an axisymmetric orifice in the center. 

Seven 4 mm screws with washers are used to clamp the cavity, while one screw hole is left 

empty to serve as a port for the actuator electrical leads and additional attachments to the 

cavity. Equal torque of 424 Nmm is applied on each screw using a torque screwdriver to 

ensure constant pressure along the perimeter of the actuator. Once the assembled cavity is 

in place, the sealed synthetic jet cavity is mounted on a height gauge as shown in Figure 

3.5(b). 
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Figure 3.5 Synthetic Jet Cavity, (a) Final Assembly; (b) Clamped Actuator. 
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The cavity setup utilized allows variations in cavity height and orifice dimensions. 

The two cavities have overall dimensions of 88.0 x 88.0 x 19.1 mm and 88.0 x 88.0 x 11.0 

mm, which correspond to cavity heights of 9.55 mm and 5.5 mm respectively.  This cavity 

height, CH, is measured from the diaphragm to the orifice exit. Two cover plates with 

circular orifices have approximate diameters, Do, of 2.0 mm (small) and 3.67 mm (large) 

are used.  

 

3.6 Hotwire Calibration 

All velocity measurements are performed using a hotwire anemometer. It is a single 

cylinder sensor used for one dimensional flow measurements. It has a diameter of 4 µm 

and a length of 3.2 mm. With the help of the IFA 100 flow analyzer the hotwire 

anemometer measures the flow in terms of voltage. Using a calibration this voltage is 

converted to velocity.  

The calibration setup consisted of a standard pipe flow, with a pitot tube and an 

electronic pressure transducer as the calibration standard. As fully developed flow is 

required for calibration, the pipe had to be sufficiently long. In order to reduce turbulence, 

flow straightening devices were distributed along the length of the pipe that consisted of 

honeycombed PVC pipe distributed in several sections was used. Various experiments 

were conducted with different combinations of length and number of the honeycombs until 

fully developed flow was achieved. Different types of nozzles and diffusers were 

considered in finding the desired flow condition, fully-developed flow. The nozzle used at 
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the mouth of the wind tunnel was a 9.53 mm male quick release fitting, mounted onto an 

aluminum bracket that is fixed into a 187.33 mm diameter coupler.  The coupler was 

reduced to an 88.9 mm outside diameter pipe that was 2.52 m in length.  The nozzle was 

situated in the wind tunnel pipe, which was fitted into the 88.9 mm diameter PVC pipe. 

Foam was used around the pipe to dampen the oscillations that the tunnel would produce 

during operation as they could have a significant effect on the pressure.  The actual wind 

tunnel pipe that would become the calibration diameter was 19.05 mm diameter. This 

section of pipe was cut to a length of 2.65 m and measurements were taken at 2.48 m from 

the nozzle at the tunnel inlet. The hotwire was calibrated for use in airflows having 

velocities ranging from 0 to 60 m/sec. A picture of the nozzle flow coupler is shown in 

Figure 3.6 (a). The calibration facility along with the air supply assembly is shown in 

figure 3.6 (b). 

 A typical calibration curve is shown in Figure 3.7. A fourth order polynomial 

regression fit gives the coefficients required to obtain the velocity. Equation 3.1 gives the 

curve fit equation. Where Y is the velocity in m/s and x is the velocity in terms of voltage 

measured by the hotwire.   

 

2 30.8271 0.0561 2.4086 03 5.0757 5 3.8421 07Y x E x E x= + ⋅ − − ⋅ + − ⋅ − −E  

 Equation 3.1 
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 (a) (b) 

Figure 3.6 Hotwire Calibration Facility, (a) Nozzle Flow Coupler, (b) Calibration 
Pipe and Air Supply Assembly 

 
The assembled actuator-cavity is mounted onto an adjustable height gauge, with the 

actuators surface perpendicular to the hot-wire anemometer used to measure velocity. It 

can be traversed through the diameter of the synthetic jet orifice as shown in Figure 3.8. 

The Mathcad program used for the velocity conversion is given in APPENDIX.  
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Figure 3.7 A Typical Hotwire Calibration Curve 
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Figure 3.8 Hotwire dimensions with respect to the Synthetic Jet Orifice (a) small 
orifice, (b) large orifice 

 

3.7 Instrumentation and Measurements 

The driving signal is applied at high voltages and varying frequencies for each 

device. This signal is applied using a signal generator, a Hewlett Packard model HP33120, 

connected to an amplifier, TREK model PZD700. The velocity and voltage signals are 

monitored and recorded using an oscilloscope, LeCroy model 350L, and a National 

Instruments data acquisition system as shown in Figure 3.9. The amplitude and frequency 

of the applied signal were kept below their allowable maximums in order to prevent 

electrical and mechanical failure of the diaphragms. Table 3.1 gives the voltages and 

frequency ranges used for each actuator. Two driving signals, sine and sawtooth, are used 

with all experiments.  In case of the RFD the square wave signal is also used. 

Measurements can be divided into two sets. The first set of experiments includes 

velocity measurements in quiescent air with no additional attachments to the passive cavity 

of the synthetic jet. Velocity is measured at a fixed distance of 2 mm in the z direction for 

each actuator. To obtain velocity profiles along the length of the orifice, velocity is 
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measured at various locations along the orifice. To study the effects of frequency on the 

jet, the velocity is measured at the center of the orifice at the same fixed distance of 2mm 

in the z direction. These experiments are conducted on four synthetic jet cavity 

configurations. The differences in the cavities are the cavity height and the orifice 

diameter. The cavity configurations are shown in Table 3.2. 
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Figure 3.9 Instrument Layout 
 
 
 

Table 3.1 Experimental Parameters 
 
 
 
 
 
 
 
 
 
Table 3.2 Cavity 

 Bimorph THUNDER® LIPCA RFD 

Voltage 
125 Vpp 

150 Vpp 

250 Vpp 

400 Vpp 

200 Vpp 

350 Vpp 
800 Vpp 

Frequency 5 – 100 Hz 5 – 100 Hz 5 – 100 Hz 5 – 100 Hz 

 



32 

Parameters 
 

  CH (mm) 

5.50 9.55 

2.00 Cavity I Cavity II 
Do (mm)

3.67 Cavity III Cavity IV
 

In the second set of experiments, the passive cavity is pressurized. This is 

accomplished using compressed air from a regulated supply. A pressure regulator controls 

the pressure in the passive cavity to desired levels. Figure 3.10 gives a schematic of the 

synthetic jet cavity with the passive cavity pressurized. Again the velocities are measured 

and profiles mapped with different pressure levels in the passive cavity. 
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Figure 3.10 Cross sectional view of the Synthetic Jet cavity while pressurizing the 
Passive cavity 
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In case of the RFD, the differential pressure in the active cavity is also measured 

with respect to the pressure in the passive cavity as shown in Figure 3.11. The differential 

pressure in the active cavity is measured using an Endevco 8510 B-2 dynamic pressure 

transducer. As the pressure in the active cavity is dynamic, it cannot be measured using a 

regular transducer that measures average pressure. Also the pressures inside the cavity are 

very small and cannot be detected with a regular transducer. The dynamic pressure 

transducer has a range of 17.24 kPa and resolution of 0.14 kPa. A schematic of the setup is 

given in Figure 3.11. The active cavity pressure is measured at different voltages and 

frequencies, with no additional pressure added to the passive cavity. All the active and 

passive cavity pressure measurements throughout the project were done in the cavity IV 

configuration (Table 3.2). 
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Figure 3.61 Active Cavity Pressure Measurements 
 
 

 



 

 
 
 
 

CHAPTER 4 
 
 
 
 

4. Results 

 

The results presented below are divided into sections based on the factors 

considered for the characterization. Each factor is first discussed individually followed by 

a collective statistical analysis of all the factors. Such an analysis shows the significance of 

the factors providing a direction to future research on this topic as well as to illustrate the 

process of designing applications using piezoelectric actuators.  

 

4.1 Bimorph 

4.1.1 Driving Signal and Frequency Effects 

Previous studies on synthetic jets have used the sine wave as the driving input 

signal. A sine wave as the driving input requires relatively high frequencies to match the 

actuators resonance frequency to enable a synthetic jet formation with significant velocity 

magnitude. High frequencies however, consume more power and also physically limit the 

oscillation amplitude of the piezoelectric diaphragm that in turn limits the amount of air 
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volume displaced. In this section the jets driven using a sine and a sawtooth signal are 

studied. A sawtooth signal provides the force required to produce large velocities at low 

frequencies.  

A typical velocity curve formed with a sine wave is shown in Figure 4.1. Two jets 

are observed with the second jet smaller in magnitude. The first jet (larger jet) follows the 

leading edge of the input signal and the second jet (smaller jet) follows the trailing edge. 

The larger jet is believed to occur during the expulsion cycle, while the smaller jet is 

believed to occur during the ingestion cycle. Previous studied on the synthetic jet flow 

fields by Glezer et al. have indicated that during the ingestion cycle the flow reenters the 

cavity from the sides of the orifice. Thus the second jet may be due to the nonparallel 

direction of the flow, relative to the hotwire, entering the cavity. At lower frequencies, only 

one jet is formed indicating that at lower frequencies the flow during ingestion cycle is 

nearly parallel to the hotwire anemometer and hence cannot be detected. 

In the case of the sawtooth signal a single velocity jet is formed. As shown in 

Figure 4.2, the jet follows the leading edge of the input signal, with series of smaller jets 

immediately following the first jet. These jets may be caused by vibrations of the clamped 

actuator. The jets formed using sawtooth driving signals are larger in magnitude as 

compared to the ones formed with a sine wave.  

The amplitude of the driving signal has an effect on the maximum jet velocity as 

seen in Figure 4.3 for cavity IV. An increase in the input voltage produces greater 

velocities. This effect is seen in all the cavities and frequencies for both the studied driving 

signals. 
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Figure 4.1 Typical Velocity Curve with Sine Driving Voltage with Cavity IV for a 
Bimorph Diaphragm at 100 Hz and 150Vpp 
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Figure 4.2 Typical Velocity Curve with Sawtooth Driving Voltage with Cavity IV for 
a Bimorph Diaphragm at 25 Hz and 150 Vpp 

 



37 

 

Time (sec)

0.00 0.01 0.02 0.03 0.04 0.05

V
el

oc
ity

 (m
/s

)

0

10

20

30

40
125 Vpp 150 Vpp

Figure 4.3 Effect of Voltage on Velocity Magnitude with Cavity IV for a Bimorph 
Diaphragm at 50 Hz using a Sawtooth Signal 

 

To test the effects of frequency on velocity, the Bimorph is operated at various 

frequencies up to 100 Hz. As seen in Figure 4.4 with a sine wave input signal the velocity 

increases as frequency increases. In case of a sawtooth input, the velocity remains constant 

after approximately 10 Hz. This behavior is observed at all voltages and for all the cavities 

tested. Further discussion on these effects is given in the discussion and summary section 

at the end of this chapter. 
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Figure 4.4 Frequency Effects on Bimorph Diaphragm Peak Velocities for Cavity IV 

at 150 Vpp 
 

4.1.2 Cavity Height Effects 

In order to test the effects of changes in cavity height the profiles obtained from the 

four cavities were compared. Since cavity III and cavity IV have the same orifice diameter 

but different cavity heights their profile comparison will show the effects of changes in 

cavity height or cavity volume on the velocity magnitudes.  

Profiles for cavity III and cavity IV are shown in Figure 4.5. In the case of a sine 

driving signal, a difference of approximately 30% is observed between the maximum 

velocities of the two cavities with the smaller height/volume cavity producing the higher 
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velocity. Similarly, cavity I and cavity II are also compared as they have the same orifice 

diameter, a difference of 33% is observed.  
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Figure 4.5 Cavity Height Effects using a Sine Driving Signal for a Bimorph 
Diaphragm at 50Hz and 150 Vpp 

 

With a sawtooth driving signal the differences in velocities are smaller as shown in 

Figure 4.6. A comparison of cavity I and II profiles at 50Hz shows a difference of 25% and 

between cavity III and IV of only 13%. Similar to the sine signal, the cavity with the 

smaller volume produces higher velocities. The cavity I and II comparison is shown in 

Figure 4.6. The large difference between cavities I and II could be due to the relatively 

larger orifice of cavities III and IV.  
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Figure 4.6 Cavity Height Effects using a Sawtooth Driving Signal for a Bimorph 
Diaphragm at 50Hz and 150 Vpp 

 

4.1.3 Orifice Effects 

Next the effects of orifice size on jet velocity are studied. Figure 4.7 shows the sine 

wave driven profiles for cavities I and III that have the same cavity height (smaller CH) but 

different orifice diameters. It is observed that the smaller orifice diameter (smaller Do), 

cavity I, produces 63% higher velocities than cavity III, larger Do. This result is expected 

since to maintain a constant mass flow rate, the velocity through the smaller orifice has to 

be higher than the larger orifice. Similar trends are observed in the comparison between 

cavities II and IV with differences of 61%. 
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Figure 4.7 Orifice Size Effects using a Sine Driving Signal for a Bimorph Diaphragm 
at 50Hz and 150 Vpp 

 

In case of the sawtooth driven profiles, the differences in velocities are much 

smaller as shown in Figure 4.8 for cavities I and III. Differences between cavity I and III 

peak velocities are 17% and between cavity II and IV are only 4%. These results indicate 

that the synthetic jet velocity is dependent on the type of driving signal used.  
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Figure 4.8 Orifice Size Effects using a Sawtooth Driving Signal for a Bimorph 
Diaphragm at 50 Hz and 150Vpp 

 

4.1.4 Passive Cavity Pressure Effects 

To investigate the effects of pressure on the synthetic jet velocity the passive jet 

cavity is pressurized. Measuring the jet at various passive cavity pressures and frequencies 

showed that the peak jet velocity decreases as the passive pressure increases. The jet 

velocity decrease with increasing passive cavity pressure is shown in Figure 4.9 for a range 

of frequencies. While the graph shown is for a sine driving signal, similar results are seen 

for sawtooth driven synthetic jets. 
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Figure 4.9 Passive Cavity Pressure Effects on Synthetic Jet Velocity for a Bimorph 
Diaphragm Maximum Velocity at 150 Vpp using a Sine Driving Signal 

 

4.1.5 Statistical Factor Analysis 

In an experiment, one or more variables or factors are deliberately changed in order 

to observe the effect the changes have on one or more response variables. Experimental 

data are used to derive an empirical (approximation) model linking the outputs and inputs. 

These empirical models generally contain first and second-order terms. Screening designs 

are used to identify the few significant factors from a list of many potential ones. In short, 

screening designs are economical experimental plans that focus on determining the relative 
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significance of many main effects. This can be achieved using factorial designs 

(Montgomery 2005). 

The basic purpose of a factorial design is to economically investigate cause-and-

effect relationships of significance in a given experimental setting. By a factorial design, 

each complete trial or replication of the experiment for all possible combinations of the 

levels of the factors are investigated. The effect of a factor is defined to be the change in 

response produced by a change in the level of the factor. This is called a main effect as it 

refers to the primary factors or interest in the experiment. For some experiments, it is seen 

that the difference in response between the levels of one factor is not the same at all levels 

of the other factors. When this occurs, there is an interaction between the factors. As the 

number of factors in a 2k factorial design increases, the number of runs required for a 

complete replicate of the design rapidly outgrows the resources of most experimenters. If 

the experimenter can reasonably assume that certain high-order interactions are negligible, 

information on the main effects and low-order interactions may be obtained by running 

only a fraction of the complete factorial experiment. Since we are able to choose fractions 

of a full design, the whole experimental research process is made more economical and 

efficient. These fractional factorial designs are among the most widely used types of 

designs for product and process design and for process improvement. 

Screening experiments are usually performed in the early stages of a project when 

many of the factors initially considered may have little or no effect on the response. The 

factors identified as important are then investigated more thoroughly in subsequent 

experiments. It is common to begin with several discrete or continuous input factors that 
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can be controlled, that is, varied when desired by the experimenter and one or more 

measured output response variables which always are assumed to be continuous. In the 

current study, five factors were considered for each actuator, driving waveform, voltage, 

frequency, cavity height, and orifice size. The peak velocity of the jet is used as the 

response variable. A two level design is chosen due to the large number of factors 

involved. In a two factor experimental design each factor has two levels. These levels 

“low” and “high” are denoted by “–” and “+” respectively. 

The factor distribution showing the levels and the types of each factor is given in 

Table 4.1. A full factorial design requires 25 = 32 runs without center points or repetitions. 

Instead, a fractional factorial design, 25-1, was utilized requiring a total of 16 observations. 

The factors, shown in Table 4.1, have a resolution V which indicates that no main effects 

are confounded with any 2-factor interactions or 3-factor interactions; main effects are 

confounded with four-factor interactions. All the runs and their characteristics are shown in 

Table 4.2 such that the influence of each factor can be assessed individually. 

 

Table 4.1 Factor Distribution for a Bimorph Device 
 

Factors Symbols Low Level (-1) High Level (+1) Units Types 

Driving Waveform Fz Sawtooth (-1) Sine (+1) None Discrete 

Applied Voltage E 125 (-1) 150 (+1) Vpp Continuous

Frequency f 25 (-1) 50 (+1) Hz Continuous

Orifice Size Do 2 (-1) 3.67 (+1) mm Continuous

Cavity Height CH 5.5 (-1) 9.5 (+1) mm Continuous
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Table 4.2 Experimental Design 
 

Run No. Factors (Xi) Responsej

j Fz E f Do CH Yj

1 -1 -1 -1 -1 1 y1

2 1 -1 -1 -1 -1 y2

3 -1 1 -1 -1 -1 y3

4 1 1 -1 -1 1 y4

5 -1 -1 1 -1 -1 y5

6 1 -1 1 -1 1 y6

7 -1 1 1 -1 1 y7

8 1 1 1 -1 -1 y8

9 -1 -1 -1 1 -1 y9

10 1 -1 -1 1 1 y10

11 -1 1 -1 1 1 y11

12 1 1 -1 1 -1 y12

13 -1 -1 1 1 1 y13

14 1 -1 1 1 -1 y14

15 -1 1 1 1 -1 y15

16 1 1 1 1 1 y16

 

The most common empirical models fit to the experimental data take either a linear 

form or a quadratic form. In the present study only linear models are considered. A linear 

model will contain the main effect terms and interaction effect terms. The model is of the 

form shown in Equation 4.1.  

0 0 0
0 0

0

n n n

i i i i zik k ikz k
i i i

k k
z

X X X X X XY β β βµ ε
= = =

= =
=

⋅ ⋅ ⋅= + + + +⋅⋅⋅+∑ ∑ ∑               

Equation 4.1 

i = 1,2,…,n 

k = 1,2,…,n 

z = 1,2,…,n 

n is the number of factors 
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Here, Y is the response for given levels of the main effects Xi and the XiXk term is 

included to account for a possible interaction effect between Xi and Xk. Depending on the 

number of factors considered, the interaction term could contain more than two factors. 

The constant µ represents the sample mean of the response; β’s are parameters whose 

values are determined represent the coefficients for the considered factors and ε is the 

experimental error. Statistical results are used to assess the validity and influence of the 

particular effect on the response. 

From the entries in Table 4.2 all effects such as main effects, first-order interaction 

effects, etc can be calculated. To compute the main effect estimate of a factor, the average 

response at all runs at the ‘high’ setting are subtracted from the average response of all 

runs set at ‘low’ for that particular factor. This estimate is shown in Equation 4.2. 

 

1 1

2
j j

n n

i
j jnx y y+ −

= =

⎡ ⎤
⎢
⎢ ⎥
⎣ ⎦

−∆ = ⎥∑ ∑      

  Equation 4.2 
 

i = 1,2,…,n 

k = 1,2,…,n 

 

∆xi is the effect estimate, jy+  are all the responses with a high effect level for the 

corresponding effect; are all the responses with a low effect level for the corresponding jy−
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effect and n is the total number of runs. Similar the interactions effects can also be 

estimated.  

A regression analysis of the factors is shown in Table 4.3. The first part of the table 

shows a summary output of the regression. The R-square value is the relative predictive 

power of a model. The model shown has an R-square value of 0.9702 and an adjusted R-

square of 0.9627 indicating that 97% of the data can be predicted using the model. The 

adjusted R-square value is a better estimate of the model as it accounts for the size of the 

model as well.  This is unlike the R-square value, which increases as the number of factors 

increase even though they might not have an effect on the experiment.  

Following the summary is the Analysis of Variances (ANOVA). The ANOVA is 

sometimes called the F-test, and it helps determine the validity of the experimental design 

by testing the difference between two or more groups. When the F-value is larger than the 

Significance F-value, the experiment design is considered to be valid, indicating that at 

least one of factors have an effect on the response variable. The F-value shown in Table 

4.3 is computed from the mean square values, and Significance F-value is selected from 

the F-distribution tables based on the size of the sample, the number of factors, and the 

significance level selected which is 95% in this case. As the F-value is larger than the 

Significance F-value as seen in Table 4.3, the experiment design is considered to be valid 

and further analysis of the design can continue.  

The ANOVA only shows that the experimental design as a whole is valid but all 

the factors considered in the design may not be relevant. The analysis following the 

 



49 

ANOVA helps in determining the importance of all factors. The factors are analyzed on 

the basis of the corresponding p-value generated in the table. The p-value or calculated 

probability is the estimated probability of rejecting the null hypothesis of a study question 

when that hypothesis is true. If the p-value is less than the chosen significance level then 

the null hypothesis is rejected. The choice of significance level at which the hypothesis is 

rejected is arbitrary. In the current study, the null hypothesis is that none of the factors 

considered in the study are significant enough such that they may affect the jet velocity. 

The alternate hypothesis is that one or more factors are significant and to identify these 

factors the corresponding p-values are considered. Conventionally for this analysis the 5% 

(less than 1 in 20 chance of being wrong) levels or the 95% confidence internal mark has 

be chosen such that the p-value has to be less than 0.05 (Devore 2004). 

The p-values for Fz, Do and CH are found to be below the 0.05 mark at 2.58E-10, 

0.0018 and 0.0030 respectively. For the fractional factorial design of Table 4.1 the other 

two factors, E and f, did not appear to be significant. This does not indicate that these 

factors can be ignored completely. Interaction with main effects may be present but as the 

focus is only on linear models any additional effects are ignored in this study. 

From these results, a model is obtained as shown in Equation 4.3 such that Y is the 

velocity in m/s. This equation shows that Fz, Do and CH, the main effects can be linearly 

related to each other. 
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023.08 16.05 3.47 3.13z HY F D= − ⋅ − ⋅ − ⋅C     

Equation 4.3 

 
4.3 Initial Regression Analysis for a Bimorph Device 

Multiple R 0.98498
R Square 0.97019

Adjusted R 
Square 0.96274

Standard 
Error 3.38352

Obs. 16

ANOVA
df SS MS F Sig. F

Regression 3 4471.342 1490.447 130.1901 2.03E-09

Residual 12 137.3788 11.44824
Total 15 4608.72

Coeffs. Standard 
Error t Stat P-value Lower 

95%
Upper 
95%

Lower 
95.0%

Upper 
95.0%

Intercept 23.08 0.84588 27.28516 3.62E-12 21.23698 24.92302 21.23698 24.92302
F z -16.05038 0.84588 -18.97474 2.58E-10 -17.8934 -14.20736 -17.89339 -14.20736
D o -3.46688 0.84588 -4.09854 0.00148 -5.30989 -1.62386 -5.30989 -1.62386
C H -3.1345 0.84588 -3.7056 0.00301 -4.97752 -1.29148 -4.97752 -1.29148

SUMMARY OUTPUT

Regression Statistics

 

In the next section of the statistical analysis an additional factor, passive cavity 

pressure (PB), is added to the experimental design. For this factor the low level (-1) is set at 

0 pressure and the high level (+1) is set at 17.24 kPa or 2.5 psi. This modified fractional 
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factorial design has 24 runs with 6 factors and the same response variable of maximum 

velocity is used. The complete experimental design is shown in Table 4.4. 

 
Table 4.3 Complete Experimental Design 

 
Run No. Factors (Xi) Responsej

j Fz E f Do CH PB Yj

1 -1 -1 -1 -1 1 -1 y1

2 1 -1 -1 -1 -1 -1 y2

3 -1 1 -1 -1 -1 -1 y3

4 1 1 -1 -1 1 -1 y4

5 -1 -1 1 -1 -1 -1 y5

6 1 -1 1 -1 1 -1 y6

7 -1 1 1 -1 1 -1 y7

8 1 1 1 -1 -1 -1 y8

9 -1 -1 -1 1 -1 -1 y9

10 1 -1 -1 1 1 -1 y10

11 -1 1 -1 1 1 -1 y11

12 1 1 -1 1 -1 -1 y12

13 -1 -1 1 1 1 -1 y13

14 1 -1 1 1 -1 -1 y14

15 -1 1 1 1 -1 -1 y15

16 1 1 1 1 1 -1 y16

17 -1 -1 -1 1 1 -1 y17

18 1 -1 -1 1 1 1 y18

19 -1 1 -1 1 1 1 y19

20 1 1 -1 1 1 -1 y20

21 -1 -1 1 1 1 1 y21

22 1 -1 1 1 1 -1 y22

23 -1 1 1 1 1 -1 y23

24 1 1 1 1 1 1 y24

   

The table now contains all the experiments performed using the Bimorph device 

during the course of this study. The regression analysis shown in Table 4.5 gives all the 

important effects through the p-values. The model has an R-square value of 0.9264 and an 

adjusted R-square value of 0.9109. The most recently added factor PB is also found to be 
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significant. Thus four factors, Fz, Do, CH and PB, are seen to have main effects with p-

values of 2.02E-11, 0.0105, 0.0194 and 0.0053 respectively. Using Equation 4.2, the 

average effect sizes for the selected factors are estimated as -28.499 for FZ,-10.430 for Do, 

-9.931 for CH and -14.443 for PB. For the remaining factors the effect sizes were 2.614 for 

E and 1.094 for f. Plots of all the effects showing the average responses are shown in 

Figure 4.10. The main effects, FZ, Do, CH and PB, have a large slope as seen in the plots and 

the remaining factors have a very small slope indicating that they do not have a significant 

effect on the jet velocity. 

Using the coefficients determined in the regression a model is obtained as shown 

by Equation 4.4. Y ' is the velocity of the jet in m/s. Using this equation the jet velocity can 

be predicted for any set of conditions considered in the study.  

 

0' 18.53 14.25 3.29 2.96 4.72z H BY F D C= − ⋅ − ⋅ − ⋅ − ⋅P  

 Equation 4.4 
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Multiple R 0.96249
R Square 0.92638

Adjusted R 
Square 0.91088

Standard 
Error 5.0128

Obs. 24

ANOVA
df SS MS F Sig. F

Regression 4 6007.821 1501.955 59.7718 1.69E-10

Residual 19 477.435 25.12816
Total 23 6485.256

Coeffs. Standard 
Error t Stat P-value Lower 

95%
Upper 
95%

Lower 
95.0%

Upper 
95.0%

Intercept 18.5336 1.64082 11.2953 7.15E-10 15.09932 21.96788 15.09932 21.96788
F z -14.2495 1.02323 -13.9259 2.02E-11 -16.3911 -12.1078 -16.3911 -12.1078
D o -3.2947 1.160238 -2.83968 0.01048 -5.72311 -0.86629 -5.72311 -0.86629
C H -2.96233 1.16024 -2.55321 0.019427 -5.39073 -0.53392 -5.39073 -0.53392
P B -4.71858 1.49786 -3.15021 0.00527 -7.85363 -1.58352 -7.85363 -1.58352

SUMMARY

Regression Statistics

 

 
Table 4.4 Final Regression Analysis for a Bimorph Device 
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Figure 4.10 Average Factor Effects for a Bimorph Device 
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4.2 Thunder®

 

4.2.1 Driving Signal and Frequency Effects 

The Thunder® device is also operated using a sine and a sawtooth driving signal. 

The synthetic jet velocity curves are similar in shape to the Bimorph but smaller in 

magnitude for both driving signals. A typical velocity curve formed with a sine driving 

signal is shown in Figure 4.11. The voltage and velocity curves are out of phase with the 

velocity peak at an offset from the voltage peak and two peaks of different magnitudes are 

present. The larger peak follows the trailing edge of the voltage, and the smaller peak 

follows the leading edge. The larger jet is assumed to be during the expulsion phase of the 

synthetic jet cycle, and the smaller jet during the ingestion phase. At low frequencies the 

second jet is very small in magnitude and in some cases it may also be absent depending 

on the applied voltage. Similar behavior was observed with a Bimorph device. 

With a sawtooth driving signal a single jet is formed as shown in Figure 4.12. A 

single peak is seen with the velocity following the leading edge of the input signal. 

Immediately following the peak, oscillations are observed in the jet. Due to the stiffness 

nature of the Thunder® device, the impulse provided by the sawtooth signal causes it to 

oscillate. Since the magnitudes of oscillations are small compared to the jet velocity, these 

oscillating velocities are not taken into account. Overall, the magnitude of the jet formed 

by a sawtooth signal is larger than the jet formed with a sine driving signal. 
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Figure 4.11 Typical Velocity Curve with Sine Driving Voltage with Cavity IV for a 
Thunder® Diaphragm at 25 Hz and 400 Vpp 
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Figure 4.12 Typical Velocity Curve with Sawtooth Driving Voltage with Cavity IV for 
a Thunder® Diaphragm at 25 Hz and 400 Vpp 
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The magnitude of the synthetic jet is also dependent on the magnitude of the 

applied voltage for both driving signals. At higher voltages the shape of the velocity curve 

does not change but the magnitude of velocity increases as shown in Figure 4.13 using a 

sine driving signal. Similar changes in synthetic jet velocity are observed with a sawtooth 

driven Thunder®. 
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Figure 4.13 Effects of Voltage on Velocity Magnitude with Cavity IV for a Thunder® 
Diaphragm at 50 Hz with a Sine Signal 

 

The effects of frequency on the synthetic jet velocity are tested for both applied 

waveforms. With a sine wave driving signal the velocity is very small at low frequencies 

but it increases as the frequency increases. The velocity may stabilize at higher frequencies 

beyond the range tested here. A different behavior is seen in case of a sawtooth driven 

Thunder®. In this case the velocity increases up to approximately 10 Hz and then stays 

constant as the frequency increases. This behavior is shown in Figure 4.14 for both the 

 



58 

driving signals. Further discussion in this behavior is given in the last section of this 

chapter. 
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Figure 4.14 Frequency Effects on Thunder® Diaphragm Peak Velocities for Cavity 
IV at 400 Vpp 

 

4.2.2 Cavity Height Effects 

To test the effects of changes in cavity height and volume on the jet velocity, 

cavities having different heights but the same orifice size are tested. Since cavity I and 

cavity II have the same orifice size, their profiles are compared using both sine and 

sawtooth driving signals. The profiles for cavity I and II with a sine wave signal are shown 

in Figure 4.15.  
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The cavity with the smaller height, cavity I, produces velocities approximately 9% 

higher than the larger cavity. Similarly, cavity III and cavity IV are also compared as they 

have the same orifice. Differences between these profiles are higher approximately 27%. 

These differences could be due to the cavity III and IV combination of cavity height and 

large orifice, and thus the flow rate has to be higher to maintain a constant mass flow 

through the orifice. The cavity III and IV profiles are shown in Figure 4.16. 
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Figure 4.15 Cavity Height Effects shown using Cavities I and II for a Thunder® 
Diaphragm at 32 Hz and 400 Vpp with a Sine Driving Signal 

 

To see the effect of cavity height on jet velocity with a sawtooth driving signal, 

cavities I and II, and cavities III and IV, are compared. Figure 4.17 shows the cavity I and 

 



60 

II comparison. Cavity I produces approximately 20% higher velocity than cavity II and 

cavity III produces approximately 22% higher velocity than cavity IV. The differences in 

maximum velocities are higher with a sawtooth signal than a sinusoidal signal regardless 

of the orifice size. In general, regardless of the driving signal used the smaller cavity 

produces higher velocities. A possible reason for the smaller cavity producing more mass 

flow rate, hence velocity, might be that there are no areas in the cavity where vortices or 

pressure gradients can develop. 
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Figure 4.16 Cavity Height Effects shown using Cavities III and IV for a Thunder® 
Diaphragm at 32 Hz and 400 Vpp with a Sine Driving Signal 
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4.2.3 Orifice Effects 

The previous section showed that the orifice size may have some effect on the jet 

velocity. To further investigate this effect, cavities with the same volume but different 

orifice sizes are studied using two combinations, with the same volume: cavities I and III 

and cavities II and IV. The profiles for cavities I and III with a sine driving signal are 

shown in Figure 4.18. Differences of over 56% are seen in the maximum velocities of the 

two cavities. Analogous to the Bimorph device, the smaller orifice produces higher 

velocities. Similar differences of approximately 65% are seen in between cavities II and 

IV. 
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Figure 4.17 Cavity Height Effects using a Sawtooth Driving Signal for a 
Thunder® Diaphragm at 32 Hz and 400 Vpp 
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Smaller differences in velocities are seen with sawtooth driven synthetic jets as 

shown in Figure 4.19. A comparison of cavity I and III profiles shows a difference of 10% 

at 32 Hz at higher frequencies such as at 50 Hz, however the differences in the cavity I and 

III profiles is approximately 22%. These differences are still not as large as those seen with 

the sine driving signal. Similar results are seen while comparing cavities II and IV. At 

lower frequencies, the differences are lower approximately 13%, and increase at higher 

frequencies to approximately 23%. Similar to the sine driven jets the smaller orifice 

cavities form jets with larger velocities. 
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Figure 4.18 Orifice Size Effects using a Sine Driving Signal for a Thunder® 
Diaphragm at 32 Hz and 400 Vpp  
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Figure 4.19 Orifice Size Effects using a Sawtooth Driving Signal for a Thunder® 
Diaphragm at 32 Hz and 400 Vpp  

 

4.2.4 Passive Cavity Pressure Effects 

The passive cavity of the Thunder® based synthetic jet is pressurized at various 

levels up to 55 kPa to investigate the effects on synthetic jet velocity produced by the 

diaphragm, as shown in Figure 4.20, for a sawtooth driven jet. Results show that the 

velocity increases, reaches a peak, and then drops below the initial level as the passive 

pressure is increased. The peak is reached at approximately 20 kPa thus any increase in 

pressure above this level causes the jet velocity to drop. When the signal used is sinusoidal, 

a similar trend is observed with the velocity reaching a maximum at the same pressure as 

in the sawtooth of approximately 20 kPa as shown in Figure 4.21. This characteristic of the  
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Figure 4.20 Passive Cavity Pressure Effects on Synthetic Jet Velocity for a Thunder® 
Diaphragm at 400 Vpp using a Sawtooth Driving Signal 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.21 Passive Cavity Pressure Effects on Synthetic Jet Velocity for a Thunder® 

Diaphragm at 400 Vpp using a Sine Driving Signal 
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Thunder® device may be useful in the design of a pressure jet. This behavior of the jet is 

observed at all frequencies and voltages as shown in Figures 4.20 and 4.21 for a few 

selected frequencies at 400 Vpp. 

 

4.2.5 Statistical Factor Analysis 

A similar process used for the Bimorph is repeated for the Thunder® with the same 

factors. The analysis begins with a resolution V two level fractional factorial design, 25-1, 

requiring a total of 16 runs. A few of the factor levels used in case of the Thunder® are 

different from the Bimorph as shown in the factor distribution of Table 4.6, however, the 

response variable, maximum jet velocity, is the same. 

The 25-1 fractional factorial experimental design is the same as Table 4.2 used for 

the Bimorph. All the 16 runs with different level combinations for each factor are listed. A 

regression analysis with 95% confidence interval is shown in Table 4.7. The regression had 

an R-square value of 0.9394 and an adjusted R-square value of 0.9173. Only one factor, 

frequency f, was eliminated as its p-value, 0.8070, was found to be above the critical value 

of 0.05 for a 95% confidence interval analysis. This meant that the remaining four factors, 

FZ, E, Do and CH, having p-value, 9.4954E-08, 0.0370, 0.0180 and 0.0207 respectively had 

main effects. Frequency was not a main effect, but it could have an interaction effect which 

cannot be neglected. 
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Table 4.5 Factor Distribution for a Thunder® Device 

 

Factors Symbols Low Level     
(-1) 

High Level 
(+1) Units Types 

Driving Waveform Fz Sawtooth (-1) Sine (+1) None Discrete 

Applied Voltage E 250 (-1) 400 (+1) Vpp Continuous 

Frequency f 25 (-1) 50 (+1) Hz Continuous 

Orifice Size Do 2 (-1) 3.67 (+1) mm Continuous 

Cavity Height CH 5.5 (-1) 9.5 (+1) mm Continuous 

 

Using the coefficient values calculated in the regression a linear model fit is obtained 

shown by Equation 4.5 where Y is the velocity in m/s. 

 

18.287 13.9164 2.6968 3.1563 3.0694z o HY F E D= − ⋅ + ⋅ − ⋅ − ⋅C  

  Equation 4.5 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



67 

Table 4.6 Initial Regression Analysis for a Thunder® Device 
 

Multiple R 0.96921
R Square 0.93936

Adjusted R 
Square 0.91732

Standard 
Error 4.54818

Obs. 16

ANOVA
df SS MS F Sig. F

Regression 4 3525.13489 881.28372 42.60305 1.245E-06
Residual 11 227.54521 20.68593

Total 15 3752.68010

Coeffs. Standard 
Error t Stat P-value Lower 95% Upper 

95%
Lower 
95.0%

Upper 
95.0%

Intercept 18.28700 1.13704 16.08292 5.460E-09 15.78438 20.78962 15.78438 20.78962
F z -13.91638 1.13704 -12.23908 9.495E-08 -16.41899 -11.41376 -16.41899 -11.41376
E 2.69675 1.13704 2.37172 0.03704 0.19413 5.19937 0.19413 5.19937

D o -3.15625 1.13704 -2.77584 0.01804 -5.65887 -0.65363 -5.65887 -0.65363
C H -3.06938 1.13704 -2.69943 0.02068 -5.57199 -0.56676 -5.57199 -0.56676

Regression Statistics

SUMMARY 

 

In the next part of the statistical analysis an additional factor, passive cavity 

pressure (PB), is added to the experimental design. For this factor the low level (-1) is set at 

0 and the high level (+1) is set at 17.24 kPa or 2.5 psi. This experimental design is now a 

two level modified fractional factorial design with 6 factors and 24 runs. The response 

variable remains the same which is the maximum velocity. The complete design is shown 

in Table 4.4.  

A regression analysis is then conducted on this design as shown in Table 4.8. Here 

again f was eliminated as a main effect as its p-value, 0.3543, was found to be above the 

critical limit of 0.05. Four factors, FZ, E, Do and CH, had their p-values below 0.05 which is 
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the necessary condition for a 95% confidence interval. The pressure factor, PB, has a p-

value of 0.1725 which is not acceptable. However, eliminating this factor has a direct 

effect on the other factors, thus pressure cannot be eliminated from the regression but it is 

not considered as a main effect. The regression had an R square value of 0.8461 and an 

adjusted R square value of 0.8034. The p-values for the main factors are 0.0096 for FZ, 

0.0194 for E, 0.0426 for Do and 0.0480 for CH.  

The coefficients calculated in the regression are used in the model Equation 4.6 

where Y' is the peak velocity in m/s. As pressure cannot be eliminated it is included in the 

model as a main effect. Using this equation the velocity of the jet can be approximated.  

 

26.3293 11.521 0.0438 3.7865 1.5374 2.1264z o H BY F E D C P+= − ⋅ ⋅ − ⋅ − ⋅ +′ ⋅   

Equation 4.6 

Using Equation 4.2, the average effect sizes for the selected factors are estimated as 

-23.0419 for FZ, 6.5619 for E, -6.5318 for Do, -6.4015 for CH and 0.3268 for PB. The only 

factor not included f, the average effect size is 2.4403. Plots of all the effects showing the 

average responses are shown in Figure 4.22. The main effects, FZ, E, Do and CH graphs 

shown have large slopes indicating that they have a significant effect on the synthetic jet 

velocity. PB, has the smallest slope as seen in Figure 4.22 even lower than f. Even then it 

cannot be removed from the design maybe because PB, constitutes a distributed load across 

the surface of the device and it cannot be considered a factor by itself but in combination 

with other factors. The current study does not consider any factor combinations and is only 

aimed toward developing a first level linear model including the main effects.  
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Multiple R 0.91986
R Square 0.84614

Adjusted R 
Square 0.80341

Standard 
Error 6.26057

Obs. 24

ANOVA

Regres
Residual

Total

Upper 
95.0%

Inte 45.42195
F 0 -8.83612
E 0.07954

D 6 -0.14057
C 7 -0.01525
P 8 5.27055

Regression Statistics

SUMMARY

df SS MS F Sig. F
sion 5 3879.96284 775.99257 19.79838 9.531E-07

18 705.50541 39.19475
23 4585.46826

Coeffs. Standard 
Error t Stat P-value Lower 

95%
Upper 
95%

Lower 
95.0%

rcept 26.32927 9.08776 2.89722 0.00960 7.23659 45.42195 7.23659
z -11.52096 1.27793 -9.01530 4.294E-08 -14.20580 -8.83612 -14.2058

0.04375 0.01704 2.56739 0.01938 0.00795 0.07954 0.00795
o -3.78646 1.73538 -2.18192 0.04261 -7.43236 -0.14057 -7.4323
H -1.53741 0.72452 -2.12197 0.04798 -3.05957 -0.01525 -3.0595
B 2.12639 1.49656 1.42085 0.17245 -1.01778 5.27055 -1.0177  

Table 4.7 Final Regression Analysis for a Thunder® Device 
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Figure 4.22 Average Factor Effects for a Thunder® Device 
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4.3 Lipca 

 

The factors considered for the Bimorph and Thunder® were also studied for the 

Lipca. In the following sections each factor is discussed individually followed by a 

statistical analysis of all the factors collectively. All the analysis leads to an empirical 

equation which can be used to optimize the synthetic jet velocity in m/s.  

  

4.3.1 Driving Signal and Frequency Effects 

The sine and sawtooth signals are used to drive the synthetic jet actuator similar to 

the Bimorph and Thunder® actuators. A typical velocity curve with a sine signal has two 

peaks for different magnitudes. The larger peak is thought to be during the expulsion part 

of the jet cycle and the smaller peak the ingestion part. Similar behavior was observed for 

the other two actuators. The larger peak follows the leading part of the signal and the 

smaller peak the trailing part as seen in Figure 4.23. At low frequencies, the second peak 

becomes smaller similar to the behavior of the other actuators. 

The magnitude of the velocity produced by a sawtooth signal was greater than with 

a sine signal. This could be due to the extra impulse present in the signal as opposed to the 

gradual rise and fall of a sine wave. This is illustrated by the velocity curve with a 

sawtooth signal, that has a single peak as shown in Figure 4.24. The peak follows the 

leading edge of the signal and drops immediately after. The graph also shows oscillations 

immediately following the big velocity peak similar to the behavior of the Thunder®. 
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Figure 4.23 Typical Velocity Curve with Sine Driving Voltage with Cavity I 
for a Lipca Diaphragm at 25 Hz and 350 Vpp 
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Figure 4.24 Typical Velocity Curve with Sawtooth Driving Voltage with Cavity IV for 
a Lipca Diaphragm at 25 Hz and 350 Vpp 
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As seen in the previous two actuators, the velocity was also dependent on the 

magnitude of the input signal. At higher voltages the velocity was higher, as seen in Figure 

4.25, with a sawtooth driving signal for 200 Vpp and 350 Vpp at 25 Hz. Similar behavior 

was observed with sine driven synthetic jets regardless of the frequency used. 
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Figure 4.25 Effect of Voltage on Velocity Magnitude with Cavity IV for a Lipca 
Diaphragm at 25 Hz with a Sawtooth Signal 

 
 

Next the effects of frequency on the synthetic jet velocity are studied using both the 

driving signals. With the sine wave the velocity produced increases as the frequency 

increases. The sawtooth signal causes a very different effect on the jet with the velocity 

stabilizing at approximately 10 Hz as shown in Figure 4.26. 
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Figure 4.26 Frequency Effects on Lipca Diaphragm Peak Velocities for Cavity IV at 
350 Vpp 

 

This trend has been observed in all three actuators studied so far. It is hypnotized 

that in case of the sawtooth signal the active cavity is saturated at a low frequency (10 Hz 

in this case) such that the velocity cannot increase any further. However, with sine, as the 

rise and fall is gradual, the saturation frequency is reached in the frequency range tested. It 

is predicted that at higher frequencies, then tested in the current study, a constant will be 

reached at which the active synthetic jet cavity will be saturated. A graph showing the 

effects with the two signals is shown in Figure 4.26. This characteristic was seen at all 

voltages and with all cavity sizes and orifice diameters. 
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4.3.2 Cavity Height Effects 

Cavity height effects are studied using velocity profiles measured at the orifice of 

the synthetic jet. Comparing the velocity profiles of cavities with different heights but 

same diameters such as cavity I and cavity II and also cavity III and cavity IV help in 

identifying these effects. The comparison between cavity I and II profiles using a sine 

driving signal is shown in Figure 4.27. Differences on velocities at frequencies of 50 and 

32 Hz for cavities I and II, are in the range of 20 – 30%. Differences on velocity at 

frequencies of 50 Hz and 32 Hz for cavities III and IV are in the range of 37 – 40%. 

Cavities III and IV have higher difference than cavities I and II. This could be due to the 

differences in orifice diameter and an interaction on these factors Do, CH may be possible.  
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Figure 4.27 Cavity Height Effects using a Sine Driving Signal for a Lipca Diaphragm 
at 50 Hz and 350 Vpp 
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When the synthetic jet is driven with a sawtooth signal, the differences are much 

smaller. Cavity I and II comparison shows differences of only 9% at 32 Hz and 16% at 50 

Hz. The cavity I and II comparison at 50 Hz is shown in Figure 4.28. Cavity I with a 

smaller height produces higher velocity than cavity II. The differences comparing cavities 

III and IV are higher at approximately 28% at 32 Hz and 20% at 50 Hz. Here again the 

larger differences in velocity are seen in cavities with larger orifice diameters.  
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Figure 4.28 Cavity Height Effects using a Sawtooth Driving Signal for a Lipca 

Diaphragm at 50 Hz and 350 Vpp 
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4.3.3 Orifice Effects 

In the previous section it was seen that orifice size had some effect on the jet 

velocity. Comparing cavities I and III and also cavities II and IV help in studying these 

differences in detail as they have the same cavity heights but different orifice diameters. 

The differences with a sine driving signal between cavities I and III at 32 Hz are shown in 

Figure 4.29. Large differences of approximately 58% are seen at 32 Hz and of 61% at 

50Hz. Similarly comparing II and IV also shows high differences of 67% at 32 Hz and 

66% at 50 Hz. These differences are significant and could lead to the conclusion that 

orifice is an important factor. 

ro/Do

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

V
el

oc
ity

 (m
/s

)

0

2

4

6

8

Cavity I
Cavity III 

V
elocity (m

/s)

Figure 4.29 Orifice Size Effects using a Sine Driving Signal for a Lipca Diaphragm at 
32 Hz and 350 Vpp 
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The results are opposite with a sawtooth driving signal. As seen in Figure 4.30 the 

profiles for cavities I and III at 32 Hz were almost identical with minimal differences at 50 

Hz (not shown), only 2% differences were observed. Cavities II and IV however, show 

higher variations, 21% at 32Hz and 6% at 50Hz. Thus, with a sine wave large differences 

are measured and with a sawtooth signal small differences. 
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Figure 4.30 Orifice Size Effects using a Sawtooth Driving Signal for a Lipca 
Diaphragm at 32Hz and 350 Vpp 
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4.3.4 Pressure Effects 

The passive cavity of the synthetic jet actuator was pressurized at various levels 

until the jet velocity dropped to zero. As the pressure was increased the velocity of the jet 

also increased until it reached a peak at a certain pressure and then falls as the pressure is 

further increased. The velocity peak was seen at approximately 17 kPa with both the 

driving signals, and at approximately 55 kPa the velocity returned to its initial level. This 

behavior is shown in Figure 4.31 with a sine driving signal. Similar behavior was seen with 

a sawtooth driving signal, with the velocity peaking at approximately the same passive 

cavity pressure of 17 kPa. 
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Figure 4.31 Passive Cavity Pressure Effects on Synthetic Jet Velocity for a Lipca 

Diaphragm at 350 Vpp 
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4.3.5 Statistical Factor Analysis 

In this section all the factors discussed above are related with an empirical equation 

using statistical tools such as factorial experimental designs and regression analysis. The 

procedure used in case of the Bimorph and Thunder® devices was repeated for the Lipca as 

well. Since a full factorial design is not practical a two level fractional factorial design, 25-

1, requiring 16 runs or experiments is used. 

 

Table 4.8 Factor Distribution for a Lipca Device 
 

Factors Symbols Low Level 
(-1) 

High Level 
(+1) Units Types 

Driving Waveform Fz
Sawtooth  

(-1) Sine (+1) None Discrete 

Applied Voltage E 250 (-1) 350 (+1) Vpp Continuous 

Frequency f 25 (-1) 50 (+1) Hz Continuous 

Orifice Size Do 2 (-1) 3.67 (+1) mm Continuous 

Cavity Height CH 5.5 (-1) 9.5 (+1) mm Continuous 

 

Table 4.9 gives the factor distribution along with the levels used for each factor. 

The levels for each factor are chosen based on the characteristics of the actuator. Except 

for the driving waveform factor, all the factors are continuous. Maximum jet velocity is the 

response variable.  

Using these factors an experimental design similar to the one used for the previous 

two actuators is constructed. A 95% confidence interval regression analysis on this design 
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shown in Table 4.10 helps in identifying the main effects. Since frequency, f, has a p-value 

of 0.4832 which is above 0.05 it is not considered as one of the main effects. The other 

four factors have valid p-values thus they are considered as main effects. The p-values of 

the selected factors were 8.2368E-08 for FZ, 0.0254 for E, 0.0259 for Do and 0.0147 for 

CH. The regression had an R square value of 0.9411 and an adjusted R square value of 

0.9196. 

Using the coefficients obtained from the regression analysis a model fit is possible 

as given by Equation 4.7. The factors included in the equation are considered as main 

effects with Y as the velocity of the jet in m/s. 

 

17.6170 13.4064 2.7906 2.7803 3.1216z o HY F E D= − ⋅ + ⋅ − ⋅ − ⋅C  

Equation 4.7 
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Table 4.9 Initial Regression Analysis for a Lipca Device 
 

Multiple R 0.97008
R Square 0.94106

Adjusted R 
Square 0.91963

Standard 
Error 4.32153

Obs. 16

ANOVA
df SS MS F Sig. F

Regression 4 3279.90553 819.97638 43.90633 1.067E-06

Residual 11 205.43142 18.67558
Total 15 3485.33694

Coeffs. Standard 
Error t Stat P-value Lower 

95%
Upper 
95%

Lower 
95.0%

Upper 
95.0%

Intercept 17.61694 1.08038 16.30622 4.718E-09 15.23903 19.99484 15.23903 19.99484
F z -13.40644 1.08038 -12.40899 8.237E-08 -15.78434 -11.02853 -15.78434 -11.02853
E 2.79056 1.08038 2.58294 0.02546 0.41266 5.16847 0.41266 5.16847

D o -2.78031 1.08038 -2.57345 0.02589 -5.15822 -0.40241 -5.15822 -0.40241
C H -3.12156 1.08038 -2.88932 0.01472 -5.49947 -0.74366 -5.49947 -0.74366

SUMMARY

Regression Statistics

 
 

 
Based on this initial analysis the last factor of passive cavity pressure, PB, is added 

to the experimental design increasing the number of runs or experiments to 24. The low 

level (-1) is set to 0 Pa and the high level (+1) is set at 27.58 kPa or 4.0 psi. The modified 

fractional factorial design is shown in Table 4.4. The table now contains all the factors and 

represents all the experiments conducted during the course of this project using the Lipca 

actuator.  

 



83 

A regression on the complete design leads to the elimination of f and PB from the 

factors as their p-values, 0.8757 and 0.2816, are out of the critical limit of 0.05 for a 95% 

confidence interval. The final regression table containing the remaining factors, FZ, E, Do 

and CH, as the main effects is shown in Table 4.11. The p-values for FZ, E, Do and CH are 

5.4827E-09, 0.01329, 0.0231 and 0.0131 respectively. The regression had an R square 

value of 0.8681 and an adjusted R square value of 0.8404 indicating that 87% of the data 

can be predicted using the model. The main effect average sizes calculated using Equation 

4.2 are -23.4788 for FZ, 6.4268 for E, -8.1390 for Do and -8.6509 for CH. The average 

effects for the eliminated factors are 0.3812 for f and -2.0898 for PB. These two factors are 

eliminated as main effects, but could be coupled to the main effects. Figure 4.32 shows the 

average response size graphs for each factor. f and PB have very small slopes and the main 

effect graphs have larger slopes with FZ having the highest slope in the negative direction 

indicating that the sawtooth signal gives higher velocities. 
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Multiple R 0.93173
R Square 0.86812

Adjusted R 
Square 0.84035

Standard 
Error 5.76574

Obs. 24

ANOVA
df SS MS F Sig. F

Regression 4 4157.67688 1039.41922 31.26661 4.053E-08

Residual 19 631.63122 33.24375
Total 23 4789.30810

Coeffs. Standard 
Error t Stat P-value Lower 

95%
Upper 
95%

Lower 
95.0%

Upper 
95.0%

Intercept 17.20990 1.28926 13.34868 4.202E-11 14.51145 19.90835 14.51145 19.90835
F z -11.73942 1.17693 -9.97464 5.483E-09 -14.20275 -9.27608 -14.20275 -9.27608
E 3.21342 1.17693 2.73035 0.01329 0.75008 5.67675 0.75008 5.67675

D o -3.18735 1.28926 -2.47224 0.02305 -5.88580 -0.48890 -5.88580 -0.48890
C H -3.52860 1.28926 -2.73692 0.01310 -6.22705 -0.83015 -6.22705 -0.83015

SUMMARY

Regression Statistics

The final model fit equation is given below by Equation 4.8 where Y' is the velocity 

in m/s. Using this equation an approximate velocity can be calculated for a set of 

conditions.  

 

 

17.210 11.739 3.2134 3.1874 3.5286z o HY F E D C+= − ⋅ ⋅ − ⋅ − ⋅′

Table 4.10 Final Regression Analysis for a Lipca Device 

Equation 4.8 
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Figure 4.32 Average Factor Effects for a Lipca Device 
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4.4 RFD 

 

This actuator is very different from the others in its construction. The following 

sections discuss all the experiments that were conducted on these actuators with the aim to 

better understand them. 

 

4.4.1 Waveform Effects 

For this actuator three driving signals, sine, sawtooth and square were used. Each 

signal produces a velocity curve with a different shape and magnitude. The sine driving 

velocity curve at 50 Hz in cavity IV is shown in Figure 4.33. As seen in the previous three 

actuators, two velocity peaks are observed with the larger peak following the leading edge 

of the driving signal and the smaller peak following the trailing edge. The larger peak is 

formed during the expulsion part of the synthetic jet cycle, and the smaller peak is formed 

during the ingestion part of the cycle. 

Similar to the other actuators with a sawtooth signal, a single velocity peak is 

formed during the expulsion cycle. As seen in Figure 4.34 the jet follows the leading edge 

of the input signal. Immediately following the peak oscillations are observed in the 

velocity curves that are present at all voltages and frequencies. 
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Figure 4.33 Typical Velocity Curve with a Sine Driving Signal with Cavity IV for a 
RFD Diaphragm at 50 Hz and 800 Vpp 
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Figure 4.34 Typical Velocity Curve with a Sawtooth Driving Signal with Cavity IV 
for a RFD Diaphragm at 50 Hz and 800 Vpp 
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Based on the results with the sine and sawtooth signals, it can be concluded that the 

synthetic jet flow was affected by the driving signal used. To verify the effects another 

waveform, square wave was tried. By studying the behavior of the velocity jets formed 

using these different waveforms, the movement of the flow into and out of the cavity can 

be assessed. Thus, a square wave signal is studied as it provides a stronger force compared 

to the sine and it has two impulses versus one with a sawtooth signal. As seen in Figure 

4.35, with a square driving, signal two peaks of different magnitudes are formed. The first 

peak follows the leading edge and the second peak follows the trailing edge of the driving 

signal. The double peaks are due to the double impulse provided by the square wave 

signal. The larger peak formed during the expulsion cycle follows the leading edge of the 

driving signal and the smaller peak during the ingestion cycle follows the trailing edge. 
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Figure 4.35 Typical Velocity Curve with a Square Driving Signal with Cavity IV for a 
RFD Diaphragm at 50 Hz and 800 Vpp 
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The sawtooth and square signals provide a sudden impulse that causes the 

diaphragm to oscillate, and also produce larger velocity than a sine wave. The magnitude 

of the jet produced with a square signal was similar to the sawtooth jet and much larger 

than the sine jet.  

4.4.2 Frequency Effect 

To study the effects of frequency on velocity the jet is run at various frequencies 

from 1 – 90 Hz. Figure 4.31 shows the graphs for each driving signal at 800 Vpp. With a 

sine and a sawtooth signal the behavior of the RFD was similar to the previous three 

actuators. In case of the sine driving signal, the velocity increases as the frequency is 

increased.  With a sawtooth signal, the velocity increases up to approximately 10Hz and 

then remains constant. This behavior is shown in Figure 4.36 at 800 Vpp. This figure also 

shows the square signal output, which is similar to the sawtooth signal, the peak velocity 

increased up to approximately 10 Hz and then remained constant. The frequency range 

tested with a square signal was smaller then the range used for the other two signals as the 

actuator tends to fail at high frequencies. This could be due to the dielectric break down of 

the adhesive.  
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Figure 4.36 Frequency Effects on RFD Diaphragm Peak Velocities with Cavity IV at 
800 Vpp 

 

4.4.3 Active Cavity Pressure 

As the diaphragm oscillates, pressure changes are expected in the active cavity. As 

these pressures are very small in magnitude they are difficult to measure with standard 

pressure transducers. This section contains a brief discussion on the dynamic pressure 

measurements in the synthetic jet active cavity. The differential pressure in the active 

cavity was measured with respect to the passive cavity pressure.  

The graph in Figure 4.37 shows the velocity and active cavity pressure curves at 50 

Hz with a sawtooth signal. The transducer has a resolution of 0.14 kPa and the pressures in 

the cavity are in the range of -0.6 to +0.6 kPa. Thus the pressure signal was noisy; 
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however, it appears to follow the velocity and the leading edge of the voltage curve. The 

pressure peaks the same time as the velocity indicating that there may be a relationship 

between the velocity produced by the synthetic jet and the pressure in the active cavity. 

With a sine signal the pressures are below the minimum range of the pressure transducer, 

thus it could not be measured. 
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Figure 4.37 Active Cavity Pressure with Velocity and Voltage with a Sawtooth 
Driving Signal in Cavity IV for a RFD Diaphragm at 50 Hz and 800 Vpp 

 

Next, the effects of frequency on active cavity pressure were tested as shown in 

Figure 4.38. It is expected that the pressure follows the same trend as the velocity.  In case 

of a sinusoidal waveform the pressures are so low that a clear result is not obtainable 

although a slight increase in pressure was noticed as the frequency increased. With a 

sawtooth and square wave, the pressures are higher and were measured successfully. In 

these cases, the pressure increases until approximately 40 Hz, and then remains constant. 
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This behavior was similar to the velocity, with the velocity stabilizing at a lower frequency 

than with added pressure. This indicates that there is a coupling between jet velocity and 

active cavity pressure. 
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Figure 4.38 Frequency Effects on Active Cavity Pressure for Cavity IV with a RFD 
Diaphragm at 800 Vpp 

 
 

4.4.4 Velocity Profiles 

Similar to the other three actuators velocity profiles are mapped at the orifice 

diameter. The profile is shaped like a Gaussian curve with the velocity maximum at the 

center of the orifice and minimum at the edges as seen in the previous three actuators. With 

a square signal as well profiles having a similar shape are measured as shown in Figure 
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4.39 at 50Hz. The only difference in profiles with the three signals was magnitude with the 

square signal producing the highest velocities and the sine signal producing the lowest 

velocities. A profile with sine driving signal is shown in Figure 4.40 at 32 Hz. 
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Figure 4.39 Velocity Profile with Cavity IV using a Square Driving Signal for a RFD 
Diaphragm at 50 Hz and 800 Vpp 

 
 
 
 
 
 
 

 
 
 
 
 

 



94 

ro/Do

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

V
el

oc
ity

 (m
/s

)

0

1

2

3

4

5

V
elocity (m

/s)

Figure 4.40 Velocity Profile with Cavity IV using a Sine Driving Signal for a RFD 
Diaphragm at 32 Hz and 800 Vpp 

 

4.5 Discussion and Summary 

While testing for relevance of changes in cavity volume on the jet velocity it was 

observed that orifice size had an effect on the results. From the results it was not certain 

which factor has a greater influence on the velocity. In order to derive a relation between 

the cavity volume, orifice diameter and the jet velocity the equation for the conservation of 

mass ( Fox and McDonald 1992) is considered as shown in Equation 4.9. 

 

0
CV CS

dV V dAt ρ ρ∂= +
∂ ∫ ∫ ⋅

rr
   Equation 4.9 
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The first term represents the rate of change of mass within the control volume in 

this case the active cavity of the synthetic jet actuator and the second term represents the 

net rate of mass flux out through the control surface. Conservation of mass requires that 

the sum of the rate of change of mass within the control volume, and the net rate of mass 

outflow through the control surface be zero. With respect to the current study a simplified 

version of the first term of Equation 4.9 in terms of the cavity geometry is shown in 

Equation 4.10. 

 

2

4
D

CV
D C

t
dVt

Hπρρ ∆= ⋅
∆

∂
∂ ∫      Equation 4.10 

 

DD is the diameter of the diaphragm and the density is assumed to be constant. The 

right side of the equation represents the change in the volume of the synthetic jet cavity 

with respect to time. 

Similarly the second term of Equation 4.9 can also be written in terms of the cavity 

dimensions, particularly in this case the dimensions of the exit or the orifice. The 

simplified equation is given in Equation 4.11. 

 

    
2

4
o

jCS
DV dA V πρρ = ⋅⋅∫

rr
    Equation 4.11 
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Vj is the velocity of the jet and density is assumed to be constant. Equating 

Equations 4.10 and 4.11 gives a relation between jet velocity and the two factors as shown 

by Equation 4.12. 

2
H

j
o

CV
D

∝     Equation 4.12 

 

This relationship shows that the jet velocity is directly proportional to the cavity 

height and inversely proportional to square of the orifice diameter. Thus the orifice 

diameter has a larger effect on the velocity than the cavity volume and any study on the 

cavity volume has to take into account the orifice diameter.  

A summary of the statistical analysis showing the relevant factors by a tick mark 

and the factors, which were eliminated by a cross for each actuator, is given in Table 4.12.  

 

Table 4.11 Summary of Relevant Factors 
 

 FZ E f Do CH PB

Bimorph √ Χ Χ √ √ Χ 

Thunder® √ √ Χ √ √ ND 

Lipca √ √ Χ √ √ Χ 

    ND : Not Determined 
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Table 4.122 Summary of Peak Velocities 

 

 Bimorph Thunder® Lipca RFD 

Velocity 
(m/s) 35 - 50 30 - 45 30 – 45 25 - 35 

Frequency 
(Hz) 1 - 100 1 - 100 1 - 100 1 - 60 

 
 Considering the magnitudes of the jet velocities measured with each device the 

Bimorph was seen to produce the highest range of velocities and the RFD the lowest. All 

the actuators produced velocities in the range of 25 – 50 m/s as shown in Table 4.12. 

 Besides the factors considered in this project the study can be expanded to include 

a number of additional factors such as, the cavity design, the covering plate thickness, the 

orifice shape, the size of the diaphragm, etc. Although these factors have not been 

considered in this study they could have an effect of the synthetic jet performance.  

 

 

 



 

 
 
 
 

CHAPTER 5 
 
 
 
 

5. Conclusions 

 

Four actuators, Bimorph, Thunder®, Lipca and RFD were studied to test the effects 

of specific factors on the performance of the synthetic jet actuator using velocity of the jet 

as the response variable. Using statistical analysis tools such as screening designs and 

fractional factorial models, an empirical equation was derived to predict the velocity of the 

jet for a set of conditions. Among the factors studied were the driving signal used to excite 

the diaphragms, the magnitude and frequency of the signal, the volume of the cavity 

described by the cavity height, the size of the exit or orifice and the pressure in the passive 

cavity of the jet.  

Two driving signals, sine and sawtooth were tested for all actuators.  An additional 

waveform, square was tested only in case of the RFD. Results show that driving signal has 

a significant effect on velocity for all actuators. The sawtooth signal produces higher 

velocities then the sine signal. This effect may be due to the additional impulse provided 

by the sawtooth signal. The sine signal produced two velocity peaks with all actuators, the 

larger peak is assumed to be during the expulsion part of the synthetic jet cycle and the 
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smaller peak the ingestion part. With the sawtooth signal a single peak was formed in all 

cases, but also oscillations are seen in the velocity signals that increase in frequency as the 

driving frequency is increased. As the actuators are clamped along the perimeter, they tend 

to oscillate when a voltage is applied. In case of the RFD, with a square signal, the 

synthetic jet produces velocities in the same range as the sawtooth signal. Due to the 

double impulse present in the square signal, two velocity peaks having different 

magnitudes are formed for the expulsion and ingestions parts of the cycle. Even though the 

square signal produces high velocities this type of waveform causes dielectric breakdown 

at low frequencies thus damaging the actuator. 

The actuators were driven at two voltages, high and low according to their 

respective allowable driving fields to test the effects of the jet velocity. The velocities 

tended to increase at higher voltages regardless of the driving signal used. The maximum 

voltages the actuators were driven at were below the maximum allowed voltage for each 

device to avoid damage to the actuator.  

To see the effects of frequency on synthetic jets the actuators were driven at various 

frequencies. For the range of frequencies tested for each actuator, the velocity increased as 

frequency was increased in case of a sine driving signal. But with a sawtooth signal the 

trend was very different with the velocity reaching a constant value at approximately 10 Hz 

for all actuators. The reason for such behavior with the sawtooth signal could be something 

called the choking condition seen in nozzle flows (John 1984). If the flow is fast enough, 

the pressure in the restriction drops to zero, so the flow is limited to this rate regardless of 

the pressure in the back of the restriction. The phenomenon of choking exists only in 
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compressible flow and can occur in several flow situations. It is possible that with a 

sawtooth signal saturation point is reached making the fluid in the cavity compressible and 

restricting the velocity through the cavity. Due to the additional force present in the 

sawtooth signal, this saturation point is reached at a low frequency. It is possible that a 

similar choking condition could occur with a sine signal at much higher frequencies above 

the ranges tested in the current study. With a square wave, the RFD behaves in a similar 

manner to a sawtooth signal, choking at a low frequency of approximately 10 Hz.  

Next geometrical factors of the synthetic jet cavity such as cavity volume and 

orifice size are tested. Four cavity configurations are studied for Bimorph, Thunder® and 

Lipca with the sine and sawtooth driving signals. Changing the cavity height leads to 

changing the volume of the cavity, thus the effects of changing the volume of the cavity 

are studied. For all actuators, the cavity with the smaller volume produces higher velocities 

irrespective of the driving waveform used. But the differences were smaller with the 

sawtooth driven actuators than the sine driving actuators and in a few cases almost 

negligible.  

To test the effects of orifice size, cavities having similar volumes or heights but 

different orifice diameters were tested. The differences in velocities due to orifice diameter 

seemed to be higher in case of jets formed using a sine wave. With sawtooth driving signal 

the differences were smaller again indicating that the driving signal is an important fact 

affecting the functioning of a synthetic jet.  

 The last factor studied was the effect of pressurizing the passive cavity in the form 

of a uniformly distributed load on the diaphragm. The passive cavity was pressurized to 
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various levels and the effects on the jet velocity were studied at various voltages and 

frequencies. In the case of the Thunder® and Lipca, it was observed that as the passive 

pressure was increased the velocity also increased to a maximum value after which it 

dropped back to the initial value. The peak was observed at approximately 20 kPa for the 

Thunder® and 18 kPa for the Lipca with both the driving signals. For the Bimorph, the 

passive cavity pressure had an adverse effect with the velocity falling with increasing 

passive pressure with both the signals.  

 In case of the RFD the active cavity pressure was studied at different driving 

frequencies and voltages of the actuator. The sawtooth and square signals produced higher 

active cavity pressures than the sine. With a sine signal the pressures were too small to be 

measured as they fell below the resolution of the pressure transducer. The active cavity 

pressure follows the same trend as the jet velocity for the sawtooth and the square signal at 

various frequencies and voltages indicating a coupling between pressure and velocity and 

cavity height/volume as well as actuator displacement. 

 Linear models for all actuators with the most relevant factors are developed.  This 

models may be utilized both numerically and experimentally to optimize the performance 

of synthetic jet with a piezoelectric diaphragms. 

 



 

 
 
 
 

CHAPTER 6 
 
 
 
 

6. Future Work 

 

While a number of factors have been studied in the current project, several aspects 

of the synthetic jet need further investigation. The sawtooth waveform proved to produce 

high velocities but oscillations caused in the diaphragm affected the performance of the 

synthetic jet. Thus an arbitrary waveform could be designed that would reduce the 

oscillations. Although past research on piezoelectric actuators has shown that they have a 

low power consumption, it has not been tested in the synthetic jet. The power consumption 

for an optimized condition of the synthetic jet needs to be measured, to compare with other 

traditional flow control devices. The actuators used in the current study performed 

satisfactorily, but based on the knowledge gained, new actuators can be modeled using 

tools such as finite element analysis. These actuators can be application dependent and thus 

enhance the performance of the synthetic jet. The displacement of the actuator can be 

modeled to better understand the volumetric displacement in the synthetic jet cavity. Based 

on the displacement models the cavity design can be modified effecting an improvement in 

the synthetic jet velocities. 
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Similarly the synthetic jet cavity can be modeled numerically using flow analysis 

tools such as Fluent. Although experimental investigations provide a good insight into the 

behavior of a synthetic jet, most experimental studies do not provide a clear picture of the 

flow behavior inside the cavity. Using such numerical models it is easier to do a complete 

parametric study for each actuator which becomes a tedious and expensive proposition 

through experiments. 

One of the major applications of synthetic jets is flow control devices on aircrafts. 

A single synthetic jet actuator may not be capable of effecting significant changes in the 

flow fields present around aircrafts during flight. The surface of the aircraft will have to be 

lined with a number of these devices. Thus experimental and numerical tests on the 

interaction of adjacent jets are necessary. Once the synthetic jet actuator has been 

optimized it has to be tested in a continuous flow and finally on an aircraft in flight. 
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Mathcad Program for Converting Hotwire Voltages to Velocities 
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