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Therapeutic ultrasound (TUS) is a treatment modality that is used to accelerate 

tissue healing.  TUS is thought to affect cellular processes of tissue healing, especially 

those that occur in the inflammatory and early proliferative phases.  TUS can be applied 

using various parameter selections including intensity, wavelength, duty cycle and 

treatment duration and no clear consensus exists on optimal parameters for healing 

enhancement.  Macrophages are important mediators of inflammation and their actions are 

critical to normal progression into the proliferative phase of healing.  They complete many 

functions during these periods of tissue healing, among those being release of cytokines 

and growth factors.  These paracrine factors affect other inflammatory cells, resident cells 
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of the healing tissue, including fibroblasts and endothelial cells that are necessary for 

restoration of damaged tissue.  The hypothesis of this investigation is that TUS enhances 

early healing, in part, through stimulation of macrophage release of paracrine factors 

involved in coordination of the cellular aspects of tissue healing and that specific levels of 

TUS are most stimulatory for macrophages.  This study examined macrophage release of 

interleukin-1  (IL-1 ), vascular endothelial growth factor (VEGF), transforming growth 

factor- 1 (TGF- 1) and fibroblast mitogens, in response to varied levels of TUS. 

Fibroblasts incubated up to 48-hours in media conditioned by TUS-stimulated 

macrophages were not induced to proliferate regardless of the parameters sets of TUS 

applied.  TUS (1 MHz, 400mW/cm
2
 SATA, 20% duty cycle, 10-minute exposure) induced 

macrophage release of VEGF and IL-1  within 10-minutes post-TUS, without any 

additional release being stimulated at 1-hour post-insonation.  No other combination of 

TUS parameters studied induced release of IL-1  and VEGF.  TUS did not induce release 

of TGF- 1 at either time point post-TUS.  VEGF and IL-1  release occurred in 

conjunction with lactate dehydrogenase (LDH) release from treated macrophages, 

indicating non-specific cell membrane permeabilization was involved in the cellular 

response.  For IL-1 , TUS-stimulated release was inhibited at lower exposure 

temperatures.  Inhibition of TUS-induced release at lower temperatures indicates that a 

cellular metabolic process, most likely exocytosis, was also stimulated by TUS.  Based on 

these results, it appears that TUS exposure at 1 MHz, 400mW/cm
2
 SATA, 20% duty cycle 

induces non-specific and cell-mediated release of secretory proteins.  Thus, enhanced 
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release of cytokines and growth factors from macrophages is a possible mechanism by 

which TUS enhances tissue healing.   
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Chapter 1 
 

Therapeutic Ultrasound and Tissue Healing:  Review of 

Literature 
 

 

Introduction 

Therapeutic ultrasound (TUS) has been utilized for over sixty years in the clinical 

setting and continues to be widely used to treat a variety of conditions.  Typical clinical 

rationale for its use include; reduction of edema and pain, acceleration of tissue repair, and 

modification of scar formation 
1,2

.  Despite frequent clinical use, there is a deficiency in the 

understanding of the mechanism of action of TUS on various tissues, and also a dearth of 

scientifically generated treatment parameters for achieving the optimal effect of TUS.   

As will be discussed in the following review, TUS has been studied using various 

experimental methods: 1) in vitro cell culture experiments, 2) in vivo animal experiments, 

and 3) clinical trials.  Many in vivo and in vitro studies have noted beneficial effects of 

TUS on healing of injured tissues namely, integument, ligaments, tendons and bone 
3-12

.  

This enhanced tissue healing, appears to be greatest when TUS is applied during the 

inflammatory phase of healing 
13-16

.   
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Much of the research on TUS effects on fracture healing has utilized a common set 

TUS treatment parameters: 1.5 MHz, 30 mW/cm
2
, 20% pulsed wave (PW), 20-minute 

treatments.  Experimental investigations using these TUS exposure parameters have 

generated data that demonstrate the benefit of TUS on fracture healing in various research 

models 
17-22

.  Use of a standardized parameter set allows direct comparison of findings 

among a variety of studies. In addition, identification of a consistently effective TUS dose 

creates a comparison point for other TUS parameter sets for clinical effectiveness and 

cellular effects. 

Among the body of investigations on soft tissue healing, many variant TUS 

application parameters have been reported to generate beneficial effects 
4,23-27

.  However, 

definition of optimal TUS application parameters has not been accomplished.  The 

following will examine the molecular, biochemical and mechanical effects of TUS on cells 

and tissues and how those effects relate to enhanced healing. 

 

Ultrasound Parameters 

Ultrasound consists of high frequency sound waves generated by conversion of 

electrical energy into mechanical energy, utilizing a piezoelectric crystal 
28

.  

Piezoelectricity is a material property of natural and synthetic crystals and it defines the 

process by which a crystal produces an electrical voltage when compressed and produces 

an electrical voltage of opposite polarity when expanded 
29

.  Using a reverse piezoelectric 

effect TUS transducers create an alternating voltage across a crystal, which causes the 

crystal to expand and contract and results in the establishment of high frequency waves of 
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pressure within the ultrasound spectrum.  These ultrasound waves are propagated through a 

medium at the same frequency as the alternating current, and this propagating pressure 

wave can produce a mechanical force when applied to biological tissues 
30-32

.  Wave 

propagation through tissues occurs via molecular collision and vibration, and the induced 

molecular vibration results in energy absorption and heating of tissue 
31

.  As the sound 

wave propagates through tissue, a progressive loss of energy occurs due to absorption and 

scattering of the wave.  This process, known as attenuation, results in a decrease in the 

intensity of the sound wave as it penetrates deeper into tissue 
33

.  Different tissues absorb 

ultrasound energy to varying degrees, based mainly on protein content 
34

.  Bone, followed 

by ligaments and tendons, absorb energy most readily.  By comparison, skin and muscle 

absorb intermediate amounts, with adipose tissue absorbing the least 
31

. 

Ultrasound is typically applied therapeutically in the frequency wavelength range 

of 0.75 to 3.0 MHz 
35

.  Higher frequency (3 MHz) sound waves are thought to cause more 

rapid movement of molecules resulting in greater attenuation of ultrasound energy at more 

superficial levels and a reduced depth of penetration into tissue when compared to lower 

frequency sound waves (1 MHz) 
31

.  TUS exposure at 1 MHz has been shown to produce 

tissue heating to a depth of 5 cm while 3 MHz is attenuated at more superficial levels with 

heating confined to < 2 cm below the treated surface in human lower extremities 
36

.   

Energy emitted from the transducer is not uniform across the crystalline surface of 

the TUS transducer; rather, hot spots of intense energy can develop along portions of the 

transducer during sonication 
28,32

.  Two methods are used to reduce the heating effect of 

TUS.  Constant slow, gentle movement of the transducer over the target site eliminates 
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heat buildup generated by the hot spots that would otherwise remain over one site for the 

full duration of treatment.  This moving applicator method is most often employed when 

treating tissues with a continuous wave (CW) application, which has a greater propensity 

to result in heating.  The second method to reduce the heating effect is to apply TUS in a 

pulsed-wave (PW) mode in which “off” periods interrupt the sound waves. The percentage 

of total treatment time during which US energy is being emitted is referred to as the duty 

cycle.  A 20% duty cycle is used most often clinically and in research reports, however, 

duty cycles of 10%, 25%, 33%, and 50% are available on most TUS generators 
1,33,37

.  

Beyond reduced tissue heating, the effect of different duty cycles on the overall efficacy of 

TUS is unknown.   

The intensity of applied ultrasound is defined as the rate of energy delivery per unit 

area of the transducer (watts/cm
2
), with typical therapeutic values of 30-2000 mW/cm

2
 
2
.  

The total amount of energy delivered to a specific site by TUS varies as a function of the 

tissue location, the types and numbers of tissue interfaces, the TUS intensity and duty 

cycle utilized, and the total duration of treatment.  TUS exposure dosage is often reported 

as the “spatial average, temporal average” (SATA).  Multiplying the duty cycle by the 

intensity of exposure generates the SATA value. The resultant SATA value can then be 

used to compare more directly, the overall TUS dosage between different investigations.  

For example, the different treatment parameters below result in an identical SATA value of 

400 mW/cm
2
 (with treatment duration remaining the same for each set): 
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2000 mW/cm
2 
at 20% duty cycle is: 2000 mW/cm

2
 x 20% = 400 mW/cm

2
 SATA 

 800 mW/cm
2 
at 50% duty cycle is: 800 mW/cm

2
 x 50% = 400 mW/cm

2
 SATA 

400 mW/cm
2 
at 100% duty cycle is: 400 mW/cm

2
 x 100% = 400 mW/cm

2 
SATA 

 

Given the variance in available TUS intensities and wavelength frequencies (0.75 

to 3 MHz), the disparity between the depth and amount of energy absorption among tissue 

types, measurement of the TUS energy that is imparted to tissues is inexact.  In addition, 

many of the studies discussed in this review utilized different intensities, frequencies, 

durations, and repetitions of TUS exposure.  Therefore conclusions and generalizations 

about TUS effects in relation to dosage are often limited and additional study is needed to 

identify optimal TUS parameters for specific effects.  The next section of the review will 

focus on cellular and tissue processes affected by TUS, with emphasis on the biological 

effects on healing tissues.    

 

Proposed Biophysical Mechanism of TUS:  Thermal 

The physical mechanism(s) of TUS that generate cellular responses are typically 

divided into two classifications, thermal and nonthermal.  Thermal effects are believed to 

create increased metabolic activity due to elevated temperature as TUS propagates through 

tissues.  Propagation of the ultrasound wave results in absorption of energy by tissues, via 

molecular vibration and friction in sonicated tissue, with the extent of energy absorbed 

being dependent on the physical characteristics of the intervening tissues 
31,38

.  In general, 

increased temperature (> 1ºC) is believed to increase metabolic activity in cells and 
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tissue 
39

.  According to Lehman, temperature increases of 2-3 C and > 4 C produce 

increased blood flow and increased collagen extensibility, respectively 
40

.   

The ability of TUS to increase tissue temperature has been demonstrated 

experimentally.  Using hogs, TUS applied to knee joints at 1 MHz, 1500 mW/cm
2
 SATA, 

CW for 5 minutes has been reported to result in a temperature increase of 4-8 C at 5 cm 

below the sonication surface 
41

.  Measuring at fixed tissue depths (2.5 and 5.0 cm for 1 

MHz) and (0.8 and 1.6 cm for 3 MHz) Draper et al investigated tissue heating in humans 

following TUS and reported average temperature elevation of 3-4 C in calf musculature of 

subjects measured at a depth of 5 cm when treated with TUS (1 MHz, 1500 mW/cm
2
 

SATA, CW, 10 minutes) 
36,42

.  Sonication at lower intensities (500 mW/cm
2
 or 1000 

mW/cm
2
 SATA) resulted in heating of 0.4 C and 1.6 C, respectively at a depth of 5 cm.  

TUS application at 3 MHz, CW at intensities between 500-2000 mW/cm
2
 SATA resulted 

in temperature increases of 3-6 C at 1.6 cm tissue depth 
36

.  These results appear to 

confirm the correlation between TUS frequency and depth of tissue heating.  However, by 

measuring at fixed depths for each frequency, the depth limit of heating was not 

completely investigated.  Using cadaveric specimens, Cambier et al reported increased 

temperature of nearly 5 C at a depth of 3 cm, following 10-minute sonication (1MHz, 

1000-2000 mW/cm
2
 SATA) of the legs of human cadavers while Demmink et al reported 

tissue heating of 4 - 8 C in pig hind limbs treated with varying CW TUS frequencies (0.86, 

2.0 and 3.0 MHz) for 5 minutes at 2000 mW/cm
2
 SATA 

43,44
.   
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In rats, CW TUS was reported to accelerate restoration of joint motion following 

experimentally induced knee-joint contractures.  The authors attributed the increased 

motion to increased extensibility of peri-articular structures due to TUS-induced heating 
45

.  

The effect of TUS on tissue extensibility in humans has been reported for healthy subjects 

only and with conflicting results.  In separate studies using healthy female subjects, triceps 

surae extensibility was increased due to TUS application, however, medial collateral 

ligament extensibility was not influenced by TUS 
46,47

.  The importance of these findings 

in humans is questionable given that the increasing extensibility of healthy connective 

tissue is not a rationale for TUS application.  Furthermore, increased extensibility of 

healthy tissues may create laxity of supporting structures (i.e. ligaments) and be 

detrimental to the supportive role of connective tissues.   

The overall evidence supports the ability of TUS to heat tissues to therapeutic 

levels (temperature rise of at least 1  and up to 5 C) given a high enough intensity and long 

enough treatment duration.   Thus, it is reasonable to conclude that TUS can have a thermal 

affect on tissues.  However, TUS dose necessary to heat tissues to therapeutic levels, and 

the effect of TUS-induced tissue heating on healing, tissue mechanics or metabolic 

properties remains undefined.   

 

Proposed Biophysical Mechanism of TUS:  Nonthermal 

  Beyond the effects generated through heating, TUS also affects treated tissue via 

nonthermal actions.  These non-thermal mechanisms are typically divided into acoustic 

cavitation and acoustic streaming.  Both mechanisms are theorized to create shearing 
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forces along membranes of cells and organelles, subsequently altering membrane 

permeability 
31,32,48

.  Furthermore, alterations in ion flux, especially calcium (Ca
2+

) are 

thought to result in extracellular matrix molecule (ECM) production, secretion of growth 

factors and cytokines, cell proliferation and changes in cell motility 
7,49-54

.   All of these 

TUS-stimulated cellular functions occur during normal tissue healing processes and 

provide a theoretical framework for investigation of TUS and tissue healing.   

 

Acoustic Cavitation.   

Cavitation describes the formation and activity of gas or vapor filled cavities when 

a medium (fluid) is exposed to an ultrasonic field 
29

.  These phenomena are separated into 

inertial and stable cavitation.  Inertial cavitation describes gas bubbles that grow in size 

then collapse violently, generating locally high temperatures and pressures and this form of 

cavitation has been shown to induce cellular damage in mammalian cells and in general its 

effects are believed to be detrimental to cells 
55,56

.  Inertial cavitation has been shown to 

occur as a result from exposure of fluid media to ultrasound, particularly in response to 

high intensity, pulsed ultrasound (> 3 W/cm
2
) 

29
.  These high intensity ultrasound 

exposures have been investigated as a method for gene delivery and are not typical of TUS 

parameters.  The effectiveness of these treatments are reported to be directly associated 

with acoustic cavitation, but the high intensities are greater than what is considered to be 

TUS (< 2000 mW/cm
2
) 

57,58
.     

Stable cavitation differs from inertial cavitation in that the gas bubbles oscillate in 

size as a result of ultrasonically induced pressure changes without any collapse occurring.  
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Ultrasound-induced pressure waves enable production of high velocity gradients of 

oscillating bubbles at membrane-medium interfaces, and these gradients are hypothesized 

to generate shear forces on cell membranes and subsequently change membrane 

characteristics, most notably, permeability 
29,31

.  Stable cavitation induced by TUS has 

been reported in a number of in vitro models, but its relationship to cellular response has 

not been clarified.  Cavitation during TUS exposures has been associated with membrane 

permeability changes in epithelial cells, and increased collagen synthesis by fibroblasts 

treated with TUS 
59,60

. 

Evidence of cavitation following in vivo TUS is limited and contradictory.  Stable 

bubble formation has been measured in guinea pig hind limbs treated with a single, 5-

minute TUS exposure (0.75 MHz, 80-680 mW/cm
2
 SATA, 25% PW) 

61,62
.  The authors 

reported that development of cavitation bubbles was directly proportional to increasing 

TUS intensity.  However, the authors admitted difficulty in interpretation of their images 

due to artifact when using a pulse-echo ultrasound imaging to detect cavitation.  In 

contrast, Gross et al applied TUS to canine left ventricles for 2 to 5 minutes (0.51 MHz - 

1.61 MHz, 125 - 16,000 mW/cm
2
 SATA) and reported no bubble formation at any 

frequency, intensity or duration tested 
63

.  Given the unique composition of the fluid-filled 

heart and unique characteristics of the moving fluid compared to tissues typically treated 

with TUS (i.e., ligaments, tendons, integument, bone), it is difficult to generalize their 

findings to other tissues.     

Based on the available evidence it appears that cavitation can occur during in vitro 

TUS exposures.  However, the link between cellular responses and TUS-induced cavitation 
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has not been identified.  Regarding in vivo exposures, additional evidence to support TUS-

induced cavitation in the hind limbs of guinea pigs has not been reported.  Given this 

limited evidence for in vivo cavitation and the unclear relationship between in vitro 

cavitation and cellular response, it is premature to conclude that TUS effects are mediated 

by cavitation. 

 

Acoustic Streaming 

Acoustic streaming is referred to as movement of fluid in a propagating ultrasonic 

wave and is classified as either bulk streaming or microstreaming 
31

.  Microstreaming is 

the result of eddies of fluid flow around TUS-induced vibrating gas bubbles.  By 

definition, the occurrence of microstreaming is dependent on cavitation, since movement 

of gas bubbles in the media is necessary to create fluid flow.  Bulk streaming describes 

propagation of unidirectional fluid flow by an ultrasound pressure wave. 

Microstreaming due to TUS exposure has not been reported, but bulk streaming has 

been measured during in vitro sonication of human bone cells 
64

.  The authors found 

measurable bulk streaming at intensities of 130, 480 and 1770 mW/cm
2
 SATA when TUS 

was applied at 3 MHz, CW for 10 minutes.  In addition, gene expression of transforming 

growth factor-  (TGF- ) was up-regulated at all three TUS intensities, which suggests a 

possible role of bulk streaming in generating a cellular response.  No other evidence has 

been reported to support the role of either type of acoustic streaming as a mechanism of 

action of TUS.  This may be due to the difficulty in measuring these phenomena given the 

available experimental models and monitoring equipment. 
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Free Radicals 

Formation and activity of free radicals following TUS exposure is another proposed 

mechanism to explain the action of TUS.  Because free radicals are capable of disrupting 

cell membranes, via peroxidation of lipid components, their formation has been 

hypothesized to be responsible for permeability changes and subsequent alterations in 

cellular activity following TUS application 
65

.  Free radical formation has also been 

reported in cultured frog skin exposed to TUS 
66

.  The sonicated tissue (1 MHz, 300 

mW/cm
2
 SATA, CW, 4 minutes) exhibited increased ionic conductance that was 

eliminated by adding free radical scavengers to the bathing media.  Ultrasound exposure at 

various intensities 500-3000 mW/cm
2
 SATA and variable duty cycles (15% to 100%) has 

also been reported to induce free radical production in sonicated tap water 
67

.  To date 

however, no evidence of TUS-induced free radical production has been reported in vivo.   

Free radicals do exist in tissues, but free radical scavengers often limit their 

actions 
66

.  Proponents of a free radical mechanism of action of TUS suggest that 

scavengers protect membranes from damage, but do allow some reactions to occur that 

would account for increased permeability 
32

.  On the other hand, an increase in free 

radicals could exceed the ability of tissue to control oxidizing reactions, thereby resulting 

in cell membrane damage rather than enhancement of cellular activities. 

 

Conclusion:  Nonthermal Mechanisms of Action 

It is unclear which, if any, of the proposed non-thermal mechanisms have a role in 

the actions of TUS.  The preponderance of evidence does not indicate the most likely 
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candidate mechanism, and it may be that the final response to TUS exposure occurs due to 

components of each mechanism.  The findings of Harle et al, in which the authors reported 

measurement of cavitation and bulk fluid streaming during in vitro TUS treatment of 

human osteoblasts appear to support the hypothesis of multiple mechanisms being 

responsible for TUS effects
64

.   

 

TUS and Tissue Healing 

 TUS enhancement of healing is supported for many injured tissues, but the nature 

and extent of its effect on healing, much like the mechanism of action, is not fully 

understood.  The effects of TUS on tissue healing have been described in numerous models 

and tissue types including dermal wounds, ligaments, tendons, and bone as well as for a 

variety of cell types involved in the healing process.  The overall body of evidence 

provides a strong basis for enhancement of healing following exposure to TUS.   

A variety of TUS treatment parameters have shown an ability to improve numerous 

aspects of tissue healing, with the greatest support for the benefits of TUS being reported 

for acceleration of fracture healing.  Fibroblasts, chondrocytes, osteoblasts, muscle satellite 

cells, Schwann cells, endothelial cells, monocytes, macrophages, spleenocytes, and 

thymocytes have demonstrated responsiveness to TUS exposure with in vitro and in vivo 

models.  The following sections will describe the relevant findings regarding TUS effects 

on tissues and cells.  Where appropriate, differential responses based on the exposure 

parameters will be discussed.  Lastly, evidence describing TUS affects on the early phases 

of healing, especially the inflammatory phase, will be presented in an effort to clarify the 
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hypothesis that the most beneficial aspects of TUS occur when exposures are given during 

early stages of the healing process. 

 

Fracture Healing 

The ability of TUS to enhance fracture healing is strongly supported by various 

investigations.  Clinical trials, as well as numerous in vivo and in vitro models, have 

consistently generated results indicating that TUS positively alters processes that occur 

during fracture healing.  Unlike studies of TUS effects on soft tissue healing discussed 

later, a majority of reports investigating TUS effects on fracture healing have utilized the 

same set of TUS parameters (1.5 MHz, 30 mW/cm
2
 SATA, 20% PW, 20 minutes).  An 

ultrasound generator designed to transmit TUS energy at these specific settings for 

acceleration of fracture healing is available clinically and is referred to as the “Sonic 

Accelerated Fracture Healing System” (SAFHS) 
68

.  Development and use of this TUS 

device permits more liberal inter-study comparison and generalization of results.   

In vivo studies utilizing rabbits, rats, dogs and sheep have demonstrated TUS-

enhanced healing of experimentally induced fractures.  At 21 days post-injury, healing 

femoral fractures in rats had increased maximum torque to failure and torsional stiffness 

compared to untreated fractures after daily TUS exposures (0.5 MHz, 50 and 100 mW/cm
2
 

SATA, 20% PW, 15 minute treatments) 
69

.  The increased callus strength coincided with 

increased expression of aggrecan mRNA, up to two weeks post-injury.  Azuma et al 

reported increased strength of healing femoral fractures in rodents following sonication at 

SAFHS parameters 
22

.  TUS exposures were given in varied interval schedules post-injury:  
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days 1-8, 9-16, 17-24, and 1-24.  Overall the effect of repeated TUS exposures appeared to 

be additive such that 24 consecutive treatments post-injury resulted in the greatest 

improvement in fracture strength compared to controls and the other treatment intervals.  

TUS exposures during the post-injury interval days 1-8, 9-16 and 17-24 enhanced fracture 

strength significantly more than controls, but significantly less than fractures treated from 

days 1-24.  No difference in fracture strength was reported among any of the eight-day 

treatment intervals.  Based on this study, it appears that the additive effects of TUS, rather 

than early treatment initiation, is the most important factor for improving fracture healing.  

This finding is inconsistent with the theory of greatest effect on the inflammatory phase of 

healing.   

Daily application of SAFHS improved tibial osteotomy healing in sheep, noted by 

reduction in healing time from 103 days to 79 days, compared to untreated controls 
70

.  In 

this study, the authors used a transosseous application of TUS, utilizing a stainless steel pin 

to transmit ultrasound energy directly on the bone surface.  Given the ability of non-

invasive, transcutaneous ultrasound application to improve fracture healing, there seems to 

be no clear indication at this time for use an invasive, possibly infection-generating TUS 

application protocol. 

In addition to the osteotomy fracture models noted above, TUS enhancement of 

healing of nonunion fractures and fractures in diabetic rodents has been demonstrated.  

Nonunion tibial fractures in rats exposed to SAFHS daily for 6 weeks demonstrated a 50% 

healing rate compared to 0% healing in untreated tibial fractures 
17

.  Femoral fractures in 

diabetic rats had improved torque to failure and stiffness after only 1 week of SAFHS 



   

 15 

exposures 
20

.  TUS exposures 6 days per week for 5 months (1 MHz, 50 mW/cm
2
 SATA, 

20% PW, 15 minutes) to canine ulnas accelerated healing and reduced non-unions from 

60% to 0% compared to controls 
6
.   

TUS has also been effective for enhancing healing in spinal fusion models.  Six 

weeks of daily SAFHS exposures improved the rate of healing and the histological quality 

of bone following lumbar spinal fusion in rabbits, compared to untreated controls 
71

.  In 

addition, sonication reduced pseudoarthroses, a common complication of spinal fusion, 

from 35% to 7%, increased stiffness and load to failure of healing bone compared to sham 

treatment 
72

.  Lumbar spinal fusion in canines exposed to SAFHS 6 days a week for 12 

weeks exhibited increased mechanical stiffness and accelerated rate of bony fusion when 

compared to untreated controls 
73

.   

In an investigation of rabbit mandibular fracture, daily SAFHS exposures for 3 

weeks accelerated endochondral ossification and increased failure load and stiffness of 

healing mandibles, compared to sham 
74

.  Sakurakichi et al reported accelerated bone 

formation using a distraction osteogenesis model in rabbit tibiae treated with SAFHS 
75

.  

TUS exposures resulted in increased bone mineral density, maximal torque at failure and 

stiffness 4 weeks post-injury.   

Randomized, placebo-controlled clinical trials have reported enhanced fracture 

healing in the tibia, distal radius, scaphoid and metatarsals after SAFHS exposures.  

Radiographically assessed healing of fresh fractures of the tibia treated with SAFHS was 

accelerated by 28 days, with cast discontinuation improved by 26 days and complete 

cortical bridging improved by nearly 70 days over placebo 
76

.  For distal radius fractures, 
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SAFHS accelerated healing by 37 days, as assessed by radiographic evidence of complete 

bridging of the cortex of the fracture site 
18

.  Leung et al reported on complex tibial 

fractures, classified as open shaft or comminuted fracture, treated with SAFHS for 90 

consecutive days 
77

.  SAFHS improved bone mineral content, alkaline phosphatase activity 

and reduced time to removal of external fixator and the time to full weight bearing 

compared to sham treatment.  Alkaline phosphatase, an enzyme that contributes to 

processes involved with bone formation, is considered a marker of fracture healing 
78

. 

Enhanced fracture healing in patients with compromised healing has also been 

reported.  Nonunion fractures, defined as fracture gaps bridged with soft tissue and 

exhibiting lack of healing for 6-8 months post-injury, represent a major problem for some 

patients 
78

.  Non-union fractures generally require some type of intervention, often invasive 

surgery, to promote healing and allow patients to return to premorbid function 
68

.  Based 

on clinical and radiographic assessment, SAFHS induced full healing of nonunions in 86% 

(25 of 29 cases) and 85% (57 of 67 cases) of subjects, with average time to healing of 22 - 

24 weeks 
79,80

.  Both studies included a variety of fracture sites including tibia, femur, 

radius, ulna, scaphoid, humerus, metatarsal, and clavicle, with all sites being responsive to 

TUS. 

In addition to nonunions, TUS has been shown to improve delayed fracture healing 

associated with cigarette smoking.  Cigarette smoking is directly related to poor healing 

generally and delayed fracture healing specifically.   Cook et al reported that healing time 

was reduced for fractures of the tibia by 72 days (41% reduction in healing time) and the 

radius by 50 days (51% reduction) in smokers receiving SAFHS compared to sham 
19

. 
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Given the evidence of TUS benefits on compromised fracture healing, the question 

of TUS effects on intact osteoporotic bone has been investigated 
81

.  Rat hind limbs made 

osteoporotic through bilateral ovariectomy were exposed to 12 weeks of daily SAFHS.  In 

a similar investigation, rat hind limbs made osteoporotic by sciatic neurectomy, were 

exposed to 4 weeks of daily TUS (1 MHz, 125 mW/cm
2
 SATA, CW, 15-minutes) 

82
.  TUS 

had no effect on restoration of bone mineral content or bone mineral density.  Taken 

together, these reports do not support improvement of osteoporotic bone loss following 

SAFHS exposures.  Beneficial effects of TUS on tissues generally involve injured, healing 

tissue and it might be expected that no benefit would occur for intact, non-injured tissues, 

such as osteoporotic bone. 

Accelerated fracture healing following TUS exposure has been verified using a 

variety of in vivo markers of bone healing as discussed above.  The cellular mechanisms 

that are affected by TUS have been investigated utilizing in vitro assays.  Much of this area 

of research has focused on chondrocyte and osteoblast response to TUS, with bone marrow 

stromal cells and in vitro bone tissue culture models also being employed.  

Tissue culture models of isolated bone tissue from fetal mice metatarsals have been 

used to analyze cellular responsiveness to TUS 
83,84

.  Metatarsal rudiments from fetal mice 

exposed to daily TUS for 1 week (1 MHz, 154 mW/cm
2
 SATA, 20% PW, 5 minutes) 

increased total longitudinal growth and length of the proliferative zone of cartilage as 

compared to untreated controls, suggesting that TUS enhanced chondrocyte 

proliferation 
83

.  Sonication at lower intensities (20, 66 and 98 mW/cm
2
 SATA, 20% PW, 
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and 100 and 500 mW/cm
2
 CW, 5 minutes) was reported to have no effect on length of the 

proliferative zone or total bone rudiment length 
84

. 

In contrast, SAFHS has been reported to increase the length of the calcified 

diaphysis of metatarsal bone rudiments from fetal mice following 7 consecutive days of 

exposures, without any changes in the length of the proliferative zone of cartilage or in 

total bone rudiment length 
84

.  The authors suggested that the lower intensity (30 vs. 154 

mW/cm
2
), in comparison to Wiltink et al

84
 affected the hypertrophic zone, specifically 

chondrocyte hypertrophy and matrix calcification, rather than chondrocyte proliferation in 

the proliferative zone.  However, Wiltink et al included sonication at intensities 

comparable to SAFHS intensities (20 and 66 mW/cm
2
 SATA) and did not report 

alterations in the hypertrophic zone.  The variance in treatment duration (5 vs. 20 minutes) 

may provide a better explanation for the difference in findings between these two studies, 

since TUS dose may influence the overall tissue response to sonication 
12

.  These reports 

indicate chondrocytes in regions of endochondral ossification are stimulated by TUS.  

Also, it appears that different TUS intensities may differentially affect processes in the 

bone-healing continuum.  Findings from these similar experimental models of developing 

bone treated with different TUS exposure parameters illuminate the difficulty in 

identifying optimal TUS doses.  However, the ability of non-SAFHS exposure parameters 

to alter bone formation indicates that a range of TUS exposure parameters may affect bone 

healing and regeneration. 

Concomitant with studies examining the effect of TUS on chondrocytes of fetal 

bone, osteoblast response to TUS has been investigated using in vitro models 
9,85

.  Sun et al 



   

 19 

treated bone defects in isolated rat femora with daily TUS (1.5 MHz, 320 or 770 mW/cm
2
 

SATA, 20% PW, 15-minutes) for 2 weeks and found accelerated healing and enhanced 

trabecular regeneration compared to sham 
85

.  In a follow-up study, Sun et al co-cultured 

mouse osteoblasts and osteoclasts and exposed them to 2 weeks of daily TUS (1 MHz, 68 

mW/cm
2 

SATA, 20% PW, 20-minutes) 
9
.  Osteoblasts were induced to proliferate, while 

osteoclast numbers declined.  Increased levels of tumor necrosis factor-  (TNF- ), 

alkaline phosphatase and prostaglandin E2 (PGE2) were also measured in the culture media 

following sonication.  TNF-  is an inflammatory cytokine that is believed to have a role in 

regulation of bone repair via stimulation of endochondral ossification and osteoclast 

function 
86,87

.  PGE2 is a lipid compound considered to be a potent inflammatory regulator 

of bone repair 
78,88,89

.  These combined findings indicate that TUS stimulated aspects of the 

inflammatory phase (i.e. TNF-  and PGE2) and the reparative phase (i.e. osteoblast 

proliferation and alkaline phosphatase production). 

Release of other cytokines related to bone healing has also been related to TUS 

exposure.  Rat osteoblasts treated with TUS (1 MHz, 120 mW/cm
2
, 20% PW, 15-minutes) 

had altered cytokine release following sonication 
90

.  The authors found increased release 

of transforming growth factor- 1 (TGF- 1) after two exposures, while release of TNF-  

and interleukin-6 (IL-6) was reduced after two and three exposures, respectively.  IL-6 acts 

to enhance osteoclast function in bone as well as promoting angiogenesis and extracellular 

matrix (ECM) synthesis 
78,87

, while TGF- 1 is a signaling peptide involved in recruitment 

and stimulation of ECM producing cells, including osteoblasts 
86,87,91

. 
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In addition to TUS induction of cytokine, protein and inflammatory mediator 

release, in vitro models have been used to identify the effects of TUS on gene expression 

in osteoblasts.  Using osteoblastic cells exposed to a single SAFHS treatment, investigators 

have reported induction of mRNA expression of cyclooxygenase-2 (COX-2), c-fos, 

alkaline phosphatase, osteocalcin, bone sialoprotein and insulin growth factor-1 

(IGF-1) 
92,93,94

.  Bone sialoprotein and osteocalcin are non-collagenous matrix bone 

proteins, and IGF-1 promotes cellular activity associated with bone growth 
86,,87

.  c-fos is a 

proto-oncogene that is thought to influence osteoblast proliferation and differentiation and 

to regulate constituents of the bony matrix 
91

.  COX-2 is an enzyme that appears to be 

involved in regulating bone formation and remodeling through stimulation of 

prostaglandin synthesis by osteoblasts 
92,95

. 

Utilizing SAFHS, Sena et al showed induction of immediate early response genes 

(c-jun, c-myc, COX-2, Egr-1, TSC-22) and bone differentiation marker genes (osteonectin, 

osteopontin) 3 hours after a single sonication of bone marrow stromal cells 
96

.  These 

results suggest that in addition to effects on osteoblasts, osteoclasts and chondrocytes, TUS 

enhances differentiation and maturation of progenitor cells involved in fracture healing. 

In two separate studies of single TUS exposures, Harle et al exposed osteoblastic 

cells to continuous TUS at 3 MHz for 5 or 10 minutes at varying intensities (140-1770 

mW/cm
2
 SATA) 

64,97,98
.  Sonication altered ECM protein production in a dose-dependent 

manner 
97

.  Specifically, TUS intensities of 140 and 990 mW/cm
2
 SATA reduced levels of 

osteonectin, while intermediate intensities 230 and 540 mW/cm
2
 had no effect on this 

ECM protein.  Osteopontin levels were reduced following 990 mW/cm
2
 exposures but not 
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at lower intensities.  TGF-  gene expression was also reported to have a dose-dependent 

relationship to TUS 
64

.  A single TUS application at varying intensities (3 MHz, 130-1770 

mW/cm
2
 SATA, CW, 10-minutes) induced TGF-  gene expression that was dose-

dependent, with the highest intensity (1770 mW/cm
2
) inducing the greatest expression.  

According to the overall results by Harle et al, it is apparent that TUS intensities can affect 

cellular activities differentially.  These investigations indicate a transcriptional response to 

TUS exposure in addition to a secretory or more general release response.  In addition, this 

trio of investigations utilized TUS exposure parameters different from SAFHS parameters, 

strengthening the hypothesis that many different TUS exposure parameters can be effective 

in altering cellular function. 

Similar to the findings of Harle et al, dose-response relationships between TUS and 

cell function have been reported utilizing SAFHS.  Osteoblastic cells exposed to SAFHS 

have been reported to generate differential expression of genes associated with 

osteogenesis (alkaline phosphatase, osteopontin, and bone morphogenic protein-7 

(BMP-7), based on the number of daily TUS exposures (1, 3, 5 or 7 exposures), with 3 

exposures inducing the greatest up-regulation 
99

.  Production of alkaline phosphatase, 

osteocalcin and vascular endothelial growth factor (VEGF) were dependent on the number 

of TUS treatments in human periosteal cells exposed to SAFHS parameters 
10

.  VEGF is a 

cytokine that has a critical role in angiogenesis during tissue repair 
86,100,101

.  The response 

of periosteal cells suggests that they may also have a role in TUS-enhanced fracture 

healing. 
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The evidence that supports enhancement of fracture healing by TUS is extensive.  Based 

on the overall findings on fracture healing with in vivo and in vitro models, it appears that 

TUS enhances bone healing by: alterations in ECM protein production (by chondrocytes, 

osteoblasts, and periosteal cells), release of inflammatory mediators and cytokines, and 

through the enhancement of cell proliferation and differentiation.  TUS-induced alteration 

of gene expression appears to be the mechanism for some of these effects.  Therefore, it is 

plausible to suggest that TUS-enhanced fracture healing occurs through stimulation of 

some, if not all, of these processes.  However, given that nearly all in vivo and clinical 

reports of TUS-enhanced fracture healing have utilized the 30 mW/cm
2
 intensity, it is 

difficult to determine which of the reported in vitro responses noted at intensities above 30 

mW/cm
2
 actually contribute to the fracture healing process. 

 

Hyaline Cartilage  

Articular cartilage is an avascular tissue and resident chondrocytes have a minimal 

capacity for tissue repair, especially in comparison to resident cells of other connective 

tissues (bone, ligament, tendon and dermis).  Among the postulates generated to explain 

the poor healing of articular cartilage is the hypothesis that the avascular nature results in 

the inability to recruit stem cells to aid healing 
12,102

.  Many surgical techniques and 

medical treatments have been employed by orthopedic surgeons in efforts to improve 

articular cartilage healing, but none have generated consistent success 
102

.  In an effort to 

discover other treatment options, several authors have undertaken studies to determine 

whether TUS can enhance healing of cartilage 
12,103,104

. 
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In a pair of investigations, Huang et al treated chemically induced osteoarthritis 

(OA) in rat knee joints with TUS (1 MHz, 500 or 625 mW/cm
2
 SATA, 20% or 25% PW, 7 

minutes, 3x/wk for 4 weeks)
104

.  They found TUS exposures improved repair of arthritic 

cartilage with superficial damage and prevented further arthritic deterioration in more 

severely damaged cartilage at 2-months post-injury (one month after cessation of TUS 

treatment) 
103

.  In addition, articular cartilage healing was correlated with increased 

chondrocyte proliferation and with increased production of stress proteins in treated 

joints 
104

.  Stress proteins, also known as heat shock proteins, can be produced by and then 

protect cells exposed to trauma as a result of arthritis, autoimmune disease, heat and 

ischemia 
105,106

.  Huang et al theorized that the stress proteins protected chondrocytes and 

allowed them to proliferate and modulate cartilage repair via increased ECM production.  

Stress protein production following TUS exposure and their relation to enhanced healing 

has not been confirmed by other investigations. 

Full-thickness osteochondral defects in rabbit knee joints treated with SAFHS have 

been induced toward earlier and better morphological and histological repair 
12

.  SAFHS 

treatment for 12 weeks (6 days per week) resulted in fewer degenerative changes up to 52 

weeks post-injury compared to untreated controls.   Additional TUS treatments beyond 12 

weeks (18, 24, and 52 weeks of TUS) did not result in any additional benefit in the quality 

of healing defects.  The authors also reported that daily 40-minute treatments improved the 

histological appearance of healing deficits compared to 20-minute treatments up to 18 

weeks post-injury.  When TUS exposure time was reduced to 5 or 10 minutes, there was 
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no difference in healing compared to the 20-minute exposures.  This duration-dependent 

improvement in healing cartilage indicates a dose-dependent response to TUS. 

In vitro studies have also been utilized to demonstrate the ability of TUS to affect 

chondrocyte function, supporting in vivo findings and indicating these cells can be 

stimulated to improve healing of articular cartilage 
11,107,108

.  Parvizi et al exposed isolated 

rat chondrocytes to five daily TUS treatments (1 MHz, 50 and 120 mW/cm
2
 SATA, 20% 

PW, 10 minutes) and reported increased aggrecan gene expression at both intensities and 

increased proteoglycan synthesis at the higher intensity 
11

.  Isolated rabbit chondrocytes 

embedded in three-dimensional collagen gel matrices treated with SAFHS twice weekly 

for 3 weeks increased chondroitin-6-sulfate production 
107

.  Chondroitin-6-sulfate is an 

important matrix protein in articular cartilage. 

Chondrocyte response to TUS has been related to the state of cellular 

differentiation.  Chondrocytes within sternal cartilage explants from chick embryos 

exhibited variable responsiveness following exposure to 1 week of daily SAFHS 
109

.  

Sonication of explants from the proximal sternum, cartilage that is destined for terminal 

differentiation and endochondral ossification, resulted in stimulation of hypertrophic 

chondrocytes and subsequent maturation of bony tissue.  Chondrocytes in the explants 

from the distal sternum, cartilage that retains its hyaline cartilage characteristics in the 

adult, were stimulated to increase production of ECM molecules aggrecan and type II 

collagen without further cellular differentiation. 

In a subsequent investigation, Zhang et al applied a single TUS treatment (1.5 

MHz, 2 or 30 mW/cm
2
 SATA, 20% PW, 20 minutes) to chicken chondrocytes isolated 
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from hyaline cartilage and reported alterations in cell proliferation, and gene expression of 

ECM proteins 
108

.  Compared to untreated controls, TUS at 2 mW/cm
2
 SATA increased 

cell proliferation, but TUS at 30 mW/cm
2
 SATA did not.  Both TUS intensities induced 

elevated gene expression of type II collagen and reduced aggrecan gene expression.  The 

differences between 2 and 30 mW/cm
2
 SATA further illustrates an apparent dose-

dependent response to TUS. 

TUS enhancement of chondrocyte ECM production has been reported to involve 

growth factor production 
110

.  Epiphyseal chondrocytes isolated from distal femora of 

neonatal rats were sonicated with SAFHS for 5 or 10 consecutive days and responded by 

increased gene expression for type II collagen, aggrecan and TGF- 1, as well as increased 

cell proliferation, when compared to sham exposures.  Addition of human recombinant 

TGF- 1 to control cells resulted in increased type II collagen and aggrecan mRNA 

expression comparable to TUS treatment effects.  Pretreatment with anti-human TGF- 1 

antibody prior to TUS application cancelled the increases in cell proliferation, type II 

collagen and aggrecan mRNA expression, indicating that chondrocyte response to TUS 

was likely mediated through TGF- 1 production and its ensuing effect on cellular 

metabolism. 

The reported benefits of TUS on articular cartilage healing and chondrocyte 

function have led some investigators to explore the ability of TUS to enhance healing of 

intervertebral disc (IVD) injury, which includes nucleus pulposus (NP) and annulus 

fibrosus (AF) cell types.  Nucleus pulposus cells are considered to have chondrocyte-like 

function, while those of the annulus fibrosus are believed to have a phenotype more closely 
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related to fibroblasts 
111

.  Both cell types isolated from bovine and rabbit annulus fibrosus 

and nucleus pulposus have been shown to be responsive to TUS 
52,112

.  SAFHS for 20 

consecutive days increased collagen and proteoglycan synthesis by bovine cells, without 

any effect on cellular proliferation 
52

.  Daily TUS treatment for 5 or 12 days at variable 

intensities (7.5, 15, 30, 60 or 120 mW/cm
2
 SATA) increased proliferation and 

proteoglycan synthesis in a dose-dependent manner in rabbit cells 
112

.  Compared to 

untreated controls, TUS intensities 7.5 and 15 mW/cm
2
 increased chondrocyte 

proliferation and TUS intensities ≥ 30 mW/cm
2
 increased proteoglycan content.  The 

proliferative response at intensity levels below SAFHS (< 30 mW/cm
2
) substantiates 

findings by Zhang et al 
108

 of enhanced proliferation of chondrocytes following treatment 

at sub-SAFHS intensities. 

Cartilage and isolated chondrocytes have repeatedly demonstrated responsiveness 

to TUS in research investigations.  TUS exposure is related to enhancements of articular 

cartilage healing, hyaline cartilage growth, and endochondral ossification.  Strong evidence 

exists to signifying that these responses are related to enhancement of chondrocyte 

function, including matrix production, cellular proliferation and cytokine release.  

Analyses of hyaline cartilage and fibrocartilage models suggest that chondrocyte 

proliferation and protein synthesis are regulated by different TUS treatment intensities, 

indicating differential response to varied doses of TUS energy.  Chondrocytes from a 

variety of species and tissue origins are responsive to TUS; therefore TUS may be a 

plausible modality for enhancement of articular cartilage healing and chondrocyte 

function.
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Tendons 

Several investigators have examined the efficacy of TUS on tendon and ligament 

healing in vivo, and have demonstrated benefits of TUS on numerous characteristics of 

these tissues including collagen deposition, collagen fiber alignment, cell number, ultimate 

tensile strength, ultimate load, stiffness, and energy absorption capacity.  A variety of TUS 

treatment parameters have been reported to improve the healing processes in surgically 

transected tendons, up to 30 days post-injury.  However, SAFHS parameters have not been 

studied in relation to TUS enhancement of tendon healing. 

TUS has been reported to enhance aspects of healing in partially ruptured rat 

Achilles tendons. Frieder et al reported that TUS exposures for 3 weeks (1500 mW/cm
2
 

SATA, CW, 3-minutes, 3x/wk, no reported TUS frequency) improved collagen fiber 

density and alignment, and decreased overall cellular content at 3 weeks post-injury 
113

.  

Similar TUS exposure parameters (1500 mW/cm
2
 SATA, CW, 4 minutes, daily, no 

reported TUS frequency) resulted in increased collagen content and tendon breaking 

strength by 5 days post-injury that remained elevated at 9, 15 and 21 days post-injury when 

compared to sham treatments 
114

.  TUS delivered at < 1000 mW/cm
2
 SATA has also been 

reported to improve healing in partially ruptured rat Achilles tendons as 9 consecutive 

daily TUS exposures (1 MHz, 500 mW/cm
2
 SATA, CW, 5-minutes) increased collagen 

content and breaking strength of treated tendons up to 21 days post-injury 
115

. 

Completely ruptured rat Achilles tendons treated with TUS (1 MHz, 1000 mW/cm
2
 

SATA, CW, 5 minutes, 9 consecutive days) had greater ultimate tensile strength compared 

to sham-sonicated controls at 9 days post-injury 
116

.  In a follow-up study, Enwemeka et al 
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utilized an identical protocol with the exception of reducing the TUS intensity from 1000 

mW/cm
2
 to 500 mW/cm

2
 SATA and reported enhanced healing, as indicated by increased 

tensile strength, tensile stress and energy absorption capacity 
23

.  In comparing the data 

between studies, Enwemeka et al noted that all three variables of tendon function (tensile 

strength, tensile stress and energy absorption capacity) were greater in tendons sonicated at 

500 than 1000 mW/cm
2
 SATA. 

Other investigators using variable TUS intensities (1 MHz, 1000 and 2000 

mW/cm
2
 SATA, CW, 4 minutes, 22 consecutive daily exposures) have reported conflicting 

results between the two intensities in relation to the healing response 
5,117

.  Ng et al 

reported improved ultimate tensile strength in hemi-transected rat Achilles tendon at both 

treatment intensities, compared to untreated injury controls 
5
.  However, in an identical 

tendon injury and TUS exposure model, Ng et al reported that 2000 mW/cm
2
, but not 1000 

mW/cm
2
, improved ultimate tensile when each was compared to untreated controls 

117
.  

The only reported difference among the biomechanical testing protocol was the 

performance of load-relaxation testing prior to tendon strength testing 
5
 which was not 

performed in the subsequent study 
117

.  Otherwise, no explanation of the variable findings 

is readily apparent. 

In addition to a possible intensity-dependent effect, duty cycle has also been 

reported to alter the healing benefit of TUS 
118

.  Using a complete tendon rupture model, 

TUS exposures (1 MHz, 500 mW/cm
2
 SATA, 5 minutes, 12 treatments) delivered in CW 

or 20% PW were compared.  Analysis of collagen fiber alignment revealed improved fiber 

alignment in PW treated tendons compared to mock-sonicated tendons, while fiber 
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alignment following CW exposures was significantly worse (more random fiber 

alignment) than the controls and tendons treated with PW.   

Since collagen fiber alignment is a factor in imparting strength to tendons, this 

finding contrasts the reports of CW TUS enhancing tendon healing.  However, the 

enhanced tendon strength noted with CW TUS is likely related to the reported overall 

increase in collagen deposition rather than orientation of collagen fibers, suggesting varied 

treatment duty cycles affect different aspects of the healing response.  Other researchers 

have corroborated the finding of improved collagen fiber alignment in tendons treated with 

PW TUS 
119

.  Utilizing methods identical to Da Cunha et al 
118

, complete tendon 

transection and TUS treatment regimen (1 MHz, 500 mW/cm
2
 SATA, 20% PW, 5-

minutes, 12 treatments), the authors reported improved collagen fiber alignment compared 

to sham treatments 
119

.    

 While Da Cunha et al 
118

 reported that PW TUS, but not CW TUS, improved 

collagen alignment, Frieder et al 
113

 reported that CW TUS does improve collagen fiber 

alignment in healing tendons.  The contradictory findings here are likely due to 

experimental differences.  Frieder et al utilized TUS treatment parameters that were quite 

different than those of Da Cunha et al:  treatment intensity (1500 vs. 500 mW/cm
2
 SATA), 

treatment durations (3 minutes vs. 5 minutes), treatment frequency (3 treatments per week 

vs. daily treatments), and overall treatments (9 vs. 12), respectively.  Additionally, Frieder 

et al employed a partial tendon rupture model compared to the full tendon rupture model of 

Da Cunha et al. 
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Despite the evidence discussed above, reports of limited or no benefit of TUS on 

tendon healing have been published 
120,121,122

.  These investigations of healing of 

tenotomized chicken flexor tendons exposed to TUS have provided less promising results 

in comparison to tendon healing studies in rat Achilles tendon.  Chicken flexor tendons 

treated with TUS (3 MHz, 750 mW/cm
2
 SATA, CW, 5 minutes, 20 daily treatments) 

exhibited no enhancement of either collagen production or breaking strength at 10 weeks 

post-injury, when treatments were initiated 28 days post-injury 
121

.  Additionally, 

sonication provided no improvement in breaking strength 6 weeks post-injury in TUS-

treated chicken flexor tendons, when treatments were initiated 7 days post-injury (3 MHz, 

200 mW/cm
2
 SATA, 20% PW, 4 minutes, 3x/wk for 5 wks) 

122
.  In a comparison study, 

Gan et al applied TUS (3 MHz, 200 mW/cm
2
 SATA, 25% duty cycle, 3-minutes, 10 daily 

treatments) to chicken flexor tendons, with TUS initiated 7 days or 42 days post-injury 
120

.  

In agreement with the other investigations using chicken flexor tendons
122

, the authors 

found no improvement in strength of the healing tendons, regardless of the timing of TUS 

treatments. 

The data regarding TUS enhancement of chicken flexor tendon healing appears to 

conflict with reports involving rat Achilles tendon.  Most notable in comparing 

investigations among chicken and rat models, researchers utilizing rats initiated TUS 

treatments on the day of surgery or on post-operative day one, rather than 7, 28 or 42 days 

after injury.  Following the hypothesis that TUS affects the early stages of healing 

(inflammatory and early reparative phases), the lack of effect of TUS on chicken flexor 

tendon healing compared to rat tendon healing are likely due to the inability of TUS to 
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affect early healing when initiated 7 days or later post-injury.  Yet for bone TUS enhances 

healing of delayed and non-union fractures, tissues that are not progressing through the 

normal healing phases.  This apparent discrepancy may indicate that the healing benefit 

provided by TUS is tissue specific.  Additionally, given the responsiveness of bone cells to 

mechanical forces, including ultrasound 
123,124,125

, it may be that bone cells are better able 

to transduce ultrasound energy into cellular activity compared to fibroblasts.          

Although variable methodologies inhibit direct inter-study comparison, the overall 

body of investigations into TUS effects on tendon healing indicates that CW and PW TUS 

can enhance tendon healing in animals.  These benefits appear to be related to 

improvements in quantitative and qualitative deposition of collagen into the ECM.  Further 

research is needed to clarify the differential effect of TUS duty cycle on collagen 

deposition and collagen fiber alignment, as well as clarifying the effect of the timing of 

initiation of TUS-exposures on healing of tendons. 

 

Ligaments 

TUS effect on ligament healing has not been studied to the same extent as tendon 

healing, but sonication of transected ligaments has demonstrated improved healing up to 6 

weeks post-injury 
4,13,126,127

.  Takakura et al reported enhanced healing of transected rat 

medial collateral ligaments (MCL) after exposure to SAFHS 
127

.  Specifically, ultimate 

load, stiffness, energy absorption, and collagen fibril diameter were all increased in the 

TUS treated MCLs at 12 days post-injury.  No differences were noted at 21 days post-

injury.  Sparrow et al treated completely transected rabbit MCLs with TUS (1 MHz, 300 
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mW/cm
2
 SATA, CW, 10 minutes, every other day for 6 treatments) and reported increased 

energy absorption to failure, ultimate load and increased cross sectional area of sonicated 

ligaments 6 weeks post-injury 
4
.  Also, the proportion of type I collagen relative to the 

amount of type III collagen was increased in MCLs at 3 and 6 weeks post-injury.   During 

healing, type I collagen, which provides greater tensile strength to ligaments compared to 

type III collagen, replaces much of the initially deposited type III collagen 
128,129

.  The 

finding of an increased proportion of type I collagen suggests that TUS affects either the 

normal replacement of type III collagen with type I collagen or that TUS enhances the 

initial deposition of type I collagen. 

TUS-enhanced MCL healing has been associated with the production of 

TGF- 1 
126

.  Transected MCLs treated with TUS (3 MHz, 460 mW/cm
2
 SATA, 20% PW, 

5 minutes) had increased levels of the cytokine growth factor.  TUS exposure (3 MHz, 100 

mW/cm
2
 SATA, 20% PW, 5-minutes) had no effect on TGF- 1.  Furthermore, 10 days of 

TUS (3 MHz, 460 mW/cm
2
 SATA, 20% PW, 5-minutes) induced greater amounts of TGF-

1 compared to 1 and 5 days of treatment.  As discussed previously, TGF- 1 activity 

during healing enhances cellular recruitment, ECM production and angiogenesis 
130

, but 

Leung et al 
126

 did not investigate any of these variables. 

 TUS (3 MHz, 460 mW/cm
2
 SATA, 20% duty cycle, 5 minutes, 10 daily treatments) 

has also been shown to affect the levels of inflammatory mediators during healing of 

completely transected rat MCLs 
13

.  This experimental model was identical to that of 

Leung et al 
126

.  The authors reported increased PGE2 and decreased leukotriene B4 (LTB4) 

from 2 to 11 days post-injury.  These arachidonic acid derivatives are known mediators of 
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the inflammatory response to wounding, with PGE2 being produced by endothelium, 

monocytes, macrophages and fibroblasts, and LTB4 being released from neutrophils and 

mast cells 
88,131

.  TUS effect on inflammation has been hypothesized to be an acceleration 

of the process 
48

.  However, increased PGE2 and decreased LTB4 up to 11 days post-injury, 

coupled with increases in TGF- 1 suggest that TUS effects on inflammation may be more 

complicated than simply accelerating the cellular processes.       

The limited data regarding TUS and healing ligaments indicates that TUS can 

improve healing up to 6 weeks post-injury most notably through increased mechanical 

strength of the treated ligaments.  This benefit to healing appears to be the result of 

enhancement of growth factor production, alteration of the inflammatory process and 

modulation of collagen deposition, presumably via affect on fibroblast protein synthesis.  

The effect of TUS on fibroblast proliferation has not been explored in these in vivo 

models, but as will be discussed later, TUS has been reported to increase fibroblast 

proliferation in vitro. 

 

Integument 

Healing integument wounds require connective tissue matrix deposition, 

angiogenesis and regeneration of epithelium 
131,132

.  In non-fetal tissues, this healing 

process results in replacement tissue that is suboptimal (decreased tensile strength and 

pliability) compared to the uninjured, original tissue.  Studying the effect of TUS on full-

thickness and incision wounds in animal models including pig, rat, and human, researchers 
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have reported acceleration of the inflammatory phase and enhancement of the proliferative 

phase of healing 
3,24,133,134,135

. 

 Using a pig model, Byl et al found that 5 daily exposures to TUS (1 MHz, 

100-300 mWcm
2
 SATA, 20% PW) increased tensile strength and collagen deposition in 

incision wounds, and accelerated full-thickness wound closure when compared to sham 

controls assessed 1 week post-injury 
3
.  Full-thickness wounds were sonicated for 5 

minutes and incision wounds were sonicated for 10 minutes.  All wounds were treated at 

100 mW/cm
2
 SATA for the first 2 days, and at 300 mW/cm

2
 SATA for the final 3 days of 

treatment. 

In rats, incision wounds treated with 7 or 10 daily TUS exposures (1 MHz, 100 

mW/cm
2
 SATA, 20% PW, 5 minutes) had increased fibroblast number 4 days post-

injury 
133

, increased collagen deposition 7 days post-injury 
133,134

 and increased wound 

breaking strength 25 days post-injury 
133,134

.  Healing of full-thickness wounds in rats has 

also been reported to be enhanced by TUS after 5 daily treatments (0.75 or 3 MHz, 100 

mW/cm
2
 SATA, 20% PW, 5 minutes) when compared to sham 

135
.  Five days post-injury 

treated wounds had more extensive granulation tissue, increased fibroblast number, and 

fewer macrophages and leukocytes, all of which suggest acceleration of the inflammatory 

phase with earlier initiation of the proliferative phase.  There were no differences in 

healing characteristics between wounds treated with TUS at 0.75 MHz and 3 MHz.  

Wound healing studies in humans have generated much less consistent results.  

TUS-treated chronic human venous stasis ulcers (3 MHz, 200 mW/cm
2
 SATA, 20% PW, 

5-10 minute treatments, 3x/wk for 4weeks) had decreased wound area after 4 weeks of 
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sonication 
136

.  However, Lundeberg et al reported that TUS treatments (1 MHz, 100 

mW/cm
2
 SATA, 10% PW, 10-minutes, 3x/wk for 4wks) had no effect on the rate of 

wound healing or wound closure for patients with chronic venous stasis ulceration 

compared to sham TUS 
137

.  Eriksson et al also found no improvement in wound closure or 

wound healing rates following treatment of chronic venous stasis ulcers with TUS (1 MHz, 

1000 mW/cm
2 

SATA, CW, 10 minutes, 2x/wk for 8wks) 
138

. 

The effect of TUS on pressure ulcer healing has also been described 
139,140

.  

McDiarmid et al 
139

 utilized TUS (3 MHz, 160 mW/cm
2
 SATA, 20% PW, 5-10 minutes, 

3x/wk), while Ter Riet et al 
140

 utilized TUS (3.28 MHz, 100 mW/cm
2
 SATA, 20% PW, 4-

8 minutes, 5x/wk for 12wks) to investigate enhancement of healing.  Both studies reported 

no effect on pressure ulcer healing compared to sham treated wounds, but McDiarmid et al 

reported enhanced rate of healing of “infected” wounds treated with TUS.  Because 

infected wounds were classified by visualization and not bacteriological assay, and given 

the small sample size of the groups, (TUS = 11 and placebo = 8) little can be inferred, 

regarding the response of infected wounds to TUS exposure. 

 Based on the overall evidence, it appears that TUS does positively affect early 

stages of healing of acute integument wounds.  This benefit has been demonstrated in 

animal models, but has not been established in treating wounds in humans.  The 

discrepancy between in vivo and clinical studies is likely due to differences in 

methodology and types of wounds.  In animal studies investigators treated acute wounds 

daily, while investigators in clinical trials utilized TUS intermittently for treatment of 

chronic wounds.  The effect of consecutive versus non-consecutive TUS exposures has not 
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been explored in relation to integumentary wound healing, but an additive effect of 

repeated TUS exposures has been reported in articular cartilage 
12

.  The clinical 

investigations have focused on patients with compromised healing (i.e., chronic venous 

stasis or pressure ulceration), while animal studies utilized acute wounds without healing 

deficiencies.  Chronic ulceration involves dysfunctional healing physiology, and it is 

possible that TUS cannot influence inadequate or compromised wound healing states such 

as chronic ulceration 
130,141

.   

However, TUS has shown the ability to improve compromised fracture healing at 

SAFHS parameters.  Clinical studies discussed here have not reported use of SAFHS on 

chronic ulceration.  Based on the ability of SAFHS parameters to enhance inadequate 

fracture healing, it is possible that specific parameters may be necessary to affect 

compromised wound healing.  Differences in the pathophysiology of chronic venous ulcers 

and pressure ulcers compared to non-union and delayed union fractures might also be 

related to the disparate findings of TUS benefit to tissue with compromised healing.  

Furthermore, differences in the overall treatment regimens (3 to 4 months of treatment for 

fractures compared to 4 to 8 weeks of treatment for chronic venous ulcers) might explain 

the discrepancy in TUS effects on healing in these models.       

The overall efficacy of TUS in clinical healing remains in question.  Despite 

positive in vivo evidence for enhanced healing of acute wounds in animal models reported, 

clinical trials with traditional TUS (1-3 MHz, 0.03-2000 mW/cm
2
 SATA) have not 

supported its use for chronic ulceration.  Additional investigation using different 
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parameters, such as SAFHS, are needed to determine if TUS can be beneficial for 

enhancement of healing in chronic integumentary wounds. 

 

In Vitro Fibroblast Response to TUS  

In vitro models have been used to examine cellular response to TUS and to 

associate the cellular response with demonstrated benefits for tissue healing in vivo 
7,8,97

.  

Ramirez et al investigated fibroblast response to TUS in a matrix injury model using 

collagenase to partially disrupt a monolayer of neonatal rat fibroblasts 
8
.  Following a 

single treatment of TUS (1 MHz, 400 mW/cm
2
 SATA, CW, 3 minutes), the fibroblasts had 

increased collagen synthesis compared to untreated controls.  Additionally, three and five 

TUS exposures increased fibroblast proliferation compared to untreated controls.   

Supporting the proposed proliferative and anabolic effect of in vitro TUS on 

fibroblasts, a single dose of TUS (1 MHz, 20, 80, 140 or 200 mW/cm
2
 SATA, 20% PW, 5 

minutes) increased proliferation of and collagen production by human gingival 

fibroblasts 
7
.  Most TUS intensities (20, 80, and 140 mW/cm

2
) resulted in elevated 

collagen production, but only higher intensities (140 and 200 mW/cm
2
) increased cell 

proliferation.  These findings again indicate a dose-dependent relationship between TUS 

intensity and cellular response.   

In contrast to the two previous in vitro studies, a single dose of TUS (3 MHz, 140-

990 mW/cm
2 

SATA, CW, 5 minutes) did not increase cell proliferation in human ligament 

fibroblasts, and TUS at several intensities (140, 230, 540 mW/cm
2
) decreased collagen 



   

 38 

production 
97

.  However, in agreement with Doan et al 
7
, cell response to TUS appeared to 

be dose-dependent.  

Comparison of the studies by Doan et al 
7
 and Harle et al 

97
 demonstrate that 

different TUS exposure conditions 1MHz, 20% PW and 3MHz, CW respectively, 

influence fibroblasts in culture.  Both studies utilized TUS doses that are commonly used 

clinically and that are comparable to doses utilized in the in vivo tendon, ligament and 

integument wound healing investigations.  These contradictory results add to the 

uncertainty of the effect of TUS parameters on cell proliferation and collagen production.  

Whether the TUS frequency and duty cycle affected this result is not known and neither 

study compared the effects of these parameters.   

Overall, TUS has many positive effects on tendon, ligament and integument 

healing. Evidence supports TUS enhancement of healing of these soft tissues, especially 

when TUS treatments are initiated early in the post-injury phase.  This enhancement 

appears to be related to fibroblast function; specifically, cellular proliferation, as well as 

collagen deposition and organization, all of which support enhanced in vivo healing 

following TUS.  These responses suggest that TUS can alter processes of the proliferative 

phase of healing rather than simply affecting the inflammatory phase.    
 
 

In spite of the convincing body of evidence supporting TUS benefit for soft tissue healing 

in animal models, the differential effects of the TUS exposure parameters remains unclear.  

Changes in frequency, intensity, duty cycle, and overall TUS dose (including overall 

number and duration of TUS exposures) appear to alter TUS effects; however, no 

consensus exists in the available literature in regard to effects of specific parameters.  
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Additional comparison studies are critical to elucidate the parameter-response relationships 

that appear to exist. 

 

Muscle Healing 

 Unlike the vast number of investigations of TUS enhancement of healing of 

integument, tendons, and ligaments, minimal experimentation has been undertaken in 

regard to TUS effects on healing following skeletal muscle injury.  Like most tissues, 

muscle heals following a general, three-step progression of inflammation, repair and 

remodeling.   Unlike other tissues, muscle healing is dependent on activation of normally 

dormant satellite cells.  Satellite cells, and other immature mesenchymal cells differentiate 

into myoblasts, which fuse together to form myotubes and eventually mature into 

myofibers as replacement for the original, damaged regions of fibers 
142

.  Resident 

fibroblasts in the area of injury proliferate and secrete matrix molecules to replace the 

connective tissue surrounding the muscle fibers.  This fibroblastic activity must be 

balanced with appropriate myotube formation.  Maintaining the balance between satellite 

cells and fibroblasts represents an additional obstacle to adequate healing of injured 

muscle 
143

.  Theoretically, proliferative enhancement of satellite cells would produce 

improved muscle repair, while proliferative enhancement of fibroblasts would result in 

increased scar formation.  Thus, any modality altering cell number for muscle healing 

needs specificity in the cells that it affects to provide an appropriate benefit to healing.  

Given that TUS has been reported to induce proliferation in a number of experimental 
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models and cell types, application of TUS to injured muscle could be expected to affect 

cell proliferation and subsequent muscle repair. 

Among the investigations of TUS on muscle healing, minimal evidence supports a 

benefit to healing.  Two TUS exposures (3 MHz, 300 mW/cm
2
 SATA, 20% PW, 6 

minutes) increased satellite cell proliferation at 4 days post-injury and three or four TUS 

exposures increased fibroblast proliferation at 7 days post-injury, in contusion-injured rat 

muscle 
144

.  By 10 days post-injury, neither variable was affected by TUS, nor was there 

benefit for re-capillarization or myotube formation at any time point.  Four consecutive 

days of TUS exposure (3 MHz, 100 mW/cm
2
 SATA, CW, 5 minutes) did not affect muscle 

mass, contractile protein concentration, fiber cross-sectional area, number and density of 

myonuclei at 4 days post-injury compared to untreated muscle 
145

.  However, these 

variables are not likely to be increased within the 4-day time frame 
143

.   

 TUS treatment (1 MHz, 500 mW/cm
2
 SATA, CW, 5 minutes) given for 7 

consecutive days post-injury has been reported to accelerate muscle repair following 

contraction-induced muscle injury in rats 
26

.  At 7 days post-injury, maximum isometric 

tetanic force of injured muscles was greater following TUS in comparison to untreated, 

injured controls.  Analysis of force production in experimental muscle should be a superior 

measure of the state of repair compared to cellular and molecular variables assessed by 

Markert et al 
145

 and Rantanen et al 
144

, since force production directly relates to the overall 

“health” of the muscle.     

The evidence of TUS benefit to muscle healing reported by Karnes and Burton 
26

 

may also be related to utilization of a contraction-induced injury; a mode of injury that 
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typically preserves the basal lamina so as to provide scaffolding for regenerating fibers, 

unlike a contusion-injury which is more likely to destroy the basal lamina 
142

.  

Furthermore, the reported benefit to healing could be a result of an increased number of 

TUS exposures, 7 exposures compared to 3-4 days of treatment utilized by Markert et al 
145

 

and Rantanen et al 
144

, given in vivo evidence of an additive effect of TUS on tissue 

healing 
13,24,126,146

.   

 The data from investigations of muscle healing provide minimal evidence for 

benefit of TUS, when assessed in the short term (< 2 weeks).  However, TUS does appear 

to have a proliferative effect on skeletal muscle fibroblasts and satellite cells, similar to its 

mitogenic effect on cells of other healing tissues.  Concerning TUS exposure parameters, 

CW and PW, 1 and 3 MHz and intensities between 100-500 mW/cm
2
 have been employed, 

without the emergence of any trend of effect of those sonication variables on muscle 

healing.  Furthermore, analysis of healing muscle has not been undertaken beyond 10 days 

post-injury, leaving unanswered the long-term effect of sonication.  As such, further 

experimentation comparing types of muscle injury, TUS parameters, and assessment of 

increased healing time points should be undertaken to clarify the question of TUS benefit 

on skeletal muscle healing. 

 

Peripheral Nerve Regeneration 

 Injury to peripheral nerves occurs as a result of crush, stretch, avulsion or 

compression, with functional nerve repair often being incomplete 
147

.  There have been 

several reports of the effects of TUS on peripheral nerve regeneration.  Using rat models of 
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peripheral nerve injury, investigators have reported that TUS application improves 

neuronal regeneration and functional outcomes for tissues innervated by the injured nerve. 

 Following TUS exposure (1.5 MHz, 16 mW/cm
2
 SATA, 20% PW, 20 minutes, 12 

consecutive days), regenerating neurotomized sciatic nerves in rats had increased numbers 

of A-type and B-type fibers, myelin sheath thickness and overall axon fiber area when 

compared to sham treated nerves at 2 weeks post-injury 
148

.  Functional recovery of crush-

injured rat sciatic nerves was enhanced following TUS treatment for 10 consecutive days 

(1 MHz, 80 mW/cm
2
 SATA, 20% PW, 10 minutes) compared to sham 

149
.  Recovery of 

hind limb function, recorded at weekly intervals, was accelerated from day 14 to day 21 

post-injury, while nerve fiber density was increased in nerve segments distal to the injury 

site 21 days post-injury.  Also employing a crush-injury model of rat sciatic nerve, Mourad 

et al reported that TUS exposures three times per week for 4 weeks (2.25 MHz, 250 

mW/cm
2
 SATA, CW, 1 minute) improved functional recovery in hind limbs compared to 

sham TUS 
150

.  Over the 30-day time course of healing, recovery of hind limb function was 

accelerated from day 16 to day 30.  Despite the use of the exposure frequency of 2.25 

MHz, an unusual treatment frequency not available on many clinical ultrasound generators, 

and the brief treatment duration (1-minute), a positive influence of TUS on nerve 

regeneration was demonstrated. 

 TUS has been reported to increase Schwann cell myelination in regenerating 

peripheral nerves in rats 
27

.   After excision of a 10 mm segment of the sciatic nerve, 

investigators implanted nerve guidance conduits, some seeded with Schwann cells, 

between the nerve stumps and exposed the nerves/conduits to 12 TUS exposures over 14 
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days (1 MHz, 40 mW/cm
2
 SATA, 20% PW, 5 minutes).  At 6 weeks post-injury, sonicated 

nerve fibers within the seeded conduits had greater mean axonal area and myelination in 

comparison to sham-treated specimens and when compared to treated conduits that were 

not seeded.  These findings are in concurrence with those of Crisci et al 
148

 in which 

neurotomized sciatic nerves had greater axonal area and increased myelination following 

TUS.  Enhanced recovery of limb function noted by Raso et al 
149

 and Mourad et al 
150

 also 

indicates that TUS improves nerve myelination and / or axonal growth.   

Together, these investigations suggest that TUS enhances peripheral nerve 

regeneration, apparently through alteration in Schwann cell activity.  Schwann cells are 

believed to have a predominant role in peripheral nerve regeneration through production of 

neurotrophic factors, guidance of axonal growth and increased myelination 
147

.  Thus it is 

plausible to suggest that TUS directly affects Schwann cell function as well as the 

regenerating axons.  However, the cellular mechanisms involved in the TUS-enhanced 

nerve regeneration via Schwann cells have not yet been investigated. 

 

Angiogenesis 

 Angiogenesis is critical for repair of injured tissues, as adequate blood supply must 

be present for appropriate healing.  The process of angiogenesis begins soon after tissue 

injury, in the inflammatory phase of healing, as endothelial cells proliferate and eventually 

provide the base for new vasculature 
151

.  The importance of this process of tissue healing 

provides a basis for investigating angiogenesis as a potential target for the effects of TUS. 
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 Studies that have examined TUS effects on endothelium and angiogenesis have 

shown positive results.  Capillary density and arteriole blood flow were increased in 

chronically ischemic rat cremaster muscle following TUS exposure for 3 weeks (1 MHz, 

150 mW/cm
2
 SATA, 50% PW, 5 minutes, 3x/wk), when compared to sham treatments 

152
.  

Full-thickness wounds in rats treated with TUS up to 7 consecutive days (0.75 MHz, 

100mW/cm
2
 SATA, 20% PW, 5 minutes) had increased vascularity compared to sham 

treated wounds after 5 days of treatment 
153

. 

 Investigation of TUS effects on angiogenesis following ischemic injury to rat hind-

limb has provided additional evidence of the benefit of sonication 
154

.  TUS exposure (2 

MHz, 50 mW/cm
2
 SATA, CW, 5 minutes, 3 treatments) was initiated on the day of surgery 

(injury) and concluded on day 3 post-injury.  Histological analysis at 7 days post-injury 

revealed increases in the number of proliferating endothelial cells, the overall number of 

blood vessels and the average blood vessel diameter in TUS-treated muscle compared to 

controls.  At 3 weeks post-injury, angiography revealed sustained increase in blood vessel 

number, while laser Doppler analysis showed increased tissue perfusion for treated limbs 

compared to controls.  The authors also reported a 38-fold increase in vascular endothelial 

growth factor (VEGF) mRNA in treated limbs at 7 days post-injury compared to controls.  

VEGF is a potent angiogenic factor and the authors hypothesized that its up-regulation 

explains the improvement in vascularity, and endothelial proliferation.  These results 

support the findings of Hogan et al 
152

 and Young and Dyson 
153

, who reported a beneficial 

effect of TUS on angiogenesis, and it appears to be the most complete analysis of TUS 

effect on variables of angiogenesis. 
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In vitro analysis of the effect of TUS on endothelial cells have been also been 

reported.  Release of nitric oxide (NO) and calcium ions (Ca
2+

) into culture media was 

increased by TUS after 6 consecutive days of treatment (1 MHz, 200, 320, and 400 

mW/cm
2
 SATA, 20% PW, 10 minutes) when compared to untreated controls 

155
.  Nitric 

oxide release was increased following TUS at 320 mW/cm
2
 SATA, while calcium release 

was increased following TUS at each intensity.  Nitric oxide is an important mediator of 

vascular function, affecting vascular smooth muscle relaxation, leukocyte adhesion to 

endothelium and inhibition of platelet aggregation 
156,157

.  Changes in Ca
2+

 flux in cells 

have been reported in other cell types treated with TUS, including chondrocytes, 

fibroblasts, epidermis and this altered ion flux has been implicated by others as a 

component of the mechanism of TUS effect on cells 
49,50,65,158

. 

This body of research suggests that angiogenesis following injury is enhanced by 

exposures to TUS, up to 3 weeks post-injury.  Improvement in the angiogenic response 

following tissue injury could accelerate overall tissue healing, although this has not been 

directly investigated.  The mechanism responsible for the enhancement of angiogenesis 

appears to be related to endothelial cell function.  Treatment intensities between 50 and 

400 mW/cm
2
 SATA appear to be beneficial for an angiogenic effect, which follows the 

current trend of utilization of intensities below 1000 mW/cm
2
 SATA to achieve TUS-

enhanced healing 
35,37

. 
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Inflammatory Cells 

 As discussed previously, an appropriate inflammatory response is crucial for proper 

tissue healing.  The inflammatory phase of healing involves functions of a variety of cells 

including mast cells, monocytes, macrophages, lymphocytes and neutrophils.  TUS 

enhancement of healing is hypothesized to be a function of enhancing the inflammatory 

and proliferative phases of healing.  The ability of TUS to alter the inflammatory phase has 

been supported by in vivo and in vitro investigations that have directly explored the effect 

of TUS on various inflammatory cells.  

 Sonication has been reported to affect mast cell function in vivo and in vitro.  

Increased mast cell degranulation in rat ankle joints treated with a single TUS exposure 

(0.75 MHz, 1.5 MHz, or 3.0 MHz, 500 mW/cm
2
 SATA, 20% PW, 1 minute) has been 

demonstrated 
159

.  No difference in induction of mast cell degranulation was found between 

the variable frequencies.  Byl et al reported increased mast cell degranulation in porcine 

flank wounds following a single TUS exposure (1 MHz, 500 mW/cm
2
 SATA, 20% PW, 5 

minutes) 
3
.  During the inflammatory phase, mast cell degranulation results in release of 

histamine, serotonin, and heparin, which serve to increase vascular permeability, 

inflammatory cell recruitment and to enhance angiogenesis 
160

. 

 Monocytes and macrophages have been shown to be responsive to TUS in vitro.  

Human macrophages exposed to TUS (0.75 MHz or 3 MHz, 500 mW/cm
2
 SATA, CW, 5 

minutes) released a soluble mitogenic factor into culture media, evident by fibroblast 

proliferation that was induced after fibroblasts were cultured in the macrophage 

conditioned media 
161

.  Based on the time of response, the authors hypothesized that TUS 
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exposure at 0.75 MHz resulted in release of pre-formed products only, while 3 MHz 

exposures resulted in synthesis and release of the fibroblast mitogenic factor.  Doan et al 

investigated the variable effects of TUS on human monocytes, the blood-borne precursor 

to macrophages 
7
.  Single 5-minute exposures at 1 MHz, 20% PW with variable intensities 

(20, 80, 140, and 200 mW/cm
2
 SATA) were compared.  The treated monocytes released 

more vascular endothelial growth factor (VEGF) at each intensity except 140 mW/cm
2
 

compared to sham.  Release of interleukin-8 (IL-8), basic fibroblast growth factor (bFGF), 

interleukin-6 (IL-6) and tumor necrosis factor-  (TNF- ) was not affected by TUS 

exposure.  The authors did report increased release of IL-1  in response to TUS at 45 Hz, 

but this very low frequency is not considered traditional TUS and needs to be validated 

further for clinical usage.  

 Lymphocytes have also been reported to respond to TUS exposures.  Cultured 

spleenocytes exposed to TUS (1 MHz or 3 MHz, 100 or 500 mW/cm
2
 SATA, CW, 10 

minutes) exhibited altered production of interleukin-2 (IL-2), interleukin (IL-4) and 

interferon-  (IFN- ) 
162

.  Following TUS exposure, spleenocytes were cultured with 

Concanavalin A (Con A), a lectin protein known to stimulate T-cell production of IL-2, IL-

4 and IFN- .  These cytokines are considered inflammatory regulators because they control 

activities of T and B-lymphocytes, macrophages, natural killer (NK) cells and mast 

cells 
163

.  Treatment at both frequencies and intensities, followed by addition of Con A to 

the culture media, resulted in increased IL-2 production.  Con A addition after TUS at 1 

MHz also resulted in increased release of IL-4 and IFN- , while Con A addition after TUS 

at 3 MHz resulted in decreased release of IL-4 and IFN- .  This finding suggests that TUS 
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can alter cellular response to subsequent stimuli rather than only affecting on-going 

processes. 

 In vivo assessment of the effect of TUS on inflammatory cells has also been 

reported among investigations of wound healing in rats 
133,134,135

.  Full-thickness flank 

wounds were exposed to TUS (0.75 MHz or 3 MHz, 100 mW/cm
2
 SATA, 20% PW, 5 

minutes, 5 or 7 treatments) 
135

.  At 5 days post-injury, quantitative histological analysis 

demonstrated a reduced number of neutrophils in wounds treated with TUS at 0.75MHz 

compared to sham treated wounds.  Macrophage number was also reduced in wounds 

treated at either intensity (0.75 MHz and 3 MHz).  No difference in cellular content of 

healing wounds was noted when assessed at 7 days post-injury.  Demir et al treated 

incision wounds with TUS (1 MHz, 100 mW/cm
2
 SATA, 20% PW, 5 minutes, 4 or 10 

treatments) and reported reduction in the number of neutrophils at 4 and 10 days post-

injury and reduced macrophage and mast cell number 10 days post-injury compared to 

sham TUS 
133

.  In addition, fibroblast number and hydroxyproline content were increased 

at both time points.  Taskan et al 
134

 used an experimental model and TUS exposure 

parameters identical to Demir et al 
133

, and reported a decrease in mast cells at 4 and 7 days 

post-injury.  Contrary to the other inflammatory cell studies in rat wounds, Taskan et al 

reported that macrophage number in the wounds was increased at both post-injury time 

points.      

  Most of the changes noted among these rat wound studies are consistent with 

progression from the acute inflammatory phase to the proliferative phase of healing.  The 

exception being an increase in macrophages reported in one study.  Overall, these findings 
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indicate that the inflammatory phase was affected, and the preponderance of evidence 

suggests that the change was acceleration rather than exaggeration of the inflammatory 

phase. 

 A study examining an indirect effect of TUS on inflammatory cells does provide 

some evidence for actual enhancement of inflammation 
54

.  Isolated bovine endothelial 

cells were exposed to TUS (1 MHz, 1600 mW/cm
2
, CW, 15 minutes) and were then 

incubated with freshly isolated human polymorphonuclear leukocytes (PMNLs).  Adhesion 

of PMNLs to the sonicated endothelial cells was increased from 1 to 240 minutes post-

sonication in comparison to sham-treated endothelial cells.  Since the initial stages of 

inflammation include increased migration of leukocytes (PMNLs) from the vasculature 

into the interstitium, potentiation of this process could result in increased inflammatory 

activity 
163

. 

Considering evidence from these investigations, numerous cells involved in the 

inflammatory phase of healing have demonstrated responsiveness to TUS indicating that 

sonication can affect processes in these cells.  Inflammatory cytokine and growth factor 

release, mast cell degranulation and increased endothelial cell adhesion properties are all 

activities normally associated with the inflammatory phase of healing.  The limited in vivo 

evidence, suggests that both the inflammatory and early proliferative phases can be 

accelerated by TUS treatment. 
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Conclusion 

 In spite of the vast amount of research on TUS and its effects on healing, many 

questions about its effects remain, such as the cellular activities that are most responsive to 

TUS, the long-term benefit for soft tissue healing, the timing of treatment initiation, the 

optimal TUS exposure parameters for enhanced healing and the biophysical mechanism of 

TUS effects on various cell types. 

 The thermal affect of TUS is hypothesized to create some of the reported cellular 

and tissue responses.  Using appropriate TUS parameters, there is little question that tissue 

heating occurs and this heating effects molecular movement.  However, many 

investigations have demonstrated TUS effects without measurable changes in temperature 

or using parameters that are not expected to produce temperature increases, thus it is clear 

that thermal changes need not be present for TUS to be effective. 

Regarding nonthermal mechanisms, the current body of investigations has not 

clearly elucidated the biophysical mechanism of action of TUS on cells and tissues.  

Research findings suggest that a number of different mechanisms could be responsible for 

TUS action.  However, minimal evidence supports a correlation between any one of the 

proposed nonthermal mechanisms of action, acoustic cavitation, free radical production 

and acoustic streaming, to altered cellular functions.  The technical difficulty in accurately 

measuring these phenomena presents a considerable challenge in evaluating the role of 

these proposed mechanisms.  Furthermore, these proposed mechanisms could be occurring 

in combination rather than exclusively, further complicating understanding of the role each 

might play in cellular responses.  
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TUS enhancement of tissue healing is supported in various models and tissue types 

including bone, tendon, ligament, cartilage and integument.  In fractures, the processes 

responsible for the acceleration of fracture healing appear to be related to enhancement of 

matrix production, chondrocyte and osteoblast activity, and the ability to enhance 

vascularity.  Accelerated healing of soft tissues (ligaments, tendons, articular cartilage, and 

dermal wounds) also appears to be enhanced by TUS exposure, although some conflicting 

results exist.  For soft tissue healing, TUS affects cellular activities of inflammatory and 

reparative phases of healing, with the overall result being enhanced matrix production and 

deposition through resident cell (fibroblast and chondrocyte) activity.  

It is apparent that many different TUS protocols and treatment parameter sets are 

effective in altering various aspects of cellular function and tissue healing.  However, 

limited research has investigated the exact nature of the effect of different ultrasound 

parameters, presumably because so many different ones are available.  Additional research 

is needed to assist in identifying the relationships between TUS parameters, possible 

mechanisms of action and cellular response.   

 Enhancement of processes of the inflammatory and proliferative phase, many of 

which are regulated by macrophages, is a likely mechanism by which TUS exposure 

improves healing of injured tissues.  Indeed, TUS exposure has been reported to induce 

release of growth factors, cytokines and inflammatory mediators, as well as enhance 

angiogenesis and ECM production and deposition during healing.  Macrophages, 

coordinators of inflammation and the early proliferative phase of healing, play a vital role 
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in all of these processes during tissue healing and without them, poor healing quality 

results 
142,164-166

.  

Thus, the following chapters will describe our attempts to characterize the 

macrophage response to varied TUS parameter sets and how those responses might be 

related to the acceleration of early healing.  In addition, we will explore the possible 

mechanism of TUS that is associated with the macrophage response. 
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Chapter 2 
 

Effect of Therapeutic Ultrasound on Macrophage Release of 

Fibroblast Mitogens 

 

Abstract 

 

Macrophages coordinate the action of many different cells involved in tissue repair 

following injury.  One way macrophages do this is by releasing paracrine factors that can 

induce proliferation of resident cells that are responsible for rebuilding damaged tissue.  

Therapeutic ultrasound (TUS) has been associated with enhancing the early stages of tissue 

repair, when macrophages are likely to be active.  The objective of this study was to 

examine the effect of varied TUS parameter sets on macrophage release of fibroblast 

mitogens, as evidenced by proliferation of fibroblasts exposed to macrophage conditioned 

media.  Phorbol-12-myristate-13-acetate (PMA) was used to induce differentiation of 

monocytic U937 cells into activated macrophages.  Macrophages were exposed to TUS for 

5 or 10 minutes at 0, 40 and 400 mW/cm
2
 SATA, using a 20% duty cycle delivered at 1 

and 3 MHz wavelength frequency.  Macrophage conditioned media was collected at 10-

minutes and 1-hour post treatment.  Proliferation of human gingival fibroblasts (HGF-1) 

was assessed after incubation in the macrophage conditioned media.  Fibroblasts 

proliferation was not affected by incubation in macrophage conditioned media for 24 or 
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48-hours, regardless of the combination of TUS intensity, wavelength and treatment 

duration utilized for macrophage insonation.  Our results indicate that TUS at the 

parameters studied does not induce release of preformed fibroblast mitogens from 

activated macrophages.  Mitogenic response of fibroblasts to TUS is either mediated 

directly by fibroblast response to sonication or induced by TUS parameters not included in 

this study.  
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Introduction 

Following tissue injury, macrophages perform numerous functions including 

coordination of the inflammatory and reparative phases of healing.  Functions of 

macrophages within the wound environment, include:  phagocytosis of cellular and 

extracellular matrix (ECM) debris, neutrophil removal, cellular recruitment, induction of 

cell proliferation, and stimulation of cells responsible for ECM deposition and 

angiogenesis 
164-168

.   Many of these functions require secretion of chemical mediators (i.e. 

cytokines, growth factors) by macrophages that act as autocrine and paracrine mediators 

for cells in the wound healing milieu 
163,164

.  As such, any altered release of secretory 

products from macrophages is likely to impact the overall healing process.   

Health care practitioners utilize TUS to improve tissue repair.  TUS has been 

reported to enhance healing of many tissues and numerous studies suggest that TUS most 

likely enhances healing by affecting the early phases of the healing process 

3,5,13,114,118,127,134,135,153
.  Data from in vitro analyses of osteoblasts, fibroblasts and 

chondrocytes indicate that TUS can alter many cellular processes including:  genetic 

transcription, granule release, protein secretion, matrix molecule synthesis and deposition, 

and cell proliferation 
8,9,10,96-98,159

.  During normal tissue repair, macrophages provide 

molecular signals that stimulate many of the aforementioned cellular responses.  It is 

possible that TUS-enhanced healing occurs, at least in part, via stimulation of macrophage 

function.  Thus, it is important to understand what role macrophages play in the TUS-

induced enhancement of tissue healing.  However, only a few investigations have assessed 

the effects of TUS on macrophage function. 
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In vitro analysis has demonstrated that macrophages respond to TUS by releasing 

paracrine factors involved with tissue repair 
7,161

.  Young and Dyson reported increased 

fibroblast proliferation following incubation in conditioned-media from sonicated 

macrophages 
161

.  The authors surmised that the macrophages released a growth factor into 

the culture media following sonication, and in this way macrophages contribute to the 

enhancement of healing induced by TUS.  Young and Dyson also reported in vivo findings 

of an accelerated inflammatory phase, specifically noting increased neutrophil clearance 

rate, earlier recruitment and proliferation of fibroblasts and increased rate of granulation 

tissue formation in the first week of healing of full thickness dermal wounds in rats 
135

.   

Following injury to integument, ligaments and tendons, fibroblasts are the primary 

cell type responsible for restoration of the connective tissue matrix and structural integrity 

of the healing tissue 
116,129,169

.  Fibroblasts are recruited to the site of injury via chemotactic 

agents, are induced to proliferate, and are responsible for deposition of collagen and other 

ECM proteins necessary for tissue repair 
157,170

.  These functions of fibroblast are 

coordinated in part by macrophage-released products such as cytokines and growth factors 

129,164,171,172,173,174
.  Given the limited data regarding macrophage response to TUS and the 

possibility that macrophages directly contribute to TUS-enhanced healing, the purpose of 

this investigation was to explore TUS effects on macrophage release of paracrine 

mediators that modify fibroblast proliferation and to identify difference in macrophage 

response to TUS treatment parameters. 

The ranges of TUS parameters were selected considering the difference in cellular 

responses that have been previously reported among in vitro investigations, in order to 
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identify optimal TUS parameters for macrophage response.  The experimental hypothesis 

was that sonication would result in macrophage release of a stimulatory factor(s) that 

enhances fibroblast proliferation, a process consistent with progression of the 

inflammatory phase toward the reparative phase of healing and that these effects on 

macrophage function will be dose-dependent. 

 

Material and Methods 

Materials and Reagents.  Phorbol 12-myristate 13-acetate (PMA), dimethyl 

sulfoxide (DMSO), and lauryl sulfate (SDS) were obtained from Sigma Chemical Co., St. 

Louis, MO.  Tris and the DC Protein Assay Kit were obtained from BioRad Laboratories, 

Hercules, CA.  The bovine serum albumin (BSA) protein standard was purchased from 

Pierce Biotechnology Inc, Rockford, IL.  Recombinant human platelet derived growth 

factor-bb (rhPDGFbb) was purchased from R & D Systems, Minneapolis, MN.  Glycerol, 

sodium hydroxide, hydrochloric acid, and sterile pipets were purchased from Fisher 

Scientific, Pittsburgh, PA.  Other sterile culture equipment: tissue culture plates and 

centrifuge tubes were purchased from Corning Inc., Corning NY.  Microtubes were 

purchased from ISC Bioexpress, Kaysville, UT.  Cell Proliferation Assay Kits were 

purchased from Chemicon Intl., Temecula, CA.  Cell types used in this investigation: 

human monocytic cells (U937), and human gingival fibroblasts (HGF-1) purchased from 

American Type Culture Collection, Manassas, VA.  Cell culture media reagents including: 

RPMI-1640 culture media and Dulbecco’s Modified Eagle’s Medium (DMEM), sodium 
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pyruvate, sodium bicarbonate, HEPES, L-glutamine, 0.25% trypsin, fetal calf serum and 

penicillin/streptomycin/amphotericin B were purchased from Invitrogen, Carlsbad, CA. 

 

Cell Culture 

U937 cells.  All cell manipulations were conducted using sterile technique within a 

standard biological safety cabinet (Forma Scientific, Waltham, MA).  Upon receipt, U937 

(human monocytic) cells were thawed, expanded in RPMI growth media (RPMI-1640 

supplemented with 2 mM L-glutamine, 10 mM HEPES, 1 mM sodium pyruvate, 1.5 g/L 

sodium bicarbonate, 10% heat-inactivated fetal calf serum (HIFCS), penicillin 100 U/ml, 

streptomycin 100 μg/ml, and amphotericin B 250 ng/ml), and then stored under liquid 

nitrogen in cryovials in 1.5 ml aliquots at 1.0 x 10
6
 cells/ml in RPMI growth media with 

10% DMSO.  U937 cells from this stock batch were thawed and cells between passages 

3-12 were utilized for all subsequent experimentation.   

To begin experiments, U937 cells were thawed at 37 C, suspended in 20 ml of 

RPMI growth media, and centrifuged for 5 minutes at 200 x g to pellet the cells.  Cells 

were then resuspended in 20 ml of RPMI growth media, placed in 75 cm
2
 culture flasks 

and maintained in a humidified, water-jacketed incubator cabinet at 37 C with 95% air, 5% 

CO2 mixture.  Cell concentration was maintained between 1 x 10
5
 and 2 x 10

6
/ml, per 

manufacturer instruction.  Cells were passed every 2-3 days to sustain appropriate 

concentration and to provide enough cells for each experiment.  For cell passages, media 

containing cells were collected in 50 ml polypropylene tubes and centrifuged for 5 minutes 

at 200 x g.  The supernatant was decanted, and the cells were resuspended in 30 ml of 
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RPMI growth media.  Next, cell concentration was assessed using a standard laboratory 

hemacytometer (Fisher Scientific, Pittsburgh, PA).  Cells were then resuspended in RPMI 

growth media at a concentration of 1 x 10
5
 cells/ml in 20ml aliquots and returned to 75 cm

2
 

flasks for further propagation.   

HGF-1 Cell Propagation.  Upon receipt from the vendor, HGF-1 cells were 

thawed, washed and suspended in 25ml of DMEM growth media (DMEM supplemented 

with 4mM L-glutamine, 1mM sodium pyruvate, penicillin 100U/ml, streptomycin 

100μg/ml, amphotericin B 250ng/ml and 10% fetal calf serum).  Cells were placed in a 

75cm
2
 culture flask and grown in a humidified, water-jacketed incubator with 95% air, 5% 

CO2 mixture.  DMEM growth media was replaced every 2-3 days until cells reached 

confluence.  At confluence, cells were detached from the culture flask with 0.25% trypsin, 

collected in sterile 50ml polypropylene tubes and centrifuged at 200 x g for 10 minutes to 

pellet the cells.  The cells were resuspended in DMEM growth media and were split 1:4 

into 75cm
2
 flasks and returned to the incubator for further propagation.   HGF-1 cells were 

passed another time and grown to confluence.  At confluence, cells were trypsinized, 

collected and suspended in DMEM growth media containing 10% DMSO.  Cells at a 

concentration of 2-4 x 10
5
 cells/ml were placed in 1.5ml aliquots in cryovials and stored 

under liquid nitrogen.  Experiments were completed using fibroblasts from the initial stock 

batch described above.  All experiments with fibroblasts were conducted using cells 

between passages 5-10.  

U937 Differentiation and Preparation for TUS Exposure.  U937 cells exhibit a 

monocytic phenotype, but can be induced to differentiate into macrophages through the 
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addition of phorbol 12-myristate 13-acetate (PMA) 
175

.  Differentiation of U937 monocytes 

into macrophages parallels the transformation of circulating monocytes into macrophages 

upon tissue injury or infection 
176

.  The newly differentiated macrophages are equipped to 

fully participate in inflammatory and immune functions.  To induce differentiation into 

macrophages, the following processes were completed.  U937 cells were collected in 50 ml 

tubes, pelleted by centrifugation for 5 minutes at 200 x g, and resuspended in RPMI 

growth media.  Cell concentration was determined and adjusted to a final concentration of 

0.5 x 10
6
 cells/ml in 120ml total volume of fresh RPMI growth media.  Following this 

dilution, cell concentration was again verified to insure appropriate final concentration.  

PMA was added to the cell suspension to a final concentration of 50 ng/ml.  U937 cells 

were plated on 60 x 15 mm polystyrene culture plates in 5ml aliquots and incubated for 24 

hrs to allow cellular differentiation and adherence to the plates.  Following differentiation, 

RMPI growth media containing PMA was removed and discarded, and cells were rinsed 

with serum-free RPMI growth media.  Fresh, serum-free RPMI growth media (5ml) was 

added to each plate, and macrophages were returned to the incubator for an additional 24 

hours.  After the second incubation period, macrophages were rinsed with 5ml serum-free 

RPMI growth media, covered with 10ml of serum-free RPMI growth media, placed in the 

sonication apparatus and exposed to TUS as described below. 

TUS Treatment of U937 Macrophages.  For all experimental TUS exposures, 

culture plates (samples) containing cells were treated using a system similar to that 

described by Reher et al 
177

(Fig 2.1).  A thermostatically controlled, circulation water bath 

maintained at 37.0  C (Thermo NESLAB Model EX17) was used to maintain temperature 
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of samples during ultrasound exposure.  To allow samples undergoing sonication to 

maintain contact with the heated water, a custom-designed suspension platform, made of 

Lexan plastic, was fabricated.  Culture plates were set in a centrally placed opening (60mm 

diameter) and secured to plastic support braces with thumbscrews such that the bottom 

surface of the dish was submerged in the water bath.  A laboratory stand and adjustable 

clamp were used to hold the ultrasound transducer in place above the sample during 

sonication.  The water bath, platform and transducer stand were placed within the sterile 

hood for experimentation.  Prior to treatment of each sample, the emitting crystal of the 

transducer was cleaned with de-ionized water and sterilized using 70% ethanol.  Once the 

sample was secured in the platform, the transducer was lowered directly into the media to a 

set height of 5 mm from the surface of the dish.  The sample was then exposed to TUS at 

the chosen parameters for 5 or 10 minutes using a stationary delivery technique.  For sham 

controls, samples were secured in the platform and the transducer was placed in the sample 

for 5 or 10 minutes, but the ultrasound generator was not turned on.  Immediately 

following treatment, the media was concentrated by removal of 5ml of media, and the cells 

were returned to the incubator for 10 minutes or 1 hour.  Following post-TUS incubation, 

conditioned media were collected under sterile conditions, centrifuged for 5 minutes at 

200 x g to remove any cellular debris, and dispensed into aliquots in sterile 1.7ml 

microtubes and stored at -70 C.   

TUS was applied at 1 or 3 MHz frequency, with a duty cycle of 20%, resulting in 

SATA intensity levels of:  0 (sham TUS), 40, or 400 mW/cm
2
 SATA.  Each 

intensity/frequency combination was applied for 5 and 10 minutes (Table 2.1).  Each 
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experimental block (set of TUS treatments) included each TUS parameter group for a total 

of 10 parameter sets per experimental block.  The order of application of each TUS 

parameter set was randomized for each experimental block to reduce the possibility of 

experimenter bias.  Samples for each experimental block were labeled 1-10 following 

sonication, and recorded in a database along with the corresponding parameter set.  All 

subsequent assays of conditioned media were completed using the 1-10 code from each 

experimental block.  Samples were matched to their particular TUS parameters only after 

all data collection was completed.  Each experimental block was conducted on a single day 

using cells from the same stock batch to reduce intra-assay variability.  A total of n = 5 

experimental blocks were completed. 

Fibroblast Incubation with Macrophage Conditioned Media.  HGF-1 aliquots were 

thawed, washed in plain DMEM and resuspended in DMEM growth media and propagated 

under humidified incubation conditions as described above.  Once cells neared confluence, 

they were prepared for exposure to macrophage conditioned media as follows.  DMEM 

growth media was removed and the monolayer of cells was rinsed briefly with 5ml of 

0.25% trypsin.  The rinse was discarded and 8ml of fresh trypsin was added to each flask.  

Flasks were returned to the incubator for 3-5 minutes to allow full detachment of cells.  

The cell suspension was transferred into a sterile 50ml polypropylene tube and cells were 

pelleted by centrifugation for ten minutes at 200 x g.  The pelleted cells were resuspended 

in fresh DMEM growth media and quantified.  Concentration was adjusted to 20,000 

cells/ml creating a “batch” of fibroblasts and 100 l of the suspension was added to wells of 

a 96-well culture plate (Corning, Inc., Corning, NY) for a final concentration of 2,000 
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cells/well.  This concentration was used to insure the monolayer of fibroblasts would be 

preconfluent and able to expand.  From each batch of fibroblasts, two separate 96-well 

plates were seeded to allow for 24 and 48-hour incubations.  

Cells were placed in the humidified incubator for 4 hours to allow adherence to the 

culture plate.  Following cell attachment, the growth media was removed and 100 l of 

fresh, serum-free DMEM was added to each well and the plate returned to the incubator for 

24 hours.  The serum-free incubation period served to bring the fibroblasts to a quiescent 

state of activity prior to experimentation.  At the end of the incubation period in serum-free 

DMEM, media was removed from each well and replaced with 100 l of macrophage 

conditioned media.  Each macrophage conditioned media sample was loaded in duplicate 

wells on each of the two plates for a total of 4 wells per conditioned media sample. 

In addition to experimental macrophage conditioned media, negative and positive 

control samples were included in the proliferation assay.  Negative controls consisted of 

fibroblasts incubated in non-conditioned (fresh), serum-free RPMI growth media.  To 

insure that the experimental fibroblasts were capable of proliferating, of fibroblasts were 

incubated in serum-free RPMI growth media supplemented with rhPDGF-bb, a known 

mitogenic agent for fibroblasts 
178,179,180

.  Control media were incubated with fibroblasts in 

the same plates and for the same time periods as the experimental samples.  

To reduce intra-assay variability, all conditioned media samples from a single TUS 

experimental block were added to plates that contained fibroblasts plated from a single 

batch.  Plates with fibroblasts in conditioned media were returned to the incubator for 24 or 

48 hours.  At the end of each incubation period, fibroblast proliferation was assessed to 
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determine the effect of varied levels of TUS on macrophage-release of mitogenic factors 

for fibroblasts.   

Fibroblast Proliferation Assay.  Fibroblast proliferation following incubation in 

macrophage conditioned media was analyzed using a Cell Proliferation Assay Kit 

(Chemicon Intl., Temecula, CA).  The assay is based on assessment of mitochondrial 

dehydrogenase cleavage of tetrazolium salt (WST-1) to formazan dye, a process that 

increases as cell number increases, due to increased mitochondrial enzymes.  At the end of 

the conditioned media incubation (24 or 48 hours), fibroblasts were removed from the 

incubator and 10 l of WST-1 reagent was added to each well of the culture plate.  The 

plates were mixed for one-minute using a microplate shaker, and then returned to the 

incubator for four hours to allow development of the formazan dye.  Finally, optical 

density (OD) of the samples was measured with a microplate reader (SpectraMax Plus, 

Molecular Devices, Sunnyvale CA) set at 450nm, with 650nm serving as the reference 

wavelength.  For each incubation time point, OD values were obtained from duplicate 

wells for each conditioned media sample and averaged together prior to data analysis. 

Validation of WST-1 Assay for Cell Proliferation.  The WST-1 assay measures 

cellular mitochondrial enzymatic activity.  A greater number of cells (e.g. due to 

proliferation) correlates with an increase in the number of available mitochondrial 

enzymes 
181

.  Despite this, it is possible that mitochondrial enzyme activity could change 

without a change in cell number.  To insure that increased OD measurements were 

consistent with increased cell number, a validation assay was performed. 
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HGF-1 cells propagated in DMEM growth media as described above were seeded 

onto 96-well microplates in 100μl volumes for end concentrations of: 0, 1, 2, 4, and 

8 x 10
3
cells/well.  Each cell concentration was seeded in replicates of five, one set of five 

for analysis using the WST-1 assay and one set of five for direct cell counting.  Cells were 

incubated 4 hours to allow adhesion, and then media was removed and replaced with 100μl 

of serum-free DMEM growth media.  Cells were incubated 24 hours, after which the 

serum-free DMEM growth media was removed and replaced with 100μl of RPMI growth 

media, identical to macrophage RPMI growth media utilized in the TUS exposure 

experimentation.  The cells were returned to the incubator for 24 or 48 hours.  At the end 

of the respective incubation periods, one set of serial dilutions was analyzed by completing 

the WST-1 assay as described previously, and the other set was analyzed by direct cell 

counting.  For direct counting, cells were released from the microplate using 0.25% trypsin 

and counted using a standard light microscope and laboratory hemacytometer.  OD values 

that were obtained for 0 x 10
3
 cells/ml were used as background measures of the WST-1 

assay and were subtracted from all other values for plated cells at 1, 2, 4, and 

8 x 10
3 

cells/well. 

 

Data Analysis/Statistics 

For the five TUS experimental blocks, data is reported as the mean± SEM.  Overall 

differences in conditioned-media induced fibroblast proliferation were analyzed by one-

way ANOVA (Sigma Stat version 2.03; Systat Software, Inc., Point Richmond, CA).  All 

post hoc analysis of significant differences was performed using Tukey’s HSD test using 
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Sigma Stat version 3.01.  All statistical analyses used an a priori p-value < 0.05 to 

determine significant differences.  WST-1 assay validation was completed using a linear 

regression analysis on the variables of OD and cell counts, and is reported as the 

coefficient of determination (R
2
).
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Figure 2.1 

 

A 

 

B 
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Figure 2.1.  Sonication Apparatus. A) Custom-designed suspension platform for securing 

culture plates in the water bath and B) Sonication apparatus including suspension platform, 

water bath, laboratory stand and adjustable clamp holding the ultrasound transducer.  This 

apparatus was used for all TUS exposures. 
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Table 2.1 

5 minutes 

 1 MHz 3 MHz 

0 mW/cm
2
 (sham) 40 mW/cm

2
 40 mW/cm

2
 

 400 mW/cm
2
 400 mW/cm

2
 

 

10 minutes 

 
1 MHz 3 MHz 

0 mW/cm
2
 (sham) 40 mW/cm

2
 40 mW/cm

2
 

 400 mW/cm
2
 400 mW/cm

2
 

 



   

 70 

Table 2.1.  TUS Exposure Parameters.  Listing of the exposure parameter combinations 

utilized for sonication of macrophages with subsequent 10-minute or 1-hour incubation 

post-TUS.   All intensity values are reported as SATA at 20% duty cycle.  Sham treatments 

were completed for 5 minute and 10 minute exposures. 
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Results 

HGF-1 Fibroblast Proliferation.    Differences in fibroblast proliferation following 

24-hour or 48-hour incubation in macrophage-conditioned media were assessed using the 

WST-1 assay and analyzed by one-way ANOVA.  Fibroblasts were incubated for each 

time period in media conditioned by macrophages that were treated with TUS and 

incubated post-TUS for either 10-minutes or 1-hour.  Negative control samples for 

proliferation consisted of fibroblasts incubated in unconditioned RPMI macrophage growth 

media and positive control samples for proliferation consisted of fibroblasts incubated in 

unconditioned RPMI macrophage growth media that was supplemented with 100ng/ml 

rhPDGF-bb.   

After 24-hour incubation in conditioned media, there were no significant 

differences in fibroblast proliferation among any of the treatment groups for 10-minute 

conditioned media (p = 0.783, F = 0.608) or 1-hour conditioned media (p = 0.747, 

F = 0.641) compared to sham, negative control unconditioned media or positive control, 

rhPDGF-bb-supplemented media (Fig. 2.2).     

 After 48-hour incubation in conditioned media, negative control media or media 

supplemented with rhPDGF-bb ANOVAs revealed significant differences in fibroblast 

proliferation for the 10-minute conditioned media plus controls comparison (p < 0.001, 

F = 7.320) and for the 1-hour conditioned media plus controls comparison (p < 0.001, 

F = 17.52).  Post hoc analysis revealed that positive control media supplemented with 

rhPDGF-bb stimulated significantly increased fibroblast proliferation compared to all other 

groups (p < 0.001), while there were no significant differences in fibroblast proliferation 
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among any treatment groups (including sham) for 10-minute and 1-hour conditioned 

media.  There were also no differences between any treatment groups and the negative 

control group. (Fig. 2.3).     

WST-1 Proliferation Assay Validation.  To validate the ability of the WST-1 assay 

to measure increasing cell number, WST-1 assay and direct cell counting on known 

concentrations of HGF-1 fibroblasts was performed.  To simulate the media conditions of 

the experimental fibroblast assay, serum-free, unconditioned, RPMI macrophage growth 

media was used for fibroblast incubation for 24-hour and 48-hour incubation periods.  

Fibroblasts were seeded at 0, 1, 2, 4 and 8 x 10
3
 cells/well and allowed to incubate for the 

corresponding time period.  For both time points, linear regression analysis revealed a 

direct correlation between increasing cell number and increasing OD measured via WST-1 

assay, (24-hour; r
2
 = 0.907 and 48-hour; r

2
 = 0.939) (Fig. 2.4). 
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FIGURE 2.2 
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Figure 2.2.  HGF-1 Fibroblast Proliferation in Macrophage Conditioned Media – 24 hour 

incubation.  Fibroblast proliferation was assessed using the WST-1 assay following 24-

hour incubation in macrophage-conditioned media.  (A) Fibroblast proliferation in 

conditioned media from macrophages incubated for 10 minutes post-TUS, and in negative 

and positive control media.  Based on one-way ANOVA, there were no significant 

differences in fibroblast proliferation among any treatment groups including sham, 

negative control unconditioned media and positive control media supplemented with 

100ng/ml rhPDGF-bb (p = 0.783, F = 0.608).  (B) Fibroblast proliferation in conditioned 

media from macrophages incubated for 1 hour post-TUS, and in negative and positive 

control media .  One-way ANOVA revealed no significant differences in fibroblast 

proliferation among any treatment groups including sham, negative control and positive 

control media (p = 0.747, F = 0.651).  All data reported as the mean  SEM of fibroblast 

proliferation as percent of sham treatment, n = 5. 
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Figure 2.3 
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Figure 2.3.  HGF-1 Fibroblast Proliferation in Macrophage Conditioned Media – 48 

Hour Incubation.  Fibroblast proliferation was assessed using the WST-1 assay following 

48-hour incubation in macrophage-conditioned media.  (A) Fibroblast proliferation in 

conditioned media from macrophages incubated for 10 minutes post-TUS and in negative 

and positive control media..  Based on one-way ANOVA there were significant differences 

in fibroblast proliferation (p < 0.001, F = 7.320) among the conditions.  Post hoc analysis 

revealed positive control media supplemented with 100ng/ml rhPDGF-bb significantly 

increased fibroblast proliferation when compared to all groups including sham and 

negative control samples (p < 0.001).  (B) Fibroblast proliferation in conditioned media 

from macrophages incubated for 1 hour post-TUS and in negative and positive control 

media.  Significant differences in fibroblast proliferation were found based on one-way 

ANOVA (p < 0.001, F = 17.52).  Post hoc analysis revealed rhPDGF-bb supplemented 

media increased proliferation compared to all treatment groups including sham and 

negative control samples (p < 0.001) indicated by *.  All data reported as the mean  SEM 

of fibroblast proliferation as percent of sham treatment, n = 5. 
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Figure 2.4   
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Figure 2.4.  WST-1 Proliferation Assay Validation.  (A) Comparison of direct cell counting 

and WST-1 assay for fibroblasts following 24-hour and, (B) 48-hour incubation in 

unconditioned, macrophage growth media.  Cells were seeded at 0, 1, 2, 4 and 8 x 10
3
/well 

and allowed to incubate for the 24 or 48 hours.  Optical density values that were obtained 

for 0 x 10
3
 cells/ml were used as background measures of the WST-1 assay and were 

subtracted from all other values for plated cells at 1, 2, 4, and 8 x 10
3
 cells/well.  For both 

time points, linear regression analysis revealed a direct correlation between increasing cell 

number and increasing optical density measured via WST-1 assay, (24-hour: R
2
 = 0.907) 

and (48-hour: R
2
 = 0.939). 
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Discussion 

 Since the WST-1 assay measures mitochondrial enzyme activity, it was imperative 

to establish validity of the assay for measurement of increased cell number.  Similar 

validation of this colorimetric assay for assessing cellular proliferation has been reported 

181
.  In the current investigation, identical serial dilutions of fibroblasts were assessed by 

direct counting and with the WST-1 assay.  The regression analysis of these variables 

showed good correlation (R
2
 = 0.907 – 0.939) between cell number and optical density, 

thus verifying the ability of the WST-1 assay to assess cell number using our experimental 

protocol.       

In this study, none of the TUS parameter sets (Table 2.1) utilized for macrophage 

sonication stimulated the release of fibroblast mitogens into the media that would 

subsequently induce fibroblast proliferation.  Conditioned media from macrophages 

incubated post-TUS for 10-minutes or 1-hour had no effect on fibroblast proliferation 

when comparing TUS treatment parameter sets to each other and to sham and negative 

control samples, regardless of whether fibroblasts were exposed to the conditioned media 

for 24 or 48 hours.  The lack of proliferation of fibroblasts exposed to the conditioned 

media was not due to the fibroblasts already being at their proliferative maximum, as the 

ability of the cells to proliferate in response to mitogenic stimuli was demonstrated by the 

fibroblast response to rhPDGF-bb supplementation of unconditioned RPMI macrophage 

growth media.   

Based on the WST-1 assay, the absence of increased fibroblast proliferation among 

the conditioned media samples compared to sham, suggests macrophages may not respond 
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to the selected TUS parameters by release of fibroblast mitogens.  The lack of mitogen 

release is contrary to findings reported by Young and Dyson 
161

.  They reported increased 

fibroblast proliferation following incubation in conditioned media from sonicated, 

undifferentiated U937 macrophages (0.75 or 3 MHz, 500mW/cm
2
 SATA, CW, 5-minutes).  

They also reported different effects on mitogen release from macrophages, as assessed by 

fibroblast proliferation, based on the TUS wavelength frequency (0.75 and 3 MHz) 

applied; specifically 0.75 MHz induced release of a fibroblast mitogen within 30 minutes 

of sonication, while 3 MHz induced release when the media was sampled at 12 hours 

post-TUS, but not when sampled at 30-minutes post-TUS.  The current investigation 

analyzed media that was conditioned for a maximum of 1-hour post-TUS.  Given the 

comparatively abbreviated incubation period of the current investigation, it was not 

possible to verify or refute the differential response of macrophage release of fibroblast 

mitogen at 12 hours post-treatment for 3 MHz TUS.  

Methodological differences could be responsible for the variant findings of the 

current investigation compared to Young and Dyson.  U937 cells in the current 

investigation were induced to differentiate toward terminal macrophages, compared to 

undifferentiated U937 monocytes.  Upon leaving the vasculature, monocytes differentiate 

into tissue macrophages that will function in the healing process, which results in changes 

in cellular and secretory activity 
164,168

.  Effects of sonication on function of some cells, 

specifically chondroblasts and spleenocytes, have been shown to be dependent on the state 

of cellular differentiation 
83,109,162

.  The difference in findings noted here, compared to 

those of Young and Dyson, may be further evidence of TUS effects being specific to the 
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state and/or activity of the treated cell.  However, this differential cellular response to TUS 

based on the state of cellular differentiation has not been reported in macrophages.  Such a 

comparison of cellular response to TUS between undifferentiated and differentiated U937 

cells would provide insight about this type of response among monocytes and 

macrophages. 

TUS application in the current investigation was conducted using a 20% duty cycle, 

compared to a CW application used by Young and Dyson.  Varied TUS duty cycles have 

been shown to stimulate different proliferative and secretory responses in sonicated cells 

including osteoblasts, fibroblasts, and chondrocytes 
7,83

.  While this effect is a plausible 

explanation of the differences in findings noted above, the aim of this investigation was not 

to identify the effect of altered TUS duty cycle and its affect on cellular response.  As such, 

a more detailed, directed experimental protocol designed to address this question would 

provide better analysis of this question. 

Lastly, the current investigation analyzed media that was conditioned for a 

maximum of 1-hour post-TUS.  Given this comparatively abbreviated incubation period, it 

was not possible to verify or refute the differential response of macrophage release of 

fibroblast mitogen at 12 hours post-treatment for 3 MHz TUS, as described by Young and 

Dyson. 

 

Conclusion 

Overall, TUS at varied, clinically applicable levels had no effect on macrophage 

release of fibroblasts mitogens 10 min or 1 hr post TUS.  It appears that TUS does not 
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affect an immediate release of fibroblast mitogens at the TUS parameters used in this 

model.  Differences in the state of cellular differentiation and the TUS duty cycle could 

explain the lack of effect noted in this study in comparison to the findings of Young and 

Dyson.  The importance of these two variables in relation to macrophage response to TUS 

deserves additional investigation. 

Macrophage release of fibroblast mitogens is only one mechanism by which 

macrophages could alter tissue healing in response to TUS.  Macrophages produce and 

release other paracrine factors that are capable of improving tissue healing.  For example 

IL-1 , TGF-  and VEGF are released by macrophages and have beneficial effects on 

tissue healing 
182,183,184,185

.  These factors induce important aspects of the inflammatory and 

early proliferative phase such as matrix removal 
186,187

, matrix deposition 
188,189,190,191

, and 

angiogenesis 
100,192,193

.  The macrophage response to TUS may involve these aspects of 

tissue healing rather than induction of fibroblast proliferation.  Indeed, fibroblasts 

themselves respond to TUS by increased proliferation 
8
, and the TUS action on fibroblast 

proliferation may be through direct action on fibroblasts rather than an indirect mitogenic 

response mediated via macrophages.  Given these other possible mechanisms of healing 

enhancement by TUS and the lack of fibroblast proliferation in our experimental model, 

we decided to explore the release of IL-1 , TGF-  and VEGF from TUS-treated 

macrophages. 
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Chapter 3 

Cytokine and Growth Factor Release From Activated 

Macrophages Exposed to Various Levels of Therapeutic 

Ultrasound 

 

 

Abstract 

During tissue healing, macrophages release various paracrine mediators, including 

cytokines and growth factors.  These cytokines and growth factors control various cellular 

mechanisms of healing.  Therapeutic ultrasound (TUS) is a treatment modality that is used 

to enhance healing of injured tissues.  In vitro analyses indicate that various levels of TUS 

can alter the activity of many different cell types.  In vivo investigations suggest that TUS 

affects the early phases of tissue repair, at a time point which macrophages are likely to be 

active.  As such, we explored the effect of TUS on macrophage release of IL-1β, VEGF 

and TGFβ1, paracrine factors involved in inflammation, angiogenesis and extracellular 

matrix production.  Activated U937 human macrophages were treated with 5 or 10-minute 

TUS exposures using 1 and 3MHz frequencies at a 20% duty cycle at the intensities of 40, 

and 400mW/cm
2
 SATA. Conditioned media from treated macrophages was collected at 10 

minutes or 1 hour post-treatment and analyzed for the presence of IL-1β, VEGF and 

TGFβ1 using enzyme-linked immunosorbent assay (ELISA).  At 10 minutes post-

treatment, TUS exposure for 10-minutes at 1MHz, 400mW/cm
2
 SATA, 20% duty cycle 
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increased the release of IL-1 β and VEGF.  However, no levels of TUS exposure affected 

the release of TGF-β1from treated macrophages.  IL-1β and VEGF are important 

regulators of inflammation and angiogenesis, respectively, and the current findings suggest 

that TUS may enhance the early phases of tissue healing by stimulating macrophage 

release of these paracrine mediators. 
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Introduction 

 Healing of injured tissues involves a complex array of interactions between cells 

and cellular processes.  When damaged, tissues respond with an orderly sequence of events 

that leads to repair of the defect.  The healing process is typically divided into four 

overlapping phases; hemostasis, inflammation, repair and remodeling (maturation).  

Inflammation begins within a few hours after injury and is largely completed by 72 

hours 
157

.  This phase of healing involves a dynamic and complex series of vascular, 

cellular and biochemical reactions that prepare the wound environment for the reparative 

phase in which the extracellular matrix and tissue integrity are restored 
163,194

.  

The presence of macrophages in the inflammatory milieu is critical for tissue 

repair.  Absence or malfunction of macrophages during wound healing results in 

inadequate succession of the reparative and remodeling phases of healing with an outcome 

of poor tissue repair 
195

.  In vivo healing models in which macrophage function was 

prohibited, have demonstrated delayed and incomplete wound healing 
165,166,196

. 

Macrophages develop from blood-borne precursors, monocytes 
164,168

. Following 

tissue injury, products from activated platelets, prostaglandins from neutrophils, leukocyte-

derived cytokines, protein products from degraded matrix, and chemical factors from 

invading microorganisms are capable of inducing monocytes to leave the circulation and 

differentiate into macrophages 
164

.  These macrophages are responsible for the coordination 

of the inflammatory and subsequent reparative phases of healing.     
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Macrophages coordinate many actions of the inflammatory and reparative phases of 

healing through the production of a variety of secretory factors, many of which are 

cytokines and growth factors 
132,194

. These paracrine agents stimulate many tissue healing 

processes such as phagocytosis, cell recruitment and proliferation, matrix molecule 

degradation and production, and angiogenesis 
89,100,166,172,197,198

.  Cytokines and growth 

factors, produced by macrophages, that are believed to enhance healing include insulin-like 

growth factor-1 (IGF-1), interleukin-1  (IL-1 ), transforming growth factor- 1 (TGF- 1), 

vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), platelet 

derived growth factor (PDGF), and epidermal growth factor (EGF) 
182,199,200

.   

TGF- 1 has been shown to increase tendon fibroblast collagen production and 

result in increased mechanical stiffness of healing ligaments 
170

.   Experimentally 

decreased macrophage production of VEGF and bFGF during wound repair resulted in 

delayed wound healing 
195

.  PDGF, EGF and bFGF have a mitogenic effect on tendon and 

ligament fibroblasts in vitro, and exogenous PDGF (20µg) increased the biomechanical 

strength of rabbit ligaments, when it was added to the ligament after experimental ligament 

transection 
201,202

.    

Therapeutic ultrasound has been shown to affect the function of cells and tissues 

during healing.  Based on investigations of enhancement of soft tissue healing, TUS 

appears to exert its primary effect on the inflammatory and repair phases of healing 
4,13-

16,26,127,135,136,153
.  The specific processes of the inflammatory and repair phases that are 

affected by TUS continue to be identified.  Given that macrophage function is crucial for 

coordinating the inflammatory and early reparative phases of healing, macrophage 
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response to TUS should be further explored in an effort to better understand the 

mechanism of TUS effects on healing tissue.   

Evidence directly concerning monocyte/macrophage secretory response to TUS is 

limited to three published investigations 
7,161,203

.  Young and Dyson treated human 

monocytes (undifferentiated U937 cells) with TUS (0.75 MHz or 3.0 MHz, 500 mW/cm
2
 

SATA, CW, 5 minutes) and reported the presence of an unidentified fibroblast mitogenic 

factor in the culture media at 30 minutes and at 12 hours after TUS exposure 
161

.  The 

authors believed that TUS wavelength frequency affected sonicated monocytes 

differentially based on the findings that 0.75 MHz caused release of the mitogenic factor 

within 30 minutes of TUS application, while 3.0 MHz induced mitogen release by 12 

hours post-TUS only. 

Doan et al sonicated primary human monocytes at various intensities (20, 80, 140, 

and 200 mW/cm
2
 SATA, 20% duty cycle, 5 minutes) using a 1.0 MHz frequency, and 

measured release of cytokines and growth factors thought to be involved in controlling 

angiogenesis during wound healing (IL-1 , bFGF, VEGF, IL-6, IL-8, and TNF- ) 
7
.  TUS 

at 1 MHz had no effect on monocytes release of IL-1 , bFGF, IL-6, IL-8, and TNF-  at 18 

hours post-TUS compared to sham-treated monocytes.  However, monocytes treated at the 

intensities 20, 80 and 200 mW/cm
2
 released more VEGF compared to sham, when 

assessed 18-hours post-TUS.  The authors also reported monocytes released IL-1  and 

VEGF in response to ultrasound applied at 45 kHz.  While this ultrasound wavelength is 

much lower than traditional therapeutic ultrasound and continues to be validated for 
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clinical use, this finding provides further evidence that variable ultrasound frequencies 

stimulate cytokine/growth factor release. 

Iwabuchi et al reported increased release of TNF-  from activated rat peritoneal 

macrophages within 2 hours of a single TUS exposure at SAFHS, using a macrophage-

IVD co-culture model 
203

.  The difference in TNF-  release post-TUS, compared to Doan 

et al (1999), is likely due to the difference in experimental protocols, for example single 

cell type vs. co-culture; primary human macrophages vs. activated rat macrophages; and 

different TUS treatment parameters.   

The within study comparisons of the effect of varied TUS intensity or wavelength 

frequency on macrophage function demonstrate differential effects on cellular secretion of 

cytokines and growth factors 
7,161

.  Furthermore, these three studies indicate that 

monocytes and macrophages respond to both low-intensity TUS (< 100mW/cm
2
 SATA) 

and higher-intensity TUS (500 mW/cm
2
 SATA) by releasing cytokines and growth factors.  

However, comparison of ultrasound delivered at varied therapeutic levels of intensity, 

wavelength and duration has not been conducted within one study. 

The family of cytokines and growth factors encompasses many different peptides.  

In order to investigate how TUS might effect the inflammatory and proliferative phases of 

healing via altered macrophage function, we chose to analyze the release of IL-1 , VEGF, 

and TGF- 1 from macrophages exposed to TUS.  IL-1  is considered to be a pro-

inflammatory mediator that stimulates many cellular actions that occur during 

inflammation 
204

.  Angiogenesis and ECM repair are major actions occurring during the 

proliferative phase of healing and the growth factors VEGF and TGF- 1, respectively, are 
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known mediators of these functions 
101,190,192,205,206

.  Therefore, the purpose of this 

investigation is to examine the effects of TUS, applied at varied levels of intensity, 

wavelength frequency, and treatment duration, on release of IL-1 , VEGF, and TGF- 1 

from activated, human macrophages in an effort to identify the TUS parameters that are 

most stimulatory. 

 

Materials and Methods 

Materials and Reagents.  Phorbol 12-myristate 13-acetate (PMA), dimethyl 

sulfoxide (DMSO), and sodium dodecyl sulfate (SDS) were obtained from Sigma 

Chemical Co., St. Louis, MO.  Tris and DC Protein Assay Kit were from BioRad 

Laboratories, Hercules CA.  Glycerol, HEPES, sodium hydroxide, hydrochloric acid, heat-

inactivated fetal calf serum (HIFCS) and sterile pipets were from Fisher Scientific, 

Pittsburgh, PA.  Bovine serum albumin (BSA) protein standard was obtained from Pierce 

Biotechnology Inc., Rockford, IL.  Protease inhibitor cocktail was from Roche Applied 

Science, Mannheim, Germany (Cat # 11 697 498 001).  Human monocytic cells (U937) 

were purchased from American Type Culture Collection, Manassas, VA.  Sterile tissue 

culture plates and centrifuge tubes were from Corning Inc., Corning NY.  ELISA antigen 

detection kits for IL-1 , VEGF, and TGF- 1 were acquired from R & D Systems, 

Minneapolis MN.  All other reagents were obtained from Invitrogen Corp., Carlsbad, CA.   

U937 Cell Culture.  All U937 cell manipulations were conducted using sterile 

technique within a standard biological safety cabinet (Forma Scientific, Waltham, MA) 

and are described in Chapter 2.  
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U937 Macrophage Differentiation and Preparation for TUS Exposure.  

Differentiation of U937 cells into macrophages was completed according to the protocol 

previously described in Chapter 2 of this document.    

TUS Treatment of U937 Macrophages.  For all experimental TUS exposures, 

culture plates (samples) containing cells were treated using a system similar to that 

described by Reher et al, and described in detail in Chapter 2 of this document 
177

.  Each 

experimental block was conducted on a single day using cells from the same stock batch to 

reduce intra-assay variability.  A total of n = 3 experimental blocks were completed. 

Cell Lysates post-TUS.  Following sonication and incubation, macrophage 

conditioned media was collected, centrifuged, dispensed into four aliquots in sterile 1.7 ml 

microtubes and stored at -70 C.  Cell lysis and total protein extraction was completed for 

each sample of sonicated macrophages, in order to determine the total cellular protein from 

each sample.  Total cellular protein was used to normalize the data for cytokine release into 

the media.  Immediately after conditioned media collection, macrophages were rinsed three 

times with 5 ml of sterile phosphate buffered saline (PBS), and covered with 500 ul of 

sterile-filtered, chilled (4 C) Laemmli buffer, pH 6.8 (60 mM Tris-Cl, 5% SDS, 10% 

glycerol, and protease inhibitor cocktail including inhibitors of serine, cysteine, metallo 

and aspartic proteases).  Cells were incubated with lysis buffer for 5 minutes on ice and the 

lysates were collected in 1.7 ml microtubes.   Lysates were centrifuged (Eppendorf 5804R, 

Westbury, NY) at 20,000 g for 20 minutes at 4 C.  The supernatant was transferred into a 

fresh 1.7 ml microtube and stored at -70 C and the pellet was discarded. 
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Total Protein Determination.  Cell lysates from sonicated macrophages were 

assayed for total protein concentration using the DC Protein Assay System.  Protein 

residues (tyrosine, tryptophan, cystine, cysteine and histidine) react with copper in alkaline 

medium and then reduce a Folin reagent, which generates a blue color with maximal 

absorbance at 750 nm.  A SpectraMax Plus microplate reader (Molecular Devices, 

Sunnyvale, CA) set to measure absorbance at 750 nm was used to analyze all samples.  

Bovine serum albumin (BSA) standards were serially diluted in lysate buffer (0.25 mg/ml 

to 2.0 mg/ml) to prepare a standard curve of protein concentrations.  Total protein 

concentrations of the cell lysates were interpolated from the standard curves using 

manufacturer software for the microplate reader (Molecular Devices, Sunnyvale, CA).   

ELISA assays for IL-1 , VEGF and TGF- 1.  Analysis of conditioned media for 

these growth factors was completed using commercially available, quantitative, sandwich 

enzyme-linked immunosorbent assays (ELISA).  Initial assays were completed for each 

cytokine ELISA to determine the need to dilute conditioned media samples.  Monoclonal 

antibodies specific for IL-1 , VEGF and TGF- 1 were pre-coated onto 96-well plates.  

Serial dilutions of the appropriate recombinant human antigen and macrophage 

conditioned media samples were pipetted into the wells in duplicate and incubated 2-3 

hours (per manufacturer directions) to allow antigen-antibody binding.  Wells were washed 

to remove any unbound material and a secondary polyclonal antibody labeled with 

horseradish peroxidase was pipetted into each well.  Following an incubation period of 1-2 

hrs, wells were washed to remove unbound secondary antibody.  A substrate solution 

containing hydrogen peroxide and a stabilized chromogen (tetramethylbenzidine) was 
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added to each well and incubated in the dark for 20 minutes to allow color development.  

The degree of color developed in each well is directly proportional to the amount of bound 

polyclonal antibody-enzyme conjugate.  Finally, a stop solution, 2N HCl, was added to 

each well and the optical densities measured on a SpectraMax Plus microplate reader set at 

450 nm with wavelength correction set at 550 nm, per instructions of the ELISA 

manufacturer.  Detection ranges for the various cytokines growth factors are as follows:  

IL-1  3.9 - 250 pg/ml, VEGF 15.6 - 1000 pg/ml, and TGF- 1 31.2 - 2000 pg/ml.  

Cytokine/growth factor content was determined using the standard curve and was recorded 

as pg/ml of media.  The final cytokine growth factor concentrations (pg/ml) were then 

normalized to total protein concentration (mg/ml) in the cell lysate, generating values 

reported as pg cytokine/mg total cellular protein. 

 

Data Analysis/Statistics   

Each experimental block was repeated for n = 3 replicates for each TUS parameter 

set tested.  All conditioned media assayed for growth factors by ELISA and cell lysates 

analyzed for total protein concentration were analyzed in duplicate, with the average being 

reported.  Values for statistical analysis are reported as mean ± standard error of the mean 

(SEM).  One-way analysis of variance (ANOVA) was used to evaluate for differences in 

growth factor release among various TUS parameter sets for 10-minute and 1-hour 

incubations.  Tukey’s HSD post hoc analysis was employed to reveal specific differences 

among treatment parameters.  A p-value of < .05 was considered significant for all values. 
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Results 

 IL-1  Release.  One-way ANOVA revealed that IL-1β release was significantly 

different among macrophages incubated for 10 minutes (p = 0.012, F= 3.584) and 1 hour 

(p = 0.004, F= 4.465) post TUS exposure.  Post hoc analysis revealed significant 

differences in IL-1β release from macrophages among the TUS parameter sets for each 

incubation period.  For both incubation periods, 1 MHz, 400mW/cm
2
 SATA, 10-minute 

treatment induced greater IL-1β release compared to all other parameter sets except 

1 MHz, 400mW/cm
2
, 5-minute treatment (Fig. 3.1).  

 VEGF Release.  VEGF release following TUS exposures was significantly different 

among macrophages treated with various TUS parameters sets incubated for 10-minutes 

(p = 0.003) and 1-hour (p = 0.036) post-TUS.   Post hoc analysis revealed significant 

differences in VEGF release among the parameters sets for both time periods (Fig. 3.2).  

For the 10-minute post-TUS incubation, TUS at 1 MHz, 400mW/cm
2
 10-minute treatment 

induced greater VEGF release than sham (p = 0.006), than 5-minute treatments delivered at 

1 MHz, 40mW/cm
2
 (p= 0.004), 3 MHz, 40 mW/cm

2
 (p = 0.005), and 3 MHz, 400mW/cm

2
 

(p= 0.007) and than 10-minute treatments delivered at 3MHz, 40mW/cm
2
 (p = 0.013).  For 

the 1-hour post-TUS incubation, TUS at 1 MHz, 400mW/cm
2
 10-minute treatment induced 

greater VEGF release compared to sham treatment (p = 0.044) and TUS delivered at 

3MHz, 40mW/cm
2
, 5-minute treatment (p = 0.028).  

 Unlike IL-1  release, VEGF release increased from 10-minutes to 1-hour post-TUS 

for all samples, including shams.  To assess these changes, the mean VEGF levels for each 

parameter set at 10-minutes and 1-hour were calculated (Fig. 3.3).  The difference of the 
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means between sham samples at 10-minutes and 1-hour was 74.522 pg/mg total cellular 

protein.  In comparison, mean differences between experimental samples ranged from 

71.203 to 92.626 pg/mg total cellular protein.  One-way ANOVA assessment of means 

between incubation periods revealed no difference among any of the experimental or sham 

groups (p = 0.989).   

TGF- 1 Release.  Based on ELISA, TUS exposures had no effect on TGF- 1 

release from macrophages.  No TGF- 1 was detected in any treated macrophage sample 

regardless of TUS parameter selection and post-TUS incubation period.  A standard curve 

of serially diluted TGF- 1protein demonstrated that the ELISA was capable of measuring 

TGF- 1 (Fig. 3.4).  To determine whether U937 macrophages were capable of releasing 

TGF- 1, cells were differentiated in PMA (50ng/ml) for 24 hours as previously described 

and then incubated for 24-hours in serum-free RPMI growth media.  U937 macrophages 

released TGF-β1 (313.38  16.50 pg/mg total cellular protein, n = 4 samples) into the 

conditioned media, as measured by ELISA.   

Total cellular protein.  Total cellular protein for each TUS parameter set and for 

both incubation periods was analyzed by one-way ANOVA (Figs. 3.5 A,B).  Cellular 

protein amounts ranged from 87.5% to 104.9% of sham protein for 10-minute incubation 

samples, and ranged from 97.4% to 109.9% of sham protein for 1-hour incubation samples.  

One-way ANOVA revealed that total cellular protein was not significantly different among 

any of the TUS parameter sets, including sham treatment, for the 10-minute incubation 

(p = 0.612, F= 0.781) or 1-hour incubation (p = 0.940, F= 0.309).
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Figure 3.1 
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Figure 3.1.  IL-1β release from TUS-treated macrophages incubated 10 minutes or 1 hour 

post-TUS in serum-free media.  Macrophages were treated with TUS and incubated for 10-

minutes or 1-hour.  Conditioned media was then assayed for the presence of 

cytokines/growth factors. One-way ANOVA revealed that IL-1β release was different 

among macrophages incubated for 10 minutes (p = 0.012, F= 3.584) and 1 hour (p = 0.004, 

F= 4.465) post TUS exposure.  Post hoc analysis revealed significant differences in IL-1β 

release from macrophages among the TUS parameter sets.  For both incubation periods, 

1 MHz, 400mW/cm
2
 SATA, 10-minute treatment induced greater IL-1β release compared to 

all other parameter sets except 1 MHz, 400mW/cm
2
, 5-minute treatment. * and ** indicate 

significantly increased IL-1β in conditioned media at 10 minutes and 1 hour post-TUS, 

respectively, except where indicated by - and --.  Values represent the average picograms 

of IL-1β per milligram of total cellular protein for each TUS parameter set ± SEM for n= 3 

experiments. 
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Figure 3.2 
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Figure 3.2.  VEGF release from TUS-treated macrophages at 10 minutes and 1 hour post-

treatment.  Macrophages were treated with TUS and incubated for 10-minutes or 1-hour.  

Conditioned media was then assayed for the presence of cytokines/growth factors.  One-

way ANOVA revealed significant differences in VEGF release from macrophages treated 

with TUS and incubated for 10 minutes (p = 0.003, F= 4.649) and 1 hour (p = 0.036, F = 

2.740) post-treatment.  Post hoc analysis revealed that TUS at 1MHz, 400mW, 10-minutes 

stimulated a significant increase in VEGF release at both post-TUS incubation periods.  

For 10-minute incubation, # represents significant differences compared to 1MHz, 

400mW/cm
2
, 10 minutes.  For 1-hour incubation, * indicates significant increases in VEGF 

release compared to 1MHz, 400mW/cm
2
, 10 minutes.  Values represent the average 

picograms of VEGF per milligram of total cellular protein ± SEM for n= 3 experiments. 
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Figure 3.3 
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Figure 3.3.  Difference in VEGF levels following 1-hour compared to 10-minute post-TUS 

incubation.  VEGF release increased from 10-minutes to 1-hour post-TUS for all samples, 

including shams.  VEGF levels for each sample at 10-minutes were subtracted from VEGF 

levels for the corresponding sample measured at 1-hour.  The mean difference between 

sham samples was 74.522 pg/mg total cellular protein.  Mean differences between 

experimental samples ranged from 71.203 to 92.626 pg/mg total cellular protein.  One-

way ANOVA revealed no significant differences between VEGF levels from 10-minutes to 

1-hour post-TUS for any TUS treatment parameter set (p = 0.989, F= 0.190).  Data points 

represent the mean difference between VEGF levels from treated macrophages at 10-

minutes compared to 1-hour post-TUS incubation ± SEM of n = 3 replicates.   
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Figure 3.4 
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Figure 3.4.  ELISA standard curve for TGF- 1.  Recombinant human TGF-β1 protein 

standard control samples were serially diluted and were added in duplicate to wells of a 

microplate coated with a monoclonal antibody to human TGF-β1.  Conditioned media 

from macrophages treated with TUS and incubated for 10-minutes or 1-hour were also 

added in duplicate wells of the microplate.  The remainder of the assay was completed as 

described in materials and methods.  TGF-β1 was not detected in any of the experimental 

samples, while the TGF-β1in the serially diluted standard control samples was detected.  

R
2
 value represents the coefficient of determination for the linear regression analysis of 

optical density vs. known concentrations of TGF-β1.  Data points represent the mean of 

two measurements for each TGF-β1 concentration.  
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Figure 3.5 
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Figure 3.5. Total cellular protein from macrophages following TUS exposure and post-

TUS incubation for 10 minutes or 1 hour, as percent of sham controls.  Cellular protein 

content ranged from 87.5% to 104.9% of sham protein for 10-minute incubation samples, 

and ranged from 97.4% to 109.9% of sham protein for 1-hour incubation samples.  One-

way ANOVA revealed that total cellular protein was not significantly different among the 

TUS parameter sets, including sham treatment, for the (A) 10-minute incubation 

(p = 0.612, F= 0.781) and (B) 1-hour incubation (p = 0.940, F= 0.309).  Values represent 

the mean ± SEM of milligrams cellular protein per milliliter as a percent of sham control 

milligrams cellular protein per milliliter for n = 3 samples at each parameter set and for 

both post-TUS incubation periods.
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Discussion 

Cytokines and growth factors play critical roles in the coordinated processes of 

tissue repair 
89,199

 and their release following TUS exposure is one of the hypothesized 

mechanisms of TUS-enhanced tissue healing 
110,154,161,177

.  TGF- 1 and VEGF enhance 

numerous cellular mechanisms of tissue healing 
184,189,192,200,207,208,209

, while IL-1  is 

known to potentiate inflammation and has been reported to be an important regulator of 

some of the cellular mechanisms of healing 
183,210

.  

In the current study, macrophages exposed to TUS for 10 minutes at 1 MHz, 

400mW/cm
2
, responded by releasing IL-1  and VEGF but not TGF-β1.  The release of IL-

1  occurred within 10-minutes of sonication and there was no change when post-

sonication incubation was extended to 1 hour (Fig. 3.1).  Interleukin-1, originally identified 

as a leukocyte growth factor, exists in two distinct forms IL-1  and IL-1 .  IL-1  is the 

predominant form, although the two have very similar functions in controlling local and 

systemic inflammation 
211

.   

Mainly a product of monocytes and macrophages, IL-1 is an important regulator of 

the inflammatory processes following injury and infection, as well as being noted as a 

fibroblast mitogen 
171,183,210

.  Much of its pro-inflammatory properties are derived through 

activation of cyclooxygenase-2 (COX2) and subsequent release of prostaglandin-E2 

(PGE2) 
204,212-214

.  IL-1 is also involved in ECM catabolism through stimulation of matrix 

metalloproteinase (MMP) production by fibroblasts 
215

 and macrophages 
216

, and by 

promotion of neutrophil degranulation 
217

.  Furthermore, IL-1 induces synthesis of other 
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cytokines and growth factors that are involved with tissue healing in a paracrine and 

autocrine manner 
171,210

. 

Young and Dyson found an acute macrophage response to TUS similar to the 

current investigation 
161

.  They reported that undifferentiated U937 macrophages released a 

fibroblast mitogen within 30 minutes of TUS exposure that was applied for 5 minutes (0.75 

MHz, 500mW/cm
2
 SATA, 100% duty cycle).  The identity of the mitogen was not 

characterized, although IL-1  does exhibit mitogenic effects on fibroblasts 
183,210

.  IL-1  is 

capable of providing mitogenic stimulus to fibroblasts in culture 
69

, and increased levels 

could provide a stimulus for fibroblast proliferation as described by Young and Dyson 
161

.  

Increased fibroblast number in the wound milieu could account for the accelerated rate of 

healing reported with in vivo investigations.  However, we did not find any increase in 

fibroblast proliferation, as discussed previously in Chapter 2, which suggest that IL-1  

may not have been the mitogen responsible for the fibroblast proliferation reported by 

Young and Dyson. 

As evidence of a differential effect of TUS parameters on cellular response, Young 

and Dyson also reported that no secretory response was found within 30 minutes of 

sonication when TUS was applied using 3 MHz frequency for the same duration and at the 

same intensity, but they did report that TUS delivered at 3 MHz resulted in mitogen release 

at 12-hours post-exposure 
161

.  In agreement with those results, we did not find an increase 

in fibroblast mitogen (nor IL-1β or VEGF)  release from macrophages within 1-hour of 

insonation (Figs. 2.2, 2.3, 3.1 and 3.2) at 3MHz, regardless of the other TUS parameters 

(Table 2.1).  We did not explore whether U937 macrophages respond at time points 
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beyond 1-hour, thus it is not known if treated cells in the current model respond over 

longer periods of time post-TUS. 

IL-1  release from TUS-treated, primary human monocytes has been previously 

reported 
7
.  TUS applied for 5 minutes (1 MHz, 80, 140 and 200mW/cm

2
 SATA, 20% duty 

cycle) stimulated release of IL-1 , 18 hours after sonication.  Unfortunately, the exact 

timing of the cellular response is not known since no earlier incubation time points were 

included.  The monocytes also released IL-1  following a 5-minute sonication with a 

continuous-wave, 45 kHz wavelength and intensities of 15, 30, and 50mW/cm
2
 SATA.  At 

present, this low frequency (45 kHz) is not available on clinical TUS machines and has not 

been evaluated by others in relation to cytokine/growth factor release.  However, the 

stimulation of cellular activity at this alternative ultrasound frequency indicates that a 

variety of combinations of wavelength, intensity and duty cycle affect cellular response to 

TUS.  

VEGF is known to be a regulator of angiogenesis during tissue repair 
218

 and its 

importance to healing has been demonstrated in various models 
101,193,193,208

.  Addition of 

VEGF to full-thickness integument wounds accelerates tissue healing in vivo 
101

, while 

decreased levels of VEGF are  associated with delayed angiogenesis and delayed healing 

219
.  Non-union fractures in rabbits were stimulated to heal following addition of VEGF to 

the injury site 
193

.  A study on normal fracture repair revealed that inhibition of VEGF at 

the fracture site resulted in decreased blood flow and non-union, while addition of VEGF 

increased blood flow at the fracture site 
208

.  Macrophages may play a role in VEGF release 
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during wound healing as they produce and release VEGF in situations of tissue damage 

and hypoxia 
165,192,220

. 

Increased levels of VEGF were detected 10-minutes and 1-hour after applying TUS 

for 10 minutes at 1 MHz, 400mW/cm
2
 (Fig. 3.2).  One-hour post-TUS, VEGF levels were 

increased in all experimental and sham samples in comparison to the 10-minutes levels, 

which indicates that VEGF released between 10-minutes and 1-hour post-TUS was not 

dependent on TUS stimulation.  The continued increase in VEGF levels was most likely 

due to constitutive release.  The reasons for this hypothesis are first; the effect occurred 

across all of the TUS parameter sets, regardless of whether there was an initial increase in 

VEGF release.  Also, increased levels of VEGF between 10-minutes and 1-hour incubation 

post-TUS were nearly identical to the VEGF increase that was detected in the sham 

samples over the same time period (Fig. 3.3).  To support this hypothesis, statistical 

analysis revealed no differences among the increased levels of VEGF for any TUS 

treatment parameter sets over the additional 50 minutes of incubation time.  Together with 

IL-1  release, these findings indicate that the macrophages responded acutely to TUS.  

 TUS enhancement of healing has also been associated with enhanced 

angiogenesis.  TUS application (0.75 MHz, 100mW/cm
2
 SATA, 20% PW, 5 minutes) 

accelerated angiogenesis in wounds in adult rat hind limbs after 5 days of treatment 
135

.   

TUS treatment for 3 days (2 MHz, 50mW/cm
2
 SATA,CW, 5 minutes) increased VEGF 

messenger ribonucleic acid (mRNA), overall vascularity, and blood flow in ischemic hind 

limbs of adult rats 
154

.  The cellular source of VEGF following in vivo TUS has not been 

reported, but macrophages are a source of VEGF in humans and mice 
185,220

.   The current 
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findings that macrophages release of VEGF following sonication, in addition to previously 

reported findings that monocytes release VEGF in response to TUS 
177

, suggest that 

monocytes/macrophages are at least partly responsible for the angiogenic response to in 

vivo TUS. 

The current investigation did not find increased VEGF release from macrophages 

treated at 40 mW/cm
2
 SATA, contrary to the report by Doan et al that primary monocytes 

released increased amounts of VEGF when exposed to TUS at intensities within the same 

range 20, 80 as well as at  200 mW/cm
2
 SATA 

7
.  Doan et al utilized primary monocytes 

that were not differentiated toward a macrophage phenotype.  The state of cellular 

differentiation can affect response to TUS 
83,84,109

 and is a possible explanation of the 

variance in findings of the current investigation and Doan et al.  Also, no intensities higher 

than 200mW/cm
2
 SATA were assessed in their investigation, thus it cannot be refuted with 

any certainty that the monocytes would have also responded to higher TUS intensities by 

releasing VEGF. 

Roles of TGF-  in tissue repair include chemotaxis of reparative cells, stimulation 

of release of other cytokines, and enhancement of matrix deposition 
130,206,221,222,223

.  The 

addition of TGF-  to fibroblast cultures increased collagen production 
191

.   Wound healing 

in rats has been accelerated following topical application of TGF- , and decreased in rats 

that are deficient in TGF-  
220

. 

Regarding TUS, in vitro exposure stimulated TGF-  secretion from osteoblasts and 

chondrocytes 
90,110

.  The increased release of TGF-  from chondrocytes was directly 

correlated with enhanced matrix molecule production and cellular proliferation 
110

.  In the 
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current investigation, TGF- 1 was not detected in the conditioned media of experimental 

or sham samples at 10-minutes or 1-hour post-TUS.  The inability to detect TGF- 1 was 

not due to dysfunction of the ELISA as evidenced by the standard curve (Fig. 3.4) and by 

detection of TGF- 1 in the media of untreated, differentiated macrophages incubated for 

24 hours in serum-free RPMI growth media (data not shown).  As such, it appears that 

U937 macrophages do produce and release TGF- 1, but TUS does not stimulate its 

immediate release, as is it does for IL-1  and VEGF.    

To further evaluate this finding, the presence of TGF- 1 in cell lysates from 

differentiated, non-treated U937 macrophages was evaluated.  TGF- 1 was not present in 

detectable levels, which suggests that U937 macrophages do not readily store TGF- 1 

protein intracellularly, and therefore TUS could not stimulate its immediate release.  

Supporting this, U937 macrophages have been reported to maintain constant levels of 

TGF- 1 mRNA levels, with TGF- 1 protein production occurring upon cell stimulation 

184,224,225
.  Similarly, TGF- 1 protein has been detected in the cytosol of primary 

macrophages, but its presence was dependent on prolonged exposure (24 hours or more) to 

cellular activation signals 
226,227

.  

In conjunction with TUS-induced cytokine and growth factor release, acceleration 

of the healing process is hypothesized as a mechanism of TUS 
32

.  As evidence of this 

effect, in vivo TUS has been reported to enhance the early stages of healing (inflammatory, 

proliferative) resulting in replacement tissue that is of better quality than untreated, healing 

tissue 
4,5,12,13,133

.  Earlier clearance of macrophages and enhanced angiogenesis in TUS-
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treated wounds also supports the acceleration hypothesis 
135

.  Enhanced angiogenesis 

stimulated by VEGF could provide the improved vascular response to healing and 

accelerate tissue healing related to TUS exposure.  Improved angiogenesis of healing tissue 

following TUS has been reported in animal models for soft tissue and bone.  The anabolic 

and proliferative effects of TGF- 1 on tissue healing are important for completion of the 

tissue healing process.  Evidence suggests that TUS does not stimulate macrophage release 

of TGF- 1, rather its release may be induced from resident cells of the healing tissues as 

reported for osteoblasts and chondrocytes. 

The mechanism that is responsible for transduction of ultrasound energy into 

signals for releasing cytokines and growth factors is not known.  Calcium flux across the 

cell membrane, indicating increased membrane permeability, has been reported to occur in 

TUS-treated cells 
50,65,158

.  This ionic flux has been directly correlated with chondrocytes 

release of the ECM protein, aggrecan 
49

.  From this it follows that an increase in membrane 

permeability could provide the stimulus for release of intracellular contents from sonicated 

cells.   

Genetic studies have identified numerous genes and their associated proteins that 

are up-regulated by TUS, suggesting that TUS energy was transduced into an intracellular 

signal that promotes genetic transcription and translation.  This mechanism has been 

reported for VEGF and TGF-  in chondrocytes, periosteal cells and osteoblasts 

10,11,64,90,110,154
.  In the current investigation, the nearly immediate release of VEGF and IL-

1  is unlikely to have occurred as a result of genetic transcription, translation and protein 

release.   
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Another possible mechanism of the release of VEGF and IL-1  in the current 

investigation is stimulation of exocytosis.  Exocytosis of cytokines/growth factors occurs 

as a process of interactions between membrane proteins, cytosolic granules and 

cytoskeletal components 
228-230

.  Alteration of proteins associated with the membrane, 

vesicles and cytoskeleton following TUS could result in stimulation of exocytosis.  As 

evidence of this possibility, TUS has been reported to alter membrane proteins (G-proteins 

and integrins) and associated second messenger proteins in fibroblasts and osteoblasts 

123,125,231
.  Thus, it may be that TUS affects exocytosis in addition to the longer-term affects 

on genetic transcription and translation.  Investigations of a cellular mechanism 

responsible for TUS-stimulated release of cytokines and growth factors from macrophages 

have not been reported and elucidation of the mechanism is important to aid in the 

understanding of TUS affects on macrophage function and tissue healing.   

Conclusion 

U937 macrophages stimulated with TUS (1MHz, 400mW/cm
2
, 20% duty cycle, 10-

minute application) released IL-1  and VEGF into culture media within 10-minutes of 

exposure.  From the findings of IL-1  and VEGF release, it is apparent that macrophages 

respond to TUS in a nearly immediate manner by releasing these molecules.  Both IL-1  

and VEGF are important paracrine regulators of the early stages of healing and as such, 

their release into the wound bed following TUS may very likely be part of the overall 

mechanism for TUS-accelerated healing that has been reported elsewhere.   
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U937 macrophages are capable of producing and releasing TGF- 1.  This response 

was not stimulated in the post-TUS period up to 1-hour.  The current study did not clarify 

whether TUS stimulates TGF- 1 release from macrophages by a mechanism other than 

that for IL-1  and VEGF, or if TUS-stimulated immediate release of TGF- 1 is precluded 

due to the lack of intracellular stores.  In chondrocytes, TUS has been reported to increase 

TGF- 1 mRNA within 2 hours of treatment and to increase protein expression of TGF- 1 

by 12 hours post-TUS 
110

.  No similar investigations have been reported in relation to 

macrophages.  Mechanistically, therapeutic ultrasound units ultimately affect some 

property of cellular physiology (e.g., membrane permeability, free radical formation, stable 

cavitation, alteration of protein conformation, activation of second messenger systems).  

For macrophages, this mechanism has been hypothesized to be part immediate release and 

part stimulation of secretion.  Given the differential expression of the cytokines and growth 

factors in response to TUS, reported here and by other investigators as discussed, it is 

important to provide a better characterization of the macrophage response to TUS.  
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Chapter 4 

 

Mechanism of Interleukin-1  Release From Macrophages 

Treated With Specific Levels of Therapeutic Ultrasound 
 

 

Abstract 

Various cell types have been reported to respond to TUS by releasing cytokines and 

growth factors.  Release of these paracrine mediators is thought to be part of the 

mechanism by which TUS enhances tissue healing.  TUS exposure for 10-minutes at 

1MHz, 400mW/cm
2
 SATA, 20% pulsed-wave at 37 C stimulates the release of IL-1  from 

PMA-differentiated U937 macrophages.  The purpose of this study was to investigate the 

possible contributions of non-specific increased cell membrane permeabilization and 

physiological processes in the release of IL-1  in response to TUS exposure at these 

parameters.  Based on previous data compared to the total cellular IL-1  in macrophages 

not exposed to TUS, more than one-third of the total cellular content of IL-1  (197.648  

16.016 vs. 75.774  33.057 pg IL-1  per 1 x 10
6
 cells) was released in response to TUS.  

Non-specific cell permeabilization following TUS exposure was analyzed via 

measurement of LDH release into the media and microscopic evaluation of cells following 

staining with the fluorescent dyes calcein-AM and ethidium homodimer (EthD-1) to 

determine the proportion of cells permeabilized post-TUS.  LDH release data indicates that 
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approximately 10% of the cells were permeabilized.  Altered physiological processes were 

evaluated by exposing macrophages to TUS at 37 , 25  and 4  C.  IL-1  release was 

attenuated at the lower temperatures.  This attenuation in cytokine release at lowered 

temperatures suggests that, in addition to non-specific permeabilization, a specific 

mechanism of cell-mediated release of IL-1  was stimulated by TUS.  Because there are at 

least four proposed mechanisms of IL-1  release from macrophages, further 

experimentation is necessary to identify which of these is affected by TUS. 
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Introduction 

 Many cell types, including osteoblasts, chondrocytes, fibroblasts, spleenocytes, 

monocytes, and endothelial cells release secretory products following TUS exposure at 

intensities ranging from 20 to 500mW/cm
2
 SATA and exposure durations of 5 to 10 

minutes 
90,110,161,162,177,232

.  In the current series of studies, activated macrophages were 

induced to release increased amounts of IL-1  and VEGF within 10-minutes with no 

further enhancement by 1-hour post-treatment, with TUS delivered for 10 minutes at 

1MHz, 400 mW/cm
2
 SATA, 20% duty cycle.  Release of cellular products in response to 

TUS has been hypothesized to occur as release of material form preformed vesicles and as 

release of products synthesized de novo 
11,64,161,162,177

.   Given the rapid response in this 

series of studies, it is likely that TUS stimulated release of preformed material either via a 

form of cell-regulated exocytosis or at the result of cellular permeabilization. 

TUS-induced cell membrane permeability changes following sonication have been 

related to a generalized increase in membrane porosity and to calcium flux across the 

membrane, which subsequently affects ion-gated channels 
14,33,49,233,234

.  The increased 

membrane porosity and calcium flux have been reported to be transient responses to TUS 

and cells have been shown to revert back to normal membrane function soon after 

sonication with minimal cell death occurring 
235-239

.   

Changes in cell membrane permeabilization can be studied by measuring the 

release of lactate dehydrogenase (LDH) from cells and through visualization of cells 

following staining with dyes whose entrance into the cell is dependant on the degree of 

permeabilization. LDH is a cytosolic enzyme that is released from cells when their 
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membranes are damage 
240

, and therefore, has frequently been used as a marker of non-

specific permeabilization that occurs as a result of cell membrane damage.  The fluorescent 

cellular stains acetoxymethylester (calcein-AM) and ethidium homodimer-1 (EthD-1) 

provide a reliable method of staining cells with intact membranes (calcein-AM) and cells 

whose membranes have been permeabilized (EthD-1) 
241,242

.  Numerous normal 

physiological cellular processes are retarded with decreases in temperature away from 

normal physiological levels of 37 C.  As such, temperature reduction was used to help 

delineate whether normal cellular processes were in part or in whole responsible for the 

rapid release of IL-1β from the TUS stimulated cells. The purpose of this study was to 

investigate the possible contributions of non-specific cell membrane permeabilization and 

physiological processes in the release of IL-1  in response to TUS exposure for 10 minutes 

at 1MHz, 400 mW/cm
2
 SATA, 20% duty cycle. 

 

Materials and Methods 

Materials.  Phorbol 12-myristate 13-acetate (PMA), dimethyl sulfoxide (DMSO), 

and lauryl sulfate (SDS) were obtained from Sigma Chemical Co., St. Louis, MO.  Tris 

and the DC Protein Assay Kit were obtained from BioRad Laboratories, Hercules, CA.  

The BSA protein standard was purchased from Pierce Biotechnology Inc, Rockford, IL.  

Glycerol, sodium hydroxide, hydrochloric acid, and sterile pipets were purchased from 

Fisher Scientific, Pittsburgh, PA.  Tissue culture plates and centrifuge tubes were 

purchased from Corning Inc., Corning NY.  Microtubes were purchased from ISC 

Bioexpress, Kaysville, UT.  Cell Proliferation Assay Kits were purchased from Chemicon 
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Intl., Temecula, CA.  Disk sterile filters (0.22 M) were obtained from (Millipore, 

Billerica, MA).  Human monocytic cells (U937) were purchased from American Type 

Culture Collection, Manassas, VA.  Cell culture media reagents including RPMI-1640 

culture media, sodium pyruvate, sodium bicarbonate, HEPES, L-glutamine, 0.25% trypsin, 

fetal calf serum, penicillin/streptomycin/amphotericin B, and phosphate buffered saline 

(PBS) were purchased from Invitrogen, Carlsbad, CA.  LDH assay kit was obtained from 

BioVision Research Products, Mountain View CA.  Calcein-AM and EthD-1 fluorescent 

stains were obtained from Molecular Probes Inc, Eugene, OR.  Visualization and 

photography of fluorescent-stained cells was accomplished using a Nikon Eclipse TE300 

Inverted microscope fitted with a Nikon DXM1200 digital still camera (Nikon Corp., 

Melville NY).  Quantification of stained cells was completed using the Image Pro Plus 

Software Program, Silver Spring MD. 

 Cell Culture (U937 cells).  All cell manipulations were conducted using sterile 

technique within a standard biological safety cabinet (Forma Scientific, Waltham, MA) 

and were described previously in Chapter 2 of this document.   

 U937 Macrophage Differentiation and Preparation for TUS Exposure.  

Differentiation of U937 cells into macrophages was completed according to the protocol 

previously described in Chapter 2 of this document. 

TUS Treatment of U937 Macrophages for IL-1  and LDH Release at Physiological 

Temperature.  Plated and differentiated macrophages were treated using a system similar 

to that described by Reher et al, and described in detail in Chapter 2 of this document 
177

.  

Each experimental block was conducted on a single day using cells from the same stock 
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batch to reduce intra-assay variability (Table 2.1).  A total of n = 3 experimental blocks 

were completed.   

LDH Assay.  LDH in the conditioned media was assessed with a commercially 

available colorimetric assay kit (Biovision Research Products) in which, LDH is quantified 

based on the enzymatic conversion of tetrazolium salt (WST-1) to a formazan dye.  LDH 

initially catalyzes the oxidation of lactate to NADH (nicotinamide adenine dinucleotide).  

The NADH then reacts with WST-1 to produce the formazan dye, a process that results in 

the development of a yellow color.  An increase in color intensity is directly correlated to 

an increase in LDH in the conditioned media samples and this intensity can be measured 

by assessing the optical density (OD) of each sample using a spectrophotometer at 450nm.  

The assay was completed according to the manufacturer protocol.   

 Conditioned media samples were thawed in a water bath and immediately placed 

on ice.  10ul of each conditioned media sample was added to duplicate wells of a clean 96-

well microtiter plate.  Next 100ul of WST-1 assay solution was added to each well and the 

reaction was allowed to proceed for 30 minutes up to 4 hours, until the OD of the 0.1ug/ml 

LDH positive control had an OD of approximately 2.0 at 450nm, as recommended by the 

manufacturer protocol.  Sample plates were read on a microplate spectrophotometer 

(SpectraMax Plus, Molecular Device, Sunnyvale, CA) at 450nm with the reference 

wavelength set at 650nm.  Samples were measured every 30 minutes until the positive 

control reached the recommended OD.  OD values were then recorded with values 

representing the mean value of the sample duplicates. OD was normalized to total cellular 

protein. 
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 For total cellular LDH analysis, macrophages were propagated and differentiated as 

previously described in Chapter 2.  Following 24-hr serum free incubation, cell lysates 

were collected as described in Chapter 3.  Analysis of total cellular LDH content was 

conducted using the protocol described above in this section.  For all LDH analyses, A 

total of n = 3 experimental blocks were completed.  

Total Protein Determination for Cell Lysates.  Cell lysates from sonicated 

macrophages were assayed for total protein concentration using DC Protein Assay System 

(Bio-Rad Laboratories, Hercules, CA) as previously described in Chapter 3.     

 Treatment of Macrophages for Fluorescent Cell Staining.  Cell staining based on 

membrane permeabilization, as a measure of cell viability, was completed using the 

Live/Dead Viability/Cytotoxicity Assay that includes the EthD-1 and calcein-AM 

fluorescent dyes.  The assay allows simultaneous determination of viable and non-viable 

cells from one sample.  EthD-1 is a cell impermeant dye that stains nucleic acids by 

intercalating between base pairs, while calcein-AM is a cell permeant dye that is retained 

in cells and fluoresces upon conversion to calcein after interacting with intracellular 

esterases 
241-243

.  Calcein-AM produces a bright green fluorescence at ~530nm, and EthD-1 

produces a bright red fluorescence at ~635nm.  Macrophages were stained following TUS 

treatment using parameters sets of 1 MHz, 40mW/cm
2
SATA 20% PW; 1 MHz, 400mW/cm

2
 

SATA 20% PW; and sham, all of which were applied for 10-minutes.  Following 

macrophage sonication and incubation for 10-minutes or 1-hour, calcein-AM and EthD-1 

were added to the culture plates containing cells and conditioned media at concentrations 

0.8µM and 2µM, respectively and incubated with the cells for 30 minutes at room 
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temperature.  After incubation, the media containing the dyes was decanted and the cells 

rinsed three times with 5ml of PBS and then visualized using the Nikon Eclipse TE300 

fitted with a high-pressure 75-watt xenon lamp and a 10X objective lens.  Each 

fluorophore was excited using a 495 nm excitation wavelength with fluorescence viewed at 

530 nm for calcein-AM and 605 nm for EthD-1.  Digital photographs were captured on the 

ACT-1 software (Nikon, Melville NY).  Multiple photographic images were required to 

insure an adequate sampling of the treated macrophages coated on 60 x 15 mm plates.  

Specifically, the plate was divided into 9 equally sized areas within the body of the culture 

dish (Fig. 4.1).  The 5 areas marked on the figure indicate the areas of each plate in which 

the stained cells were photographed.  The field of view was manually centered in each area 

and three photographs were taken of each field: 1) normal light microscopy, 2) 

fluorescence of the calcein-AM, and 3) fluorescence of the EthD-1 (Figs. 4.2-4.4).  The 

photographs were stored for later image analysis using the Image Pro Plus 4.1 software 

program.  For the fluorescent photographs, the software identified the area, in pixels, of all 

the cells that were stained with calcein or EthD-1 within each field.  For each photographic 

field, the area of all stained cells, calculated by the image program from the number of 

pixels, were summed to generate a total area for each fluorophore.  The total areas from 

each of the five fields of the culture plate were summed to give a total area of each 

fluorophore per plate (the total number of pixels encompassing the stained cells).  Thus, 

there was a total area for each plate for calcein-AM stained cells and a total area for EthD-

1 stained cells.  For each plate, the total area of the calcein-AM stained and EthD-1 stained 

cells were summed to generate a total area of cells analyzed.  This total cellular area of the 
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plate was used to generate the percentage of viable cells (calcein-AM stained) by dividing 

the total calcein-AM stained area by the total cellular area and multiplying by 100.  A total 

of n = 3 experimental blocks were completed and each experimental block was conducted 

on a single day using cells from the same stock batch. 

To determine the ability of the combined calcein-AM and EthD-1 cell staining to 

represent the total area of cells present on each analyzed field, total area determination was 

also completed from normal light microscopy images.  A sample of gray-scaled images of 

two randomly selected fields from each of five randomly selected plates were analyzed 

using the Image Pro Plus 4.1 software program and total cellular area (number of pixels) 

for the fields was recorded (total of ten fields analyzed).  These values were then used to 

generate a percentage of total cellular area represented by the sum of the calcein-AM and 

EthD-1 stained cells compared to the normal light microscopy images (data not shown). 

Treatment of Macrophages at Variable Temperatures.  Macrophages were 

propagated, plated, differentiated and treated with TUS using the custom-designed 

apparatus as described in Chapter 2 except; macrophages were exposed to TUS for 10 

minutes using sham treatment (0 mW/cm
2
 SATA) and treatment at 1MHz, 400mW/cm

2
 

SATA, 20% PW at 4 , 25  and 37  C and then incubated for 10-minutes post-treatment at 

the respective temperatures.  A thermostatically controlled water bath was utilized to 

maintain the appropriate exposure temperature.  Post-TUS incubations were completed on 

ice (4  C),  at room temperature (25  C) or in a humidified incubator maintained at 37  C.  

Following incubation, conditioned media were collected as described previously, and 

analyzed for the presence of IL-1 .  A total of n = 3 experimental blocks were completed 
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and each experimental block was conducted on a single day using cells from the same 

stock batch. 

 ELISA for IL-1 β in Conditioned Media and Cell Lysates.  Analysis of macrophage 

conditioned media and cell lysates for IL-1β was completed using commercially available, 

quantitative, sandwich enzyme-linked immunosorbent assays (ELISA; R & D Systems, 

Minneapolis, MN) as described in Chapter 3.  The detection range for IL-1  was 3.9 - 250 

pg/ml.  IL-1  content was determined using the standard curve and recorded as pg/ml.  The 

final concentrations (pg/ml) were then normalized to pg/1 x 10
6
 cells/ml, based on the 

number of macrophages plated. 

IL-1  content in total cell lysates of untreated macrophages.  To determine the total 

amount of IL-1  in untreated macrophages, macrophages were propagated, plated and 

differentiated as described previously.  Macrophages at concentrations of 0.5, 0.25 and 

0.125 x 10
6
, cells/ml in 5ml of media for a total of 2.5, 1.25 and 0.625 x 10

6
 cells, 

respectively, were analyzed for IL-1 .  Cell lysates were collected as described previously 

and then analyzed by ELISA.  Data for IL-1  content in total cell lysates from untreated 

cells was normalized as picograms IL-1  per 1 x 10
6
 cells.  All macrophage cell lysates 

assessed were from the same batch of cells.  The data reported represents the mean ± SEM 

of  n = 3 for each cell concentration analyzed. 
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Data analysis/Statistics.   

For macrophage sonication and subsequent determination of LDH release, each 

experimental block of TUS parameters was repeated for n = 5 replicates.  For cell staining, 

variable temperature experiments, and ELISAs for IL-1β from treated and untreated 

macrophages, the experimental blocks were repeated for n = 3 replicates.  All data are 

represented as the mean of the replicates ± SEM.  Data from all experiments was analyzed 

using a one-way ANOVA with significance level set at p < 0.05 with post hoc testing 

completed using Tukey’s HSD test. 

 

Results 

LDH release from macrophages.   TUS exposure induced increased LDH release 

from macrophages (p = 0.001, F = 7.734) following 10-minutes post-treatment incubation.  

Post hoc analysis revealed that macrophages treated with TUS delivered at 1 MHz, 

400mW/cm
2
, 10 minutes released an increased amount of LDH compared to other levels of 

TUS, except TUS delivered at 1MHz, 400mW/cm
2
, 5 minutes (Fig. 4.5A).  At 1-hour post-

treatment, TUS also induced increased LDH release (p = 0.002, F= 4.057) (Fig 4.5B).  

Based on post hoc testing, LDH release from macrophages treated at 1 MHz, 400mW/cm
2
, 

10 minutes was increased over all other TUS parameter sets except 1MHz, 400mW/cm
2
, 5 

minutes (Fig 4.5 A, B).  Data represents the mean values for the optical density for the 

LDH assay normalized to the total cellular protein from each treated sample for n = 5 

samples at each TUS parameter set.  
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Figure 4.6 represents the comparison of the total content of LDH in untreated 

macrophages and LDH release from macrophages treated with the stimulatory TUS 

parameters.  Untreated macrophages plated at the same concentration as TUS-treated 

macrophages (2.5 x 10
6
 cells) contained approximately ten-times the amount of LDH 

released in response to TUS, evidenced by the total cell lysate of untreated cells requiring a 

10-fold dilution of samples to allow measurement of LDH content.  This value provided 

the estimate that approximately 1/10
th

 of the total LDH was released in response to the 

stimulatory TUS parameters. 

 Macrophage viability as a measure of permeabilization.  Macrophages treated with 

1MHz TUS for 10-minutes at 0, 40 or 400mW/cm
2
 SATA, 20% PW incubated for 10-

minutes or 1-hour post-TUS and stained with the fluorescent dyes, calcein-AM and EthD-1 

were analyzed for total area of intact cells (Figs. 4.2-4.4, 4.7).  Following 10-minute post 

TUS incubation, the percentage of the total area of macrophages that were stained by 

calcein-AM was not significantly different when comparing sham, 1 MHz, 40mW/cm
2
, 

and 1 MHz, 400mW/cm
2
 (10 minute treatments) (p = 0.128, F= 2.952) (Fig. 4.7A).  

Following 1-hour post TUS incubation, the percentage of the total area of macrophages 

that were stained by calcein was significantly different among the treatment groups (p = 

0.002, F= 17.930) (Fig. 4.7B).  Post hoc testing revealed that calcein-AM staining was 

significantly less for TUS treatment at 1 MHz, 400mW/cm
2
, 10 minutes compared to sham 

(93.805% ± 1.637 vs. 98.433% ± 0.336, p = 0.003) and 1 MHz, 40mW/cm
2
 , 10 minutes 

(93.805% ± 1.637 vs. 97.953 % ± 0.336, p = 0.005).  These findings indicate that 

approximately 7-8% of the treated cells were permeabilized by the stimulatory TUS 
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parameter set and that percentage is comparable to the 10% of total LDH release, which 

also characterizes the extent of non-specific permeabilization due to TUS. 

  The total area of fluorescently stained cells (calcein-AM and EthD-1) was 

compared to total area of cells from normal light microscopy images from the same fields 

of the culture plates (10 total fields from 5 culture plates) containing treated macrophages.  

The total area of all fluorescently stained cells was 94.321% ± 1.578 of the total area of 

cells identified in the light microscopy images of n= 10 fields analyzed (data not shown). 

 IL-1  content in total cell lysates of untreated macrophages.  Cell lysates from 2.5, 

1.25 and 0.625 x 10
6 
differentiated, untreated macrophages were analyzed for IL-1  using 

ELISA with data normalized as IL-1  per 1 x 10
6
 cells.  The concentration of IL-1  from 

the samples was 197.648 ± 16.016 pg/1 x 10
6
 cells (range 178.161 - 229.408 pg/1 x 10

6
 

cells) (Fig. 4.8A).  This data was used to compare IL-1  release from macrophages treated 

with various TUS parameter sets to the total IL-1  from untreated macrophages. 

 IL-1  content in conditioned media following TUS exposure.  Macrophages 

exposed to various levels of TUS (Table 2.1) released significantly increased amounts of 

IL-1  at 10-minutes (p= 0.005, F= 4.203) and 1 hour post-TUS (p= 0.004, F= 4.560).  Post 

hoc analysis revealed that TUS delivered at 1MHz, 400mW/cm
2
 SATA, 10-minute 

treatment induced significantly greater IL-1  release when compared to all other TUS 

parameter sets at 10 minutes and 1 hour incubation post-TUS (Fig 4.8B) for n = 3 separate 

TUS experiments (p < 0.05).  TUS-stimulated macrophages released 75.774  33.057 pg 

IL-1  / 1 x 10
6
 cells protein, compared to the total cellular content of 197.648 ± 16.016 pg 
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IL-1  /1  x 10
6
 cells (Fig 4.8A,B).  These findings indicate that approximately 1/3

rd
 of the 

total cellular IL-1  was released by macrophages in response to the stimulatory TUS 

parameter set.  

 Comparison of the release of greater than 30% of the total IL-1  to the 7-10% of 

non-specific permeabilization indicated by LDH and fluorescent staining suggests that 

another mechanism beyond non-specific membrane permeabilization is likely responsible 

for a portion of the IL-1  released by TUS-exposed macrophages. 

Temperature effect on IL-1  release from macrophages treated with TUS at 1MHz, 

400mW/cm
2
 SATA, 20% PW, 10-minutes.  The release of IL-1  in response to TUS was 

affected by temperature during TUS exposure and the post TUS incubation (p < 0.001, F= 

15.081) (Fig. 4.9).  Post hoc analysis indicated that macrophages released increased 

amounts of IL-1  when TUS (1MHz, 400mW/cm
2
 SATA, 20% PW, 10 minutes) was 

carried out at 37 C when compared to all sham treatments and compared to TUS (1 MHz, 

400mW/cm
2
 SATA, 10 minutes) completed at 4 C, as indicated by (p < 0.05).  TUS 

(1MHz, 400mW/cm
2
 SATA, 20% PW, 10 minutes) delivered at 25  and 37  increased the 

release of IL-1  compared to sham treatments at the respective temperatures (p < 0.05).  In 

addition, IL-1  release was greater at 37 C compared to 25 C  and 25 C compared to 4 C  

and but neither trend was not statistically significant (p = 0.08, p = 0.061). 
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Figure 4.1 
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Figure 4.1.  Culture plate areas analyzed for cell staining.  Diagram representing the five 

selected fields that were photographed and analyzed for calcein-AM and ethidium 

homodimer staining of insonated macrophages.  All culture plates of stained macrophages 

were analyzed from these fields.  Data from the five fields were summed and the summed 

data was reported as representative of total area of stained cells for each plate.
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Figure 4.2 
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Figure 4.2.  Images of macrophages stained with calcein-AM, ethidium homodimer or 

unstained, following sham TUS exposure, 0 mW/cm
2
 SATA, 10 minutes and 10-minute or 

1-hour post-TUS incubation.  Images were captured using a Nikon Eclipse TE300 

microscope fitted with a high-pressure 75-watt xenon lamp for fluorescent imaging and a 

10X objective lens.  A) Macrophages incubated with 0.8 M calcein-AM, a membrane 

permeant dye that is converted to a green fluorescence based on intracellular esterase 

activity, demonstrating viable cells, B) Macrophages incubated with 2.0 M EthD-1, a dye 

which enters cells with damaged membranes and increases fluorescence after binding to 

nucleic acids, C) Overlay of images calcein-AM and EthD-1 stained cells, and D) 

Unstained macrophages imaged under normal light microscopy conditions.  All three 

images are of macrophages from the same field and are representative of the images 

analyzed for cytotoxicity of the TUS treatment. 
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Figure 4.3 
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Figure 4.3.  Images of macrophages stained with calcein-AM, ethidium homodimer or 

unstained, following TUS exposure at 1MHz, 40mW/cm
2
 SATA, 20% PW 10 minutes and 

10-minute or 1-hour post-TUS incubation.  Images were captured using a Nikon Eclipse 

TE300 microscope fitted with a high-pressure 75-watt xenon lamp for fluorescent imaging 

and a 10X objective lens.  A) Macrophages incubated with 0.8 M calcein-AM, a 

membrane permeant dye that is converted to a green fluorescence based on intracellular 

esterase activity, demonstrating viable cells, B) Macrophages incubated with 2.0 M EthD-

1, a dye which enters cells with damaged membranes and increases fluorescence after 

binding to nucleic acids, C) Overlay of images calcein-AM and EthD-1 stained cells and, 

D) Unstained macrophages imaged under normal light microscopy conditions.  All three 

images are of macrophages from the same field and are representative of the images 

analyzed for cytotoxicity of the TUS treatment.
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Figure 4.4 
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Figure 4.4.  Images of macrophages stained with calcein-AM, ethidium homodimer or 

unstained, following TUS exposure at 1MHz, 400mW/cm
2
 SATA, 20% PW 10 minutes and 

10-minute or 1-hour post-TUS incubation.  Images were captured using a Nikon Eclipse 

TE300 microscope fitted with a high-pressure 75-watt xenon lamp for fluorescent imaging 

and a 10X objective lens.  A) Macrophages incubated with 0.8 M calcein-AM, a 

membrane permeant dye that is converted to a green fluorescence based on intracellular 

esterase activity, demonstrating viable cells, B) Macrophages incubated with 2.0 M EthD-

1, a dye which enters cells with damaged membranes and increases fluorescence after 

binding to nucleic acids, C) Overlay of images calcein-AM and EthD-1 stained cells, and 

D) Unstained macrophages imaged under normal light microscopy conditions.  All three 

images are of macrophages from the same field and are representative of the images 

analyzed for cytotoxicity of the TUS treatment. 
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Figure 4.5 
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Figure 4.5.   Lactate dehydrogenase release from TUS-treated macrophages incubated for 

10-minutes and 1-hour post-treatment.  A) TUS exposure induced increased LDH release 

from macrophages (p = 0.001, F = 7.734) following 10-minutes post-treatment incubation.  

Post hoc analysis revealed that macrophages treated with TUS delivered at 1 MHz, 

400mW/cm
2
, 20% PW, 10 minutes released an increased amount of LDH compared to 

other levels of TUS, except TUS delivered at 1MHz, 400mW/cm
2
, 20% PW, 5 minutes as 

indicated by the * and -- symbols.  B) Lactate dehydrogenase release from TUS-treated 

macrophages incubated for 1-hour post-treatment.  At 1-hour post-treatment, LDH release 

from macrophages insonated at 1 MHz, 400mW/cm
2
, 20% PW, 10 minutes were increased 

over all other TUS parameter sets except 1MHz, 400mW/cm
2
, 20% PW 5 minutes, as 

indicated by the * and -- symbols (p = 0.002, F= 4.057).  Data represents the mean values 

the optical density for the LDH assay normalized to the total cellular protein from each 

insonated sample for n = 5 samples at each TUS parameter set.  All significant differences 

were noted with p < 0.05. 
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Figure 4.6 
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Figure 4.6.  Comparison of Lactate Dehydrogenase in Conditioned Media from TUS-

treated Macrophages and from Total Cell Lysates of Untreated Macrophages.  LDH was 

measured in conditioned media at 10-minutes and 1-hour post-treatment from 

macrophages exposed to TUS (1MHz, 400mW/cm
2
 SATA, 20% PW, 10-minutes) and also 

in total cellular lysates of untreated macrophages.  Data represents mean ± SEM of n = 3 

separate samples.      
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Figure 4.7 
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Figure 4.7.  Analysis of macrophage staining with fluorophores, following TUS exposure 

and 10-minute and 1-hour post-TUS incubation.  Macrophages were insonated for 10 

minutes, at 1MHz, 40 or 400 mW/cm
2
 SATA, 20% PW incubated for 10-minutes or 1-hour 

post-TUS and then stained with the cell permeant fluorescent dyes, calcein (viable cells) 

and EthD-1 (permeabilized cells).  Images of the stained cells were analyzed for total area 

(total # of pixels) encompassing both calcein and EthD-1 stained cells.  A) At the 10-

minute incubation time point, the percentage of the total area of macrophages that were 

stained by calcein were not significantly different when comparing sham, 1 MHz, 

40mW/cm
2
, and 1 MHz, 400mW/cm

2
. 20% PW (10 minute treatments) (p = 0.128, F= 

2.952).  B) At the 1-hour incubation time point the percentage of the total area of 

macrophages that were stained by calcein was significantly different among treatment 

groups (p = 0.002, F= 17.930).  Specifically, calcein staining for TUS treatment at 1 MHz, 

400mW/cm
2
, 20% PW, 10-minutes was significantly decreased compared to sham and 1 

MHz, 40mW/cm
2
, 20% PW, 10-minutes (p = 0.003, p = 0.005 respectively).  Data 

represent mean ± SEM of n = 3 samples at each treatment parameter set. 
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Figure 4.8 
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Figure 4.8.  IL-1  content in total cell lysates of untreated macrophages and conditioned 

media from macrophages exposed to various levels of TUS.  A) Total cell lysates from 

differentiated, untreated macrophages  (2.5, 1.25 and 0.625 x 10
6
 cells) were analyzed for 

IL-1  using ELISA, which determined pg/ml of IL-1 .  The concentration of IL-1  is 

reported as IL-1  per 1 x 10
6
 cells.  IL-1  concentration ranged from 178.161 to 229.408 

pg/1 x 10
6
 cells, with a mean ± SEM of 197.648 ± 16.016.  Data represents the mean ± 

SEM for n = 3 at each cell concentration.  B) IL-1  released from 0.5 x 10
6
 cells/ml (total 

of 2.5 x 10
6
 cells plated) exposed to various levels of TUS and incubated for 10 minutes or 

1-hour post-TUS.  Release of IL-1  was significantly increased by TUS at 10-minutes 

post-TUS (p= 0.005, F= 4.203) and at 1 hour (p= 0.004, F= 4.560).  Post hoc analysis 

revealed that TUS delivered at 1MHz, 400mW/cm
2
 SATA, 20% PW, 10-minute treatment 

induced significantly greater IL-1  release (p < 0.05) when compared to all other TUS 

parameter sets at 10-minute and 1-hour incubation post-TUS, as indicated by # and *.  

Data represents the mean ± SEM of picograms IL-1  released per 1 x 10
6
 cells for n = 3 

separate TUS experiments. 
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Figure 4.9 
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Figure 4.9.  IL-1  release from macrophages treated with TUS at variable temperatures.  

Macrophages were treated for 10 minutes with sham TUS or TUS delivered at 1MHz, 

400mW/cm
2
 SATA, 20% PW and incubated for 10-minutes post-exposure at 4 , 25  and 

37 C.  IL-1  release was compared between the groups of macrophages exposed to TUS at 

the variable temperatures.  Macrophage release of IL-1  was affected by the TUS exposure 

and by the temperature of TUS exposure (p < 0.001, F= 15.081).  Post hoc analysis 

indicated that macrophages released greater amounts of IL-1  when TUS (1MHz, 

400mW/cm
2
 SATA, 10 minutes) was applied at 37 C compared to sham treatments at each 

temperature and compared to TUS applied at 4 C, as indicated by *, p < 0.05.   IL-1  

release following treatment at 25  was decreased compared 37 C treatment, but the trend 

was not statistically significant (p = 0.08).  TUS applied at 25 C increased IL-1  release 

compared to sham treatments at 4  and 25 C, as indicated by #, p < 0.05.  The trend of 

increased IL-1  release with TUS applied at 25 C compared to 37 C sham treatment was 

not statistically significant (p = 0.055).  Data represents the mean ± SEM of n = 3 samples 

at each parameter set/temperature of TUS. 
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Discussion 

TUS stimulates cellular activities that result in the release of various substances 

from cells in vitro.  Monocytes and macrophages respond to TUS by release of cytokines 

and growth factors.  Previously, we identified a set of specific TUS parameters (1MHz, 

400mW/cm
2
 SATA, 20% PW, 10-minute treatment) that induced the release of IL-1  from 

activated macrophages.  In addition, we found that the macrophage response occurred 

within 10 minutes post-TUS.  The goal of this investigation was to begin to characterize 

the possible cellular mechanism(s) responsible for the macrophage response to TUS using 

the treatment parameters identified in the earlier aspects of this series of investigations 

Release from cells post TUS has been hypothesized to occur as a result of increased 

membrane permeability or enhanced metabolic processes of exocytosis or stimulation of 

protein synthesis and exocytosis 
233

.  The rapid release of IL-1  following TUS suggests 

that the response involved release of pre-formed protein rather than synthesis and release.  

This study analyzed TUS-induced release via two mechanisms, non-specific membrane 

permeabilization and exocytosis.  LDH release and staining of intact and permeabilized 

membranes were used to assess non-specific permeabilization of cells.  To explore 

exocytosis as a mechanism of response, the effect of varied temperature on TUS 

stimulation of IL-1  release was assessed.  Because lowered temperature reduces many 

cellular metabolic processes, including Exocytosis 
246

, this method of analysis provided 

indirect evidence that exocytosis of IL-1  was stimulated by TUS.   

LDH is an intracellular enzyme that is released from cells with damaged 

membranes and is used to identify cellular treatments that damage cell membranes 
240,244

.  
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Utilizing this marker, we found that membrane damage occurred in macrophages following 

exposure to the TUS parameter set (1MHz, 400mW/cm
2
 SATA, 20% PW, 10-minute 

treatment) that stimulated release of IL-1  as evidenced by the increased levels of both 

LDH and IL-1  when macrophages were exposed to this TUS parameter set (Figs. 4.5,  

4.8).  Cell lysates from untreated macrophages plated at the same concentration as TUS-

treated macrophages contained nearly ten-times the amount of LDH that was released due 

to TUS exposure (Fig. 4.6).  This suggests that approximately 10% of treated cells had 

sufficient membrane damage to allow release of LDH into the culture media.  However, it 

is possible that the 10% of total LDH release due to TUS represents non-specific 

permeabilization of all the cells so as to allow release of only a fraction of intracellular 

contents from all cells.    

The extent of membrane permeabilization related to TUS exposure was also 

explored by directly examining cells following insonation.  Using the fluorescent dyes 

calcein-AM and EthD-1, which identify healthy and membrane-damaged cells 

respectively, we found that TUS (1MHz, 400mW/cm
2
 SATA, 20% PW, 10-minute 

treatment) induced a significant increase in cells with damaged membranes (Figs. 4.7).  

Quantification of cells with intact and damaged membranes revealed that approximately 

5% more of the total cells treated with TUS using had membrane damage compared to 

sham treated cells. The total combined area from intact and damaged cells comprised 

approximately 94% of the total cell area measured from the unstained, gray-scaled images 

of the fluorescent stained cells.  This indicates that there was a 5-6% under-estimation of 

the total area from the measurements of the fluorescent images.  If the underestimation of 
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total area included only damaged cells that were not stained with EthD-1, the total 

percentage of damaged cells would approach 10-11% of cells.   In this “worst case” 

scenario”, this value is in the range of that we found in the analysis of LDH release 

compared to total LDH content in the experimental cells, lending further support to the 

conclusion that approximately 10% of the insonated cells had membrane damage. 

Given the two analyses indicating approximately 10% of treated cells were 

permeabilized, we compared the release of IL-1  following TUS exposure to IL-1  

content of untreated cells in order to estimate the portion of total IL-1  released from 

treated cells.  Macrophage cell lysates contained 197.648  16.016 pg IL-1  per 1 x 10
6
 

cells, and macrophages treated with the stimulatory TUS parameter set (1MHz, 

400mW/cm
2
 SATA, 20% PW, 10-minute treatment) released 75.774  33.057 pg IL-1  

per 1 x 10
6
 cells.  Comparing these two values, it appears that greater than one-third of the 

available IL-1  was released following TUS exposure (Fig. 4.8).  This is substantially 

greater than what would be expected based on the permeabilization data that indicated 

damage to 10% of the cells.   Thus, it appears that only a portion of IL-1  release was 

related to permeabilization of the cells, with the remaining portion of IL-1  release was 

due to stimulation of a form of cell-controlled exocytosis. 

To investigate whether TUS induced metabolic cellular changes that may have 

contributed to IL-1  release, macrophages were exposed to TUS (1 MHz, 400 mW/cm
2
 

SATA, 20% PW, 10-minutes) at various temperatures (4 , 25  and 37  C).  At 

temperatures below 37 C metabolic process are slowed 
245,246

, therefore, if IL-1  release 
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was in part due to cell-mediated metabolic processes, release following TUS would be 

reduced at the lower temperatures.  The results confirmed this hypothesis.  Compared to 

37 C, IL-1  release was significantly reduced at 4 C and there was a trend towards 

reduced release at 25  C indicating that decreased temperature attenuated the effects of 

TUS on macrophages, most likely due to decreased physiological activity of cells 

associated with decreased temperatures (Fig 4.9).  In support of this hypothesis, decreased 

IL-1  release from LPS-stimulated macrophages after incubation for two hours below 

physiological temperatures (32  C) compared to 37 C has been reported 
259

.  LPS is 

thought to stimulate several cell signaling mechanisms including tyrosine kinases, 

mitogen-activated protein kinase C, protein kinase A, G-proteins, and microtubules which 

can induce secretory responses 
247-249

.   

One confounding factor in the data from macrophages exposed to TUS at different 

temperature was identified when IL-1  release due to TUS from the two separately 

conducted macrophage-TUS experiments was compared.  In the normal-temperature TUS 

experiments, macrophages released 75.774  33.057 pg IL-1  per 1 x 10
6
 cells IL-1  (Fig. 

4.6B), while in the subsequent variable-temperature experiments macrophages stimulated 

with the same TUS parameters (1 MHz, 400 mW/cm
2
 SATA, 20% PW, 10-minutes) at 

physiological temperatures (37 C) released 22.889  2.723 pg IL-1  per 1 x 10
6
 cells 

(Fig. 4.9).  This lower level of release represents nearly 11% of the total cellular IL-1  

(Fig. 4.8A), which falls within the range of non-specific permeabilization indicated by 

LDH release and cell-staining data (Figs. 4.5, 4.7).  There was a minimal difference in 
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release of IL-1  from the sham cells in the two experiments 3.096  0.566 (mean  SEM) 

compared to 1.703  0.844 pg IL-1  per 1 x 10
6
 cells, suggesting that the macrophages 

were overall less responsive to TUS, likely resulting in the decreased IL-1  release noted 

for insonated macrophages.  Analysis of TUS intensity from the sonication device was 

maintained throughout experimentation, thus we concluded that the difference in response 

was not related to reduced ultrasound energy.  Specifically, the Omnisound 3000 delivered 

374.4  4.1 mW/cm
2
 over the course of the variable temperature experiments compared to 

380 ± 3.347 mW/cm
2
 from normal temperature experiments (Appendix B, Table B3), 

demonstrating a minimal reduction of TUS energy delivered for 400mW/cm
2
. 

Based on the results of this study, it appears that TUS exposure at (1 MHz, 400 

mW/cm
2
 SATA, 20% PW, 10-minutes) results in increased release of cytokines via both 

increased cellular permeabilization as well as through metabolic mechanisms.  At least 

four metabolic mechanisms have been proposed for IL-1  release from macrophages, these 

include release of multivesicular bodies as exosomes, Ca
2+

-dependent release of lysosomes 

and microvesicle shedding of membrane blebs, and direct release through the membrane 

via specific membrane transporters 
250

.  Given that changes in calcium flux in response has 

been reported in fibroblasts, chondrocytes, and epithelial cells in response to TUS 

exposure 
49,50,65

, it is reasonable to suspect that calcium-mediated mechanisms may be 

involved in IL-1  release from macrophages exposed to TUS.  U937 macrophages do 

contain cell membrane-gated potassium (K+) channels 
251-253

.  However, additional 

research is need to determine whether a Ca
2+ 

mediated process or some other metabolic 
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process is responsible for the IL-1  release from macrophages in response to TUS that is 

not accounted for by the increased permeability. 

Conclusion  

 IL-1  release from macrophages in response to TUS appears to be due to a 

combination of non-specific permeabilization and some form of cell-mediated release 

mechanisms.  Non-specific permeabilization was directly assessed using metabolic and 

cytological assays, while specific cell-mediated mechanisms were indirectly assessed by 

decreased response at sub-physiological temperatures.  Additional experimentation is 

needed to determine the specific cell mediated mechanisms of IL-1  release from 

macrophages following exposure to TUS. 
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Chapter 5 

 

DISCUSSION and CONCLUSION:   

Mechanism of Macrophage Response to TUS 
 

The data presented here indicates that macrophages can play a role in TUS-

stimulated tissue healing.  Macrophages responded to TUS exposure at 1 MHz, 

400mW/cm
2
 SATA, 20% PW, 10-minute treatment by releasing IL-1  and VEGF.  These 

secretory peptides are paracrine factors involved with control of inflammation and 

angiogenesis, which are integral activities for appropriate repair of damaged tissue 
163,199

.  

Release of both mediators occurred within 10-minutes of TUS-exposure, and this 

immediate response is most likely due to release of preformed products.  Macrophages are 

highly secretory cells, especially in the wound-healing milieu 
164,168

, and stimulation of 

mediator release by TUS could provide an acceleration of processes normally controlled by 

wound macrophages.   

 Initially, fibroblast proliferation was measured following incubation in media 

conditioned by TUS-stimulated macrophages.  TUS did not stimulate any fibroblast 

mitogen release at any parameter set tested, as assessed by 24 and 48-hours of fibroblast 

incubation in macrophage conditioned media. This is contrary to the findings of Young 

and Dyson who reported that TUS-stimulated macrophage release of fibroblast mitogen 

within 30-minutes of treatment when TUS was delivered at 1MHz, 500mW/cm
2
, SATA, 
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CW, 5-minutes 
161

.  While we could not confirm macrophage release of fibroblast 

mitogens, the findings of IL-1  and VEGF release within 10 minutes of TUS-exposure in 

the same cell type (U937 cells) studied by Young and Dyson does appear to support the 

idea of TUS-stimulated release of pre-formed products that was posited by Young and 

Dyson. 

Methodological differences in the use of undifferentiated macrophages and CW-

TUS compared to use of differentiated macrophages and PW-TUS in the current study may 

be the reason for the lack of fibroblast mitogen release noted here.  Once differentiated, 

macrophages assume a different phenotype from monocyte precursors and their overall 

cellular activity is altered 
168

.  Indeed U937 cells differentiated with agents like PMA have 

been shown to respond differently to subsequent stimuli 
254

.  Thus, it is plausible that the 

PMA-differentiated macrophages assumed a phenotype that was unable to provide a 

mitogenic signal for fibroblasts in the short post-TUS time frame.  Direct comparison of 

the response of U937 macrophages in various stages of differentiation to TUS would 

provide significant insight into this aspect of TUS stimulation.    

Differences in cellular response to TUS have been attributed to different duty 

cycles 
118

.  However, no additional in vitro investigations on duty cycle have been 

reported, therefore there is no clear indication of what particular duty cycle is associated 

with stimulation of particular cellular functions.  It may be that cells respond to PW-TUS 

signals differently than CW-TUS, which could result in a different release response.  In 

support of this hypothesis, a study of the effect of variable TUS duty cycles indicated that 
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increased cell permeabilization is directly correlated to increasing duty cycle suggesting 

differential cellular response to duty cycle 
238

.     

On the other hand, the difference in response to duty cycle could be a function of 

overall TUS energy transmitted to the cells.  The fact that 5-minute exposures to TUS at 1 

MHz, 400mW/cm
2
 SATA, 20% PW in the current study did not induce a significant 

release supports this hypothesis.  The stimulatory TUS at 10-minutes delivered twice as 

much energy compared to 5-minute treatment, which suggests that some energy threshold 

was required to generate the response reported in this investigation.  In vitro investigations 

reporting TUS-stimulation have utilized exposure times ranging from 3 to 20 minutes 

8,112,162,177
.  However, within study comparison of cellular response based on treatment 

duration have not yielded consistent results of increased response due to increase energy 

applied 
7,98,112

.        

TUS has been reported to induce membrane permeabilization 
236,239

 which could 

result in non-specific dumping of intracellular contents.  The current investigation 

confirms this hypothesis of TUS action.  Given the immediate release response, we 

analyzed macrophages for evidence of non-specific membrane permeabilization.  To 

accomplish this, conditioned media was analyzed for the presence of LDH, and TUS-

treated macrophages were visualized with fluorescent dyes that identify intact and 

membrane-damaged cells.  The same stimulatory TUS parameters for IL-1  and VEGF 

release also induced LDH release (Figs 3.1, 3.2, 4.5).  This finding indicates that non-

specific permeabilization was involved in the macrophage response.  Similar to IL-1 , 

significant levels of LDH were released at 10 minutes post-TUS without additional 
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measurable release at 1 hour.  Further analysis of LDH content in experimental 

macrophages revealed that the extent of LDH release stimulated by TUS was 

approximately 10% of the total content in untreated macrophages (Fig. 4.6).  This indicates 

either a low level of LDH release from all cells or a small fraction of the total cells being 

permeabilized.     

Analysis of fluorescently-stained cells revealed that approximately 5% of cells 

were permeabilized by TUS exposure (Figs 4.2-4.4, 4.7).  Quantification of stained cells 

underestimated the total cell area by nearly 6% (data not shown).  As such, the data is 

presented with the recognition that up to 11% of the cells were actually permeabilized.  

Because that value was nearly the same as the percentage of LDH release, it appears that 

the staining data provides confirmation of permeabilization identified by LDH release.  

Furthermore, the staining data suggests that a limited number of cells were permeabilized 

as opposed to slight permeabilization of all cells.        

In efforts to identify the mechanism of the immediate release, we chose to 

investigate further the mechanism of IL-1  release.  VEGF release also appeared to be 

non-specifically increased during the incubation period from 10-minutes to 1-hour 

(Fig. 3.3).  The fact that VEGF release was induced at the stimulatory parameters, and that 

it continued to be released by all samples including sham indicates that TUS can enhance 

an already active cell processes.  Given the apparent constitutive release of VEGF, further 

analysis of this growth factor would likely have been confounded by the constantly active 

cells.  TUS-induced IL-1  release appeared within 10-minutes and did not change over the 

remainder of the incubation period.  Like VEGF release, this response indicated that TUS 
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induced an immediate cellular response (Figs. 3.1, 4.8).   Because IL-1  release did not 

continue to any measurable extent over the final 50-minutes of incubation, analysis of 

mechanism of this cytokine provided a more discreet avenue of mechanism investigation. 

Comparison of IL-1  release stimulated by TUS to total cellular content of IL-1  

revealed that approximately one-third of measurable IL-1  was released in response to 

TUS (Fig. 4.8).  This fraction of the total represents a larger portion than was expected 

based on the permeabilization data, and presents the possibility that another mechanism of 

release was stimulated by TUS.  TUS-exposure at variable temperatures (4 , 25  and 37  

C) revealed an inhibition of release that was increasingly pronounced as temperatures were 

lowered to 4  C (Fig. 4.9).  Since lowered temperatures generally decrease cellular 

metabolic processes 
245,255

, which includes exocytosis, the inhibition at decreased 

temperature indicates that some form of exocytosis of IL-1  was likely stimulated by TUS.   

Mechanisms of IL-1  exocytosis include release of multivesicular bodies as 

exosomes, Ca
2+

-dependent release of lysosomes, Ca
2+

-dependent microvesicle shedding of 

membrane blebs, and direct release through the membrane via specific membrane 

transporters 
249,250

.  TUS-stimulated exocytosis has been reported to be dependent on Ca
2+

 

for chondrocytes and fibroblasts 
49,50

.  Since macrophage exocytosis is partially dependent 

on Ca
2+

, it is reasonable to hypothesize that TUS stimulated either lysosome release or 

microvesicular shedding.  However, cellular response to TUS is variable among cells, 

evidenced by reports of response involving angiotensin II receptors, phosphorylation of 

extracellular signal-regulated kinase (ERK) and increased expression of integrins ( 2, 5, 
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and 1) in osteoblasts 
125,256

.  As further evidence of the plethora of possible TUS 

transducers in cells, fluid shear stress, which is likely the biophysical mechanism of TUS 

on cells, activates membrane-bound G-proteins creating second messenger signaling in 

endothelial cells 
257

.  Macrophages transduction of TUS energy by any of these 

mechanisms has not been directly explored, thus further directed experimentation is needed 

to confirm a Ca
2+

-regulated mechanism of macrophage response. 

 TUS delivered at 1 MHz, 400mW/cm
2
 SATA, 20% PW stimulates release of 

paracrine factors associated with tissue healing.  Mechanistically, macrophages responded 

to TUS through at least two mechanisms; non-specific permeabilization and some form of 

cell-mediated exocytosis.  Cell permeabilization is a well-known result of TUS exposure, 

however, immediate cell-mediated exocytosis in response to TUS has not been previously 

reported.  Flux of calcium ions across the membrane is a possible mechanism of 

macrophage response, given previous reports of Ca
2+

-regulated secretion from fibroblasts, 

chondrocytes and keratinocytes.  Continued research regarding the mechanism of release 

response of macrophages should be focused on identifying the specific mechanism of IL-

1  release, as well as characterizing the cellular response based on the differentiation state 

of the macrophages.   

The current investigation explored only one facet of macrophage function during 

wound healing, release of cytokines and growth factors.  Given the numerous functions of 

macrophages during healing (i.e., phagocytosis, release of proteases for matrix 

degradation, release of chemokines, induction of neutrophil apoptosis), the effects of TUS 

on those other aspects of macrophage activity should be explored.  In addition, in vitro 
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assay of macrophage response to TUS cannot simulate the wound healing environment 

where many environmental factors influence cell activity and function.  As such, the 

importance of macrophage function in TUS-treated, healing tissue should be explored 

using in vivo models where macrophages are depleted or rendered non-functional.  

Lastly, since all experimental macrophages were induced to differentiate using 

PMA, its role in the current results should be acknowledged.  In U937 cells, PMA arrests 

cell proliferation and stimulates expression of macrophage-like characteristics, but it does 

not completely recapitulate naturally occurring monocyte-to-macrophage 

differentiation 
175,176

.  As described in a biochemistry review by Nelson and Alkon (2009), 

PMA is one of the most potent of group of compounds that stimulates protein kinase C 

activation, which results in various changes in cellular function, including DNA 

transcription, protein synthesis, cell growth, cell proliferation and differentiation 
260

.  In 

addition, PKC activation leads to temporary down-regulation of PKC within the cell.  This 

change renders second messenger systems within the cell less responsive to signaling, and 

as such can affect the cell’s response to stimuli.  Given its potency, it is reasonable to 

believe that PMA-induced activation of PKC likely affected cell functions beyond the 

intended use in the current investigation for monocyte-to-macrophage differentiation.  As 

such, it is possible that the response of macrophages to TUS in the current series of 

experiments is partially due to alteration in PKC-regulated cell activities.  Investigations 

using various differentiation agents and comparing macrophage response to TUS are be 

important for understanding the possible role PMA-induced activity may have played in 

the macrophage response to TUS reported here.      
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APPENDIX A 

 

 

Preliminary Experimentation With Macrophages Exposed to TUS and 

Incubated 24-hours Post-Treatment 

 

 
PREFACE:  This appendix includes preliminary experimentation of therapeutic 

ultrasound-induced (TUS) growth factor and cytokine release from macrophages.  Due to 

the limitations of the experimental methodology, the data included herein was not included 

as part of the current series of investigations previously describe. 

  

Therapeutic ultrasound has been reported to enhance tissue healing in models including 

integument, ligaments, tendons and bones.  TUS-enhanced healing is thought to occur via 

alteration of cellular activities during the inflammatory and early proliferative phases of 

healing.  Specific cellular responses to TUS have been investigated in numerous cell types 

including osteoblasts, periosteal cells, chondrocytes, fibroblasts, endothelial cells, and 

leukocytes.  Despite the volume of investigations into TUS effects on healing, few 

investigations of TUS effects on macrophages have been reported.  Because macrophages 

are important mediators of inflammation and early proliferative phase of healing, where 

TUS effects are thought to be greatest, the following set of experiments was undertaken to 

explore the growth factor and cytokine release response of macrophages treated with TUS.   



   

 184 

Materials and Methods 

Materials and Reagents.  Phorbol 12-myristate 13-acetate (PMA), dimethyl 

sulfoxide (DMSO), and lauryl sulfate (SDS) were obtained from Sigma Chemical Co., St. 

Louis, MO.  Tris and DC Protein Assay Kit were from BioRad Laboratories, Hercules CA.  

Glycerol, HEPES, sodium hydroxide, hydrochloric acid, heat-inactivated fetal calf serum 

(HIFCS) and sterile pipets were from Fisher Scientific, Pittsburgh, PA.  BSA protein 

standard was obtained from Pierce Biotechnology Inc., Rockford, IL.  Human monocytic 

cells (U937) and human gingival fibroblasts (HGF-1) were purchased from American Type 

Culture Collection, Manassas, VA.  Sterile tissue culture plates and centrifuge tubes were 

from Corning Inc., Corning NY.  Cell culture media reagents including: RPMI-1640 

culture media and Dulbecco’s Modified Eagle’s Medium (DMEM), sodium pyruvate, 

sodium bicarbonate, HEPES, L-glutamine, 0.25% trypsin, fetal calf serum and 

penicillin/streptomycin/amphotericin B were purchased from Invitrogen, Carlsbad, CA.  

ELISA antigen detection kits for IL-1 , VEGF, and TGF- 1 were acquired from R & D 

Systems, Minneapolis MN.  All other reagents were obtained from Invitrogen Corp., 

Carlsbad, CA. 

U937 Cell Culture.  All cell manipulations were conducted using sterile technique 

as described in Chapter 2.   

Cell differentiation and preparation for sonication.  U937 cells induced to 

differentiate into macrophages through the addition of phorbol 12-myristate 13-acetate 

(PMA) 
175

.  Differentiation of U937 monocytes was conducted as described in Chapter 2, 

except:  Following 24-hour differentiation in PMA-containing media, cells were incubated 
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24hr in RPMI-growth media supplemented with 5% HIFCS.  Differentiated macrophages 

were subsequently exposed to TUS in RPMI-growth media supplemented with 5% HIFCS. 

TUS Treatment of U937 Macrophages.  For all experimental TUS exposures, 

culture plates (samples) containing cells were treated using a system similar to that 

described by Reher et al 
177

 as described in Chapter 2 (Fig. 2.1).  Sham treated samples 

were included for 5 and 10-minute exposure times (Table A1).  Each experimental block 

(set of TUS treatments) included each TUS parameter group (Table A1) for total of 14 

parameter sets per experimental block.  The order of application of each TUS parameter set 

was randomized for each experimental block to reduce the possibility of experimenter bias 

as previously described in Chapter 2.  A total of n = 6 experimental blocks were 

completed.   

Preparation of Fibroblasts for Experimentation with Conditioned Media.  HGF-1 

aliquots were thawed, washed in plain DMEM and resuspended in DMEM growth media 

and propagated under humidified incubation conditions as described in Chapter 2.  From 

each batch of fibroblasts, three separate 96-well plates were seeded with cells (for 24, 48 

and 72 hour incubations).  Seeded cells were placed in the humidified incubator for 4 hours 

to allow adherence to the culture plate as described in Chapter 2.  At the end of the 

incubation period in serum-free DMEM, media was removed from each well and replaced 

with 100 L of macrophage conditioned media and the fibroblasts were returned to the 

incubator for 24, 48 or 72 hours.  Fibroblast proliferation was assessed at the end of each 

incubation period as described in Chapter 2.  
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Fibroblast Proliferation Assay.  Fibroblast proliferation following incubation in 

macrophage conditioned media was analyzed using a Cell Proliferation Assay Kit as 

described in Chapter 2.   

Validation of WST-1 Assay for Cell Proliferation.  The validity of the WST-1 assay 

used to assess fibroblast proliferation was examined in relation to direct cell counts as 

described in Chapter 2, except: 1) the validation assay included fibroblasts incubated for 

72hrs prior to assay.  2) After the 24 hr incubation period in serum-free DMEM growth 

media, the media was replaced with 100 l of RPMI growth media supplemented with 5% 

HIFCS, which was identical to macrophage RPMI growth media utilized in the TUS 

exposures. 

ELISA assays for IL-1 , VEGF and TGF- 1.  Analysis of conditioned media for 

these growth factors was completed using commercially available, quantitative, sandwich 

enzyme-linked immunosorbent assays (ELISA; R & D Systems, Minneapolis, MN) as 

described in Chapter 3, except:  Initial assays were completed for each cytokine ELISA to 

determine the need to dilute conditioned media samples (Table A2).  Dilution factors were 

identified for IL-1  at 1:10 and for VEGF at 1:20 in order to have measurements were 

within the detection range of the ELISA.  For TGF- 1 samples were assayed undiluted.  

Following ELISA, data collected was recorded as pg/ml of media, with final 

concentrations in the conditioned media being calculated by multiplying the dilution factor 

x ELISA value.  The final cytokine growth factor concentrations (pg/ml) were then 

normalized to total protein concentration (mg/ml) in the conditioned media, generating 

values reported as pg cytokine/mg total protein.  
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Data Analysis/Statistics.   

Each experiment was repeated for n=6 replicates.  Fibroblast proliferation in 

response to macrophage conditioned media was assayed in duplicate wells and the mean of 

the two values was reported.  Conditioned media assayed for growth factors by ELISA, 

and conditioned media analyzed for total protein concentration were analyzed in duplicate, 

with the average being reported.  All values for statistical analysis are reported as mean ± 

standard error of the mean (SEM).  Three-way analysis of variance (ANOVA) was used to 

evaluate for differences in fibroblast proliferation and growth factor release among various 

macrophage conditioned media to account for the effect of the independent variables: 

treatment intensity (mW SATA), treatment frequency (1MHz, 3MHz) and treatment 

duration (5min, 10min) (Sigma Stat version 2.03; Systat Software, Inc., Point Richmond, 

CA).  Post hoc analysis of significant differences was performed using Tukey’s HSD.  A p-

value of < .05 was considered significant for all values.  Data analysis for WST-1 assay 

validation was completed using a correlation analysis on the variables of OD and cell 

counts and was reported as R
2
 (coefficient of determination). 
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Table A1 

5 minutes 

 1 MHz 3 MHz 

0 mW/cm
2
 (sham) 40 mW/cm

2
 40 mW/cm

2
 

 100 mW/cm
2
 100 mW/cm

2
 

 400 mW/cm
2
 400 mW/cm

2
 

 

10 minutes 

 
1 MHz 3 MHz 

0 mW/cm
2
 (sham) 40 mW/cm

2
 40 mW/cm

2
 

 100 mW/cm
2
 100 mW/cm

2
 

 400 mW/cm
2
 400 mW/cm

2
 

 



   

 189 

Table A1.  TUS Exposure Parameters for 24-hour post-TUS macrophage incubation.  

Exposure parameter combinations utilized for sonication of macrophages.   All intensity 

values are reported as SATA at 20% duty cycle.  Sham treatments were completed for 5 

minute and 10-minute exposures, in which the culture plates were secured in the sonication 

apparatus but the ultrasound unit was not turned on.  For each experimental block, the 

order of application of TUS parameter sets to macrophages was randomized.   
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Table A2  

Growth Factor Minimum (pg/ml) Maximum (pg/ml) 

IL-1  3.9 250 

TGF- 1 31.2 2000 

VEGF 15.6 1000 
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Table A2.  Detection ranges of the ELISA assays.  Detection ranges of ELISA assay kits 

(pg/ml) that were utilized to determine growth factor release by sonicated macrophages 

incubated for 24-hours post-TUS. 
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Results 

Fibroblast Proliferation in Macrophage Conditioned Media.  Proliferation of 

fibroblasts was measured following 24, 48, and 72-hour incubation in conditioned media 

from TUS-treated macrophages.  Three-way ANOVA revealed that TUS intensity, TUS 

wavelength frequency, and TUS treatment duration had no effect on fibroblast proliferation 

in macrophage conditioned media indicating no release of a fibroblast mitogenic factor at 

any level of TUS (Figs. A1 – A3).     

Validation of WST-1 assay for Fibroblast Proliferation.  Fibroblasts were plated at 

serially diluted concentrations (8, 4, 2 and 1 x 10
3
 cells/well) and were incubated for (A) 

24 hours, (B) 48 hours or (C) 72 hours in serum-free macrophage growth media.  Cell 

proliferation assayed by WST-1 assay was compared to direct cell counting.  WST-1 

proliferation assay was strongly correlated with increasing cell number for (A) 24-hours, 

R
2
 = 0.998, (B) 48 hours, R

2
 = 0.978, and (C) 72 hours, R

2
 = 0.939 (Figs. A1.4A-C).   

Total protein determination.  Total protein concentration of cell lysates was used as 

an indirect measure of cell number and was then utilized for normalization of the cytokine 

release data.  Protein concentrations of samples were pooled based on the TUS treatment 

intensity from among the 1 and 3 MHz and the 5 and 10-minute treatments.  Total protein 

concentrations were slightly less among treatment groups compared to sham control (Fig. 

A5), but the difference between groups was not statistically significant in comparison of 

any groups (ANOVA, p= 0.985, F = 0.391,). 

TUS effects on release of IL-1 .  IL-1  was measured by ELISA in the 

macrophage-conditioned media 24 hours after TUS exposure.  Values on figure A6 
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represent mean ± SEM of n = 6 replicates that have been normalized to total protein in 

macrophage cell lysate.  Three-way ANOVA revealed no significant differences in IL-1  

release based on any TUS parameter: intensity, p = 0.176, wavelength frequency, p = 

0.471, and duration, p = 0.110.     

TUS Effects on VEGF.  VEGF was measured in the conditioned media of TUS-

treated macrophages following 24-hour post-treatment incubation.  VEGF in the 

conditioned media was normalized to total cellular protein isolated from sonicated 

macrophages.  Values in figure A7 represent mean ± SEM for n = 6 replicates.  Three-way 

ANOVA for the effects of TUS parameters revealed no significant effect on VEGF release 

based on TUS intensity, p = 0.772, wavelength frequency, p = 0.744, or treatment duration, 

p = 0.751. 

TUS effects on TGF-β1 release from sonicated macrophages.  TGF-β1 was 

measured in conditioned media following TUS exposure and 24-hour post-TUS 

incubation.  TGF-β1 levels were normalized to total cellular protein isolated from lysates 

of sonicated macrophages.  All values are expressed as mean of n = 6 samples ± SEM.  

Similar to IL-1  and VEGF, TGF-β1 was detected in all samples including sham control 

(Fig. A8). Three-way ANOVA revealed a significant effect of TUS wavelength frequency, 

where 1 MHz exposure was associated with increased TGF-β1 release, when compared to 

release in response to 3 MHz exposure (p = 0.025).  There was a trend toward increased 

TGF-β1 release for 10-minute treatments compared to 5-minute treatments (p = 0.061) and 

for treatments administered at 400mW/cm
2
 (p = 0.082) although those trends did not reach 

statistical significance.
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Figure A1 
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Figure A1.  Fibroblast proliferation in response to 24-hour incubation in macrophage 

conditioned media.  Fibroblast proliferation was assessed using WST-1 assay and reported 

as optical density units.  Collapsed data across the TUS wavelengths and treatment 

durations demonstrates the three-way ANOVA analysis for intensity.  (A) No level of TUS 

stimulated macrophage release of fibroblast mitogens into the conditioned media (p = 

0.577).  Effect of TUS wavelength frequency (B).  Collapsed data across the TUS intensities 

and treatment durations demonstrates the lack of an effect by exposure wavelength (p = 

0.176).  Effect of TUS treatment duration (C).  Collapsed data for TUS treatment duration 

demonstrates no effect of treatment time among all the TUS intensities and wavelength 

frequencies investigated (p = 0.230).  All data represent mean  SEM of n = 6 experiments 
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Figure A2 
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Figure A2  Fibroblast proliferation in response to 48-hour incubation in macrophage 

conditioned media.  Fibroblast proliferation was assessed using WST-1 assay and reported 

as optical density units.  Collapsed data across the TUS intensity, wavelengths and 

treatment durations demonstrates the three-way ANOVA analysis for each TUS parameter 

variable.  No intensity, wavelength frequency or treatment duration of TUS-exposure 

stimulated macrophage release of fibroblast mitogens into the conditioned media at 48 

hours.  Collapsed data across (A) TUS Intensity (p = 0.247), (B) TUS wavelength (p = 

0.628) and (C) TUS treatment duration (p = 0.862), demonstrates three-way ANOVA 

analysis of the effect on each variable on macrophage release of fibroblast mitogens.  All 

data represent mean  SEM of n = 6 experiments.   
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Figure A3 
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Figure A3.  Fibroblast proliferation in response to 72-hour incubation in macrophage 

conditioned media.  Fibroblast proliferation was assessed using WST-1 assay and reported 

as optical density units.  Collapsed data across the TUS intensity, wavelengths and 

treatment durations demonstrates the three-way ANOVA analysis for each TUS parameter.  

Collapsed data across (A) TUS Intensity (p = 0.480), (B) TUS wavelength (p = 0.685) and 

(C) TUS treatment duration (p = 0.587), demonstrates three-way ANOVA analysis of the 

effect on each variable on macrophage release of fibroblast mitogens.  No significant effect 

of TUS on release of fibroblast mitogen was found among any of the TUS treatment 

parameters at 72 hours.  All data represent mean  SEM of n = 6 experiments. 
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Figure A4 
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Figure A4. Validation of WST-1 assay for Fibroblast Proliferation.  Comparison of direct 

cell counting and WST-1 colorimetric assay for determination of cellular proliferation.  

Fibroblasts were plated at serially diluted concentrations (8, 4, 2 and 1 x 10
3
 cells/well) and 

were incubated for (A) 24 hours, (B) 48 hours or (C) 72 hours in macrophage growth 

media.  Cell proliferation assayed by WST-1 assay was compared to direct cell counting.  

WST-1 proliferation assay was strongly correlated with increasing cell number for (A) 24-

hours, R
2
 = 0.998, (B) 48 hours, R

2
 = 0.978, and (C) 72 hours, R

2
 = 0.939. 
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Figure A5 
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Figure A5.  Protein concentration of macrophage cell lysates following TUS exposure and 

24 hr incubation period.  Experimental samples from the same TUS treatment intensity 

were pooled from 1 MHz and 3 MHz frequency and from 5 and 10-minute treatments.  

Values are expressed as mg/ml ± SEM.  Percentages indicate comparison of the protein 

content of sonicated samples compared to protein content of control samples and range 

between 97.1 – 97.5% of sham). 
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Figure A6 
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Figure A6.  IL-1  release from macrophages 24-hours after exposure to TUS.  IL-1  was 

measured by ELISA in the conditioned media 24 hrs after TUS exposure.  Values represent 

mean ± SEM of n = 6 replicates that have been normalized to total protein in cell lysates.  

Three-way ANOVA revealed no significant differences in IL-1  release based on any TUS 

parameter: intensity, p = 0.176, wavelength frequency, p = 0.471, and duration, p = 0.110.  

Figures A-C exhibit the pooled values for IL-1  release based on TUS intensity, TUS 

treatment duration and TUS wavelength frequency.  (A) Comparison of TUS Intensity.  

Data has been collapsed for each intensity among the 5 and 10 minute treatment durations 

and among the 1 MHz and 3 MHz wavelength frequencies.  (B) Comparison of TUS 

Treatment Duration, Collapsed data for 5 and 10-minute treatments among all intensities 

and wavelengths, and (C) Comparison of TUS Wavelength Frequency, Collapsed data for 

1 and 3 MHz among all intensities and treatment durations.
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Figure A7 
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Figure A7.  VEGF release from macrophages 24-hours after exposure to TUS.  VEGF 

was measured in the macrophage conditioned media following 24-hour incubation 

following sonication.  VEGF in the conditioned media was normalized to total cellular 

protein isolated from sonicated macrophages; values represent mean ± SEM for n = 6 

replicates.  (A) Pooled values for each TUS intensity among 5 and 10-minute treatments 

and 1 and 3 MHz application.  TUS intensity had no effect on VEGF release from treated 

macrophages at 24-hours post-TUS (p = 0.772).  (B)  Pooled values for 1 and 3 MHz 

among each TUS intensity and 5 and 10-minute treatments.  There was no effect of either 

TUS wavelength frequency on VEGF release at 24-hours post-TUS (p=0.744). (C) Pooled 

values for 5 and 10-minute treatments among each intensity and wavelength frequency.  

Treatment duration had no effect on VEGF release 24-hours post-TUS (p = 0.751). 
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Figure A8 
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Figure A8.  TGF-β1 release from macrophages 24-hours after exposure to TUS.  TGF-β1 

was measured in conditioned media following TUS exposure and 24-hour post-TUS 

incubation. TGF-β1 levels were normalized to total cellular protein isolated from lysates of 

sonicated macrophages.  All values are expressed as mean of n = 6 samples ± SEM.  

Values are pooled for each independent variable (A) TUS intensities among the 

wavelength and durations, (B) TUS wavelength among all intensities and durations, and 

(C) TUS treatment duration among all intensities and wavelengths.  Three-way ANOVA 

revealed a significant effect of TUS wavelength frequency indicated by *, where 1 MHz 

exposure was associated with increased TGF-β1 release, when compared to release in 

response to 3 MHz exposure (p = 0.025).  Treatment intensities and treatment duration did 

not demonstrate a significant effect on TGF-β1 release (p=0.061 and p=0.082, 

respectively).  However, there was a trend toward increased TGF-β1 release for 10-minute 

treatments compared to 5-minute treatments and for treatments administered at 

400mW/cm
2
. 
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Discussion 

Three-way ANOVA revealed no differences in fibroblast proliferation following 

incubation up to 72 hours in conditioned media from TUS-treated macrophages based on 

any TUS variable assessed (Figs. A1-A3).  As such, it appeared that macrophages did not 

respond to TUS at 20% pulsed-wave, 40-400 mW/cm
2
 SATA, 5 or 10 minute exposure by 

releasing mitogenic factor(s) for fibroblasts. 

 In addition, TUS parameters did not affect the release of IL-1  (Fig. A6) and 

VEGF (Fig. A7) from macrophages exposed to TUS and incubated 24 hours post-

treatment.  TGF- 1 release from macrophages was affected by TUS wavelength frequency, 

where 1 MHz exposure increased release when compared to TUS delivered at 3 MHz.  

Despite statistical significance, the difference in release of TGF- 1 induced by TUS at 1 

MHz compared to 3 MHz (622.058  46.060 pg/mg total protein vs. 593.205   43.392 

pg/mg total protein) is quite small in comparison to total release.     

Limitations.  The original experimental design included sham-treatments that 

provided a negative control against the other experimental samples.  However, the 

experimental design lacked a positive control for fibroblast proliferation.  It is possible that 

the fibroblasts in our model were at their peak proliferative ability prior to addition of 

macrophage conditioned media.  Under those conditions, additional mitogenicity from the 

macrophage conditioned media would not enhance proliferation, and no differences among 

treatment groups would be identified.  Also, it is possible that the growth factors that are 

normally contained within the 5% HIFCS contributed to increased fibroblast proliferation 

across all samples.  This effect may have overridden the effect of any added mitogens 
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present in the macrophage conditioned media, resulting in the equal number of fibroblasts 

in all experimental groups.  Furthermore, a negative control of unconditioned media is 

desirable to allow analysis of the experimental media on fibroblast proliferation and 

determine any proliferative or inhibitory effects of media alone.  

Concerning cytokine and growth factor data, the conditioned media containing 5% 

HIFCS may have provided measurable amounts of the proteins assessed.  Since no 

unconditioned, 5% HIFCS-containing media was analyzed by ELISA, the possibility of 

serum/media altering the ELISA assays cannot be refuted.  

For all assessments, the incubation period of macrophages following TUS exposure 

may have contributed to the non-stimulatory results noted above.    Incubating 

macrophages for 24 hr may have allowed a constitutive release of mitogens to overwhelm 

the immediate release due to TUS, thereby eliminating the ability to determine whether any 

changes in TUS-treated macrophages actually occurred.  To insure the validity of the 

“negative” proliferative data and cytokine release data, these experimental limitations are 

addressed by changes in and additions to the original experimental protocol and resulted in 

refinement of methodology described in Chapters 2-4. 
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Appendix B 

 

Energy Emission Measurement for the Omnisound 3000 Ultrasound Generator 

 

PREFACE:  This appendix describes testing of the energy emission for the TUS generator 

utilized for treatment of macrophages in all experiments described in previous chapters.  

Testing of energy emission was completed in an effort to ensure repeatable treatments 

(based on intensity) throughout experimentation. 

 

 

 

TUS Energy Emission Measurement.  All ultrasound treatments were completed 

using an Omnisound 3000 ultrasound generator with a 5 cm
2
 transducer containing a lead 

zirconate titanate crystal (Accelerated Care Plus Corp, Sparks, NV).  The Omnisound 3000 

maintains a beam non-uniformity ratio (BNR) < 4:1 and an effective eradiating area (ERA) 

of 5.0 cm
2
, while producing a collimated cylindrical beam when applied.  This unit is 

commonly used in clinical applications of TUS and permits a wide variety of intensities, 

and duty cycles at 1 or 3 MHz. 

To insure comparable energy output between experiments, actual TUS energy 

emission from the ultrasound generator was measured using an UPM-DT10 ultrasound 

power meter (Ohmic Instruments Co., Easton, MD).  This instrument uses the radiant force 

method to measure the ultrasound power output of diagnostic and therapeutic ultrasound 

transducers.  Ultrasonic energy is passed through de-gassed water to a submerged conical 
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target.  The radiant power transmitted to the target during ultrasound exposure is 

proportional to the total downward force (weight). An electro-mechanical load cell of the 

UPM-DT10 measures this force and converts force measures into power measures using 

the following equation:   p = Wgc where; 

p = power in watts 

W = measured force in grams 

 g = acceleration in dynes 

c = velocity of ultrasound in centimeters/second 

Ultrasound watt density (mW/cm
2
) was calculated manually by converting the watt values 

into milliwatts and then dividing the milliwatts values by the cross sectional area of the 

transducer (Ohmic Instruments, UPM-DT10 operators manual). 

Pre-experiment and post-experiment measurements were completed for each TUS 

experiment.  TUS exposures from the Omnisound 3000 ultrasound generator at various 

intensity and frequency levels (Table B1) were applied to the UPM-DT10 and power 

measurements recorded.  This process was completed immediately prior and immediately 

after each sonication experiment to insure intra and inter experiment consistency of 

ultrasonic exposure. Testing for 100mW/cm
2
 was completed only for 24-hour 

experimentation as this level of intensity was not utilized in the short-duration 

experiments. 
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Table B1 

 

TUS Treatment Intensity Omnisound 3000 settings 

 1 MHz 3 MHz 

40mW/cm
2
 SATA 200 mW/cm

2
 at 20% 200 mW/cm

2
 at 20% 

100W/ cm
2
 SATA 500 mW/cm

2
 at 20% 500 mW/cm

2
 at 20% 

400mW/ cm
2
 SATA 2000 mW/cm

2
 at 20% 2000 mW/cm

2
 at 20% 

 



   

 215 

Table B1.  Ultrasound Power (Intensity) Analysis Testing Parameters.  Ultrasound 

intensity and parameter settings for the Omnisound 3000 TUS generator utilized prior to 

and immediately after each ultrasound experiment.  Analysis consisted of three different 

intensities (40, 100, 400 mW/cm
2
 SATA) delivered using 1 or 3 MHz wavelength 

frequency immediately before and immediately following each experimental block of 

sonications. 

 



   

 216 

Data Analysis/Statistics.   

Differences between pre-experiment and post experiment measurements were 

analyzed for each TUS parameter set (Table A5.1).  For 24-hour post-TUS incubation 

period, values represent mean  SEM for n = 6 experiments.  For short duration 

experimentation (10-minute and 1-hour) values represent mean  SEM for n = 5 

experiments. 

 

Results 

 

Omnisound 3000 Energy Measurements.  TUS energy emittance was assessed 

immediately prior to and immediately following each experiment to insure consistent 

ultrasound delivery.  TUS delivered with 3 MHz at 40, 100 and 400 mW/cm
2
 and with 1 

MHz at 400mW/cm
2
 showed consistent ultrasound energy emittance throughout the 10-

minute and 1-hour incubation experiments (Tables B2 and B3).  No significant differences 

were found among pre and post testing for 24-hour experiment at any level of TUS.  For 

the short duration experiments, TUS delivered with 1MHz at 40mW/cm
2
 showed a 

statistically significant variation (p = 0.040) when pre and post values were compared 

using a t-test (Table B3).  Actual energy variation was approximately 4mW/cm
2
 from pre 

to post testing. 
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Table B2 

 

 

 

  40mW/cm
2
 100mW/cm

2
 400mW/cm

2
 

1 MHz   Pre-TUS 44.64 ± 1.23 105.33 ± 2.23 374.67 ± 6.25 

1 MHz   Post-TUS 44.00 ± 1.03 105.33 ± 1.69 372.67 ± 4.43 

p-value (pre to post) 0.687 1.00 0.799 

3 MHz   Pre-TUS 44.00 ± 1.03 88.67 ± 1.91 324.67 ± 5.60 

3 MHz   Post-TUS 46.00 ± 1.71 90.00 ± 1.71 336.00 ± 3.43 

p-value (pre to post) 0.341 0.615 0.115 
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Table B2.  Omnisound 3000 Ultrasound Generator Energy Emission at 1 MHz and 3 MHz 

for 24hr post-TUS incubation experiments.  Data reported as mean ± SEM of n = 6 

replicates for pre-TUS and post-TUS values.  Comparison between pre and post 

experimental values was completed using a t-test for each pre/post pair.  Analysis revealed 

no significant differences among any pre-post pair indicating consistent energy emittance 

of the Omnisound 3000.   
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Table B3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 40mW/cm
2
 400mW/cm

2
 

1 MHz   Pre-TUS 36 ± 1.265 378.4 ± 11.496 

1 MHz   Post-TUS 40.8 ± 1.497 380 ± 3.347 

p-value (pre to post) 0.040 0.897 

3 MHz   Pre-TUS 41 ± 0.980 344 ± 5.215 

3 MHz   Post-TUS 39.2 ± 1.497 338.4 ± 3.250 

p-value (pre to post) 0.217 0.389 
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Table B3.  Omnisound 3000 Ultrasound Generator Energy Emission at 1 MHz and 3 MHz 

for revised experiments with 10-minute and 1-hour incubations.  Data was collected using 

the UPM DT10 power meter and is reported as mean ± SEM of n = 5 replicates for pre-

TUS and post-TUS energy emittance values.  Comparison between pre and post 

experimental values was completed using a t-test for each pre/post pair.  Analysis revealed 

a significant difference between pre and post energy levels when applied using 1MHz at 40 

mW/cm
2
.  All other tested parameters were not significantly different from pre to post 

experimentation. 
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Discussion 

Omnisound 3000 Ultrasound Generator: Measurement of Exposure Intensities.  

Ultrasound energy emission at the experimental TUS parameters was measured before and 

after each sonication experiment.  Over the entire course of experimentation, TUS energy 

emission remained nearly constant at each intensity level.  Student’s t-test comparisons 

among intensity levels demonstrated no significant difference between any pre/post 

measurements indicating the TUS generator emitted consistent doses throughout the 

completion of all ultrasound exposure experiment sets outlined in Table B2.  Although 

TUS energy delivery remained essentially constant throughout the experimental sets, 

differences were recorded when comparing actual TUS energy and the Omnisound 3000 

intensity display.   

For 1 MHz treatment frequency, intensity settings closely matched with actual 

energy emission measured.  However, for 3 MHz wavelength, intensity settings at 400 

mW/cm
2
 produced only 324 to 336 mW/cm

2
.  The possibility exists that this decreased 

overall energy, compared to 1 MHz, 400mW/cm
2
 muted the cellular response to this 

parameter set of TUS.  As such, 3 MHz exposure at 400mW/cm
2
 could have induce 

macrophage release with an intensity comparable to that at 1 MHz.  Additional 

experimentation using 3 MHz wavelength and fully comparable output intensities should 

be performed to clarify this issue.   

In addition to the intensity difference noted at 1 and 3 MHz, pre to post testing for 

1 MHz, 40 mW/cm
2
 SATA was found to be significantly greater at post-testing (Table 



   

 222 

B3).  The measured difference in intensity before and after experimentation indicates a 

slight increase (4.0  1.497 mW/cm
2
) in TUS intensity from beginning to end of a daily 

experiment set for the short duration (10-minute and 1-hour) experiments.  To prevent any 

bias in treatment parameter set usage, delivery of specific parameters sets were randomized 

for each daily experiment such that the order of parameter exposures were varied among 

the experiments.  This treatment randomization should have reduced any effect of 

increasing TUS intensity from beginning to end of each experiment.  In addition, no effects 

occurred with TUS exposure at 40 mW/cm
2
 regardless of wavelength frequency, or 

treatment duration assessed.  Thus, the difference noted in those pre-post intensity testing 

do not appear to have influenced the findings described in this investigation.       
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