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ABSTRACT
Serotonin and ol adrenergic receptor antagonism may contribute to atypical
antipsychotic drug effects. Clozapine (2.5 mg/kg) drug discrimination in C57BL/6 mice
may selectively screen atypical antipsychotic drugs. Previous data show that the atypical
antipsychotics olanzapine, risperidone, ziprasidone but not the typical antipsychotic
haloperidol fully substitutes for clozapine. The present study demonstrated that the
atypical antipsychotics quetiapine, sertindole, zotepine, iloperidone, melperone fully
substituted for clozapine but aripiprazole did not. The typical antipsychotics fluphenazine
and perphenazine failed to fully substitute for clozapine but chlorpromazine and
thioridazine fully substituted for clozapine. This model does not differentiate between
atypical and typical antipsychotic drugs but it may be useful in the detection of

antipsychotics with potent serotonin and a1 adrenergic receptor antagonist actions.



Introduction

Etiology and phenomenology of schizophrenia

Schizophrenia is a severe and complex neurological disorder. Approximately 1% of the
population worldwide is afflicted with schizophrenia. The disease commonly manifests in late
adolescence or early adulthood with roughly equal prevalence among young men and women. A
genetic predisposition (endophenotype) linked to an environmental “insult” may be required for
expression of the disorder. Schizophrenia is associated with a high degree of mortality as
approximately 5% of patients commit suicide.

The observed syndrome was initially termed dementia praecox based on the early onset
of the disorder, progressive deterioration in cognition and generally poor prognosis (Kraeplin,
1896). It was later termed schizophrenia, emphasizing the fragmentation of volition, behavior,
emotion as well as cognition (not split or multiple personality disorder) (Bleuler, 1930). The
current diagnostic criteria for schizophrenia is defined in the Diagnostic and Statistical Manual —
1V (DSM-1V) (American Psychiatric Association [APA] Task Force on DSM-IV, 1994)

Schizophrenic symptoms are generally characterized into positive, negative, and cognitive
symptoms. Positive symptoms, such as delusions and/or hallucinations, are conceptualized as
abnormalities in normal function (e.g. reality testing); whereas, negative symptoms of
schizophrenia have been categorized as deficits in normal functioning. Delusions may consist of
irrational or false beliefs of grandeur or persecution even in the face of direct contradictive
evidence. Those suffering from schizophrenia may experience positive symptoms like

hallucinations (e.g., false auditory stimuli, such as hearing inner voices giving them



instructions). Negative symptoms can consist of affective flattening, social withdrawal,
anhedonia, alogia and avolition.

A striking feature of schizophrenia is the early onset, persistence and progressive
worsening of cognition in patients with schizophrenia. Cognitive impairments in schizophrenia
consist of deficits in executive functioning, verbal learning and memory, vigilance, working
memory and fine motor performance. The cognitive aspects of schizophrenia are receiving
increased attention as targets in the development of novel antipsychotic drugs (Laughren &
Levin, 2005; Meltzer & McGurk, 1999). This new focus is also evident in the development of
current programs such as the Measurement and Treatment Research to Improve Cognition in
Schizophrenia (NIMH-MATRICS).

There are also schizophrenic subtypes according to the DSM-IV. The patient
experiencing systematic delusions of persecution represents paranoid schizophrenia.
Disorganized or hebephrenic schizophrenia is particularly severe and characterized by an early
onset, a wide range of symptoms and an extensive deterioration of personality. Catatonic
schizophrenia can result in the exhibition of abnormal postures by the patients for extended
periods of time.

Psychopharmacology of Schizophrenia

The introduction of antipsychotic drugs in the 1950s transformed the treatment of
schizophrenia. Use of antipsychotic drugs to effectively treat psychosis contributed greatly to the
community mental health movement and increased the drive for deinstitutionalization of patients.
The first widely accepted hypothesis for a neurochemical dysfunction in schizophrenia was the

“dopamine (DA) hypothesis”. This notion postulates schizophrenia is linked to a hyperfunctional



DA system or an excess of DA neuronal activity in the mesolimbic system. This theory is based
largely on pharmacological evidence; antipsychotic drugs (e.g., phenothiazines) may treat
psychosis by decreasing the level of dopaminergic activity and some drugs (e.g., amphetamine)
may be psychotomimetic by increasing dopaminergic activity.

The approval of clozapine in the United States in the 1990s initiated a vast improvement
in the pharmacotherapy of schizophrenia. Clozapine is the prototype for a novel class of
antipsychotic drugs superior to conventional neuroleptic agents, such as haloperidol. Clozapine
is not a neuroleptic, i.e. it does not produce catalepsy in rodents. Clozapine is not associated with
extrapyramidal symptoms (EPS) and refutes the notion that therapeutic efficacy and EPS are
inextricably linked. Clozai)ine has a complex receptor binding profile and its mechanism of
action in the treatment of schizophrenia has not been determined.

Antipsychotic drugs used for the treatment of schizophrenia vary in their ability to
selectively treat this wide array of symptoms (Kane, 1999). Encouragingly, investigations of
antipsychotic drug actions are furthering our understanding of how receptor specific effects exert
their therapeutic effects. The selective targeting of receptor subtypes in the pharmacological
treatment of schizophrenia will ultimately lead to antipsychotic drugs with increased therapeutic
efficacy and a reduced side effect liability.

The complex actions of the atypical antipsychotic clozapine on various neurotransmitter
receptor subtypes (see Table 1) have focused drug development on multiple receptor targets.
Clozapine is atypical because it does not demonstrate the EPS profile of typical antipsychotic
drugs like haloperidol and chlorpromazine (Arnt & Skarsfeldt, 1998; Ellenbroek, 1993).

Clozapine has increased therapeutic efficacy for both the positive and negative symptoms of
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schizophrenia, and it does not increase serum prolactin levels (Meltzer, 1992). Clozapine is not
. associated with tardive dyskinesia, and can actually attenuate pre-existing tardive dyskinesia
(Meltzer & Luchins, 1984). Clozapine has a high efficacy in a substantial number of
schizophrenic patients that are resistant to traditional antipsychotic drug treatment ( Kane,
Honigfeld, Singer, & Meltzer, 1988; Meltzer, 1997) and also shows reduced risk of suicide
relative to typical antipsychotic drugs (Meltzer, 2001).

Clozapine is a dibenzodiazepine that binds with a relatively low affinity for D, receptors
and has a relative higher binding affinity for the D, receptor ( Schotte, Janssen, Gommeren,
Luyten, Van Gompel, Lesage, De Loore, & Leysen, 1996). It also has a slightly more potent
affinity for the D4 than the D, receptor. Typical or conventional neuroleptic antipsychotics such
as haloperidol, a butyropherone, and chlorpromazine, a phenothiazine, have the opposite relative
dopamine receptor potencies (D,>>D)); these agents are potent dopamine D, antagonists.
Clozapine also has high affinity for several other neurotransmitter receptor subtypes including
serotonergic, muscarinic, noradrenergic and histaminergic systems (Schotte et al., 1996). The
diverse receptor binding profile of clozapine is believed to contribute to its unique atypical
antipsychotic effects and many novel antipsychotic drugs also display complex receptor binding
profiles (see Table 1). Spatial distributions or the regional selectivity of dopamine receptor tracts
is another distinction made between atypical and typical antipsychotic drugs.

Antipsychotic drugs target different subcortical structures including the brain stem,
hypothalamus, basal ganglia, and mesolimbic system (Bradley, 1986). Typical antipsychotics
antagonize dopamine receptors in both the mesolimbic pathway and the striatal pathway (Bunney

& Grace, 1978; Chiodo & Bunney ,1983; 1985). Atypical antipsychotics, such as clozapine, bind



to dopamine receptor subtypes that are expressed primarily in the mesolimbic system and cortex.
These receptors are only weakly expressed in the basal ganglia and may provide one explanation
for the lack of EPS associated with atypical antipsychotic drugs (Bradley, 1986).
The Dopamine Hypothesis of Antipsychotic Effects

There are five major subtypes of dopamine receptors (D;-Ds) in the human brain
(Seeman, 1992; Seeman, Corbett, Nam, & Van Tol, 1996). Types 1 and 5 have shared structural
and signaling properties that comprise the D;-receptor class (Sunahara, Guan, O'Dowd, Seeman,
Laurier, L.G., Ng, G., George, Torchia, Van Tol, & Niznik,1990; Sunahara, Niznik, Weiner,
Stormann, Brann, Kennedy, Gelernter, Rozmahel, Yang, & Israel, 1991). Types 2-4 are also
somewhat similar in structure and comprise the D,-receptor class. Dopamine D, receptors appear
to possess more clinical relevance to antipsychotic drug effects.

The D, and Ds (also called D;;,) are G protein (Gs) coupled receptors. The heterotrimeric
G proteins cause sequential activation of adenylate cyclase, cyclic AMP-dependent protein
kinase, and mediate D;-like receptor signaling. The increased phosphorylation that results from
the combined effects of activating cyclic AMP-dependent protein kinase and inhibiting protein
phosphatase 1 regulates the activity of many receptors, enzymes, ion channels, and transcription
factors. The Dy-like receptor also signals via phospholipase C-dependent and cyclic AMP-
independent mobilization of intracellular calcium. D; and Ds receptors are primarily found in the
cerebral cortex and hippocampus (D; is also expressed in the caudate nucleus) (Neve, Seamans,
& Trantham-Davidson, 2004).

Dopamine D, receptor antagonists do not demonstrate therapeutic effects in the treatment

of psychotic symptoms (Karlson, Smith, Farde, Harnryd, Sedvall, & Wiesel, 1995; Den Boer,



van Megen, Fleischhacker, Louwerens, Slaap, Westenberg, Burrows, & Srivastava, 1995; de
Beaurepaire, Labelle, Naber, Jones, & Bamnes, 1995). Also, therapeutic dose ranges of various
antipsychotic drugs occupy low or negligible levels of D, receptors in the brains of psychotic
patients (Farde & Nordstrom, 1992). Although therapeutic dose levels of clozapine occupy
approximately 36-59% of brain dopamine D, receptors, there is little evidence to support the
importance of the D; receptor in the unique therapeutic effects of clozapine.

The heterotrimeric G proteins mediate D,-like receptor signaling. These pertussis toxin-
sensitive G proteins regulate some effectors, such as to decrease adenylate cyclase, via their G-
alpha subunits, but regulate many more effectors such as ion channels, phospholipases, protein
kinases, and receptor tyrosine kinases as a result of the receptor-induced liberation of G-
betagamma subunits. In addition to interactions between dopamine receptors and G proteins,
other protein-protein interactions also occur that are critical for regulation of dopamine receptor
signaling (Neve et al., 2004).

Typical antipsychotic drugs block post-synaptic dopamine D, receptors (Carlsson &
Lindqvist 1963). The clinical potencies of antipsychotic drugs, as well as to induce EPS, directly
correlate with their ability to antagonize dopamine D, receptors (Seeman, Staiman, Lee, & Chau-
Wong,1974; Seeman, Chau-Wong, Tedesco, & Wong, 1975; Seeman, Lee, Chau-Wong, &
Wong, 1976). This is not the case with D3 or D4 receptor subtypes. The dopamine D, receptors
are 60%-80% consistently occupied by therapeutic doses of antipsychotic drugs when directly
measured using positron emission tomography (PET) or single photon emission tomography
(SPET) (Farde, Nordstrom, Halldin, Wiesel, & Sedvall., 1992a; Farde, Nordstrom, Wiesel, Pauli,

Halldin, & Sedvall, 1992b; Nyberg, Nordstrom, Halldin, & Farde, 1995; Kapur, Remington,



Zipursky, Wilson, & Houle,1995; Kapur, Remington, Jones, Wilson, DaSilva, Houle, &
Zipursky, 1996; Kapur, Zipursky, Remington, Jones, DaSilva, Wilson, & Houle, 1998; Kapur,
Cho, Jones, McKay, & Zipursky, 1999; Heinz, Knable, & Weinberger, 1996) in the human
striatum (i.e., the caudate nucleus and/or the putamen). Clozapine and another atypical
antipsychotic drug, quetiapine, however, had low D, receptor occupancy.

Dopamine D, receptors are primarily expressed in the caudate nucleus, putamen, nucleus
accumbens, amygdala, hippocampus, and cerebral cortex. Dopamine D, receptors expressed in
the caudate nucleus and putamen are suggested to contribute to the EPS effects of these drugs
and D, receptors expressed in regions such as the amygdala, hippocampus, and cortical areas
may be the sites important for antipsychotic efficacy (Stevens, 1973) . However, if the D,
receptor is not a common target for all antipsychotic drugs then novel mechanisms of action can
be postulated.

Clozapine is a consistent exception to the “70%” rule of D, receptor occupancy.
Therapeutically effective doses of clozapine occupy only up to approximately 50% of striatal
brain dopamine receptors, as measured by various radioligands using PET (Farde et al. 1992;
1992b; Kapur et al. 1996; 1998; 1999; Karbe et al. 1991; Louwerens, Buddingh, Zijlstra, Pruim,
Paans, Vaalburg, & Sloof, 1993; Conley, Medoff, Wong, & Tamminga, 1995; Conley, Zhao,
Wong, & Tamminga, 1996) or SPET (Busatto, Pilowsky, Costa, Ell, Verhoeff, & Kerwin.1995;
Klemm, Grunwald, Kasper, Menzel, Broich, Danos, Reichmann, Krappel, Rieker, Briele, Hotze,
Moller, & Biersack,1996; Scherer, Tatsch, Schwarz, Oertel, Konjarczyk, & Albus, 1994,
Pilowsky, Busatto, Taylor, Costa, Sharma, Sigmundsson, Ell, Nohria, & Kerwin, 1996; Su,

Breier, Copolla, Hadd, Elman, Adler, Malhotra, Watsky, Gorey, Weinberger, & Pickar, 1996a;



Su, Breier, Copolla, Hadd, Elman, Adler, Malhotra, Watsky, Gorey, Hough, Weinberger, &
Pickar, 1996b; Pickar, Su, Weinberger, Coppola, Malhotra, Knable, Lee, Gorey, Bartko, Breier,
& Hsiao, 1996). The conclusion that D, receptors are not the main antipsychotic target for
clozapine (Farde et al. 1992b; Brunello et al. 1995) is premature because it does not take into
consideration extrastriatal D2 receptors which are just beginning to be studied with appropriate
ligands such as 11C- epidipride. It is beyond the scope of this dissertation to consider the
possible importance of the ability of clozapine and other atypical antipsychotic drugs to
differentially occupy cortical and ventral tegmental D2 receptors compared to typical
antipsychotic drugs. This is an emerging story of great importance (Meltzer, HY, personal
communication, 5/10/2006).

The dopamine hypothesis of schizophrenia may be oversimplified. Administration of the
dopamine precursor L-DOPA actually alleviates psychotic symptoms in some chronic refractory
schizophrenic patients (Alpert & Friedhoff 1980). Clinical reduction of psychotic symptoms is
also not an immediate consequence of antipsychotic drug treatment. Attenuation of psychotic
symptoms does not generally appear until after several weeks of chronic administration,
presumably following the stabilization of the dopaminergic receptor system in response to
chronic treatment with potent D, antagonists. Amphetamine-induced psychosis in normal human
controls, in contrast, shows immediate improvement after acute antipsychotic drug
administration ( Zeidman, Oscherwitz, & Addario, 1975).

These discrepancies suggest important differences between the dopamine hypothesis of
the disorder and the pathology of the disease. The dopamine hypothesis, however, remains

critical to our understanding of the neuropathology of schizophrenia. Investigating and testing
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the dopamine hypothesis have allowed many scientists doing basic and clinical research to
increase our knowledge of the function of dopamine and how it relates to the behavioral
pharmacology of schizophrenia. Novel antipsychotic agents that are relatively weaker dopamine
antagonists also target other neurotransmitter receptor systems. There is a growing body of
evidence from the heterogeneous group of atypical antipsychotic drugs with their diverse
receptor binding profiles that dopamine is not the only important neurotransmitter receptor target
for an effective antipsychotic drug.

Serotonergic actions are crucial for atypical antipsychotic effects

The indoleamine lysergic acid diethylamide (LSD) is a serotonergic agonist that has
hallucinogenic properties. Knowledge of these psychotomimetic pharmacological effects helped
initiate a search for a link between schizophrenia and the serotonin receptor system (Wooley &
Shaw 1954). Serotonin (5-HT) receptor based mechanisms may be an important component for
the actions of atypical antipsychotic drugs.

A principle characteristic among atypical antipsychotic drugs that differentiate them from
typical antipsychotic drugs is more potent 5-HT»4 receptor antagonism relative to weaker
dopamine D, receptor antagonism (Meltzer, Matsubara, & Lee, 1989). This pharmacological
profile is consistent with the atypical antipsychotics clozapine, olanzapine, risperidone,
quetiapine and ziprasidone (Creese, Burt, & Snyder, 1976; Meltzer, 1999; Meltzer & Stahl 1976;
Kapur & Seeman 2000; Reynolds, 1996). The 5-HT,a/D> model has generated many novel
antipsychotic drugs with efficacy for psychosis, cognition and low EPS, e.g. asenapine,

laurisdone, iloperidone and perospirone. Subsequent in vivo studies have also demonstrated that
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atypical antipsychotic drugs have a higher receptor binding affinity for 5-HT,a versus D,
receptors (Stockmeier, DiCarlo, Zhang, Thompson, & Meltzer, 1993; Matsubara, 1993).

Clozapine has a high affinity for several other 5-HT neurotransmitter receptor subtypes
implicated in its unique effects, including 5-HT»a, 5-HT 4, 5-HT>¢, 5-HT3, 5-HTs and 5-HT7
(Meltzer & I;Iash 1991). 5-HT s receptor agonist activity may also be an important factor that
can contribute to an atypical antipsychotic drug profile (Vander-Maelen, 1990; Ichikawa, Ishii,
Bonaccorso, Fowler, O'Laughlin, & Meltzer, 2001; Wadenberg & Ahlenius 1991). Atypical
antipsychotics clozapine, quetiapine, ziprasidone and aripiprazole are direct 5-HT 4 agonists, but
risperidone and olanzapine are not. However, all of these agents increase dopamine release in the
medial prefrontal cortex (PFC) of rats; this effect is blocked by the 5-HT;4 antagonist
WAY100635 (Ichikawa et al., 2001). The increase in dopamine release in the medial PFC by
these atypical agents demonstrates another common component of the 5-HT,4/D, antagonists,
including aripiprazole. The 5-HT,4 and 5-HT 4 subtypes may be the two most important 5-HT
receptors for unique antipsychotic action.

5-HT,a receptors are widely distributed in brain areas, especially in the cortex (Hoyer,
Pazos, Probst, & Palacios, 1986); they are found in a number of regions, including the olfactory
tubercle, frontal, parietal, cingulate, and entorhinal cortices, midbrain, thalamus, dentate gyrus,
caudate-putamen, nucleus accumbens and septum (Leysen, Gommeren, Heylen, Luyten, Van de
Weyer, Vanhoenacker, Haegeman, Schotte, Van Gompel, Wouters, & Lesage, 1996). 5-HT»4
and 5-HT A receptors are co-localized on the cortical and hippocampal pyramidal glutamatergic
neurons (Hirose, Sasa, Akaike, & Takaori,.1990; Jakab & Goldman-Rakic, 1998) and on

GABAergic interneurons (Willins, Deutch, & Roth, 1997). Both receptor subtypes are implicated
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in schizophrenia. 5-HT»a receptors located on GABAergic interneurons have modulatory control
of neuronal inhibition (Cozzi & Nichols 1996; Abi-Saab, Bubser, Roth, & Deutch, 1999). 5-
HT>a receptors are also found in the substantia nigra and ventral tegmentum, important
dopamine tracts in the nigrostriatum and mesocorticolimbic areas. This suggests a potential
modulatory role in the effects of various aspects of antipsychotic effects.

Concomitant blockade of 5-HT4 receptors and D, receptors causes marked increases in
extracellular dopamine concentrations in the mesocortical projection areas relative to the
nigrostriatal and mesolimbic pathways (Volonte, Monferini, Cerutti, Fodritto, & Borsini, 1997,
Kuroki, Meltzer, & Ichikawa, 1999; Rollema, Lu, Schmidt, Sprouse, & Zorn, 2000; Rowley,
Needham, Kilpatrick, & Heal, 2000; Stephenson et al. 2000; Westerink, Kawahara, De Boer,
Geels, De Vries, Wikstrom, Van Kalkeren, Van Vliet, Kruse, & Long, 2001; Ichikawa, Li, Dai,
& Meltzer. 2002). These cortical effects on dopamine release of clozapine are not reproduced by
the typical antipsychotic drug haloperidol (Marcus, Malmerfelt, Nyberg, & Svensson. 2002).
These neurochemical data are consistent with behavioral data showing the potentiation of
antipsychotic effects of D, receptor antagonists by 5-HT,4 antagonists in animal models of
antipsychotic effects.

For example, ritanserin increases the effect of raclopride to block conditioned avoidance
responding in rats (Wadenberg, Salmi, Jimenez, Svensson, & Ahlenius, 1996). Low-dose
haloperidol was augmented with ritanserin to improve negative symptoms (Duinkerke, Botter,
Jansen, van Dongen, van Haaften, Boom, van Laarhoven, & Busard, 1993) and monotherapy
with ritanserin has been shown to improve both positive and negative symptoms in the absence

of any dopamine D, antagonistic effects (Wiesel, Nordstrom, Farde, & Eriksson.1994).
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Ritanserin, unfortunately, is associated with adverse cardiovascular side effects. Other 5-HT,a
antagonists, such as M100907, SR46349-B and ACP-103 could possibly be used as adjunctive
antipsychotic treatments or as a monotherapeutic approach. It may be possible to generate a
clozapine-like profile with haloperidol by augmentation with a 5-HT,4 receptor antagonist such
as M100907 (Liegeois, Ichikawa, & Meltzer, 2002).

While numerous atypical antipsychotic drugs bind with high affinity to 5-HT,4 receptors
(Meltzer et al. 1989), this is also true of some typical antipsychotic drugs, such as
chlorpromazine and spiroperidol. Further, there are various atypical antipsychotic drugs that do
not bind with high affinity to 5-HT,4 receptors, such as the substituted benzamide agents
sulpiride, sultopride, amisulpiride, raclopride, remoxipride and tiapride (Chivers, Gommeren,
Leysen, Jenner, & Marsden, 1988). These substituted benzamides are highly specific D,/Ds
antagonists (Burt, Enna, Creese, & Snyder, 1975; Seeman et al. 1975; Sokoloff, Giros, Martres,
Bouthenet, & Schwartz, 1990; Gessa, Canu, Del Zompo, Burrai, & Serra, 1991). This class is
differentiated from the 5-HT,4/D; receptor antagonist class; D3 antagonist actions may be crucial
for the effects of these atypical agents.

However, the 5-HT,4/D; receptor antagonist model has had a great impact on the
development of many compounds that fit this receptor binding profile (see review by Meltzer,
1999). There are increasing data obtained from microdialysis and electrophysiological studies
suggesting how 5-HT,4 receptor antagonists modulate dopaminergic activity differentially in the
nigrostriatal, mesolimbic, and mesocortical systems (Kuroki et al. 1999; Liegeois et al. 2002;
Moghaddam & Bunney 1990). The SHT,apnc antagonist ritanserin had little effect on the

dopamine system in any brain region by itself, but dopamine release in the prefrontal cortex was
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observed when combined with the D,; antagonist raclopride while the striatum remained
unaffected (Andersson et al. 1995).

5-HTa receptor antagonism may also be involved in the lowered risk of suicide in
schizophrenic patients by its effects on dopamine and norepinephrine release (Meltzer et al.
2003). More potent 5-HT,4 receptor blockade may allow for therapeutic doses at relatively low
D, occupancy rates: 55% 5-HT»a versus 30%-50% D, (Leysen et al. 1996) versus 80%-100%
occupancy rates for haloperidol. 5-HT,4 receptor antagonist actions may also be a crucial effect
for the treatment of refractory patients (Meltzer 1997). 5-HT,4 receptor antagonist actions that
modulate dopamine appear to be important for the unique therapeutic effects of atypical
antipsychotic drugs on cognition, negative symptoms and antipsychotic actions.

5-HT,4 receptor antagonism concurrent with weaker D, blockade may allow atypical
antipsychotics to increase dopamine release in the medial prefrontal cortex while having a
smaller effect on dopamine mesolimbic release. This may be crucial for the atypical
antipsychotic advantages for cognition, negative symptoms and antipsychotic effects. 5-HTa
receptors have been implicated in psychosis, negative symptoms, EPS and mood disorders
(Leysen et al. 1996; Meltzer & Fatemi 1996). This notion is supported with results from a range
of mixed 5-HT,a/D; receptor antagonists, including the atypical antipsychotics risperidone,
olanzapine, ziprasidone, zotepine and quetiapine.
Muscarinic Cholinergic Receptor effects on EPS and Psychosis

The highest affinity for a muscarinic receptor subtype for clozapine or olanzapine is for the

M, receptor (Bymaster, Hemrick-Luecke, Perry, & Fuller 1996). There are currently five

identified muscarinic receptor subtypes termed M,;-M;s (Peralta et al. 1987; Bonner et al. 1987,
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Buckley et al. 1988). Clozapine and olanzapine have similar high receptor binding affinities for
the muscarinic cholinergic receptor subtypes, particularly the M, receptor subtype (Bymaster et
al., 1996). The major difference between clozapine and olanzapine is that olanzapine is
nonselective for dopamine and muscarinic receptors. Clozapine, in contrast, is much more
selective (>10 fold) for muscarinic than dopamine receptors. Clozapine was originally thought to
be a full muscarinic antagonist and olanzapine was developed as an agent with potent
antimuscarinic properties.

Oxotremorine-induced tremors in rodents are blocked by both clozapine and olanzapine
(Moore, Tye, Axton, & Risius, 1992). Clozapine blocks oxotremorine and arecoline-induced
accumulation of acetylcholine in the rat striatum (Racagni, Cheney, Trabucchi, & Costa, 1976).
The muscarinic antagonists atropine and scopolamine, however, attenuate the effect of clozapine
to increase extracellular dopamine levels and dopamine metabolites in the striatum; these
muscarinic antagonists are ineffective against similar effects of haloperidol and thioridazine
(Rivest & Marsden, 1991; Meltzer, Chai, Thompson, & Yamamoto. 1994). These results may
indicate that central muscarinic receptors modulate dopamine in the actions of clozapine but not
in the mechanism of typical antipsychotic drugs.

There are muscarinic subtypes located in limbic structures of the brain associated with
schizophrenia, such as the nucleus accumbens and the prefrontal cortex (Levey, Kitt, Simonds,
Price, & Brann, 1991). Colocalization of muscarinic and dopamine receptors are found (Weiner,
Levey, & Brann, 1990; Bernard, Normand, & Bloch, 1992) and muscarinic receptors on
dopamine nerve terminals potentiate dopamine release (Anden & Stock 1973; Bymaster, Reid,

Nichols, Kornfeld, & Wong, 1986; Bymaster, Wong, Mitch, Ward, Calligaro, Schoepp,
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Shannon, Sheardown, Olesen, & Suzdak, 1994). These interactive effects with dopamine have
properties most similar to the M, receptor subtype but a lack of selective muscarinic antagonists
does not permit definitive conclusions.

In vivo effects of clozapine and olanzapine are weaker than would be predicted by in vitro
radioligand binding studies (Moore et al., 1997, Beasley et al., 1997, Amt & Skarsfeldt, 1998).
Clozapine and olanzapine have dissimilar characteristics compared to prototypical muscarinic
antagonist ligands with reference to muscarinic receptor binding affinities across binding assays
conducted in different ionic strength preparations. Whether the muscarinic actions of clozapine
and olanzapine are important for their therapeutic effects has not been determined.

Anticholinergic effects may contribute to the lack of EPS seen with clozapine and
olanzapine (Bymaster et al., 2003). Concurrent administration of anticholinergic drugs with
typical antipsychotic drug treatment reduces EPS without attenuating the therapeutic effects,
supporting a link between the cholinergic and dopaminergic systems. Treatment with
anticholinergic agents to treat neuroleptic-induced EPS remains a mainstay of treatment. The
alleviation of severe motor side effects by antimuscarinic drugs is also supported in preclinical
research as they reverse cataleptic effects of typical antipsychotic drugs (Erzin-Waters, Muller,
& Seeman, 1976; Sayers, Burki, Ruch, & Asper, 1976, Ahlenius & Hillegaart 1986).

Coadministration of antimuscarinic agents to alleviate the movement disorders induced
by chronic typical antipsychotic drug treatment does not, however, result in a clozapine-like
clinical profile (Sayers, Burki, Ruch, & Asper, 1975; Lowe, Seeger, & Vinick, 1988). This
would support the notion that antimuscarinic drugs only abolish the induced EPS side effects,

leaving antipsychotic potency relatively unaffected. The role of cholinergic neurotransmission in
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the antipsychotic effects of clozapine and olanzapine may be a unique effect. There is recent
research that focuses on muscarinic receptor subtypes as potential therapeutic targets for atypical
antipsychotic drugs (Bymaster, Felder, Tzavara, Nomikos, Calligaro, & McKinzie, (2003).

Early evidence suggested that stimulation of the central cholinergic receptor system with
the use of cholinesterase inhibitors was beneficial in some schizophrenic patients (Pfeiffer &
Jenney ,1957; Rosenthal & Bigelow, 1973). 50% of patients suffering from Alzheimer’s disease
have psychotic symptoms (White & Cummings, 1996). Delusions appearing in Alzheimer’s
patients are reduced by the cholinesterase inhibitor physostigmine (White & Cummings, 1996).
Xanolemine is a relatively selective muscarinic partial agonist at M; and M, receptors that
reduced psychotic symptoms in Alzheimer’s patients (Bodick, Offen, Levey, Cutler, Gauthier,
Satlin, Shannon, Tollefson, Rasmussen, Bymaster, Hurley, Potter, & Paul, 1997). Preclinical
research may also indicate potential antipsychotic effects involved with anticholinergic
neurotransmission.

In animal models of psychotomimetic effects known to be mediated by dopamine, the
xanomeline analog, 6-(3-propylthio-1,2,5-thiadiazol-4yl)-1-azabicyclo[3.2.1]-octane (PTAC),
and oxotremorine RS86 and pilocarpine antagonized these effects (Bymaster et al., 1998; Fink-
Jensen, Kristensen, Shannon, Calligaro, Delapp, Whitesitt, Ward, Thomsen, Rasmusseen,
Sheardown, Jeppesen, Sauerberg, & Bymaster, 1998). Dopamine D; and D, receptor agonist
induced contralateral rotation in unilaterally 6-OHDA-lesioned rats was attenuated by these
cholinergic agents. PTAC also inhibits conditioned avoidance responding in rats, apomorphine-

induced climbing in mice, and spontaneous locomotor activity in rats without the induction of
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catalepsy (Bymaster et al., 1998). These in vivo effects were blocked by the muscarinic
antagonist scopolamine.

These data suggest that anticholinergic effects influencing dopaminergic
neurotransmission mediate the effect of PTAC on the animal models of psychosis. While this
provides compelling evidence for a role of cholinergic neurotransmission in the symptomology
of psychosis, this may not be the only means by which an atypical antipsychotic profile can be
achieved. It is important to note that the atypical antipsychotic risperidone has a pharmacological
profile similar to that of olanzapine except that it possesses negligible muscarinic affinity.
Noradrenergic Receptor Mediated Effects

Clozapine and olanzapine have high affinity for the a-adrenergic receptor but no affinity
for the B—adrenergic receptor at concentrations up to 10 uM (Moore et al. 1993). Clozapine has
roughly equal affinities for both a; and a;, adrenergic receptor subtypes (K; = 7 and 8 nM
respectively). Olanzapine has a 10-fold higher selective affinity for the o, adrenergic receptor
(Ki= 19 nM) than for the a, adrenergic receptor (Moore et al., 1992). Many atypical
antipsychotic drugs, such as sertindole, risperidone, quetiapine, zotepine and ziprasidone have a
high a adrenergic receptor binding affinity (Schotte et al., 1996).

It has been suggested that a; adrenergic receptor blockade contributes to the diminished
side effects of clozapiné (Baldessarini, Huston-Lyons, Campbell, Marsh, & Cohen, 1992).
Chronic administration of haloperidol coadministered with the a; adrenergic antagonist prazosin
produces the characteristic pattern of A10 depolarization with no effect on A9, but this was not
effective with the a, adrenergic antagonist idazoxan (Chiodo & Bunney 1985). The a;

adrenergic receptor blockade of clozapine may differentially affect nigrostriatal and mesolimbic
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dopamine release and contribute to the lack of EPS. This is not easy to support, however, using
neuroleptic-induced catalepsy as a model of EPS. A potentiating effect of a; adrenergic receptor
blockade with prazosin or WB4101 has been found on haloperidol-induced catalepsy but the a;
antagonists yohimbine, RX 82002 and MK-912 attenuated this effect dose dependently
(Kalkman, Neumann, Hoyer, & Tricklebank, 1998). Clozapine treatment causes upregulation of
a; adrenergic receptors but not dopamine receptors in the forebrain. Typical antipsychotic drugs
only cause upregulation of dopamine receptors.

It is difficult to paint a clear picture of the relevance of noradrenergic transmission with
respect to antipsychotic activity. A behavioral assay attempting to produce the pharmacological
profile of clozapine in an animal model of antipsychotic efficacy demonstrated that o,
adrenergic, Dy, and 5-HT; antagonist in cbmbination was required; no two combinations alone
had any effect (Prinssen, Ellenbroek, & Cools, 1994b). There are now an increasing number of
new antipsychotic drugs that target o adrenergic receptor subtypes.

In vivo receptor mechanisms of action

The mechanism(s) of action for clozapine and other atypical antipsychotic drugs in the
treatment of schizophrenia may be concurrent actions on several neurotransmitter receptor
subtypes. Much evidence suggests there may be multiple target sites important for the
therapeutic effects and reduced side effects of atypical antipsychotic drugs. The neurotransmitter
receptor systems dopamine, serotonin, acetylcholine, glutamate, and norepinephrine are all
candidate targets for the selective treatment of symptoms. It is therefore important to characterize
the in vivo and in vitro receptor binding profiles of atypical antipsychotic drugs to help elucidate

the pharmacology of schizophrenia.
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The receptor mechanisms of action also can be examined using classical behavioral
pharmacological techniques. Preclinical researchers have used a variety of animal models to
characterize the receptor-mediated effects of clozapine in vivo. This research approach allows the
study of the functional effects of drugs in the living organism. One method by which atypical
antipsychotic drugs can be differentiated from typical antipsychotic drugs is to evaluate the
correspondence between receptor profiles. While in vitro results cannot always be transferred to
studies in vivo where receptors are present in their natural environment, pharmacological
properties produce many behavioral specific actions that reflect receptor activity. Thus, both in
vitro and in vivo models of mechanism of pharmacological action are necessary.

An animal model that has predictive validity is crucial for the development of
antipsychotic drugs and elucidating their mechanism of action. There is currently a lack of
adequate preclinical models that help elucidate the mechanisms underlying crucial differences
between the actions of typical vs. atypical antipsychotic drugs. Further, many of these models are
capable of differentiating between antipsychotic and other psychotropic drugs but only a few
seem to be able to differentiate between typical and atypical antipsychotics. Examples of models
that do strive to distinguish the two major classes of antipsychotic drugs are the paw test and
prepulse inhibition (PPI) in rats (Geyer & Ellenbroek 2003). A model with predictive validity
should be useful in the detection of putative atypical antipsychotic drugs.

Face validity refers to the phenomenological similarity between the model and the
disease. Construct validity refers to theoretical constructs of schizophrenia based on the

pathophysiological processes underlying the disease. However, in practical application of these
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criteria, the elements of predictive validity related to therapeutic response are most commonly
used to establish criteria for model validity.
Assessment of Preclinical Model Validity

1. Antipsychotic drugs of different chemical classes. Antipsychotic drugs belong to a
number of structurally unrelated chemical classes and therefore, various chemical classes of
antipsychotic drugs should also be effective in an animal model: Phenothiazines
(chlorpromazine, fluphenazine, perphenazine and thioridazine), thioxanthenes (thiothixene and
flupenthixol), butyrophenones (haloperidol, benperidol, iloperidone and melperone),
dibenzazepines (clozapine, olanzapine and loxapine), benzamides (sulpiride and remoxipride),
piperazinyl-dibenzothiazepines (quetiapine). The model is validated by its sensitivity to various
antipsychotic drugs.

2. No false positives. Nonantipsychotic drugs should not have any effect. The model
should be insensitive to nonantipsychotic drugs. Severe motor effects should be differentiated
from the primary measure (e.g., anhedonia vs. motor disruption). For example, antidepressants
from a number of pharmacological classes, including tricyclic antidepressants, selective
serotonin or norepinephrine reuptake inhibitors, monoamine oxidase inhibitors may reduce
response rate and increase differential rates of reinforcement (DRL) schedules in rats that may
resemble antipsychotic effects and produce false positive results. Based on criterion one, all
antipsychotic drugs should be effective in the model. However, the atypical antipsychotic drugs
retain a special position. Many traditional models of the behavioral actions of neuroleptic drugs

are based on EPS-like motor effects. The atypical antipsychotic drugs do not cause EPS motor
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side effects so they have often gone undetected in traditional animal models (Moore & Gershon
1989).

3. No false negatives. A valid assay for atypical antipsychotic drug effects should
selectively differentiate atypical antipsychotic drugs from all other pharmacological classes,
including typical antipsychotics. Further, the pharmacological effect in the behavioral model
should be subthreshold to EPS-like motor effects. It should also be noted that newer atypical
antipsychotic drugs with purported novel mechanisms of action may not be detected in a model
established based on receptor-mediated effects of an older therapeutic agent.

Preclinical Models with Predictive Validity

The incomplete understanding of the causes and mechanisms of schizophrenia restrict
preclinical model development. An integration of findings across animal models and further
refinement of the criteria used to assess model validity will help further our understanding of the
complex pharmacology of schizophrenia. The evidence of predictive validity will facilitate the
development of batteries of tasks to characterize different behavioral aspects of antipsychotic
drug effects. The current impetus of research focuses on the ability of animal behavioral models
to selectively differentiate atypical from typical antipsychotic drugs, while still being able to
distinguish antipsychotic from non-antipsychotic agents. The effects of typical and atypical
antipsychotic drugs have been characterized in various animal models. Conditioned avoidance
response (CAR) and catalepsy (CAT) are two standard preclinical tests extensively used to
predict antipsychotic activity and motor side-effect liability, respectively.

Conditioned Avoidance Response. The selective ability of antipsychotic drugs to inhibit

conditioned avoidance response (CAR) has been utilized for over 50 years. Reinforcement is
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used to control the CAR behavior experimentally. Aversive electric shocks can be administered
to the subject and any response that permits the organism to escape from or prevent the
occurrence of the electric shock will be reinforced. Behavior that terminates the aversive
stimulus is called escape behavior. Behavior that delays the occurrence of the aversive stimulus
is called avoidance behavior. In most CAR paradigms, animals are conditioned to make an active
response (e.g., locomotion in a shuttle box or pole climbing) to avoid or escape foot shock.
Early models based on the inhibition of the CAR by antipsychotic drugs have been
characterized in several animal species (Barrett, 1983; Cook & Catania, 1964; Janssen,
Niemeggeers, & Schellekens, 1966; Spealman & Katz, 1980; Wenger, 1979; Worms,
Broekkamp, & Lloyd, 1983). The general finding is that non-cataleptic doses of antipsychotic
drugs disrupt avoidance without disrupting escape. CAR does not, however, detect the atypical
antipsychotic sulpiride (Arnt, 1982; Kuribara & Tadokoro 1981; Van Der Heyden, 1989). The
atypical antipsychotics clozapine and thioridazine inhibit the CAR, whereas the typical
antipsychotic prothipendyl has no effect (Janssen et al., 1966). High doses of thioridazine are
necessary in order to block CAR (Blackburn & Phillips 1989). Thus, the two classes of
antipsychotic drugs have inconsistent effects in CAR studies (Moore et al., 1992; Sanger, 1985).
CAR procedures are not specific to antipsychotic drugs. CAR has a number of false
positives probably due to the motor involvement of the task. Amnt (1982) examined the effects of
22 non-antipsychotic drugs on the CAR. 11 of the drugs tested inhibited CAR. Among a wide
range of non-antipsychotic compounds, o;-adrenergic antagonists, benzodiazepines, a
barbiturate, GABA agonists, morphine and a serotonin agonist inhibited the CAR at doses

inducing other motor disturbances. Adenosine agonists also reduce CAR in the rat ( Martin,
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Rossi, & Jarvis, 1993). The a-adrenergic activity of some antipsychotic drugs (e.g. clozapine and
chlorprothixene) may contribute to CAR inhibition. Sanger (1985) found similar results with
clozapine and chlordiazepoxide in the shuttle box avoidance procedure using rats.

Anticholinergic agents do not attenuate therapeutic effects in patients suffering from
schizophrenia. Anticholinergic drugs attenuate inhibition of CAR by typical antipsychotic drugs.
It has been shown that the muscarinic antagonist scopolamine reduces the effectiveness of
haloperidol or fluphenthixol inhibition of CAR (Amt, 1982; Fibiger et al., 1975; Setler et al.,
1976). The effects of scopolamine on haloperidol were much more potent than effects on
fluphenthixol-induced suppression of CAR, possibly due to greater selectivity of haloperidol for
the D, receptor ( Arnt, Christensen, & Hytell, 1981). Additional antimuscarinic activity of
typical antipsychotics may moderately attenuate CAR inhibition (Arnt, 1982).

Antagonism at 5-HT4 receptors potentiates the effect of haloperidol ( Wadenberg,
Browning, Young, & Hicks, 2001a) and raclopride ( Wadenberg, Hicks, Richter, & Young,
1998) in a CAR task in rats. Phenylpiperazines, such as the serotonin agonist meta-
chlorophenylpiperazine (MCPP), have also been reported to block CAR in the Fischer-344 rat (
Martin, Elgin, Mathiasen, Davis, Kesslick, Baldy, Shank, DiStefano, Fedde, & Scott, 1989). The
largest body of CAR data however implicates a dopamine mechanism. The antipsychotics
haloperidol, risperidone, olanzapine and quetiapine are effective in the CAR model at a lower
level of D> occupancy than required for catalepsy (Wadenberg et al. 2001a; Wadenberg,
Soliman, VanderSpek, & Kapur, 2001b).

Catalepsy. Another classic model used as a drug screen for antipsychotics is the catalepsy

test. In the catalepsy test the laboratory animal is placed in an abnormal position and latency to
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correct the imposed body posture is measured. Animals are generally placed with their forepaws
elevated approximately 5-10 cm. The most popular variations of the catalepsy are the bar or the
wood block test. Wadenberg and colleagues (2001b) observed that dopamine plays a pivotal role
in catalepsy as it was observed in animals receiving the typical antipsychotic haloperidol and the
atypical antipsychotics risperidone and olanzapine, but only at doses that produced a D, receptor
occupancy > 85%.

However, there are false positives in catalepsy also. The D, occupancy of quetiapine did
not cross the 85% threshold (up to 100 mg/kg) and it did not show catalepsy (Wadenberg et al.,
2001b). The atypical antipsychotics clozapine, thioridazine and prothipendyl do not cause
catalepsy at high doses (Arnt, 1982; Ellenbroek, 1992). Further, there are several false positives
(i.e., non-antipsychotic drugs that do cause catalepsy). The opiates ( Ellenbroek, Peeters, Honig,
& Cools, 1987; Kuschinsky & Hornykiewicz ,1972), acetylcholine agonists (Costall & Naylor
1973) produce catalepsy. The cannabinoids (acting at CB; receptors) cause CAT in mice
(Varvel, Bridgen, Tao, Thomas, Martin, & Lichtman, 2005).

In relevance to catalepsy as a predictor of EPS, anticholinergic antagonists attenuate
neuroleptic-induced catalepsy. Haloperidol-induced catalepsy in mice is reversed by the
muscarinic antagonist atropine (Klemm, 1985). Similar results with haloperidol and the
muscarinic antagonist scopolamine were also obtained (Ellenbroek & Cools 1988). Catalepsy
rapidly and reliably detects the potential of pharmacological agents to produce EPS. Catalepsy is
increasingly used for the screening of drugs with therapeutic potential in the treatment of
Parkinson's disease, such as the a2 adrenoreceptor antagonists (Pinna, Volpini, Cristalli, &

Morelli, 2005) and the serotonin 5-HT; 4 agonists (Bantick, De Vries, & Grasby, 2005). CAR
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and catalepsy models may have some predictive accuracy for antipsychotic drugs because they
share a common underlying mechanism: dopamine D, occupancy (Wadenberg et al., 2001b).

Intracranial Self-Stimulation. Antipsychotic drugs suppress levels of operant lever
responding for intracranial self-stimulation (ICSS) (Worms et al., 1983). ICSS models are
largely based on dopamine receptor mechanisms and neural pathways related to reward and
neuroleptic-induced anhedonia (Ettenberg et al., 1981). The catecholamines dopamine and
noradrenaline have been implicated in ICSS (Crow, 1972; 1976). However, antagonism of o
adrenergic receptor subtypes is not effective in other ICSS studies (Montgomery, Grottick, &
Herberg, 2003; Zarevics, Weidley, & Setler, 1977). The typical antipsychotic drug
chlorpromazine has been compared to lithium chloride in ICSS procedures (Takigawa,
Fukuzako, Ueyama, & Tominaga, 1994). More recently, it has been described that atypical as
well as typical antipsychotic drugs induce characteristic within-session response decrements in
operant behaviors, including ICSS (Montes, Chaatoufel, & Ferrer, 2005; Takigawa, Fukuzako,
Ueyama, & Tominaga, 1994).

In ICSS procedures, animals are implanted with an electrode inserted through the skull
into specific brain regions. The electrode is connected to a lever that delivers a small electrical
current (100-250 nA) when pressed. The electrical current serves as a positive reinforcer and rats
rapidly learn to lever press for brain electrical stimulation (Olds, 1976). (Wauquier, 1976; 1979)
implanted electrodes in the medial forebrain bundle in the lateral hypothalamus and tested a large
series of antipsychotic drugs. All antipsychotic drugs tested, including clozapine and

thioridazine, attenuated ICSS. While ICSS is less sensitive to the atypical antipsychotic drugs
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(especially thioridazine) than the typical antipsychotic drugs, various chemical classes of
antipsychotic drugs have been shown to be effective in the model.

Unfortunately, a number of false positives occur in ICSS procedures with
nonantipsychotic agents. Cholinergic agonists produce inhibition of ICSS (Pradhan, 1976).
Noradrenergic antagonists decrease ICSS behavior (Bailey & Pradhan 1975). The
antidepressants desipramine and amitriptyline reduce ICSS (Wauquier, 1976). Benzodiazepines
potentiate ICSS (Wauquier, 1976). The opiates morphine, piritramide and fentanyl increase ICSS
at lower doses and reduce ICSS at higher doses (Wauquier, 1976). Treatment with
anticholinergic drugs counters the ICSS rate suppression produced by a large number of
antipsychotic drugs.

ICSS procedures allow for the testing of a large range of doses. ICSS paradigms also
possess few false negatives with typical antipsychotic drugs. However, ICSS procedures are less
sensitive to the effects of atypical antipsychotic drugs. Antipsychotic drug selectivity and the
development of tolerance are limitations of the ICSS model.

Blockade of Drug-induced Hyperlocomotion. Antipsychotic drugs block the effects of
dopamine agonists to increase locomotor activity at doses below those that produce stereotypy.
The nucleus accumbens has been implicated in these stimulant effects on behavior (Costall &
Naylor 1975; Pijnenberg, Honig, & van Rossum, 1975; Pijnenberg & van Rossum 1973) as well
as, the olfactory tubercle (Cools, 1986). Direct infusion of dopamine into the nucleus accumbens
produces increases in locomotion (Pijnenberg, 1977). Most studies have focused on the

attenuation of the stimulant effects of dopamine agonists in this procedure.
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Hyperactivity induced by dopamine was antagonized with several antipsychotics
including haloperidol, fluphenazine and pimozide dose dependently (Costall & Naylor, 1976).
Many antipsychotics were tested on dopamine-induced hyperactivity caused by direct injections
of the dopamine agonist 6,7 ADTN into the nucleus accumbens (Amnt, 1983). All antipsychotic
drugs except sulpiride blocked hyperlocomotion. Sulpiride was inactive after peripheral
injection, whereas intra-accumbens sulpiride antagonized 6,7-ADTN-induced hyperactivity.
Thioridazine and sulpiride showed a much more pronounced effect in the Costall and Naylor
(1976) study as compared to the Arnt (1983) investigation. Notably, clozapine was found to be
potently effective across both studies.

Arnt (1983) tested several other compounds for effects on 6,7 ADTN-induced
locomotion. The o; adrenoreceptor antagonist prazosin but not aceperone attenuated the
dopamine related hyperactivity. 6,7 ADTN-induced locomotion was potentiated after application
of the serotonin antagonist methsergide and direct injections of serotonin into the nucleus
accumbens blocked amphetamine-induced locomotion (Costall, Hui, & Naylor, 1979b; Jones,
Mogenson, & Wu, 1981), suggesting serotonin agonists may be a false positive. Opiates are also
able to reverse dopamine stimulated locomotor activity (Costall, Fortune, & Naylor, 1978).

The a,-adrenergic receptors modulate the effects of amphetamine on locomotion in mice
(Luttinger & Durivage 1986) and adrenoreceptor a, agonists dose dependently attenuate
amphetamine induced locomotion in rats (Poleszak & Malec 2000) but may also be potential
antipsychotic agents (Kalkman & Loetscher 2003). Anticholinergic agents were ineffective at

reversing the effects of haloperidol on locomotion induced by intra-accumbens injections of
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dopamine in one study (Costall et al., 1979a), however, Amt et al. (1981) reversed the
haloperidol blockade of 6,7-ADTN-induced hyperactivity with the antimuscarinic scopolamine.

Several other drugs without apparent direct effects on the dopamine system also increase
activity when injected directly into the nucleus accumbens, like picrotoxin (Jones et al., 1981)
and the glutamate agonist N-methyl-D-aspartate (NMDA) (Hamilton, De Belleroche, Gardiner,
& Herberg, 1986). More recent data shows an effect of stimulation of dopamine D5 receptors,
possibly in the medial prefrontal cortex that is associated with inhibitory actions on locomotor
activity and d-amphetamine-induced hyperactivity (Isacson, Kull, Wahlestedt, & Salmi, 2004).
There are apparently multiple receptor mechanisms that are effective in this model.

More recent hyperlocomotion models have focused on the effects of (+/-) 3,4-
methylenedioxymethamphetamine (MDMA), which releases dopamine and serotonin in vivo and
increase locomotor activity (Kehne, Ketteler, McCloskey, Sullivan, Dudley, & Schmidt, 1996).
MDMA -stimulated dopamine release is reduced by the selective 5S-HT»4 receptor antagonist [R-
(+)-a- (2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidinem ethanol] (MDL 100,907
or M100907), as well as with other agents with potent 5-HT,4 antagonist activity (ritanserin,
clozapine, MDL 28,133 A, or methiothepin). Agents that block 5-HT, (propranolol), D,
(haloperidol), or D; receptors (SCH 23390) also reduced MDMA -stimulated locomotion. The
contribution of different receptors to MDMA-stimulated locomotion suggests the potential utility
of this model for characterizing putative atypical antipsychotic compounds with multiple
receptor targets.

Studies have compared the effects of various antipsychotic drugs on locomotor

hyperactivity induced by the two different psychotomimetics phencyclidine (PCP) and
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amphetamine (Sams-Dodd, 1998). The PCP model may be more sensitive to potent S-HT,a
antagonist effects (Maurel-Remy, Bervoets, & Millan, 1995). This model may be better suited to
detect atypical antipsychotic drug effects than the amphetamine model.

The dopamine-induced locomotor paradigm has the ability to detect most antipsychotics
but is not selective for this pharmacological class. The amphetamine dose used to stimulate
locomotion is also a critical factor for which receptor-mediated effects are important in this
model (Arnt, 1995). The development of tolerance is a weakness in the amphetamine-induced
locomotion paradigm (Sams-Dodd, 1998).

The Paw Test. Although many of these models are capable of differentiating between
antipsychotic and other pharmacological classes, only a few seem to be able to differentiate
between typical and atypical antipsychotics. The paw test is an assay established in rats that has
been shown to screen the unique effects of antipsychotic drugs and to distinguish atypical from
typical antipsychotic drugs (Ellenbroek et al., 1987). The paw test differentiates between typical
antipsychotic drugs which prolong both the forelimb (FRT) and hindlimb retraction time (HRT)
at equipotent doses and atypical neuroleptics which are much more potent in prolonging HRT
than in prolonging FRT. Thus, the FRT is believed to be indicative of EPS and the HRT of
antipsychotic effects. The underlying mechanism may be based on results showing that the
neostriatum and the nucleus accumbens play different roles in modulating forelimb and hindlimb
rigidity (Ellenbroek, Schwartz, Sontag, Jaspers, & Cools, 1985; Ellenbroek, Van den Hoven, &
Cools, 1988).

Atypical antipsychotic drugs selectively increase HRT at doses lower than those that

increase FRT. Typical antipsychotic drugs produce HRT and FRT latencies at equipotent doses.
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Correspondingly, the muscarinic antagonist scopolamine blocked the FRT, but not the HRT;
chronic neuroleptic treatment reduced the FRT, but not the HRT. The nonantipsychotic drugs
desipramine, diazepam and morphine do not influence the variables measured in the paw test,
although morphine does produce catalepsy (Ellenbroek et al., 1987). Approximately 25
antipsychotic drugs have been tested in the paw test and all increase HRT (Geyer & Ellenbroek
2003).

Over 20 non-antipsychotic drugs have been tested and were without effect in the paw test
(Geyer & Ellenbroek 2003). These include the antihistamine phenothiazine promethazine, the
opiate morphine, the benzodiazepine diazepam, the tricyclic antidepressant desipramine
(Ellenbroek et al., 1987; Ellenbroek & Cools 1988). Serotonergic agents ritanserin, ketanserin, 8-
hydroxy-2-(di-n-propylamino)tetralin (8-OHDPAT), and 1-(2,5dimethoxy-4-iodophenyl)-2-
aminopropane (DOI) had no effect in the paw test ( Ellenbroek, Prinssen, & Cools, 1994).

The role of serotonin 5-HT ;4 and 5-HT, in the effects of atypical and typical
antipsychotic drugs has been characterized in the paw test (Ellenbroek et al., 1994). The
differential effects of 8-OHDPAT and DOI on the various antipsychotics (e.g., fluphenazine,
thioridazine and risperidone) illustrate the important differences in the mechanism(s) of
antipsychotic drugs. Adrenoreceptor drugs are also able to modulate the behavioral effects of
clozapine using the paw test in rats (Prinssen et al., 1994a). Combinations of noradrenergic,
serotonergic and dopaminergic agents mimic the profile of clozapine in the paw test (Prinssen et
al., 1994b).

The paw test possesses a large degree of predictive validity. Unfortunately, only a few

laboratories have attempted to replicate this procedure (Grimm & See 1998; Guan, Dai, & Zhu,



32

2000), so the paw test has not been as extensively evaluated as some other models across
laboratories. It importantly attempts to differentiate atypical from typical antipsychotic drugs.

Drug Discrimination. Drug discrimination is a procedure in which animals are trained to
detect the interoceptive stimulus effects of an administered dose of a training drug versus
saline/vehicle (i.e., a nondrug condition). Different doses of the same training drug or a different
training drug may also be established in this model. Drug discrimination studies are most
commonly two-lever operant procedures. Several species have been utilized in the drug
discrimination paradigm, primarily rats, pigeons and monkeys. Humans have also been used in
this procedure.

The drug discrimination procedure is used to investigate various pharmacological aspects
of the stimulus properties of the drug. These effects include mechanism of action, onset and
duration of activity, structure-activity relations, activity of metabolites, tolerance and withdrawal,
identification and development of potential antagonists and similarity of effect to other agents.
Drug discrimination is an important, useful and versatile tool in central nervous system
pharmacology for investigating receptor-mediated effects on behavior.

Drugs are able to function effectively as discriminative stimuli in the control of behavior
(Schuster & Balster 1977). For example, it was demonstrated early on that atropine and
pentobarbital produce two qualitatively different states (discriminative stimulus effects)
(Overton, 1966). There is a high level of pharmacological specificity in the classification of
drugs using drug discrimination procedures and this led to the “one cue per pharmacological

class” idea.
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Drug discrimination procedures can be used to determine stimulus gradients as well as
generalization curves with novel compounds tested for their ability to substitute for the training
drug. Attenuating or potentiating effects of receptor subtypes important for the discriminative
cue can be investigated using selective ligands. The discriminative stimulus properties of drugs
provides an in vivo measure that correlates well with in vitro results in the study of the neural
basis of drug effects on behavior. Characterizing the effects of clozapine using drug
discrimination procedures can increase our understanding of the mechanism(s) of action of
atypical antipsychotic drugs in vivo by identifying receptor subtypes that may be important for
atypical antipsychotic effects.

Antipsychotic drugs were first used in a drug discrimination procedure in the 1960s
(Stewart, 1962). Rats were trained to discriminate 4.0 mg/kg chlorpromazine vs. saline using
shock avoidance in a three-compartment test chamber (similar to a T-maze). The phenothiazines
acepromazine, perphenazine, and prothipendyl fully substituted, but the phenothiazine
prochlorperazine and the tricyclic antidepressant imipramine failed to substitute for
chlorpromazine.

Chlorpromazine (5.0 mg/kg) drug discrimination using a T-maze (shock avoidance)
could not be established (Overton, 1966) and initial attempts to establish discriminative stimulus
control with chlorpromazine (1.0 mg/kg) could not be obtained in rats in a two-lever operant
procedure (Harris & Balster 1971). However, some subsequent attempts have been successful. A
chlorpromazine (1.0 mg/kg) versus saline drug discrimination in a two-lever operant procedure
was successfully established with food reinforcement on one lever and shock punishment on the

other lever (Barry, Steenberg, Manian, & Buckley, 1974). The chlorpromazine metabolites were
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tested and only one (7-OH-CPZ) generalized to the chlorpromazine discriminative stimulus cue.
Importantly, it was shown that quaternary chlorpromazine (which does not cross the blood-brain
barrier) failed to substitute for chlorpromazine indicating that the discriminative stimulus effects
were centrally mediated. Chlorpromazine has since been established as a training drug in two
other drug discrimination studies (Goas & Boston, 1978; Porter, Covington, III, Varvel, Vann, &
Warren, 1998). Drug discrimination using haloperidol vs. saline has also been established using
a two-lever operant task for food reward (Colpaert et al. 1976), then subsequently by (McElroy,
Stimmel, & O'Donnell, 1989), who demonstrated that chlorpromazine substituted for haloperidol
(0.05 mg/kg).

While the typical antipsychotic drugs are somewhat difficult to train using drug
discrimination procedures, the atypical antipsychotic drug clozapine possesses robust
discriminative stimulus properties. Clozapine (6.9 mg/kg) was first established as a training drug
in a two-lever operant procedure (Goas & Boston, 1978). They also trained another group of rats
to discriminate chlorpromazine (2.0 mg/kg) vs. vehicle. Haloperidol and clozapine substituted in
chlorpromazine-trained rats but the non-antipsychotic drug chlordiazepoxide did not. In
clozapine-trained rats, haloperidol, chlordiazepoxide, and atropine all failed to substitute for
clozapine (i.e., the generalization between clozapine and chlorpromazine was asymmetrical).
Goas and Boston (1978) subsequently established a drug-drug discrimination using 8.8 mg/kg
clozapine vs. 4.24 mg/kg chlorpromazine and showed that haloperidol substituted for
chlorpromazine. Clozapine (20 mg/kg) and haloperidol (2.5 mg/kg) were subsequently

established as training drugs in a T-maze discrimination procedure (Overton, 1982).
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Gauvin, Goulden, & Holloway (1994) established a three-choice paradigm in rats trained to
discriminate haloperidol vs. saline vs. amphetamine as a single pharmacological continuum
(agonist-antagonist) that was hypothesized to represent a parallel subjective or interoceptive
stimulus continuum associated with the drug injections. A three-choice drug discrimination study
with clozapine vs. chlorpromazine vs. vehicle distinguished the atypical antipsychotics clozapine
and olanzapine from the typical antipsychotics chlorpromazine and haloperidol; however, the
stimulus properties of the atypical APD risperidone were similar to chlorpromazine, but not to
clozapine (Porter, Prus, Vann, & Varvel, 2005).

Drug discrimination studies demonstrate that chlorpromazine generalizes to both
olanzapine (Porter et al., 1999) and to haloperidol (McElroy et al., 1989). Clozapine generalizes
to both olanzapine (Porter & Strong, 1996; Porter, J.H., Varvel, Vann, Philibin, & Wise, 2000)
and chlorpromazine (Goas & Boston, 1978; Porter et al., 1998). Olanzapine produces full
substitution for both clozapine (Goudie & Taylor, 1998; Moore et al., 1993; Moore et al., 1992,
Porter et al., 2000) and chlorpromazine (Porter et al., 1998). There is evidently some degree of
similarity between the discriminative stimulus properties of clozapine, olanzapine, and
chlorpromazine and between chlorpromazine and haloperidol.

A recent drug discrimination study from our lab conducted in rats (Prus, Philibin,
Pehrson, Stephens, Cooper, Wise, & Porter, 2005a) has shown that the atypical antipsychotics
olanzapine, quetiapine, and ziprasidone produced full substitution for 5.0 mg/kg clozapine,
whereas the atypical antipsychotics risperidone and sertindole produced partial substitution (60-
79 %DLR). While the typical antipsychotic, thioridazine, produced full substitution for the 5.0

mg/kg clozapine training dose, but the typical antipsychotics chlorpromazine, fluphenazine, and
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haloperidol failed to substitute for clozapine. In a subgroup of 1.25 mg/kg clozapine-trained rats,
ziprasidone produced strong partial substitution (73.0 %DLR) for the 1.25 mg/kg clozapine dose.

Based on these findings, some atypical antipsychotic drugs (i.e., quetiapine and
ziprasidone) produce full substitution (> 80% DLR) only for the 5.0 mg/kg clozapine dose,
whereas other atypical antipsychotic drugs (i.e., sertindole and risperidone) produce full
substitution only for the 1.25 mg/kg clozapine dose. This shows that both the low and high
training doses may be important for the screening of putative atypical antipsychotic drugs.
Therefore, a three-lever drug discrimination procedure in rats using high (5.0 mg/kg) versus low
(1.25 mg/kg) dose-clozapine versus vehicle was established to test if this procedure more
selectively differentiates between atypical and typical antipsychotic drugs (Prus, Philibin,
Pehrson, & Porter, 2005b). These data further suggest that the lower 1.25 mg/kg clozapine
training dose engenders partial to full generalization to more atypical antipsychotic drugs than
does the higher 5.0 mg/kg training dose.

The three-lever procedure has also shown that many selective ligands fail to fully
substitute for clozapine at either training dose but that the muscarinic cholinergic receptor plays a
stronger role in the 5.0 mg/kg training dose (Prus, Philibin, Pehrson, & Porter, 2006). Full
substitution engendered by mianserin showed additional evidence that some antidepressant
agents may produce clozapine-like discriminative stimulus properties. These data further support
the notion that clozapine may have a compound discriminative stimulus cue.

The Discriminative Stimulus Properties of Clozapine
Typical antipsychotic drugs have failed to fully substitute for clozapine in drug

discrimination procedures. Thus, there are no false positives with typical antipsychotics tested in
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clozapine-trained animals. However, there are atypical antipsychotics (e.g., risperidone and
sertindole) that have failed to substitute for clozapine, indicating some false negatives in this
model.

The clozapine discriminative cue may be a complex cue involving concurrent blockade of
multiple receptor subtypes (Carey & Bergman, 1997; Goudie & Taylor, 1998; Goudie & Smith,
1999; Porter et al., 2000, Prus et al., 2005a; 2006). The specific complex of receptor subtypes
generating the discriminative stimulus of clozapine remains undetermined. Clozapine drug
discrimination studies have compared the discriminative stimulus properties of typical and
atypical antipsychotics and selecti\_fe receptor ligands with the discriminative stimulus properties
of clozapine.

Selective blockade of dopamine receptors does not engender clozapine-appropriate
responding in drug discrimination procedures. The dopamine D; antagonist SCH 23390 fails to
substitute for clozapine in rats (Franklin & Tang, 1994; Goudie et al., 1998; Porter et al., 1999)
and in pigeons (Hoenicke, Vanecek, & Woods, 1992). D, antagonists do not substitute for
clozapine in rats (Browne & Koe, 1982; Franklin & Tang, 1994; Goas & Boston, 1978; Goudie
et al., 1998; Porter et al., 1999; Tang, Franklin, Himes, Smith, & Tenbrink, 1997; Villanueva,
Arezo, & Rosecrans, 1992; Wiley & Porter, 1993) or in squirrel monkeys (Carey & Bergman
1997) Sulpiride (another D, antagonist) does not substitute for clozapine in rats (Ortmann,
Meisberger, Bischoff, Hauser, Bittiger, & Waldmeier, 1986) or in pigeons (Hoenicke et al.,
1992). D4 and Dj; antagonists similarly fail to substitute for clozapine in rats (Goudie, Baker,
Smith, Prus, Svensson, Cortes-Burgos, Wong, & Haadsma-Svensson, 2001; Goudie, Smith,

Taylor, Taylor, & Tricklebank, 1998).
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Clozapine had only partial effect in blocking the reinforcing and discriminative stimulus
effects of cocaine (van Campenhout, De Haes, & Meert, 1999; Vanover, Piercey, & Woolverton,
1993). In fact, rats trained to discriminate the D,/D; agonist, 7-OH-DPAT fully generalized to
clozapine but not to haloperidol (Dekeyne, Rivet, Gobert, & Millan (2001). Clozapine has D,/D;
antagonist activity but these effects were attributed to 5S-HT,, agonist actions at autoreceptors.
Clozapine did not substitute for the D,/Ds antagonist tiapride in rats (Cohen, Sanger, & Perrault,
1997). The ability to antagonize the discriminative stimulus of the dopamine agonist d-
amphetamine does not correlate with other atypical antipsychotic drugs similar to clozapine
(Arnt, 1996).

Blockade of o and B3 adrenergic receptors generally fail to engender clozapine
appropriate responding using rats or pigeons. Phentolamine and propranolol, « and B adrenergic
antagonists respectively, do not substitute for clozapine in rats (Kelley & Porter 1997). The
selective oc; antagoenist, prazosin, does not substitute for the clozapine discriminative stimulus in
rats (Nielsen, 1988) or in pigeons (Hoenicke et al., 1992) nor does the selective o, antagonist
yohimbine substitute for clozapine in rats (Goudie et al., 1998; Franklin & Tang, 1994).
However, S18327, a putative atypical antipsychotic with oc; and oc; adrenergic antagenist
properties, fully substituted for clozapine (Millan, Brocco, Rivet, Audinot, Newman-Tancredi,
Maiofiss, Queriaux, Despaux, Peglion, & Dekeyne, 2000). The H; histaminergic antagonist
mepyramine (pyrilamine) does not substitute in clozapine-trained rats (Goudie et al., 1998) nor
does pyrilamine in pigeons (Hoenicke et al., 1992). Full generalization to clozapine has been

demonstrated by the histamine H; receptor antagonists promethazine and cyproheptadine,
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although these compounds serve as antagonists at multiple 5-HT and muscarinic receptors as
well (Kelley & Porter, 1997).

NMDA failed to substitute for clozapine in rats (Kelley & Porter, 1997), but (Schmidt &
Volz, 1992) reported that NMDA substituted for clozapine in rats trained to discriminate
clozapine vs. saline in a T-maze. Clozapine but not haloperidol has been shown to antagonize the
discriminative stimulus of MK-801 (Corbett, 1995) but this was not supported in another
laboratory (Smith, Boyer-Millar, & Goudie, 1999). Further, clozapine failed to alter the
behavioral effects of PCP in two-lever drug discrimination and mixed signaled-unsignaled
differential reinforcement of low rates of responding (DRL) procedures (Compton, Slemmer,
Drew, Hyman, Golden, Balster, & Wiley, 2001).

The theory that concurrent antagonism of 5-HT,4 and 5-HT¢ serotonin receptors
mediates the clozapine discriminative stimulus (Hoenicke et al., 1992) is based on findings with
pigeons trained to discriminate 1.0 mg/kg (IM) clozapine vs. vehicle. However, in other drug
discrimination studies, ritanserin (5-HT »48/c antagonist) does not substitute for clozapine in
rats trained to discriminate clozapine vs. vehicle (Wiley & Porter 1992) or in rats trained to
discriminate clozapine vs. haloperidol (Wiley & Porter 1993). Antagonism of 5S-HT24.c
receptors resulted in clozapine appropriate responding in pigeons (Hoenicke et al., 1992), but this
has not been demonstrated in rats. Ketanserin (another 5-HT ,4,¢c antagonist) does not substitute
for clozapine in rats (Franklin & Tang, 1994; Goudie et al., 1998; Nielsen, 1988; Tang et al.,
1997) or in pigeons (Hoenicke et al., 1992).

The selective 5-HT,a antagonist MDL 100,907 does not substitute for clozapine in rats

(Goudie et al., 1998) but clozapine does generalize to MDL100,907 (Dekeyne et al., 2003). 5-
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HT,c selective antagonists do not substitute for clozapine (Goudie et al., 1998; Wiley & Porter,
1992). The 5-HTj; receptor antagonists MDL 72222 (Wiley & Porter, 1992; 1993) and
ondansetron (GR38032F) also fail to generate clozapine responding in rats (Goudie et al., 1998)
or in pigeons (Hoenicke et al., 1992). 5-HT,gnc receptor antagonists SB 200646 or SDZ SER
082 do not generalize to clozapine in rats (Goudie et al., 1998). 5-HT 5 agonists S-14506 in rats
(Goudie et al., 1998) and 8-OH-DPAT in pigeons (Hoenicke et al., 1992) and buspirone in rats
(Franklin & Tang, 1994; Wiley & Porter, 1992; 1993) also fail to substitute for clozapine. 5-HT,
antagonists do not attenuate the clozapine discriminative stimulus (Goudie et al., 1998); this is
despite evidence of 5-HT 4 agonist actions of clozapine (Newman-Tancredi et al., 1996).

5-HT, 4 agonists demonstrated cross-generalization with S-16924 and 5.0 mg/kg
clozapine (Millan et al., 1999). The discriminative stimulus effects of the 5-HT,¢ agonist mCPP
were not attenuated by clozapine; however, the mCPP-stimulated phosphoinositide turnover was
fully antagonized by clozapine (Fiorella, Rabin, & Winter, 1996). Clozapine blocks the
discriminative stimulus effects of the 5-HT;a/,c agonist DOI (Schreiber, Brocco, & Millan,
1994). Clozapine was shown to partially block the discriminative stimulus effects of the 5-HT;a
agonists 2,5-dimethoxy-4-methylamphetamine (DOM) or lysergic acid (LSD) and neither DOM
nor LSD generalized to clozapine (Palumbo & Winter, 1994). The blockade of (-) DOM-induced
stimulus control has been used to identify antipsychotics with potential 5-HT,A antagonist
properties (Fiorella, Helsley, Rabin, & Winter, 1997).

Nicotinic cholinergic receptors also do not appear to be involved in the clozapine
discriminative stimulus (Villanueva et al., 1992). Brioni, Kim, O’Neil, Williams, & Decker

(1994) reported that clozapine failed to substitute in nicotine drug discrimination but did partially
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attenuate the nicotine cue. The muscarinic cholinergic receptor system does appear to play a role
in the discriminative stimulus properties of clozapine.

Muscarinic antagonists reliably substitute in clozapine drug discrimination studies
(Goudie et al., 1998; Kelley & Porter, 1997; Nielsen, 1978; Millan et al., 1999). Antagonism of
the M,, but not M,, muscarinic receptor appears to be an important component of the clozapine
discriminative stimulus (Kelley & Porter 1997; Prus et al., 2004). Cross-generalization that was
established between clozapine-trained rats and scopolamine-trained rats by Kelley and Porter
(1997) demonstrates a shared mechanism for the discriminative stimulus effects of these two
training drugs.

Generalization observed between clozapine and muscarinic antagonists may be due to the
similar muscarinic antagonist actions of these drugs (Franklin & Tang, 1994). The clozapine cue
appeared to be blocked with the muscarinic agonist oxotremorine (1.0 mg/kg) by Nielsen (1988),
although, this effect could not be evaluated statistically due to strong rate suppression. There are
two significant exceptions to the theory that the clozapine discriminative stimulus is mediated
solely by anticholinergic mechanisms.

The benzodiazepine chlordiazepoxide showed partial substitution in rats for both
clozapine and scopolamine, yet has no affinity for muscarinic receptors (Kelly & Porter, 1997).
Also, the tricyclic antidepressant mianserin substituted for clozapine, but failed to substitute for
scopolamine in rats (Kelly & Porter, 1997). Antimuscarinic actions may be sufficient, but are not
an essential component for drugs that fully substitute for clozapine.

Training dose is an important factor in clozapine drug discrimination procedures that

affects which drugs substitute for the training drug, rates of responding, and the ability of drugs
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to attenuate the stimulus cue of the training drug (Colpaert et al., 1976). Training dose can also
affect the involvement of different receptor mechanisms mediating the discriminative stimulus
properties of clozapine. Previous drug discrimination studies using antipsychotic training drugs
do not always distinguish atypical from typical antipsychotic drugs.

However, more recent studies have shown that the atypical antipsychotics olanzapine,
sertindole, risperidone, and zotepine fully generalize to the clozapine discriminative stimulus
when a lower training dose (< 5.0 mg/kg) was used (Porter et al., 2000; Goudie & Taylor, 1998;
Smith et al., 1998). These data suggest that a lower training dose may be a more sensitive assay
for differentiating atypical from typical antipsychotic drugs. Therefore, investigating the effects
of antipsychotic drugs in low dose clozapine drug discrimination procedures may be more
relevant to the identification of receptor targets important for the clinical effects of atypical
antipsychotic drugs.

As previously noted, strong muscarinic cholinergic antagonism is sufficient to engender
full generalization in rats trained to discriminate 5.0 clozapine vs. vehicle (Nielson, 1988; Kelley
& Porter, 1997); however, the low affinity of sertindole and risperidone for muscarinic
cholinergic receptors suggests this is not the case at a low (1.25 mg/kg) training dose (Porter et
al., 2000). Further, the muscarinic antagonist scopolamine failed to substitute in rats trained to
discriminate 1.25 mg/kg clozapine vs. vehicle (Wise, Vann, Philibin, Carter, Varvel, Pehrson,
Silver, & Porter, 2001). Prus et al. (2005), however, demonstrated that the M, preferring
muscarinic antagonist trihexyphenidyl fully substitutes for 1.25 mg/kg clozapine but not 5.0

mg/kg clozapine. Full substitution was seen for clozapine with the a; adrenergic receptor
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antagonist prazosin and a single dose of the 5-HT»a receptor antagonist M100907 (Wise et al.,
2001).

Many atypical antipsychotic drugs with multiple receptor binding sites of action have
been detected in clozapine drug discrimination procedures. Clozapine drug discrimination with a
low training dose appears to selectively differentiate atypical from typical antipsychotic agents in
rats (Porter et al., 2000). Further refinements in the drug discrimination model, such as training
dose, training drug, and animal species, may prove useful in the discovery of novel antipsychotic

agents with superior therapeutic efficacy and reduced side effect vulnerability.



Rationale

Drug discrimination is used as an in vivo mechanistic study of the differences and
similarities between antipsychotic drugs. The recent development of transgenic and gene-
targeted knockout animals provides a new and powerful tool to investigate the molecular basis of
drug effects that complements behavioral pharmacology (Gold, 1996). Unfortunately, these
molecular techniques are currently only readily available in mice - the vast majority of
behavioral models used to study antipsychotic drugs have been conducted in rats. While the
majority of clozapine drug discrimination studies have been conducted in rats, standard drug
discrimination procedures can also be used with mice (Philibin, Prus, Pehrson, & Porter, 2005).

Establishing the use of wild type mice in a clozapine drug discrimination procedure that
has been extensively characterized in rats will allow for the future use of genetic mutant mouse
models to be compared in highly reliable assay for receptor specific effects. This technique is
particularly useful when a receptor knockout mouse exists for a recently identified receptor
subtype for which no existing selective ligand is available. Advances in molecular neuroscience
have greatly facilitated behavioral pharmacologists in the investigation of the genetic basis
underlying the behavioral effects of drugs. Deletion of a target gene that controls the production
of a neurotransmitter is somewhat analogous to administering a pharmacological
neurotransmitter receptor antagonist. Molecular approaches such as gene targeted knockout
mutations, expression of an exogenous transgene and the disruption of cellular expression of

genes with antisense oligonucleotides are now being successfully used. The use of these
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molecular approaches in antipsychotic drug research will undoubtedly help lead to the discovery
of new and improved agents for the treatment of schizophrenia.

Philibin et al. (2005) established the atypical antipsychotic clozapine as a training drug
using a two-lever drug discrimination operant procedure in C57BL/6 mice. The atypical APDs
olanzapine, risperidone and ziprasidone fully substituted for the discriminative cue of clozapine,
while the typical APD haloperidol failed to substitute for clozapine. Generalization testing with
selective ligands showed that the serotonin 5-HT,a.p2c antagonist ritanserin fully substituted for
clozapine and that the 5-HT receptor agonist quipazine significantly blocked the clozapine
discriminative cue without disrupting response rates. The muscarinic receptor antagonist
scopolamine, the dopamine agonist amphetamine, and the serotonin agonist quipazine failed to
substitute for clozapine. These results demonstrated that antagonism of 5-HT receptors plays a
crucial role in the discriminative stimulus of clozapine in C57BL/6 mice (Philibin et al., 2005).

If serotonin mechanisms are critical in this assay then agents with potent serotonergic
antagonist actions should resemble clozapine in this procedure. Results obtained from this
mechanistic model can be used concomitantly among a battery of behavioral tests predictive of
antipsychotic or EPS side effects to facilitate the discovery of novel antipsychotic agents. The
present study was designed to further explore the clozapine drug discrimination model with
C57BL/6 mice as established in the Philibin et al. (2005) study. Additional typical and atypical
antipsychotic drugs and selective ligands were tested in order to further validate the model and to
establish the underlying pharmacological mechanisms that mediate the discriminative stimulus
properties of clozapine in C57BL/6 mice.

Hypothesis.



46

Atypical APDs that are potent 5-HT2A receptor antagonists and relatively weaker D2
antagonists will fully substitute for clozapine. Typical APDs that are more potent D2 antagonists

will fail to substitute for clozapine. Non-antipsychotic agents will fail to substitute for clozapine.



Methods

Subjects

Thirty experimentally naive, male C57BL/6 wild type mice (20-25g) obtained from
Harlan Laboratories were housed individually in clear plastic cages (18 X 29 X 13 cm) with steel
wire fitted tops and wood chip bedding. Mice were transported daily (Monday-Friday) from an
animal colony room (12 hour light-dark cycle, lights on at 7 a.m., 22-24° C) to the laboratory
where experimental training and testing sessions occurred. After one week of acclimation, the
mice were slightly food deprived. To initiate the lever press response, mice were maintained at
90-95% of their free feeding body weights (20-25¢) by restricting their daily ration of standard
rodent chow (water available ad libitum). When rates of responding were established and
stabilized on both levers, the mice were allowed to gradually gain weight to free feed status as
drug discrimination training progressed as long as the mouse maintained 80% accuracy on the
appropriate levers. The Principles of Laboratory Animal Care (NIH publication No. 85-23,
revised 1985) were followed and the Institutional Animal Care and Use Committee at Virginia
Commonwealth University (VCU) approved the procedures used in the present study (IACUC
Protocol 0301-3155). Drug discrimination training started with 30 mice to ensure that at least 20
mice successfully acquired the task. In this within-subjects design, each mouse served as its own
control and eight to ten mice per group were sufficient to detect treatment effects (power = 0.8,
alpha = 0.05).
Drugs

Clozapine (atypical antipsychotic drug; gift from Novartis, Hanover, NJ), N-

desmethylclozapine (clozapine metabolite; gift from Sepracor, Inc., Marlborough, MA)
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sertindole (atypical antipsychotic drug; gift from Lundbeck, Copenhagen, Denmark), quetiapine
(atypical antipsychotic drug; gift from Zeneca Pharmaceuticals, Wilmington, Del.), iloperidone
(atypical antipsychotic drug; gift from HY Meltzer, Vanderbilt University, Nashville, TN),
zotepine (atypical antipsychotic drug; gift from HY Meltzer), aripiprazole (atypical antipsychotic
drug; gift from Lundbeck), fluphenazine (typical antipsychotic drug; E.R. Squibb and Sons, New
Brunswick, N.J.), perphenazine (typical antipsychotic drug; Sigma Chemical Company, St.
Louis, MO), M100907 (5-HT, antagonist; gift from Lundbeck), prazosin (adrenergic o,
antagonist; Sigma Chemical Company) and pyrilamine (histaminergic H; antagonist;, Sigma
Chemical Company) were dissolved in distilled water with a few drops of lactic acid.
Chlorpromazine HCL (typical antipsychotic drug; Sigma Chemical Company), thioridazine HCL
(typical antipsychotic drug; gift from Novartis, Hanover, NJ) melperone (atypical antipsychotic
drug; gift from HY Meltzer) and fluoxetine (SSRI; gift from HY Meltzer) were dissolved in
distilled water. All drugs were administered subcutaneously (S.C.) at a volume of 10 ml/’kg body
weight with a 30 min presession injection time. Doses for all compounds refer to the salt form.
Apparatus

Testing was conducted in five standard computer-interfaced operant conditioning
chambers (Model ENV-307A, Med Associates Inc., East Fairfield VT) with two retractable
response levers in the left and right positions (8 cm apart) on the intelligence panel. The levers
extend 0.8 cm into the chamber and were positioned 2.5 cm above a grid floor constructed of
parallel stainless steel rods. Centered between them was the recessed food trough into which a
liquid dipper delivers 0.02 ml of sweetened-condensed milk (by volume: one part condensed

milk, one part sugar, and two parts water). The inner test chambers consist ofa 15cm L X 11.5



49

cm D X 17.5 cm H area surrounded by an aluminum chassis box with a single Plexiglas side
door. Test chambers are housed in sound attenuated cubicles. Standard MED-PC software (Med
Associates Inc.) controlled the operant schedule and recorded data.

Training procedures

Magazine Training. The lever was not available to the mouse during the fifteen-minute
session. Liquid reinforcer was delivered noncontingently on a fixed-time 5 second (FT 5 sec)
intermittent delivery schedule (i.e., a single presentation of sweetened milk was delivered by
raising the dipper cup every 5 seconds automatically for 5 seconds).

Lever Press Training. Lever press training began upon completion of magazine training
with a single lever extended inside the chamber. Each mouse was placed in the operant chamber
and trained to press the levers for 0.02 ml of sweetened condensed milk on a fixed ratio one
(FR1) schedule of reinforcement, in which the milk reinforcer (dipper was available for 3 sec.)
was delivered after every lever press. Mice were trained to lever press on a single lever (the
vehicle lever). The position of the drug-associated lever (left vs. right) was counterbalanced
between the mice to control for olfactory cues (Extance & Goudie, 1981). The value of the FR
was gradually increased over several sessions until FR10 was obtained. Mice were injected daily
with vehicle 30 min prior to each test session. The mice then began drug lever training on the
alternate lever on the FR10 schedule (only drug lever present) and received clozapine injections
30 min prior to each test session. Once responding on the FR10 schedule was stable, the mice
received the training drug or vehicle injections according to a double alternation sequence (i.e.,

DDVVDDVYV) with only the appropriate lever presented inside the operant chamber. Once
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baseline rates of responding stabilized, both levers were extended in the operant chambers for the
remaining sessions. Clozapine and its vehicle were administered 30 min. prior to testing.

Drug Discrimination Training. Mice were trained to discriminate 2.5 mg/kg clozapine on
drug days. On days when drug was administered, only responding on the drug-associated lever
was reinforced. On days when vehicle was administered, only responding on the vehicle-
associated lever was reinforced. Responses on the incorrect lever reset the ratio requirement on
the correct lever. During the first ten sessions of two-lever discrimination training five
consecutive sessions of drug lever training was followed by five consecutive sessions of vehicle
lever training. The double alternation schedule subsequently resumed and was used throughout
the remainder of the study. Mice received two-lever training until the training criteria were
passed during 5 of 6 consecutive sessions.

Drug Discrimination Criteria. Successful discrimination training was evaluated and
assessed according to three criteria: (1) the first completed FR10 was on the appropriate lever,
(2) 80% or greater of the total responding occurred on the appropriate lever and (3) response rate
equaled or exceeded 10 responses per minute. Control vehicle and clozapine (2.5 mg/kg) tests
were administered and passed prior to generalization testing with all new test drugs. During
control and test sessions, responses on both levers were reinforced according to the FR10
schedule and the FR reset when switching occurred. The three training criteria also had to be met
during the training session immediately prior to all test sessions.

Testing procedures
Generalization testing. Generalization or substitution testing normally occurred on

Tuesdays and Fridays with a minimum of 2 days between tests including both a passed drug and
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a vehicle training session. After successful completion of vehicle and clozapine control tests, a
generalization dose effect curve was determined for clozapine (0.3125 - 5.0 mg/kg). Substitution
tests were conducted with various atypical and typical antipsychotic drugs, an antidepressant
drug and selective ligands for serotonergic, noradrenergic or histaminergic receptors. New
control tests were performed between each new test drug with the training drug and vehicle to
assess clozapine discriminative stimulus control.
Data Analysis

The percentage of animals in which the correct first FR (FFR) was obtained provided one
index of stimulus control. The number of responses on each lever was recorded and converted
into percent drug lever responding (%DLR) by dividing the number of responses on the drug
lever by total responses on both levers and multiplying by 100. Responses per minute (RPM) for
each session were calculated. EDs, values [with 95% confidence intervals [C.1.] were calculated
for %DLR data using the least squares method of linear regression with the linear portion of the
dose effect curve. EDs, values were calculated for test drugs that fully substituted for the training
dose of clozapine (full substitution > 80% DLR; partial substitution was > 60 to < 80% DLR). A
repeated-measures analysis of variance (ANOVA) comparing responses per minute was
performed for each drug (GB-STAT software; Dynamic Microsystems, Inc., Silver Spring, MD).
Significant ANOVAS were followed by Newman-Keuls post-hoc tests (p < 0.05). To record
%DLR, animals had to earn at least one reinforcer (FR10) or have responses per minute > 2.0

(30 lever press responses per session).



Results

Acquisition of two-lever discrimination

Twenty six out of thirty mice reached training criteria in an average of 14.8 (SEM + 1.6)
sessions with a range of 6-34 sessions. Three mice were removed from the study because they
were unable to complete the clozapine dose response curve.
Clozapine generalization

The mean %DLR (+SEM) and the mean responses per minute (+SEM) for the clozapine
generalization curve for the 2.5 mg/kg training dose is shown in Fig. 1. Full generalization to the
clozapine cue was obtained at 2.5 mg/kg and 5.0 mg/kg. Generalization testing yielded an EDs, =
1.19 (95% C.I. 1.09 - 1.30 mg/kg). Response rates were significantly suppressed by 5.0 mg/kg
(Fe,132=115.3, P<0.0001) with only 4 of 23 animals meeting the rate criterion at that dose (i.e.
earned a reinforcer or had > 2.0 RPM).
Replication of clozapine generalization dose effect

Generalization curves for the 2.5 mg/kg clozapine training dose in the current study (2)
are superimposed over previously obtained data (1) in C57BL/6 mice (Philibin et al. 2005) in
Fig.2.
Quetiapine generalization

Quetiapine (Fig. 3) fully substituted (98.0% DLR) for clozapine at 10.0 mg/kg. Partial
substitution (60.7% DLR) for clozapine was seen at 5.0 mg/kg. Generalization testing yielded an
EDsy = 1.92 (95% C.I. 1.07 - 3.47 mg/kg). Response rates were significantly suppressed at 5.0
mg/kg (Fe 16= 10.7, P<0.0001).

Sertindole generalization

52
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Sertindole (Fig. 4) fully substituted (82.9% DLR) for clozapine at 40.0 mg/kg.
Generalization testing yielded an EDsy = 9.64 (95% C.1. 4.97- 18.71 mg/kg). Response rates
were not significantly different from vehicle at any of the doses tested (2.5 — 40.0 mg/kg).
Zotepine generalization

Zotepine (Fig. 5) fully substituted (88.5% DLR) for clozapine at 5.0 mg/kg. Partial
substitution (66.8% DLR) for clozapine was seen at 2.5 mg/kg. Generalization testing yielded an
EDsp=2.12 (95% C.1. 1.76 - 2.56 mg/kg). Response rates were significantly suppressed at 5.0
mg/kg (Fs 35=34.6, P<0.0001).

Iloperidone generalization

Iloperidone (Fig. 6) fully substituted (89.8% DLR) for clozapine at 0.4 mg/kg.
Generalization testing yielded an EDso = 0.19 (95% C.1. 0.14 - 0.25 mg/kg). Response rates were
significantly suppressed at 0.4 mg/kg (Fs 42 = 20.6, P<0.0001).

Melperone generalization

Melperone (Fig. 7) fully substituted (94.8% DLR) for clozapine at 2.0 mg/kg.
Generalization testing yielded an EDsy = 2.22 (95% C.I. 1.56- 3.16 mg/kg). Response rates were
significantly suppressed at 2.0 mg/kg (Fs 4= 20.7, P<0.0001).

Aripiprazole generalization

Aripiprazole (Fig. 8) (1.25 — 10.0 mg/kg) failed to substitute for clozapine. Response
rates were significantly suppressed at 5.0 and 10 mg/kg (Fs_30=20.9, P<0.0001).
Chlorpromazine generalization

Chlorpromazine (Fig. 9) fully substituted (94.5% DLR) for clozapine at 4.0 mg/kg.

Partial substitution (67.2% DLR) for clozapine was seen at 2.0 mg/kg. Generalization testing
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yielded an EDsp = 1.37 (95% C.I. 1.12 - 1.69 mg/kg). Response rates were significantly
suppressed at 4.0 mg/kg (Fs_35=22.8, P<0.0001).
Thioridazine generalization

Thioridazine (Fig. 12) fully substituted (97.5% DLR) for clozapine at 20.0 mg/kg.
Generalization testing yielded an EDsy = 5.85 (95% C.1. 4.20 - 8.14 mg/kg). Response rates were
not significantly different from vehicle at any of the doses tested (2.5 — 20.0 mg/kg).
Fluphenazine generalization

Fluphenazine (Fig. 10) (0.125 — 2.0 mg/kg) failed to substitute for clozapine.
Fluphenazine never generated above vehicle (>20% DLR) appropriate responding. Response
rates were significantly suppressed at 1.0 and 2.0 mg/kg (F¢ 3= 10.65, P<0.0001).
Perphenazine generalization

Perphenazine (Fig. 11) (0.125 — 2.0 mg/kg) failed to substitute for clozapine.
Fluphenazine never generated above vehicle (>20% DLR) appropriate responding. Response
rates were significantly suppressed at 1.0 and 2.0 mg/kg (Fs 36= 10.65, P<0.0001).
MI100907 generalization

The 5-HT,4 antagonist M100907 (Fig. 13) fully substituted (87.55% DLR) for clozapine
at 5.6 mg/kg. Generalization testing yielded an EDsy = 1.95 (95% C.1. 1.34805- 2.817627
mg/kg). Response rates were significantly suppressed at 0.3, 1.0, 3.0 and 5.6 mg/kg (F7 49=
10.02, P<0.0001).

Prazosin generalization
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The a,; antagonist prazosin (Fig. 14) fully substituted (81.5% DLR) for clozapine at 2.8
mg/kg. Generalization testing yielded an EDsy = 1.68 (95% C.1. 1.04812-2.70317 mg/kg).
Response rates were significantly suppressed at 2.0 and 2.82 mg/kg (Fg 4= 5.7, P<0.0005).
Pyrilamine generalization

The H, histamine antagonist pyrilamine (Fig. 15) (5.0 — 40.0 mg/kg) failed to substitute
for clozapine. Maximum clozapine appropriate responding was 38.9%. Response rates were
significantly suppressed at 40.0 mg/kg (Fs 3s=22.3, P<0.0001).

Fluoxetine generalization

The selective serotonin reuptake inhibitor (SSRI) fluoxetine (Fig. 16) (3.75 — 15.0 mg/kg)
failed to substitute for clozapine. Maximum clozapine appropriate responding was 13.1%.
Response rates were significantly suppressed at 15.0 mg/kg (F4 3= 3.9, P<0.05).

Clozapine generalization

A second generalization curve with clozapine for the 2.5 mg/kg training dose was
obtained prior to testing N-desmethylclozapine (Fig. 17). Maximum clozapine appropriate
responding was 99.6% at the 2.5 mg/kg training dose. Generalization testing yielded an EDs, =
1.065 (95% C.1. 0.92- 1.23 mg/kg).

N-desmethylclozapine generalization
The clozapine metabolite n-desmethylclozapine (Fig. 18) (2.5 — 10.0 mg/kg) failed to
substitute for clozapine. Maximum clozapine appropriate responding was 39.2%. Response rates

were significantly suppressed at 5.0 mg/kg and 10.0 mg/kg (F4, 3= 30.75, P<0.0001).
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Figure 1. Mean percentage drug-lever responding (+SEM) and mean responses per minute
(+SEM) are shown for generalization curves for the 2.5 mg/kg clozapine training dose. The
dashed line at 80% drug-lever responding indicates full generalization to the training dose of
clozapine. Control tests were conducted with either clozapine (2.5 mg/kg) or vehicle prior to
testing. Mice had to have a rate of at least 2.0 responses per minute or have earned a
reinforcer (FR10) to be included in percentage drug-lever responding data. Significant

differences in rates of responding are indicated by asterisks (*P<0.05, **P<0.01).
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Figure 2. Mean percentage drug-lever responding (+SEM) and mean responses per minute
(+SEM) for generalization curves for the 2.5 mg/kg clozapine training dose in the current
study (2) are superimposed over previously obtained data (1) in C57BL/6 mice (Philibin et
al. 2005). Indicators of significant differences in rates of responding have been omitted. All

other details are the same as Fig. 1.
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Figure 3. Mean percentage drug-lever responding (+SEM) and mean responses per
minute (+SEM) are shown for quetiapine generalization curves for the 2.5 mg/kg clozapine

training dose. All other details are the same as Fig. 1.
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Figure 4. Mean percentage drug-lever responding (+SEM) and mean responses per minute
(+SEM) are shown for sertindole generalization curves for the 2.5 mg/kg clozapine training

dose. All other details are the same as Fig. 1.
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Figure 5. Mean percentage drug-lever responding (+SEM) and mean responses per minute
(+SEM) are shown for zotepine generalization curves for the 2.5 mg/kg clozapine training

dose. All other details are the same as Fig. 1.
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Figure 6. Mean percentage drug-lever responding (+SEM) and mean responses per minute
(+SEM) are shown for iloperidone generalization curves for the 2.5 mg/kg clozapine training

dose. All other details are the same as Fig. 1.
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Figure 7. Mean percentage drug-lever responding (+SEM) and mean responses per minute
(+SEM) are shown for melperone generalization curves for the 2.5 mg/kg clozapine training

dose. All other details are the same as Fig. 1.
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Figure 8. Mean percentage drug-lever responding (+SEM) and mean responses per minute
(+SEM) are shown for aripiprazole generalization curves for the 2.5 mg/kg clozapine training

dose. All other details are the same as Fig. 1.
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Figure 8.
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Figure 9. Mean percentage drug-lever responding (+SEM) and mean responses per minute
(+SEM) are shown for chlorpromazine generalization curves for the 2.5 mg/kg clozapine

training dose. All other details are the same as Fig. 1.



Figure 9.

5-HT2A
3.3

D2
1.2

M alpha 1
376 14

CHLORPROMAZINE

DOSE MG/KG

o
=
O 100 @ ©) - 30
g "
.
8 - 20
oY 60-
@
40-
>
> - 10
-1 - —o— %DLR *k
o)) —O— RSP/MIN
S
5 o I ? | T | 1 0
S CLZ VEH 0.5 1.0 2.0 4.0
(-)

73

9)NuIp J9d sasuodsay



74

Figure 10. Mean percentage drug-lever responding (+SEM) and mean responses per minute
(+SEM) are shown for thioridazine generalization curves for the 2.5 mg/kg clozapine training

dose. All other details are the same as Fig. 1.
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Figure 11. Mean percentage drug-lever responding (+SEM) and mean responses per minute
(+SEM) are shown for fluphenazine generalization curves for the 2.5 mg/kg clozapine

training dose. All other details are the same as Fig. 1.
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Figure 12. Mean percentage drug-lever responding (+SEM) and mean responses per minute
(+SEM) are shown for perphenazine generalization curves for the 2.5 mg/kg clozapine

training dose. All other details are the same as Fig. 1.
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Figure 13. Mean percentage drug-lever responding (+SEM) and mean responses per minute
(+SEM) are shown for M100907 generalization curves for the 2.5 mg/kg clozapine training

dose. All other details are the same as Fig. 1.
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Figure 14. Mean percentage drug-lever responding (+SEM) and mean responses per minute
(+SEM) are shown for prazosin generalization curves for the 2.5 mg/kg clozapine training

dose. All other details are the same as Fig. 1.
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Figure 15. Mean percentage drug-lever responding (-SEM) and mean responses per minute
(+SEM) are shown for pyrilamine generalization curves for the 2.5 mg/kg clozapine training

dose. All other details are the same as Fig. 1.
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Figure 16. Mean percentage drug-lever responding (+SEM) and mean responses per minute
(+SEM) are shown for fluoxetine generalization curves for the 2.5 mg/kg clozapine training

dose. All other details are the same as Fig. 1.
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Figure 17. Mean percentage drug-lever responding (+SEM) and mean responses per minute
(+SEM) are shown for clozapine generalization curves for the 2.5 mg/kg clozapine training

dose prior to testing N-desmethyl clozapine. All other details are the same as Fig. 1.
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Figure 18. Mean percentage drug-lever responding (+SEM) and mean responses per minute
(+SEM) are shown for N-desmethylclozapine generalization curves for the 2.5 mg/kg

clozapine training dose. All other details are the same as Fig. 1.
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Discussion

Clozapine discrimination and generalization

The present study obtained remarkably similar data to that previously reported by
Philibin et al. (2005). Generalization testing with clozapine yielded an EDsy = 1.19 in the present
study as compared to an EDsy = 1.14 in the Philibin et al. (2005) study. However, the acquisition
of the drug discrimination task was more rapid in the current study. Mice in the present study
met the training criteria in an average of 14.8 (SEM + 1.6) sessions with a range of 6-34
sessions; whereas, in the Philibin et al. (2005) study the mice required an average of 35.6 (+2.84,
range 15-52) training sessions. This may be due to the increased experience of the experimenter
with the drug discrimination procedure with mice. Another possible factor was that the 60
minute presession injection time used in the Philibin et al. (2005) study was changed to 30
minutes (based on time course data fromrthat study that showed no significant difference
between the 60 and 30 minute time points).
Classification of antipsychotic drugs

It may be an oversimplification to assign the antipsychotic agents to two homogeneous
classes; the typical and atypical antipsychotic drugs (see review by Arnt & Skarsfeldt, 1997).
Rather, each novel antipsychotic drug has its own unique pharmacological profile that is
determined by its neurotransmitter receptor binding profile. The atypical antipsychotic drugs are,
themselves, a heterogeneous group of agents but there are some similarities in their receptor
binding affinities (see Table 1.). It is therefore, essential to characterize the receptor mediated
effects of various antipsychotic agents in order to increase our understanding of the complex

pharmacology of schizophrenia.
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In the clozapine drug discrimination procedure, the 5-HT,4 receptor antagonist M100907
engendered clozapine appropriate responding in C57BL/6 mice. This extends previous findings
that the 5-HT,amnc receptor antagonist ritanserin fully substitutes for clozapine in C57BL/6
mice (Philibin et al., 2005). The atypical antipsychotics olanzapine, risperidone, and ziprasidone
(from the Philibin et al., 2005 study) and sertindole, quetiapine, iloperidone, melperone, and
zotepine (from the present study) fully substituted for clozapine in C57BL/6 mice. All of these
atypical APDs bind potently to 5-HT receptors and these data suggest that clozapine (at least in
C57BL/6 mice) produces an interoceptive cue that is mediated via 5-HT receptor antagonism.
These findings also demonstrate that the discriminative stimulus properties of clozapine are
similar to those of these atypical antipsychotic drugs.

While both clozapine and olanzapine are potent antimuscarinic agents, the selective
muscarinic antagonist scopolamine failed to fully substitute for clozapine (Philibin et al., 2005).
This suggests that antimuscarinic effects are not necessary or sufficient to engender clozapine-
appropriate responding in C57BL/6 mice. This notion is further supported by the ability of some
atypical antipsychotic agents with negligible muscarinic affinities (e.g., risperidone and
sertindole) to fully substitute in clozapine-trained C57BL/6 mice. The failure of N-
desmethylclozapine to generalize may be due to its being a partial dopamine agonist rather than a
D, antagonist (Burstein, Ma, Wong, Gao, Pham, Knapp, Nash, Olsson, Davis, Hacksell, Weiner,
& Brann, 2005). This hypothesis is supported by the finding that aripiprazole, another partial
DA agonist, also did not generalize. Thus, although both NDMC and aripiprazole are potent 5-
HT?2A antagonists, and selective 5S-HT2a antagonists such as M100907 generalize to clozapine,

5-HT2A partial agonism may prevent the discrimination cue from being detected. The partial DA
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agonism would lead to a diminished release of DA in subcortical, but not cortical regions. This
would suggest further research should consider the role of mesolimbic DA release in the
discrimination cue. A way to test this would be to combine amphetamine with clozapine or to
block the effect of dopamine release by pretreatment with low dose haloperidol.

While this procedure detects the vast majority of atypical antipsychotic drugs tested,
several typical antipsychotic drugs also fully substituted for clozapine in this assay. Typical
antipsychotic drugs that tend to have higher receptor binding affinities for 5-HT,4 receptors
relative to haloperidol, such as chlorpromazine and thioridazine, fully substituted for clozapine.
Chlorpromazine, unlike clozapine, is associated with EPS, tardive dyskinesia and neuroleptic
malignant syndrome, but similar to clozapine, has serotonergic, muscarinic and dopaminergic
antagonist effects. Full substitution for clozapine with chlorpromazine may be due to its higher
affinity for 5-HT receptors or other concurrent receptor effects - i.e., a compound cue similar to
that of clozapine. Chlorpromazine represents a false positive in this model as a selective assay
for antipsychotic agents that have reduced EPS liability. Thioridazine is a low-potency
phenothiazine that is slightly less potent than chlorpromazine. While, thioridazine has a lower
propensity to cause EPS than most conventional neuroleptic agents, it is classified as a typical
antipsychotic drug. Thioridazine has slightly higher potency at 5-HT»4 receptors relative to D,
but this is not a ratio greater than 2:1. In this regard, thioridazine is more similar to clozapine, but
unlike clozapine, thioridazine is associated with EPS.

The only atypical antipsychotic drug tested that failed to fully substitute for clozapine in
C57BL/6 mice was aripiprazole. Aripiprazole, 7-{4-[4-(2,3-dichlorophenyl)-1-piperazinyl]-

butyloxy}-3,4-dihydro-2(1H)-quinolinone, is a novel antipsychotic with a somewhat different



95

mechanism of action from other atypical antipsychotic drugs. Aripiprazole has 5-HT,4 blocking
properties and suppresses DA activity by the partial DA agonist mechanism. Similar to many
antipsychotic agents, aripiprazole binds with high affinity to dopamine D, receptors (Kikuchi,
Tottori, Uwahodo, Hirose, Miwa, Oshiro, & Morita, 1995; Lawler, Prioleau, Lewis, Mak, Jiang,
Schetz, Gonzalez, Sibley, & Mailman, 1999); however, whereas older antipsychotics are
believed to exert their effects through antagonism of D, (and 5-HT),) receptors, aripiprazole may
exert its therapeutic effects through partial agonism of the D,-family of receptors (Inoue, Domae,
Yamada, & Furukawa, 1996).

Aripiprazole displays dopamine D, receptor antagonist activity in vivo (e.g., blockade of
apomorphine-induced stereotypy) and D, receptor agonist activity in an in vitro model of
dopaminergic hypoactivity (blockade of increased dopamine synthesis in reserpine-treated rats)
(Kikuchi et al., 1995). There is also evidence that aripiprazole has antagonist actions at several 5-
HT receptor subtypes relevant to schizophrenia, such as 5-HT 4 and S-HT2A antagonism (Bruins
Slot, De Vries, Newman-Tancredi, Cussac, 2002; Jordan, Koprivica, Dunn, Tottort, Kikuchi,
Altar, 2004).

It is unclear why aripiprazole failed to substitute for clozapine in the current study.
Aripiprazole demonstrates dopamine D, receptor antagonist actions in vivo (e.g., blockade of
apomorphine-induced stereotypy) and that could potentially prevent generalizable doses from
being tested before rate suppression occurs in this operant task, similar to the effects seen with
olanzapine in clozapine-trained nonhuman primates (Carey & Bergman 1997). In that study,
olanzapine fully substituted for clozapine in squirrel monkeys, but only when a D, agonist was

co-administered with olanzapine and blocked the rate-suppressant effects of olanzapine.
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The failure of the clozapine metabolite N-desmethylclozapine to substitute for the
clozapine discriminative stimulus may be due to M1 agonism, partial dopamine agonism, or
strong mu opiate activity. These different receptor effects from clozapine would require
additional studies to characterize in relation to the clozapine.

Rate suppressant effects

Clozapine drug discrimination in C57BL/6 mice successfully detected many atypical
antipsychotic drugs. However, many of the atypical agents (as well as the typical antipsychotic
chlorpromazine) substituted for clozapine only at rate suppressant doses. Control test points
obtained with the training dose of clozapine have rates of responding that are no different from
vehicle control test points. Also, several antipsychotic drugs that fully substitute for clozapine
have done so at doses that do not decrease rates of responding (e.g., olanzapine, sertindole and
thioridazine). Finally, all drugs that failed to fully substitute for clozapine were tested up to rate
suppressant doses. Therefore, rate suppression is neither a requirement nor is it sufficient to

engender clozapine-appropriate responding in C57BL/6 mice.
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Conclusions

The potent blockade of 5-HT,4 receptors appears to be an integral component of the
discriminative stimulus properties of clozapine in C57BL/6 mice. The differentiation of
antipsychotic drugs in this model appears to be based, at least in part, on 5-HT4 receptor
antagonism. However, clozapine drug discrimination in C57BL/6 mice does not completely
differentiate atypical from typical antipsychotic drugs (as noted above in the discussion).
Clozapine drug discrimination procedures used in C57BL/6 mice may be useful for the study of
receptor specific mechanisms of action in the development of putative antipsychotic agents with
potent 5-HT,4 receptor antagonist actions. This may provide a receptor-specific in vivo assay
useful in the development of novel pharmacotherapies for schizophrenia.

The a; adrenoreceptor antagonist prazosin also fully substituted for clozapine in the
current study. Many antipsychotic drugs bind to the o; adrenoreceptor subtype with relatively
high affinity. Comparison with dopamine D, receptor affinities suggests that antipsychotic
blockade of a4 and/or ap adrenoceptors may contribute to the antipsychotic activity of many
atypical and several typical antipsychotic drugs (Cahir & King 2005). Full substitution obtained
with the a; adrenergic antagonist prazosin for clozapine suggests that this paradigm may be
useful for the detection of antipsychotic agents with potent o; adrenergic receptor antagonist
actions.

Future directions

Much evidence indicates that atypical antipsychotic drugs similar to clozapine can be

differentiated from the prototypical typical antipsychotic haloperidol in the paw test (a model of

antipsychotic and EPS effects) and pre-pulse inhibition (see review by Geyer & Ellenbroek,
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2003) and the discriminative stimulus of clozapine (Goudie & Taylor, 1998; Porter et al., 2000;
Philibin et al., 2005). However, there is an imperative need to target schizophrenic symptoms
with more selective pharmacological treatment.

Atypical antipsychotic drugs such as clozapine, olanzapine, risperidone and
quetiapine have substantially reduced the EPS liability of antipsychotic drug treatment but these
agents are only moderately effective in the treatment of negative and cognitive executive
symptoms. Thus, there is a continued focus on the need for superior antipsychotic drugs.
Correlating the differences and similarities between atypical and typical antipsychotic drugs on a
behavioral and neurochemical level will help increase our understanding of the complex
pharmacology of schizophrenia and help lead to improved agents with greater therapeutic
efficacy and reduced side effect liability.

Results from these two clozapine drug discrimination studies in mice demonstrate that
this procedure can be successfully established in C57BL/6. The C57BL/6 is a standard inbred
mouse strain used for breeding and as the background strain for genetically engineered
mutations. The use of inbred strains of mice (e.g., C57BL/6 versus DBA/2) offers strong
advantages to investigations of the role of specific neurotransmitter receptor systems in the
effects of pharmacological agents (e.g., dopamine). Further, establishing this procedure in mice
opens the door for the future behavioral phenotyping of transgenic and knockout mice in this
model. Targeted mutation of genes expressed in the mouse brain is now allowing for the
increased integration of molecular genetics and behavioral neuroscience.

Rapid advances in biomedical research will be facilitated in the future by emerging

technologies such as conditional transgenics and knockouts. Conditional knockouts are



99

engineered to restrict the effects of the mutation either spatially or temporally. This technique
can be used to induce the mutation only in a specific period of adulthood, avoiding the
compensatory mechanisms during development or to a certain cell type or region that allows for
anatomical specificity. Transgenic and knockout techniques are now being used to develop gene
therapy strategies for human genetic disorders. Animal models that permit the dissection of the
genetic basis of behavior will no doubt aid the development of new treatment strategies for

genetic disorders such as schizophrenia.
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