
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

2010

Latency and Distortion compensation in
Augmented Environments using Electromagnetic
trackers
Henry Himberg
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Engineering Commons

© The Author

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/169

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VCU Scholars Compass

https://core.ac.uk/display/51292308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=scholarscompass.vcu.edu%2Fetd%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/169?utm_source=scholarscompass.vcu.edu%2Fetd%2F169&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

i

Latency and Distortion compensation in Augmented

Environments using Electromagnetic trackers

Henry Himberg

Thesis advisor: Yuichi Motai, Ph.D.

Department of Electrical and Computer Engineering

School of Engineering

Virginia Commonwealth University

601 W. Main St., Richmond, VA, 23229, United States, 2010

ii

Doctoral Dissertation 2010

Department of Electrical and Computer Engineering

School of Engineering

Virginia Commonwealth University

Richmond, VA 23229 United States

All rights reserved

© 2010 Henry Himberg (pp. 1-NN)

iii

ABSTRACT

Augmented reality (AR) systems are often used to superimpose virtual objects or information on a

scene to improve situational awareness. Delays in the display system or inaccurate registration of

objects destroy the sense of immersion a user experiences when using AR systems. AC

electromagnetic trackers are ideally for these applications when combined with head orientation

prediction to compensate for display system delays. Unfortunately, these trackers do not perform

well in environments that contain conductive or ferrous materials due to magnetic field distortion

without expensive calibration techniques. In our work we focus on both the prediction and distortion

compensation aspects of this application, developing a “small footprint” predictive filter for display

lag compensation and a simplified calibration system for AC magnetic trackers.

In the first phase of our study we presented a novel method of tracking angular head velocity from

quaternion orientation using an Extended Kalman Filter in both single model (DQEKF) and multiple

model (MMDQ) implementations. In the second phase of our work we have developed a new

method of mapping the magnetic field generated by the tracker without high precision measurement

equipment. This method uses simple fixtures with multiple sensors in a rigid geometry to collect

magnetic field data in the tracking volume. We have developed a new algorithm to process the

collected data and generate a map of the magnetic field distortion that can be used to compensation

distorted measurement data.

iv

Table of Contents

List of Tables .. vi
List of Figures ... vii
1 Introduction .. 1
2 Delta Quaternion Extended Kalman Filter ... 4
2.1 Introduction ... 4
2.2 Related Work... 5
2.3 Background on Orientation Prediction ... 9
2.3.1 Extended Kalman Filter ... 9
2.3.2 Quaternions...10
2.4 Filter Design ...11
2.4.1 Motion Model ...12
2.4.2 Quaternion Framework ...12
2.4.3 Delta Quaternion Framework ..18
2.4.4 Quaternion Prediction ...21
2.4.5 Comparison of Filter Design ...22
2.5 Experimental Analysis ..23
2.5.1 Experimental Data ..23
2.5.2 Tuning ..26
2.5.3 Execution Time...29
2.5.4 Prediction Accuracy..30
2.5.5 Noise Performance..36
2.6 Summary ..38
3 Multiple Model Delta Quaternion Filter ...39
3.1 Introduction ..39
3.2 Related Work..40
3.3 Background ..43
3.3.1 Quaternions and Delta Quaternion...43
3.3.2 Extended Kalman Filter ..44
3.3.3 Interacting Multiple Model Estimator..46
3.4 Filter Design ...47
3.4.1 MMDQ Design ...47
3.4.2 Delta Quaternion Filter Design..50
3.4.3 Orientation Prediction ...55
3.5 Experimental Results ..56
3.5.1 MMDQ Configuration ..59
3.5.2 TPM Initialization...61
3.5.3 Measurement Noise...62
3.5.5 Angular Velocity Estimation...64
3.5.6 Prediction Performance ...67
3.5.7 Computational Requirements ..69
3.6 Summary ..69
4 Interpolation Volume Calibration...71
4.1 Introduction ..71
4.2 Previous Work ..72
4.3 Background ..78

v

4.3.1 Quaternions...78
4.3.2 AC Magnetic Tracking..78
4.4 Field Mapping using IVC..84
4.4.1 Interpolation Volume ..85
4.4.2 Mapping Fixture ...91
4.4.3 Field Data Collection ..96
4.4.4 Look-Up-Table (LUT) Generation ..99
4.5 Experimental Results ..105
4.5.1 PnO Estimation using Interpolation...106
4.5.2 Mapping Fixture Accuracy..109
4.5.3 Field Data Collection ..112
4.5.4 Look-Up-Table (LUT) Generation ..116
4.6 Summary ..121
5 Conclusion...124
6 References ...129

vi

LIST OF TABLES

Table 1. Computational requirements ………………………………………………………….22
Table 2. Overview of DQ and Q framework……………………………………………………22
Table 3. Measurement noise covariance for DQ and Q frameworks…………………………...27
Table 4. Process noise covariance for DQ and Q frameworks…………………………………28
Table 5. DQ and Q performance at 50ms of prediction………………………………………...30
Table 6. Percentage overshoot for DQ and Q at 50ms of prediction..30
Table 7. Angular Head Motion by Dataset……………………………………………………..57

Table 8. Maneuvering Index (λ) distribution for full motion datasets…………………...….…60

Table 9. MMDQ Filters vs. Maneuvering Index (λ)…………………………………...………60
Table 10. MMDQ Process noise filter tuning values……………………………………………63
Table 11. MMDQ Velocity estimation error by motion category…………………..………..….65
Table 12. MMDQ Prediction error with full-range motion (milliradians)………………………67
Table 13. MMDQ Prediction error with benign motion (milliradians)………………………….67
Table 14. MMDQ Prediction error with moderate motion (milliradians)………………….…....67
Table 15. MMDQ Prediction error with Aggressive motion (milliradians)…………………..…67
Table 16. MMDQ Computational Requirements…………………………………………….….69
Table 17. IVC: PnO Measurement Equipment Accuracy Specification……………………….106

Table 18. Maneuvering Index (λ) distribution for full motion datasets……………………..…107
Table 19. IVC: Error Estimation “Goodness of Fit”…………………………………………... 111
Table 20. IVC: Interpolation Fixture Avg. Sensor Position Errors (mm)…………………...…113
Table 21. IVC: Optimized Interpolation Fixture Sensor Position Errors (mm)………………..114
Table 22. IVC: Sensor 8 Position Error Vs. Interpolation Cube……………………………….115
Table 23. IVC: On-Grid PnO Error for ICV LUT……………………………………………...117
Table 24. IVC: Comparison of PnO Error……………………………………………………...118

vii

LIST OF FIGURES

Fig. 1. A block diagram of the Q framework…………………………………………………11
Fig. 2. A block diagram of the DQ framework……..……………………………………..…..11
Fig. 3. The Kalman filter prediction-correction loop…………………...……………………..18
Fig. 4. A graph of benign head motion……..……………………………………..……….….24
Fig. 5. A graph of moderate head motion……...………………………………………….…..24
Fig. 6. Aggressive head motion data ………………….………………………….…………..25
Fig. 7. Full range head motion data………………………………………..……………...…..25
Fig. 8. Average error for moderate and aggressive head motion...31
Fig. 9. Average overshoot vs. prediction…………………...…………………………………32
Fig. 10. DQ vs. Q: Percentage overshoot…………………………... ………….……….….….32
Fig. 11. DQ vs. Q: Maximum overshoot for moderate and aggressive motion..….……………33
Fig. 12. Average error vs. prediction time for full motion data.………………………………..34
Fig. 13. Average overshoot for DQ with full motion data…………...…………………...…….35
Fig. 14. DQ vs. Q: Overshoot percentage………………………………………………………35
Fig. 15. Maximum overshoot for DQ and Q…………………………………………………...36
Fig. 16. DQ output SNR as a function of prediction time……………………………………...37
Fig. 17. DQ framework output SNR vs. prediction time……………………………………….37
Fig. 18. IMME block diagram………………………………………………………………….46
Fig. 19. MMDQ block diagram………………………………………………………………...47
Fig. 20. Histogram of benign, moderate and aggressive datasets………………………………57
Fig. 21. Histogram of angular acceleration for full motion data……………………………….58
Fig. 22. Maneuvering Index for full motion datasets…………………………………………..59
Fig. 23. MMDQ mixing weights……………………………………………………………….66
Fig. 24. Mean error for aggressive motion with MMDQ………………………………………68
Fig. 25. Maximum error vs. prediction for MMDQ……………………………………………68
Fig. 26. Eddy current distortion………………………………………………………………...80
Fig. 27. Interpolation fixture…………………………………………………………………....85
Fig. 28. Interpolation fixture calibration………………………………………………………..89
Fig. 29. Mapping fixture ……………………………………………………………………….92
Fig. 30. Interpolation fixture during mapping………………………………………………….96
Fig. 31. Mapping fixture during mapping……………………………………………………...96
Fig. 32. LUT creation block diagram…………………………………………………………100
Fig. 33. Secondary field as a percentage of measured signal…………………………………105
Fig. 34. Interpolation PnO error histograms………………………………………………......108
Fig. 35. Position vs. RMS error for interpolation estimates…………………………………..110
Fig. 36. Position error distribution of mapping fixture sensors………………...……………..115
Fig. 37. Estimated secondary field errors……………………………………………………..117
Fig. 38. IVC correct vs. uncorrected position error…………………………………………...119
Fig. 39. IVC corrected vs. uncorrected orientation error histogram…………………………..120

1

1 INTRODUCTION

Virtual reality and augmented reality (VR/AR) environments can be used to improve spatial

information and situational context from limited sensory data through data fusion and visual

presentation, immersing the operator in the simulation environment. Augmented reality systems are

often used with Head Mounted Displays (HMDs) in military applications where identification, status

and targeting information is superimposed on the real world to improve situational awareness and

decrease response time in hostile situations. HMDs are also used to train technicians for a broad

section of tasks ranging from welding to ultrasound imaging.

Display lag in simulation environments with helmet-mounted displays causes a loss of immersion that

degrades the value of virtual/augmented reality training simulators. Simulators use predictive

tracking to compensate for display lag, preparing display updates based on anticipated head motion.

These applications require head trackers that can support high measurement rates in the range of 120

Hz to 240 Hz with good precision and a tolerance for a moving frame of reference (some simulators

are motion controlled). AC electromagnetic trackers are well suited for head tracking but are affected

by conductive and ferromagnetic materials. To be successful in these applications, a prediction

capability must be added to the magnetic tracker and a method of compensating for distortion of the

magnetic field developed.

Adding a predictive capability to an AC magnetic tracker is not a trivial matter; these devices have

limited computational resources and operate with strict real-time constraints. A new method for

predicting head orientation based in quaternion orientation was developed for this application and

demonstrated to provide the desired prediction capability in production units. The predictor operates

on the change in quaternion between consecutive data frames (the delta quaternion), avoiding the

heavy computational burden of the quaternion motion equation. Head velocity is estimated from the

2

delta quaternion by an extended Kalman filter and then used to predict future head orientation.

Experimental results indicate that the delta quaternion method provides the accuracy of the

quaternion method without the heavy computational burden. This predictor has been implemented in

the Polhemus Liberty tracker and is currently being demonstrated for several prospective customers.

The first predictor developed as part of this project is able to deal with most head motion but has

difficulty providing accurate prediction during aggressive head motion. The reduced computational

requirement of the delta quaternion method provides an opportunity to improve prediction

performance with multiple model filtering. A new head orientation prediction technique was

developed based on delta quaternion filters in a multiple model framework to track angular head

velocity and angular head acceleration. The multiple model filter tracks head velocity more closely

than the single DQ and additionally, estimates angular acceleration that are incorporated in to a new

prediction algorithm. The prediction algorithm combines the output of the multiple filters using a

weighting scheme based on the mode probabilities of the filter and predicts future quaternion

orientation.

In addition to dealing with the prediction requirement of the target application, the effect of

conductive or ferrous materials in the tracking volume must be dealt with. Careful control of the

tracking volume and correct positioning of the transmitter/receiver modules can minimize distortion

but in many applications significant distortion remains. Tracking performance can be improved by

correcting the position and orientation (PnO) measurements with a compensation factor generated

from a mapping procedure. Mapping a tracker volume is a protracted process using large fixtures and

requiring hundreds of high precision measurements to assemble a map of the distorted magnetic field.

A new field mapping which removes field distortion as part of the PnO computation was developed

to simplify the mapping process. This method uses two fixtures with multiple sensors in a rigid

3

geometry to measure the field distortion at a given pose, and simultaneously solves the PnO of all

sensors. Collected data is processed off-line to create a look-up table (LUT) for use with various

compensation schemes.

4

2 DELTA QUATERNION EXTENDED KALMAN FILTER

2.1 INTRODUCTION

Head tracking is widely used in augmented and virtual reality simulation environments (AR/VR) to

control scene rendering in response to head orientation. The perceived latency (lag) between head

motion and display response causes a loss of immersion for the user that can result in dizziness in

extreme cases [3], [8], [9], [10], [14], [15], [22], [23], [24]. In training applications, the user learns to

compensate for the display latency of the particular simulator, adjusting head motion to improve

performance. This learned behavior compensates for display latency in simulation environment but

differences between the simulator latency and that of the actual system reduce the value of the

training. An effective method of compensating for simulation latency in helmet-mounted Display

(HMD) simulators is to predict the future orientation of the head. If head orientation can be

accurately predicted, the simulator can render the next scene before the user moves. Various

prediction methods have been proposed for latency compensation [1], [2], [3], [4], [5], [7], [12], [28],

[30], [33] with the Kalman filter receiving considerable attention.

A new method of head orientation prediction, the Delta Quaternion (DQ) Framework, was developed

for latency compensation. The DQ framework predicts future head orientation from the change in

quaternion orientation between measurements (the delta quaternion). Angular head velocity is

estimated from the delta quaternion by an EKF and then combined with the current quaternion

measurement to predict future orientation. The DQ differs from other head orientation prediction

methods in several ways including estimation of the delta quaternion instead of the quaternion

orientation in the EKF, and decoupling of the prediction interval from the input data rate. Removing

the quaternion orientation from the Kalman filter reduces the number of state variables from 7 to 3 in

a filter that uses the constant velocity motion model, providing a significant savings of computational

resources. The decoupled prediction algorithm avoids a reduction in frame rate required to

5

accommodate the one-step prediction method used in other approaches. Predictive filtering,

including the Extended Kalman filter (EKF), Particle filters (PF) and the Unscented Kalman Filter

(UKF) are widely used for latency compensation [1], [2], [5], [7], [25], [32]. The UKF requires

additional computation resource without improving performance when compared to the EKF in

estimating quaternion motion [26]. The PF does not provide a significant improvement upon the

EKF when used for head motion prediction [7]. The EKF in used in this study of head motion

prediction to avoid the additional computational burden of other methods [26], [27].

2.2 RELATED WORK

The author previously developed two adaptive EKF methods for prediction of quaternion head

motion in a simulation environment [11]. The first method used a fading memory algorithm to

modify the EKF predicted error covariance in response to changes in the filter residual. The

algorithm improved tracking performance but increased output noise in some conditions. A second

method R-Adaptive) adaptively modified the measurement covariance to control the output noise

level. The R-Adaptive approach provided lowered output noise and improved tracking performance

with benign data but had increased RMS error with aggressive head motion.

 Kiruluta, Eizenman and Pasupathy proposed a system that used a Kalman filter to predict head

motion from position data [1]. The study compared a constant acceleration Kalman filter predictor to

a polynomial approach. Experimental results showed that the Kalman filter provided good latency

compensation for moderate motion but had degraded performance undergoing fast motion. An

adaptive version of the Kalman predictor was also studied for applications requiring tracking of fast

motion at the cost of throughput delay.

Goddard [4] and Bohg [3] both proposed methods of orientation prediction based on the quaternion

motion equation presented by Chou [16]. Each of these methods predicted future orientation as a

6

function of angular head velocity and current head orientation. The large state vector of the

quaternion filter (7 state variables) and the non-linear state equation lead to large matrices in the EKF,

resulting in a large computational load on the host system.

A head tracking system was developed by Chang and Cho to control camera movement in a

surveillance system application [5] The proposed system used image based head tracking to track an

individual in a defined physical space. A Kalman filter was used to improve stability by predicting

head position in the image space.

Liang, Shaw and Green developed a quaternion method of head motion prediction based on Kalman

filtering [28]. They based their work on the assumption that perceived latency was mainly caused by

the delay in orientation data. The proposed system predicted head orientation using a linearization of

the quaternion orientation to break the quaternion into four independent components. Each of the

four decoupled components was predicted using a separate Kalman filter. The four predicted

components were combined to form a predicted unit quaternion value.

Azuma and Bishop developed a predictive tracking system for a Helmet Mounted Display (HMD)

using inertial sensors mounted to the display with Kalman filtering [30]. The system improved

latency in most conditions, as compared to prediction without the inertial sensors or no prediction at

all.

A comparison of a Grey theory based prediction algorithm, a Kalman filter approach and an

extrapolation method was performed by Wu and Ouhyoung [33]. They found that both the Grey

theory method and the Kalman filter significantly improved performance as compared to

extrapolation. The authors stated that the Grey theory method performed equally well as the Kalman

7

filter while having a relatively low computation complexity. The computational demands were not

qualitatively compared in the study.

Laviola proposed a latency compensation method based on double exponential smoothing as an

alternative to Kalman filter prediction [34]. The proposed algorithm was compared to derivative-free

Kalman filters (systems without a velocity or acceleration measurements) and found to provide

similar performance with a reduced computation requirement.

A phase lead filter system was proposed by So and Griffin to compensate for delays in helmet-

mounted displays [2]. The study found that phase lead filters significantly improved head tracking

performance but introduced jitter under some conditions. An additional compensation technique

using image deflection was used to compensate for filter jitter.

Zhang and Zhou used an adaptive Kalman filter for human movement tracking in medical

rehabilitation [12]. The proposed system uses a Kalman filter to control a camera that captures body

movement.

Quaternion estimation is often used for attitude control in spacecraft. Ali et al. used a system based

on delta quaternions to control attitude in the Mars Exploration Rover [37]. The system applies a

heading adjustment to the previous attitude to estimate current orientation. Using the new estimate,

the system conducts a series of confirmation tests to determine if the attitude estimate is correct. This

system uses a variety of sensors including accelerometers, gyroscopes, wheel odometry and visual

odometry to determine vehicle orientation. Similar to our proposal, this system estimates the change

in orientation (delta quaternion) and then corrects the based on measurement data. Cheon and Kim

used an unscented Kalman filter (UKF) to estimate spacecraft attitude with quaternion’s [21]. This

8

study successfully used magnetometer and gyroscopic data to estimate quaternion orientation with a

UKF.

Marins et al. [35] developed an orientation sensor based on a MARG (Magnetic, Angular Rate and

Gravity) sensor using Kalman filtering. The study proposed two methods of determining position and

orientation from MARG measurement data using Kalman filters. Another study conducted by

Sabatini proposed the use of a similar sensor (gyroscope, accelerometer and magnetometer) to

measure orientation [36].

Attitude control systems develop and control orientation using Kalman filter with a variety of

measurements techniques including gyroscopes, magnetometers and accelerometers. These

applications are based on the same quaternion motion equations that we use in our work but differ

greatly in the application specifics. Orientation measurement devices use angular rate data to estimate

orientation using a Kalman filter, although the specifics of the filter design vary considerably with

sensor type. These applications differ from our study in that we are using quaternions with a Kalman

filter to estimate angular rate information from an orientation measurement. Our approach is

independent of the sensor type used for the measurement. Although we have performed our

experiment using the Polhemus tracker, any other method of measuring orientation could be used

without loss of performance (assuming similar measurement accuracy).

9

2.3 BACKGROUND ON ORIENTATION PREDICTION

2.3.1 EXTENDED KALMAN FILTER

The Extended Kalman Filter (EKF) is a prediction-correction filter used in systems with a state

equation (1) measurement equation (2).

 () () () ()()kwkukxfkkx ,1,11| −−=− (1)

 () () ()()kvkkxhkz ,1| −= (2)

The state equation (1) expresses the state x at time k as a function of the state at time k-1, an external

input u and process noise w (process noise is defined as any change in state not modeled by the state

equation). The measurement equation (2) relates the measurement z at time k to the state at time k and

measurement noise v. The process noise and measurement noise are assumed to be independent

Gaussian random variables with zero mean [6], [13], [20], [31].

 The EKF equations can be applied to non-linear systems using a Taylor expansion to increase the

linearity of the system about the current state (3) (4). The A, W, H and V Jacobian matrices are

recomputed each time the filter iterates.

 () () () () ()() () ())11|11| −⋅+−−−⋅+−≈ kwkWkkxkxkAkkxkx (3)

 () () () () ()() () ())11|11| −⋅+−−−⋅+−≈ kvkVkkxkxkHkkzkz (4)

10

2.3.2 QUATERNIONS

Unit quaternions are a commonly used method of orientation representation that avoids the

singularities of Euler angles and the stability problems of direction cosine matrices [17], [18], [19],

[25], [29]. A unit quaternion is a four dimensional representation of orientation that characterizes an

orientation as a rotation θ about an axis of rotation defined by the unit vector u (5).

T

uq 















⋅








=

2
sin

2
cos

θθ
 (5)

Quaternions provide a compact, efficient method of conducting 3D rotations. To rotate an object, the

orientation q(k) of the object is multiplied by the desired change in rotation, the delta quaternion ∆q

(6).

 () ()1−⋅∆= kqqkq (6)

11

2.4 FILTER DESIGN

The Q and DQ frameworks estimate angular head velocity ω from measured quaternion orientation q,

predicting future orientation as a function of the estimated head velocity and a user specified

prediction time δ. The Quaternion (Q) Framework uses an EKF to estimate current head velocity ωκ

from quaternion measurement data q(k). Future orientation q(kτ+δ) is predicted as a function of the

current quaternion measurement q(k), the corrected angular velocity ω(k|k), the frame time τ and the

prediction interval δ. The Q framework is a two step process that estimates future orientation directly

from quaternion orientation measurment data using a Kalman filter and a prediction function (fP).

(Fig. 1.). The Delta Quaternion (DQ) framework uses a similar process that operates on the delta

quaternion between measurements (Fig. 2.). The DQ framework first converts the incoming data to

delta quaternions (∆q) which are then used by an EKF to estimate angular head velocity ω. The DQ

framework uses the same prediction function as the Q, calculating the delta quaternion ∆q of the

prediction interval and applying it to the current quaternion measurement q(k)).

q(k)

q(k+τδ)

f
P
(q(k),ω(k|k),τ,δ)

EKF(q, ω)

ω(k|k)

Fig. 1. The Q framework is a two step process that
estimates future orientation directly from
quaternion orientation measurment data using a
Kalman filter and a prediction function (fP).

q(k-1)

q(k-1)[q(k-1)]-1

q(k+τδ)

f
P
(q(k),ω(k|k),τ,δ)

ω(k|k)

∆q(k)

q(k)

EKF[ω]

Fig. 2. The DQ framework is a three step process that
converts quaternion orientation measurements
into delta quaternions. Future orientation is
predicted using an EKF and a prediction
function (fP).

12

q̂

2.4.1 MOTION MODEL

A constant velocity motion model (CV) is used for each of the frameworks that were

investigated. Both the DQ and Q frameworks are based on the change in quaternion being a

function of angular velocity. At the high data rate of an AC magnetic tracker, the CV model is a

good choice for slow to moderate head motion. The CV model assumes that angular velocity ω,

is constant from frame to frame using a white noise acceleration component w and the frame

period τ to handle any changes in velocity the may occur (7).

 () () τωω ⋅+−= wkk 1 (7)

2.4.2 QUATERNION FRAMEWORK

The Quaternion Kalman filter uses a state vector consisting of the corrected quaternion

orientation (q(k|k)) and the corrected angular velocity vector (ω(k|k)) (8). The state equation (9)

predicts the next state from the current one using the CV model. The measurement equation (10)

is linear since the quaternion orientation is included in the state vector.

 () () ()[]T
kkkkqkkx 1|1|1| −−=− ω (8)

 ()
() T

g
w

wxq
wxf 









⋅+
=

τω

τ
τ

,,
,, (9)

 ())()1|(, kvkkqvxh +−= (10)

The relationship between quaternion motion and angular velocity using quaternion multiplication

(11) was presented by Chou [16] where Ψ is the 4 x 4 element, angular velocity quaternion (12).

 qq ⋅Ψ=& (11)

13



















−

−

−

−−−

⋅=Ψ

0

0

0

0

2

1

012

021

120

210

ωωω

ωωω

ωωω

ωωω

 (12)

As shown in Goddard [4], the solution to this differential equation is an exponential function (13)

that can be solved for the closed discrete form by assuming constant velocity (14).

 () ()tqetq ⋅=+ ⋅Ψ ττ (13)

 () ()() ()1, −⋅∆= kqkqkq τω (14)

The discrete form rotates the current orientation (q) by a delta quaternion ∆q which is a function

of angular velocity ω and time τ . The delta quaternion is computed in its compact 4 element

column vector form (15) and expanded to a 4 x 4 matrix for multiplication operations.

 ()



















⋅

⋅








=∆

2
sin

2

2
cos,

θ

ω

ωθ
τωq (15)

ωωτθ ⋅⋅= T

The predicted angular velocity at time step k (ω(k|k-1)) is generated with the CV motion model

as a function of the corrected angular velocity state from the previous time step (ω(k-1|k-1)),

process noise w(k) and the frame period τ (16).

 () () τωω ⋅+−−=− wkkkk 1|11| (16)

14

The predicted quaternion state (q(k|k-1)) is calculated as the product of the delta quaternion (∆q)

generated from the predicted angular velocity (ω(k|k-1)) and the corrected quaternion from time

step k-1 state (q(k-1|k-1)) (17).

 () ()() ()1|1,1|1| −−⋅−∆=− kkqkkqkkq τω (17)

 The Kalman filter requires four Jacobian matrices (A, W, H and V) to be computed each time the

filter iterates. The A matrix contains the partial derivative of the predicted state (q(k|k-1)) with

respect to each corrected variable from the previous time step (q(k-1|k-1) and ω(k-1|k-1)) and

requires three non-trivial partial derivatives (18).

 () () ()()[]
0

, ,1|

=











−

∂

∂
=

w

i

j

ji kwkkxf
x

kA

 ()
() ()

()
0

,

1|0

1|1|

=


















−
∂

∂

−
∂

∂
−

∂

∂

=

w

i

j

i

j

i

j

ji

kk

kkqkkq
q

kA

ω
ω

ω
 (18)

The partial derivative of the predicted quaternion with respect to the corrected quaternion

(q(k|k)) is the predicted delta quaternion (∆q(k|k-1)) (19). In this instance the delta quaternion

must be expanded to its full 4x4 matrix format for inclusion in the A matrix.

() ()() ()[]
i

j

i

j

kkqkkq
q

kkq
q

1|1,1|1| −−⋅−∆
∂

∂
=−

∂

∂
τω

 () ()()τω ,1|1| −∆=−
∂

∂
kkqkkq

q
i

j

 (19)

15

The partial derivative of the predicted quaternion (q(k|k-1)) with respect to the corrected velocity

from the previous time step (w(k-1|k-1)) is calculated as three column vectors (20).

 () () () ()







−

∂

∂
−

∂

∂
−

∂

∂
=−

∂

∂
1|1|1|1|

210

kkqkkqkkqkkq
ωωωω

 (20)

Starting with the definition of the predicted quaternion (q(k|k-1)) (15), each 4 element column

vector is the product of the partial derivative of the predicted delta quaternion with respect to the

correct velocity (ω(k-1|k-1)) and corrected quaternion (q(k|k-1)) (21).

 () ()() ()1|1,1|1| −−⋅







−∆

∂

∂
=−

∂

∂
kkqkkqkkq

ii

τω
ωω

 (21)

 A generalized form of the partial derivative of the predicted delta quaternion (∆q(k|k-1)) with

respect to velocity state (ω(k-1|k-1)) can be expressed as a function of the predicted delta

quaternion, the predicted angular velocity (w(k|k-1)) and the time interval τ (22).

 ()()[]
()() ()

() ()

() () 



























′∆⋅
′

⋅+′∆−′∆⋅′⋅⋅
Ω

′

′∆⋅
′

⋅+′∆−′∆⋅′⋅⋅
Ω

′

′∆⋅
′

⋅+′∆−′∆⋅−⋅⋅
Ω

′

′∆⋅−

=−∆
∂

∂

++

++

++

+

12,102

2

11,102

1

10,102

0

1

1

1

1
1|

4

,1|

i

i

iii

i

i

iii

i

i

iij

i

j

qqq

qqq

qqqkk

q

kkq

ω
δωτ

ω
ω

δωτ
ω

ω
δωτ

ω

τ

τω
ω (22)

() ()()τωωω ,1|1| −∆=′∆−=′ kkqqkk

{ } () ()1|1|),(, −⋅−=Ω= kkkkjidirac
T

ji ωωδ

16

 Finally, the partial derivative of predicted angular velocity with respect to the velocity state can

be obtained by inspection (23).

 I
i

=′
∂

∂
ω

ω
 (23)

The matrix W is the Jacobian of partial derivatives of the predicted state (q(k|k-1)) with respect to

the process noise (w(k)) (24). The CV motion model simplifies W considerably since the

predicted velocity (ω(k|k-1)) is a linear function of the velocity state (ω(k-1|k-1)) and the process

noise (w(k)). Closer inspection indicates it is the product of (21) and the time step τ; resulting in

a simplified form (25).

() () ()()
0

, ,1|

=











−

∂

∂
=

w

i

j

ji kwkkxf
w

kW

 ()
()
()

0

,
1|

1|

=




















−

−

∂

∂
=

w
i

i

j

ji
kkl

kkq

w
kW

ω
 (24)

()()















⋅

⋅





−

∂

∂
=

I

kkq
W

τ

τω
ω

1|
 (25)

17

The H matrix is the Jacobian of partial derivatives of the measurement equation (10) with respect

to state (x(k|k)) which can be derived by inspection (26).

() () []() () ()()
0

, ,1|,1|

=











−

∂

∂
−

∂

∂
=

v

i

j

i

j

ji kvkkxhkvkkxh
q

kH
ω

 []0IH = (26)

The V matrix is the Jacobian of partial derivatives of the measurement equation (10) with respect

to measurement noise. Since the measurement model is linear, V is a 4x4 identity matrix (27).

() () ()()
0

, ,1|

=











−

∂

∂
=

v

i

j

ji kvkkxh
v

kV

 () IkV
ji

=, (27)

The Q framework uses a seven element state vector to estimate angular velocity. Close

examination of the quaternion filter equation reveals that the delta quaternion ∆q is the driving

equation of the filter. All information concerning the change in orientation is contained in the

delta quaternion, with the quaternion state providing a method or converting the delta quaternion

to match the measurement.

18

2.4.3 DELTA QUATERNION FRAMEWORK

The DQ framework removes the quaternion equation from the estimation process by directly

converting incoming quaternion data (q(k)) to the delta quaternion (∆q(k)) before using the EKF.

The EKF now predicts the angular head velocity (ω(k)) directly from the delta quaternion

(∆q(k)). The quaternion motion equation (14) is only needed to compute the predicted

quaternion q(kτ+δ) and is moved outside the Kalman filter into the orientation prediction process

(Fig. 3.).

Project

 out in Time ()

Prediction-Correction Loop
Future Orientation

()δτ +⋅kq

()[]kkx |

δ

θ

x

y

z

n

θ

x

y

z

n

Fig. 3. The prediction-correction loop of the Kalman filter provides an estimate of angular head velocity which is

projected across the prediction interval to estimate the change in orientation (∆q) the will occur.

The Delta Quaternion (DQ) framework estimates angular head velocity directly from a delta

quaternion measurement without estimation of the quaternion itself. Eliminating the quaternion

orientation from the Kalman filter reduces the state vector from 7 elements to 3 when using the

19

CV motion model The resulting reduction in matrix rank (from 7 x 7 to 3 x 3) results in a large

savings of computational resources while retaining the quaternion motion model (14).

The delta quaternion of the current frame (∆q(k)) represents the change in quaternion between the

previous frame at time k-1 and the current frame at time k. The delta quaternion is computed as

the quaternion product of the current quaternion and the inverse of the previous quaternion (28).

 () () ()() 1
1

−
−⋅=∆ kqkqkq (28)

The DQ Kalman filter uses a 3 element state vector (29) containing the average angular velocity.

 () ()[]kkx ω= (29)

The CV state equation is now a linear function of the corrected angular velocity from the

previous time step (ω(k-1|k-1)), the process noise (w(k)) and the time interval τ (30).

 () ()() () () τω ⋅+= kwkkwkxf DQ , (30)

The measurement model in the DQ Kalman filter must relate the predicted angular head velocity

(ω(l|k-1)) to the delta quaternion measurement (∆q(k)). The equation used for the delta

quaternion prediction in the quaternion EKF (15) is used as the measurement equation for the

DQ EKF (31).

() () vqvxh +∆= τω,,

 () vvxh +



















⋅

⋅








=

2
sin

2

2
cos,

θ

ω

ωθ
 (31)

20

It should be noted that both the DQ and Q frameworks compute the difference between the

measured and predicted quaternion as a simple subtraction which is technically not a valid

quaternion operation. The small time interval between input data samples minimizes the effect

of this compromise.

Due to the linear state equation, the DQ A and W matrices are constant and do not have to be

computed for each iteration of the Kalman filter (32) (33).

 () () ()()[]i

j

ji kwkkkA τω
ω

⋅+−
∂

∂
= 1|,

 () IkA ji =, (32)

() () ()()[]
i

j

ji kwkk
w

kW τω ⋅+−
∂

∂
= 1|,

 () []IkW ji ⋅= τ, (33)

The Jacobian H matrix is the partial derivative of the measurement equation h(x ,v) with respect

to the corrected state vector (x(k-1|k-1)). Since the DQ state vector contains only the angular

velocity (ω), the H matrix reduces to the partial derivative of the delta quaternion (∆q) with

respect to the corrected velocity (ω(k-1|k-1)) (34).

 () ()() ()() ()()







−∆

∂

∂
−∆

∂

∂
−∆

∂

∂
= τω

ω
τω

ω
τω

ω
,1|,1|,1|

210

kkqkkqkkqkH iii (34)

21

 The partial derivative of the delta quaternion with respect to angular velocity state was derived

in the Q filter derivation (22). The DQ measurement equation is linear with respect to

measurement noise (v(k)), reducing V to the identity matrix (35).

() () ()()[]
0

, ,1|

=











−

∂

∂
=

v

i

j

ji kvkkxh
v

kV

 () IkV ji =, (35)

2.4.4 QUATERNION PREDICTION

Each of the frameworks support a user specified prediction time (δ) for maximum flexibility.

Future orientation is predicted by assuming that the corrected velocity ω(k|k) remains constant

throughout the prediction interval (Fig. 3.). The future head orientation q(k+δ) is estimated as a

function of the current quaternion measurement q(k), the angular velocity ω frame time τ and the

prediction interval δ (36). The function fP first computes the delta quaternion that occurs if the

angular head velocity ω is constant across the prediction interval δ and then applies it to the

current quaternion measurement q(k) (37).

 () () ()()),|, δωδ kkkqfkq P=+ (36)

 () ()() ()()kkqkkqqf
P

|,|),, ⋅∆= δωδω (37)

22

2.4.5 COMPARISON OF FILTER DESIGN

Each of the frameworks examined use a multiple stage process to predict orientation (Table 1).

Table 1. COMPUTATIONAL REQUIREMENTS FOR DQ AND Q FILTERS

Divisions.

Additions

Multiplication
s

Higher Level
Functions

Matrix Inverse

Q 12 1612 2092 3 1 (4x4)

DQ 18 297 438 3 1 (4x4)

Note: Table entries are for one iteration.

The two frameworks examined have widely varied computational requirements due to the

complexity of the system and measurement equations (Table 2). Approximately the same

number of higher level function calls (sine, cosine, square root) and inverse matrix operations are

required by each of the frameworks. The higher level functions are used in the delta quaternion

computation which is common to both frameworks although it appears in different locations in

each algorithm.

Table 2. OVERVIEW OF DQ AND Q FRAMEWORK METHODOLOGY

Framework Pre-Processor Kalman Filter Post Processor

Q None Estimate angular head

velocity to predict the

next quaternion value

using a single EKF.

Predict future orientation as

a function of the current

quaternion orientation,

head velocity, and the

prediction time.

DQ Convert

quaternion

orientation to

delta

quaternion

Estimate head velocity

using the delta

quaternion as the

measurement data.

A delta quaternion

estimating the change in

orientation across the

prediction interval is

applied to the current

quaternion measurement to

predict future orientation.

23

The single 4 x 4matrix inverse operation in each framework occurs in the computation of the

Kalman gain and fortunately is not affected by the expanded state vector of the Q framework

EKF. The Q framework requires substantially more multiplications and additions than the DQ

due to the larger state variable. The 7 element state vector of the Q EKF requires three 7 x 7

matrices (A, A
T and P) in probability covariance calculation. Additionally, the W matrix expands

to 7 x 3 and the H expands to 4 x 7. The expanded matrices of the Q framework are each applied

multiple times during the Kalman filter prediction-correction process resulting in a fivefold

increase of additions and multiplication for the Q as compared to the DQ.

2.5 EXPERIMENTAL ANALYSIS

2.5.1 EXPERIMENTAL DATA

Quaternion head motion data was collected in a simulation of a cockpit VR environment using a

Polhemus Liberty AC magnetic tracker operating at a 120 Hz frame rate. The data collection

setup consisted of a single Polhemus magnetic sensor mounted on the rear of a headband worn

by the test subject. A Polhemus magnetic source was positioned approximately six inches

behind the test subject. There was no effort to control the alignment of the sensor in the source

frame. Thirteen individual data sets were collected for this experiment, three sets targeting

specific head motion categories (benign, moderate and aggressive) and ten additional sets

containing the full range of motion expected in a VR cockpit simulation session. Each of the

thirteen data sets consists of 10,000 data frames representing 83.33 seconds of continuous data

collection. The three motion-specific data sets (tuning data) will be used for filter tuning and

performance analysis under specific types of head motion.

24

The benign motion data set consists of stationary head orientation with smooth, gradual

transitions between orientations and is intended to represent targeting and observation activities

(Fig. 4.).

-150

-100

-50

0

50

100

150

0 5 10 15 20 25 30

seconds

d
e
g
re

e
s

Azimuth

Elevation

Roll

Fig. 4. Benign head motion data represents semi-stationary activities such weapons control (first 30 seconds

shown as Euler Angles in degrees)

The moderate motion data set includes discrete head orientations with smooth transitions at

moderate velocities similar to the visual scanning motion a pilot might use (Fig. 5.).

-150

-100

-50

0

50

100

150

0 5 10 15 20 25 30

seconds

d
e
g

re
e
s

Azimuth

Elevation

Roll

Fig. 5. Moderate head motion data showing smoothe but rapid head motion (first 30 seconds shown as Euler

angles in degrees).

25

The aggressive data set is included to represent high velocity tracking head movement with rapid

starts and stops as would be experienced when a pilot attempts to find a target (Fig. 6.).

-150

-100

-50

0

50

100

150

0 5 10 15 20 25 30

seconds

d
e
g
re

e
s

Azimuth
Elevation

Roll

Fig. 6. Aggressive head motion data (first 30 seconds shown as Euler angles in degrees). Note the very rapid and
sometimes erratic motion.

The ten full range motion data sets are intended to be representative of typical head motion

during a cockpit simulation session and will be used for performance analysis. The data sets

contain intervals of benign, moderate and aggressive motion in pseudo-random order (Fig. 7.).

-150

-100

-50

0

50

100

150

0 5 10 15 20 25 30

seconds

d
e
g
re

e
s

Azimuth

Elevation

Roll

Fig. 7. Full head motion data is a continuous data capture session that includes a complete range of head motion
to closely match simulation session data (first 30 seconds of a typical example shown as Euler angles).

26

2.5.2 TUNING

The Kalman filter uses the process noise covariance and measurement noise covariance to tune

the filter for the targeted application. Virtual reality environments are typically custom built in

small lots leading to a large variation in how the magnetic source and sensor are positioned in the

simulation environment. The two covariance parameters were determined directly from the

measured data to allow customization of the filter tuning parameters to each installation.

Although this approach does mean that the results are specific to the collected data set, the

process is easily repeatable in an installation environment and in fact, could be included in the

tracker firmware application. The tuning parameters were derived directly from a composite data

set constructed by combining the three tuning data sets (benign, moderate and aggressive) and

two of the full motion data sets. This approach was chosen to provide an even weighting of the

three categories of head motion while including intermediate data types not represented by the

three tuning data sets.

2.5.2.1 Measurement Noise Covariance

The DQ and Q filters use different measurement data in the correction phase of the Extended

Kalman Filter. The DQ filter uses delta quaternion data derived from the quaternion

measurement while the Q filter uses the quaternion measurement itself. The measurement noise

was defined as the difference between measurement data and a “de-noised” version of the same

data. For the Q filter, an estimate of the underlying “noiseless” version of the composite data

was created by smoothing with a Gaussian kernel. The smoothed quaternion was then subtracted

from the measured quaternion to estimate the measurement noise. The DQ measurement noise is

estimated by applying the same technique to delta quaternion data. The delta quaternion

measurement data is computed on a frame by frame basis from the measured quaternion

27

orientation while the smoothed delta quaternion data is generated from the smoothed data. The

measurement noise for the DQ filter is then estimated as the difference between the measured

and the smoothed delta quaternion. Using the two variable quaternion representation (a rotation

θ about an axis u) variance of the measurement data for the two filters can be compared (38).

()
()
()
()





















=

2
sin

2
sin

2
sin

2
cos

2

1

0

θ

θ

θ

θ

u

u

u
z (38)

The z0 component of the measurement data has a much smaller variance for the DQ than the Q

(9.74e-13 vs. 2.55e-07) (Table 3.).

Table 3. MEASUREMENT NOISE COVARIANCE FOR DQ AND Q FRAMEWORKS

 Delta Quaternion Filter Quaternion (Q) Filter.

Variance(z0) 9.74e-13 2.55e-07

Variance(z1) 1.21e-08 4.67e-07

Variance(z2) 3.99e-09 4.10e-07

Variance(z3) 4.13e-09 3.28e-07

For this experiment, the change in orientation between frames is small due to the high frame rate

(120Hz), resulting in a delta quaternion measurement near the identity quaternion. The small

changes in rotation θ between frames causes an even smaller variation in the z0 component of the

measurement noise because it is a function of the rotation θ, which has a zero slope for θ = 0.

The axis components of the DQ measurement noise (z1, z2 and z3) also have very small variance

due to the influence of the sine function with θ near zero (sin (0) = 0). The Q measurement is

the total rotation of the current orientation form the origin and is typically not representative of a

rotation near zero. Accordingly, the Q measurement noise variance is much larger than the

28

associated DQ values with each of the Q values having similar magnitude due to the averaging

effect of the variance calculation.

2.5.2.2 Process Noise Covariance

The DQ and Q filter both utilize a variation of the angular velocity through the process nose

covariance as the driving variable of the Kalman filter prediction step. The Q filter propagates

changes in the angular velocity into the quaternion state through application of a delta quaternion

(a function of the angular velocity) to the previous quaternion state estimate while the DQ filter

uses the delta quaternion itself. In the constant velocity model, the process noise can be modeled

as angular acceleration not related to the measurement noise. In this experiment, tuning

parameters was derived from measurement data, raising the issue of how to remove measurement

noise from the data before estimating the process noise covariance (Table 4.).

Table 4. PROCESS NOISE COVARIANCE FOR DQ AND Q FRAMEWORKS

 ω0 ω1 ω2

ω0 9.74e-13 2.55e-07 2.55e-07

ω1 1.21e-08 4.67e-07 4.67e-07

ω2 4.13e-09 3.28e-07 3.28e-07

A Gaussian smoothed version of the full range data set was used to provide a “noiseless”

quaternion measurement from which to estimate the process noise. A delta quaternion was

calculated for each frame of the “noiseless” quaternion and then the angular velocity was

estimated by solving the delta quaternion equation (15) using the Levenberg–Marquardt

algorithm (LMA). The process noise was estimated from the angular velocity by applying the

constant velocity model to the data on a frame by frame basis. The difference between the

29

estimated velocity of a given frame and the previous frame estimate was considered to be

process noise.

2.5.3 EXECUTION TIME

The single iteration execution time was measured for each of the frameworks in the MathCAD

simulation environment. The iteration time was computed as the average time required to

process one frame of data. The DQ framework executed a single pass in 520 microseconds

while the Q required 921 microseconds. A tabulation of the number of operations required by

each framework (Table I) showed that the DQ provided approximately an 80% improvement in

the number of additions and multiplications but our experimental results showed only a 43.5%

improvement.

The less than expected improvement in execution time using the DQ is the result of the

efficiency of the floating point unit in the simulation host (Pentium 4; 3 GHz). The higher level

functions (sine, cosine, square root) and inverse matrix operations occur at the same frequency in

both frameworks leaving the increased matrix rank of the Q framework as the only difference

between the two. Modern floating point units generally can execute one or more

multiply/accumulate (MAC) operations in one instruction cycle, reducing the improvement in

execution speed.

30

2.5.4 PREDICTION ACCURACY

Filter performance was rated by comparing the quaternion prediction to the actual time shifted

data after conversion to Euler angles (azimuth, elevation and roll). The Euler error for each

sample point was computed and then combined to form the RMS average of the compound

angle. Error was measured as average error (milliradians), overshoot points (as a percentage of

totals), overshoot average (degrees), and maximum overshoot (degrees). Overshoot was defined

as any error exceeding 17.45 milliradians (1.0 degree) of the composite angle. The two

frameworks showed comparable accuracy at the typical prediction time of 50ms (Table 5. and

Table 6.).

Table 5. PERCENTAGE OVERSHOOT FOR DQ AND Q AT 50 MS OF PREDICTION

Filter Benign Moderate Aggressive

DQ 0.00 5.22 48.0

Q 0.00 0.58 56.6

No Pred. 0.00 39.7 97.6

Table 6. FRAMEWORK PERFORMANCE FOR DQ AND Q AT 50 MS OF PREDICTION

Benign Moderate Aggressive
Filter Avg.

Err
OS

Avg.
OS

Max
Avg.
 Err

OS
Avg.

OS
Max

Avg.
Err

OS
Avg.

OS
Max

DQ 0.70 0.00 0.00 5.41 25.5 46.9 19.4 29.1 91.6

Q 0.87 0.00 0.00 5.76 20.4 23.4 30.9 33.5 122

No Pred. 0.70 0.00 0.00 21.3 43.8 88.1 66.1 90.8 275

Notes: All measurements in milliradians

 When used with benign motion, there was essentially no error using any of the prediction

methods since the orientation did not change appreciably during the prediction interval. Testing

under moderate and aggressive motion illustrates the great improvement in prediction that the Q

and DQ filters provide as compared to no prediction. For moderate motion the overshoot

percentage dropped by 35% and approached a 50% improvement for aggressive motion (Table 5.

). The Q filter provided better prediction for moderate motion than the DQ filter. Overshoot was

31

higher for the DQ than the Q during moderate motion (5.22% vs. 0.58%) but average error

(Table 6.) was not significantly different (5.41 vs. 5.76). Maximum overshoot for the DQ was

approximately twice that of the Q for moderate motion (46.9 vs. 23.4) while average overshoots

were only slightly higher for the DQ. Overall, the performance data at 50ms suggests that the

DQ filter will handle aggressive behavior better than the Q filter at the cost of performance for

moderate motion.

Looking at performance by category as a function of prediction time, we see that both filters had

similar performance but with different profiles. Average error of the DQ for moderate motion

was slightly better than the Q values when prediction time was reduced below 50 ms but

increased significantly above the Q for prediction times greater than 50ms (Fig. 8.).

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120

prediction time (ms)

e
rr

o
r

(m
ill
ir
a

d
ia

n
s
)

DQ (moderate)
Q (moderate)

DQ (aggressive)
Q (aggressive)

Fig. 8. Average error for moderate and aggressive head motion as a function or prediction time (compound error
in degrees). The DQ performs better with aggressive motion than the Q but is slightly worse when using
moderate motion data at prediction times above 50 ms..

32

With aggressive data, average error was lower in the DQ then the Q at all prediction times. The

overshoot average (Fig. 9.) and percentage overshoot (Fig. 10.) was always lower with the Q

than the DQ for moderate motion but the DQ was better with aggressive motion.

0

20

40

60

80

0 20 40 60 80 100 120

prediction time (ms)

e
rr

o
r

(m
ill

ir
a

d
ia

n
s
)

DQ (moderate)
Q (moderate)

DQ (aggressive)
Q (aggressive)

Fig. 9. Average overshoot vs. prediction time for moderate and aggressive head motion (total overshoot in

degrees). The Q performs much better with moderate motion but is much worse with aggressive motion.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00

prediction time (ms)

p
e
rc

e
n
ta

g
e

DQ (moderate)

Q (moderate)
DQ (aggressive)

Q (aggressive)

Fig. 10. Percentage overshoot as a function of prediction time for moderate and aggressive head motion (percentage

of sample size).

33

Maximum overshoot (Fig. 11.) showed the Q had better performance during moderate motion

but worse performance during aggressive motion.

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120

prediction time (ms)

e
rr

o
r

(m
ill
ir
a
d
ia

n
s
)

DQ (moderate)
Q (moderate)
DQ (aggressive)
Q (aggressive)

Fig. 11. Maximum overshoot for moderate and aggressive data as a function of prediction time (shown in degrees).

Note that the Q provides the best performance with moderate motion but the DQ is better for the aggressive
case.

The DQ filter output is very responsive to changes in angular velocity since these changes

directly impact the delta quaternion, which is applied to the measured quaternion for prediction.

The Q filter however applies the delta quaternion to the quaternion state which is dependent on

not only the quaternion measurement, but also the Kalman gain (per the correction process).

Changes in the delta quaternion for the Q filter are not directly reflected in the output, they must

propagate through the filter, slowing the response and increasing the error for aggressive motion

or increased prediction time. The reduced performance of the DQ with moderate motion is

primarily due to larger overshoots since the average error is not significantly different from the

Q. The improved responsiveness of the DQ helps it perform better under aggressive motion but

also causes it to suffer from increased overshoot during moderate motion.

34

The DQ and Q filters were also tested with ten different full motion data sets to measure

expected performance in a VR simulation environment. All performance measurements of the

ten sets were calculated across the combined 100,000 frame sample time (13.88 minutes) to

create a profile for the DQ and Q filters as a function of prediction time. The DQ filter provided

improved performance in all error measurements when using full motion data at any prediction

time. The improved aggressive motion performance of the DQ allows it to respond quickly to

sudden movements, reducing the average error across the entire simulation interval (Fig. 12.).

0.00

0.40

0.80

1.20

1.60

10 60 110

prediction time (ms)

e
rr

o
r

(m
ill

ir
a
d
ia

n
s
) DQ

Q

Fig. 12. Average error vs. prediction time for full motion data shows the DQ outperforming the Q framework for all
prediction times.

35

Overshoot average was slightly improved with the Delta Quaternion filter (Fig. 13).

0

10

20

30

40

50

10 60 110

prediction time (ms)

e
rr

o
r

(m
ill

ir
a
d
ia

n
s
)

DQ

Q

Fig. 13. Average overshoot was marginally better for the DQ with the full motion data.

Overshoot percentage (Fig.14) and maximum overshoot (Fig. 15) were significantly improved

with the Delta Quaternion prediction as compared to the Quaternion.

0.00

10.00

20.00

30.00

40.00

50.00

10.00 60.00 110.00

prediction time (ms)

p
e
rc

e
n
ta

g
e

DQ

Q

Fig. 14. The DQ had a lower overshoot percentage than the Q at all prediciton times, with almost 10%

improvement at 110 milliseconds.

36

0.00

5.00

10.00

15.00

20.00

10.00 60.00 110.00

prediction time (ms)

p
e
rc

e
n
t

DQ

Q

Fig. 15. Maximun overshoot was significantly improved with the DQ at all prediction times using full motion data.

The results for the full motion simulations suggest that the improved performance of the DQ

during aggressive motion is a dominant factor in the overall performance of the prediction

process.

2.5.5 NOISE PERFORMANCE

The prediction process introduces noise into the quaternion data when it projects the current head

velocity forward in time. Small changes in the estimated velocity caused by the prediction-

correction behavior of the Kalman filter are amplified by the prediction process. For this

experiment, output noise was estimated as the difference between the output data and a smoothed

version of itself, expressed in dB. The expectation was that output SNR would drop as the

prediction time increased. As shown in Figure 16, the SNR dropped approximately 7 dB when

prediction was increased from 0 ms to 120 milliseconds.

37

The two filters displayed nearly identical noise performance with the DQ filter being slightly

better than the Q (Fig. 16).

56

57

58

59

60

61

62

63

64

0 20 40 60 80 100 120

prediction time (ms)

d
B

DQ

Q

Fig. 16. Output SNR (dB) as a function of prediction time (milliseconds) was nearly identical for the two

frameworks (full motion data).

The DQ displayed increasing output noise as the head motion changed from benign to aggressive

(Fig. 17.).

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0 50 100

prediction time (ms)

d
B

benign moderate
aggressive full motion

Fig. 17. DQ framework output SNR (dB) versus prediction time (milliseconds) by motion category (benign,
moderate, aggressive and full range head motion). Note that the full motion category has nearly the same
SNR performance as the moderate motion one.

38

The full motion data set provided similar noise performance to the moderate data, suggesting that

it is a relatively equal weighting of the three data categories. The 0 ms prediction case indicates

that the majority of the change is caused by the tracker, not the prediction algorithm.

2.6 SUMMARY

The Delta Quaternion filter reduces the computation requirements of quaternion orientation

prediction while reducing overshoot. This novel filter provides the performance of the

Quaternion filter with a much smaller “footprint” with regard to computation requirements and

memory usage. Prediction performance was similar to the Quaternion filter but there was

increased error as motion moved toward the aggressive category. The inability of the filter to

provide accurate prediction with aggressive motion is a reflection of the wide dynamic range and

unpredictable nature of head motion. This is the first stage of DQ development, in stage two we

use multiple DQ filters to provide accurate prediction with all motion categories.

39

3 MULTIPLE MODEL DELTA QUATERNION FILTER

3.1 INTRODUCTION

The value of VR/AR in systems using head tracking is directly impacted by the degree of user

immersion. Any perceived lag between head motion and scene response causes a loss of

immersion that decreases training value [45]. Severe scene lag can disorient the individual;

causing dizziness and, in extreme cases, simulation sickness [8], [9], [10], [15], [23], [28]. The

scene rendering process in modern VR/AR environments is typically in the range of 50 ms to

100 ms, resulting in significant display lag. An effective method of lag compensation is to

predict head orientation using head tracking data, rendering the next scene ahead of time. Head

motion is extremely unpredictable, ranging from stationary pose when studying a scene, to rapid

accelerations and decelerations when tracking moving objects. A single motion model cannot

accurately handle all types of head motion, resulting in compromised performance [45], [48].

Multiple model estimation can be used to improve head tracking by combining different motion

models that target specific types of head motion.

Multiple model algorithms can be divided into three generations: Autonomous Multiple Models

(AMM), Cooperating Multiple Models (CMM), and Variable Structure Multiple Models

(VSMM) [51]. The AMM algorithm uses a fixed number of motion models operating

autonomously. The AMM output estimate is typically computed as a weighted average of the

filter estimates. The CMM algorithm improves on AMM by allowing the individual filters to

cooperate. The well-known Interacting Multiple Model Estimator (IMME) algorithm is part of

the CMM generation. The IMME makes the overall filter recursive by modifying the initial state

vector and covariance of each filter through a probability weighted mixing of all the model states

and probabilities [53]. The IMME approach was shown to improve performance in high-

40

acceleration conditions but, similar to the modified AMM method, it caused larger overshoot and

ringing. The VSMM algorithm builds on the CMM approach by varying the type of models

operating in the filter at any given time. Models are dynamically added or deleted from the filter

based on their performance, eliminating poorly performing ones and adding candidates for

improved estimation.

The Delta Quaternion filter is implemented in a multiple model framework, the Multiple Model

Delta Quaternion (MMDQ) to estimate angular head velocity and acceleration. The rationale

behind moving to a multiple model filter is two-fold; first, head motion as too wide a dynamic

range for one predictive filter and secondly, the estimation of acceleration in addition to velocity

will improve the prediction results. The MMDQ estimates angular head velocity and

acceleration from orientation data using an IMME. The IMME was modified to improve overall

performance by adding provisions to avoid numerical underflow/overflow conditions and an

adaptive transition probability matrix (TPM). The MMDQ uses three extended DQ filters to

estimate velocity and acceleration from the change in head orientation expressed as the delta

quaternion (∆q). An adaptive prediction algorithm then uses the velocity and acceleration

estimates to predict future orientation across a user specified time interval. This method differs

from other EKF-based approaches in that the prediction time is not a multiple of the data rate but

can be matched to display lag without consideration of the data rate. The decoupling of the

prediction interval from the orientation measurement rate allows the prediction process to make

full use of the faster update rate of modern orientation measurement systems.

3.2 RELATED WORK

The author conducted an initial study on using the EKF for head orientation prediction the

presented two adaptive approaches [11]. The first adaptive method modified the EKF predicted

41

error covariance to improve tracking performance when head motion changed. Although

tracking performance improved, the fading memory algorithm also resulted in increased noise in

the predicted orientation. A second adaptive method (R-Adaptive) modified the measurement

noise covariance of the EKF in response to the noise level of the predicted orientation. The R-

Adaptive successfully controlled the output noise level while improving tracking for benign head

motion, but also resulted in increased prediction error when aggressive head motion occurred.

The author has previously presented the delta quaternion EKF as a new approach to head

orientation prediction [47]. The delta quaternion method removes the quaternion orientation

from the EKF, significantly reducing the computation requirements. The study found that the

delta quaternion EKF was superior to the well-known quaternion EKF [38], [39] for aggressive

head motion but was slightly inferior for moderate head motion. There was no difference

between the two approaches for benign head motion.

A modified AMM algorithm was used by Kyger and Maybeck [45] to compensate for latency.

Individual filters were designed for look-angle tracking based on First-Order Gauss-Markov

Acceleration (FOGMA), Velocity (FOGMV), and Constant Position (CP) models. The three

filters ran independently and were reinitialized when divergence was detected. A restart

algorithm was added to the AMM framework to keep the individual filter state vectors in the

locality of the overall filter state vector, allowing rapid transition between filters as the type of

motion changed. The modified AMM filter reduced lag significantly but suffered from increased

overshoot and ringing. The filter used one-step prediction to compensate for latency, thus

limiting the frame rate to the required prediction time in the application. Additionally, the

approach did not provide complete orientation data, choosing to supply look-angle only. Liang

et al. developed a head motion prediction method based on Kalman filtering [28]. The proposed

42

system predicted head orientation using a filter model that decoupled the four quaternion

components, filtered them independently with separate EKFs, and then recombined them to form

the predicted quaternion value. A study of predictive filtering methods was conducted by et al.

[7]. Their work found that the EKF provided the same performance in typical VR/AR

applications as other predictive filtering methods including particle filters and the unscented

Kalman filter. Yang et al. studied the use of the EKF in single filter and multiple model

frameworks for conflict detection algorithms [46]. Their study found that the single Kalman

filter provided some advantages during mode transitions but the multiple model approach

performed better overall.

Ali et al. used delta quaternions to control attitude in the Mars Exploration Rover [49]. Their

approach estimates the change in orientation and then corrects it using measurement data from a

variety of instruments including accelerometers, and gyroscopes. Cheon and Kim estimated

spacecraft attitude using quaternion’s [59]. Their work used a magnetometer and gyroscope to

estimate quaternion orientation with an unscented Kalman filter. Marins et al. used delta

quaternion’s with Kalman filtering to construct MARG (Magnetic, Angular Rate and Gravity)

sensor [35]. A study by Sabatini combined a gyroscope, an accelerometer, and a magnetometer

to measure orientation for biomedical applications [36]. Each of these studies uses angular rate

data to estimate quaternion orientation with Kalman filtering. In our study, we estimate angular

rate from orientation data, and then use it to predict orientation.

The concept of Delta Quaternion, which hinges on the idea of building an error quaternion using

quaternion composition rather than quaternion subtraction, is at the heart of what is known as the

Multiplicative Extended Kalman Filter (MEKF) [39], [62], [63]. The MEKF has been used not

43

only to estimate the quaternion, but also to estimate angular velocities as well as typical sensor

errors, such as biases, alignments, and orientation measurements.

3.3 BACKGROUND

3.3.1 QUATERNIONS AND DELTA QUATERNION

Unit quaternions are popular four-parameter orientation representations with one constraint that

avoids the singularities of Euler angles and is more compact than rotation matrices. A

quaternion (q) provides, a convenient mathematical notation for representing orientation as a

rotation (θ) about a unit vector (û) located in three-dimensional space (39) [16], [44], [58].

 () ()[]Tuq 2sinˆ2cos θθ= (39)

When constrained to the unit sphere, quaternions provide a unique representation of orientation,

but implementation issues cause a sign ambiguity (±q is the same rotation). Since this work

estimates the change in rotation and applies it in quaternion space, it is not affected by this

ambiguity. The rotation component of the quaternion (cos(θ/2)) is forced position to avoid the

ambiguity from causing arithmetic problems. The Delta Quaternion (DQ) filter predicts future

head orientation from the change in quaternion orientation, computing the change in orientation

(∆q) as a function of the estimated head velocity. To rotate an object, the orientation q(k) of the

object is multiplied by the desired change in rotation, i.e. the DQ ∆q(k) defined as (40). Note

that the product is determined using a quaternion multiplication (⊗).

 () () () () () ()() 1
11

−
−⊗=∆→−⊗∆= kqkqkqkqkqkq (40)

The DQ filter converts quaternion data to delta quaternions in real time and then applies Kalman

filtering, removing the quaternion orientation from the filter state variable and reducing the

44

computational load when compared to quaternion filtering. The average angular velocity

between measurements is estimated as an Euler value (azimuth, elevation, and roll), and then

corrected with the measured change in orientation. The relationship between the delta

quaternion and average angular velocity (ω) given by Chou [16] is used to convert Euler velocity

to delta quaternions. When acceleration values are used, they are used to modify the average

velocity which is then converted to delta quaternions.

3.3.2 EXTENDED KALMAN FILTER

The Extended Kalman filter (EKF) provides a method of applying the Kalman filter prediction-

correction behavior to non-linear systems [13], [31]. In the EKF, the non-linear state equation

f(x(k-1) ,u(k-1), w(k-1)) relates the state at time k (x(k)) to the previous state (x(k-1)) (41).

Additional parameters in the non-linear state equation are a driving function b (which is not used

in this application) and process noise w, where w has the property of the zero-mean white

Gaussian noise. The measurement equation (42) relates the state vector (x(k)) to the

measurement data through the measurement function h(x(k),v(k)).

 () () () ()()1,1,1 −−−= kwkbkxfkx (41)

 () () ()()kvkxhkz ,= (42)

In reality, the process noise is not exactly known at time k so the state equation is an

approximation (x(k|k-1)) of the true next state (x(k)) as a function of the previously corrected

state (x(k-1|k-1)). The notation x(k|k-1) is used to express the state vector at time step k

conditioned on the previous state vector at time step k-1. Similarly, the measurement function

produces an approximation (z(k|k)) of the measurement data (z(k)) due to the unknown value of

the measurement noise v, where v has the property of the zero-mean white Gaussian noise at time

45

k. The governing equation for the EKF state estimate approximates the true state vector (x(k))

and the true measurement (z(k)) using a Taylor expansion about conditional state (x(k|k-1))

(43),(44).

 () () () () ()() () ()11|111| −⋅+−−−−⋅+−≈ kwkWkkxkxkAkkxkx (43)

 () () () () ()() () ()kvkVkkxkxkHkkzkz ⋅+−−−−⋅+≈ 1|11| (44)

The A and W in (43) are the Jacobian matrices of partial derivatives of the state equation (40)

with respect to the state vector x and the process noise w, respectively. The true measurement

(z(k)) relates to the approximate measurement (z(k|k)) using the two matrices (H and V) and the

measurement noise v (43). The H and V in (44) are the Jacobian matrices of partial derivatives

of the measurement function h with respect to the state vector x and measurement noise v,

respectively.

46

3.3.3 INTERACTING MULTIPLE MODEL ESTIMATOR

The Interacting Multiple Model Estimator (IMME) has four distinct steps: interaction, filtering,

mode probability update, and combination [47], [50], [53], [55] [56]. Figure 18 depicts a two-

filter IMM estimator where x is the system state and z is the measurement data. Note that the

previous state of each filter is reinitialized by the interaction stage each time the filter iterates.

Fig. 18. The IMME is a four-stage filter that combines different state models into a single estimator to improve
performance.

47

3.4 FILTER DESIGN

3.4.1 MMDQ DESIGN

The MMDQ filter builds upon previous work with the DQ filter [47], improving on the DQ

framework by replacing the single EKF with a three-model modified IMME [20] and changing

the prediction algorithm to take advantage of the additional resources of the MM state vector.

The overall MMDQ filter can be broken into seven separate processes: delta quaternion

computation, transition probability matrix update, probability and state mixing, extended Kalman

filtering, weighting coefficient computation, state vector combination, and orientation prediction

(Figure 19). The MMDQ filter does not include the quaternion state in the filter state vector,

significantly reducing the complexity of the Kalman filters.

Compute weighting

coefs

Probability covariance

and state mixing

Calculate overall state vector and probability covariance

DQ EKF filter 1 DQ EKF filter 2 DQ EKF filter 3

Delta quaternion computation

Quaternion

measurement

Quaternion
Prediction

Adaptive prediction TPM update

Fig. 19. The MMDQ expands the DQ approach to use a three-model IMME for head tracking. The IMME is
modified to include an adaptive transition probability matrix (TPM) for improved tracking. An adaptive
algorithm predicts future orientation from the IMME state estimate and the measured orientation.

48

The IMME mode-switching process is assumed to be a Markov chain with a known mode

transition probability matrix (TPM). The TPM can be estimated from off-line data as a function

of the expected sojourn time in each model [51], [54]. Although a fixed TPM can provide good

results in most cases, the widely varying nature of a head tracking application presents large

demands on the TPM estimation procedure [41]. For this experiment an adaptive algorithm for

TPM estimation operating on an initial estimate will be used. For this discussion equation

notation will use subscripts for individual matrix elements (Mi,j) and bracketed superscript to

identity matrix columns (M<i>).

A cost-effective method of computing the on-line TPM using a quasi-Bayesian estimator was

presented by Li and Jilkov [51]. This method first computes the mixture probability density

function (PDF) gi,j for the jth state element of the ith model from the likelihood function (L), the

weighting coefficients (µ) and the previous TPM (Π) (45). Next, the Dirichlet distribution

parameters γ are calculated from the PDF (g), and the previous parameters (46).

 ()
() () ()() ()

()() () ()kLkk

kLkkLk

kg
T

Tj

ji

ji
⋅Π⋅






 ⋅Π−⋅

+=+
µ

µ
11,

 (45)

 () ()
() ()

() ()kgk

kgk
kk

jijij

jiji

jiji

,,

,,

,, 1
⋅∑

⋅
+=+

γ

γ
γγ (46)

49

Finally, the new TPM (Π) is computed as the average of the Dirichlet distribution parameters

over previous k frames (47); which have been modified to prevent any element of the TPM from

reaching zero by enforcing a minimum value of 10-50. A zero element in the TPM can produce

divide-by-zero exceptions in the implementation of the filter and must be avoided [57].

 () ()





⋅

+
=+Π − k

k
k

jiji ,

50

,
1

1
,10max1 γ (47)

The initial value of the TPM will be determined through analysis of a dataset that is

representative of a typical head tracking application. Each frame of the data will be identified

with a specific motion model. The TPM elements will then be computed as the single step

probability of each mode transition. The adaptive computations above are inserted in the IMME

structure before the probability mixing stage.

The probability covariance and state vector of each EKF in the IMME are biased toward the

overall solution of the IMME before the filters iterate. Each EKF filter is adjusted to the overall

solution to prevent filter divergence, keeping the filter state near the operating point of the

IMME. The MMDQ modifies this stage by applying a minimum value to the mixing coefficients

and weighting coefficients to prevent any value from reaching zero. The recursive nature of the

IMME can result in a filter being dropped from use once it’s weighting coefficient reaches zero

[57]. The addition of a lower limit to the mixing process assures that a filter with high error can

be effectively removed from the state estimation process without permanently dropping it from

the MMDQ.

Head motion is very unpredictable, ranging from benign, stationary pose to erratic, aggressive

target tracking. The MMDQ deals with these wide variations by switching between multiple

50

filters; each designed to handle a specific type of head motion. The high measurement rate of the

electromagnetic trackers allows for the use of simple motion models such as the constant

velocity (CV) and constant acceleration (CA) models. The weighting coefficients are computed

using the standard IMME method, computing each coefficient as the product of the previous

frame coefficient and the likelihood function. After computation, the weighting coefficients are

normalized and a lower bound is applied to avoid zero values that can affect the mixing process.

The state vector combination uses the weighting coefficients to generate the overall state vector

and probability covariance.

3.4.2 DELTA QUATERNION FILTER DESIGN

Multiple Model approaches are often used to improve prediction by using multiple instances of

the same model, each tuned to handle a different type of head motion [48]. We have chosen to

use two constant velocity (CV) filters and a constant acceleration (CA) filter, each with different

process noise. The high data rate of the simulation environment (120 Hz or more) allows us to

use simple motion models such as the CV and CA for head tracking, reducing the complexity of

the Kalman filters. The first CV filter will have low level white noise and will be designed for

slow changing and stationary orientation. The second CV filter will have high level white noise

and is intended for moderately changing head orientation. The CA filter will have high level

white noise to handle large changes in acceleration such as starts and stops.

51

3.4.2.1 Constant Velocity Filter

The Constant velocity filter uses a state vector (xCV) (48) containing the corrected average

angular velocity (ω(k|k)) to estimate the delta quaternion ∆q.

 () ()[]kkkxCV |ω= (48)

 The CV model state equation fCV(x, w) predicts the next state vector (xCV(k|k-1)) as a function

of the corrected state vector from the previous frame (xCV (k-1|k-1)) and the process noise (w).

Since the CV model assumes that velocity does not change between measurements, the estimated

velocity (ω(k|k-1)) is a linear function of the corrected angular velocity state (ω (k-1|k-1)),

process noise (w) and the frame period (τ) (49).

 () ()() () () τω ⋅−+−−=−− 11|11,1 kwkkkwkxfCV (49)

The measurement equation h(x, v) converts the estimated angular velocity to a delta quaternion

(50). Note that the delta quaternion CV filter has a linear state equation (49) but a non-linear

measurement equation (50). The measurement equation is identical in both of our motion

models and therefore does not carry a model subscript.

 () ()() ()kvkkqkvkxh +−∆= τω ,1|)(),((50)

The A matrix for the CV model (ACV) is the partial derivative of (11) at time k with respect to

state (x); this reduces to the identity matrix (51). The W matrix for the CV model (WCV) is the

partial derivative of (49) with respect to process noise (w), reducing to the frame time (τ)

multiplied by the identity matrix (52). The V matrix is the partial derivative of (50) with respect

52

to measurement noise (v), evaluated at the current state. Both of our EKF implementations

assume that the measurement noise is additive which reduces V to the identity matrix (53).

() () ()()
0

,1
=









−

∂

∂
=

w

CVCV

CV

CV kwkxf
x

kA

 IACV = (51)

() () ()()
0

,1
=







−

∂

∂
=

w

CVCVCV kwkxf
w

kW

 () IkWCV = (52)

() () ()()
0

,1|
=







−

∂

∂
=

v

kvkkxh
v

kV

 () IkV = (53)

53

The H matrix at time step k is the partial derivative of (50) at time step k with respect to the state

variable (x). Expressing H as three column vectors, the general form is a function of the

estimated delta quaternion (∆q(ω(k|k-1),τ)), the estimated angular velocity (ω(k|k-1)) and the

sample period (τ), all at time k (54).

() ()()[]0,1| −
∂

∂
= kkxhkH

CVCV ω

 ()()
()

()

()




























∆
+∆−∆

∆
+∆−∆

∆
+∆−∆

∆⋅−

=

+
+

+
+

+
+

+

i

i
iiT

i

i
iiT

i

i
iiT

i

i

CV

q
qq

q
qq

q
qq

q

kH

i

i

i

ω
δτω

ωω

ω
ω

δτω
ωω

ω
ω

δτω
ωω

ω

τ

1
2,10

2

1
1,10

1

1
0,10

0

1
4

 (54)

Where () ()()τωωω ,1|1| −∆=∆−= kkqqkk

and δi,j is the Dirac function




≠

=
=

jiif

jiif
ji

0

1
,δ

3.4.2.2 Constant Acceleration Filter

The constant acceleration (CA) filter models the changes in quaternion orientation as incremental

accelerations between measurements [52]. The state vector of the CA filter at time k (xCA(k))

contains the corrected angular velocity (ω(k|k)) and corrected angular acceleration (α(k|k)) (55).

 () () ()[]T
CA

kkkkkx || αω= (55)

54

The CA state equation fCA(x ,w) expresses the predicted velocity (ω(k|k-1)) as the sum of the

velocity state (ω(k-1|k-1)) and the product of the angular acceleration state (α(k-1|k-1)) the frame

time (τ) and the process noise (w) (56). The predicted angular acceleration (α(k|k-1)) is the sum

of the current acceleration state (α(k-1|k-1)) and the product of the process noise (w) and the

frame time (τ). The CA filter uses that same measurement equation as the CV filters (50).

 () ()()














+

++=−−
τα

τ
ατω

w

w
kwkxfCA 21,1

2

 (56)

The A and W Jacobian matrices for the CA filter (ACA, WCA) can be derived by inspection from

the expanded form. The ACA matrix (57) and WCA matrix (58) are derived separately for the CA

filter but the V matrix is unchanged since we are using the same measurement model (50).

() ()()0,1−
∂

∂
= kxf

x
kA CACACA

 






 ⋅
=

I

II
ACA

0

τ
 (57)

() ()()0,1−
∂

∂
= kxf

w
kW

CACACA

T

CA IIW 







⋅⋅= τ

τ

2

2

 (58)

55

The H matrix for the CA filter (HCA) contains the partial derivatives of the measurement equation

(50) with respect to each of the state variables (48). The general form of HCA uses the same three

column vectors of (54) but with the CA model used to compute the predicted angular velocity.

Three additional columns containing the partial derivatives with respect to acceleration are then

appended (59).

 () ()() ()()





−

∂

∂
−

∂

∂
= 0,1|0,1| kkxhkkxhkH CACACA

αω
 (59)

The three partial derivatives of (50) with respect to acceleration (α) are functions of estimated

angular velocity (ω(k|k-1)), estimated delta quaternion (∆q(ω(k|k-1),t)) and the sample period

(τ). The HCA matrix can be expressed in a compact form by noting that the partial derivative with

respect to angular acceleration (α) differ only in a term of τ from the partial’s with respect to

angular velocity (w) (60).

 () [] ()()





−

∂

∂
⋅⋅= 0,1| kkxhIIkH CACA

ω
τ (60)

3.4.3 ORIENTATION PREDICTION

Future orientation is estimated by computing the delta quaternion (∆q) expected during the

prediction interval (δ) from the corrected state estimate (x(k|k)) and applying it to the current

quaternion state estimate (q(k)). The prediction interval is divided in N=δ/τ time steps and the

velocity for each of the N steps is computed by applying the CV and CA models to the current

MMDQ state estimate (x(k|k)) . The weighted average of each of the N steps is computed using

the model weighting (uCV(k), uCA(k))from the MMDQ (61). The delta quaternion of each step is

computed and applied recursively to determine the quaternion orientation (qE) after each

56

complete time step in the prediction interval (62). The predicted quaternion orientation for time

step k (qP
(k)) is computed from the final version of qE, including any additional partial step time

in the prediction interval (63).

 () () () () () ()()ταωωω ⋅+⋅+⋅=+ kkkukkuknk CVCACACVCV| (61)

 () ()() ()() ()knkqknkqNnknkqE |1,|,| −+⊗+∆=≤+ τω (62)

 () () ()() ()NnnkqNknkqkq EP =+⊗−⋅+∆= |,| δτω (63)

() NntruncN K1== τ
δ

3.5 EXPERIMENTAL RESULTS

Head motion data was collected using a Polhemus Liberty AC magnetic tracker to provide

measured data for the experiment. The experiment setup used a single sensor attached to the rear

of a helmet with the magnetic source rigidly mounted approximately 0.2 m from the sensor.

Each of the collected datasets contains 100,000 sequential head orientation samples collected at a

120 Hz measurement rate.

A quaternion orientation dataset was collected for three specific head motion categories (benign,

moderate and aggressive motion). The three motion categories were chosen to correlate with

those used by Kyger [45] in his experiment with multiple model head orientation prediction. In

their experiment, Kyger and Maybeck assembled these three motion categories from data

captured during simulator missions with experienced pilots at Armstrong laboratories. For this

experiment head orientation data was created for each of these categories to closely match that of

the Kyger experiment by carefully controlling head motion while recording head orientation.

57

In Figure 20 the normalized histogram of each of the datasets is seen to occupy a separate region

of the angular velocity range. The benign motion dataset has a distribution that is sharply

defined with very little acceleration content as would be expected when the pilot studies a

stationary object. The moderate data set has a wider range of values that represents smooth

motion as the pilot scans the airspace. The aggressive dataset distribution is very broad and

represents fast, erratic motion and has a similar maximum value (14.6 radians/sec2; Table 7.) to

that used by Kyger.

Fig. 20. A histogram of the benign, moderate and aggressive motion sets normalized to the same frequency scale.
Note that three motion models define specific ranges of angular acceleration with overlapping regions. The
aggressive motion histogram is only partially shown.

Table 7. ANGULAR HEAD MOTION BY DATASET

Velocity (radians/s) Acceleration (radians/s2)

Dataset mean stdev Max. mean stdev Max.
Benign 3.8e-3 2.0e-3 0.08 0.06 0.03 1.02

Moderate 0.32 0.03 0.76 0.47 0.25 3.27

Aggressive 1.05 0.22 2.83 4.00 3.07 18.6

Motion 0 0.27 2.92 1.02 0.98 3.90 10.8

Motion 1 0.36 2.82 2.92 1.20 4.37 14.6

58

Two additional datasets (Motion 0; Motion 1) were taken with a full range of head motion for

performance evaluation (motion 0; motion 1). Each of the full motion datasets features a

complete range of head motion data from benign, stationary pose, to wildly aggressive tracking

motions, at random intervals similar to that expected in a simulation environment. A histogram

of the angular acceleration in each of the two motion datasets (Figure 21) shows that these

datasets are predominantly moderate and benign motion with short random bursts of aggressive

motion.

Fig. 21. A histogram of the angular head acceleration for the two full motion datasets shows the head is generally
experiencing moderate or benign motion. Note that the “tail” of each histograms id not shown to emphasis
the peak near 0.25 radians/sec2.

The angular acceleration in the two full motion datasets (Motion 0 and Motion 1) have a large

standard deviation (~ 4 radians/s2) and a small mean value (~1 radian/s2) indicating the head

experiences short bursts of high acceleration (Table 7.).

59

3.5.1 MMDQ CONFIGURATION

The full motion data sets (Motion 0; Motion 1) were evaluated to determine if the maneuvering

index [64] of the collected datasets requires the IMM. The maneuvering index (λ) is the ratio of

the standard deviation of the process noise to the standard deviation of the measurement noise.

The CV process noise of each point was computed using a 12 point sliding window centered on

the point. The DQ filter uses a delta quaternion measurement to estimate angular velocity and

therefore a direct comparison the process and measurement noise is not possible. To calculate

the maneuvering index, the delta quaternion data was converted an angular velocity

measurement from which the measurement noise was derived. The full-motion datasets contain

points with a maneuvering index greater than 0.5 (Fig. 22.), indicating that the IMM will

provide improved tracking over a single EKF [64].

Fig. 22. A segment of the Motion 0 and Motion 1 datasets that display a large maneuvering index value. The large
dynamic range of the data as it changes from benign motion to aggressive motion cannot be handled by a
single EKF without large estimation errors.

60

 The distribution of λ shows that a single EKF has adequate bandwidth for more than 75% of the

samples (Table 8.) but there will be outliers that will be difficult for the filter to track. Given the

narrow band of the maneuvering index, a three filter MMDQ may not be necessary. To

investigate this, a 2 model (MMDQ2) was implemented in addition to the originally proposed 3

model version (MMDQ3) A CV model EKF (DQEKF-CV) and CA model EKF (DQEKF-CA)

were also implemented to provide a performance comparison to the single stage DQ.

Table 8. MANEUVERING INDEX (λ) DISTRIBUTION FOR FULL MOTION DATASETS

1st Quartile

Median

3rd Quartile

98 percentile

Motion 0 0.16 0.26 0.48 1.07

Motion 1 0.17 0.28 0.49 1.07

The three filter MMDQ (MMDQ3) will use a CV filter for (0.25 ≤ λ < 0.75) (CV1), a CV filter

for (0. 5 ≤ λ < 1.0) (CA1) and a second CA filter for (λ > 1.0) (CA2). The small number of

points served by the CA2 filter in the MMDQ3 configuration raises the question of whether a

two filter configuration provides similar performance. The two filter configuration (MMDQ2)

that uses a CV filter tuned for midrange (0.25 < λ < 0.75) (CV1) and a CA filter for the moderate

motion (0.25 ≤λ < 0.75) will also be implemented. The individual filters are tuned at the

midpoint at the assigned maneuvering index range (Table 9.).

Table 9. MMDQ FILTERS VS. MANEUVERING INDEX (λ)

Filter Type

MMDQ3

MMDQ2
CV1 0.5 0.5

CV2 1.0 0.5

CA2 8.0 0.5

61

The initial value of the transition probability matrix (TPM) was estimated by assuming that all

state changes were the result of a single step Markov chain. The assigned ranges of λ were then

used to assign a filter to each frame of the Motion 0 dataset.

3.5.2 TPM INITIALIZATION

The probability of a transition from filter i to filter j (Πi,j) is the number of transitions from i to j

(Ni,j) in the dataset divided by the total transitions from filter i (Σj Ni,j) (64). A TPM was

generated for the IMM3 (65) and MMDQ2 (66) configurations using the described process.

 ∑=Π
j

jijiji NN ,,, (64)

















=Π

749.0250.0001.0

014.0917.0069.0

001.0029.0970.0

3IMM (65)

 







=Π

935.0065.0

029.0971.0
2IMM

 (66)

The probability of transitions between the low process noise CV1 filter and the CA1 filter in the

MMDQ3 (65) were initially set to zero based on the procedure outlined above. It was reasoned

that the high data rate of the tracker (120 Hz) was eliminating direct transitions between these

two filters and forcing them to transit through the CV2 filter. Experimentation with the TPM

showed that allowing transitions from CV1 to CA1 improved tracking by reducing the mode

transition time at the onset of accelerations. A small transition probability in the CV1/CA1

location was sufficient to allow CV1/CA1 transitions.

62

3.5.3 MEASUREMENT NOISE

The measurement noise (v(k)) is common to all three filters since the measurement equations are

identical. To find v(k) for a dataset, a smoothed version of the data set is subtracting from the

measurement. This method was chosen so as to include dynamic errors of the tracker in the

computation. Stationary measurement data originally taken for this process was found to have

very little noise (<-90 dB) and was not representative of the measurement noise with motion

data. For this experiment the individual components of the delta quaternion are assumed to be

independent variables, allowing the standard deviation of the measurement noise (67) to be used

instead of the complete covariance matrix. These are typical values used for the experiments, the

actual values were determined during the simulations to support the use of multifold cross

validation.

 []T
V

eeee 0592.70522.80322.00609.2 −−−−=σ (67)

3.5.4 Process Noise

The process noise for each filter was determined from an assigned maneuvering index (λ) that

represents the range of motion the filter is expected to cover. For the MMDQ filters, the values

from Table 3 where used, centered in the assigned range of λ. For the EKF filters, the

maneuvering index was set at λ = 0.5 for both the CV (DQEKF-CV) and the CA (DQEKF-CA)

versions of the DQ filter. The EKF filter tuning is biased toward moderate motion to provide

better performance during aggressive motion.

63

The standard deviation of the process noise (σw) was found by applying the measurement noise

(σv) and time step to λ. Note that the equation for the CV filter model process nose (66) is

slightly different than that for the CA filter model (67).

 τσλσ
vwCV

⋅= (68)

2

τσλσ
vwCA

⋅= (69)

The final tuning values for each of the filters as row vectors with each vector containing σv

values for the azimuth, elevation and roll components of the angular velocity (in that order)

(Table 10.). These tuning values were determined by reviewing simulation results to find a near

optimal result.

Table 10. MMDQ PROCESS NOISE FILTER TUNING VALUES

CV1

CA1

CA2

MMDQ3 [1.48, 0.63, 0.72] [353, 152, 175] [708, 304,350]

MMDQ2 [1.48, 0.63, 0.72] [353, 152, 175]- -

EKF-CV [1.48, 0.63, 0.72]

EKF-CA - - [176, 76, 86]

The final MMDQ2 values have the CV1 filter identical to the individual DQEKF-CV and a high

process noise CA filter. The MMDQ3 uses the same tuning for the CV1 and CA1 filter, adding

the CA2 filter for very aggressive motion. Notice that the DQEKF-CA uses a much lower

process noise than the MMDQ2-CA1. The high gain of the CA1 filter in the MMDQ precludes

its use as a standalone filter like the DQEKF-CA due to compromised performance with low

acceleration data like the benign motioned dataset.

64

3.5.5 ANGULAR VELOCITY ESTIMATION

The performance for each of the four filters was evaluated using a 10-fold cross validation

process with a 10K sample validation interval and a non-overlapping 90K sample training

interval. For the full motion data sets (Motion 0 and Motion 1) the filters were tuned from the

training set and performance was measured using the results obtained by running the validation

data through the filter. The motion specific datasets (benign, moderate and aggressive) used a

similar approach except that tuning was determined by a training interval in the Motion 0 dataset.

This approach provided for the evaluation of filter performance for the specific motion

classification while tuning the filter for full motion data.

The DQEKF-CV had the lowest maximum error with all three of the motion specific datasets but

had higher median error for benign and aggressive motion, suggesting that the CV motion model

is “smoothing” the velocity curve, cutting the min/max values while loosely following the

normal waveform. This behavior is expected since the lower dynamic range of the single CV

filter cannot respond quickly to changes in velocity, resulting in a response similar to a sliding

window average. The EQEKF-CA filter had the best overall results with full motion data with a

low median and maximum error. This CA filter is more responsive than the CV, allowing it to

closely follow the true velocity. However, the higher gain of the filter is problematic during

benign motion where it has the largest errors or all four filters.

The MMDQ filters have varying behavior based on filter type (2 vs. 3 filters) and motion type.

The MMDQ2 has good performance with the benign motion set, but the worst performance with

the moderate and aggressive sets. The MMDQ3 had the good results for all four datasets,

65

including the full motion dataset. This pattern indicates that 3 filters in the MMDQ3 are

allowing it to rapidly change motion models to remain converged on the velocity waveform.

Table 11. MMDQ VELOCITY ESTIMATION ERROR BY MOTION CATEGORY

 Full Motion Benign Motion Moderate Motion Aggressive Motion

 mean median max mean median max mean median max mean median max

MMDQ2 24.3 18.5 207 3.60 3.00 40.6 16.7 14.9 79.3 40.8 32.3 295

MMDQ3 23.0 17.1 205 3.63 3.01 40.6 15.4 13.8 74.3 38.5 31.5 295

DQEKF-

CV

22.3 15.6 233 4.05 3.49 38.8 13.4 11.8 66.8 42.6 35.1 259

DQEKF-

CA

23.9 17.4 218 5.34 4.51 47.4 16.5 14.2 89.5 43.6 35.8 299

Note: all values are in milliradians/s

The MMDQ3 filter provided the best overall tracking performance of any of the four filters.

With the combination of a CV filter for benign to moderate motion and a CA filter for moderate

to aggressive motion, the MMDQ provides the same or better results than any of the other filters.

The addition of a third filter to the MMDQ structure for the MMDQ3 provided little

improvement in the aggressive data set results as compared to that of the MMDQ2. The lack of

improvement with the CA2 filter is mostly likely due to the limited dynamic range of our

aggressive motion dataset. In their experiment with multiple model prediction, Kyger [45] used

an aggressive motion dataset with angular acceleration approaching 35 radians/s2 while our

aggressive dataset had a maximum acceleration of 18 radians/s2. An examination of the model

weighting in the two MMDQ filters (Figure 23) shows that the MMDQ3 is using the CA2 model

for high accelerations that use the CA1 model in the MMDQ2. The MMDQ3 is mixing the CA1

and CA2 models for these intervals while the MMDQ3 is relying on the CA1 filter alone. Based

in these results, the MMDQ2 would be the better choice for our application since it has all the

performance of the MMDQ3 without the additional computational overhead. However, a data

66

set with higher acceleration (like that used by Kyger) may require more process noise than the

CA1 can provide, requiring a switch to the MMDQ3.

(a)

(b)

(c)

Fig. 23. A segment of the Motion 0 dataset acceleration illustrates mode switching in the MMDQ filters. Here we
see: (a) a plot of angular head acceleration, (b), the mixing weights for MMDQ2 and (c) model mixing
weights for MMDQ3. Note that the model switch with smooth curves in the MMDQ3 chart due to the
overlapping tuning of the three filters. The MMDQ2 is generally in one model or the other due to the wide
spacing of the filter tuning ranges. The MMDQ3 switches in smooth curves, mixing two or more filter
outputs due to the overlapping tuning ranges of the filters.

67

Table 12. MMDQ PREDICTION ERROR WITH FULL-RANGE MOTION (MILLIRADIANS)

 50 ms 75ms 100 ms

median

OS

median

OS

Max

stdev

median

OS

median

OS

Max

stdev

median

OS

median

OS

Max

stdev

MMDQ2 2.34 18.9 23.7 2.73 4.91 21.9 59.0 6.46 8.34 28.0 107 11.7

MMDQ3 2.60 19.1 33.4 3.04 5.28 22.6 67.6 6.65 8.75 25.2 107 11.4

DQEKF-CV 2.75 20.8 40.3 3.79 5.49 23.3 75.2 7.70 9.00 25.9 115 12.8

DQEKF-CA 1.99 20.6 33.0 2.66 4.36 22.9 67.0 6.10 7.58 25.1 106 10.7

Table 13. MMDQ PREDICTION ERROR WITH BENIGN MOTION (MILLIRADIANS

 50 ms 75ms 100 ms

median

OS
median

OS
Max

stdev

median

OS
median

OS
Max

stdev

median

OS
median

OS
Max

stdev

MMDQ2 0.45 0.00 5.57 0.42 0.85 0.00 10.8 0.80 1.30 17.5 17.5 1.24

MMDQ3 0.43 0.00 5.57 0.42 0.85 0.00 10.8 0.80 1.30 17.5 17.5 1.24

DQEKF-CV 0.45 0.00 5.57 0.42 0.85 0.00 10.8 0.80 1.30 17.5 17.5 1.24

DQEKF-CA 0.40 0.00 4.33 0.35 0.80 0.00 9.51 0.74 1.28 0.00 15.8 1.2

Table 14. MMDQ PREDICTION ERROR WITH MODERATE MOTION (MILLIRADIANS)

 50 ms 75ms 100 ms

median

OS
median

OS
Max

stdev

median

OS
median

OS
Max

stdev

median

OS
median

OS
Max

stdev

MMDQ2 1.94 0.00 10.0 1.17 3.81 17.5 17.5 2.29 6.19 19.3 28.2 9.9

MMDQ3 1.98 0.00 8.72 1.19 3.86 0.00 16.2 2.33 6.25 19.2 26.7 3.78

DQEKF-CV 1.99 0.00 9.38 0.12 3.88 0.00 17.4 2.41 6.27 20.0 28.3 3.88

DQEKF-CA 1.60 0.00 10.9 1.08 3.32 18.5 19.4 2.11 5.53 20.0 30.6 3.46

Table 15. MMDQ PREDICTION ERROR WITH AGGRESSIVE MOTION (MILLIRADIANS)

 50 ms 75ms 100 ms

median

OS

median

OS

Max

stdev

median

OS

median

OS

Max

stdev

median

OS

median

OS

Max

stdev

MMDQ2 3.80 19.5 21.8 2.73 9.00 22.4 61.0 6.97 16.3 25.6 117 13.1

MMDQ3 5.20 19.8 34.0 4.09 11.1 23.6 80.5 9.15 19.1 27.6 143 16.0

DQEKF-CV 6.45 21.3 48.3 5.52 12.9 24.6 100 11.2 21.5 29.2 168 18.7

DQEKF-CA 4.57 19.6 33.6 3.81 10.1 23.7 78.3 8.75 17.9 26.9 139 15.5

3.5.6 PREDICTION PERFORMANCE

The MMDQ filters and DQEKF-CA filters had very similar prediction errors across all data sets,

with the DQEKF-CA having slightly better results in terms of median error. Display lag

compensation is most concerned about overshoot performance, as this kind of error is what

causes the “swimming” effect that occurs with large display lag. Looking at overshoot

maximums (OS Max.) we see that the MMDQ filters provide the best overall performance. The

MMDQ2 tuning was provided the best results for aggressive motion (Fig. 24) and the best

overshoot performance for all datasets (Tables 12, 13, 14 and 15). The MMDQ3 had the best

results with moderate motion (Table 14).

68

Fig. 24. The mean error for aggressive motion plotted
as a function of prediction time indicates that
the MMDQ2 filter has best performance with
aggressive motion.

Fig. 25. The maximum error vs. prediction shows that
the MMDQ2 provides the lowest overshoots or
all the filters. The MMDQ3 has performance
similar to the DQEKF-CA.

The difference in performance between the MMDQ2 and MMDQ3 are due to tuning and motion

model selection. For the MMDQ2 we chose a CV/CA combination tuned with the same value as

the equivalent DQ filter. For the MMDQ3, we chose a CV/CV/CA combination with the two

CV filter tuned for benign and moderate motion. The MMDQ3 CA filter was tuned for highly

aggressive motion and did not seem to be a factor in the experiment. It should be pointed out

that the aggressive motion dataset does not contain the large accelerations of the Kyger

experiment. The datasets used by Kyger had accelerations as high as 35 radians/sec2 while the

aggressive dataset used in this experiment had a maximum of 18.5 radians/sec2. The lack of this

extreme level of acceleration may present different results with the filter.

69

3.5.7 COMPUTATIONAL REQUIREMENTS

The MMDQ contains two (MMDQ2) or three DQEKF filters so we would expect it to consume

additional bandwidth when compared to the DQEKF. As shown in Table 14, the MMDQ

imposes a significantly larger computation load than the DQEKF in both the 2 and 3 filter

versions. The MMDQ2 required more than 3 times the execution time then the DQEKF while

the MMDQ3 required more than 4 times that of the DQEKF. However, the execution time of the

MMDQ is small enough that it can easily be included in the firmware of a typical orientation

tracker. For example, the MMDQ3 was added to the Polhemus Liberty tracker used in this

study, maintaining the standard 240 Hz data rate of the tracker while improving prediction

performance.

Table 16. MMDQ COMPUTATIONAL REQUIREMENTS

Filter

Cycle Count

Execution Time

(u sec)

Normalized

Bandwidth

requirement

MMDQ2 29572 295.7 3.11

MMDQ3 44360 443.6 4.66

EKF-CV 9512 95.1 1.00

EKF-CA 9622 96.2 1.01
Notes: Cycle counts are for a single iteration of the filter and were measured by implementing each algorithm in “C” on an
Analog Devices ADSP-21161N floating point DSP operating at 100MHz.

3.6 SUMMARY

Two versions of the MMDQ (the two-filter MMDQ2 and three-filter MMDQ3) were compared

to the original DQEKF-CV and a new version using the CA motion model (DQEKF-CA). The

DQEKF-CV had the most error of four filters due to the limited dynamic range of this design.

The DQEKF-CA however had excellent results for a single stage filter. The maneuvering index

for the CA motion model indicates that the DQEKF-CA has a much wider dynamic range than

the DQEKF-CV. Comparing the maneuvering index equation for the CV (66) and CA (67)

70

motion models shows an additional time step term in the numerator. When working with a small

time step of 8.33 ms, the additional term greatly reduces the maneuvering index for a system as

compared to the CV model. The experimental results confirmed the ability of the DQEKF-CA to

be consistently better performing than the DQEKF-CV. Comparing the DQEKF-CA to the two

MMDQ filters, there were several performance measures were the DQEKF-CA had better results

than the MMDQ, specifically the mean error for benign and moderate motion.

Comparing the two MMDQ filters, we see that the MMDQ2 provides the same level of

performance as the MMDQ3 with a 30% reduction in computation load. The limited dynamic

range of the experimental data may have skewed this result. Kyger [21] used head motion data

with a much large acceleration range (approximately 2X). The lack of extremely high

acceleration data limited the expected dynamic range of the input data, allowing for better

optimization with the limited range datasets.

The MMDQ2 filter with a CV/CA filter combination provided that best trade-off of

computational load and prediction performance. The prediction requirement for the tracker has

been fully addressed with the development of the DQEKF and MMDQ series of filters

71

4 INTERPOLATION VOLUME CALIBRATION

4.1 INTRODUCTION

The use of magnetic trackers in simulation environments provides an ideal platform for head

tracking but has problems in the presence of conductive or ferrous materials. The magnetic

tracker uses a dipole field model to measure position and orientation (PnO), calculating the

mutual inductance between a magnetic source and a pickup coil sensor. The magnetic field

generated by the tracker creates eddy currents on the surface of nearby conductive materials that

interfere with tracker operation. Ferrous materials couple into the magnetic field and distort it in

the region nearby. The effect of conductive and ferromagnetic materials on magnetic trackers

was conducted by Nixon et al [67]. Position error was confirmed to vary as a fourth order

function of the transmitter separation distance. Distortion effects were seen to be highly

dependent on distance, a relatively small increase in the distance between the receiver and metal

objects reduced error substantially. The effect of conductive and ferrous materials can be

mitigated through careful control of the simulation environment but often cannot be eliminated.

In these cases, calibration methods are used to correct the tracker measurement based on a

mapping of the tracking volume. The mapping operation measures the magnetic field in the

tracking volume, capturing the relationship between distorted and true data for the compensation

algorithm.

Mapping a tracking volume is generally accomplished through use of a mechanical fixture that

precisely locates sensors with known PnO in the tracking volume, allowing the measured PnO to

be associated with a mechanical measurement. The mechanical devices must be constructed of

non-conductive, non-ferrous materials to avoid additional distortion and can range from simple

building block type assemblies that place sensors at known PnO, to motorized equipment that

72

reduce data collection time. These devices are expensive to manufacture and require trained

technicians to operate, resulting in high cost to the user.

The Interpolation Volume Calibration (IVC) mapping system was designed to provide field

mapping of a distorted environment and generate a LUT of the distortion in the mapped volume.

The system combines inexpensive equipment and a new processing algorithm to facilitate the

data collection process by inexperienced personnel. This new method requires two pieces of

mechanical equipment (in addition to the tracker) to collect data, an interpolation fixture and a

mapping fixture, both constructed from non-conductive, non-ferrous material. The interpolation

fixture is used to create a volume in the map where we can solve for the true PnO from the

collected data and the fixed geometry of the fixture. The mapping fixture is used in conjunction

with the interpolation volume to collect a data cloud containing measured field data with known

PnO. The data cloud is converted to a uniform grid look-up table (LUT) that contains the

magnetic field correction required to obtain PnO in a distorted environment. The LUT can be

directly applied to field compensation or used to construct a PnO compensation LUT.

4.2 PREVIOUS WORK

The performance of AC magnetic trackers in distorting environments has been investigated for a

wide range of applications. The distortion can be corrected using any of several approaches

including management of the tracking volume, single sensor based compensation or multiple

sensor compensation. Management of the tracking volume involves carefully selecting the

location of the magnetic sensor and source to minimize distortion. This approach is appropriate

for low distortion environments that have some flexibility on the placement of the sensor and

source assemblies. Application with higher levels of distortion or physical constraints that

require specific source/sensor configurations must use a distortion compensation approach. The

73

compensation schemes can be categorized into two groups: single sensor and multiple sensor

compensation.

4.2.1 Managing the tracking volume

Careful placement of the magnetic source and sensor in the target environment can be used to

reduce the effect of conductive and ferrous materials. A study conducted by Wagner et al. [84]

found that magnetic trackers were not ill-suited to computer-aided surgery if a careful selection

of instruments based on size and material was conducted. Milne, Chess and Johnson et al. [82]

conducted a survey of magnetic tracker accuracy and it’s susceptibility to distorting materials.

The authors found that the worst case distortion occurred when the distorter was placed next to

the sensor as opposed to being near the source. Hummel et al. [77] evaluated the performance of

a miniature sensor, concluding that careful control of the materials and geometries in the tracking

volume can significantly reduce tracking errors. Birkfellnor et al. [75] conducted a series of

experiments with electromagnetic tracking systems in surgical environments and found that

careful control of distorting materials was required to achieve adequate performance. A

comparison of magnetic trackers was conducted by Hummel et al. [77] to determine their

suitability for image guided surgery. Test results indicated that magnetic trackers were suitable

for a surgical environment if proper precautions are taken to minimize sources of distortion.

4.2.2 Single Sensor Compensation

Traditional approaches to distortion compensation use an off-line calibration process to create a

mathematical function that is used to correct the PnO data from each sensor. The tracker is used

to collect data in the distorted environment and determine the relationship between corrected and

measured PnO. Applications such as surgery that require a high degree of accuracy and

precision often use magnetic tracking in distorted environments with single sensor calibration.

74

Kindratenko [85] conducted a survey of calibration methods for electromagnetic trackers. In

each of the reviewed methods, measurement data was collected at known locations (usually a

uniform grid) to capture the relationship between distorted and true data. A polynomial function

or an LUT was then constructed to provide error correction for measurement data. In one cited

work, a neural network was used to generate the correction factor but no experimental results

were provided. A description of several distortion compensation schemes is presented by Raab

et al. [74] including polynomial and LUT approaches. Ikitis, Brederson, Hansen and Hollerbach

[72] categorize calibration techniques into three categories: analytic (polynomial), global

interpolation and local interpolation.

An eddy current compensation system using multiple frequencies to detect characteristics of the

distorting material was proposed by Jones et.al. [87]. In their work, the group estimated the

effect of eddy currents based on the ratio of the in-phase and quadrature components of

measured magnetic field. Their method is effective for frequencies in the low audio range but

suffer from range limitations due to reduced inductive coupling between the source and sensor.

Another method of eddy current compensation was proposed by Jones and Khalfin [90] that uses

additional sensors in a known geometry. These “witness sensors” are used to determine the

effective PnO of the magnetic source based on their known relative PnO to the physical PnO of

the source.

4.2.3 Polynomial Function Methods

Polynomial function calibration constructs a multivariate polynomial that generates either true

PnO or PnO corrections from distorted PnO input. The tracking volume is mapped and the data

processed off-line to create polynomial coefficients that are used at run time. A polynomial

correction algorithm was used by Nakada et al. [83] in a two-step compensation scheme for

75

laparoscopic surgery. A rigid hybrid optical/magnetic tracker was first used to map the tracking

volume just before surgery. Data was collected by moving the sensor tip around the tracking

volume in a freehand motion for approximately 30 seconds. The collected data was then used to

select one of four polynomial correction functions (1st through 4th order). Polynomial

calibration works very well when distortion is smoothly spread through the tracking volume but

is not as effective when an abrupt, localized non-linearity occurs in the mapped space.

4.2.4 Look-up-table Methods

LUT calibration techniques provide a highly localized correction factor that is very successful in

applications requiring high precision. The LUT is generally constructed on a regular grid with

small spacing (38.1 mm for example) and can accurately provide correction of random field

points through interpolation of the grid point values. In a second paper on electromagnetic

tracker calibration, Birkfellner et al. [76] studied the use of a hybrid optical/magnetic tracker in a

surgical environment. The surgical environment was first mapped with the hybrid tracker in a

uniform grid to create a correction LUT. During operation, the optical position measurement

from the hybrid tracker was used to access correction factors for the magnetic tracker stored in a

LUT. Experimental results showed a significant improvement in accuracy of the magnetic

tracker to an average error of 2.8 mm as compared to 4.6 mm for the uncompensated case.

A calibration technique using a look-up table was developed by Day, Murdoch and Dumas [69].

The system collected data on a regular grid in the target environment and computed a position

and orientation correction for each grid point. A look-up table (LUT) was then constructed,

containing the distortion present at each of the grid points. The system used linear regression to

estimate the true position by comparing the measured data to the sum of the true position and the

distortion for that position from the LUT.

76

Another LUT-based correction method was proposed by Ghazisaedy et al. [71]. Data was

collected using an ultrasonic device on a regular grid and an LUT of corrections was constructed.

The method corrected large errors in reported position but did not significantly improve on small

errors. A comprehensive analysis of LUT calibration including data collection and several

interpolation algorithms is presented by Jayaram et al. [79]. The authors found that the LUT

correction method dramatically improved tracker accuracy but that the improvement varied

based on the interpolation method used. Implementation and accuracy issues for LUT correction

of magnetic tracking systems was presented by Livingston and State [80]. In their study, the

authors determined that position accuracy could be improved by nearly 80% in their experiment

although they had difficulty with orientation compensation.

An orientation correction scheme that uses a uniform XYZ grid in the tracking space to record

orientation errors were proposed by Ochoa-Manorga et al. [86]. The collected quaternion

measurement data on a uniform grid and used it to generate quaternion corrections using a quasi-

linear interpolation scheme. Their method significantly improved tracking accuracy in mildly

distorted environments but had difficulty in highly distorted fields.

4.2.5 Multiple Sensor Techniques

Multiple sensors in the same tracking environment can be used to add constraints to the system

and improve calibration techniques. Feuerstein, Vogel et al. [81] presented a new method of

distortion compensation using a hybrid optical/magnetic tracker in laparoscopic surgical

applications. They use multiple magnetic sensors mounted at various positions on a laparoscopic

probe and a single optical sensor on the exposed end to provide compensated magnetic position

measurements without an LUT.

77

A detailed investigation of errors produced by electromagnetic tracking systems was conducted

by Frantz [65]. The authors developed procedures to determine the accuracy and repeatability of

electromagnetic tracking systems. Of specific interest in their work was the determination that

multiple sensors with rigid positioning can be used to determine the accuracy of the tracking

system.

Hagemeister [66] proposed a quick method of determining the coefficients required for a

polynomial correction of position and orientation data. A rigid body with multiple sensors in a

known PnO relative to each other was used to collect data in the tracking volume. The authors

use the multiple sensor measurements in pairs to determine the change in error between each pair

of sensors and relate it to the gradient of the polynomial correction function. The technique

significantly reduced large errors in the tracking volume without the effort required for a formal

mapping.

 A method of calibrating a volume for single coil magnetic sensors was proposed by Wu and

Taylor [68]. The algorithm used multiple sensors attached to a rigid object in varying

orientations to characterize the operating volume. An off-line LSE technique was then used to

construct a polynomial correction for the sensor in the targeted environment.

Wang and Jiang [70] propose a novel position compensation scheme that combines multiple

sensors in a fixed geometry. Their sensor is constructed of six magneto-resistive (MR) sensors

with a single sensor mounted on each surface of a 1 cm square cube. Sensors mounted on

opposing sides of the cube are paired to produce two position measurements with a known

relative distance. When used in the tracking environment, the position of the center of the cube

is calculated as the weighted sum of the sensor pairs.

78

4.3 BACKGROUND

4.3.1 QUATERNIONS

A unit quaternion (q) provides a convenient mathematical notation for representing orientations

and rotations (θ) about a unit vector (â) (70).

 () ()[]Taq 2sinˆ2cos θθ ⋅= (70)

When constrained to the unit sphere, quaternions provide a unique representation of orientation

but there can be numerical issues caused a sign ambiguity (±q is the same rotation). A simple

workaround for the sign ambiguity is to require one of the quaternion components (q0 for

example) to always have a positive magnitude. Note that the quaternion multiplication is a

special matrix operation (⊗) involving non-linear functions. The quaternion is computed in its

compact 4 element form and expanded to a 4x4 matrix for multiplication operations [4], [16],

[47]. Quaternion orientation is the preferred representation of orientation in the tracker

mathematics due to its compact form and lack of singularities.

4.3.2 AC MAGNETIC TRACKING

An AC electromagnetic tracker determines position and orientation by generating a three-

dimensional AC magnetic field and measuring the mutual inductance between sensor/source

pairs. The magnetic field is created with a source assembly constructed of three concentric,

orthogonal coils using time or frequency multiplexing to differentiate between source coil

windings. The magnetic sensors are constructed similarly to the source assemblies using three

concentric orthogonal coils. The tracker measures the voltage induced on each of the sensor

coils and normalizes the data to the source/sensor assemblies, operating frequency and various

physical constants. The data is represented by a 3x3 matrix signal matrix (S) containing the

79

normalized field measurements for each of the 9 source/sensor coil pairs. Each row of S

represents the signal received by a specific winding of the sensor while each column is the

received signal for a particular winding of the source. An algorithm presented by Jones [73]

provides a simplified relationship between the signal matrix and PnO (69). The measured signal

matrix (S) is the product of the transposed sensor rotation matrix in the source frame (T), and the

un-rotated dipole field (fD(·)). Note that several physical constants, the magnetic field

frequency and several other parameters have been removed from the equation through the

application of the source/sensor calibration.

The dipole field equation (72) calculates the signal matrix based on the outer product (<r r
T>) of

the position vector (r). Equation (72) will be referred to as the un-rotated signal matrix since it

assumes that the sensor is un-rotated in the source frame, with the position vector describing the

offset between the sensor magnetic moment and the source magnetic moment.

 () ()rfTS D

T
= (71)

()













−

⋅
= I

r

rr

r
rf

T

D
3

31
23

 (72)

80

The continuous magnetic field used in AC magnetic trackers causes eddy current induction in

surrounding conductive materials. The induced eddy currents create secondary magnetic fields

that distort the primary (dipole) field created by the tracker. As shown in Fig. 26. , the current in

the source windings (I0e
iωt) induce emf in the sensor windings (ε2

P) through mutual inductance

M02 and an emf in the conductor loop (ε1
P) through mutual inductance M01 [28]. The emf

induced in the conductor loop results in an eddy current (I1e
iωt) which creates a secondary

magnetic field that induces an emf (ε2
S) in the sensor windings through mutual inductance M12.

The total emf induced on the sensor windings causes current flow (I2e
iωt), generating a voltage

proportional to the magnetic field strength at the sensor position.

Sensor

Source

Ioe
iωt

I2e
iωt

I1e
iωt

M01

M02

M12

Conductor
S

P

2

2

ε

ε

Eddy Current

Fig. 26. A simple circuit representation of how eddy currents affect an AC electromagnetic tracker. The induced
current in the conductor produces a secondary magnetic field that induces a secondary emf in the sensor
which causes tracking errors.

81

Without the secondary magnetic field, the sensor winding voltage is a function of the position of

the sensor in the source frame (70). With the secondary field present, the dipole equation no

longer applies since the voltage at the sensor is a function of both the primary and secondary

magnetic fields. The measured signal matrix (S(k)) is now the sum of the primary field (fD(r(k)))

and secondary fields (G(r(k))) rotated by the transpose of the sensor rotation ((T)
T) in the source

frame (73).

 () ()()GrfTS D

T
+= (73)

The effect of the error in the signal matrix due varies with the spatial arrangement of the source,

sensor and conductor. Since the eddy current is essentially a single axis source winding, the

mutual inductance is dependent on the relative range and orientation. The mutual inductance

between the source and conductor (M01) is primarily a function of range since the source has

three orthogonal coils, each operating with similar magnetic moments. The mutual inductance

between each individual source winding and the conductor loop is determined by the orientation

of the conductor in the source frame. The resulting secondary field will contain components

from each source winding. The mutual inductance from the conductor to the sensor (M12) is

also primarily a function of range between the sensor and the conductor but the coupling to the

individual sensor windings is heavily dependent on the relative orientation of the sensor. The

conductor eddy current will induce different magnitudes of the secondary field into each sensor

winding based on the relative orientation of the sensor to the conductor loop. The overall effect

of the secondary field is a non-linear PnO error factor that smoothly varies with both position

and orientation as the sensor moves.

82

The impact of the secondary field on the tracker PnO varies with each type of

measurement performed. The sensor range is inversely proportional to the magnitude of

the magnetic field. The magnitude of the measured field at time step k is found from the

measured signal matrix by taking the dot product of the measured signal matrix (B(k))

(74). The diagonal in B is the voltage induced in each sensor winding for both the

primary and secondary fields. Note that there is no orientation factor in the equation;

the range is only affected by the magnitude of the secondary field emf induced on the

sensor winding. The sensor range (R(k)) can now be found from the trace of B(k);

independent of the sensor rotation (75).

 ()() () ()kSkSkSB
T

= (74)

() ()()6 6 kBtrkR =
 (75)

The position of sensor at time step k (r(k)) is found using a three-step process from the previous

position solution (r(k-1)) and B(k). The position unit vector (û(k)) is found as the normalized

product of (B(k)) and the previous position (r(k-1)). The new position (r(k)) is then computed as

the product of the range at time k (R(k)) and the unit vector at time k (û(k)) (74).

() () ()1ˆ −⋅= krkBku

() () ()kukRkr ˆ⋅= (76)

The components in the measured signal matrix (S(k)) due to the secondary field have a greater

effect on the position calculation due to the orientation dependent coupling of the individual

sensor windings and the conductor loop. With the position now determined, the orientation

83

(q(k)) can be solved as the product of the unrotated dipole solution (72) and the inverse of the

measured signal matrix (77). The orientation is the most effected measurement since it is

dependent on the accuracy of the position solution to compute the unrotated dipole field; even

small errors in the position will cause large swings in the calculated orientation.

 () ()() ()() 1−
= kSkrfkT D (77)

The secondary field generated by eddy currents distorts the range, position and orientation

measurements when it sums into the dipole field at the sensor position. Compensation methods

found in publication correct the position and orientation in distorted tracking volumes through

polynomial function based correction factors. The correction factors are developed by mapping

the volume to determine a relationship between the measured PnO and the true PnO. As shown

in (76) and (77), the error in a particular PnO due to the secondary field is orientation dependent.

Polynomial functions are accurate at the specific PnO of the sensor when the measurement was

made but have increasing error as the sensor PnO is varied. In practice, these compensation

techniques are usable in mild distortion but become increasingly inaccurate as the distortion

component of the measured signal matrix increases.

The more accurate compensation algorithms require the construction of an LUT containing either

field data or PnO measurements. When using a field data LUT, the tracker uses the tabulated

data to determine the correct PnO using any one of a number of different algorithms that match

the LUT to the measured field. The accuracy of field data compensation is only limited by the

ability to locate the correct data in the LUT. There are several different methods of using a PnO

LUT, each requiring different kinds of data. The table can contain position corrections, the

correct PnO or some kind of coefficient for a PnO compensation algorithm. Generally, PnO

84

compensation is only usable while the measured PnO is relatively close to the correct value. As

the distortion level increases, the measured PnO quickly becomes very non-linear and indexing

into a LUT table with it is problematic. Field-based compensation schemes work well at all

distortion levels since they skip the PnO computation as a means of indexing LUT data.

However, they require precision equipment to accurately determine the sensor PnO when the

data is taken since tracker PnO measurements are inaccurate.

4.4 FIELD MAPPING USING IVC

The IVC system creates a secondary field LUT from field data that can be used for LUT based

field compensation or to develop data for other compensation methods. The system collects field

data using two different fixtures to form a “data cloud” of field points that are then interpolated

to construct the LUT. The data points are interpolated to produce a uniform grid LUT of the

secondary magnetic field.

The system is built on the premise that LUT compensation removes the requirement for absolute

measurement accuracy in the mapping process. In our approach, we allow the user to specify a

measurement reference frame through placement of a small fixture in the tracking environment.

All sensor PnO measurements are made relative to the fixture pose, not the magnetic source

reference frame. The declared fixture PnO is not required to accurately reflect the true fixture

PnO in the source reference frame, eliminating the need for precise alignment of the source and

measurement reference frames.

The user determines the LUT alignment and the measurement reference frame when the

interpolation fixture is placed in the mapped volume. The interpolation fixture also defines a

small volume in which the PnO of a sensor at an arbitrary field point (in the volume) can be

85

determined. Once the volume (the interpolation volume) is defined, the mapping fixture is used

to collect field data throughout the mapped volume. The PnO of the mapping fixture sensors are

extrapolated from the interpolation volume through the known, fixed geometry of the fixture

sensors.

4.4.1 INTERPOLATION VOLUME

The interpolation volume creates an area of the mapped volume where we can determine the

PnO of a sensor without using mechanical measurements. The interpolation fixture takes the

form of a cube with a sensor on each vertex (Fig. 27.). The fixture is then placed in the

environment at known PnO to determine the secondary (distortion) field at each point. The

measured field for any point inside the interpolation volume can be estimated as the sum of the

interpolated secondary field and the dipole field. Combining the field estimation with a cost

function and minimization process, the PnO of arbitrary points inside the interpolation volume

can be determined.

s0

s2

s6

s4

s1

s3 s7

s5

rA

rBXû

Yû
Zû

X-Y
Plane

Fig. 27. The interpolation fixture shown with sensors placed to construct a cube with a sensor at each vertex. The
averaged positions of sensors 0, 2 and 4 are used to define the X-Y plane of the fixture reference frame.

86

To create the interpolation volume, a small fixture that positions a sensor on each vertex of a

cube is constructed from non-conductive, non-ferrous material. Each sensor is assigned a

number from one to seven based on its XYZ position on the cube. This assignment scheme

simplifies the placement of the fixture in the tracking environment in a manner conducive to the

interpolation scheme. The sensor orientation can be arbitrary since it is measured when the

fixture is calibrated. The fixture calibration measures the PnO of the fixture sensors with the

tracker in a non-distorting environment. The fixture can be placed at an arbitrary position in the

source reference frame while a large set (>1000) sensor PnO measurements are captured. The

collected data is averaged to remove noise and then used to determine the relative position of the

sensors on the fixture.

The PnO of each sensor n on the fixture is determined from the measured sensor positions by

constructing a fixture reference frame. In this discussion we will use rn to denote the position

vector r of sensor n in the source (global) reference frame. The X-Y plane of the fixture

reference frame is defined on the fixture by two vectors r
A (78) and r

B (79) along orthogonal

edges of the cube. The rA vector is along the X-axis of the proposed reference frame while the rB

vector is along the Z-axis. The X-axis unit vector ûX
 is defined as parallel to vector rA (80).

 04 rrr A −= (78)

 02 rrr B −= (79)

ABABX rrrru −−=ˆ (80)

87

The Z-axis unit vector ûZ is defined as the cross product of vectors rA and rB (81). The Y-axis

unit vector ûY is the cross product of the X and Z unit vectors (82).

BABAZ rrrru ××=ˆ (81)

 BABAY rrrru ××=ˆ (82)

The fixture reference frame TI (83) can now be used to transform sensor positions between the

fixture and source reference frames. The sensor positions in the fixture reference frame are

transformed from the source (global) reference frame measurements using TI
 (84). The relative

quaternion orientation of sensors on the fixture is computed by converting the rotation matrix (TI

) to quaternion’s (qI) (85), where we use the notation “TtoQ(T)” to indicate a standard conversion

function. The quaternion frame orientation (qI) is then used to rotate the measured quaternion of

the sensor 0 into the fixture reference frame (86).

 []ZYXI uuuT ˆ|ˆ|ˆ= (83)

 ()0rrTr n

IP

n −= (84)

 ()II TTtoQq = (85)

()

n

IP

n
qqq ⊗=

−1
 (86)

88

After calibration the interpolation fixture is placed in the tracking environment with a known

PnO. The initial orientation is set by aligning the fixture reference frame with the source

reference frame in a repeatable manner and declaring the fixture orientation as aligned.

Inaccuracies in the initial PnO appear as additional distortion of the field and will be

compensated for in the estimation process as constant bias in the secondary field. Theoretically,

the system should be able to handle any bias but these errors needlessly increase the non-

linearity of the system and can impact the accuracy of secondary field estimates.

When the fixture has been placed in tracking volume, the user provided fixture PnO determines

the PnO of each fixture sensor through the fixture reference frame. The position of each

interpolation fixture sensor n in the source frame (rn
F) is the sum of the sensor 0 position (r0)

and the relative sensor position (rn
P) rotated by the fixture rotation matrix (TI) (87). The fixture

sensor quaternion orientation is the quaternion product of the fixture orientation (qI) and the

relative sensor orientation (qn
P) (88).

 ()P

n

IF

n rTrr += 0 (87)

 P

n

IF

n qqq ⊗= (88)

Once the interpolation fixture is aligned to the source frame, J frames of field data (J>100) are

collected and averaged to estimate the expected value of the measured signal matrix for each

fixture sensor (Sn).

89

Each sensor is at an arbitrary orientation in the source reference frame (Fig. 28.). The secondary

field estimates must be aligned to the source reference frame for the interpolation process (i.e.

they all must be at the same orientation with respect to the source).

s0

s2 s6

s1

s3 s7

s5

Z1

Y1
X1

Z3

Y3X3

Z7

Y7

X7

Z5
Y5

X5

Z0

Y0

X0

Z2

Y2

X2

Z4

Y4

X4

Z6

Y6

X6

s4

Fig. 28. The measured field at each fixture sensor is at a different orientation in the source reference frame and must
be rotated into alignment with the source before it is used for interpolation. Using the calibration data, a
rotation matrix for each sensor is developed to rotate the signal matrix into the fixture reference frame.

The secondary field for each fixture sensor (Gn) is determined from the un-rotated averaged

signal matrix by subtracting the primary field at the specified fixture position. Rearranging (71),

the secondary field for sensor n is computed as the difference between the unrotated average

signal matrix and the unrotated dipole field (89). Note that the orientation of sensor n in the

source reference frame (qn
F) is used to remove the sensor rotation from the measured signal

matrix (Sn) before the dipole field is subtracted.

() ()F

nD

nF

nn rfSqQtoTG −⋅=
 (89)

90

Using the known secondary field values at the cube vertices (G) and the known fixture sensor

positions (rF), the secondary field can be estimated at any point in the cube volume using a tri-

linear interpolation function (fI(·)) (90).

 ()Grrfrg
F

I ,,)(= (90)

The interpolation function estimates the signal matrix of the secondary field without rotation in

the source reference frame as a function of sensor position. Since (72) computes the un-rotated

primary field as a function of position, the measured signal matrix can be calculated for arbitrary

field points inside interpolation volume as a function of position. Combining the dipole equation

with the secondary field interpolation, the measured field is estimated as a function of position

(r) and quaternion orientation (q) (91). The quaternion orientation (q) is converted to a rotation

matrix (T) using a standard conversion function denoted as “QtoT(·)”.

 ()() ()()GrrfrfqQtoTqrf
F

ID

T

S ,,)(),(+= (91)

A cost function minimization process based on the dot product of the signal matrix (B(S)) is used

to solve the sensor position in the interpolation volume (74). The signal matrix S is the product

of the sensor rotation and the un-rotated signal matrix at the sensor position, taking the dot

product (B(S)) results in a rotation invariant measurement of the signal matrix at the sensor

position. Using position as the independent variable, the cost function minimizes the difference

in B(S) between the estimated signal matrix (91) and measured signal matrix (S) (92). The

estimated signal matrix is computed using (91) with an arbitrary orientation (here the identity

quaternion for qI is used).

()()[]I

S qrfBSB ,)(minarg − (92)

91

The sensor orientation is solved using a second cost function that minimizes the difference

between the measured signal matrix (S) and a rotation of the estimated signal matrix at the

position r (93). Using (91), the position is kept constant at the value found with (92) while the

quaternion orientation is the independent variable. The cost function normalizes the estimated

orientation each time it iterates to keep the quaternion solution on the unit sphere.

 ()[]Sqrf S −,(minarg (93)

The interpolation volume provides the ability to determine the PnO of a single sensor in a

distorted environment. A second fixture is now designed to collect field data at multiple

positions in the tracking volume.

4.4.2 MAPPING FIXTURE

The mapping fixture is used in conjunction with the interpolation volume to measure the

magnetic field. The fixture is similar to a wand or stick constructed from a rigid non-conductive,

non-ferrous material that has multiple sensors mounted at regular intervals from one end to the

other. The mapping process keeps one sensor constantly inside of the interpolation volume

while the other end of the fixture is slowly moved through the mapped volume.

92

The mapping fixture is constructed with sensors mounted at regular intervals down its length at

arbitrary orientation (Fig. 29.).

Fixture
Frame

s0

s3 s5 s7

Z2

X2

Y2

Z4

X
4

Y
4

Z6

X6

Y6

Z1

X1

Y1
Z

7

X
7

Y
7

Z5

X5

Y5

Z3

X3

Y3

ZF

XF

YF

s2 s4 s6

s1

Fig. 29. The mapping fixture has multiple sensors (8 in this case) mounted on a non-conductive material. The
fixture sensors are located at regular intervals down the length of the material with less than 38.1 mm of
offset to provide with arbitrary orientation. A fixture reference frame is constructed using the sensor 0
orientation. The sensor PnO in the fixture frame is determined by calibrating the fixture in a non-distorting
environment.

The fixture sensor PnO is measured through a calibration procedure similar to that used for the

interpolation fixture. The appliance is placed in a non-distorting environment and a large data

set (>100) of PnO measurements for each sensor is captured. The collected PnO is averaged and

then used to determine the relative PnO of each sensor on the mapping fixture.

 The position of fixture sensor n relative to sensor 0 (rn
M) is computed as the difference between

the average position of sensor n (rn’) and sensor 0 (r0’) during the mapping fixture calibration

(94).

 0rrr
n

M

n
′−′=
 (94)

93

The orientation of sensor n in the mapping fixture frame (qn
M) is computed as the quaternion

product of the sensor n average orientation (qn’) and the inverse of the sensor 0 average

orientation (q0’) (95).

() 1−′⊗′= nn

M

n qqq
 (95)

The mapping fixture uses the orientation of sensor 0 to calculate the orientation of all the other

sensors based on the fixture frame; the orientation of sensor 0 is determined through the

interpolation process. To determine each sensor PnO in the source reference frame during the

data collection process, the estimated sensor 0 PnO is applied to the relative PnO developed in

(94) and (95). The mapping fixture reference frame at time step k (TM
(k)) is defined as the

sensor 0 orientation (96) . Sensor n position in the source reference frame at time step k is the

sum of sensor 0 position (r0(k)) and the relative position of sensor n (rn
M) rotated by the fixture

rotation (TM
(k)) (97). The orientation of sensor n at time step k (qn(k)) is the relative sensor

orientation (qn
B) multiplied by the orientation of sensor 0 (q0(k)) (98).

() ()()kqQtoTkT M

0=
 (96)

() () () B

n

M

n
rkTkrkr ⋅+= 0 (97)

() ()kqqkq M

nn 0⊗=
 (98)

The mapping fixture uses the orientation of sensor 0 to calculate the orientation of all the other

sensors based on the fixture frame while the orientation of sensor 0 is determined through the

interpolation process. Errors in the estimation process are propagated through (97) and (98) and

have an increasing effect on the estimated PnO of the mapping fixture sensor as the offset from

94

sensor 0 increases. To improve the accuracy of the interpolation estimate, a method of

estimating the errors of each mapping sensor PnO estimate must be developed. The cost

function solver used to find orientation inside the interpolation volume rotates the estimated

signal matrix to find the best match with the measured signal matrix. The un-rotated signal

matrix (a signal matrix for a sensor aligned to the source reference frame) is essentially three

magnitude values, one for each sensor winding. When a sensor is rotated, the three vectors are

mixed as a function of the sensor orientation in the source reference frame. The rotation process

does not change the magnitude of the field representation but redistributes it among the sensor

coils. This stands in contrast to the position solution which directly controls the magnitude of

the signal received from the three source coils.

The position solver operates on the unrotated signal matrices when it matches (74) to find the

position estimate (92). Position errors are indicated when there is a difference between the

unrotated version of the estimated and measured signal matrices, leading to a non-zero result of

the minimization equation. Although these differences are clearly related to the position error,

they are obscured by the multiplications in (74). A better measure of the error in the position

estimate is the difference between the estimated and measured signal matrices without rotation.

Unfortunately, the un-rotated measured signal matrix is not available but it can be approximated.

Using the estimated sensor orientation (q), the measured signal matrix (S) is rotated into the

source reference frame and then subtracted from the unrotated signal matrix estimate

(fD(r)+g((r)) to obtain the error in the signal matrix (S) of the estimated position, referred to as

the signal matrix estimation error (Λ) (99).

() () () ()()SqQtoTrgrfSqr

D
⋅−+=Λ ,,

 (99)

95

The estimation error (Λ) is used to develop a polynomial based estimate of the sensor PnO errors

with multivariate regression. Once the error in the sensor 0 PnO is known, the error at each

sensor can be estimated through the known relative PnO. Modifying (87) to include error factors

show that the sensor 0 position estimation (rer1) adds an offset to the mapping fixture position

estimate while the orientation error (Tk
err) adds additional rotation (100).

() ()()n

o

M

k

err

k

err

k

n

k
rPTTrrr ++= 0

 (100)

Expanding (100) an equation for the position error of sensor n at time step k (εk
n) is developed as

a function of the sensor 0 position error (ξk
r) and sensor 0 orientation error (ξk

AER ; expressed in

Euler angles) (101). The orientation error at sensor 0 adds rotation to the fixture sensor

orientation through the fixture frame (102).

()AER

k

nr

k

n

k
rP ξξε tan+=

 (101)

()nMerrn

k
qPqqq ⊗⊗=

 (102)

The estimated sensor error is used to generate mixing coefficients for the data interpolation

process.

96

4.4.3 FIELD DATA COLLECTION

The data collection process uses a six step procedure to assemble the data to create a map of the

secondary field using the interpolation fixture (Fig. 30.) and the mapping fixture (Fig. 31.).

Mapped

Volume

Mounting

Post

Magnetic

Source

Interpolation

Fixture

Fig. 30. The interpolation fixture is placed on a mounting post designed to center it in the mapped volume. The
fixture is aligned with the source reference frame and then field data collected to determine the secondary
field values.

Mapped

Volume

Mounting

Post

Concave

Depressions Magnetic

Source

Mapping

Fixture

Fig. 31. The mapping fixture was designed to work with the same mounting post used with the interpolation fixture.
The fixture has a concave impression that allows the fixture to be rotated about the mapped volume while
keeping sensor 0 inside the interpolation volume.

97

Step 1 installs eight sensors on the interpolation fixture to form a virtual cube with a sensor on

each vertex. Step 2 places the fixture in a non-distorting environment and the calibration data

consisting of at least 100 simultaneous measurements of the sensor PnO. After completing the

calibration process, Step 3 moves the interpolation fixture to the center of the mapped volume to

define the interpolation volume. A large data set of magnetic field measurements are made with

the fixture to determine the secondary field value used in the interpolation process. Step 4

moves the sensors from the interpolation fixture to the mapping fixture. Step 5 places the

mapping fixture in a non-distorting environment to collect calibration data and determine the

sensor PnO in the fixture reference frame. Finally, Step 6 collects a large data set of field

measurement by slowly moving the mapping fixture through the mapped volume while

simultaneously collecting field data from all fixture sensors.

Step 1: Interpolation Fixture Assembly

The first step in the data collection process installs the eight position sensors on the vertices of

the interpolation fixture. The sensor configuration on the fixture defines the fixture reference

frame through rA and rB (Fig. 27.).

Step 2: Interpolation Fixture Calibration Data

Once the interpolation fixture is assembled it is moved to a non-distorting environment for the

calibration process (step 2). The fixture is place at a reasonable distance to the magi entice

source (~0.5 m) and a large data set of PnO measurements is taken. There is no requirement to

locate the fixture with a specific pose for the calibration process but it should be stationary to

provide the highest degree of accuracy. Once the calibration data is captured, care must be taken

98

to avoid moving the sensors from their calibrated positions until they are moved to the mapping

fixture.

Step 3: Interpolation Fixture Field Data

Step 3 of the data collection process collects field data with the interpolation fixture to determine

the secondary field at the fixture sensor positions (Fig. 30.). The interpolation volume must be

located so that the mapping fixture can keep one sensor inside the cube while reaching all areas

of the mapped volume. Additionally, the PnO of the fixture must be determined to declare a

known PnO that is reasonably close the actual value. The tracker cannot be used for this

measurement since the distortion in the environment will cause incorrect readings, so mechanical

methods must be used. The declared PnO of the fixture should be a close approximation of

fixture PnO (Fig. 27.).

Once the interpolation volume has been defined, the fixture is placed in the appropriate position

and aligned with the source reference frame at the known orientation. With the interpolation

fixture now placed in the mapped volume, 100 points or more of field data is captured (see

section 4.4.1) and used to determine the secondary field at the cube vertices. The fixture is now

removed from the environment and the sensors moved to the mapping fixture.

Step 4: Mapping Fixture Assembly

The first three steps have used the interpolation fixture to construct an interpolation volume in

the map with known field values. In step 4, the sensors are mounted on the mapping fixture in

preparation for collecting field data for the map. The placement of the sensors on the fixture can

theoretically be arbitrary but it should have a maximum 38.1 mm offset between each

99

consecutive pair. This spacing requirement matches the grid offset used with standard mapping

procedures and has been shown to produce accurate interpolation results.

Step 5: Mapping Fixture Calibration Data

The mapping fixture simultaneously collects field data at each of the sensor locations while using

the interpolation volume to estimate the PnO of each sensor. Before data collection can begin

the fixture must be calibrated in a non-distorting environment to determine the PnO of each

sensor in the fixture reference frame. A large dataset (> 100) of simultaneous PnO

measurements is collected for the mapping fixture sensors. After the calibration data collection

the equipment is moved back to the mapped volume.

Step 6: Map Field Data Collection

The final step of the process uses the mapping fixture to collect a “cloud” of field points for the

map generation process. To collect data, the fixture is positioned so that sensor 0 is inside the

interpolation volume while the fixture is slowly moved through the mapped volume (Fig. 31.).

During this time, the tracker is continuously collecting field data for each sensor. The data

collection process continues until a dense data cloud of points covering the entire mapped

volume has been collected.

4.4.4 LOOK-UP-TABLE (LUT) GENERATION

The collected data consists of trajectories through the tracking volume that create a large set of

scattered points, each with an associated magnetic field measurement. To create the map, the

PnO of each data point must be determined to normalize the data to the source reference frame

and associate it with the correct LUT grid positions. The map creation process consists of six

100

distinct (Fig. 32.), (Step 1) interpolation fixture calibration, (Step 2) interpolation volume

parameterization, (Step 3) mapping fixture calibration, (Step 4) sensor PnO estimation, (Step 5)

data tabulation and finally, (Step 6) secondary field data interpolation.

Interp. Fixture Cal Data

Interp. Field Data Step 2: Interp. Volume Parameters

Declared PnO

Step 5: Data TabulationMap Parameters

Step 6: Secondary Field Data Interp.

SecondaryField Map

Step 4: Sensor PnO EsimationMapping Field data

Map Fixture Cal. Data Step 3: Mapping Fixture Calibration

Step 1: Interp. Fixture Calibration

Fig. 32. The Look-Up-Table (LUT) is created from collected data through a six step process.

Step 1: Interpolation Fixture Calibration

The map generation process begins with the calibration of the interpolation fixture. The

calibration is actually a software task and is performed after the data collection is complete but it

is dependent on the correct placement of the sensors on the interpolation fixture. The

interpolation fixture is assembled by placing the eight sensor in positions associated with their

XYZ coordinates in the fixture frame (Fig. 27.). Once the sensors are installed in the correct

configuration a set of calibration data is captured in a non-distorting environment. The

calibration data is averaged over the data set to remove measurement noise before constructing

the fixture reference. The sensor orientation is averaged as Euler angles and then converted to

101

quaternions. The relative sensor positions in the fixture frame (rP) can then be calculated using

(83) and (84).

Step 2: Interpolation Volume Parameterization

To parameterize the interpolation cube, the declared Interpolation fixture PnO is combined with

the magnetic field measurement data to initialize the interpolation volume parameters. The user

declares the fixture PnO in the mapped volume by specifying the PnO of interpolation fixture

sensor 0. The PnO of the other fixture sensors in the mapped volume is “backed out” of the

declared sensor 0 PnO using the relative PnO (rP
, q

P) derived from the calibration data. The

dipole field at each of the cube vertices is now calculated using the dipole function (72). The

secondary field at the vertices is the difference between the average measurements and the ideal

dipole values.

Step 3: Mapping Fixture Calibration

The Mapping fixture uses multiple sensors in a fixed geometry that must be characterized to

determine the relative PnO of the sensors on the fixture. A reference frame is defined for the

Mapping fixture using the process preciously described in section 4.4.2. The calibration position

data is averaged and then used to determine the sensor positions in the fixture reference frame

(rB) using (94). The orientation data is averaged as Euler angles and then converted to

quaternion’s before calculating each sensor orientation in the fixture reference frame with (95).

Unlike the Interpolation fixture, there is no requirement for precise placement of sensors on the

Mapping fixture; therefore, no optimization of their locations is required. The calibration data is

simply averaged and a referenced frame created.

102

Step 4: Sensor PnO Estimation

Once the relative sensor PnO on the mapping fixture is known, the sensor 0 PnO is used to

determine the PnO of all the other sensors on the fixture. The sensor 0 PnO is estimated using

the optimization process described in section 4.4.1. The PnO of sensor 0 is estimated for each

data frame from the associated field data and any points outside the interpolation volume are

discarded to limit the estimation errors. The points inside the interpolation volume are used to

estimate the PnO of all the fixture sensors from the relative PnO. The fixture reference frame

origin is at sensor 0 therefore the fixture position is known. The position of fixture sensor n at

time k is the sum of the sensor 0 position at time k (r0(k)) and the relative position of sensor n on

the fixture (rn
B), rotated by the mapping fixture orientation in the source reference frame (TM

(k))

(103). The rotation matrix representing the mapping fixture orientation is determined by the

sensor 0 orientation (96).

() () ()()B

n

M

on
rkTkrkr ⋅+=

 (103)

The sensor orientation at time k is calculated as the quaternion product of the sensor orientation

in the fixture frame (qn
B) and the sensor 0 orientation at time k (qk(k)) (104).

 ()kqqq
B

n

n

k 0⊗= (102)

Step 5: Data Tabulation

Each sensor on the Mapping fixture is potentially at a different but known orientation. To

combine the field data into a single table the measured field data must be rotated into alignment

with the source reference frame. The secondary field is found by rotating the measured signal

103

matrix into alignment with the source reference frame and subtracting the ideal dipole field of

the point (89). The estimated PnO and calculated secondary field values are combined into a

table with one row for each data point. This table is now indexed to the output map format using

map parameters supplied by the user. The required parameters specify the minimum grid point

position in the source frame, the grid increment and the number of grid points for each axis. The

three parameters are used to determine how the interpolation volume fits into the map volume

and to index the data. For example, a map with the number of grid points equal to [4, 4, 4] and

an increment of 0.0381 mm would have 64 cells in it, each cell being a cube with a dimension of

38.1 mm.

The data collected by the Mapping fixture forms a sphere centered at the interpolation cube

while the generated map will be rectangular, leaving a large quantity of collected data points

outside of the mapped volume. To include these points in the interpolation process the size of

the mapped volume is increased by one cell on each surface of the rectangular mapped volume.

The additional cells provide the data needed to interpolate the grid points at the edges of the map.

The collected data is now indexed to the map to provide a method of sorting and searching the

dataset. The index value is computed by assuming the table is sorted in XYZ format, with X as

the MSB and Z as the LSB. The index (∆) is computed from the grid coordinate (α) and the

number of grid per axis (γ) (105). The grid coordinate refers to the grids point index while the

grid per axis is the number of grids per axis, each organized in XYZ vector format.

 221210),(αγαγγαγα +⋅+⋅⋅=∆ i (105)

104

The data table is now placed into XYZ order by sorting on ascending index. This data ordering

is used to minimize the number of iterations required to assemble localized data for the grid point

interpolation process.

Step 6: Secondary Field Data Interpolation

The interpolation process uses the data in the surrounding eight cells to estimate the secondary

field at each grid point. The data required for each grid point interpolation is assembled by

generating the index of each of the surrounding cells, sorting it into ascending order and then

searching the table for matching indices. The ascending order of the table allows us to assemble

all the local data values for a grid point with one pass through the table.

To interpolate the data, a multivariate polynomial regression is used to fit a function to each

element of the secondary field in the locality of the grid point from a dataset including all points

within a 0.0381 mm range. The position of each data point (r) is used with a polynomial term

generation function (fp(r)) and the associated collected data (S(r)) to determine the polynomial

coefficients (106). Once the coefficients are known, the signal matrix at the grid point (G(rgp)) is

estimated using the polynomial function with the position grid point (X(rgp)) as the argument

(107).

 () () ()rfXrSXXXC
P

T =⋅⋅= (106)

() CrXrG

T

gpgp =)((107)

The interpolation process generates a single secondary field vector for each grid point in the user

defined map.

105

4.5 EXPERIMENTAL RESULTS

A tracking volume with moderate distortion was used to test the mapping procedure and fixtures.

The map was defined as the area directly in front of a large LCD screen, with the LCD being

perpendicular to the X-Y plane of the map (Fig. 33.).

The bottom edge of the

LCD bezel screen is
closer to the tracking
volume than the source

and causes a large
secondary field along the
length of the LCD screen
at the lower right corner

of the mapped volume.

The secondary field is
largest directly in from of
source due to the
increased magnitude of

the primary field and the
proximity of the LCD
bezel. Top View

LCD screen

Magnetic Source

Magnetic Source

Side View

Mapped Volume

Mapped Volume

Fig. 33. The secondary field shown as a percentage of measured signal for our experimental data. The darker
regions indicate areas where the secondary field is a largest, illustrating how source location directly
impacts the distortion level.

106

A Polhemus mapper was used to generate a map of the secondary field with known position and

orientation in the source reference frame. This map was used to determine the secondary field at

arbitrary field points in the mapped volume. The Polhemus mapper by design has an absolute

PnO error less than the tracker (Table 17.) and provided accurate magnetic field measurements

on a uniform 38.1 mm grid.

Table 17. IVC: PNO MEASUREMENT EQUIPMENT ACCURACY SPECIFICATION

Equipment
Static position
Error (mm)

Static Orientation
Error (milliradians)

mapper <0.25 <1.4

Liberty tracker 0.71 (RMS) 2.6 (RMS)

Tri-linear interpolation was used to generate the field point data from the secondary field table.

The measured field at any field point in the mapped volume can be found as the sum of the

estimated secondary field and the dipole equation (72). This method was used to generate the

measured field for test data from PnO measurements taken in the same volume without distortion

(the LCD screen was removed).

4.5.1 PNO ESTIMATION USING INTERPOLATION

The accuracy of the PnO estimates is dependent on the ability of the cost function minimization

process to estimate the PnO in the interpolation volume. To evaluate the performance of the tri-

linear interpolation process in this application, a trial data collection was simulated using a

virtual interpolation cube placed in the center of the mapped volume. The analysis used the

mapping fixture to collect 100,000 samples of sensor 0 PnO data as the fixture was moved about

the mapped volume collecting field data.

107

The measured field of each point was estimated as the sum of dipole field (fD(r)) and an

interpolated secondary field (G) at the field point (r), rotated by the measured sensor orientation

(73). The secondary field was interpolated from the LUT constructed with the Polhemus mapper

data. A position solution was calculated for each field point using the position cost function

minimization and then compared to the known field point position for error analysis. The cost

function was recursively seeded similarly to what occurs in the mapping process. Similarly, the

orientation was solved using the cost function minimization.

The interpolation function performed very well, giving a median position error of 0.27 mm and

median orientation error of 1.50 milliradians (Table 18.). Looking at the histogram for the

position error (Fig. 34. a) we see that the majority of the points have very small errors but there

is a long “tail” of large error values. Although most of the interpolation position errors were

within the tracker error band (0.71 mm in Table 1); there is a large group of outliers (position

errors > 0.91 mm) with errors ranging as high as 4.9 mm.

Table 18. INTERPOLATION VOLUME PNO ESTIMATE ERRORS

Measurement Position (mm) Orientation (milliradians)

median 0.27 1.50

75 percentile 0.50 2.40

Max 4.9 23.4

108

Fig. 34. Histograms of the position error (a) and orientation error (b) in Interpolation estimates have a long tail of
outlier values.

The orientation error (Fig. 34.) has a less focused distribution and the majority of the points are

larger than the maximum orientation error specified for the tracker (0.41 milliradians; Table 17.

). The increased error in the orientation estimate is indicative of its dependence on the accuracy

of the sensor position estimate. The orientation cost function (91) minimizes the error between

the signal matrix at the estimated position and the measured signal matrix. When the position

error is small it has little effect on the orientation estimate but when the error is large, the

orientation estimate error increases dramatically. This relationship results in error accumulation

in the orientation estimate, with a broader distribution and more outliers than the position error.

Both distributions had a large number of outlier values (17% for position errors; 16% for

orientation) indicating that the errors may be the results of a mixture of distributions. An

examination of the data shows that the errors are related to at least two sources, the measurement

109

itself (of the field data) and the inability of the cost function solver to converge on the correct

answer at some field points. The larger errors are grouped in long smooth trajectories of

sequential points with errors of 1mm or more. The positions suggest that the PnO solver is

having difficultly converging on the correct answer. These paths represent groups of solutions

that diverge slightly from the true result due to convergence in local minima and are most likely

related to our use of recursive seeding. This method helps the solver remain converged on the

true path of the sensor by starting the solution search very close to the correct answer.

4.5.2 MAPPING FIXTURE ACCURACY

To determine the errors at each sensor on the mapping fixture we estimate the sensor 0 PnO error

from the error in the estimated signal matrix using Λ (99). A strong correlation between the

error in the unrotated signal matrix estimate of a solution (Λ) and the position error is expected

since the range solution is directly related to the magnitude of the signal matrix.

110

As shown in Fig. 35. , the RMS of Λ has a strong correlation to the position error and can

provide the basis for a correction of the position estimate. The orientation estimate also has a

strong correlation to the signal matrix estimate that is well defined (Fig. 35.) but is “looser” than

that of the position error. Closer examination reveals that the majority of the points with large

errors are grouped together a large group of errors that the larger errors are grouped together

separated from the majority of the data. Imposing a maximum value of 0.3 on Λ for all data

points removes most of the large errors from the sample population and improves the ability of

the polynomial based error estimator to accurately predict the interpolation errors.

Fig. 35. The PnO error of the interpolation estimate has a correlation to the RMS error of the unrotated
signal matrix estimate. In this figure we plot the position (a) and orientation (b) errors against the RMS
average of the error in the un-rotated signal matrix. The data appears in long strings of closely placed
errors due to the combination of a high measurement rate (240 Hz) and slow motion of the fixture. Note
the cluster of large error at the upper right corner of both plots, these groups of outliers are removed by
imposing a maximum RMS error constraint 0f 0.3 on the estimated signal matrix.

The strong correlation between the PnO error and the Λ metric suggests that a polynomial

with the elements of Λ is a robust method of estimating the interpolation error.

Unfortunately the interpolation errors are in close proximity to the tracker error band

(Table 17.) and the polynomial based error estimate was sensitive to noise in the

measured signal matrix, resulting in poor estimates. Based on speculation that the

interpolation PnO errors were grouped in specific regions, a new polynomial estimator

111

was constructed using the estimated position (r) and the signal matrix error (Λ) as

independent variables.

To evaluate the performance of the estimator, the difference between the estimated and

measured error for a 100,000 point population was used, assigning a negative magnitude

if the measured error was larger than the estimate (Table 19. Table 19.). In the following

discussion of the results the error is computed as the difference between the estimated

error and the actual error. A case where the actual error is larger than the estimate will be

assigned a negative value and labeled “undershoot.” When the estimate is larger than the

actual error it will be labeled an overshoot. Overshoot conditions are no of concern since

they reduce the effect the associated sample when the weighting is applied and have little

effect unless they occur at a high rate. Undershoot conditions allow sample errors to be

weighted much greater than appropriate and can skew the LUT interpolation if the

associated error is large.

Table 19. IVC: ERROR ESTIMATION “GOODNESS OF FIT”

Measurement Position (mm) Orientation (milliradians)

Max.
Undershoot

-3.90 -17.75

5 percentile -0.39 -2.27

25 percentile -0.05 -0.55

50 percentile 0.00 -0.22

75 percentile 0.03 0.00

95 percentile 0.59 2.60

Max 86.5 412

112

The position estimates were within 0.6 mm for 90% of the samples while the orientation

was within 2.6 milliradians for the same range. The position estimator undershot by

more than 1 mm in 5% of the samples but was within 50% of the measured value in all

cases. The orientation also had approximately 5% of the samples with undershoot but

again the estimate was within 50% of the actual value. Both estimators had large

undershoots for 5% of the sample, effectively removing those points from the

experiment. In this case, the overshoots are spread about the volume and they only

represent 5% of the population so they can be ignored.

In the experiment the estimated error was used to establish a maximum allowable error

for measurement error. The total position error in a field measurement was computed

using (93) to estimate the error at each of the sensors on the mapping fixture. This

threshold was implemented in the map generate process to exclude data with an estimated

position error greater than 1 mm (Table 19.). A 1 mm boundary will exclude

approximately 10% of the collected samples, including the majority of the

undershoot/overshoot conditions.

4.5.3 FIELD DATA COLLECTION

The data collection process uses the two interpolation fixtures to collect magnetic field

data in the mapped volume. The two fixtures were built from wood stock and then used

with the procedure detailed in section 4.3 to collect data.

113

The interpolation fixture was constructed with precisely placed mounting holes for each

sensor to align them with the vertices of the interpolation volume. The sensors however

are not manufactured with a precision mounting surface resulting in average position

error of 1.26 mm (Table 20.).

Table 20. IVC: INTERPOLATION FIXTURE AVG. SENSOR POSITION ERRORS (MM)

Sensor 0 1 2 3 4 5 6 7
X 0.0 -0.9 1.3 1.6 -1.2 0.0 0.9 1.7

Y 0.0 -2.2 -0.8 -1.4 0.0 -2.3 -2.9 -2.1

Z 0.0 -0.3 0.0 -3.3 0.0 -3.3 0.4 -3.3

To improve the accuracy of the signal matrix interpolation, the interpolation cube size

and rotation was optimized to best fit the measured data (106). This optimization

function varies the cube side dimension (d), cube offset (r) and orientation (in the fixture

reference frame) (qC) to minimize the errors at each cube vertex using an LSS

minimization process. Note that a standard conversion from quaternion orientation to

rotation matrix is performed in (108). The cube orientation (qC) is optimized in

quaternion’s and then converted to a rotation matrix (TC) using a standard conversion

function.

 () ()[]drqQtoTrP
C

,minarg Ψ− (108)

()
















+=Ψ

10101010

11001100

11110000

, drdr

114

Using the optimized cube as a new fixture reference frame, the previously computed

relative sensor positions (rP) were translated into that frame. The relative sensor

orientations (qP) were calculated using the new fixture frame position in the source frame

and averaged quaternion measurements. The interpolation cube optimization process

removed most of the sensor placement errors, leaving a few offsets in the 1 to 2 mm

range (mm) (Table 21.). The remaining errors did not have a large effect on the

interpolation accuracy due to the small magnitude of the errors as compared to the

interpolation volume dimensions.

Table 21. IVC: OPTIMIZED INTERPOLATION FIXTURE SENSOR POSITION ERRORS (MM)

Sensor 0 1 2 3 4 5 6 7
X 0.4 -0.9 0.3 0.2 -0.5 -0.2 0.2 0.6

Y 0.3 -1.7 0.2 -0.2 1.6 -0.4 -0.6 0.5

Z -0.2 2.1 -0.4 -1.1 0.2 -0.4 0.5 -0.6

To gauge the importance of the sensor positions on the interpolation cube, a statistical

analysis of position errors at random points in the interpolation volume was run. The test

was run for 10,000 points of data captured in a non-distorting environment while

simulating data collection. Three interpolation cubes were considered, an “ideal” cube

with no position errors, the “optimized” cube previously discussed and a cube

constructed from the “averaged” data without optimization.

115

Looking at errors at the farthest sensor from the interpolation volume (Fig. 36.) we see

that the ideal and optimized volumes reduce the median error but do not have the same

impact on the larger errors (0).

Table 22. IVC: SENSOR 8 POSITION ERROR VS. INTERPOLATION CUBE

Measurement Ideal Optimized Averaged
Median 0.48 0.68 4.31

95 percentile 9.54 12.0 12.69

Max 16.8 16.4 16.7

Fig. 36. The lack of a precision mounting surface on the sensors results in positioning errors on the
interpolation fixture. Here we see the position error distribution of mapping fixture sensor 8 (the
furthest away from the interpolation volume) when using each of the three interpolation volumes
(ideal, optimized and averaged) to estimate sensor positions. Note the large reduction in error
when using the optimized cube as compared to the measured one.

The ideal volume does reduce the 95% confidence interval error by approximately 25%

but the optimization has almost no affect on the larger errors, suggesting that these errors

are not related to the sensor positions on the fixture. These larger errors most likely

correspond to specific areas in the interpolation volume where the tri-linear interpolation

process has difficulty accurately estimating the secondary field data. The “trouble spots”

may be localities of the interpolation volume that have a high degree of non-linearity in

116

the field data and are not well estimated by a linear function. The interpolation estimates

are critical to the accuracy of the field measurements made with the mapping fixture and

must be handled correctly to avoid large errors entering the LUT we are creating. Errors

in the orientation estimates will have a larger effect on the accuracy of the LUT we are

building since they are multiplied by the displacement of sensors on the mapping fixture

from sensor 0 (the one inside the interpolation volume). The impact of these errors is

reduced when they are weighted with the error estimation in the LUT generation process.

4.5.4 LOOK-UP-TABLE (LUT) GENERATION

An LUT of secondary field measurements was created from the collected field data using

the process outlined in section 4.4.4. To evaluate the accuracy of our LUT, two PnO

generation tests were run; the first compared the grid points of the Polhemus LUT to one

generated with IVC while the second used the field map to correct PnO estimates and

then compared them to the dipole (uncompensated) solution. In both these experiments,

secondary field data from the IVC LUT is used to correct the field measurement before

solving for PnO.

The comparison of the on-grid secondary field estimates of the Polhemus map and the

IVC map was conducted by solving for the PnO at each grid point. The field data for

each point was generated from the Polhemus map to provide a benchmark to compare our

map against. The PnO solution was found by subtracting the secondary field from the

field measurement and then solving using the dipole algorithm.

117

The IVC map had errors of up 48.7 mm with a median of 24.7 mm and the orientation

error had a median of 75 milliradians with max of 280 milliradians (Table 23.).

Table 23. IVC: ON-GRID PNO ERROR FOR ICV LUT

Measurement Position (mm) Orientation (milliradians)

25 percentile 19.6 49.9

50 percentile 24.7 74.7

75 percentile 29.2 102

99 percentile 40.2 191

Max 48.7 280

The position error distribution is very narrow while the orientation error distribution is

somewhat broader. These errors are larger than expected given that the error in the

secondary field estimate is typically less than 5% of the RMS sum of the estimate (Fig.

37.). The mismatch of the lower magnitude elements causes small errors in the signal

matrix that skew the range solution (75) slightly and have a cascading effect on the

position (75) and orientation (76) solutions. The orientation solution is impacted more by

these small errors since it is dependent on the ratio metric relationship between the 9

elements of the signal matrix.

Fig. 37. A histogram of the error in the individual elements of the secondary field estimates shows that the
majority of the errors are well below 5% of the RMS value of the signal matrix.

118

A comparison of the compensation provided by the LUT map was conducted by

randomly choosing 10,000 points with random rotation in the mapped volume. Each

point was solved by with secondary field compensation and without to illustrate the

ability of the LUT to correct PnO measurements in a distorting environment. The PnO

solution provided by the IVC system closely tracked the results we saw with for the grid

point comparison.

The position error was in a tightly grouped band with a median of 28.1 mm while the

orientation had a broader distribution with mean of 38 milliradians (Table 24.). Note

that the position error has essentially the same distribution as the grid comparison but

with a much larger maximum error (240 mm). The largest errors (outliers) are most

likely caused by a firmware problem with the solver since this large an error indicates

that the solver converged on a solution outside of the mapped volume.

Table 24. IVC: COMPARISON OF PNO ERROR

Position (mm) Orientation (milliradians)
Measurement

IVC Dipole IVC Dipole
25 percentile 25.0 79.2 22.7 1853

50 percentile 28.1 113 38.0 2598

75 percentile 30.9 150 60.0 3248

95 percentile 34.9 186 106 3744
99 percentile 38.4 204 156 4128

Max 240 333 887 4471

119

Comparing the position solution to the non-compensated case (Fig. 38.), the IVC system

provides better than a 75% improvement in the position solution. The compensated

solution had a sharp peak in the error distribution, with all solutions (except the

maximum) within 50 mm of the correct solution. This compares very favorably with the

essentially uniform distribution of position errors for the non-compensated case.

Fig. 38. A chart of the histogram of position error for the IVC corrected data and uncorrected (dipole) data.
The IVC errors are clustered below 50 mm as compared to the broad, almost uniform distribution
of the dipole function data.

120

The orientation error has a broader distribution (Fig. 39.) than position but again the

majority of the error small (less than 50 milliradians). Note that the random point test

resulted is better orientation estimates that grid point test. This improvement is attributed

to the effect of interpolating the LUT secondary field estimates. Errors in a grid point

estimate will dominate the interpolated secondary field estimates when take at that

location in the map because the interpolation is a “pass-through” function in this

situation. Taking random points in the map, all eight grid point estimates surrounding the

field point are used to estimate the secondary field. An error in a grid point estimate is

somewhat mitigated by the other values use in the interpolation process. Errors in more

than one of the eight values used in the interpolation will not accumulate since they are

unlikely to occur in the same element of different grid point estimates.

Fig. 39. A histogram of the orientation error for the IVC and dipole PnO system illustrates the large
improvement in orientation accuracy with our system.

121

The IVC system orientation error was greatly improved as compared to the

uncompensated case. Looking at the orientation error (Table 24.), the IVC map has less

error than the dipole case. Orientation errors of up to 4.47 radians occur for the

uncompensated case as compared to a maximum error of 0.887 radians for the IVC

estimate. If we ignore the outliers and look at the 99 percentile, we see that the IVC

system is within 156 milliradians of the correct solution. The improved performance of

the IVC system is also evident in the relatively compact orientation distribution and

compared to the uncompensated case. The nearly uniform distribution of the

uncompensated case along with the very large error values suggests that these

measurements are essentially unusable without compensation.

4.6 SUMMARY

The IVC system provides a low cost, accurate method of generating LUT-based field

compensation for AC electromagnetic trackers. The system provides substantial

improvements in tracker accuracy when used in moderate to highly distorted

environments. Test data shows that the uncompensated tracker PnO is essentially

unusable without the IVC field correction due to gross inaccuracies. Specifically, the

orientation error was as large as 4 radians in some cases and the error distribution has a

wide range (Table 39). With a 3σ confidence region, the orientation error of the IVC

system drops to 0.156 radians with a median of 0.036 radians, a more than 10x

improvement over the uncompensated case.

Some areas of potential improvement for the system include the following.

122

• The lack of a precise mounting surface on the sensors created a problem in

locating the sensors on the interpolation fixture. This problem was addressed

with an optimization process to minimize the location error but it was unable to

correct all of the errors. The accuracy of sensor PnO estimation in the

interpolation volume is dependent on each fixture sensor being correctly located.

This problem could be eliminated using a precision fixture in conjunction with

sensors that have been modified to present a precise mounting interface.

• Levenberg-Marquardt minimization (LMM) was used for both the position and

orientation cost functions without constraints and this is an example of the

shortcomings of this approach. The minimization has no information on the range

of the solution (based on previous estimates) with which to reject unreasonable

answers. Generally this was not a problem work since the position errors were

small, but the outlier errors caused correspondingly large orientation errors. This

was also a problem in our LUT-based compensation where an LMM cost function

was used to optimize the solution. A Kalman filter based approach might be

better suited to these tasks.

• The polynomial interpolation used to generate the on-grid estimates had difficulty

accurately estimating the smaller elements of the secondary field signal matrix.

This result is related to the spatial distribution of the collected data and the use of

an LSS type estimator. Due to the manner of the data collection, the field data is

located in concentric spheres centered at the origin. These spheres had an offset

of 25.4 mm, meaning that a typical grid data point was interpolated from two

bands of data that pass through the 76.2 mm diameter interpolation space. The

123

interpolation result could be improved if a more varied data set was created

through more closely spaced sensors. Additionally, a different estimator such as

nearest neighbor interpolation could be chosen to improve the quality of the

interpolation itself.

The ICS system answers a need for a low-cost field mapping system for applications that

require moderate accuracy. The system reduces cost in two ways, it can be constructed

by the user from widely available, inexpensive materials, and it does not require highly

trained individuals to operate. The construction cost of the fixtures used in this

experiment was literally less than $20.00. Improved results could be achieved by

spending a few hundred dollars on an improved interpolation fixture. The data collection

process takes approximately one or two hours, including time for gathering calibration

data for the two fixtures and location of the mapping pole in the target environment.

124

5 CONCLUSION

This project has addressed the difficulties that occur when trying to use an AC

electromagnetic tracker in a simulation environment with head tracking. The head

tracker is used to provide information on the user line of sight and to predict head motion

for display lag compensation. A novel Extended Kalman filter, the DQEKF, was

developed to address the need for an efficient predictor of quaternion head orientation. A

new method of creating magnetic field maps for AC magnetic trackers was developed

and presented. The new mapping technique provided significant improvement in tracker

performance without the use of precision measuring equipment.

The DQEKF development was successful in developing a small, efficient Extended

Kalman Filter for head orientation prediction. This method uses a three step framework

to provide a computationally efficient mechanism for predicting future orientation within

4D quaternion space. The DQ framework was compared to the quaternion EKF (Q) filter

using head motion data representing three individual categories of head motion with

prediction intervals varying from 0 ms to 116 ms. Additional experiments were

conducted with data sets representative of head motion in a VR/AR environment.

Experimental results show that the DQ approach provides prediction performance similar

to quaternion EKF while requiring only a fraction of the computational load.

The delta quaternion filter was expanded into the multiple model delta quaternion filter to

deal with aggressive head motion. The MMDQ provides a natural extension to the

DQEKF development and there has been no published work using a DQ filter for

prediction in a multiple model framework. The MMDQ2 (the two filter version)

125

provided excellent prediction performance, matching the DQEKF-CA during low

accelerations and greatly improving on performance for aggressive motion.

The second area that this project targets is the ability to use AC electromagnetic trackers

in environments with conductive or ferrous materials. Traditionally these environments

have very difficult to work in , requiring careful control of materials used in the

simulator. In many cases field mapping is required to provide the level of performance

required by the application. Currently there is no method of constructing a field map for

this kind of system without contracting the manufacturer. The complexity and expense of

collecting field data to create a LUT for field corrections requires highly trained

individuals with specialized high precision equipment. While is true that many

applications require the high accuracy that this kind of mapping provides, most only

require a moderate level and do not warrant the time and expense; the IVS system was

specifically designed for these applications. The system uses easily constructed fixtures

that do not require high precision machining. The data collection process is easily

understood and does not require special training to obtain excellent results. Although the

system software was implemented in Matlab for this experimental work, implementation

as a customer operated utility does not require extensive investment. Results obtained

with the IVC system were excellent, allowing operation of a Polhemus Liberty tracker in

an environment that had a demonstrated need of field mapping. Although the IVC results

do not equal those of the Polhemus mapping system in terms of compensated accuracy,

the low investment of equipment and manpower required by IVC are more than offset by

the large improvement in tracker performance that was obtained. The LUT generated for

126

the LCD test case reduced orientation errors by more than an order of magnitude when

compared to the uncompensated tracker.

127

This project has resulted in three major contributions:

1. Development of an efficient head orientation prediction methodology (DQEKF)

suitable for small real-time systems such as electromagnetic trackers.

2. Extension of the DQEKF concept to multiple-model filtering that is able to

accurately predict head motion for the full range of head motion, including

aggressive motion.

3. Invention of a new approach to electromagnetic field mapping for AC

electromagnetic tracker applications.

The result of this work is that AC electromagnetic tracker will be usable in most

environments without the expense of high precision mapping. This technology is directly

applicable to other areas besides simulation in the medical, consumer and military fields.

128

 Acknowledgments

The authors would like to thank Polhemus, Inc. (Colchester, Vermont) for the support,

time, and equipment used in this study. We would also like to thank Herb Jones and

James Farr of Polhemus for their guidance on issues dealing with mapping in tracking

environments. Ben Himberg provided great assistance with several 3-D analysis

problems in the development of the IVC. This study was supported in part by the School

of Engineering at Virginia Commonwealth University.

129

6 REFERENCES

[1] A.Kiruluta, M. Eizenman, and S. Pasupathy, “Predictive head movement tracking using a kalman filter”, IEEE Transactions on

Systems, Man and Cybernetcs – Part B: Cybernetics, Vol. 27, N0. 2 April 1997, pp 326-331.

[2] R.H.Y. So,and M.J. Griffin, ”Experimental studies of the use of phase lead filters to compensate lags in head-soupled visual

displays”,IEEE Transactions on Systems, Man and Cybernetics, Part A. Vol. 26, No. 4, pp. 445 – 454, Jul 1996.

[3] J. Bohg, “Real-times structure from motion using kalman filtering”, PhD Dissertation, 2005.

[4] J. S. Goddard Jr. “Pose and motion estimation from vision using dual quaternion-based extended kalman filtering”, PhD

Dissertation, 1997.

[5] W. C. Chang and C. W. Cho, “Active head tracking using integrated contour and template matching in indoor cluttered

environment”, IEEE Conference on Systems, Man and Cybernetics, Vol. 6, pp. 5167-5172, Oct. 11, 2006.

[6] R. F. Stengel, “Stochastic optimal control”,Wiley and Sons, 1986.

[7] A. V. Rhijn, R. V. Liere, and J. D. Mulder, ”An analysis of orientation prediction and filtering methods for VR/AR”,

Proceedings of the IEEE Virtual Reality Conference 2005, pp. 67-74.

[8] J. R. Wu and M. Ouhyoung, “On latency compensation and its effects on head-motion trajectories in virtual environments”, The

Visual Computer, vol. 16, pp. 79-90, 2000.

[9] R. H. Y. So, “Lag compensation by image deflection and prediction: a review on the potential benefits to virtual training

applications for manufacturing industry”, Hong Kong University of Science and Technology, Hong Kong, unpublished.

[10] R. H. Y. So, W. T. Lo, and A. T.K. Ho, “Effects of navigational speed on motion sickness caused by an immersive virtual

environment”, Human Factors Fall 2001, vol. 43, no. 3, pp. 452-461.

[11] H. Himberg, Y. Motai, and C. Barrios, “R-adaptive kalman filtering approach to etimate head orientation for driving simulator”,

IEEE Intelligent Transportation Systems Conference, Sept. 2006, pp.851 – 857.

[12] Y. Zhang, H. Hu, and H. Zhou, “Study on adaptive kalman filtering and algorithms in human movement tracking”, Proceedings

of the IEEE International Conference on Information Acquisition 2005.

[13] G. Welch and G. Bishop, “An introduction to the kalman filter”, SIGGRAPH 2001, Course notes.

[14] R. S. Allison, L. R. Harris, M. Jenkin, U. Jasiobedzka, and J. E. Zacher, "Tolerance of temporal delay in virtual environments",

IEEE Virtual Reality Conference 2001, pp. 247.

[15] J. Y. Jung, B. D. Adelstein, and S. R. Ellis, “Discriminability of prediction artifacts in a time-delayed virtual environment”,

Proceedings of IEA 2000/HFES 2000, pp. 499-502.

[16] J. C. K. Chou, “Quaternion kinematic and dynamic differential equations” IEEE Transactions on Robotics and Automation, Vol.

8, No. 1, pp 53-64, February 1992.

[17] E. A. Coutsias and L. Romero, “The quaternions with an application to rigid body dynamics”, Lecture notes for seminar on

dynamic and stability theory, Dept. of Mathmatics, Univ. of New Mexico, February 1999 (Sandia Technical Report,

SAND2004-0153, 2004).

130

[18] A. L. Schwab, “Quaternions, finite rotation and euler parameters”, 2002, unpublished.

[19] M. D. Shuster, “A survey of attitude representations”, The Journal of the Astronautical Sciences, Vol. 41, No. 4, October-

December 1993, pp 439-517.

[20] Y. Bar-Sholon, X. R. Li, and T. Kirubarajan, “Estimation with Applications to Tracking and navigation”,Wiley and Sons, 2001.

[21] Y.-J. Cheon and J.-H. Kin, “Unscented filtering in a unit quaternon space for spacecraft attutude estimateion”, IEEE Internation

Symposium on Industrial Electronics, June 2007, pp. 66-71.

[22] R. Azuma and F. Bishop, “A frequency-domain analysis of head-motion prediction”, NSF/ARPA Science and Technolog

Center for Computer Graphics and Visulalization (ARPA contrat DABT63-93-C-C048).

[23] R. S. Allison, L. R. Harris, M. Jenkin, U. Jasiobedzka and J. E. Zacher, “Tolerance of temporal delay in virtual environments",

Proc. IEEE Int. Conf. on Virtual Reality (2001), pp 247—254.

[24] P. M. Jaekl, R. S. Allison, L. R. Harris, U.T . Jasiobedzka, H. Jenkin, M. R. Jenkin, J. E. Zacher and D. C. Zikovitz, “Perceptual

stability during head movement in virtual reality”, IEEE Int.Conference on Virtual Reality 4 (2002), pp 149-155.

[25] A. Ude, "Filtering in a unit quaternion space for model-based object tracking", Robotics and Autonomous Systems, vol. 28, no.

2-3, pp. 163-172, August 1999.

[26] J. LaViola, “A comparison of unscented and extended kalman filtering for estimating quaternion motion”. Proceedings of the

2003 American Control Conference (Jun 2003), IEEE Press, pp. 2435-2440.

[27] F. Ababsa, M. Mallem, and D. Roussel, “Comparison Between Particle Filter Approach and Kalman Filter-Based Technique For

Head Tracking in Augmented Reality Systems". In Proceedings of the 2004 IEEE International Conference on Robotics and

Automation (ICRA2004). USA, May 2004, 1021—1026.

[28] J. Liang, C. Shaw and M. Green, “On temporal-spatial realism I the virtual reality environment”, Poceedings of 4th Annual

Symposium on User Interface Software and Technology, Nov. 1991, pp 19-25.

[29] S. B. Choe and J. J. Faraway, “Modeling head and hand orientation during motion using quaternions” SAE Transactions, Journal

of Aerospace, 2004-01-2179.

[30] R. Azuma and G. Bishop, “Improving static and dynamic registration in a see-through hmd”, Proceedings of SIGGRAPH 1994,

pp 197-204.

[31] P. S. Maybeck, “Stochastic models, estimation and control”, Academic Press, 1979.

[32] K. Terada, A. Oba, and A. Ito, “3D human head tracking using hypothesized polygon model”, IEEE Conference on Systems,

Man and Cybernetics, 2005. vol. 2, pp. 1396 - 1401, Oct. 2005.

[33] J. -R. Wu and M. Ouhyoung, “A 3D tracking experiment on latency and its compensation methods in virtual environments”,

Proceedings of the 8th annual ACM symposium on User interface and software technology, Nov. 1994, Pages: 41 - 49.

[34] J. LaViola, “Double exponential smoothing: An alternative to Kalman filter-based predictive tracking”, ACM International

Conference Proceeding Series; Vol. 39, 2003, pp. 199 – 206.

131

[35] J. Marins, X. Yn, E. Bachmann et al., “An extended kalman filter for quaternions-based orientation using MARG sensors”,

Proceeedings of the International Conference on Intelligent Robots and Systems, vol, 4, Nov. 2001, pp. 2003 – 2011.

[36] A. Sabatini, “Quaternion-based extended kalman filter for determining orientation by inertial and magnetic sensing”, IEEE

Transactions on Biomedical Engineering, vol. 53, no. 7, July 2006, pp. 1346-1356.

[37] K. Ali, C. Vanelli, J. Biesiadecki, M. Maimone, U. Y. Cheng, A. Martin and J. Alexander, “Attitude and position estimation on

the mars exploration rovers”, IEEE International Conference on Systems, Man and Cybernetics, vol.1, Oct. 2005, pp. 20-27.

[38] E.J. Lefferts, F.L. Markley, M.D. Shuster, “Kalman Filtering for Spacecraft Attitude Estimation, “ J. Guidance, Control, and

Dynamics, vol. 5, pp.417-429, Sep.-Oct. 1982,

[39] I.Y. Bar-Itzhack, Y. Oshman, “Attitude Determination from Vector Observations: Quaternion Estimation, “ IEEE Trans.

Aerospace and Electronic Systems, vol.AES-21, pp.128-136, Jan.1985.

[40] G. Burdea, “Invited review: The synergy between virtual reality and robotics”, IEEE Trans. Robotics and Automation, vol. 15,

no. 3, pp400-410, Jume 1999,.

[41] V. P. Jilkov, X. R. Li, ”Bayesian estimation of transition probabilities for markovian jump systems by stochastic simulation”,

IEEE Trans. Signal Processing, vol. 52, Issue 6, pp.1620-1630, June 2004.

[42] V.P. Jilkov, X. R. Li, “Adaptation of transistion probability matrix for multiple model estimators”, Proc. Inter. Conf. Information

Fusion,

[43] C. Nielson, M. Goodrich, R. Ricks,”Ecological interfaces for improving mobile robot teleoperation”, IEEE Trans. Robotocs, vol.

23, no. 5, pp 927-941, 2007.

[44] M. Shuster, “A survey of attitude representations”, J. Astronautical Sciences, vol. 41, no. 4, pp 439-517, Oct.-Dec. 1993,.

[45] D. Kyger, P. Maybeck, “Reducing lag in virtual displays using multiple model adaptive estimation”, IEEE Trans. Aerospace and

Electronic Systems, vol. 34, no, 4. Oct. 1998.

[46] L. C. Yang, J. H. Yang, E. M. Feron, “Multiple Model Estimation for Improving Conflict Detection algorithms”, Proc. IEEE

Conf. Systems, Man and Cybernetecis, vol. 1, pp.242-249, Oct. 2004.

[47] H. Himberg, Y. Motai, “Head orientation prediction: delta quaternions versus quaternions”, IEEE Trans. Systems, Man and

Cybernetecis Part B, In press.

[48] C. Hilde, T. Moore, M. Smith, “Multiple Model Kalman Filtering for GPS and Low-cost INS integration”, Institute of

Engineering, Surveying and Space Geodesy, University of Nottingham, 2004.

[49] K. Ali, C. Vanelli, J. Biesiadecki, M. Maimone, U. Y. Cheng, A. Martin and J. Alexander, “Attitude and position estimation on

the mars exploration rovers”, Proc. IEEE Conf. Systems, Man and Cybernetics, vol.1, pp. 20-27, Oct. 2005.

[50] E. Derbez, B. Remillard, A. Jouan, “A comparison of fixed gain IMM against two other filters”, Proc. IEEE Int. Conf.

Information Fusion, vol. 1, July 2000.

[51] X. R. Li, V. P. Jilkov, “A Survey of Maneuvering Target Tracking – Part V: Multiple Model Methods”, IEEE Trans. Aerospace

and Electronic Systems, vol. 41, issue 4, pp.1255-1321, Oct 2005.

132

[52] E. Daeipour, Y. Bar-Shalom, “Adaptive beam pointing of phased array radar using IMM estimator”, Proc. American Control

Conf., Baltimore, MD, 1994.

[53] H. Bom, Y. Bar-Shalom, “The interacting multiple model algorithm for systems with Markovian switching coefficients”, IEEE

Trans. Automatic Control, vol. 33, issue 8, pp.780-783, Aug. 1988.

[54] L. Campo, P. Mookerjee, Y. Bar-Shalom, “State estimation for systems with sojourn-time-dependent markov model switching”,

IEEE trans. Automatic Control, vol. 36, no. 2, pp.238-243, Feb. 1991.

[55] W. D. Blair, G. A. Watson,“IMM algorithm for solution to benchmark problem for tracking maneuvering targets”, Proc.

Acquisition, Tracking, and Pointing IX, SPIE 2221, Orlando, Florida, pp. 476-488, 1994.

[56] E. Mazor, A. Averbuch, Y. Bar-Shalom, J. Dayan, “Interacting multiple model methods in target tracking: a survey”, IEEE

Trans. Aerospace and Electronic Systems, vol. 34, no. 1, pp.103-123, Jan. 1998.

[57] X. R. Li, Y. Zhang, “Numerically robust implementation of multiple-model algorithms”, IEEE Trans. Aerospace and Electronic

Systems, vol. 36, no. 1, pp.266-278, January 2000.

[58] J. Wen, K. Kreutz-Delgado, “The attitude control problem”, IEEE Trans.Automatic Control, vol. 36, no. 10, pp. 1148-1162, Oct.

1991.

[59] Y. Cheon, J. Kin, “Unscented filtering in a unit quaternion space for spacecraft attutude estimation”, IEEE Int. Symp. Industrial

Elect., pp. 66-71, June 2007.

[60] R. Thompson, I. Reid, L. Munoz, D. Murray, “Providing Synthetic views for teleoperation using visual pose tracking in multiple

cameras”, IEEE Trans. Systems, Man, and Cybernetics – Part A: Systems and Humans, vol. 31, no. 1, pp.43-54, Jan. 2001.

[61] J. Kofman, X. Wu, T. Luu, S. Verma, “Teleoperation of a robot manipulator using vision-based human-robot interface”, IEEE

Trans. Industrial Electronics, vol. 52, no. 5, pp. 1206-1219, Oct. 2005.

[62] F.L. Markley,, “Attitude error representations for Kalman filtering”, J. Guidance, Control, and Dynamics, pp. 311- 317, vol. 26,

Mar.-Ap. 2003

[63] M.E. Pittelkau, “An analysis of the quaternion attitude determination filter”, J. Astronautical Sciences, vol. 51, issue 1, pp. 103-

120, Jan.-Mar., 2003.

[64] T. Kirubarajan, Y. Bar-Shalom, “Kalman filter versis IMM estimator: when do we need the later?”, IEEE Trans. Aerospace and

Electronic Systems, vol. 39, no. 4, pp. 1452-1457, Oct. 2003

[65] D. Frantz, A. Wiles, S. Leis, S. Kirsch,” Accuracy assessment protocols for electromagnetic tracking systems”, Physics in

Medicine and Biology, July 2003, Vol. 48, Issue 14, pp2241-2251

[66] N. Hagemeister, G. Parent, S. Husse, et al.,” A simple and rapid method for electromagnetic field distortion correction when

using two Fastrak sensors for biomechanical studies”, Journal of Biomechanics, 2008, Vol. 41, Issue 8, pp1813-1817

[67] M. Nixon, B. McCallum, W. Fright, et al., “The effects of metals and interfering fields and on electromagnetic trackers”,

Presence: Tele-Operators and Virtual Environments, April 1998, Vol. 7, Issue 2, pp 204-218.

133

[68] X. Wu, R.Taylor, “A direction space interpolation technique for calibration of electromagnetic surgical navigation systems”,

MICCAI 2003, part 2, Lecture notes on Computer Science, Vol. 2879, pp215-222

[69] J. Day, D. Murdoch, G. Dumas, “Calibration of position and angular data from a magnetic tracking device”, Journal of

Biomechanics, August 2000, Vol. 33, Issue 8, pp1039-1045

[70] H. Wang, G. Jiang, “Study on sensor array applied in electromagnetic tracking system”, IEEE/ICME International Conference

on Complex Medical Engineering, 2007, pp. 180-192

[71] M. Ghazisaedy, D. Adamczyk, D. Sandin, R. Kenyon, T. DeFanti, “Ultrasonic calibration of a magnetic tracker in a virtual

reality space”, IEEE Virtual Reality Annual International Symposium, March 1995, pp179 – 188

[72] M. Ikits, J.D. Brederson, C.D. Hansen, J.M. Hollerbach,“An Improved Calibration Framework for Electromagnetic Tracking

Devices”, IEEE Proceedings on Virtual Reality, March 2001, pp63 - 70

[73] H. Jones, “Method and apparatus for determining remote object orientation and position”, US Patent 4,737,794, Apr 1988

[74] F. Raab, E. Blood, T. Steiner, H. Jones, “Magnetic position and orientation tracking system”, IEEE Transactions on Aerospace

and Electronic Systems, Sept. 1979, vol. AES-15, no. 5, pp 709-718, Sept. 1979

[75] W. Birkfellner, F. Watzinger, F. Wanschitz, et al.,” Systematic distortions in magnetic position digitizers”, Medical Physics,

Nov. 1998, Vol. 25, Issue: 11, pp. 2242-2248

[76] W. Birkfellner, F. Watzinger, F. Wanschitz, et al.,”Calibration of tracking systems in a surgical environment”, IEEE

Transactions on Medical Imaging, Oct 1998, Vol. 17, Issue: 5, pp. 737-742

[77] J. Hummel, M. Figl, C. Kollmann, et al., “Evaluation of a minature electromagnetic position tracker”, Medical Physics, Oct

2002, Vol. 29, Issue 10, pp. 2205-2212

[78] J. Hummel, M. Bax, M.Figl, et al. “Design and application of an assessment protocol for electromagnetic systems”, Medical

Physics, Jul 2005, Vol. 32, Issue 7, pp. 2371-2379

[79] U. Jayaram, R. Repp, “Integrated real-time calibration of electromagnetic tracking of user motions for engineering applications

in virtual environments”, Journal of Mechanical Design, Dec 2002, Vol. 124, Issue 4, pp. 623-632

[80] M. Livingston, A. State, “Magnetic tracker calibration for improved augmented reality registration”, Presence: Teleoperators and

Virtual Environments, Oct 1997, Vol. 5, Issue 5, pp. 532-546

[81] M. Feuerstein, T. Reichl, J. Vogel, et al. “Magneto-optical tracking of flexible laparoscopic ultrasound: model-based detection

and correction of magnetic tracking errors”, IEEE Transactions on Medical Imaging, Jun 2009, Vol. 28, Issue 6, pp. 951-967

[82] A. Milne, D. Chess, J. Johnson et al., “Accuracy of an electromagnetic tracking device: a study of the optimal operating range

and metal interference”, Journal of Biomechanics, June 1996, Vol. 29, Issue 6, pp. 791-793

[83] K. Nakada, M. Nakamoto, Y. Sato, et al, “A rapid method for magnetic tracker calibration using a magneto-optic tracker”,

Medical Image Computing and Computer-Assisted Intervention: Lecture notes in Computer Science, 2003, Vol. 2879, pp. 285-

293

134

[84] A. Wagner, K. Schicho, W. Birkfellner, et al., “ Quantitative analysis of factors affecting intraoperative precision and stability of

optoelectronic and electromagnetic tracking systems”, Medical Physics, May 2002, Vol. 29, Issue 5, pp. 905-912

[85] V. Kindratenko, “A survey of electromagnetic position tracker calibration techniques”, Virtual Reality: Research, Development

and Application, 2000, vol. 5, no. 3, pp. 169-182

[86] V. Ochoa-Mayorga, P. Boulanger, M. Garcia, “Local quaternion weighted difference funcions for orientation calibration on

elctromagnetic trackers”, IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005,

pp. 233-236

[87] H. Jones, R. Higgins, H. Himberg, “Magnetic position and orientation measurement system with eddy current distortion

compensation”, US Patent 7,292,948 B2, Nov. 2006

[88] Franke R, Nielson G., “Smooth interpolation of large sets of scattered data”, Internatinal Journal for Numberical Methods in

Engineering, Vol. 15, Issue 11, pp 1691-1704, 1980

[89] Grant F. S., West G. F., “Interpertation theory in applied geophysics”, McGraw-Hill, 1965

[90] H. R. Jones, I. Khalfin, “Methods and apparatus for electromagnetic position and orientation tracking with distortion

compensation”, US Patent 6,369,564 B1, Apr. 2002

	Virginia Commonwealth University
	VCU Scholars Compass
	2010

	Latency and Distortion compensation in Augmented Environments using Electromagnetic trackers
	Henry Himberg
	Downloaded from

	Microsoft Word - Dissertation_revised.doc

