
Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2014 

Studies on rationally designed, allosteric, coagulation inhibitors Studies on rationally designed, allosteric, coagulation inhibitors 

Rio Boothello 
Virginia Commonwealth University 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 Part of the Pharmacy and Pharmaceutical Sciences Commons 

 

© The Author 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/622 

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It 
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars 
Compass. For more information, please contact libcompass@vcu.edu. 

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F622&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/731?utm_source=scholarscompass.vcu.edu%2Fetd%2F622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/622?utm_source=scholarscompass.vcu.edu%2Fetd%2F622&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


 

 

 

 

 

 

© Rio S. Boothello 2014 

All Rights Reserved 

 



 

 

STUDIES ON RATIONALLY DESIGNED, ALLOSTERIC, COAGULATION 

INHIBITORS  

A Dissertation submitted in partial fulfillment of the requirements for the degree of PhD 
in Pharmaceutical Sciences at Virginia Commonwealth University. 
 

by 

 

RIO BOOTHELLO 
BPharm., University of Mumbai, India, 2009 

 

 

 
 
 

 

Director: DR. UMESH R. DESAI 
PROFESSOR, DEPARTMENT OF MEDICINAL CHEMISTRY 

 

 

 

 

 

 

Virginia Commonwealth University 
Richmond, Virginia 

April 2014 



ii 

 

Acknowledgement 

 

My utmost thanks goes to my advisor Dr. Umesh R. Desai for always being there 

throughout my graduate studies. His persistent mentorship, motivation and support have 

made this journey a highly enriching experience. I would also like to thank my committee 

members Drs. Yan Zhang, Shijun Zhang, H. Tonie Wright and Carlos R. Escalante for 

helping me gain a better understanding in the art of grant writing through my independent 

proposal and reading, guiding and encouraging me throughout my graduation work. 

Special thanks to Drs. Tonie Wright and Faik Musayev who have been really 

instrumental in intriguing my interest in X-ray Crystallography and helping me develop 

my skills in this field. 

The Dr. Desai laboratory has been an important aspect in nurturing, conserving 

stimulating and inspiring my love for science. This has all been possible due to the 

excellent work environment, which amalgamated hard work, creativity and fun to help 

me grow as a researcher. My heartfelt thanks goes to Drs Rajesh Karuturi and Rami Al-

Horani, their experience has been really useful in trouble shooting numerous problems 

related to chemical synthesis and other areas of work and life. I would also like to thank 

Drs. Nehru Viji Sankaranarayanan and Aurijit Sarkar for their excellent assistance in all 

the computational modeling studies. I would like to thank all current and previous 

graduate students who have helped me through my graduate work particularly Akul 



iii 

 

Mehta, Shrenik Mehta and Alhumaidi Alabbas. 

My genuine love goes out to all my friends they have been tremendous in their 

support and patience.  This includes friends in the department particularly Atul Jain, 

Hardik Parikh and Farhana Sakloth who have always been there to pick me up. Friends 

out of the department especially, Shilpa Singh for being awesome, Sweety Mehta for 

being like an elder sister, Soumya Warrier for being ‘Soumya’, Tanvi Deshpande, 

Priyanka Sheth, Divya Lulla, Batul Electricwalla, Khusboo Sharma, Anisha Patel, 

Aravind Reddy, Pratik Patel, Shankar Saran and all other friends for their constant 

support.  

Words cannot describe the love and appreciation that goes out to my wonderful 

parents and sister. They have been a pillar of strength throughout my graduation and in 

life. Thank you for always being there for me. You have been the best family anyone 

could ever have.  

 
 
 

 



iv 

 

Table of Contents 
Page 

Acknowledgements ............................................................................................................. ii 

List of Tables ....................................................................................................................... x 

List of Figures .................................................................................................................... xii 

List of Abbreviations ........................................................................................................ xvi 

Abstract ........................................................................................................................... xviii 

CHAPTER 1: INTRODUCTION……………………………………………………….1 

1.1. Allosterism ........................................................................................................ 1 

1.1.1. Allostery in regulation of physiological processes ................................. 1 

1.1.2. Allosteric sites as drug targets ................................................................ 2 

1.2. Allosteric regulation of coagulation enzymes ................................................... 4 

1.2.1. The coagulation cascade ......................................................................... 5 

1.2.2. Examples of allostery in the coagulation cascade ................................... 8 

1.2.3. Implications for design of allosteric effectors ....................................... 12 

1.3. Direct and indirect allosteric effectors ............................................................ 13 

1.3.1. Indirect allosteric inhibitors .................................................................. 14 

1.3.2. Direct allosteric inhibitors ..................................................................... 30 

CHAPTER 2: RATIONALE .......................................................................................... 36 

CHAPTER 3: NOVEL HEXASACCHARIDES BASED ACTIVATORS OF 

HEPARIN COFACTOR II AND ANTITHROMBIN ........................ 40 



v 

 

3.1. Introduction ..................................................................................................... 40 

3.2. Results ............................................................................................................. 42 

3.2.1. Computational studies ........................................................................... 42 

3.2.2. Synthesis of Hexasaccharides ............................................................... 60 

3.2.3. Hexasaccharides bind to HCII and AT with good affinity ................... 60 

3.2.4 Hexasaccharides activate serpin inhibition of target proteases ............. 62 

3.2.5 Hexasaccharides are potent anticoagulants in human plasma .............. 65 

3.3. Discussion ........................................................................................................ 66 

3.3.1. Designing hexasaccharides targeting HCII ........................................... 66 

3.3.2. Reported structural studies for the AT-FXa system .............................. 67 

3.3.3. Reported structural studies for the HCII-TH system ............................ 69 

3.3.4. Hexasaccharides predictable interact with AT ...................................... 71 

3.3.5. Identification of hexasaccharides based potent activator of HCII ........ 71 

3.3.6. Utilization in arterial/venous thrombosis models ................................. 72 

3.4. Experimental .................................................................................................... 75 

3.4.1. Computational methods ........................................................................ 75 

3.4.2. Protein and chemicals ........................................................................... 79 

3.4.3. Equilibrium binding studies using fluorescence spectroscopy  ............ 80 

3.4.4. Kinetics of protease inhibition in the presence of HXs ........................ 80 

3.4.5. Direct protease inhibition in the presence of HXs ................................ 81 



vi 

 

3.4.6. Activated partial thromboplastin time (APTT) ..................................... 82 

CHAPTER 4: A RARE HEPARAN SULFATE SEQUENCE DISPLAYS 

DIFFERENTIAL SPECIFICITY AND AFFINITY FOR 

COAGULATION PROTEINS………………………………………..83   

4.1. Introduction ..................................................................................................... 83 

4.2. Results ............................................................................................................. 86 

4.2.1. Rationale for studying HS sequences containing GlcAp2S .................. 87 

4.2.2.  HS containing GlcAp2S and GlcNp2S may exhibit promising AT 

targeting capability ................................................................................ 87 

4.2.3. Digestive analysis of HS2S2S using RPIP UPLC-MS ............................ 91 

4.2.4. HS2S2S potently interacts with AT ......................................................... 94 

4.2.5. HS2S2S accelerates AT inhibition of FXa really well ............................ 96 

4.2.6. Specificity of HS2S2S interaction with coagulation proteins ................. 99 

4.2.7. HS2S2S accelerates HCII inhibition of TH ............................................. 99 

4.2.8. HS2S2S directly inhibits TH, but not FXa ............................................ 100 

4.3. Discussion ...................................................................................................... 102 

4.3.1. Rare saccharide sequences as a means to identify novel 

interactions………………………………………………………….. 102 

4.3.2. Differential affinity and specificity of HS2S2S allows probing of 

coagulation cascade pathways ............................................................ 102 



vii 

 

4.3.3. Direct inhibition of heparin is a previously unknown effect .............. 103 

4.3.4. Computational studies can predict protein-GAG specificity and 

affinity……………………………………………………………….104 

4.4. Experimental Section ..................................................................................... 104 

4.4.1. Computational methods ...................................................................... 104 

4.4.2. Proteins and chemicals ........................................................................ 106 

4.4.3. Mass spectrometry studies .................................................................. 107 

4.4.4. Equilibrium binding studies using fluorescence spectroscopy ........... 109 

4.4.5. Kinetics of Protease Inhibition in the Presence of HS2S2S .................. 110 

4.4.6. Direct Protease Inhibition in the Presence of HS2S2S .......................... 111 

CHAPTER 5: SULFATED QUINAZOLIN-4(3H)-ONES DIMERS AS 

ALLOSTERIC INHIBITORS OF HUMAN FACTOR XIA ........... 112 

5.1. Introduction ................................................................................................... 112 

5.1.1. Hypothesis ........................................................................................... 113 

5.1.2. Studies on first generation of quinazolin4-(3H)ones (QAOs) as 

allosteric inhibitors of FXIa ................................................................ 114 

5.1.3. Mechanism of inhibition of first generation sulfated quinazolinones . 117 

5.1.4. Updated hypothesis: Second generation of fXIa inhibitor .................. 118 

5.2. Results and Discussion .................................................................................. 120 

5.2.1. Synthesis of the library of QAOs ........................................................ 120 



viii 

 

5.2.2. Inhibition profile of sulfated QAOs against human factor XIa and other 

similar proteases in the coagulation and digestive system .................. 122 

5.2.3. Inhibition potency of sulfated QAOs in human plasma ...................... 127 

5.2.4. Mechanism of Inhibition of sulfated QAOs ........................................ 128 

5.2.5. Affinity studies .................................................................................... 131 

5.2.6. Analytical ultracentrifugation of FXIa and FXIa-21S complex ......... 132 

5.3. Experimental .................................................................................................. 132 

5.3.1. Chemicals, reagents and analytical chemistry .................................... 132 

5.3.2. Proteins and chromogenic Substrates ................................................. 133 

5.3.3. Chemical characterization of compounds ........................................... 134 

5.3.4. Synthetic procedures and structural characterization .......................... 134 

5.3.5. Direct inhibition of factor XIa by sulfated QAOs. .............................. 141 

5.3.6. Inhibition of proteases of the coagulation and digestive systems ....... 142 

5.3.7. Michaelis–Menten kinetics of substrate hydrolysis in presence of 21S

……………………………………………………………………….143 

5.3.8. Equilibrium dissociation constant (KD) of sulfated QAOs binding to 

human factor XIa ................................................................................ 143 

5.3.9. Activated partial thromboplastin time (APTT) ................................... 144 

5.3.10.Analytical ultracentrifugation of FXIa and FXIa-21S complex ......... 144 

 



ix 

 

CHAPTER 6: SIGNIFICANCE OF WORK AND FUTURE DIRECTIONS ......... 145 

6.1. Novel hexasaccharides based activators of heparin co-factor II and 

antithrombin ........................................................................................ 145 

6.2. Differential recognition of coagulation proteins by a heparan sulfate 

containing 2-O-sulfated glucuronic acid ............................................. 146 

6.3. Sulfated quinazolin-4(3H)-ones as allosteric modulators targeting FXIa

……………………………………………………………………….148 

LITERATURE CITED ................................................................................................. 154 

Appendices ................................................................................................................ 168 

A Naming convention for H/HS monosaccharides ................................. 168 

B Average torsion across the 1→4 inter-glycosidic bonds used in this 

CVLS study…………. ........................................................................ 169 



x 

 

List of Tables 
Page 

Table 1: Natural regulators of coagulation .......................................................................... 7 

Table 2: Acceleration rates of antithrombin towards inhibition of proteinases in the 

presence of heparin and the mechanistic contribution of this acceleration ........ 20 

Table 3: Comparative properties of low molecular weight heparin preparations ............. 22 

Table 4: Second order rate constants of proteases inhibition by human HCII in the 

presence of various cofactors. ............................................................................ 28 

Table 5: List of direct thrombin inhibitors. ....................................................................... 31 

Table 6: Equilibrium dissociation constant (KD) and maximal fluorescence change 

(DFMAX) for hexasaccharide–serpin complexes. ................................................. 62 

Table 7: Acceleration in serpin inhibition of coagulation enzymes brought about by 

HX…. ................................................................................................................... 65 

Table 8: List of natural pentasaccharide and its derivatives. ............................................. 68 

Table 9: Data for preferred locations of GlcAp2S and GlcpNS ........................................ 91 

Table 10: Equilibrium dissociation constant (KD) and maximal fluorescence change 

(DFMAX) for HS2S2S – coagulation proteins complexes. ..................................... 95 

Table 11: Acceleration in serpin inhibition of coagulation enzymes brought about by 

HS2S2S. ............................................................................................................. 100 

Table 12: Inhibition of human factor XIa by sulfated QAOs 7S–24S. ........................... 125 

Table 13: Effect of Sulfated QAOs on human plasma clotting times. ............................ 127 



xi 

 

Table 14: Michaelis-Menten Kinetics of S2366 hydrolysis by human factor XIa in the 

presence of sulfated QAOs. ............................................................................ 130 

Table 15: Binding of Sulfated QAOs to human FXIa. .................................................... 132 



xii 

 

List of Figures 

Page 

Figure 1: Statistics on the allosteric proteins and modulators from ASD ........................... 4 

Figure 2: The coagulation system ........................................................................................ 8 

Figure 3: The allosteric sites on thrombin ......................................................................... 10 

Figure 4: The molecular mechanism of heparin activated antithrombin inhibition of factor 

Xa, factor IXa, and thrombin. ........................................................................... 11 

Figure 5: The molecular mechanism of heparin activated antithrombin inhibition of factor 

Xa, factor IXa, and thrombin ............................................................................ 16 

Figure 6: A model of the serpin ‘mousetrap’ mechanism of inhibition ............................ 17 

Figure 7: Structure of heparin chain .................................................................................. 21 

Figure 8: Crystal structure of pentasaccharide with antithrombin displaying the 

interaction with antithrombin ............................................................................. 24 

Figure 9: Structure of natural pentasaccharide DEFGH derivatives ................................. 26 

Figure 10: The structure of zymogen FXI. ........................................................................ 33 

Figure 11: Comparison of the structure of S195A thrombin-complexed heparin cofactor 

II with heparin pentasaccharide activated antithrombin. ................................. 45 

Figure 12: Dual-filter algorithm used to screen a combinatorial library of 46,656 H/HS 

hexasaccharide sequences. .............................................................................. 47 



xiii 

 

Figure 13: Structure of high-affinity heparin pentasaccharide and naturally occurring 

disaccharide building blocks used in the construction of combinatorial virtual 

library. ............................................................................................................. 48 

Figure 14: Histogram of number of HS hexasaccharide sequences for every 10 unit 

change in GOLD score. ................................................................................... 49 

Figure 15: Structures of HS hexasaccharide sequences .................................................... 52 

Figure 16: RMSD plot for the 3 specific sequences .......................................................... 54 

Figure 17: Overlay of HX1 on HCII and AT .................................................................... 56 

Figure 18: Overlay of HX2 on HCII and AT .................................................................... 57 

Figure 19: Interaction of HX1 with HCII .......................................................................... 58 

Figure 20: Interaction of HX2 with HCII .......................................................................... 59 

Figure 21: Affinity of hexasaccharides HX1–HX3 for antithrombin ............................... 61 

Figure 22: Kinetics of serpin inhibition of target protease in the presence of 

hexasaccharides HX1–HX3 ............................................................................. 64 

Figure 23: Pooled human plasma clotting time at varying levels of hexasaccharides HX1–

HX3 and heparin pentasaccharide H5 measured using the APTT assay. ........ 66 

Figure 24: Structural comparison of the DEFGH sequence and the HXs synthesized ..... 73 

Figure 25: The structure of the reported dermatan sulfate and heparin-based 

hexasaccharide sequences and the comparison of the HXs and the heparin 

based hexasaccharide sequence ....................................................................... 74 



xiv 

 

Figure 26: Computational studies with the HS2S2S sequence. ............................................ 89 

Figure 27: Grid-based identification of preferred locations for GlcAp2S and GlcNp2S in 

genetic algorithm-based docked poses. ........................................................... 90 

Figure 28: Reversed Phase Ion Pairing (RPIP) UPLC-MS total ion chromatogram (TIC) 

obtained after 24 hours digestion of HS2S2S using heparanase I, II and III. .... 92 

Figure 29: Total ion chromatograms using Method 1 of RPIP-UPLC-MS for 

unfractionated heparin (UFH) and HS2S2S after 24 hours. ............................... 93 

Figure 30: Comparison of disaccharide composition of HS2S2S with known heparin 

disaccharide standards. .................................................................................... 94 

Figure 31: Affinity of HS2S2S for antithrombin (A), heparin cofactor II (B), thrombin (C) 

and factor Xa (D). ............................................................................................ 96 

Figure 32: Kinetics of serpin (AT or HCII) inhibition of coagulation enzymes (TH or 

FXa) ................................................................................................................. 98 

Figure 33: Studies on direct inhibition of thrombin and factor Xa by HS2S2S ................. 101 

Figure 34: Strategy for the design of a SAM .................................................................. 115 

Figure 35: The library of first generation QAO dimers .................................................. 117 

Figure 36: Strategy for the design of more potent and selective set of molecules .......... 119 

Figure 37: The structure of 16S ....................................................................................... 120 

Figure 38: Michaelis-Menten kinetics of S2366 hydrolysis by human factor XIa in the 

presence of sulfated QAO 21S ...................................................................... 129 



xv 

 

Figure 39: Fractional change in fluorescence of FXIa-DEGR at 547nm (λex = 345nm) as 

a function of the concentration of sulfated QAOs (19S–21S). ...................... 132 

Figure 40: Sedimentation velocity profile showing molecular species of FXIa−ligand 

complex. ........................................................................................................ 133 

 

 

 

 

 

 

 

 

 



 

xvi 

Abbreviations 
 
HFIP 1,1,1,3,3,3$Hexafluoro.$2$.propanol.
TNS 2-(p-toluidino)naphthalene-6-sulfonic acid 
2-OST 2-O sulfotransferases 
3-OST 3-O sulfotransferase 
APTT Activated partial thromboplastin time 
APC Activated protein C 
ASD  Allosteric databases 
AUC Analytical ultracentrifugation 
AT  Antithrombin 
C5E C5 epimerase 
CVLS Combinatorial virtual library screening 
CuAAC Copper-catalyzed azide-alkyne cycloaddition  
DS Dermatan sulfate 
DCM Dichloromethane 
DIPEA Diisopropylethylamine 
DMA Dimethyl acetamide 
DMF Dimethyl formamide 
EDTA Ethylenediaminetetraacetic acid 
EHBS Extended heparin binding site 
FV/FVa Factor FV/Va 
FIX/FIXa Factor IX/IXa 
FVII/FVIIa Factor VII/VIIa 
FVIII/FVIIIa Factor VIII/VIIIa 
FX/FXa Factor X/Xa 
FXI/FXIa Factor XI/XIa 
FXII/FXIIa Factor XII/XIIa 
FXII/FXIIa Factor XII/XIIa 
GA Genetic algorithm 
GlcNp Glucosamine  
GlcAp Glucuronic acid 
GP1bα Glycoprotein 1b α-polypeptide 
GAG Glycosaminoglycan 
GBP Glycosaminoglycan binding proteins 
hA Helix A 
hD Helix D 



 

xvii 

HBP Heparin binding proteins 
HBS Heparin binding sites 
HCII Heparin co-factor II 
HIT Heparin iduced thrombocytopenia 
DEFGH Heparin pentasaccharide 
H5 Heparin pentasaccharide 
H/HS Heparin/heparan sulfate 
HX Hexasaccharides 
HMWK High molecular weight kininogen 
hP  Hydrophobic domain 
IdoAp Iduronic acid 
LC Liquid chromatography 
LMWH Low molecular weight heparin 
MS Mass spectrometry 
MWC Monod, Wyman and Changeux model 
NDST N-deacetylase/N-sulfotransferase 
NMR Nuclear magnetic resonance 
OTA Octylamine 
PT Partial thromboplastin time 
PSA Polar surface area 
PAR 1 Protease activated receptor 1 
PDB Protein data bank 
QAOs Quinazolin-4-(3H) ones 
RCL Reactive center loop  
RPIP Reverse phase ion-pairing  
SIR Selected ion recording 
Serpin Serine protease inhibitors 
SAMs Sulfated allosteric modulators 
SPL Sybyl programming language 
TQD Tandem quadrupole 
TLC Thin layer chromatography 
TH Thrombin 
TF Tissue factor 
TFPI Tissue factor pathway inhibitor 
TrBA Tributylamine 
TEA Triethylamine 
UPLC Ultraperformance liquid chromatography 
UFH Unfractionated heparin 
UAp Uronic acid 



 

 

 
 
 

Abstract 
 
 
 

STUDIES ON RATIONALLY DESIGNED, ALLOSTERIC, COAGULATION 

INHIBITORS 

By Rio S. Boothello, BPharm. 

A Dissertation submitted in partial fulfillment of the requirements for the degree of PhD in 
Pharmaceutical Sciences at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2014 
 

Major Director: Dr. Umesh R. Desai 
Professor, Department of Medicinal Chemistry 

 
 

Heparin is a natural allosteric modulator, with numerous structural and conformational 

variations leading to many reports of bleeding complications and variations in 

anticoagulant effects. A flurry of research has been directed towards understanding this 

puzzle. This work entails the utilization of three unique strategies to further our 

understanding of this complex issue.  

Traditional synthetic, biosynthetic and biophysical approaches have failed to 

conquer the GAG-protein complexity. Computational analysis however could serve as a 

powerful approach to decipher this dilemma. A dual filter algorithm was incorporated to 

identify unique hexasaccharide sequences for HCII and AT. Our experimental studies 

exhibit a good correlation with our computational findings in addition, to the discovery of 



 

 

the first reported heparin based hexasaccharide sequence (HX1) as a potent 

activator of HCII and AT.  

In contrast to the enormity of GAG sequences, there appears to be a pattern where 

rare sequences have been identified to modulate characteristic functions in proteins. Our 

search led us to a biosynthetically rare GAG residue 2-O-sulfated glucuronic acid 

(GlcAp2S). Our computational studies indicated elements of selective recognition with 

coagulation enzymes propelling us towards synthesizing a polymer, HS2S2S enriched in 

GlcAp2S and GlcNp2S saccharides. Our biological studies indicate its potential in 

activating AT and HCII in addition to a previously unobserved inhibition of thrombin but 

not FXa, which is corroborated by our computational studies. These studies therefore 

showcase the importance of studying rare sequences to further our understanding of 

differential recognition of proteins of the coagulation cascade. 

 An alternate anticoagulant strategy involves utilization of upstream enzymes like 

FXIa. Consequently, we devised a rational strategy, which targets the differential 

hydrophobic domain near the heparin binding sites of proteins through the design of 

molecules termed as sulfated allosteric modulators. Our endeavor led to the discovery of a 

library of quinazolin4-(3H)ones) dimers as selective inhibitors of FXIa. We recognized the 

linker length and geometry to be an important element affecting potency and selectivity. 

We therefore synthesized a library of 18 dimers using simple reaction schemes. Our 

inhibition studies do highlight a 9-fold improvement in potency.  
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CHAPTER 1: INTRODUCTION 
 

1.1.  Allosterism 

Allostery implies regulation at a distance.1 Largely associated with conformational and 

functional transitions in the target protein, “Allosterism” is a term coined by Monod and 

Jacob in a summary report “Cellular Regulatory Mechanism.”2 This phenomenon was 

initially formulated to explain the lac repressor binding on inducer and operator DNA 

sequences in addition to the effect observed on Escherichia coli dimeric threonine 

deaminase by L-isoleucine.2,3 These eventually formed the basis of the Monod, Wyman 

and Changeux model (the MWC model) of ‘concerted’ allosteric transition.2 In recent 

years, newer views of allostery have been hypothesized that are further reshaping the 

concept.4 By definition, allostery is a phenomenon that arises from the coupling of an 

effector ligand binding at a remote (‘allos’) site (‘steros’) from the primary ligand site 

which induces structural and/or dynamic change resulting in regulation of binding of the 

primary ligand. The concept of allostery has expanded to numerous proteins that are 

known to utilize this feature.4 

1.1.1. Allostery+in+the+Regulation+of+Physiological+Processes+

Postulated as the most direct, rapid and efficient way to regulate protein 

functioning, allostery has come a long way from first being observed as early as 1903 in 

the sigmoidal binding curve of hemoglobin binding to O2, which initially baffled many, 

but which remarkably led to the appearance of the concept of ‘Allosterism’ by Monod, 
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Wyman and Changeux.2 The concept of allostery has now expanded from multimeric 

proteins to monomeric proteins and from native proteins to engineered proteins. The 

functions this concept regulates now range from control of metabolic mechanisms to 

signal-transduction pathways.3 Numerous allosteric proteins function in normal 

physiology, but their roles in pathological states have now been uncovered. 

Comprehensive databases like the ASD (Allosteric database) have been assembled and 

these can be utilized to obtain information on allosteric proteins and modulators (Figure 

1).5,6 

1.1.2. Allosteric+sites+as+Drug+targets+

The$biological$prevalence$of$allostery$and$its$ability$to$have$a$huge$influence$

in$both$normal$and$diseased$states$warrants$its$applicability$as$a$therapeutic$target.$

Its$activation$or$inhibition$of$a$particular$protein,$unlike$standard$active$site$direct$

inhibitors,$makes$it$a$unique$tool$to$modulate$the$activity$of$a$protein.$

To$summarize,$allosteric$effectors$have$the$following$advantages$over$conventional$

direct$active$site$targets.$

1. In$ highly$ conserved$ protein$ families,$ the$ allosteric$ effectors$ are$ more$ specific$

since$ they$ do$ not$ bind$ to$ the$ active$ sites,$ which$ tend$ to$ be$ conserved$ in$ such$

cases.3$$

2. They$have$ lower$ chances$of$ side$effects,$which$ could$make$ them$very$useful$ in$

combinatorial$strategies.1$

3. They$allow$for$modulation$of$protein$activity$rather$than$complete$elimination$of$

activity.4$
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4. They$generally$work$when$the$endogenous$ ligand$ is$bound$and$could$therefore$

be$used$in$cases$where$the$cell$is$not$functioning$normally.$

In$contrast$to$these$advantages,$allosteric$effectors$could$face$a$few$hurdles$

1. Unlike$active$ site$ inhibitors,$which$ interact$with$a$known$active$ site,$ allosteric$

sites$are$often$unknown$and$the$drug$modulatory$effects$are$difficult$to$predict.$

2. Similar$to$active$site$effectors,$allosteric$effectors$could$also$develop$resistance$

issues.$

3. There$ exists$ a$ higher$ divergence$ rate$ of$ allosteric$ sites$ in$ species$ homologs$

compared$to$that$seen$for$active$site$inhibitors.1$

4. Toxicity$ issues,$ generally$ due$ to$ high$ doses,$ which$may$ arise$ from$ binding$ to$

additional$proteins,$or$to$formation$of$reactive$metabolites.$

Despite$these$challenges,$allosteric$effectors$have$displayed$tremendous$promise$in$

overcoming$the$problems$generally$observed$with$known$active$site$inhibitors$and$

are$therefore$being$pursued$with$increasing$vigor.$
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Figure 1. Statistics on the allosteric proteins and modulators from ASD. (A) Class 
distribution of allosteric proteins. (B) Species distribution of allosteric proteins. (C) 
Category distribution of allosteric modulators. (D) A history of the discovery of allosteric 
modulators.6(Figure adapted from Reference 6) 
 

1.2. Allosteric Regulation of the Coagulation enzymes 

Excessive loss of blood from injury and protection against microbial infiltration are easily 

countered by the formation of a clot. This assures fine-tuning between blood flow and 

cessation, maintained by a group of highly sophisticated systems which form part of the 

hemostatic system. This essentially comprises the platelet dependent system, coagulation 

system and the fibrinolytic system, also termed primary, secondary and the tertiary 

hemostasis.7 The coagulation cascade is a highly intertwined system and forms a crucial 
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part of this system. The concerted and finely regulated action of a constellation of 

proteins known as factors, the majority of which exhibit proteolytic enzymatic activity, 

form the cascade. This cascade principally is comprised of enzymatic conversion of 

zymogen to their activated form, which serves to activate a specific subsequent zymogen 

and further propagates the cascade. 

1.2.1 The Coagulation cascade 

The coagulation cascade could be fundamentally divided into the three major pathways 

1.Intrinsic pathway, 2. Extrinsic pathway, and 3. The Common pathway, which are 

regulated by a group of physiological anticoagulant serine protease inhibitor (Serpins) 

(Figure 2)8 

Intrinsic pathway 

In this pathway, all clotting factors are present in the blood and are activated when blood 

comes in contact with activated platelets, collagen or other negatively charged surfaces as 

in vascular endothelium damage, lipoproteins in hyperlipidemia, or bacteria in infections. 

These initiate FXII attachment to the platelet membrane via the high molecular weight 

kininogen (HMWK), which helps anchor it to further activate to FXIIa. A small amount 

of FXIIa proteolytically cleaves FXI to FXIa. FXIa then converts FIX to FIXa, which 

forms intrinsic tenase, a trimolecular complex. Tenase then converts FX to FXa, which 

through the common pathway eventually culminates in the formation of thrombin and 

eventually clot. In a laboratory setting this pathway can be monitored using the activated 

partial thromboplastin time  (APTT) assay.8-10 
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The Extrinsic pathway 

Comparable to the intrinsic pathway, the extrinsic pathway similarly incorporates a 

cascade of interactions. Initiated by an injury without direct contact with 

nonphysiological surfaces, like endothelium damage, or by hypoxia resulting from 

reduced blood flow, which drives the formation of a complex between TF on cell 

surfaces and FVIIa located outside vascular system and hence the term extrinsic pathway. 

The FVIIa/TF complex, analogous in function to the tenase complex, then converts FX to 

its active form FXa (Figure 2). This is followed by the common pathway. In a laboratory 

setting this pathway is monitored using the partial thromboplastin time (PT) assay.8,9 

The Common pathway 

Apparent by its name, the common pathway is the point of convergence of the intrinsic 

and the extrinsic pathways. These converge with the formation of FXa, which in the 

presence of FV, Ca+2 and phospholipids converts prothrombin to its active form thrombin 

(TH). Thrombin primarily catalyzes the proteolysis of soluble fibrinogen to form fibrin 

monomers. Fibrin monomers then self polymerize to form a clot that helps cease blood 

flow. Thrombin is also known to activate FXIII to FXIIIa, which yields the covalent 

cross-linking of the fibrin polymer to form stable fibrin mesh (Figure 2). In addition, to 

these effects thrombin is known to catalyze its own formation from prothrombin. It can 

catalyze the formation of the cofactors FVa and FVIIIa effecting an efficient 

amplification of coagulation. Thrombin also provides positive feedback to the cascade by 

activating upstream proteins like factor XI, factor VIII in the intrinsic pathway, and factor 
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V in the common pathway. This ensures the efficient functioning of the cascade. 

Generally, deficiencies in any of the enzymes in the common pathway may result in 

major bleeding disorders.7-10 

Natural Regulators of Coagulation. 

It is necessary to have a regulatory mechanism to limit clot formation as well as to 

dissolve the clot when an injury has healed. This is facilitated by the presence of a variety 

of activators and inhibitors. The tissue factor pathway inhibitor (TFPI), the activated 

protein C (APC), antithrombin (AT) and heparin co-factor II (HCII) to name a few are 

the known anticoagulants which help restore some control over the coagulation cascade. 

The functions of each of these are summarized in the (Table 1). Of these, antithrombin, a 

serine protease inhibitor (serpin) has garnered a lot of interest due to its accelerated 

inhibition of thrombin, FXa and FIXa in the presence of heparin (H). 

Antithrombin activation forms the mechanism of a number of heparin-based drugs on the 

market. Another serpin gathering interest lately is HCII, which is known to inhibit 

thrombin alone and could serve as a novel target. These serpins, could be targeted to 

indirectly modulate the activity of the coagulation enzymes.10  

Table 1. Natural regulators of coagulation.10,11 
 

Name Description Function 

TFPI MW = 33,000 Da Inhibits the TF/FVIIa 
complex 

Activated Protein C MW = 62,000 Da, vitamin k 
dependent serine protease 

Cleaves FVa and FVIIa 

Antithrombin MW= 58,000, Serpin Inhibits thrombin, FXa 
and FIXa 

Heparin cofactor II MW= 65,000, Serpin Inhibits thrombin 
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Figure 2. The coagulation system. (A) The intrinsic pathway, (B) the extrinsic pathway, 
(C) The common pathway (D) natural regulators of coagulation.12 

 

1.2.2. Examples of Allostery in the Coagulation Cascade 

The extensive interconnectivity within the coagulation system implies the presence of 

allostery. Allostery is indeed observed at different levels of coagulation, with many of 

these widely studied in terms of structure, mechanism and effects on normal functioning 

of these enzymes. A few examples of such systems are briefly described below to support 

the fact that allostery is a crucial part of the coagulation cascade and unequivocally offers 

new avenues in the development of drugs that could target these functions.  

 

 

Factor'XII'' Factor'XIIa''

Factor'XI'' Factor'XIa'
FVIIa/phospholipids/Ca+2''

Factor'IX'' Factor'IXa''

Factor'X' Factor'Xa'

Prothrombin'
(Factor'II)'

Thrombin'
(factor'IIa)'

fibrinogen'

fibrin'

Factor'VIIa'
@ssue'factor'

Ca2+'

Factor'VII'

Factor'X'
FXa/FVa/Ca+2'

Antithrombin 
Heparin co-factor II 

A B 

C D 



 

 

9 

 

Thrombin  

Thrombin is a serine protease of prime importance to the coagulation cascade. A part of 

its importance stems from its ability to interact with a multitude of substrates and 

cofactors to perform numerous functions in the cascade. Recent studies have indicated 

that the reason for this peculiar ability is the flexible structure of thrombin, which can be 

modulated to produce a plethora of actions.13 Thrombin is known to possess three 

allosteric sites in addition to the catalytic triad containing active site as shown in (Figure 

3). These serve as platforms to orchestrate the coagulation cascade.10,13  

Exosite I – is a highly positively charged site and is responsible to be essential in the 

interaction with physiological substrates like PAR-1, GP1bα, and fibrinogen. This region 

also forms the site of interaction of known drugs like hirudin, obtained from the leech 

Hirudo medicinalis. 

Exosite II – is another highly positive region decorated with numerous Arg and Lys 

residues. Physiologically, it is a recognition site for FV, FVIII and GP1bα.13 This 

allosteric heparin-binding site has been a hotspot for drug design efforts. 

Na+ binding site – has been recognized as a vital site in regulating the activity of 

thrombin. Studies have indicated the importance of this site as a switch to move thrombin 

from the anticoagulant slow form to the procoagulant fast form. Na+ binding ensuring its 

transition to the fast form.13  

Allosteric sites have been observed in other serine proteases. A prime example includes 

the heparin binding exosite II, which is also seen in FXa, FIXa and FXIa thus, affording 
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an allosteric handle to modulate the activity of these important serine proteases through 

the design of newer anticoagulants. 

 

Figure 3. The allosteric sites on thrombin.13 (Figure adapted from reference 13) 

Antithrombin 

Antithrombin is a serpin and a major physiological regulator of the coagulation cascade. 

Antithrombin in its apoform is known to be a poor inhibitor of thrombin and other 

enzymes. However, binding of a specific heparin pentasaccharide (H5) produces enough 

conformational changes to accelerate its inhibition of FXa to ~300–fold.14 In contrast, it 

accelerates thrombin inhibition through a unique bridging mechanism. This involves 

binding of heparin at the pentasaccharide binding site of AT, while thrombin binds to 

non-specific residues on the other end of the heparin chain and then walks through the 

chain to be eventually inhibited by antithrombin, both of these mechanism are 

schematically represented in (Figure 4).10,15 The allosteric nature of this interaction is 

known to control antithrombin inhibition of a variety of enzymes, which therefore makes 

Hirugen (hirudin) 
GP1bα 
PAR-1 
Fibrinogen (fibrin) 

Exosite I 

Exosite II 
Heparin 
Chondroitin sulfate 
GP1bα 

Na+ binding site 
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this an interesting system. Specific modulation could hold the key utilizing this as a drug 

target.10,15  

Other examples of allostery in the coagulation cascade 

Heparin is also known to allosterically modulate the activity of a number of enzymes in 

the coagulation cascade, which include enzymes like FIIa, FVIIa, FXa and FIXa. Each of 

these possesses a heparin binding exosite, which could be utilized in developing newer 

anticoagulants. Serpins like HCII are also known to accelerate allosterically towards 

thrombin inhibition without heparin. Studies to further understand the mechanism by 

which these function have been undertaken and could be utilized to further realize the 

potential that these possess. 

 
Figure 4. The molecular mechanism of heparin activated antithrombin inhibition of 
factor Xa, factor IXa, and thrombin. AT:H: antithrombin–heparin complex; RCL: 
reactive center loop; fIIa: thrombin; FXa: factor Xa; FIXa: factor IXa; Gla: Gla domain 
on fIXa/fXa; exosite on enzyme; HBS: heparin binding site.(Figure adapted from 
Reference 10)10,15  
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1.2.3. Implications for Design of Allosteric effectors 

Allosteric interactions in the coagulation cascade could serve as a target for numerous 

anticoagulant drug design strategies. Physiologically, allosterism in the coagulation 

cascade is regulated by interaction between a larger protein and polymers. These 

therefore incorporate a higher degree of uncertainty in terms of off-target effects, 

heterogeneity and lack of bioavailability of these agents. Heparin is a prime example, 

where the heterogeneity and the lack of structural understanding of its interaction has 

been admirably overcome with the advent of variants of unfractionated heparin which 

included low molecular weight heparins (LMWH) that eventually led to the identification 

of heparin pentasaccharide DEFGH with a specific structure.16 This was not only 

homogeneous but also selective in its interaction with AT, accelerating its FXa inhibition 

alone. Further studies conducted toward understanding the individual saccharide units 

essential for generating the acceleration indicated the presence of a trisaccharide 

sequence, DEF that could produce the same degree of activity, with the disaccharide EF 

considered to be providing stability to the active form of AT.14,17 Similarly, a number of 

strategies have been utilized, which include the use of smaller oligosaccharides and 

synthetic small molecules, and other glycosamino glycan (GAG)-coagulation protein 

interactions can be similarly targeted.  

Most anticoagulant drug design strategies typically aim to confer the following 

advantages over the physiological effectors 

1. The structure of these effectors can be well characterized and be easily synthesized in 

larger quantities.  
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2. Most of the allosteric sites can modulate the interaction with more than one enzyme; 

hence specificity of interaction is an important feature (giving a predictable 

anticoagulant effect). 

3. No risk of thrombocytopenia. 

4. A wide therapeutic window (eliminating the need for routine coagulation monitoring) 

5. Bioavailability is another important feature that these need to possess. 

6. Rapid onset and offset of action and a rapid offset too, thus allowing for easier 

management of bleeds. 

7. Presence of available antidotes could further improve the safety profile of these 

agents.18,19 

1.3. Direct and Indirect allosteric effectors 

Risk of bleeding is a serious drawback of current anticoagulant therapy despite the 

success it has enjoyed over a number of years. Observations with these agents indicate a 

direct correlation between the intensity of anticoagulation and the severity of risk factors. 

Efforts are therefore underway to discover and develop better and safer agents.15 

Targeting enzymes in the coagulation cascade could be achieved by directly inhibiting 

the enzyme of interest, in which case such effectors would be classified as direct 

inhibitors. Other effectors that interact with physiologic regulators of coagulation and 

accelerate inhibition of enzymes are known as indirect inhibitors. 

1.3.1. Indirect allosteric inhibitors 

Indirect inhibition through antithrombin activation has been a mainstay of this category. 

Precipitated by the advent of heparin, which was later found to activate the inhibition of a 
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number of enzymes in the coagulation cascade. However, antithrombin activation was 

considered as the primary mode of action. Several decades later heparin continues to be a 

major contributor in this class. Innovative design strategies and the discovery of other 

serpins, like heparin cofactor II, promise to be the new strategies towards developing 

more, safer indirect anticoagulants. 

Antithrombin activators 

Antithrombin: structure and kinetics of inhibition 

Antithrombin, as the name suggests, is a physiological inhibitor of thrombin in addition 

to a variety of other coagulation enzymes like FXa and FIXa. This highlights the 

importance of this serpin. Physiologically, antithrombin exists as 58,200 Da plasma 

protein with relatively slow rates of inhibition of its target on its own.20 However, 

coupled to its high plasma concentration (~2.3 µM) and its known interaction with cell-

surface polysaccharide species like heparan sulfate, results in an acceleration of its 

activity culminating in a rapid inhibition of procoagulant proteinases.20 Homozygous 

antithrombin knockout mice appears to be incompatible with life, however heterozygous 

mutation produces structurally defective variants.21,22 The crystal structures of 

antithrombin in both the apoform and in presence of pentasaccharide have been solved, 

further providing insight into the function of this important enzyme.22 A glycoprotein 

with 432 residues, it is known to possess four glycosylated Asn residues in its stable 

major α-antithrombin form. β-antithrombin, also known as the minor form, is not 

glycosylated at Asn135. The crystal structure indicates nine α-helices surrounding three 

β-sheets.23-25 The presence of a dominant five-stranded β-sheet A approximately in the 
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center of the inhibitor and an exposed 15–residue sequence comprising the reactive bond 

Arg393-Ser394, also known as the reactive center loop (RCL), are the two distinctive 

features.26-28 Another unusual feature seen only in AT and HCII is the presence of two 

residues, P15-P14 (Gly379-Ser380) at the N-terminal end of the reactive center loop, 

which are inserted as a short β-strand between strands 3 and 4 of the β-sheet A in the 

inhibitor (Figure 5A). 15,29 This partial insertion of the RCL plays a major role in the 

process of proteinase inhibition. The structure of antithrombin cleaved at the reactive 

bond shows the complete insertion of RCL as strand 4a in β-sheet A (Figure 5B) with the 

remainder of the protein remaining largely unchanged. This structural change initiates an 

approximately 70Å movement of the P1 residue from the top of the molecule to the 

bottom.30,31 This dramatic conformational change yields an additional thermodynamic 

stabilization of the molecule and is considered to be a critical event in the disruption of 

the catalytic triad of a target proteinase, eventually resulting in its inactivation.32-35  

This mechanism has been widely referred to as the serpin mousetrap mechanism, where 

the serpin (AT) acts as a bait to trap target enzymes like FXa, FIXa and thrombin  (E) in 

an equimolar, covalent inactive complex (E*-AT*) (Figure 6). Initial interaction between 

the RCL and the proteinase active site forms a Michaelis complex (E:AT), which is then 

followed by the rapid cleavage of the P1-P1’ scissile bond in the RCL to form an acylated 

intermediate (E*-AT*). Another competing reaction known as the substrate pathway, 

involves rapid cleavage of the acylated enzyme (E-AT) to give the free enzyme and 

substrate. This does not contribute during normal experimental conditions.15 
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Figure 5. Ribbon diagram of native (A) and cleaved (B) plasma antithrombin. The 
structure of plasma antithrombin was obtained from PBD (pdb id‘1ath’) (Figure adapted 
from Reference 10) 
 

A B 
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Figure 6. A model of the serpin ‘mousetrap’ mechanism of inhibition. (Figure adapted 
from Reference 10) 
 
Heparin induced activation of antithrombin 

Serpins are generally known to inhibit their target enzymes by diffusion controlled 

acceleration rates of ~106-107 M-1 sec-1. Uncatalyzed rates of antithrombin inhibition, 

however, are drastically low with in vitro rates of ~7-11 x 103 M-1 sec-1 for thrombin and 

~2–3 x 103 M-1 sec-1 for FXa.36-39 The native structure of AT highlights a peculiarity in 

the RCL, which exhibits partial insertion forcing P1 and other important residues to adopt 

a conformation that hinders the interaction with enzymes like thrombin and FXa. Owing 

to this, the anticoagulant effect of antithrombin is suboptimal physiologically.40 Heparin, 

a natural linear polysaccharide, was identified to possess anticoagulant effect in 1916.41 It 

was later deciphered that this effect was seen due to its acceleration of antithrombin 

inhibition of a number of coagulation enzymes as shown in (Table 2).26 Since then much 
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of research has been dedicated understanding the mechanism of its action and developing 

agents, which could mimic this interaction.  

Mechanism of heparin activation 

Heparin is known to accelerate antithrombin by two distinct mechanisms, namely the 

conformational and the bridging mechanism. The conformational change mechanism 

involves a major change in the structure of antithrombin on interacting with heparin, 

which accelerates its inhibition of FIIa and FXa. In the case of the AT-FXa system, 

binding of the highly specific heparin pentasaccharide H5 to heparin, at an exosite 

produces a conformational change in the RCL and β-sheet C. The partially inserted P1-

P1’ reactive center and an exosite on AT is now exposed, which is then better recognized 

by FXa, resulting in accelerated cleavage of the P1-P1’ bond and rapid formation of 

covalent inhibited complex.32,39,42,43 This phenomenon is also seen with other enzymes, 

but it is more important in the inhibition of FXa.  

 In contrast, the bridging mechanism is found to be crucial in the acceleration of 

thrombin inhibition. Specific binding to antithrombin of heparin H5 sequence, present in 

the full-length heparin is followed by thrombin binding to the same chain at non-specific 

sites to form ternary complex comprised of antithrombin-heparin-thrombin as shown in 

Figure 4. This is then followed by diffusion of thrombin along the polyanionic heparin 

chain, resulting in ~2000 –fold inhibition under physiological conditions.17,44,45 A 

polysaccharide of ~18 residue saccharide units is required to simultaneously hold 

thrombin and antithrombin for accelerated inhibition.  Thus, in this case the H5 sequence 

alone cannot potentiate inhibition. Recent evidences however suggest that such a 
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mechanism could be used by the AT-FXa system too, however this is seen in the 

presence of Ca2+ with full-length heparin. Similarly, UFH is also known to accelerate AT 

inhibition of FIXa 300-500-fold through the conformational mechanism and ~1000-fold 

using the bridging mechanism.43 The mechanism of action for thrombin, FXa and FIXa is 

summarized in (figure 4).10,46  

Heparin binding site  

The allosteric heparin binding exosite is located around 20 Å away from the RCL in AT. 

This exquisitely structured site specifically recognizes the H5 sequence from a variety of 

structurally different heparin chains. The heparin-binding site is predominantly positively 

charged made up of the positively charged residues of helices A and D, and the 

polypeptide N-terminus. The crystal structure of antithrombin with the pentasaccharide 

sequence has been solved and indicates four important residues (Arg47, Lys114, Lys125, 

and Arg129) and the domain called the pentasaccharide binding site (PBS).22,47-51 Full-

length heparin called the extended site formed by residues Arg132, Lys133, and Arg136 

at the C-terminal end of helix D and is known as the extended heparin binding site 

(EHBS).47 The interaction of H5 with the PBS induces conformational change with 

allosteric effects. This allostery is seen on both sides the RCL end as well as the heparin 

binding site end. The P1-P1’ bond (Arg393-Ser394) is the target for proteinase 

cleavage.52,53 Antithrombin inhibits a number of coagulation enzymes and the interaction 

with heparin is know to accelerate it to varying degrees towards inhibition of other 

proteinases as seen in (Table 2). Though this provides for a major block in the 

coagulation activity, it could however lead to bleeding risk. Therefore, controlling the 
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activation towards its intensity and specificity of target enzyme can help develop safer 

and more useful anticoagulants.  

Table 2. Acceleration rates of antithrombin towards inhibition of proteinases in the 
presence of heparin and the mechanistic contribution of this acceleration.26  
 

Serpin Proteinase Bridging Conformational Max rate (M-1 s-1) 

AT Thrombin ~2400-fold ~1.7-fold ~3.7 x 107 

AT Factor Xa ~70-fold ~300-fold ~4.4 x 107 

AT Factor IXa ~600-fold ~700-fold ~2.0 x 107 

AT Trypsin ~2.2-fold ~3.2-fold ~1.4 x 106 

 

Classes of antithrombin based anticoagulants 

Heparin is the one of the most widely used anticoagulant, impelling enormous research 

activities towards discovering/designing newer agents, aimed at both improving on 

heparin as well as refining the selectivity towards targeting specific enzymes. These 

molecules can be classified into 1. Heparin-based activators 2. Heparin-pentasaccharide 

DEFGH and its variants 3. Nonsaccharide-based activators.  

Heparin-based activators 

Heparin is a glycosaminoglycan (GAG), which continues to be a mainstay of 

anticoagulant therapy for decades, however advances over the past years have yielded 

worthy successors to this pivotal drug. Structurally, heparin is a polysaccharide 

consisting of chains ranging from 5,000-40,000 in weight, with an average of ~14,000. 

Heparin is predominantly made up of alternating unit of glucosamine or uronic acids.  
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These are sulfated at varying levels, with N-sulfation and/or sulfation at 2, 3, or 6 

positions. The uronic acids generally involved include the β-D-glucuronic acid or α-L-

iduronic acid with varying degree of sulfation (Figure 7).54-57 The high degree of sulfation 

makes heparin a highly negatively charged molecule. The heterogeneity in structure, 

molecular weight and polyanionic character make it a novel and equally challenging class 

of anticoagulant.  

The diversity in heparin was moderately reduced through the use of enzymatic and 

chemical approaches in developing smaller heparins with an average molecular weight of 

~4,000 – 6000, also known as the low molecular weight heparins (LMWH).58,59 A variety 

of these have been made available commercially as seen in (Table 3). Synthetic variants 

using natural polysaccharide like hyaluronic acid, chitosan, dextran, galactomannan and 

fucan have been sulfated but, these fail to replicate the activity seen with heparin.60-64  

Figure 7. Structure of heparin. 

 

 

 

 

 



 

 

22 

Table 3. Comparative properties of low molecular weight heparin preparations.15 

Brand name Manufacturer Key reagent in 

depolymerization 

MR Ratio anti-

fXa: anti-IIa 

Ardeparin Wyeth-Ayerst US Peroxides 5,300 2.0 

Dalteparin Pharmacia, US Nitrous acid 6,000 1.9 – 3.2 

Enoxaparin Aventis, US Alkali 4,500 3.3 – 5.3 

Nadroparin Sanofi, France Nitrous acid 4,300 2.5 – 4 

Reviparin Knoll AG, France Nitrous acid 3,900 3.6 – 6.1 

Tinzaparin Leo Labs, Ireland Heparinase 6,500 1.5 – 2.5 

 

Anticoagulant heparin, however, has been associated with numerous complications. One 

of the major concerns is, that of heparin induced thrombocytopenia (HIT). Most of these 

complications have been attributed to non-specific interactions and to major structural 

differences. Another problem associated with the heparin is the lack of ability to 

inactivate clot bound thrombin, which is attributed to the thrombin binding to γ-fibrin at 

exosite II, thus blocking the heparin-binding site.65-70  

Lower molecular weight heparins have a significantly lower bleeding rate but, they do 

not completely eliminate the bleeding risk. Different methods of preparations are known 

to bring about variations in their anticoagulant properties, prompting the FDA to suggest 

each clinical LMWH be treated as an unrelated independent drug.71-76 Nevertheless, 

newer heparins continue to be developed at a frantic pace. Technological advances in 
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related fields have led to expectation of developing structurally and biologically superior 

heparins. 

Heparin oligosaccharides 

The heparin pentasaccharide sequence DEFGH has been identified as the specific tight 

binding sequence and is known to bring about a conformational modification of 

antithrombin, which produces acceleration in it inhibitory properties. Structurally, it is 

made up of two domains, the trisaccharide DEF and the disaccharide GH domain. The 

disaccharide sequence consisting of →4)IdoAp2S (1→4)GlcNp2S6S (1→ is known to be 

the most abundant disaccharide sequence in heparin, whereas the trisaccharide sequence 

consisting of GlcNp2S,6S(1→4) GlcAp(1→4)GlcNp2S,3S,6S is the least abundant 

sequence in heparin.77,78 The most characteristic feature includes the presence of a central 

glucosamine residue, F, consisting of three sulfates at 2-, 3-, and 6-positions, which is 

rarely present outside the pentasaccharide H5 sequence. Both these domains play  

different roles with the trisaccharide playing an important role in inducing 

conformational changes while the disaccharide is involved in stabilization of this change 

and improving the overall affinity of H5. The crystal structure of the pentasaccharide 

with antithrombin has been obtained and this provides for insights of the residues 

involved at a molecular level as seen in (Figure 8).15  

The pentasaccharide is known to produce acceleration of selective AT inhibition of FXa 

alone. This is due to the ability of the pentasaccharide to utilize the conformational 

mechanism of activation alone, which is a major player in the activation of AT towards 
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FXa inhibition. Thrombin inhibition, on the other hand, utilizes the bridging mechanism 

and thus is not inhibited.  

The major complications in heparin generally arise from its non-specific interactions, 

which were primarily attributed to its complex structure. Reducing this complexity by 

chopping down the size of heparin to oligosaccharides like heparin pentasaccharide has 

helped improve this specificity. Since the discovery of the pentasaccharide numerous 

efforts have been made to develop even better oligosaccharide units. Some of this work 

explored natural variants of the pentasaccharide, (Petitou and coworker). Similarly, 

synthetic variants were designed to conduct a structure activity relationship study to 

design more potent sequences. A few of these efforts have been summarized in (Figure 

9). 

 

Figure 8. Crystal structure of pentasaccharide with antithrombin displaying the 
interaction with antithrombin. (Figure adapted from reference 10)15,25 
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Synthetic nonsaccharide based activators 

The hypothesis that synthetic small molecules could mimic the activity of heparin has 

recently resulted in efforts aimed at the development of small molecule activators of 

heparin and heparin pentasaccharide. These have utilized computational tools like HINT 

to obtain molecules that could structurally resemble the heparin trisaccharide sequence 

DEF, which was the smallest oligosaccharide sequence to still possess activity. On this 

basis, a group of small molecules were identified, followed by a series of structural 

screens, from which  (-)-epicatechin sulfate was found to be small molecule activator of 

antithrombin. Using a similar approach several other molecule where designed with a 

maximum of ~80–fold activity obtained. However, the detailed competitive binding and 

molecular binding studies indicated that these molecules bind to the extended heparin-

binding site (EHBS) (Figure 7). Thus, developing agents, which could target the 

pentasaccharide, binding site or both the pentasaccharide and the extended heparin 

binding sites could result in a more active molecule.58,59,79-82 

 Heparin co-factor II activators 

Heparin cofactor II (HCII) is a 65.5KDa plasma protein that belongs to the serine 

protease inhibitor (Serpin) family. Since its initial discovery in 1974 by Bringinshaw and 

Shanberge, little information has been obtained despite its high plasma concentration of 1 

µM.83,84 Initially named heparin cofactor A and other names, such as antithrombin BM, 

dermatan sulfate cofactor and leuserpin-2, it was eventually named heparin cofactor II by 

Tollefsen and Blank.85 Its major inhibitory activity was observed against thrombin in the 
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presence of dermatan sulfate, which produces a 1000–fold acceleration in inhibitory 

activity. 

 

Figure 9. Structure of natural pentasaccharide DEFGH derivatives.15  

Structure, function and the kinetics of inhibition by heparin cofactor II 

The crystal structure of heparin cofactor II has been solved both in the native form and in 

the presence of thrombin. This reveals some structural insights into the functioning of this 

serpin.  HCII is composed of 480 amino acid residues. On a three-dimensional level, it is 

structurally quite similar to AT, with a six-stranded β-sheet A due to the partial 

incorporation of the RCL that effectively reduces its flexibility and accessibility to 

proteolytic attack. Superposition of AT and HCII structure indicated a deviation in 

RMSD of 1.8Å, consistent with similar functions, which involves the expulsion of the 

RCL to further inhibit circulating serine proteases. A major difference between AT and 

HCII is the presence of Leu at the P1 position instead of the Arg residue normally seen in 

DEFGH X=NHSO3 Y=COO- Y’=COO- 

D’EFGH X=NHCOCH3 Y=COO- Y’=COO- 

DE’FGH X=NHSO3 Y=COOCH3 Y’=COO- 

DEFG’H X=NHSO3 Y=COO- Y’=H 

DEFGH’ 

DEFGH-NGA 

c--DEFGH 
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serpins.  The heparin binding sequences in HCII obtained on sequence alignment 

indicates the conservation of similar residues. The N-terminal acidic tail, which 

comprises 160 amino acids, consists of two hirudin-like domains, EDDDY*LD and 

EDDDYID. Both these consists of several acidic amino acids and a sulfated tyrosine, 

which are responsible for interaction with exosite I of thrombin.29  

 Physiologically, despite its high concentration, HCII does not seem to be vitally 

important, with individuals predisposed to HCII deficiency not showing an increased risk 

of venous thrombosis. Recent studies have postulated that HCII plays the role of an 

adjunct to AT in hemostasis regulation. HCII, however seems to play a major role during 

pregnancy with studies indicating that HCII deficiency is embryonically lethal. Increased 

HCII levels during pregnancy further add to this claim. HCII has also been shown to play 

a major role in vascular injury with high levels of HCII showing a decrease in 

atherosclerosis and restenosis, whereas reduced levels have been shown to produce 

increased cardiac events.86-89  

 Comparable to AT, HCII is quite similar in its mechanism of inhibition of serine 

proteases, the only difference being the presence of Leu at P1 instead of an Arg, 

generally seen in serpins. HCII is known to inhibit thrombin in addition to other proteins 

like chymotrypsin and neutrophil cathepsin G. Its rate of inhibition of thrombin is very 

slow (600 M-1s-1). Thrombin specificity is conferred by the presence of two hirudin-like 

domains in the N-terminus of HCII. Unlike AT, which is substantially activated by only 

heparin, HCII shows a ~1000–fold increase in activation in the presence of heparin, 

heparan sulfate and dermatan sulfate and several other types of polyanions such as 
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polysufates, polyphosphates, and polycarboxylates (Table 4). These agents function 

through the release of the RCL from in the partially inserted state to a fully exposed state. 

Table 4. Second order rate constants of proteases inhibition by human HCII in the 
presence of various cofactors.26,90 
 
Serpin Target Proteases Cofactor Second order rate k2 (M-1s-1) 

HC-II Thrombin - 6 x 102 

UFH 5 x 106 

LMWH 5 x 106 

Dermatan sulfate (DS) ~5 x 106 

Hexasaccharide DS 107 

Chondroitin sulfate E 2 x 106 

Dextran sulfate 5 x 106 

 Thrombin Sucrose octasulfate ~106 

 Chymotrypsin - 2 x 104 

 Cathepsin - 2 x 102 

 

Heparin cofactor II-dermatan sulfate interactions 

The inhibition of thrombin by HCII is accelerated nearly 1000-fold in the presence of DS. 

Though AT is structurally similar to HCII, with similarities in the heparin binding site, 

nevertheless heparin pentasaccharide DEFGH binds HCII poorly in comparison to its 

affinity for antithrombin.91 Dermatan sulfate produces acceleration by a basic bridging 

mechanism, providing a template for HCII and thrombin to bind. Structurally, DS is a 
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linear polymer of D-glucuronic acid or iduronic acid alternating with N-acetyl–D-

galactosamine residues. Like heparin, DS is heterogeneous  as a result of a varying 

degree of O-sulfation and the two types of uronic acid residues.92 Physiologically, 

dermatan sulfate is found in the vessel wall. The surface of fibroblasts and vascular 

smooth muscle cells generally contain dermatan sulfate proteoglycans. A subpopulation 

of oligosaccharides obtained by partial depolymerization of DS binds to HCII at 

physiological salt concentration. In a manner similar to heparin pentasaccharide H5, a 

distinct small fragment of dermatan sulfate binds with increased affinity to HCII. This 

hexasaccharide contains three L-iduronic acid (2-SO3) N-acetyl D-galactosamine (4 

and/or 6-SO3) disaccharide units.90  

Heparin cofactor II as a target 

The DS-HCII system has number of important physiological roles. Unlike AT, HCII in 

the presence of heparin or dermatan sulfate is only activated towards thrombin inhibition. 

This unique specificity can be used to develop agents with reduced bleeding risks. HCII 

deficiency does not appear to enhance risk for thrombosis and at the same time it 

prevents arterial thrombosis. A major advantage of HCII activation is its ability to target 

clot-bound thrombin but not other coagulation proteases and its postulated that HCII 

contributes to ~20-30% of thrombin inhibition in coagulation, a feature not seen in 

AT.90,91 

 All these advantages point towards the development of HCII activators to produce 

an indirect pathway of coagulation regulation. Numerous attempts are now being made 

toward developing agents targeting HCII. Investigations include oversulfated dermatan 
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sulfate, chitosan polysulfate, fucoidan, clam dermatan sulfate, green algae sulfated 

polysaccharide and fucosylated chondroitin sulfate. Smaller oligosaccharides like sucrose 

octasulfate have also been recently identified as a HCII activator.93  

1.3.2. Direct allosteric inhibitors 

Direct inhibitors are generally agents, that target the catalytic triad located in the active 

site of serine proteases. However, with the growing knowledge and the discovery and 

understanding of other allosteric sites in the serine proteases, these sites are is now a 

subject of interest for designing agents, that could target these sites and thus inhibit the 

coagulation enzymes directly. The hypothesis behind this strategy is that the active sites 

of most serine proteases are quite similar, thus making it difficult to develop selective 

agents. Allosteric sites structurally however, are relatively different for these enzymes 

and could therefore be utilized in developing more selective agents. Additionally, 

controlled modulation of these enzymes through allosteric inhibition offers for lesser 

risks. Nevertheless a number of selective thrombin and FXa inhibitors have been 

discovered with few recently making it to the market. 

Downstream targets 

Direct thrombin and FXa inhibitors 

Thrombin and FXa are the major downstream targets of various anticoagulant therapies. 

Structurally, these are quite similar enzymes and have a similar mechanism of action. 

Agents utilizing these targets are now slowly replacing unfractionated heparin (UFH) in 

the market.  
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Thrombin is a serine protease with a three dimensional structure similar to most 

serine proteases. Targeting thrombin directly produces a substantial degree of coagulation 

through additional prevention of thrombin-mediated feedback of factors FV, FVIII, FXI, 

and FXIII.  Numerous crystal structures of both the native form and the co-crystallized 

form in the presence of an inhibitor have been deposited in the protein data bank (PDB). 

Thrombin could either be targeted at its active site or the two-polyanionic exosites and 

the Na+ binding site, which serve as allosteric targets. Numerous agents have been 

discovered and/or designed that specifically target thrombin. Table 5 summarizes a list of 

these agents.  

Directly inhibiting FXa is another approach, which is gaining popularity with 

many of these agents making it to the clinic recently. Directly targeting FXa has been 

hypothesized to be more effective then thrombin inhibition, due to the fact that one 

molecule of FXa is responsible for the generation of 1000 thrombin molecules.94,95 Thus, 

regulation of thrombin production rather than inhibiting it also ensures that the natural 

clotting process post surgery can function more smoothly. Two new FXa inhibitors, 

rivaroxaban and apixaban have recently been approved for use clinically.96-99 

Table 5. List of direct thrombin inhibitors. 

Drug name Binding site 

Melagatran Active site 

Dabigatran Active site 

Hirugen Exosite I 

Bivalirudin Exosite I 
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Direct agents, however, do not completely eliminate the risks observed with indirect 

agents. Risk of bleeding is a major complication in these agents, though the intensity is 

decreased to safer levels but not completely eliminated. Certain natural agents like 

hirudin have added problems like anaphylaxis while other agents produce liver toxicity. 

Thus, the current challenge to overcome in the design of these agents involves 

eliminating bleeding risk, liver toxicity and histamine release, while maintaining good 

oral bioavailability and duration of action. 

Novel upstream targets 

Major bleeding risks have led to the hypothesis that utilizing an upstream enzyme could 

produce controlled inhibition without producing the deleterious effects of other stronger 

downstream agents. Targeting upstream enzymes from the intrinsic pathway, particularly 

FXIa, has been postulated to potentially achieve a safer degree of anticoagulation. 

Structure and function of FXIa 

 FXIa is a major player in the intrinsic pathway. It is involved in the activation of 

FIX to FIXa, which eventually activates FX to FXa. The crystal structure of its zymogen 

form, FXI, and the catalytic domain of its active form (FXIa) have been solved, thereby 

providing insights into the overall structure and working of this enzyme. Physiologically, 

it exists as a homodimer linked by a disulfide bond, with each monomer consisting of 607 

amino acid residues. Its three dimensional structure is analogous to a cup and saucer 

arrangement with the catalytic domain surrounded by four apple domains (Figure 10). 

These are responsible for the recognition of FIX in the coagulation cascade in addition to 
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heparan sulfate, GPIb and other ligands. Like thrombin and FXa, FXIa also consists of a 

heparin-binding site in the A3 apple domain, and strikingly another heparin binding site 

in the catalytic domain.100-102  

 

Figure 10. The structure of zymogen FXI. The catalytic domain is in white. Sites of 
residues implicated in ligand binding are red for thrombin (T), green for HK, black for 
GPIb, blue for heparin sites (H1 and H2), and orange for FIX. Positions for the activation 
loop (AL) cleavage site (Arg360-Ile370) residue Ile370 and active site (AS) residues 
Ser557, Asp462, and His413 are shown in purple. (Figure adapted from Reference 94) 
 
Targeting FXIa 

The utility of FXIa as a drug target has been revealed by a number of in vitro 

models of coagulation. Additionally, studies on its deficiency in humans and in animal 

models of thrombosis and hemostasis has further supported the claim that it could indeed 

serve as a safer target to modulate the coagulation system. In vitro studies have measured 

the action of FXIa on both the extrinsic and the intrinsic pathways by utilizing the PT and 

the APTT assays respectively. These studies displayed the importance of FXIa in the 
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intrinsic pathway, where FXIa inhibition affected clot formation in the APTT assay. This 

further supports the inference that FXIa is more essential in the amplification than in the 

initiation of coagulation.103,104 FXI deficiency, which is seen in a condition called 

hemophilia C, generally observed in the Ashkenazi Jews, was found to show minor risk 

to bleeding. Bleeding in this condition was only seen on occurrence in response to 

surgery or trauma, however in women the deficiency did not affect pregnancy or 

delivery. This, indicates that FXI is more important in conditions of thrombosis and does 

not necessarily affect hemostasis.105-107 The occurrence of ischemic stroke was found to 

be significantly reduced in FXI-deficient patients.108 Genetic studies in mice have 

demonstrated that FXI-null mice do not develop clots in FeCl3-induced carotid artery 

model, additionally showing no effect on bleeding time.109 These observations, validate 

the use of FXIa inhibition as a target to develop anticoagulants.  

 FXIa inhibition as an anticoagulant target is a rather new premise, with a review 

of literature revealing of very few molecules targeting this enzyme. These are arginine-

containing acyclic peptidomimetics, guanidine-containing arylboronic acid and natural 

products like clavatadines A and B, β-lactam derivatives, and amidine containing 

macrocyclic indoles.104,110-115 All of these recognize residue in the catalytic triad of FXIa 

active site. However, there exist minute differences in the active sites of various serine 

proteases and thus the advent of allosteric site inhibitors. Two heparin binding site exist 

on FXIa as mentioned earlier, with the one on the catalytic domain showing a 100–fold 

greater affinity and an allosteric mechanism of action, whereas the one in the A3 domain 

is postulated to have a more template based mechanism (Figure 10).116,117 These could be 
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targeted to develop allosteric inhibitors of FXIa, with the potential advantage that the 

heparin-binding site of all serine proteases is structurally different and thus allows for use 

of these differences in developing selective agents.103 
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CHAPTER 2: RATIONALE 
 

 Allostery involves conformational and functional transitions in individual protein 

molecules.1 In a more classic sense, molecules, which function in this fashion are based on 

the principle of influencing the activity of an enzyme by binding to a site remote from the 

active site of the enzymes. Numerous reports of systems functioning by this route have 

been reported and well studied.  

Glycosaminoglycans (GAGs) have been subjected to extensive studies because of 

their prevalence in nature. Numerous functions have been sustained by the plethora of 

protein-GAG interactions, which have been recognized and continue, to be, identified 

thereby propelling our understanding of this complex yet highly important system of 

interactions. A majority of this study is focused on protein interactions with heparin. The 

steady commercial availability of heparin and its use in fractionation and heparin-

sepharose affinity chromatography make it a well-studied polymer. The presence of 

heparan sulfate in cells and their subsequent interactions in numerous physiologically 

relevant interactions has also garnered interest. The importance of heparin in the 

coagulation system has been a hot topic for research with the advent of heparin as one of 

the earliest anticoagulants and it continues to be utilized at present.  

The anticoagulant effect of heparin led to widespread studies aimed at deciphering 

the mechanistic and structural aspects of this interaction. The antithrombin-heparin 

interaction can now be considered the paradigm for studying GAG-protein allosteric 
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interactions. Studies indicated the mechanism with which heparin interacts with AT to be a 

conformational/bridging based interaction. Similarly, a number of serine proteases have 

been reported to possess a highly positive heparin-binding site, including FXa, thrombin, 

FXIa and FIXa. 

The complexity of heparin interactions with proteins and the resulting functions it 

alters can be attributed to the phenomenal structural diversity in heparin polymers and their 

sulfation pattern. Numerous efforts have been made to reduce this complexity through the 

identification of smaller more defined units. The heparin pentasaccharide has been the 

most notable example of a highly specific unit with well-studied interactions. However, the 

interactions of heparin with other serpins like HCII and serine proteases like thrombin, 

FXa and FXIa have not been thoroughly understood. Numerous research efforts have 

therefore been employed to obtain a comprehensive understanding of both the mechanistic 

and structural diversity of heparin. 

The rationale of the current work is based on improving our understanding of this 

incidence. The studies address two questions: 

1. Can computational strategies be devised to exploit the structural diversity of 

heparin sulfate in activating serpins. 

2. Can allosteric sulfated quinazolin-4(3H)-ones be developed as more potent 

inhibitors of FXIa? 

These questions have been approached through two projects addressing question 1 and one 

project addressing question 2. 
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a. Novel hexasaccharide based activators of heparin cofactor II and antithrombin 

(Discussed in chapter 3) 

b. Differential recognition of coagulation proteins by a heparan sulfate containing 2-O-

sulfated glucuronic acid (Discussed in chapter 4) 

The goal of both these projects was to develop computational strategies that could utilize 

the structural information for the proteins efficiently to recognize sequences with high 

affinity and specificity. This was followed by an experimental validation. Project 1a, 

involves the computational design of heparin-based hexasaccharide sequences followed by 

the selection of high affinity and specificity structures through the dual-element algorithm 

developed in our laboratory. The algorithm helped recognized two specific sequences, 

which could be utilized as novel dual activators of HCII and AT. 

 Project 1b takes into account the structural enormity of the heparan sulfate 

disaccharide library and utilizes very rare sequences indicated to be of high interests 

through our computational studies and further reported occurrences and mechanistic 

evaluations. This is followed by the enzymatic synthesis of a polymer rich in the rare 

disaccharide sequence and its mechanistic evaluation. The questions answered through the 

evaluation could help unearth newer interaction in addition to understanding the structure 

prevalence in nature. 

 Question 2 utilizes a completely different approach at selectively targeting the 

heparin-binding site in FXIa. FXIa, which belongs to the intrinsic coagulation pathway, 

has been increasingly recognized as a safe alternative to other downstream targets. The 

active site of serine proteases is conserved and is comprised of a catalytic triad making it 
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difficult to design selective agents by targeting specific differences in the active site. The 

heparin binding sites of such proteins are decorated with positively charged arginine/lysine 

residues, however the hydrophobic domain bordering these have been hypothesized to be 

different. We therefore utilized the dual element strategy, using a molecular design 

containing an electrostatic element and a hydrophobic moiety. The electrostatic moiety 

should recognize the heparin-binding site, the hydrophobic moiety could be used to 

identify complementary binding sites, that selectively target a specific protein. Our 

approach has been deemed successful through the synthesis and identification of sulfated 

quinazolinone dimers. We further this approach through the identification of more potent 

and selective agents, while utilizing these advances to gain a mechanistic understanding of 

these molecules. 
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CHAPTER 3: NOVEL HEXASACCHARIDE BASED ACTIVATORS OF 

HEPARIN COFACTOR II AND ANTITHROMBIN. 

 

3.1. INTRODUCTION 

GAGs have been ubiquitously found in nature.118,119 Structurally, these are polymers of 

alternating glycosamine and uronic acid residues, which are irregularly decorated along 

the chain with either sulfates or acetate moieties. Heparan sulfate, chondroitin sulfate, 

dermatan sulfate and hyaluronan comprise the most prevalent GAGs found in nature in 

addition to numerous other GAGs localized in various tissues. These are increasingly 

being recognized to play critical roles in many biological processes, including 

hemostasis, growth and differentiation, immune responses and pathogen invasion.120-123 A 

phenomenonal structural diversity exists among the GAGs and these are introduced in a 

spatiotemporal fashion by utilizing a template-free arsenal of 16 enzyme isoforms.122  

 Heparan sulfate and heparin, which reportedly are the most extensively studied, 

are primarily composed of alternating 1→4 linked uronic acid and glucosamine residues 

that are decorated with sulfate and N-acetyl groups. Theoretically, 96 different 

disaccharide sequences are possible for H/HS arising from uronic acid (UAp) residues 

that can bear either an –OH or a –OSO3− group at their 2- and 3-positions and 

glucosamine (GlcNp) residues that may contain either an –OH or -OSO3
− group at their 

3- and 6-positions, as well as either an –NH3
+, –NHSO3

− or –NHAc group at its 2-

position. However, only 23 sequences have been identified in nature.124 The structural 
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complexity is demonstrated by a simple calculation where 0.8 billion distinct sequences 

are possible for a HS oligomer containing six repeating disaccharide units. For a 

hexapeptide this number is 64 million, while a hexanucleotide could be one of the 4096 

sequences.125 Further complications arise from the conformational variability of the 

iduronic acid (IdoAp) residues, which exist in multiple forms of which 1C4 and 2S0 are 

usually preferred.126 These combinations of structural and conformational possibilities 

make GAGs a very difficult prospect to study. 

 Computational analysis might serve as a powerful approach to the complex protein-GAG 

interactions. However, this is not a straightforward approach with the polyanionic nature 

and the poor surface complementarity posing major obstacles.127 However, our recent 

efforts have yielded a combinatorial virtual library screening (CVLS) approach, which 

utilizes the genetic algorithm-based automated docking program GOLD.91,128 The 

technique was efficiently utilized in recognizing the binding mode of heparin 

pentasaccharide, which is consistent with that seen in the crystal structure.129 The success 

of this approach for this pair suggests its utility in similar systems. 

Out of contrast to the vast heparin structural diversity, the heparin pentasaccharide 

sequence is the only one that targets AT with a higher specificity. This sequence has been 

extensively studied and numerous structural activity relationships have been performed to 

recognize the features essential for its specificity to AT and the resultant activation. 

Similarly, heparin cofactor II has been studied widely, due to its structural and functional 

similarity to AT and the possible advantages it offers in terms of its safety and selectivity 

profile.86,88,92 An alternative oligosaccharide sequence can similarly be devised for this 
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serpin too. With this in view, studies conducted reported a hexasaccharide sequence as 

the minimal moiety required to interact with HCII.92,130 Further, studies however fail to 

register the same level activation for this system.130 The concept however has attracted a 

flurry of research aimed towards identifying such a sequence. The CVLS approach could 

serve as good starting point to identify such sequences for the HCII-dermatan sulfate 

system in a manner akin to the AT-heparin pentasaccharide system. However, the 

syntheses of simple oligosaccharides have been found to be a painstaking process, which 

incorporates numerous steps.16,131-133 Consequently, in this work we have utilized our 

computational approach and successfully identified sequences with the potential to be 

utilized as an anticoagulant functioning through the unique HCII-thrombin system in 

addition to the AT-FXa system. 

3.2. RESULTS 

3.2.1. Computational studies (Work performed by Drs. Raghuraman, Mosier and 

Sankaranarayanan) 

Structure of the Activated Form of Heparin Cofactor II 

Two experimentally determined structures of heparin cofactor II are available, native and 

S195A thrombin-complexed.29 The overall structure of native HCII is similar to that of 

native antithrombin. Superposition of the structure of native HCII on that of native 

antithrombin (PDB file: 2ant)25 gives a RMSD of 1.8 Å for 352 equivalent Cα atoms (not 

shown). Likewise, superposition of Cα atoms of the residues that define the heparin-

binding site in antithrombin, i.e., Arg46, Arg47, Lys114, Lys125, Arg129, Arg132 and 
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Lys133, with corresponding residues in heparin cofactor II results in a RMSD of 1.5 Å 

indicating a high degree of similarity between the two native serpins. 

The structure of GAG-activated heparin cofactor II is not available as yet. 

However, the structure of the serpin in complex with S195A thrombin displays extensive 

similarities with that of the heparin pentasaccharide-activated antithrombin (Figure 11). 

The S195A thrombin-complexed HCII shows an expelled reactive center loop (RCL), as 

found in pentasaccharide-activated antithrombin.22,134 The reason for the expulsion of the 

RCL appears to be the extensive exosite interactions that the RCL makes with S195A 

thrombin. Likewise, exosite interactions also stabilize the heparin-induced, 

conformationally activated antithrombin, as borne out in experiments with factor Xa and 

factor IXa, its conformational activation targets.42,135 Thus, the overall structure of HCII 

in the S195A thrombin-complexed state is similar to that of the pentasaccharide-activated 

antithrombin. 

Further evidence that these forms are nearly identical comes from the 

superposition of the corresponding Cα atoms. Figure 11 shows the superimposed 

activated forms of the two serpins. The RMSD in Cα atoms of the core amino acid 

residues was found to be 2.4 Å suggesting significant similarity in the orientation of most 

structural domains including β-sheets and helices. More importantly, the RMSD for 

corresponding basic residues in helices A and D was found to be 1.5 Å indicating a high 

degree of similarity between the two activated forms in this region. These structural 

similarities indicate that the S195A thrombin-complexed HCII is likely to be the H/HS-

activated form of the serpin. 
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However, differences exist between the two activated serpins in the relative 

orientation of helices A and D, and in the extension of RCL. Whereas A helices (hA) 

superpose nearly completely, the D helices (hD) display a significant ~30° angle between 

the two serpins (Figure 11). Likewise, the RCL in the activated forms show a 

significantly greater extension of the loop in the S195A thrombin-complexed HCII than 

in the pentasaccharide-activated AT (Figure 11). In addition, helix D of heparin cofactor 

II contains an additional electropositive residue, Arg184, which has no counterpart in 

antithrombin. Thus, although the two serpins in their native and activated forms are 

nearly equivalent, subtle differences are evident. Despite these differences, the S195A 

thrombin complexed HCII structure is very similar to the pentasaccharide-activated AT 

structure and is a good model for investigation of H/HS interactions, especially 

considering that the structure of GAG-activated HCII is unknown. 
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Figure 11. Comparison of the structure of S195A thrombin-complexed heparin cofactor 
II with heparin pentasaccharide activated antithrombin. Core polypeptide sequences, 
devoid of residues of the N-terminus and the RCL, were to give an overall RMSD of 2.4 
Å. Note the small rotational difference in helix D axis and at the N-terminal end of helix 
A between the two proteins, while the expulsion of RCL in heparin cofactor II is much 
greater than that in antithrombin. Antithrombin ribbon is shown in green and red (hD, hA 
and RCL), while HCII is shown in gray and yellow (hD, hA and RCL). 
 

Filtering of sub-optimal HS sequences from a library of 46,656 sequences 

Computational docking approaches represent a powerful means of assessing binding 

affinity, specificity and binding geometry. Yet, modeling GAGs is challenging because 

the high negative charge density tends to induce false positive recognition. In addition, 

most GAG-binding sites on proteins are surface–exposed and shallow, which encourage 

poor complementarity.136-142 Our previous CVLS protocol was applied to a small library 

of H/HS sequences (~7,000 sequences) and screened a limited domain of 3D space to 

assess ‘specificity’ of binding.128 However, the repertoire of nature’s sequences is huge, 

RCL 

hF 

hD 

hA 



 

  46 

of which the majority are never studied rigorously. Recently, we have designed a robust 

genetic algorithm-based combinatorial virtual library screening approach that utilizes a 

dual-filter process to identify hexasaccharide sequences in heparin that recognize 

antithrombin with high specificity. This sequential dual-filter algorithm utilizes GOLD 

score, a measure of ‘affinity’, as the first filter, followed by convergence of binding 

geometries, a measure of ‘specificity’, as the second (Figure 12). 

In the present study with heparin cofactor II, we used a comprehensive library of 

HS hexasaccharide sequences built from all of the 23 disaccharide building blocks 

reported to date (Figure 13B). To address the conformational variability possible in 

IdoAp residues, two major ground state conformers 1C4 and 2SO, were explicitly modeled, 

increasing the number of building blocks to 36 to give a library of 363 = 46,656 

hexasaccharide sequences. The H/HS binding site in activated heparin cofactor II was 

defined to include the domain formed by helices A and D and the polypeptide N-

terminus.29   

GOLD-based docking, with 10,000 iterations and 10 GA evaluations, of the 

46,656 hexasaccharides was carried out to identify sequences with good HCII 

recognition. Figure 14 displays the histogram of GOLD scores. The profile is Gaussian, 

showing that a majority of HS sequences (83.5%) bind heparin cofactor II with average 

GOLD score (30–80 units). Nearly 15.7 % of sequences bind poorly (GOLD score below 

30 units), while 0.8 % hexasaccharides recognize the serpin with high GOLD scores 

between 80 to 106 units. This included 2 sequences with GOLD score higher than 100 

and 45 sequences with score between 90 and 100 units. In comparison to the heparin–



 

  47 

antithrombin system128, these overall GOLD scores are approximately 20 to 30 units 

lower suggesting that the affinity of HS hexasaccharides for heparin cofactor II may be 

lower than that for pentasaccharide binding to antithrombin. We chose 47 sequences (the 

top 0.1%) as candidates for the convergence (‘specificity’) test (not shown). 

 

 

Figure 12. Dual-filter algorithm used to screen a combinatorial library of 46,656 H/HS 
hexasaccharide sequences. The hexasaccharide library was built from 36 naturally 
occurring disaccharide building blocks using the average backbone model and screened 
using two filters, an ‘affinity’ filter and a ‘specificity’ filter. The affinity filter 
corresponded to a GOLD score in the top 0.1% or less hexasaccharide sequences, while 
the specificity filter corresponded to reproducibility of binding geometries in successive 
experiments to within RMSD of less than 2.5 Å. See Experimental Section for details. 
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Figure 13. Structure of high-affinity heparin pentasaccharide (A) and naturally occurring 
disaccharide building blocks used in the construction of combinatorial virtual library (B). 
Heparin pentasaccharide DEFGH (A) binds antithrombin with high-affinity and high 
specificity, yet does not recognize heparin cofactor II. Disaccharide building blocks used 
in the combinatorial library construction (B) include GlcAp disaccharides on the left and 
IdoAp disaccharides on the right. X represents substitution possible on the 2-position of 
uronic acid residue, while Y and Z represent that on the 3- and 6-positions of the 
glucosamine residue, respectively. Ten GlcAp- and 13 IdoAp-containing disaccharides 
are found in nature, respectively, of which the IdoAp residue can either be 1C4 or the 2SO 
form, thus giving a total of 36 disaccharide building blocks. 
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Figure 14. Histogram of number of HS hexasaccharide sequences for every 10 unit 
change in GOLD score. Modified GOLD score was calculated for all 46,656 
hexasaccharides docked onto heparin cofactor II following the first phase of 
combinatorial library screening. Inset shows an expanded portion of the histogram in the 
range 90–110 GOLD score units.  
 
Structural Features of the ‘High-Affinity’ HS Hexasaccharides 

Structural analysis of the sequences identified through the ‘affinity’ filter reveals 

interesting insight into recognition of heparin cofactor II. Of the 47 hexasaccharides, only 

4 carry the maximal possible sulfation load of 9 groups, while the library contains a total 

of 1728 sequences with the maximum load. This suggests that the majority of the high-

affinity sequences are not highly sulfated. It also suggests that the GOLD fitness function 

does not arbitrarily select for higher sulfation level, although the binding site in heparin 

cofactor II is highly electropositive. The GOLD fitness function is driven by hydrogen 

bond and van der Waals’ potential functions only, and not by Coulombic interactions, 

making it particularly suited for weeding out GAG structures with low complementarity. 

The 8 topologies corresponding to the common heparin hexasaccharide sequence, 

[IdoAp2S-GlcNp2S6S]3, which also carry 9 sulfate groups, have GOLD scores in the 
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range of –2.7 to 66.4 units, suggesting that these sequences recognize heparin cofactor II 

with poor affinity. These results are consistent with solution experiments with 

heterogeneous, polydisperse heparin sample that show poor heparin cofactor II affinity in 

the range of 45–140 mM.143-145 

 The ratio of IdoAp and GlcAp containing disaccharides in our combinatorial 

library was 2.6:1, while it was found to be 1.2:1 in the 47 hexasaccharides. This implies a 

significant enrichment of GlcAp-residues. Additionally, the 47 identified hits do not 

contain the hexasaccharide sequences related to the high-affinity pentasaccharide 

(IdoAp2S [2SO/1C4]-GlcNp2S6S-GlcAp-GlcNp2S3S6S-IdoAp2S [2SO/1C4]-GlcNp2S6S), 

which were found to have GOLD scores in the range of 50–54. This result is also 

consistent with Maimone and Tollefsen, who have shown that heparin molecules with or 

without the high-affinity antithrombin-binding pentasaccharide sequence equally activate 

HCII.130 

Finding Needle(s) in the Haystack: Only two HS hexasaccharides are predicted to 

recognize heparin cofactor II with high-specificity.  

The convergence (‘specificity’) filter used in our dual-filter algorithm is a robust strategy 

to identify sequences that possess exceptional complementarity to the receptor. This filter 

utilizes 3 experiments of 100 GA runs each, in which each GA run is allowed to evolve 

over 100,000 iterations, resulting in 6 final binding geometries. Binding is deemed to be 

specific if the RMSD among these geometries is ≤ 2.5 Å. Of the 47 sequences that were 

subjected to this stringent criterion, only 2 sequences (HX1 and HX2) were found to 

recognize activated heparin cofactor II with high specificity (Figure 15A). 
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Several points about the structure of these two hexasaccharide sequences are 

striking. None of the GlcNp residues have an acetyl group at the 2-position. This is 

striking because natural heparan sulfate consists of nearly 50–60 % GlcNp2Ac 

residues.146,147 The total number of sulfate groups in these sequences are 8 (HX1) and 7 

(HX2). This averages to about 2 to 3 sulfate groups per disaccharide sequence. In 

contrast, the degree of sulfation of human liver HS was found to be 1.2, while that of 

porcine liver HS and porcine intestinal heparin was found to be 1.0 and 2.6, 

respectively.146,148 Thus, these sequences are significantly more sulfated than natural HS, 

but either equal to or slightly less sulfated in comparison to natural heparin. Yet, these 

sequences are not heparin-like because the IdoAp composition is 0.0% whereas for 

heparin, it is > 80%.122,149 

Significance of Our Two Step Approach of Identifying Potential HCII-Binding HS 

Sequences 

The identification of the 2 “high-specificity” HS hexasaccharides is based upon 

the geometry convergence of 47 top-scoring sequences that comprised 0.1 % of all 

hexasaccharides in the virtual HS library. Yet, it is possible that some of the filtered 

sequences from the first affinity screen may have been false negatives due to pre-

termination of the genetic algorithm or insufficient number of iterations (see 

‘Experimental Section’). In other words, putting these filtered sequences through the 

more robust, but time-consuming geometric convergence test may reveal additional 

“high-affinity” sequences.  
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Figure 15. Structures of HS hexasaccharide sequences A) HX1 and HX2, which are 
predicted to recognize heparin cofactor II with ‘high affinity-high specificity’ and B) 
HX3 ‘high affinity’ sequence. A) Sequences HX1 and HX2 are predicted to bind HCII 
with ‘high affinity-high specificity’ from the combinatorial virtual library screening. 
These sequences have almost 85% of similar residues.  The major difference in the 
sequence is with the position of sulfation at residue C (red) and F (magenta). Each 
sequence contains more than one residue that is rarely found in naturally occurring 
heparan sulfate, including GlcAp2S and GlcNp2S3S. See text for details. B) Sequence 
HX3 which was predicted to bind HCII with ‘high affinity’ from the critical analysis of 
CVLS. But this sequence failed at the second filter (‘specificity’). This sequence had 
IdoAp containing disaccharide (blue).  See text for details. For naming conventions of 
hexasaccharides see Appendix A. 
 

To test if potential high-affinity HS sequences may be present in the set of HS 

sequences that did not pass the affinity test, we randomly choose 47 of these sequences, 5 

from each of the 10 histograms bins in Figure 14, and subject them to the geometry 
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convergence test. Our results revealed that only one (HX3) of the 50 sequences passed 

the test. This sequence had an IdoAp containing disaccharide (Figure 15B). Additionally, 

the binding mode of this sequence is approximately 15-20° away from the ‘high 

specificity’ sequences. The calculation of RMSD for this sequence (HX3) (for triplicate 

runs) was >2.5Å (Figure 16A).  This result suggests that our two-step docking approach 

is well suited to eliminate false positives; it is unlikely that false negative solutions have 

been overlooked. 

Docking of  ‘high specificity’ and ‘high affinity’ sequences with other serpins and 

Coagulation enzymes 

The 2 “high-specificity” HS hexasaccharide sequence from our dual filter algorithm and 

one ‘high affinity’ sequence obtained from critical analysis of the first filter were used for 

further docking with other serpins and coagulation enzymes. Since the binding site of 

both HCII and AT results in a RMSD of 1.5 Å indicating a high degree of similarity 

between the two native serpins, all three sequences were docked in triplicate to the crystal 

structure of AT (PDB ID: 1TB6)134 which resulted in 6 solutions for each of the 

sequence. The application of ‘specificity’ filter to these solutions yields an RMSD >2.5Å 

for all 3 sequences (HX1to HX3) (Figure 16A). Further in order to check whether these 

sequences were similar in binding to other serpins and coagulation enzymes, the same 

triplicate docking was done for these 3 sequences. The molecular docking was carried out 

for serpins like alpha-1-antitrypsin (α1-PI) (PDB ID: 1EZX),34 plasminogen activator 

inhibitor-1(PAI1) (PDB ID: 1B3K),150 protein C inhibitor (PCI) (3DY0)151 and Protease 

Nexin-1(PN1) (PDB ID: 4DY0)152 and the coagulation enzymes like thrombin (TH) 
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(PDB ID: 1XMN),137 factor IXa (FIXa) (PDB ID: 3KCG),153 factor Xa(FXa) (PDB ID: 

2GD4)154 and factor XIa(FXIa) (PDB ID: 2F83).102 The RMSD analysis of these docked 

sequences showed that the ‘highly specific’ sequences (HX1 and HX2) of HCII were 

completely non-specific in recognition to both serpins and coagulation enzymes (Figure 

16). Similarly the high affinity sequence (HX3) was also found to be non-specific in 

recognition. This result suggests that the sequences HX1 and HX2 are ‘highly specific’ in 

HCII recognition. 

 

Figure 16. RMSD plot for the 3 specific sequences A) with serpins and B) with 
Coagulation enzymes. 
 
Molecular Interaction Profile of the two Predicted ‘High-Affinity, High-Specificity’ 
Sequences 
Both the sequences bind activated HCII in an essentially identical orientation with the 

non-reducing end recognizing helix A, while the reducing end is oriented toward the C-

terminus of helix D (Figure 17A and Figure 18A). This suggests good specificity in the 

recognition of activated HCII. In fact, a RMSD of 0.9 Å is found for backbone atoms of 
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the central tetrasaccharide BCDE among the highest scoring docked solutions for each 

sequence, which increases to 2.5 Å, if one considers the backbone atoms of all six 

residues. Both HX1 and HX2 sequences strongly hydrogen bond to activated HCII. The 

HS hexasaccharides orient at a ~60° angle relative to the axis of helix D. This alignment 

is significantly different from heparin pentasaccharide binding to antithrombin, which 

orients almost parallel to the axis of helix D.22,134 When both HX1 and HX2 were docked 

to antithrombin they bind ~10° relative to heparin pentasaccharide sequence (Figure 17B 

and Figure 18B). The hexasaccharide sequences HX1 and HX2 forms a strong hydrogen 

bond with residues, Arg103, Arg184, Lys185, His188, Arg192 and Arg464 (Figure 19). 

Closer inspection of interaction at the atomic level reveals that the high scoring residues – 

Arg464, Arg184 and Arg192 – form multi-valent hydrogen bonds. Specifically, Arg464 

forms 3 strong hydrogen bonds, two with the B2S group and one with the C2S group, 

Arg184 forms 2 hydrogen bonds with the D2S and E2S groups, while Arg192 forms 1 – 2 

hydrogen bonds with F3S group. Together these four sulfate groups on the GAG are 

responsible for over 85% of the calculated hydrogen bonds. This analysis suggests that a 

core, conserved tetrasaccharide BCDE with the minimal sequence GlcNp2S—

GlcAp2S—GlcNp2S—GlcAp2S appears to be critical for high-affinity, high-specificity 

binding to activated heparin cofactor II. Additionally, sulfation at 3 positions in residue 

D, introduces additional interactions with Lys185, respectively. 
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Figure 17. Overlay of HX1 on HCII and AT. 
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Figure 18. Overlay of HX2 on HCII and AT. 
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Figure 19. Interaction of HX1 with HCII
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Figure 20. Interaction of HX2 with HCII
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3.2.2. Synthesis of the Hexasaccharides 

The hexasaccharides (HX1-HX3) were synthesized by the Oscarson lab at UCD School 

of Chemistry and Chemical Biology, University College of Dublin, Ireland. 

3.2.3. Hexasaccharides Bind to HCII and AT With Good Affinity 

To put the computational predictions to test, we studied the interaction of the designed 

hexasaccharides with HCII and AT utilizing intrinsic tryptophan fluorescence 

spectroscopy, as reported in literature.155,156 All three hexasaccharides demonstrated a 

characteristic saturable change in fluorescence emission at 340 nm (λEX = 280 nm) under 

pH 7.4, I 0.06, 25 ºC conditions indicative of good interaction (Figure 21). Whereas a 

decrease in fluorescence was observed for each hexasaccharide binding to HCII (-26 to -

33%), an increase was noted for AT (32 to 46%). Although the changes for the two 

related serpins are dramatically distinct, these are in line with those reported in the 

literature for other oligosaccharides.14 Also, heparin pentasaccharide H5 also shows 

equivalent order of changes (-24% and 32%, respectively, Table 6). The affinities for 

HCII derived from the fluorescence profiles were calculated to be in the range of 29 to 45 

µM for the three HXs. These compare favorably to the HCII affinities reported for high 

affinity hexasaccharide sequences extracted from UFH and DS (20-40 µM).92,130 

Interestingly, H5 was found to bind with an affinity of 9.2 µM, which was better than the 

HXs. In comparison to HCII, the HXs bound antithrombin with much more varied 

affinities. HX1 and HX2, the two primary hexasaccharide sequences targeted by 

computational design, displayed affinities of 7.9 and 49 µM, while HX3 interacted with a 

KD of 75.3 µM (Figure 20, Table 6). These affinities are much weaker than the low nM 
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affinity noted for H5 in the literature.14,57 

 
 

 

Figure 21. Affinity of hexasaccharides HX1–HX3 for antithrombin (A) and heparin 
cofactor II (B) in 20 mM sodium phosphate buffer, pH 7.4, containing 25 mM NaCl at 25 
°C. The affinity was measured from the proportional change in fluorescence emission 
(ΔF/F0) at 340 nm (λEX = 280 nm) as a function of the concentration of the HX, which 
was fitted using quadratic eq 1 (solid line) to derive the maximal fluorescence change 
(DFMAX) and equilibrium dissociation constant (KD). See ‘Experimental Section’ for 
additional details. 
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Table 6: Equilibrium dissociation constant (KD) and maximal fluorescence change 

(DFMAX) for hexasaccharide–serpin complexes.a 

aMeasured using intrinsic (Trp) fluorescence in 20 mM sodium phosphate buffer, pH 7.4, 
containing 25 mM NaCl, at 25 °C. See Materials and Methods for additional details. 
bError represents ±1 S.E. cTaken from Desai et al.5 
 

3.2.4. Hexasaccharides Activate Serpin Inhibition of Target Protease 

To assess the influence of HXs on the ability of serpins to inhibit their target protease, we 

studied the kinetics of HCII inhibition of TH and AT inhibition of FXa in a discontinuous 

assay at pH 7.4, I 0.06, 25 ºC, as described earlier.93 The exponential decrease in residual 

protease activity as a function of time was used to derive the observed pseudo-first order 

rate constant (kOBS) (Figure 22). The kOBS of inhibition was found to increase linearly 

with the concentration of HX–serpin complex, which was used to obtain the second-order 

rate constant for the uncatalyzed inhibition (kUNCAT) from the intercept and HX-catalyzed 

inhibition from the slope (kHX) (Table 7). 

The kUNCAT for HCII–TH system and AT–fXa system was found to be 1.1–1.3 

 AT HCII 

 KD ΔFMAX KD ΔFMAX 

 (mM) (%) (mM) (%) 

HX1 7.9±0.5b 32±4 29.4±6.9 -33±5 

HX2 48.7±8.7 46±4 17.6±4.0 -26±3 

HX3 75.3±5.9c 45±4 44.5±3.8 -32±2 

H5 0.05±0.006c 32±3 9.2±1.2 -24±1 
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×103 M-1s-1 and 2.2–2.4×103 M-1s-1, respectively (Table 7). These values compare 

favorably with basal rates reported in the literature.14,93 The kHX for HCII–TH reaction in 

the presence of HX1 was measured to be 2.4×105 M-1s-1, which implies an acceleration of 

~208-fold. HX2 and HX3 displayed an acceleration of ~43- and 71-fold, respectively. 

Likewise, heparin pentasaccharide H5 was found to induce a 49-fold acceleration in 

HCII–TH reaction. With regard to AT inhibition of FXa, HX1 and HX2 revealed 

accelerations of ~346- and ~380-fold, respectively, while HX3 displayed a weaker 

acceleration of ~63-fold (Table 7, Figure 22). In comparison, H5, a clinically used 

anticoagulant targeting the AT – fXa system, displays accelerations in the range of 275 – 

300-fold.14  

To assess whether the observed accelerations arise from direct interaction of the 

proteases by HXs, we performed inhibition studies in the absence of the respective 

serpins. Using chromogenic substrate hydrolysis assay, the residual protease activities 

were monitored at HX concentrations as high as 500 µM against both TH and FXa. No 

inhibition of either enzyme was noted in these studies (not shown) suggesting that the 

HXs function only through an indirect mechanism of action. Overall, HXs were found to 

significantly affect serpin inhibition of target proteases. HX1 was found to 

simultaneously induce robust acceleration of both AT and HCII against their preferred 

targets, as predicted on the basis of computational design. 
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Figure 22. Kinetics of serpin inhibition of target protease in the presence of 
hexasaccharides HX1–HX3 in 20 mM sodium phosphate buffer, pH 7.4, containing 25 
mM NaCl at 25 °C. The residual TH activity (A, B and C) or FXa activity (D, E and F) 
was measured from the initial rate of substrate hydrolysis under pseudo-first-order 
conditions as a function of time in the presence of HX1 (A and D), HX2 (B and E) and 
HX3 (C and F) and fixed concentrations of HCII (A, B and C) or AT (D, E and F). Panel 
G and H shows the profile of the observed pseudo-first order rate constant of HCII (G) or 
AT (H) inhibition (kOBS) at different HX concentrations and its analysis using linear 
equation 2 (solid lines) to obtain the uncatalyzed (kUNCAT) and catalyzed (kHX) rate 
constants. See ‘Experimental Section’ for additional details. 
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Table 7: Acceleration in serpin inhibition of coagulation enzymes brought about 

by HX.a 

aMeasured using discontinuous enzyme inhibition assay in 20 mM sodium phosphate 
buffer, pH 7.4, containing 25 mM NaCl, at 25 °C. See Experimental Methods for 
additional details. bRefers to the ratio of catalyzed and uncatalyzed rate constants. cError 
represents ±1 S.E. cTaken from Lindahl et al.6  

 

3.2.5. Hexasaccharides are Potent Anticoagulants in Human Plasma 

To assess if the promising activation of HCII and AT against TH and fXa, respectively, 

translates into promising anticoagulation potential in human plasma, we utilized the 

activated thromboplastin time (APTT). The ability of the HXs to prolong clotting was 

quantified in the form of the concentration required to double the clotting time (Figure 

23). A HX1 concentration of 85 µM doubled APTT, while 323 and 824 µM levels were 

needed for HX2 and HX3 (Figure 23). In comparison, 34 µM H5 was minimally needed 

for 2×APTT. This implies that HX1 and H5 are approximately equipotent in this human 

plasma anticoagulation test, while other two HXs are much less potent. A plausible 

explanation for this difference is the higher affinity of H5 and HX1 for the two serpins in 

comparison to the other HXs. Interestingly, the observed 85 µM 2×APTT for HX1 is 

 AT-FXa HCII-TH 

 kUNCAT kHX Activationb kUNCAT kHX Activationb 

 (M-1s-1) (M-1s-1)  (M-1s-1) (M-1s-1)  

HX1 2.4±0.2×103c 8.3±0.3×105 346±41 1.1±0.2×103 2.4±0.1×105 208±48 

HX2 2.1±0.5×103 8.0±0.5×105 381±114 1.2±0.3×103 5.1±0.2×104 42.7±12.4 

HX3 2.2±0.3×103 1.4±0.1×105 62.4±7.0 1.3±0.3×103 8.8±0.2×104 70.5±16.7 

H5d 2.3±0.1×103 6.1±0.3×105 275±25 1.4±0.2×103 6.8±0.4×104 49.0±17 
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only about 10 and 3-fold lower than its affinity for AT and HCII, respectively. In 

contrast, H5 demonstrates a loss of ~6800 and 3.7-fold, respectively. 

 

Figure 23. Pooled human plasma clotting time at varying levels of hexasaccharides 
HX1–HX3 and heparin pentasaccharide H5 measured using the APTT assay. Solid lines 
are trend lines, which were used to calculate the concentration required to double the 
clotting time. 
 
3.3. DISCUSSION 

3.3.1. Designing Hexasaccharides Targeting HCII. 

The heterogeneity and the non-specific heparin-based interaction were thwarted by the 

advent of a more specific pentasaccharide sequence identified for AT. The first total 

synthesis of the pentasaccharide in low yields laid the foundation to achieve a degree of 

understanding to this otherwise unknown interaction.131 We have utilized a computational 

based approach to identify a similar specificity for the closely related serpin HCII. Three 

hexasaccharides were synthesized to test our hypothesis, which included HX1 and HX2 

as molecules specific for HCII and, HX3 predicted to be non-specific. Structurally, each 

of these possesses an alternating uronic acid and glucosamine units, sulfated strategically 

to unearth specific interactions with HCII identified computationally (Figure 19 and 20). 
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HX1 and HX2 are identical with minor changes at the B residue 2-position sulfate and 

the F residue 3-position sulfate (Figure 24). Comparatively, H5 possess an iduronic acid 

at the G residue, replaced by a glucuronic acid for HX1 and HX2 (residue E). However, 

HX3 does retain the iduronic acid at the same residue but lacks the important 6-OSO3
− 

groups at the D residue (Figure 24) These hexasaccharides do possess an extra glucuronic 

acid residue in comparison to H5. The basis of these structural modifications are derived 

through our computational strategy and its translation into actual measured activity 

(Table 7) does indicate the robustness of our strategy. 

3.3.2. Reported Structural Studies for the AT-FXa system 

AT is a major regulator in maintaining normal hemostasis. It achieves this by targeting 

major coagulation proteases like FXa, thrombin and FIXa.15 Heparin was the first known 

activator of AT but, is highly non-specific due to its large anionic and heterogenous 

character. Reducing its overall size and anionic character produced a striking 

improvement in specificity showcased by the small and specific heparin pentasaccharide 

(DEFGH, Figure 24).132,157,158 Additionally, the improved specificity reduces the 

possibilities of non-specific interactions with other proteins.159 The natural 

pentasaccharide was further studied through the synthesis of a plethora of synthetic 

variants.16,17,132,133 Each of these extensive libraries has helped advance more potent and 

stable variants (Table 8). Important structural data established from these studies indicate 

that the 6-position of residue D, 3- and 2-position of residue F, and 2-position of residue 

H, are crucial for binding to antithrombin (Figure 24). Further synthetic derivatives 

revealed the replacement of the NHSO3
− group in all three glucosamine residues with 
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OSO3
− and the addition of alkyl ethers at the free hydroxyl groups produce an 

enhancement of activity132 (DEFGH-NGA, Table 8). Additionally, altering the backbone 

O-glycosidic bond with a C-glycosidic bond did not affect the activity (C-DEFGH, 

Table 8).45 Similarly, the addition of a hydrophobic unit (95, Table 8) did not alter 

activity.133 The AT-H5 system is a well-studied system and extending this to the HCII-

TH system has been widely pursued. 

Table 8: List of natural pentasaccharide and its derivatives.a 

DEFGH derivatives 

 
Pentasaccharideb X Y Y’ Anti-FXa 

activity 

    U/mg 
DEFGH NHSO3

- COO- COO- 700 
D’EFGH NHCOCH3 COO- COO- 350 
DE’FGH NHSO3

- COOCH3 COO- 35 
DEFG’H NHSO3

- COO- H ~0 

Pentasaccharide Structure Anti-FXa 
activity 
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DEFGH-NGA 

 

 
 
 

1323 

 
 
 
C-DEFGH 

 

 
 
 

880 

 
 
 
Idraparinux 

 

 
 
 

~700 

 
 
 
95 

 

 
 
 

943 

aPentasaccharide derivatives as antithrombin based anticoagulant. Red refers to the 
residues known to be important in the pentasaccharide sequence and blue refers to the 
changes incorporated in comparison to the original DEFGH pentasaccharide sequence 
found in heparin.bCompiled from van Boeckel and Petitou160 and Petitou et al.45 
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HCII has evolved to be an adjunct to AT in regulating the circulatory levels of thrombin. 

Unlike AT, HCII only targets thrombin, affecting both the clot bond and the free form of 

thrombin.145 Its adjunct role postulated to be more essential in pathophysiological 

responses, has resulted in a flurry of research aimed at developing agents targeting this 
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sulfate, heparin and heparan sulfate,161 chitosan polysulfate,162 fucoidan,163 fucosylated 

O

OCH3

O

COO

OCH3

O

OSO3

CH2OSO3

OSO3

O

O

OCH3

O

COO

OCH3

O

OSO3

CH2OSO3

OSO3

O

O

OH

CH2OSO3

OSO3

HO OMe

_ _ _ _

_ _ _

_
_

_

O

OCH3

O

COO

OCH3

O

OSO3

CH2OSO3

OSO3

O

O

OCH3

CH2

COO

OCH3

O

OSO3

CH2OSO3

OSO3

O

O

OH

CH2OSO3

OSO3

HO OMe

_ _ _ _

_ _ _

_
_

_

O

OCH3

O

COO

OCH3

O

OH

CH2OSO3

OSO3

O

O

OCH3

O

COO

OCH3

O

OSO3

CH2OSO3

OSO3

O

O

OCH3

CH2OSO3

OCH3

H3CO OMe

_ _ _ _

_ _

_
_

_

O

OC2H5

O

COO

OSO3

O

OSO3

CH2OSO3

OSO3

O

O

OCH3

O

COO

OCH3

O

OSO3

CH2OSO3

OSO3

O

O

OSO3

CH2OSO3

OSO3

O OMe

_ _ _ _

_ _ _

_
_

__

_
F3C



 

   70 

chondroitin sulfate164 shown to produce a drastic acceleration of HCII for thrombin 

inhibition. The polymeric structure of these however, incorporates numerous 

complexities in terms of their structure and purity, making it almost impossible to 

reproducibly use these in a clinical setting. Thus the impetus to identify smaller, well 

characterized effectors. 

In an attempt to replicate the high affinity heparin pentasaccharide in the HCII system, 

the polymeric mix of dermatan sulfate and heparin were successfully reduced in two 

different studies to a hexasaccharide as a minimal effective unit for HCII.92,130 These 

were elucidated as shown in Figure 25 indicating the structure of the heparin-based 

hexasaccharide and the dermatan sulphate-based hexasaccharide. Reports suggest the 

hexasaccharide comprises ~5% of disaccharides present in dermatan sulfate. This has 

been reportedly synthesized.165 Similarly, studies with the heparin-based hexasaccharide 

indicates a dual interaction and acceleration of HCII in addition to potentiation of AT 

mediated inhibition of FXa, a feature indicated in the HXs studied here. Numerous 

reports incorporating depolymerization strategies have identified hexasaccharides based 

effectors,22,166,167 however the maximum activity afforded by these has been ~100-fold, 

moderate in comparison to the ~2000-fold observed for heparin and dermatan sulfate.92 

Non-saccharide based sucrose octasulfate specifically activates HCII with a 2000-fold 

activation, however its affinity for HCII is poor at 1.45±0.30 mM. Conversely, 

contrasting reports indicate it to be a direct potent inhibitor of thrombin with an IC50 of 

4.5±1.1 µM, albeit with an efficacy of less than 10%.168 
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3.3.4. Hexasaccharides Predictably Interact with AT 

 The hexasaccharide sequences studied herein, produced a potent activation of AT 

comparable to DEFGH especially HX1 and HX2, with HX3 inducing a poor 63-fold 

activation. Structurally, HX1 and HX2 are similar to the pentasaccharide sequence 

DEFGH, the major difference being the replacement of the iduronic acid at residue G 

with a gluocuronic acid (residue E) (Figure 14). The structural change does not affect the 

acceleration however, could conversely affect the affinity denoted by the moderate 

affinity observed in comparison to H5 (Table 6). Minor structural changes include the 

addition of sulfates at the 2-position of C residue and the 4-position of the F residue 

(Figure 24), both of which are not studied to be vital for activity. Predictably, HX3 which 

lacks the essential sulfate group at the 6-position (Figure 24) of the B (D in 

pentasaccharide) residue produces a loss in acceleration and affinity, despite of this 

derivative possessing an iduronic acid at the E residue. 

3.3.5. Identification of Hexasaccharide based Potent Activator of HCII 

The computationally designed hexasaccharides we studied, possess a moderate affinity 

for HCII, however comparable to that reported for similar hexasaccharides.92,167 The 

activation profile for these indicated a high 208-fold acceleration induced by HX1, albeit 

without any direct inhibition of thrombin. In comparison, to the well-studied AT-H5 

system, little is known about the features required to induce specificity towards HCII. 

However, a comparison to the reported heparin hexasaccharides (Figure 25) does indicate 

a structural dependence to the improvement in acceleration. The reported sequence 

ABCDEF (Figure 25) is essentially similar to the HXs studied, with minor changes 



 

   72 

including the replacement of the iduronic acid at residues A and C by a glucuronic acid in 

HXs, additionally the glucuronic acid in residue E has been replaced by a iduronic acid in 

HX3. The effects of these changes does indicate the importance of the sulfate at the 2-

position on each residue, especially the residue C with the addition of a sulfate group 

increasing acceleration quantified by lack of a sulfate in HX2, producing a decrease in 

acceleration. Whereas, modification in the saccharide backbone does not affect the 

acceleration with both glucuronic or iduronic acid tolerated (Figure 15). Consequently, 

the identification of HX1 could serve as the initial step towards developing more potent 

and selective agents to target HCII more specifically. 

3.3.6. Utilization in Arterial/venous Thrombosis Models 

AT conventionally targets venous thrombosis through the activation of thrombin and 

FXa. However, HCII possess a peculiar characteristic of specifically targeting clot bound 

thrombin and could therefore be utilized in an arterial thrombosis model. HX1 possess an 

activation potential for both AT and HCII and could therefore be utilized as a newer 

agent in the unexplored field of dual agents, targeting both venous and arterial 

thrombosis. Similarly, the affinity these possess for AT is considerably lower than that 

reported for the heparin pentasaccharide (50 nM). The same affinity, which induces 

specificity, is responsible for the bleeding complications reported with the use of the 

heparin pentasaccharide. However, the HXs have a reportedly lower affinity for AT and 

could therefore induce a measured anticoagulant effect thereby reducing the risks of 

bleeding complications. 
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Figure 24. Structural comparison of the DEFGH sequence and the HXs synthesized. 
Blue refers to the residues deemed important as per reported studies. Red refers to the 
residues altered in the HXs in comparison to DEFGH. 
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Figure 25. The structure of the reported dermatan sulfate and heparin-based 
hexasaccharide sequences and the comparison of the HXs and the heparin based 
hexasaccharide sequence. Red refers to the backbone saccharide units altered in 
comparison to the heparin-based hexasaccharide ABCDEF. 
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difficulties in structure elucidation since crystallization of a complex using the highly 

heterogeneous, polydisperse GAG is nearly impossible. Our work suggests that there 

exist at least two hexasaccharide sequences that are predicted to recognize activated 

heparin cofactor II with high-affinity and high specificity. Both sequences contain at least 

two GAG monosaccharides of the GlcNp2S3S or GlcAp2S type that are rare in natural 

preparations of H/HS. 

 The fact that each sequence has at least two such rare monosaccharides suggest a 

rapidly diminishing probability of finding these structures naturally. Yet, the 

hexasaccharides are expected to be accessible through chemical synthesis,169 which may 

catalyze interest in clarifying the mechanism of H/HS activation of heparin cofactor II as 

well as advance the concept of designing potent heparin cofactor II agonists as specific 

inhibitors of thrombin. Considering that the structure of H/HS–HCII complex is not 

available, our combinatorial virtual library screening results have far reaching 

implications. 

Our dual-filter algorithm appears to be a powerful tool for deciphering specificity 

of binding. For GAG-protein pairs that are difficult to study through NMR spectroscopy 

and X-ray crystallography, our virtual approach provides an avenue for gaining initial 

insight into ligand – protein interactions. 

3.4. Experimental Methods 

3.4.1. Computational Methods 

Software. SYBYLX v2.0 (Tripos Associates, St. Louis, MO) was used for 

molecular visualization, minimization and for preparation of protein structures from the 
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Protein Data Bank (www.rcsb.org/pdb). GOLD, v5.1170 was used for molecular docking 

experiments. GAG sequences were built combinatorially in an automated manner using 

in-house SPL (SYBYL Programming Language) scripts. 

Protein preparation. The coordinates for the activated form of heparin cofactor II were 

extracted from the crystal structure of the S195A thrombin-HCII Michaelis complex 

(PDB entry 1JMO).29 For comparative purposes, the co-ordinates of heparin 

pentasaccharide – antithrombin co-complex were extracted from protein databank file 

1TB6.134 Protein preparation was performed using the “prepare protein” module in 

SYBYLX, v2.0 and included removal of water molecules, adjustment of the protonation 

states of amino acid residues to physiological conditions, addition of hydrogen atoms and 

the structure was minimized with fixed heavy-atom co-ordinates using the Tripos Force 

Field for 1,000 iterations subject to a termination gradient of 0.05 kcal/(mol-Å). 

Co-ordinates for HS Virtual Library. The co-ordinates for HS hexasaccharide 

sequences present in the combinatorial virtual library were generated using a series of 

SPL scripts and HS disaccharide building blocks. Although the total number of possible 

disaccharides (UAp(1!4)GlcNp) is 48, only 23 have been experimentally observed 

(Figure 13B).124 Of these 23, 13 disaccharides contain IdoAp, while 10 contain GlcAp 

residue. Because IdoAp residue in HS can exist either in the 2SO or 1C4 

conformations,126,171 each IdoAp-containing disaccharide was modeled explicitly in these 

two different states. Thus, our virtual library consisted of 26 IdoAp and 10 GlcAp 

disaccharide building blocks generating a total of 46,656 (36 х 36 х 36) hexasaccharide 

sequences. 
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Each H/HS sequence within these libraries were denoted using the GLYCAM 

force field172 symbols or letters for base monosaccharides (GlcNp, IdoAp and GlcAp) 

and further modified by the substituents (–H, –SO3
-, or –COCH3, see Appendix A). 

Appropriate side-chain modifications were made to generate the 36 building blocks. Each 

disaccharide was minimized using glycosidic bond torsion constraints (restraining force 

constant = 0.01 kcal·mol-1·deg-2). Analysis of the available crystal structures showed that 

the inter-glycosidic torsions φH (O5-C1-O1-C4’) and ψH (C1-O1-C4’-C5’) fall within a 

relatively narrow range and are essentially invariant irrespective of the substitution 

pattern.22,154,173,174 Thus, average bond torsions (see Appendix B), were used for inter-

glycosidic linkages. The 36 disaccharides were then used to build a combinatorial HS 

hexasaccharide library using an SPL script in an automated manner, following which 

each sequence was again minimized using glycosidic bond torsion constraints to generate 

HS sequences with ‘average backbone’ geometries.91,128 

Docking of the Comprehensive HS Virtual Sequence Library. 

 Docking of HS ligand onto the activated form of heparin cofactor II was 

performed with GOLD v5.1. GOLD is a "soft docking" method that implicitly handles 

local protein flexibility by allowing a small degree of interpenetration, or van der Waals 

overlap, of the ligand and protein atoms.170 GOLD also optimizes the positions of 

hydrogen-bond donating atoms on Ser, Thr, Tyr, Lys, and Arg residues as part of the 

docking process. GOLD starts with a population of 100 arbitrarily docked ligand 

orientations, evaluates them using a scoring function (the GA “fitness” function) and 

improves their average “fitness” by an iterative optimization procedure that is biased 
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towards high scores. Docking was driven by !"#$%&'() = !"!"# + 1.375×!"#!"# 

equation (HBEXT and VDWEXT are the non-bonded intermolecular hydrogen bond and van 

der Waals terms, respectively) to prioritize different poses, as reported earlier 

(Raghuraman et al. 2006). As the initial population is selected at random, several such 

GA runs are required to more reliably predict correct bound conformations. In our study 

10 GA runs were used, which are collectively referred to as one docking experiment. 

Evaluation of the HS combinatorial library was performed using a two-stage 

docking protocol (Figure 12), as utilized in our study of the antithrombin-heparin 

pentasaccharide system.128 The first stage (the ‘affinity’ test) involved docking of 46656 

HS sequences to HCII to efficiently identify sequences with high affinity for the binding 

site. To enhance the speed of the search, all sequences were docked using 10,000 

iterations (7 – 8X speed up setting) per GA run. Additionally, the GA was set to 

terminate early if, during the course of docking, the top two ranked solutions were within 

2.5 Å RMSD. 

For the overall top-ranked docked solution for each of the HS sequences, a 

modified GOLD score was calculated. Although the GOLD fitness function generally 

correlates with the observed free energy of binding, a modified form has been found to be 

more reliable.175 This modified GOLD score utilizes only the “external” hydrogen-

bonding and van der Waals terms of the GOLD fitness function (above equation). The 

GOLD score, as it is reported in this paper, refers to this modified GOLD scoring 

function. The top solutions were re-ranked based on the GOLD score, and the top 0.1% 

were selected for the convergence (‘specificity’) test.  
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The ‘specificity’ test consisted of docking the most promising HS sequences from 

the ‘affinity’ test using the standard GOLD parameter settings (no speed-up; 100,000 GA 

iterations). The top two solutions of each docking experiment were considered for further 

analysis. Docking was performed in triplicate to yield a minimum of 6 solutions. A 

RMSD of less than 2.5 Å among the backbone heavy atoms (pyranose ring atoms and 

interglycosidic oxygens) of all 6 solutions suggested a high degree of convergence to a 

‘unique’ binding geometry. These HS sequences were deemed to be specific. 

In both the first and second docking stages, the binding site in heparin cofactor II 

was comprised of all atoms within 18 Å from the Cγ atom of Lys185 in the D helix. This 

dimension of the binding site covers a number of basic residues including Lys101, 

Arg103, Lys173, Arg184, Lys185, Arg189, Arg192, Arg193, Lys220, and Arg464, which 

are present in the putative heparin-binding domain formed by helices A and D, and part 

of the N-terminus. 

3.4.2. Proteins and Chemicals  

Human plasma antithrombin (AT), heparin cofactor II (HCII), human thrombin (TH) and 

human factor Xa (FXa) were purchased from Haematologic Technologies (Essex 

Junction, VT). AT, HCII, thrombin and FXa were stored in 20 mM sodium phosphate 

buffer, pH 7.4, containing 25 mM NaCl, 0.1 mM EDTA and 0.1% (w/v) PEG8000 at -20 

°C. Spectrozyme FXa (methoxycarbonyl-D-cyclohexylglycyl-Gly-Arg-p-nitroanilide) 

and Spectrozyme TH (H-D-hexahydrotyrosol-Ala-Arg-p-nitroanilide) were obtained 

from American Diagnostics (Greenwich, CT) and prepared in 20 mM sodium phosphate 

buffer, pH 7.4, containing 25 mM NaCl, 0.1 mM EDTA and 0.1% (w/v) PEG 8000. 
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Pooled normal human plasma for coagulation assays was purchased from Affinity 

Biological (Ancaster, Ontario). Activated partial thromboplastin time reagent containing 

ellagic acid and 25 mM CaCl2 were obtained from Fisher Diagnostics (Middletown, VA). 

3.4.3. Equilibrium Binding Studies using Fluorescence Spectroscopy  

The equilibrium dissociation constants of hexasaccharide (HX) – protein complexes were 

measured using change in fluorescence emission as a function of the concentration of the 

hexasaccharides in 20 mM sodium phosphate buffer, pH 7.4, containing 25 mM NaCl, 

0.1 mM EDTA and 0.1% PEG8000 at 25 °C, as described earlier.14,156 The experiments 

were performed using a QM4 fluorometer (Photon Technology International, 

Birmingham, NJ) in a quartz microcuvette by titrating a 200 µL solution of the protein 

(100–200 nM) and monitoring the change in the fluorescence at 340 nm (λEX = 280 nm). 

Excitation and emission slit width were set to 1.0 mm for each experiment. The saturable 

change in fluorescence signal was fitted using the quadratic equilibrium binding eq 1 to 

obtain the KD of interaction. In this equation, ΔF represents the change in fluorescence at 

a fixed concentration of HX from the initial fluorescence F0 and ΔFMAX represents the 

maximal change in fluorescence following saturation of the protein. [P]0 represents the 

total concentration of either AT or HCII. 

∆!
!!
= ! ∆!!"#

[!]!
!×!{ ! !!! !" !!!! !! ( ! !! !" !!!! !!! ! ! !" !)

! } (1) 

3.4.4. Kinetics of Protease Inhibition in the Presence of HX  

The kinetics of inhibition of coagulation proteases TH or FXa by AT or HCII in the 

presence of HX was measured spectrophotometrically using a microplate reader 

(FlexStation III, Molecular Devices) under pseudo-first-order conditions, as described 
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earlier.82,176 Briefly, a fixed concentration of TH or FXa (~5 nM) was incubated with 

fixed concentrations of plasma AT or HCII (100 nM) and hexasaccharides (0 – 3200 nM) 

for HX1, (0 – 22 mM) for HX2 and (0 – 10 mM) for HX3 in 20 mM sodium phosphate 

buffer, pH 7.4, containing 25 mM NaCl, 0.1 mM EDTA and 0.1% (w/v) PEG 8000 at 25 

°C. At regular time intervals, an aliquot of the inhibition reaction was quenched with 100 

µL of 125–200 µM chromogenic substrate (Spectrozyme TH or Spectrozyme FXa) in 20 

mM sodium phosphate buffer, pH 7.4, containing 25 mM NaCl at 25 °C. To determine 

the residual protease activity, the initial rate of substrate hydrolysis was measured from 

the increase in absorbance at 405 nm. The exponential decrease in the initial rate of 

substrate hydrolysis as a function of time was used to determine the observed pseudo-

first-order rate constant of protease inhibition (kOBS). A plot of kOBS at different 

concentrations of HX–serpin complex could be described by eq 2, in which kUNCAT is the 

second-order rate constant of protease inhibition by serpin alone and kHS is the second-

order rate constant of protein inhibition by serpin-HX complex (HX:P). 

!!"# = !!!"#$%[!]! + !!!"![!":!] (2) 

3.4.5. Direct Protease Inhibition in the Presence of HX  

Direct inhibition of TH or FXa by hexasaccharides was assessed through a chromogenic 

substrate hydrolysis assay using a microplate reader (FlexStation III, Molecular Devices), 

as described earlier.177 Briefly, each well of the 96-well microplate contained (190–X) µL 

of the pH 7.4 buffer to which X µL of HX (to give a 500 µM final concentration), or an 

appropriate reference, was added followed by 5 µL of protease (to give 5 nM final 

concentration). After 10 min incubation at 25 °C, 5 µL of appropriate chromogenic 
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substrate (to give 125 mM (Spectrozyme FXa) or 100 mM Spectrozyme TH) was rapidly 

added and the residual protease activity was measured from the initial rate of increase in 

A405. Relative residual protease activity at each concentration of HX was calculated from 

the ratio of the activity in the presence and absence of the inhibitor. 

3.4.6. Activated Partial Thromboplastin Time (APTT) 

Clotting time was measured in a standard one-stage recalcification assay with a BBL 

Fibrosystem fibrometer (Becton−Dickinson, Sparles, MD). In the APTT assay, X µL of 

oligosaccharides (H5 and HX) were mixed with (100 – X) µL of citrated human plasma 

and 100 µL of prewarmed APTT reagent (0.2% ellagic acid). After incubation for 4 min 

at 37 °C, clotting was initiated by adding 100 µL of prewarmed 25 mM CaCl2 and the 

time to clot was noted. The data were fit using a quadratic trend line, from which the 

concentration of the oligosaccharides (H5 and HX) necessary to double the clotting time 

was calculated. Clotting time in the absence of an anticoagulant was determined in a 

similar fashion using 10 µL of deionized water and was found to be 32.1 s on an average 

for APTT. 
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CHAPTER 4: DIFFERENTIAL RECOGNITION OF COAGULATION 

PROTEINS BY HEPARAN SULFATE CONTAINING 2-O-SULFATED 

GLUCURONIC ACID 

4.1 Introduction 

Sulfated glycosaminoglycans (GAGs), natural linear co-polymers of hexuronic 

acid and hexosamine residues, represent nature’s bounty of chemical biology tools. Yet, 

the current state-of-art displays minimal exploitation of this promise. Few GAG-based 

therapeutic agents have been discovered other than naturally occurring heparin, dermatan 

sulfate and chondroitin sulfate. A major challenge in realizing the pharmacologic 

potential of GAGs is the structural diversity inherent in every natural GAG preparation. 

The variations introduced by incomplete sulfation, deacetylation, and epimerization 

reactions during their biosynthesis,124,178-180 coupled with postsynthetic fine tuning of 

GAG structure by sulfatases,181 generates millions of distinct sequences that defy 

resolution and analysis at high homogeneity levels. 

Despite this challenge, sulfated GAGs are attractive. The presence of sulfate 

(%OSO3¯) groups on a GAG chain induces recognition and modulation of most proteins, 

especially those that display a collection of Arg/Lys residues on their surface. This gives 

rise to GAG modulation of a large number of physiological and pathological responses 

such as growth and cancer, cell renewal and differentiation, hemostasis and fibrinolysis, 

inflammation and immune response, and microbial invasion and defense.120,124,182-185 It is 
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likely that individual proteins bind to only a subset of GAG sequences from the natural 

repertoire of millions. A classic example of this high selectivity is the heparin 

pentasaccharide sequence, containing a rare 3-O-sulfate glucosamine (GlcNp) residue, 

which binds to antithrombin (AT), a serpin involved in regulation of hemostasis and 

coagulation, with an affinity of ~50 nM.14 Another example suggested in the literature is 

that of a dermatan sulfate hexasaccharide that binds heparin cofactor II (HCII), another 

plasma serpin, with high selectivity and an affinity of 20 µM.92 Although both AT and 

HCII possess considerable three-dimensional similarity,186 they prefer completely 

different GAG sequences.91 Thus, the possibility is high that distinct GAG sequences 

may modulate proteins in a selective manner. 

How can such distinct GAG sequences be identified and studied as chemical 

biology tools? An often utilized approach is computational study of individual GAG–

protein interactions.187 Examples of such studies include the prediction of GAG binding 

sites on enzymes (e.g., cathepsin S188 and heparanase189), enzyme inhibitors (e.g., 

antithrombin,128 heparin cofactor II91 and alpha-1-proteinase inhibitor190),. membrane or 

cell surface proteins (e.g., αvβ3 integrin,191 growth factor receptor192 and human 

papillomavirus major capsid protein L1),193 cellular or extracellular proteins (e.g., bone 

morphogenetic proteins194 and growth factors),195,196 and matrix proteins (e.g., 

thrombospondin-1).197 Despite this voluminous effort, the number of GAG sequences that 

exhibit selective targeting of proteins has remained low. 

We reasoned that a simple approach to identify selective GAG sequences is to 

consider rare sequences. Sequences that are rarely present in natural GAGs are most 
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probably biosynthesized for a specific reason and likely to exhibit selective modulation of 

target proteins, as exemplified by the 3-O-sulfated GlcNp residue.14,128 In addition to its 

presence in the high affinity AT binding heparin pentasaccharide, it is also part of the 

heparin octasaccharide that binds glycoprotein D of the herpes simplex virus.198 No other 

rare GAG residue has been discovered to date as equally interesting from the chemical 

biology perspective. 

A rare GAG residue of significance could be 2-O-sulfated glucuronic acid 

(GlcAp2S). This residue can be biosynthesized by the action of 2-O-sulfotransferase 

(2OST) on GlcAp, present in a growing heparan sulfate (HS) chain, that has escaped 

epimerization reaction with the C-5 epimerase (C5E).178,199,200 Under normal biosynthetic 

conditions, the growing HS chain acted upon by N-deacetylase/N-sulfotransferase 

(NDST) to produce GlcNp2S and GlcAp containing sequences, majority of which are 

further modified to IdoAp by C5E.149,178 2OST then acts upon IdoAp to produce 

IdoAp2S, which eventually gives the most common disaccharide sequence, 

IdoAp2S(1→4)GlcNp2S6S, in heparin.201 Once in a while, C5E could skip epimerization 

of GlcAp resulting in the formation of a rare GlcAp2S following 2OST action.199,200 

This begged the question: What biological consequences would ensue if the 

GlcAp2S residue was more abundant? We used a genetic algorithm-based computational 

approach to study GlcAp2S containing hexasaccharides binding to AT and discovered 

elements of highly selective recognition. The HS polymer labeled as HS2S2S and 

containing only GlcAp2S and GlcNp2S residues was prepared using recombinant 

biosynthetic enzymes and found to potently bind and activate AT for inhibition of factor 
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Xa. In addition, HS2S2S targets HCII and thrombin, but not factor Xa, which is 

corroborated by computational modeling studies. The results convey the potential of 

HS2S2S in understanding differential recognition of proteins of the coagulation cascade, 

while also highlighting the significance of studying distinct GAG sequences for 

pharmacological purposes. 

4.2 Results 

4.2.1 Rationale for Studying HS sequences containing GlcAp2S 

As discussed above, the GlcAp2S residue is rare in natural HS.199,202 Yet, it is enhanced 

2–3-fold in the cerebral cortex as compared to other tissues suggesting the possibility of 

its role in an as-yet-undetermined physiologic process.200 Surprisingly, GlcAp2S is 

biosynthesized by the same enzyme that generates IdoAp2S, the predominant uronic acid 

of heparin, and only one isoform of this critical enzyme, 2-O-sulfotransferase (2OST), 

has been identified to date, which implies that regulation of HS fine structure containing 

GlcAp2S is likely to be an exquisitely fine-tuned process. Additionally, a 3-O-

sulfotranferase isoform (3OST-2) appears to demonstrate selectivity for sequences 

containing GlcAp2S.203 This 3OST isoform is expressed more in the brain,204 which is 

also the place where GlcAp2S proportion is higher.200 

Apart from the biosynthesis, distribution and possible physiologic relevance 

perspective, GlcAp2S residue is also attractive in the context of HS structure. A HS chain 

containing GlcAp2S can be easily synthesized in only two steps. Treatment of the E. coli 

K5 capsular polysaccharide with N-deacetylase/N-sulfotransferase (NDST) followed by 

2OST treatment gives a HS preparation enriched in →4)GlcAp2S(1→4)GlcNp2S(1→, 
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which retains the heterogeneity of HS, albeit at a lower level, because of incomplete 

reactions with NDST and 2OST. This disaccharide sequence, and its counterpart 

→4)GlcNp2S(1→4)GlcAp2S(1→, display significantly different electrostatic and 

hydrophobic surfaces in comparison to that observed for naturally occurring H/HS 

disaccharides. Nearly 50% of naturally occurring disaccharides possess a higher polar 

surface area than HS2S2S (Figure 26A). 76.3% of the AT binding heparin 

pentasaccharide’s solvent accessible surface area is polar, which is comparable to 

HS2S2S’s 75.3%. However, the pentasaccharide displays almost 7 negative charges per 

1000 Å2 in comparison to 4.6 for the HS2S2S disaccharide (Figure 26B), giving it a 

significantly higher charge density. Thus, HS2S2S possesses distinct topological 

characteristics when compared to the known bioactive HS pentasaccharide sequence. We 

have previously reported small molecule GAG mimics that target hydrophobic sites on 

the HBS of antithrombin, thrombin and factor XIa.82,103,177,205-207 We hypothesized that 

HS2S2S’s distinct topology may also allow similar hydrophobic interactions with 

antithrombin’s HBS. 

4.2.2 HS containing GlcAp2S and GlcNp2S may Exhibit Promising AT Targeting 

Capability 

To assess whether GlcAp2S and GlcNp2S residues introduce novel protein recognition 

features, we utilized a computational workflow that helps sort ‘specific’ and ‘nonspecific’ 

GAG interactions.91,128 The workflow involved a ‘steady state with no duplicates’ genetic 

algorithm (GA) to place HS2S2S sequence containing hexasaccharides onto the heparin-

binding site (HBS) of AT. A GA is an artificial intelligence program that explores the 3-
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dimensional space around a binding site and attempts to find optimal position(s) for a 

ligand through an iterative process of natural selection, or alternately ‘survival-of-the-

fittest’ rules. For studying the library of HS2S2S hexasaccharides binding to AT, we 

utilized GOLD208 as the GA and assessed the tendency of GlcAp2S and GlcNp2S 

monosaccharides to localize to specific sites on AT. The tendencies were quantified using 

a grid-based approach as shown in Figure 27. Interestingly, both monosaccharides 

displayed statistically significant enrichment (p < 2.2e-16) in the regions that compare 

favorably with D (GlcNp2S6S) and E (GlcAp) residues of the heparin pentasaccharide 

sequence known to bind AT with high affinity (Figure 26). It may be noted that the D and 

E residues have previously been shown as predominantly responsible for affinity with 

antithrombin.14 Significant enrichment at these locales suggested excellent probability of 

favorable and selective recognition of AT. 

To evaluate the predicted interactions more quantitatively, the poses of each 

monosaccharide were parsed into two groups using k-means clustering to differentiate 

between specifically interacting and randomly interacting poses, as routinely performed 

for such studies.209,210 The average pair-wise RMSD for each group was then calculated. 

Interestingly, GlcAp2S and GlcNp2S were found to exhibit low RMSDs of 1.2 and 1.0 Å 

respectively (Table 9), which suggest a strong possibility of specific interaction with AT 

at this locale (Figure 26C and D). It is important to note that we typically use a RMSD 

cut-off 2.5 Å to differentiate ‘specific’ from ‘nonspecific’ interactions91,128 and both of 

these monosaccharides appear to exhibit a clear preference for HBS of AT.  
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Figure 26. Computational studies with the HS2S2S sequence. (A) Almost 50% of naturally 
occurring disaccharides possess a higher polar surface area (PSA) than the HS2S2S 
disaccharide, but the antithrombin binding heparin pentasaccharide (DEFGH) possesses a 
similar PSA. (B) However, DEFGH possesses significantly higher negative charge 
density. Thus, HS2S2S is a relatively hydrophobic molecule. Computation predicts specific 
interactions formed between antithrombin and HS2S2S monosaccharides (C) GlcAp2S, 
corresponding to the D monosaccharide of DEFGH (GlcAp2S6S), and (D) GlcNp2S, 
corresponding to E (GlcAp). These interactions were identified using a grid-based 
procedure to monitor locales for monosaccharides placed by a genetic algorithm208 used 
previously14, 18 to study GAG-protein interactions. 
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Figure 27. Grid-based identification of preferred locations for GlcAp2S and GlcNp2S in 
genetic algorithm-based docked poses. 2S2S sequences were docked into antithrombin’s 
HBS and preferences of the HS2S2S monosaccharides were identified using a grid-based 
approach. A high resolution (1Å) grid was placed around the docked hexasaccharide 
poses. Any instances of GlcAp2S and GlcNp2S, the center of whose pyranosyl ring was 
closest to a grid point, was recorded as being placed at that grid point. The relative 
frequency with which a monosaccharide was placed at a grid point – compared to other 
grid points – reflects the probability that it will prefer binding there, which was 
significantly high (p<2.2e-16). 
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Table 9: Data for preferred locations of GlcAp2S and GlcNp2S. 
 

Residue GlcAp2S GlcNp2S 

Protein % posesa p-value RMSDb % posesa p-value RMSDb 
Antithrombin 16.9% <2.2e-16 1.2 15.7% <2.2e-16 1.0 
a: Percent instances (poses) of respective residue at highest density location. 
b: Average RMSD per pyranosyl ring heavy atom (in Å) within cluster (see Experimental 
Section). Smaller values denote highly conserved interactions. 
 

4.2.3 Digestive Analysis of HS2S2S using RPIP UPLC-MS 

In order to identify the structural composition of the HS2S2S polymer, an enzymatic 

digestion was followed using two UPLC-MS methods to analyze heparin 

oligosaccharides (Method 1) and disaccharides (Method 2).211-213 After 5 hours of 

digestion, no oligosaccharides were observed. However, after 24 hours several 

tetrasaccharide peaks were observed (Figure 28A). The mass spectra of these peaks led to 

the identification of tetrasaccharides with 2,3 or 4 sulfate groups (T-2S, T-3S and T-4S 

respectively) (Figure 28B). At 24 hours some polymeric ions were observed indicating an 

incomplete digestion. In comparison, a control batch of unfractionated heparin showed 

almost complete digestion within this time (Figure 29). The UV profiles for the sample 

demonstrated that the majority sample consisted of tetrasaccharide with 4 sulfate groups 

(data not shown). At 48 hours complete digestion to disaccharide level was observed 

(Figure 30). The disaccharide analysis (Method 2) identified that the sample of HS2S2S 

consisted of mainly disulfated disaccharide with some traces of monosulfated 

disaccharides (Figure 30). This was as expected from the observations in method 1. 

Furthermore, based on the elution times, the monosulfated disaccharide is possibly 
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sulfated at the N-position of the glucosamine similar to heparin disaccharide standard 

IVS, while the disulfated disaccharide most likely has a sulfation pattern similar to 

heparin disaccharide standard IIIS and is the major peak in the sample. 

 

Figure 28. Reversed Phase Ion Pairing (RPIP) UPLC-MS total ion chromatogram (TIC) 
obtained after 24 hours digestion of HS2S2S using heparanase I, II and III. The 
chromatogram shows the presence of tetrasaccharides with 2, 3 and 4 sulfate groups (T-
2S, T-3S, and T-4S respectively) while also showing undigested polymeric ions. (B) The 
mass spectra in positive mode for the different tetrasaccharides showing the loss of ion-
pairing agent: octylamine (130m/z) while also showing the fragmented core of 
tetrasaccharide (m/z = 676). 
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Figure 29. Total ion chromatograms using Method 1 of RPIP-UPLC-MS for 
unfractionated heparin (UFH) and HS2S2S after 24 hours. While, HS2S2S shows the 
presence of polymeric ions, UFH shows almost complete digestion to tetrasaccharide 
level. Additionally UFH shows the presence of a tetrasaccharide with 4 sulfate groups 
which is absent in HS2S2S. 
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Figure 30. Comparison of disaccharide composition of HS2S2S with known heparin 
disaccharide standards. The major peak HS2S2S is the disulfated disaccharide which 
correlates well with the 2-sulfated and N-sulfated heparin disaccharide standard IIIS. 
HS2S2S also shows the presence of a monosulfated disaccharide, which correlates well 
with the N-sulfated heparin disaccharide standard IVS.  
 

4.2.4 HS2S2S Potently Interacts with AT 

To put the computational prediction of HS2S2S–AT interaction to test, we measured the 

affinity of the HS variant for antithrombin. The interaction of HS2S2S with AT was 
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followed using intrinsic tryptophan fluorescence following literature reports.156 A 

characteristic decrease followed by gradual saturation was observed for fluorescence 

emission at 340 nm (λEX = 280 nm) under pH 7.0, I 0.06, 25 ºC conditions, which could 

be analyzed using the standard quadratic binding eq 3 to yield an AT binding affinity of 

~90 nM (Figure 31, Table 10). In comparison, the affinity of full length unfractionated 

heparin (UFH) and homogenous heparin pentasaccharide (H5) for AT under pH 7.4, I 

0.15, 25 ºC conditions have been measured to be ~10 and ~50 nM.14,57 This implies that 

HS2S2S binds AT with lower affinity than UFH and H5. However, considering the 

complete absence of the critical GlcNp2S3S6S residue in HS2S2S (plus the absence of the 

adjacent residues that enhance the affinity of H5), the affinity is high. For polymeric 

heparin devoid of the GlcNp2S3S6S residue, an antithrombin affinity of 19 mM has been 

measured at pH 7.4, I 0.15, 25 ºC, which supports the conclusion that HS2S2S potently 

binds AT. 

 
Table 10: Equilibrium dissociation constant (KD) and maximal fluorescence change 
(DFMAX) for HS2S2S – coagulation proteins complexes.a 

Human Protein ΔFMAX KD 
 (%) (µM) 

Antithrombin -21±2b 0.09±0.03 

Heparin co-factor II -29±2 2.16±0.27 

Thrombin -37±2 0.49±0.09 

Factor Xa N/Ac >>100 
 

aMeasured using intrinsic (Trp) or extrinsic (fluoresceinylated protein) fluorescence in 20 
mM Sodium phosphate buffer, pH 7.0, containing 25 mM NaCl, 0.1mM EDTA, 0.1% 
w/v Peg 8000 at 25 °C. See Experimental Section for additional details. bError represents 
±1 S.E. cnot applicable 
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Figure 31. Affinity of HS2S2S for antithrombin (A), heparin cofactor II (B), thrombin (C) 
and factor Xa (D). Interaction of HS2S2S with the proteins was studied by following the 
proportional change in fluorescence (ΔF/F0) as a function of concentration in 20 mM 
sodium phosphate buffer, pH 7.0, containing 25 mM NaCl at 25 °C. The saturable 
decrease in Trp (for AT, λEX = 280 nm, λEM = 340 nm), TNS (for HCII, λEX = 330 nm, 
λEM = 448 nm) or fluorescein (Thr, λEX = 490 nm, λEM = 520 nm) fluorescence was fitted 
using quadratic eq 3 (solid line) to derive the maximal fluorescence change (DFMAX) and 
equilibrium dissociation constant (KD). Essentially no change in fluorescein fluorescence 
was noted for factor Xa (D). See ‘Experimental Section’ for additional details. 
 
4.2.5 HS2S2S Accelerates AT Inhibition of FXa really well 

To assess the influence of HS2S2S on the ability of AT to inhibit its two primary enzyme 

targets, we studied the kinetics of inhibition of FXa in a discontinuous assay at pH 7.4, I 

0.06, 25 ºC, as described earlier. The exponential decrease in residual FXa activity as a 

function of time was used to derive the observed pseudo-first order rate constant (kOBS) 

(Figure 32). The profile kOBS versus the concentration of HS2S2S–AT complex was found 
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to be linear (Figure 32), as expected, which could be fitted by eq 2 to obtain the second-

order rate constant for the uncatalyzed inhibition (kUNCAT) from the intercept and HS2S2S 

catalyzed inhibition of FXa from the slope (kHS). 

The kUNCAT was found to be 1490 M-1s-1, which is ~1.5-fold lower than that 

measured at pH 7.4, I 0.15, 25 ºC57 and in line with the expectations arising from the 

reduced activity of the serine proteinase at the lower pH of the experiment. The kHS was 

measured to be 323,300 M-1s-1, which translates to an increase of ~217-fold in the rate of 

FXa inhibition in the presence of saturating levels of HS2S2S. This is a major acceleration 

in the efficacy of AT inhibition of FXa and compares favorably with an acceleration of 

~300-fold brought about by H514 or ~600-fold induced by UFH.57 In contrast, full length 

heparin devoid of the GlcNp2S3S6S residue accelerates AT inhibition of FXa by only 

about 70-fold. This implies that HS2S2S induces AT activation through the conformational 

mechanism. 

The kinetics of AT inhibition of TH in the presence of HS2S2S was also studied in 

a similar manner at pH 7.0, I 0.06, 25 ºC (Figure 32). The kUNCAT and kHS were found to 

be 1,060 and 80,600 M-1s-1, respectively, which implies an acceleration of ~76-fold in the 

rate of TH inhibition in the presence of saturating levels of HS2S2S. In comparison, UFH 

accelerates TH inhibition by AT nearly 1000-fold and absence of GlcNp2S3S6S in the 

full-length chain does not introduce any defect in this acceleration.45 H5, on the other 

hand, induces only 1.7-fold increase in rate constant.43 These results suggest that HS2S2S 

activation of AT for inhibiting TH is not the traditional bridging mechanism, although the 

chain length of HS2S2S is similar to that of UFH. This aspect is further discussed below. 
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Figure 32. Kinetics of serpin (AT or HCII) inhibition of coagulation enzymes (TH or 
FXa) in the presence of HS2S2S in 20 mM sodium phosphate buffer, pH 7.0, containing 25 
mM NaCl at 25 °C. The residual protease activity was measured from the initial rate of 
Spectrozyme FXa (A) or Spectrozyme TH (B and C) hydrolysis under pseudo-first-order 
conditions as a function of time in the presence of different concentrations of HS2S2S and 
fixed concentrations of AT (A) and HCII (B and C). The profile of the observed pseudo-
first order rate constant of inhibition (kOBS) at each HS2S2S concentration was analyzed 
using linear eq 4 to calculate the uncatalyzed (kUNCAT) and catalyzed (kHS) rate constant of 
inhibition from the intercept and slope of the fitted lines (solid lines). See ‘Experimental 
Section’ for additional details. 
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4.2.6 Specificity of HS2S2S Interaction with Coagulation Proteins 

To assess whether HS2S2S targets proteins related and relevant to the AT system, we 

studied its interaction with HCII, TH and FXa using spectrofluorometry at pH 7.0, I 0.06, 

25 ºC. Unfortunately, the change in intrinsic tryptophan fluorescence could not be used 

for these three proteins because of a small signal. Hence, extrinsic fluorophores were 

utilized including TNS for HCII and fluorescein for TH and dansyl for FXa, which have 

been utilized earlier.155,205 A saturable decrease in extrinsic fluorescence was found for 

HCII and TH suggesting that HS2S2S binds with an affinity of 2.2 and 0.5 µM, 

respectively (Figure 31, Table 10). In contrast, essentially no change in fluorescence was 

observed for HS2S2S–FXa system suggesting minimal interaction (>>100 mM). The 

results suggest that HS2S2S binds to both HCII as well as TH with fairly high affinity, 

although it prefers AT by at least 5.5-fold. The dermatan sulfate–HCII and UFH–TH 

systems have been reasonably well studied and display affinities in the range of 0.5–50 

µM at pH 7.4.155 Likewise, the affinity of a high affinity dermatan sulfate hexasaccharide 

for HCII has been reported to be 20 µM.92 Thus, although a direct comparison of the 

affinities is not possible because of differences in conditions, HS2S2S binds to HCII and 

TH with affinities either comparable to or better than other GAGs. 

4.2.7 HS2S2S accelerates HCII inhibition of TH 

To assess whether the dual interaction of HS2S2S is an aid or barrier to HCII inhibition of 

TH, we studied the kinetics of inhibition (Figure 32). The second-order rate constant of 

HCII inhibition of TH was measured in a manner similar to that for AT through 

discontinuous measurement of pseudo-first order rate constants at varying HS2S2S 
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concentrations. HCII inhibition of TH was also accelerated ~38-fold by HS2S2S (Table 

11). In comparison, full-length heparin and dermatan sulfate are known to accelerate this 

reaction greater than 2000-fold predominantly through a conformational change 

mechanism.155 The literature reports that HCII–UFH system is a non-specific system,155 

which implies that even if HS2S2S was binding to HCII in a non-specifically manner, an 

activation significantly higher than 38-fold should have been observed. This implies that 

most probably favorable binding to TH in addition to HCII is most probably limiting full 

activation potential of HS2S2S. 

Table 11: Acceleration in serpin inhibition of coagulation enzymes brought about by 
HS2S2S.a 

Serpin – Enzyme 
System kUNCAT kHS Accelerationb 

 (M-1s-1) (M-1s-1)  

AT – FXa 1490±200c 323,300±7,560 217±34 

AT – Thr 1060±100 80,600±8,200 76±15 

HCII – Thr 1090±100 36,800±1,320 34±4 
 

aMeasured using discontinuous enzyme inhibition assay in 20 mM Sodium phosphate 
buffer, pH 7.0, containing 25 mM NaCl, 0.1mM EDTA, 0.1% w/v Peg 8000 at 25 °C. 
See ‘Experimental Section’ for additional details. bRefers to the ratio of catalyzed and 
uncatalyzed rate constants. cError represents ±1 S.E. 
 
4.2.8 HS2S2S Directly Inhibits TH, but not FXa 

To assess whether HS2S2S directly inhibits target proteases, TH and FXa, we measured 

their residual activity in the presence of HS2S2S using chromogenic substrate hydrolysis 

assay, as described earlier.207 Interestingly, TH activity decreased as a function of HS2S2S 

concentration, which could be fitted using the logistic dose-response eq 3 to obtain an 

IC50 of 4.3±0.3 µM (Figure 33) and an efficacy of 40±1.3 %. In contrast, FXa activity 
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remained214,215 essentially unaffected even at 100 µM HS2S2S. 47, 48 Although a number of 

studies report GAG binding to thrombin,134,216 this is the first demonstration of direct TH 

inhibition. We have previously reported a group of polymeric sulfated GAG mimetics as 

potent direct inhibitors of TH (and also of FXa). These sulfated GAG mimetics were 

significantly more hydrophobic than GAGs and were found to bind to exosite II of 

thrombin and induce allosteric inhibition. In a similar manner, we hypothesize that 

HS2S2S also exhibits allosteric inhibition of thrombin. This implies that HS2S2S is able to 

exploit a major difference in heparin-binding sites of two highly similar serine proteases. 

 

Figure 33. Studies on direct inhibition of thrombin (") and factor Xa (#) by HS2S2S. 
Protease inhibition was measured spectrophotometrically through chromogenic substrate 
hydrolysis assay in 20 mM sodium phosphate, pH 7.0, containing 25 mM NaCl at 25 °C. 
Solid lines represent sigmoidal fits to the data using eq 3 to obtain IC50, YM and Y0. See 
‘See experimental Section’ for additional details. 
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4.3 Discussion 

4.3.1 Rare Saccharide Sequences as a means to Identify Novel Interactions 

The strategy of utilizing rare saccharide sequence have been fruitful in the identification 

of novel interactions and can serve as an efficient tool. Numerous reported examples 

showcase the importance of other rare sequence like the 3-O sulfate glucosamine residue 

among similar examples. The 2-O sulfate glucuronic acid we studied is another such rare 

sequence and is interesting from the chemical biology perspective especially in 

unearthing novel interaction with known coagulation systems. 

4.3.2 Differential Affinity and Specificity of HS2S2S allows Probing of Coagulation 

Cascade Pathways 

The accelerated inhibition of thrombin by antithrombin occurs mainly by a bridging 

mechanism, where the main driving force is co-localization of antithrombin and thrombin 

on the surface of heparin, which requires high-affinity, high-specificity antithrombin-

heparin and low-affinity, low-specificity thrombin-heparin interactions.43 Discovery of 

the HS2S2S polymer is a unique event because it possesses high affinity (≤ 500 nM) for 

both, antithrombin and thrombin. This enables us to deduce the effects of high affinity on 

coagulation pathways. As observed, HS2S2S accelerates inhibition of thrombin by 

antithrombin only by 76-fold (Table 11), compared to ~2,400-fold, as observed 

previously.43 On the other hand, HS2S2S accelerates inhibition of FXa by antithrombin 

217-fold, which is similar to previous observations.46,217 The reason for this reduced 

thrombin-inhibition compared to unchanged FXa-inhibition by antithrombin lies in the 

mechanism of action exerted by the participating GAG. Antithrombin-mediated FXa 
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inhibition is mainly due to conformational change induced by heparin, which is clearly 

also exerted by HS2S2S, and is perhaps caused by specific electrostatic interactions. 

However, previous studies for the antithrombin-heparin-thrombin interaction 

comprehends a ~1.7-fold conformational and ~2400-fold bridging mechanism attributed 

to the acceleration.43 The antithrombin-HS2S2S-thrombin system possibly maintains the 

conformational aspect however, due to the increased affinity towards TH, loses the 

bridging mechanism and accounting for the vast loss of acceleration.  

The HCII-heparin-thrombin system shows a ~2400-fold activation of the serpin 

with ~7-fold attributed to bridging and ~2400-fold attributed towards conformational 

activation. The low 34-fold acceleration seen in the presence of the HS2S2S polymer thus 

indicates a lower specificity of interaction incapable of replicating a similar level of 

conformational activation as heparin. However, a miniscule level of activation is 

observed, serving as a proof of the concept that affinity need not necessarily translate into 

high specificity.  

4.3.3 Direct Inhibition of Heparin is a Previously Unknown Effect 

Thrombin-heparin interactions have been widely reported to be non-specific. Heparin is 

known to bind to the exosite II of thrombin, but does not produce any direct inhibition of 

thrombin. Thus, the direct inhibition of thrombin observed here is a novel effect. The 

mode of action here perhaps cannot be described by the model employed here to assess 

specificity of interactions between thrombin and HS2S2S because heparin is not known to 

manifest a similar inhibition by binding at this site. This also lays stress on the study of 

rare disaccharides in glycobiology. 
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4.3.4 Computational Studies can Predict Protein-GAG Specificity and Affinity 

Our work provides a good platform to showcase the utilization of computational tools in 

understanding complex systems and designing agents by a systematic approach to allow 

for more predictable outcomes. Heparin and heparan sulfate are notoriously 

heterogeneous systems with a variety of saccharide compilations and sulfation patterns 

making it a difficult system to work with in an experimental setting. Utilizing the 

computational resources at our disposal we have attempted to decipher specific non-

natural monosaccharides/disaccharides present in the abundant H/HS library. The in vitro 

results thus obtained were expected, based on our design strategy. Thus, this serves as 

platform to further utilize computational design strategies to provide prediction in the 

outcomes when dealing with such complex mixtures. 

4.4 Experimental Section 

4.4.1 Computational Methods 

Preparation of a Library of HS Hexasaccharides for Computational Studies  

Ten HS disaccharide sequences containing GlcAp2S or GlcNp were constructed using 

SybylX v. 2.0. The sequences incorporated all the known natural variations at the 2-, 3- 

and 6-positions of the two residues. These disaccharides were then used to construct a 

combinatorial library in which oligomerization at the C-4 and C-1 positions was 

performed by deletion of appropriate atom(s) and addition of a desired disaccharide 

sequence. The operations were repeated in an automated manner to produce a library of 

9918 hexasaccharide sequences containing at least one 
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!4)GlcAp2Sβ(1!4)GlcNp2S(1! or !4)GlcNp2Sα(1!4)GlcAp2S(1! disaccharide 

sequence. 

Docking of HS2S2S-containing Hexasaccharide Library onto AT  

The AT structure used in these studies was 1TB6134 and was prepared using Sybyl’s 

“prepare protein” option. Hydrogens were added and minimized using the Tripos force 

field and Gasteiger-Hückel charges. The library of 9918 HS2S2S sequences was docked 

into the heparin-binding site of AT using GOLD,208 which uses a genetic algorithm to 

place ligands into the binding site. Each hexasaccharide sequence was docked using 100 

GA runs, each consisting of 100,000 iterations. A 16 Å docking radius around the NZ 

atom of Lys125 was used, which is approximately in the center of the heparin-binding 

site of AT. The inter-glycosidic linkages of the hexasaccharides were maintained rigid at 

the average phi and psi values derived from the literature.18 The GA runs were allowed to 

terminate early if the top three solutions had an RMSD of 2.5 Å or lower, of which the 

two best poses were stored and analyzed at the end of the docking experiment. GoldScore 

was used to assess the fitness of the docked poses. 

Grid-based Screening of Protein-monosaccharide Interactions 

The overall scheme describing assessment of specific and high-affinity protein-

monosaccharide interactions is described in Figure 27. In-house python scripts that 

incorporated the Openeye OEChem toolkit218 were used to investigate the residence 

tendencies of monosaccharides on protein HBSs. A grid was generated around the 

docked 2S2S-containing hexasaccharides to analyze preferences in location of 

monosaccharides. A density map was obtained by counting the number of times a 
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monosaccharide resided closest to a grid point. Statistical significance of monosaccharide 

enrichment at its highest-density location compared to other locations on the grid was 

analyzed using a proportionality test in the R statistical programming environment. 

Clustering and Statistical Evaluation 

A k-means clustering algorithm for comparison of molecular positions was generated in-

house using the Openeye OEChem toolkit.218 The algorithm was specifically asked to 

search for 2 clusters amongst a group of monosaccharide positions, maximizing the 

distance between the cluster centers. This enabled identification of the “tightest” cluster, 

i.e. showing least deviation in atomic positions of the pyranose ring, as measured by the 

RMSD metric. All statistical analysis was conducted using the R statistical 

environment.304 

4.4.2 Proteins and Chemicals  

Human plasma AT, HCII, thrombin (TH), fluorescein tagged TH (FFPRCK-TH) and 

fluorescein tagged human FXa (FXa-DEGR) were purchased from Haematologic 

Technologies (Essex Junction, VT) and used as such. The proteins were stored in 20 mM 

sodium phosphate buffer, pH 7.0, containing 25 mM NaCl, 0.1 mM EDTA and 0.1% 

(w/v) PEG8000 at -80 °C. Spectrozyme FXa and thrombin were obtained from American 

Diagnostics (Greenwich, CT). TNS ((2-(p-toluidino)naphthalene-6-sulfonic acid) was 

purchased from Sigma Aldrich (Milwaukee, WI). Anhydrous CH3CN and, NH4OAc, 

acetic acid were purchased from Fisher scientific (Pittsburgh, PA) and used as such. 

Tributylamine (TrBA), octylamine (OTA) were purchased from Acros organics (New 

Jersey, NY). All these reagents were of a high purity LC/MS grade quality. Heparin 
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standards (1,1,1,3,3,3-Hexafluoro-2-propanol) were obtained from Galen labs 

(Middletown, CT) whereas, the unfractionated heparin was purchased from Sigma 

Aldrich (Milwaukee, WI). 

4.4.3 Mass Spectrometry Studies 

Enzymatic Digestion 

An enzymatic digestion on 320 µg of HS2S2S or porcine unfractionated heparin (UFH) 

was performed in 40 µL volume. The sample was treated with heparinase I, II and III (5 

mIU each/ 1mg substrate). The mixture was incubated in the Acquity H-Class UPLC 

sample’s manager (Waters) for 75 h at 37 °C. Direct sampling of 5µL from the reaction 

mixture was performed and injected into the UPLC-MS after 5, 26, 48 and 75 h using the 

following technique of reversed-phase ion-pairing (RPIP). 

RPIP UPLC-MS  

All analyses were carried out with Waters Acquity H-Class UPLC system coupled to 

Waters Acquity TQD detector (Milford, MA). There are several UPLC-MS techniques in 

the literature for analysis of GAGs oligosaccharides and disaccharides.43-45 We performed 

a time-based digestion of HS2S2S and unfractionated heparin (as control) using 

heparinases I, II, and III. The initial formation of oligosaccharides was monitored using 

Method 1, while the disaccharide composition upon complete digestion was examined 

using Method 2. 

Method 1 

For analysis of oligosaccharides during the initial stages of digestion (5 and 26h), we 

adopted the UPLC separation method and MS parameters described by Robert J. Linhardt 
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et al. and Cynthia K. Larive et al. with some modifications.213 The reversed phase 

separation was performed by injecting 5µL of the digestion mixture onto an Acquity 

UPLC BEH C18 1.7 µm (2.1 x 150 mm) column with a guard column. The temperature 

of the column was maintained at 40 °C. A gradient of 100% solvent A was maintained at 

a flow rate 0.1ml/min for 2 min and raised to 100% of solvent B over 45 min. Solvent A 

consisted of Water:ACN (95:5, v/v), and solvent B was (15:85, v/v). Both solvents A and 

B contained 15 mM octylamine (OTA) as an ion-pairing reagent and 100 mM HFIP as 

organic modifier. The outlet from the column was passed through an Acquity PDA 

detector and directly infused into the mass spectrometer. The ESI-MS was performed in 

positive ionization mode with a capillary voltage of 3.20 KV, extractor voltage of 1V, 

radio frequency of 0.1V, source temperature of 150 °C, and desolvation temperature of 

350 °C. MS scans between 500-2000 m/z were obtained at different cone voltages 

ranging from 20V-100V in 20V increments so as to monitor in source fragmentation. 

Method 2 

For disaccharide analysis after complete digestion (>48hrs), we performed a method 

previously demonstrated for heparin disaccharide analysis.213 Briefly, the binary solvent 

system contained the same concentrations of ion pairing agent tributylamine (TrBA) 20 

mM, ammonium acetate 2.5 mM and acetic acid 22.2 mM. Solvent A and B consists of 

Water:ACN (95:5, v/v) and (20:80, v/v), respectively. The pH of the mobile phase was 

carefully adjusted at 7. An injection of 5µL of the digestion sample or heparin 

disaccharide standard mixture containing 50µg/ml of each standard was made onto the 

Acquity UPLC BEH C18 1.7 µm (2.1 x 100 mm) column with a guard column. The 
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temperature of the column was maintained at 40°C, while the flow rate was maintained at 

0.5ml/min. The ESI-MS was set to negative ionization mode using a capillary voltage of 

3.0 KV, extractor voltage of 1V, radio frequency of 0.5V, source temperature of 150 °C, 

desolvation temperature of 350 °C. The cone gas flow of 20L/h worked best on our 

instrument so as to prevent source contamination. The MS scans were obtained from 250-

1000 m/z with 20V, 30V and 40V cone voltage settings. An SIR for the various 

disaccharides standards was also set up to allow better comparison with quicker scan 

times. 

4.4.4 Equilibrium Binding Studies using Fluorescence Spectroscopy 

The dissociation constant of HS2S2S–protein complexes were measured using change in 

fluorescence emission as a function of the concentration of the GAG in 20 mM sodium 

phosphate buffer, pH 7.0, containing 25 mM NaCl, 0.1 mM EDTA and 0.1% PEG8000 at 

25 °C, as described earlier.176 The experiments were performed using a QM4 fluorometer 

(Photon Technology International, Birmingham, NJ) in a quartz microcuvette by titrating 

it into a 200 µL solution of the protein (100–250 nM) and monitoring the change in the 

fluorescence at either 340 nm (for AT, λEX = 280 nm), 520 nm (for TH, λEX = 490 nm), 

448 nm (for HCII, λEX = 330 nm), or 547 nm (for FXa, λEX = 345 nm). The concentration 

of TNS used for measuring affinity of HS2S2S for HCII was 10 mM. Excitation and 

emission slit width were set to 1.0 mm. The saturable change in fluorescence signal was 

fitted using the quadratic equilibrium binding eq 3 to obtain the KD of interaction. In this 

equation, ΔF represents the change in fluorescence at a fixed concentration of HS2S2S 

from the initial fluorescence F0 and ΔFMAX represents the maximal change in 
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fluorescence following saturation of the protein. [P]0 represents the concentration of 

either AT, HCII, TH or FXa. 

∆!
!!
= ! ∆!!"#

[!]!
!×!{ ! !!! !"!"!" !!!! !! ( ! !! !"!"!" !!!! !!! ! ! !"!"!" !)

! } (3) 

4.4.5 Kinetics of Protease Inhibition in the Presence of HS2S2S 

The kinetics of inhibition of coagulation proteases, TH or FXa, by AT or HCII in the 

presence of HS2S2S was measured spectrophotometrically using a microplate reader 

(FlexStation III, Molecular Devices) under pseudo-first-order conditions, as described 

earlier.82 Briefly, a fixed concentration of TH or FXa (5 nM) was incubated with fixed 

concentrations of plasma AT (100 nM) or HCII (50 nM) and HS2S2S (0 – 5000 nM) in 20 

mM sodium phosphate buffer, pH 7.0, containing 25 mM NaCl, 0.1 mM EDTA and 0.1% 

(w/v) PEG8000 at 25 °C. At regular time intervals, an aliquot of the inhibition reaction 

was quenched with 100 µL of 125 – 200 µM chromogenic substrate (Spectrozyme TH or 

Spectrozyme FXa) in 20 mM sodium phosphate buffer, pH 7.0, containing 25 mM NaCl 

at 25 °C. To determine the residual protease activity, the initial rate of substrate 

hydrolysis was measured from the increase in absorbance at 405 nm. The exponential 

decrease in the initial rate of substrate hydrolysis as a function of time was used to 

determine the observed pseudo-first-order rate constant of protease inhibition (kOBS). A 

plot of kOBS at different concentrations of HS2S2S–serpin complex could be described by 

eq 4, in which kUNCAT is the second-order rate constant of protease inhibition by serpin 

alone and kHS is the second-order rate constant of protein inhibition by serpin-HS2S2S 

complex (HS2S2S:P). 

!!"# = !!!"#$%[!]! + !!!"![!"!!!!:!]  (4) 
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4.4.6. Direct Protease Inhibition in the Presence of HS2S2S 

Direct inhibition of TH or FXa was measured through a chromogenic substrate hydrolysis 

assay using a microplate reader (FlexStation III, Molecular Devices), as described 

earlier.177 Briefly, each well of the 96-well microplate contained 190–X µL of pH 7.0 

buffer to which X µL of HS2S2S (to give 0 – 25 µM final concentration), or reference, was 

added followed by 5 µL of protease (to give 5 nM final concentration). After 10 min 

incubation at 25 °C, 5 µL of appropriate chromogenic substrate (to give 125 mM 

(Spectrozyme FXa) or 200 mM Spectrozyme TH) was rapidly added and the residual 

protease activity was measured from the initial rate of increase in A405. Relative residual 

protease activity at each concentration of HS2S2S was calculated from the ratio of the 

activity in the presence and absence of the inhibitor. The dose – response profile was 

fitted by eq 5 to calculate the potency (IC50) and efficacy (ΔY = YM – Y0) of inhibition. 

In this equation, Y is the relative residual protease activity, YM and Y0 are the maximum 

and minimum values of the relative residual protease activity, IC50 is the concentration of 

HS2S2S that results in 50% inhibition of protease activity and HC is the Hill slope. 

! = !!! + ! !!!!!!
!!!" !"! !"!!!! !!!"#!!"!" !!"             (5) 
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CHAPTER 5: SULFATED QUINAZOLIN-4(3H)-ONES AS ALLOSTERIC 

MODULATORS TARGETING FXIa. 

5.1 Introduction 

Advances in the field of anticoagulants have been abundant and continuous over recent 

years Yet, thromboembolism continues to be a major concern in the clinical set up.10 The 

direct inhibitors of FXa and thrombin have progressed considerably with newer drugs 

being added to this class of inhibitors.219 Nonetheless, the bleeding risks associated with 

the older agents have been persistently seen at an alarming rate within the newer 

generation of anticoagulants as well, making it vital to develop newer strategies to 

develop safer agents.220,221 Generally, FXa and thrombin which, belong to the common 

pathway of the cascade, are known to be essential from the initiation and propagation 

perspectives. However, proteases belonging to the intrinsic pathway are primarily 

involved in the amplification of the coagulation signal.9,11 A hypothesis that is gradually 

gathering pace involves engaging proteases in the intrinsic pathway.221 Proteases such as 

FXIa can be targeted to develop safer antithrombotics compared to FXa and thrombin. 

Current studies have indicated that depleting FXIa levels reduces thrombotic 

complications whilst leaving the hemostatic system intact.9,11,105 Similarly, absence of 

FXI was found to cause mild bleeding disorders whereas; the occurrence of ischemic 

stroke was evidently reduced in such patients.108 Elevated FXI levels were found to 
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enhance risk of venous thrombosis and cardiovascular diseases in women.105-107 

Consequently, FXIa could serve as a more efficient and safer target. 

GAGs including heparin are known to interact with a number of enzymes in the 

coagulation cascade.222 A major problem in discovering GAG-based molecules, however, 

is the rather poor specificity of interaction of these with proteins.129,222,223 This is 

generally due to the nature of the forces that are responsible for interactions that are 

electrostatic in nature and predominantly nondirectional and operational over long 

distances.222 This implies that these could, therefore, non-selectively recognize any 

positively charged domain of a protein severely limiting its selectivity profile. Strategies 

designed to overcome these problems range from the application of small saccharide 

units with limited anionic groups (sulfates, phosphates, carboxylates) like the 

oligosaccharides containing sulfate and phosphate apatamers, sulfated-linked cyclitols, 

and dendritic polyglycerol sulfates.133,224-226 Another concept utilizes sulfate decorated 

small molecules like sulfated flavones, sulfated xanthones and sulfated 

tetrahydroisoquinolines.82,176 

5.1.1. Hypothesis 

The field suffers from the lack of a generalizable strategy for the rational design of 

modulator of GAG-protein interactions. Consequently a rational strategy was devised in 

the Desai laboratory, which involves the utilization of the hydrophobic (hP) domain near 

the heparin binding sites (HBS) of proteins.206 This domain has been observed to be 

different in various proteins and thus we hypothesized that it should be possible to 



 

   114 

discover molecules, herein called as sulfated allosteric modulators (SAMs), by exploiting 

differential recognition of hP patches around the HBS. This strategy is postulated to 

recognize the binding site in two steps which involves (1) initial attraction of an anionic 

sulfate group present on a SAM to the one or more electropositive lysine/arginine 

residues located in the heparin-binding protein (HBP) followed by (2) recognition of an 

adjacent hP patch on the HBP to form a complex (Figure 34). Thus, if this strategy is 

valid, enzymes devoid of either the electropositive HBS or the hP domain would not 

favorably interact with the SAM and thereby lack inhibition. Enzymes possessing both 

the electropositive HBS and the hP will be targeted by SAM. However, the potency of 

inhibition is dependent on the complementarity of the SAMs hydrophobic scaffold with 

the hP domain on the enzyme. Briefly, this strategy revolves around the electronic 

steering of the small molecule to the HBS of the protein due to nondirectional initial, 

weak ionic bond followed by filtering and tight locking of an optimal hydrophobic SAM 

scaffold.206 

5.1.2. Studies on first generation of quinazolin4-(3H)ones (QAOs) as allosteric 
inhibitors of FXIa  

The dual element hypothesis (Figure 34) was examined by a library of 26 QAOs 

including 7 monomers and 19 dimers containing 1-4 sulfate groups. This scaffold is a 

well-known hP scaffold with three-dimensional similarity to flavonoid scaffold studied 

earlier as heparin binding site (HBS) ligand.176,227,228 The monomers were synthesized 

using simple condensation techniques (see experimental section) and then sulfated.229 

Inhibition data however, revealed lack of any activity against fXIa. To further diversify, a 
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library of 19 dimers was synthesized; each designed to probe specific features of the 

fXIa-binding site. In general, these could be classified on the basis of the feature probed, 

 

 

Figure 34. Strategy for the design of a SAM of a GBP exploiting the difference in 
hydrophobicity (hP, shown as light colored patch) on the periphery of a HBS (shown as 
blue ellipse with positive charges). A SAM binds an enzyme (shown by red dashed line), 
e.g., E1, only if it contains both hP and HBS. E2 and E3 do not recognize the SAM 
because of an absence of either hP or HBS. This generates selectivity of recognition.206 
(Adapted from reference 206). 
 

1) Number of sulfate groups- In general, monomers containing a single sulfate group 

were found to be inactive. Similarly, dimers containing a single sulfate group were 

not potent either. Only dimers containing two sulfate groups, one sulfate group on 

each dimer were deemed active (Figure 35A). However, dimers possessing 3 or 4 

sulfates displayed a reduced potency towards fXIa.206 
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2) The core quinazolinone scaffold- Around 14 compound possessed the 

quinazolinone scaffold to form the dimer. (Figure 35A), which though not symmetric 

in the technical terms, were referred to as the homo-dimers due to the incorporation 

of a quinazolinone scaffold on both the monomers. The activity for such compounds 

ranged from (50-320 µM). To test the structural dependence of the hP domain, 

flavonoid-containing dimers were synthesized. These involved the incorporation of a 

flavonoid scaffold additionally; these were decorated with 4 sulfates and hence the 

term hetero-dimers (Figure 35C). However, these lacked any activity against fXIa 

thereby indicating the importance of the quinazolinone scaffold. 

3) The linker length and geometry- The linker length and geometry were examined 

through the synthesis of compounds containing varying length (8-11) of intervening 

atoms. Similarly, the geometric constraints were varied through the use of 1,4- 

(Figure 35A) or 1,5-triazole (Figure 35D) and the two-triazole linker analogs (Figure 

35B). IC50 studies with this set indicated increasing potency with increasing linker 

length; similarly, the 1,4- triazole geometry was found to be more suitable to maintain 

potency.  However, the need to introduce a more extensive search to further 

understand this domain was deemed to be essential to enhance potency and improve 

selectivity. 

4) The position of the sulfate groups- For active dimers decorated with two sulfate 

groups, the presence of a sulfate group at the para-para position was more favorable 

as compared to its positioning at the meta-para position and the meta-meta positions. 
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Figure 35: The library of first generation QAO dimers. A. Quinazolinone dimer with a 
1,4-triazole linker B. Quinazolinone dimer with a two triazole rings in the linker C. 
Mixed dimer containing a flavonoid scaffold D. Quinazolinone dimer with a 1,5-triazole 
linker.  

5.1.3. Mechanism of Inhibition of First Generation Sulfated Quinazolinones 

Mechanistic studies provided insights into the functioning of these molecules, primarily 

indicating key features 

1. All these molecules indicated a lack of potency against other serine proteases in the 

coagulation and the digestive system (FXa, thrombin, trypsin and chymotrypsin) 

indicating the success of the dual element strategy.  
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2. Michaelis-Menten studies indicated these to be functioning through a non-

competitive mechanism, which was a major design goal of the dual element strategy. 

3. Mutagenesis studies indicated the location of binding to be around the heparin-

binding site within the catalytic domain. Similarly, studies involving neutralization of 

the charge interaction through the use of an electropositive polymer confirmed the 

functioning through the hP domain. 

4. Fluorescence-based affinity studies shows a sigmoidal profile suggestive of a 

cooperative binding process, further confirmed by the high Hill coefficient (6.4-9.0). 

These extensive studies therefore, laid the foundations for confirming the functioning of 

the dual element strategy as well as providing insights into the mechanism of action of 

these agents.  

5.1.4. Updated Hypothesis: Second Generation of FXIa Inhibitors 

 The first generation of allosteric SAMs were beneficial in providing a basic 

understanding of the dual element strategy and the functioning of this system. Utilizing 

the important inferences obtained through these studies, we have tried to improve on the 

general features like the potency and understanding the of the mechanism understanding 

of this class of molecules. A major domain that we postulated to have large effects on the 

potency of these molecules was the linker domain. We therefore fragmented the core 

structure of the first generation library and split it into 3 major domains: 1. The 

hydrophobic domain 2. The linker domain 3. The charged group-containing 

domain. (Figure 36) 
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Figure 36. Strategy for the design of more potent and selective set of molecules, by 
splitting the scaffold into the hydrophobic domain (green), the linker region (red) and the 
charged group containing domain (blue) 

Previous studies had already established the importance of the quinazolinone based 

hydrophobic domain, with the replacement of a flavonoid conferring a decrease in 

potency. Similarly, the presence of two sulfates, one on each monomer, is essential to 

maintain activity. Modifications in the linker domain indicated the most promise for 

developing newer more potent and selective agents. The linker length and geometry was 

therefore targeted through a library of molecules with major modifications aimed at this 

domain. This work describes the utilization of dual element strategy with further 

modifications in the linker domain and the mechanistic outcomes of these 

modifications.206 

 

Figure 37. The structure of 16S, IC50 = 52 µM. 
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5.2. Results and Discussions 

5.2.1. Synthesis of the Library of QAOs. 

In continuation with our initially reported dual element strategy, we synthesized a total of 

18 sulfated dimers. These were synthesized with modifications to our reported lead 16S 

(Figure 37).206 We employed a new approach to synthesize a library of fairly diverse 

compounds with major modifications targeting the linker domain (Figure 36). The 

original approach utilized copper-catalyzed azide-alkyne cycloaddition (CuAAC) 

reaction, which was used to dimerize the quinazolinone dimers incorporating a triazole 

ring in the linker during the process. The new strategy incorporates a simple aromatic or 

aliphatic linker by utilizing a simple nucleophilic substitution reaction. Thus, affording a 

library of 18 diverse compounds 7S-24S, which could be used to further probe the 

heparin-binding site in FXIa and obtain a more detailed understanding of the binding site 

of these QAOs. 

 The QAO core scaffold was synthesized using a condensation reaction between 

anthranilamide and suitably substituted benzaldehyde to obtain QAO monomers 2a-2b 

containing one phenolic group (Scheme 1). This was followed by protection of the 

phenolic group through acetylation in the presence of acetic anhydride and DIPEA, 

thereby preparing it for dimerization using a substitution reaction in the presence of 

potassium carbonate and the required aryl/alkyl dibromo linker affording a suitable 

dimer. These dimers were then deprotected and the resulting intermediates were 

subjected to microwave-assisted sulfation to obtain sulfated QAOs 7S-24S (Scheme 2). 

All these compounds contain similar monomer units separated by linkers of varying 

lengths and could therefore be classified as homodimers. The compounds synthesized 
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could be broadly classified on the basis of the linker incorporated into the dimers. 

Compounds 7S-11S contain an aromatic linker, which could either be o, m or p-xylene 

based. Each of these orients the quinazolinone rings in a distinct geometry and thereby, 

could be used to obtain important information on the geometry preferred by the HBS in 

FXIa. Compounds 12S-24S incorporate an aliphatic chain that varies in length (4-12) of 

carbon atoms. Similarly, two compounds which contains a trans but-2-ene linker (12S) 

imparting rigidity and the 1-propoxypropane containing linker (15S) were also 

synthesized to assess geometry and hydrogen bonding capability of linker, respectively.  

Scheme 1. Synthesis of QAOsa 

 
 

 
 
aConditions: (a) NaHSO3, p-toluene sulfonic acid, DMAD, reflux/overnight, 85-90%; (b) 
Acetic anhydride, DCM, DIPEA, 4-6 h, 85-90%. 
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Scheme 2. Synthesis of Sulfated QAOs 19S-36Sa 

 

 
 
 
 
aConditions: (a) K2CO3, aryl/alkyl dibromide, DMF, rt/overnight, 70–80%; (b) LiOH.H2O, THF, rt/4-6 h, 85–90%; (c) 
SO3/Me3N, TEA, CH3CN, microwave/30 min, 85−90%. 
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4: R= H; R'=3-OAc
5: R=H, R'=4-OAc
6: R=CH3;R' = 4-OAc

Aromatic linkers
7S:R=H; R'=3-OSO3-; X= -p-xylene
8S:R=H; R'=3-OSO3-; X= -m-xylene
9S:R=H; R'=4-OSO3-; X= -m-xylene
10S:R=H; R'=3-OSO3-; X= -o-xylene
11S:R=H; R'=4-OSO3-; X= -o-xylene

Aliphatic linkers
12S:R=H; R'=3-OSO3-; X= trans-1,4-but-2-ene
13S:R=H; R'=3-OSO3-; X= 1,5-pentane
14S:R=H; R'=4-OSO3-; X= 1,5-pentane
15S:R=H; R'=3-OSO3-; X= 1-propoxypropane
16S:R=H; R'=4-OSO3-; X= 1,6-hexane
17S:R=H; R'=4-OSO3-; X= 1,6-hexane
18S:R=CH3; R'=4-OSO3-; X= 1,6-hexane
19S:R=H; R'=4-OSO3-; X= 1,7-heptane
20S:R=H; R'=4-OSO3-; X= 1,8-octane
21S:R=H; R'=4-OSO3-; X= 1,9-nonane
22S:R=H; R'=4-OSO3-; X= 1,10-decane
23S:R=H; R'=4-OSO3-; X= 1,11-undecane
24S:R=H; R'=4-OSO3-; X= 1,12-dodecane

Aromatic linkers
7:R=H; R'=3-OH; X= -p-xylene
8:R=H; R'=3-OH; X= -m-xylene
9:R=H; R'=4-OH; X= -m-xylene
10:R=H; R'=3-OH; X= -o-xylene
11:R=H; R'=4-OH; X= -o-xylene

Aliphatic linkers
12:R=H; R'=3-OH-; X= trans-1,4-but-2-ene
13:R=H; R'=3-OH; X= 1,5-pentane
14:R=H; R'=4-OH; X= 1,5-pentane
15:R=H; R'=3-OH; X= 1-propoxypropane
16:R=H; R'=4-OH; X= 1,6-hexane
17:R=H; R'=4-OH; X= 1,6-hexane
18:R=CH3; R'=4-OH; X= 1,6-hexane
19:R=H; R'=4-OH; X= 1,7-heptane
20:R=H; R'=4-OH; X= 1,8-octane
21:R=H; R'=4-OH; X= 1,9-nonane
22:R=H; R'=4-OH; X= 1,10-decane
23:R=H; R'=4-OH; X= 1,11-undecane
24:R=H; R'=4-OH; X= 1,12-dodecane
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5.2.2. Inhibition Profile of Sulfated QAOs against Human Factor XIa and Other 

Similar Proteases in the Coagulation and Digestive System 

The library of sulfated QAOs was screened for inhibition of human FXIa and other 

coagulation enzymes using a chromogenic substrate hydrolysis assay (see Experimental 

Section). The sigmoidal decrease in the initial rate of protease activity (on a semilog plot) 

as a function of ligand concentration was fitted using the logistic dose-response equation 

to calculate the IC50 (Table 12). Each of the 18 molecules displayed some activity against 

FXIa (~6.0–415µM). The library of dimers was built using a simple nucleophilic 

substitution reaction that provided high yields of the desired compounds. The general 

theme of the library design revolved around targeting modifications in the linker domain 

(Figure 35). The first generation incorporated of a triazole-based linker; further studies 

had highlighted the importance of the linker geometry and length, and these were the two 

features we decided to target and further probe to obtain more potent inhibitors, while 

maintaining the selectivity. The library can be thought off in two sets: 1) the aromatic 

linkers and 2) the aliphatic linkers-containing set. 

Aromatic linkers 

A set of five dimers were synthesized composed of the xylene-based linkers. Each of 

these was synthesized to probe into the geometric element of the linkers. In general, the 

ortho, meta and para -xylene linkers were used, each possessing 4, 5 and 6 intervening 

atoms, respectively (Table 12). These molecules, however, displayed a progressively 

lower potency ranging from 57 to 248 µM. Surprisingly, the shorter ortho (n =4), where 

‘n’ is the number of intervening atoms in the linker, and meta (n = 5) linker containing 
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dimers displayed a better potency compared to the para (n = 6) xylene linkers. The 

positioning of the sulfate group indicating maximal potency was not consistent, with 

either the 3-OSO3
- or the 4-OSO3

- variably preferred. We attribute this to the variable 

geometry in each of these molecules. However, these did help us play down the 

importance of the triazole ring, which was evidently not required considering the same 

level of potency displayed by 11S (Table12). 

Aliphatic Linkers 

On the basis of our initial study with aromatic linkers we synthesized dimers containing 

the 4-6 intervening atoms. To continue with the placement of a rigid structure, 12S (IC50 

= 415 µM) was synthesized consisting of an unsaturated trans-but-2-ene linker, however 

this was found to lack potency. Our subsequent approach was to use a saturated aliphatic 

linker containing 5 carbons. Both the 3-OSO3
-  (13S) (IC50 = 88.5 µM) and the 4-OSO3

- 

(14S) derivatives were synthesized. This approach produced drastic improvement in 

potency (Table 12) with (14S) (IC50 = 49.3 µM), the 4-OSO3
- derivative being more 

potent. Another feature that we probed was the probability of unearthing hydrophilic 

interactions around the linker domain that could be targeted. In view of this strategy, we 

introduced a 1-propoxypropane linker containing 5 intervening atoms. This, however, 

confirmed the lack of any hydrogen bond like interactions with the linker domain, 

illustrated by the lack of potency of 15S (IC50 = 401 µM). Surprisingly, a flexible 

aliphatic saturated linker was the one preferred. The result suggests that an extended 

linker probably serves to place the two QAO scaffolds better within two hydrophobic 

regions of FXIa. We therefore, then focused on the length of the linker, which was altered 
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from (5 to 12) intervening atoms. The general trend seen within this library indicated that 

increasing the length produced a consistent improvement in the potency from 34.3 to 6.1 

µM. However, as the length was increased the selectivity profile faltered with maximum 

selectivity achieved when the length was 9 atoms. Further increase in linker length 

produced an increased potency against other enzymes like FXa and trypsin. Thus 

indicating the maximum length required to maintain the potency and selectivity. 

Table 12. Inhibition of human factor XIa by sulfated QAOs 7S–24Sa 

 

Aromatic linkers 

Inhibitor R R’ X n IC50  ΔY 

     µM % 

7S H 3-OSO3
- p-xylene 6 248±2.6b 100.2±3 

8S H 3-OSO3
- m-xylene 5 59.7±1.1 92.4±5 

9S H 4-OSO3
- m-xylene 5 76.3±1.2 95.8±6 
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aThe IC50, HS and Y values were obtained following nonlinear regression analysis of 
direct inhibition of factor XIa. Inhibition was monitored by spectrophotometric 
measurements of residual proteases activity (see Experimental section). bErrors represent 
±1 SE. 
 

10S H 3-OSO3
- o-xylene 4 94.3±2.2 92.6±3.6 

11S H 4-OSO3
- o-xylene 4 57.1±1.7 86.7±3.3 

Aliphatic linkers 

12S H 3-OSO3
- Trans-1,4-but-2-ene 4 415±10.3 96.2±7.2 

13S H 3-OSO3
- 1,5-pentane 5 88.5±1.1 96±2.15 

14S H 4-OSO3
- 1,5-pentane 5 49.3±0.8 92.3±2.6 

15S H 3-OSO3
- 1-propoxypropane 5 401±22 94.4±15.8 

16S H 3-OSO3
- 1,6-hexane 6 53.4±0.9 95.9±4.9 

17S H 4-OSO3
- 1,6-hexane 6 34.3±1.9 87±2.6 

18S -OCH3 4-OSO3
- 1,6-hexane 6 34.8±0.8 95.1±2.5 

19S H 4-OSO3
- 1,7-heptane 7 23±0.84 96.4±4 

20S H 4-OSO3
- 1,8-octane 8 19.6±0.5 80.9±2.4 

21S H 4-OSO3
- 1,9-nonane 9 8.2±0.5 101±7.8 

22S H 4-OSO3
- 1,10-decane 10 16.6±0.3 94.5±2 

23S H 4-OSO3
- 1,11-undecane 11 14.5±0.8 96±5.8 

24S H 4-OSO3
- 1,12-dodecane 12 6.1±0.4 90.3±5 
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5.2.3. Inhibition Potency of Sulfated QAOs in Human Plasma. 

To assess whether the chromogenic substrate-based inhibition of human factor XIa by 

sulfated QAOs translates into activity against macromolecular substrates, we studied 

anticoagulant activity in human plasma. The activated partial thromboplastin time 

(APTT) assays is typically utilized to identify an inhibitor’s ability to retard the intrinsic 

pathway. For the compounds tested (19S-24S) the dose dependent prolongation of about 

15 to 20–fold less active in comparison to the potency in buffer was detected. This is 

typical of many anticoagulants and could be attributed to interactions with serum 

albumin.  

Table 13: Effect of Sulfated QAOs on human plasma clotting times.a 

Inhibitor 2 x APTT  

 µM 

19S 824 

20S 684 

21S 813 

22S 963 

23S 793 

24S 891 

 

aProlongation of clotting time as a function of concentration of sulfated quinazolinones 
for the activated partial thromboplastin time assay (APTT). Clotting assays were 
performed in triplicates (SE ≤ 10%) as described in the experimental section. 
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5.2.4. Mechanism of Inhibition of Sulfated QAOs. 

These molecules were designed to function allosterically and therefore these should 

possess inherent non-competitive or uncompetitive mechanism of inhibition. To assess 

this, the kinetics of chromogenic substrate S2366 hydrolysis by factor XIa in the presence 

of 21S was studied. The plot of the initial rate as a function of Spectrozyme FXIa 

concentration displayed a characteristic hyperbolic profile (Figure 38), which was fitted 

using the standard Michaelis–Menten equation to derive the KM and Vmax of factor XIa 

activity. The KM for Spectrozyme FXIa was found to be 0.27±0.01 mM, which did not 

change much as the concentration of 21S increased to 200 µM (0.26±0.32 mM) (Table 

14). In contrast, the Vmax decreased from 36.9±1.5 to 9.7±0.37 mAU/min as the 

concentration of 21S increased from 0 to 200 µM (Figure 38) (Table 14). Thus, while the 

affinity of the small chromogenic substrate remains unaffected by 21S binding, the 

proteolytic activity decreases. This is characteristic of a noncompetitive mechanism of 

factor XIa inhibition, and most H/HS mimetics230 reported in the literature to date, and 

more importantly our previous set of QAOs have exhibited a similar mechanism.206 
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Table 14. Michaelis-Menten Kinetics of S2366 hydrolysis by human factor XIa in 

the presence of sulfated QAOs. 

[21]  Vmax KM 

µM mAU/min mM 

0 36.9a±0.6 0.23a±0.01 

10 36±1.5 0.28±0.04 

20 32.1±2 0.31±0.06 

50 21±0.7 0.26±0.03 

120 17.2±0.6 0.28±0.03 

200 9.7±0.4 0.26±0.03 

 

aCalculated from the rate of hydrolysis at various substrate concentrations measured 
spectrophotometrically in 50 mM Tris-HCl buffer, pH 7.4 containing 150 mM NaCl and 
0.1% PEG 8000 at 37° C. The Vmax and KM were obtained by nonlinear regression fit of 
the data by eq 7 Error = ± SE. 

 
Figure 38. Michaelis-Menten kinetics of S2366 hydrolysis by human factor XIa in the 
presence of sulfated QAO 21S. The initial rate of hydrolysis at various substrate 
concentrations was measured spectrophotometrically in pH 7.4 buffer at 37°C. Solid lines 
represent nonlinear regressional fits to the data by the standard Michaelis-Menten 
equation to yield KM and Vmax. 
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5.2.5. Affinity Studies. 

The fluorescence of FXIa–DEGR was monitored as a function of sulfated QAO 

concentration. Figure 39 shows the profiles of the titrations for the most potent sulfated 

QAOs 19S–24S. The profiles reveal a characteristic sigmoidal dependence on the 

concentration of sulfated QAO. This confirms the cooperative binding process observed 

in the first generation agents. The profile can be fitted well by the standard, three 

parameter Hill equation (eq 8), which gives the maximal fluorescence change (ΔFmax), 

the Hill coefficient (n), and the apparent dissociation constant (KD) of binding (Table 15). 

By using this equation, the three sulfated QAOs were found to bind with an affinity of 

~20 µM, which compare favorably with IC50 measured above (Table 12). The Hill 

coefficients were calculated to be in the range of (3.6–5), through which the 

fluorescence-based study demonstrates that sulfated QAOs bind to FXIa through a 

classic, allosteric interaction process. 

Table 15. Binding of Sulfated QAOs to human FXIa a 

Inhibitor ΔFmax  n KD  

 %  µM 

19S 130±2 3.6±0.56 20±0.8 

20S 87.1±1.4 4.3±0.5 20.2±0.7 

21S 265±3.1 5.0±0.4 19.9±0.5 

Titrations were performed by adding aliquots of a solution of sulfated QAOs (19S–21S) 
to 250nM FXIa–DEGR in 50mM Tris–HCl buffer of pH 7.4 containing 150mM NaCl 
and 0.1% PEG8000 at 37°C and monitoring the change in fluorescence of FXIa–DEGR 
at 547nm (λex = 345nm). The ΔFmax, the Hill coefficient “n”, and KD were obtained by 
nonlinear regressional fit of the data by eq 8 Error = ± SE. 
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Figure 39. Fractional change in fluorescence of FXIa-DEGR at 547nm (λex = 345nm) as 
a function of the concentration of sulfated QAOs (19S–21S). These were recorded in 
50mM Tris–HCl buffer of pH 7.4 containing 150mM NaCl and 0.1% PEG8000 at 37°C. 
Solid lines represents nonlinear regressional fit to the data using the standard Hill eq 8 to 
obtain the ΔFmax, Hill coefficient “n”, and KD of binding. 
 
5.2.6. Analytical Ultracentrifugation of FXIa and FXIa-21S Complex. 

Analytical ultracentrifugation (AUC) was performed to observe the oligomerization 

properties of FXIa and the effect of the QAO (21S) on the oligomerization. In general 

FXIa is predominantly observed as a dimer (s = 6.6S), whereas miniscule amounts of 

monomer-dimer equilibrium peak (s = 4.9S, ~13%) were also observed for the 

apoenzyme. The FXIa-21S complex also exhibits the presence of a dimer (s = 6.5S) 

however, results in an increased detection of monomer-dimer equilibrium (s = ~4.6S, 

~19%). This indicates that the QAOs could be targeting FXIa with a unique mechanism 

that suggestively destabilizes the FXIa dimer. Literature reports indicate a covalent 

disulfide bond between the two monomers100. Additionally, non-covalent interactions 

help stabilize the functional dimer form of FXIa.120 The presence of the equilibrium state 

is suggestive of 21S interfering with these non-covalent interactions destabilizing the 
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stable dimeric form of fXIa. 

 

Figure 40. Sedimentation velocity profile showing molecular species of FXIa−ligand 
complex. C(s) is the relative concentration of each species: black for unliganded fXIa, 
red for the fXIa-21S complex. 

5.3. Experimental Procedures 

5.3.1. Chemicals, Reagents and Analytical Chemistry 

Anhydrous CH2Cl2, THF, CH3CN, DMF, DMA and acetone were purchased from 

Sigma-Aldrich (Milwaukee, WI) or Fisher (Pittsburgh, PA) and used as such. Other 

solvents used were of reagent gradient and used unmodified. Analytical TLC was 

performed using UNIPLATETM silica gel GHLF 250 µm pre-coated plates 

(ANALTECH, Newark, DE). Column chromatography was performed using silica gel 

(200-400 mesh, 60 Å) from Sigma-Aldrich. Chemical reactions sensitive to air or 

moisture were carried out under nitrogen atmosphere in oven-dried glassware. Reagent 

solutions, unless otherwise noted, were handled under a nitrogen atmosphere using 

syringe techniques. Flash chromatography was performed using Teledyne ISCO 

(Lincoln, NE) Combiflash RF system and disposable normal silica cartridges of 30–50 µ 

particle size, 230–400 mesh size and 60 Å pore size. The flow rate of the mobile phase 
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was in the range of 18 to 35 ml/min and mobile phase gradients of ethyl acetate/hexanes 

and CH2Cl2/CH3OH were used to elute compounds. 

5.3.2. Proteins and Chromogenic Substrates 

Human plasma proteases including thrombin, factor Xa, factor IXa, and factor XIa were 

obtained from Haematologic Technologies (Essex Junction, VT). Active sited labeled 

FXIa, i.e., FXIa-DEGR, was obtained from US Biological (Marblehead, MA). Bovine α-

chymotrypsin and bovine trypsin were obtained from Sigma-Aldrich (St. Louis, MO). 

Stock solutions of factor XIa, thrombin, trypsin, and chymotrypsin were prepared in 50 

mM Tris-HCl buffer, pH 7.4, containing 150 mM NaCl, 0.1% PEG8000, and 0.02% 

Tween80. Stock solutions of factor Xa was prepared in 20 mM Tris-HCl buffer, pH 7.4, 

containing 100 mM NaCl, 2.5 mM CaCl2, 0.1% PEG8000, and 0.02% Tween80. 

Chromogenic substrates, Spectrozyme TH (H-D-hexahydrotyrosol-Ala-Arg-p-

nitroanilide), Spectrozyme factor Xa (Methoxycarbonyl-D-cyclohexylglycyl-Gly-Arg-p-

nitroanilide), and Spectrozyme CTY were obtained from American Diagnostica 

(Greenwich, CT). Factor XIa chromogenic substrate (S-2366, H-D-Val-Leu-Arg-p-

nitroanilide.2HCl) and trypsin substrate (S-2222, Benzyl-Ile-Glu(–OH and –OCH3)-Gly-

Arg-p-nitroanilide·HCl) were obtained from Diapharma (West Chester, OH). Pooled 

normal human plasma for coagulation assays was purchased from Valley Biomedical 

(Winchester, VA). Activated partial thromboplastin time reagent containing ellagic acid, 

thromboplastin-D, and 25 mM CaCl2 were obtained from Fisher Diagnostics 

(Middletown, VA). 
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5.3.3. Chemical Characterization of Compounds 

1H and 13C NMR were recorded on Bruker-400 MHz spectrometer in either CDCl3, 

CD3OD, acetone-d6, DMSO-D6, or D2O. Signals, in part per million (ppm), are either 

relative to the internal standard or to the residual peak of the solvent. The NMR data are 

reported as chemical shift (ppm), multiplicity of signal (s= singlet, d= doublet, t= triplet, 

q= quartet, dd= doublet of doublet, m= multiplet), coupling constants (Hz), and 

integration. ESI-MS of compounds were recorded using Waters Acquity TQD MS 

spectrometer in positive or negative ion mode. Samples were dissolved in methanol and 

infused at a rate of 20 µL/min. The purity of each final compound was greater than 95% 

as determined by UPLC-MS. 

5.3.4. Synthetic Procedures 

General Procedure for Synthesis of Quinazolin-4(3H)-ones 

The quinazolinone core structure was synthesized using a condensation reaction between 

anthranilamide and suitably substituted benzaldehyde in presence of sodium hydrogen 

sulfite and catalytic amounts of p-toluenesulfonic acid. This is a well-established thermal 

cyclodehydration reaction.229 To a solution of anthranilamide (1 equiv) in N,N-

dimethylacetamide (DMAD) (10mL) 3- or 4-hydroxybenzaldehyde (1 or 2) (1 equiv) 

was added followed by the addition of sodium hydrogen sulphate (1.2 equiv) and p-

toluenesulfonic acid (0.1equiv) into a single neck flask attached with a condenser and the 

mixture was stirred at 150 °C for 3 hrs. The reaction was cooled by the addition of (100 

mL) of ice water to form a white precipitate that was filtered off washed with water and a 

small amount of methanol and dried in vacuo to obtain a white colored powder. 
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Depending on the substitution on the benzaldehyde, two monomers viz. 3a and 3b were 

synthesized. The products were formed in 85-90% yields and characterized using NMR. 

General Procedure for Protection of Quinazolinone Core Structure 

3a and 3b were then acetylated to protect the free hydroxyl group(s). This was done by 

solubilizing in dichloromethane followed by addition of N, N-Diisopropylethylamine 

DIPEA (2.0 equiv per hydroxyl group) and acetic anhydride (1.0 equiv per hydroxyl 

group). This was vigorously stirred at room temperature and after 10 hours extracted 

using acidified water and dichloromethane. The organic layer was dried (Na2SO4), 

concentrated in vacuo and purified using flash chromatography on silica gel (10-50% 

ethyl acetate in hexanes) to give 3a and 3b in 90% yields. 

General Procedure for Dimerization of Quinazolinone Monomers using 

Nucleophilic Substitution Reaction 

Dimer formation was achieved through a simple substitution reaction. To a solution of 3a 

or 3b in N, N-dimethyl formamide was added to potassium carbonate K2CO3 (2.5 equiv) 

and stirred for two minutes. This was followed by addition of the respective aryl/alkyl 

dibromide (0.5 equiv) followed by vigorous stirring for 12 hours. After the reaction 

completed and confirmed by TLC, the reaction mixture was extracted using acidified 

water and ethyl acetate. The organic layer was dried over Na2SO4, concentrated in vacuo 

and purified using flash chromatography on silica gel (10-50% ethyl acetate in hexanes) 

to give the acetylated dimers in 70-80% yield. 

General Procedure for the Deprotection of the Acetylated Dimers. 

To obtain the hydroxyl dimers, acetylated dimers were solubilized in THF, followed by 
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the addition of LiOH.H20 (4 equiv). Vigorous stirring at room temperature for 4-6 hours 

afforded the final hydroxyl product. After complete deprotection of acetyl groups 

confirmed using TLC, the reaction mixture was extracted using acidified water and ethyl 

acetate. The organic layer was separated and dried over Na2SO4, concentrated in vacuo 

and purified using flash chromatography on silica gel (20-70% ethyl acetate in hexanes) 

to give the deacetylated dimers 7-24 in 70-80% yields. 

General Procedure for Synthesis of Sulfated Quinazolin-4(3H)-ones dimers.   

Sulfation of phenolic precursors was achieved using microwave assisted chemical sulfation 

as described earlier.206,231,232 Briefly, to a stirred solution of polyphenol in anhydrous 

CH3CN (1 – 5 mL) at room temperature Et3N (10 equvi per –OH group) and Me3N:SO3 

complex (6 equvi per –OH) was added. The reaction vessel was sealed and micro-waved 

(CEM Discover, Cary, NC) for 30 min at 90 °C. The reaction mixture was cooled and 

transferred to a round bottom flask and volume reduced as much as possible under low-

pressure conditions at 25 °C. The reaction mixture was then directly loaded on to a flash 

chromatography column and purified using dichloromethane and methanol solvent 

system (5-20%) to obtain the sulfated QAOs. The samples were concentrated and re-

loaded onto a SP Sephadex C-25 column for sodium exchange. Appropriate fractions were 

pooled, concentrated in vacuo, and lyophilized to obtain a white powder. Spectral 

characteristics of all the sulfated compounds 7S-24S are listed below.  

 (7S). 1H NMR (DMSOd6, 400MHz): 8.37(s, 2H), 8.3(d, J = 7.7Hz, 2H), 8.22(d, J = 

7.96Hz, 2H), 8.01-7.94(m, 4H), 7.7(s, 4H), 7.67-7.63(m, 2H), 7.51-7.4(m, 2H), 7.37-

7.36(m, 2H), 5.83(s, 4H). 13C NMR (DMSOd6, 100MHz): 165.92, 158.93, 157.57, 
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151.25, 138.66, 136.36, 134.3, 129.53, 128.37, 127.6, 127.16, 123.3, 119.06, 117.93, 

114.76, 114.55, 67.70. MS (ESI) calculated for C36H24N4Na2O10S2 [(M – Na)]-, m/z 

759.71, found [(M – 2Na)]2-, m/z 367.899. 

(8S). 1H NMR (DMSOd6, 400MHz): 8.38(s, 2H), 8.29(d, J = 7.8Hz, 2H), 8.18(d, J = 

7.9Hz, 2H), 8.02-7.95(m, 5H), 7.68-7.60(m, 4H), 7.53-7.44(m, 3H), 7.37(d, J = 7.56Hz, 

2H). 13C NMR (DMSOd6, 100MHz): 165.99, 158.70, 153.92, 151.23, 138.26, 136.74, 

134.31, 128.86, 128.8, 127.66, 127.21, 123.28, 123.04, 120.37, 114.57, 67.89. MS (ESI) 

calculated for C36H24N4Na2O10S2 [(M – Na)]-, m/z 759.71, found [(M – 2Na)]2-, m/z 

367.931. 

(9S). 1H NMR (DMSOd6, 400MHz): 8.5(d, J = 8.65Hz, 4H), 8.14 (d, J = 8.12Hz, 2H), 

7.97-7.90(m, 5H), 7.66-7.61(m, 5H), 7.36(d, J = 8.64, 4H), 5.87(s, 4H). 13C NMR 

(DMSOd6, 100MHz): 165.89, 158.80, 156.13, 136.91, 134.23, 131.79, 129.03, 128.75, 

127.80, 127.48, 127.32, 126.86, 123.20, 119.81, 114.32, 67.82. MS (ESI) calculated for 

C36H24N4Na2O10S2 [(M – Na)]-, m/z 759.71, found [(M – 2Na)]2-, m/z 367.931. 

(10S). 1H NMR (DMSOd6, 400MHz): 8.34(s, 2H), 8.17(d, J = 4.6Hz, 2H), 8.0-7.83(m, 

6H, (m, 2H), 8.0-7.9(m, 8H), 7.8-7.4(m, 8H), 6.08(s, 4H). 13C NMR (DMSOd6, 

100MHz): 165.8, 158.57, 153.84, 151.11, 138.2, 135.12, 134.1, 130.37, 128.73, 127.5, 

126.97, 123.16, 122.96, 120.35, 114.37, 66.64. MS (ESI) calculated for 

C36H24N4Na2O10S2 [(M – Na)]-, m/z 782.71, found [(M – 2Na)]2-, m/z 367.963. 

(11S). 1H NMR (DMSOd6, 400MHz): 8.3(d, J = 8.8Hz, 4H), 7.93(d, J = 8Hz, 2H), 7.8-

7.7(m, 6H), 7.43-7.41(m, 2H), 7.32-7.27(m, 2H), 7.21(d, J = 8.8Hz, 4H), 5.98(s, 4H). 13C 

NMR (DMSOd6, 100MHz): 165.74, 158.67, 156.05, 151.25, 135.18, 134.07, 131.71, 



 

   138 

130.06, 128.92, 128.60, 127.4, 126.60, 122.91, 119.70, 114.14, 66.6. MS (ESI) calculated 

for C36H24N4Na2O10S2 [(M – Na)]-, m/z 782.71, found [(M – 2Na)]2-, m/z 367.889. 

(12S). 1H NMR (DMSOd6, 400MHz): 8.35-8.20(m, 6H), 7.9(s, 4H), 7.64(s, 2H), 7.43(m, 

5H), 6.5(s, 2H), 5.4(s, 4H). 13C NMR (DMSOd6, 100MHz): 165.8, 153.9, 151.2, 138.3, 

134.3, 128.84, 128.5, 127.62, 127.2, 123.2, 123.03, 120.4, 114.52, 66.29, 52.77. MS 

(ESI) calculated for C32H22N4Na2O10S2 [(M – Na)]-, m/z 732.65, found [(M – 2Na)]2-, m/z 

342.908. 

(13S). 1H NMR (DMSOd6, 400MHz): 8.24(s, 2H), 8.17(d, J = 7.68Hz, 2H), 8.06(d, J = 

7.64Hz, 2H), 7.91-7.84(m, 4H), 7.53-7.52(m, 2H), 7.38-7.28(m, 4H), 4.72(t, J = 6.3Hz, 

4H), 2.04-1.97(m, 4H), 1.8-1.73(m, 2H). 13C NMR (DMSOd6, 100MHz): 166.3, 158.8, 

153.89, 151.13, 138.4, 134.12, 128.79, 127.60, 127.02, 123.18, 122.94, 120.40, 114.62, 

66.67, 52.75, 27.94, 22.32, 13.56. MS (ESI) calculated for C33H26N4Na2O10S2 [(M – Na)]-

, m/z 748.69, found [(M – 2Na)]2-, m/z 350.940. 

(14S). 1H NMR (DMSOd6, 400MHz): 8.38(d, J = 8.8, 4H), 8.04(d, J = 8.0, 2H), 7.88(m, 

4H), 7.51-7.47(m, 2H), 7.27(d, J = 8.8, 4H), 4.71(s, 4H). 13C NMR (DMSOd6, 100MHz): 

166.2, 158.90, 156.08, 151.26, 134.04, 131.92, 128.92, 127.45, 126.64, 123.12, 119.8, 

66.59, 52.75, 27.95, 22.34. MS (ESI) calculated for C33H26N4Na2O10S2 [(M – Na)]-, m/z 

748.69, found [(M – 2Na)]2-, m/z 351.004. 

(15S). 1H NMR (DMSOd6, 400MHz): 8.4(d, J = 8.76Hz, 4H), 8.02(d, J = 8.12Hz, 4H), 

7.92-7.85(m, 4H), 7.47(t, J = 7.96Hz, 2H), 7.33(d, J = 8.73Hz, 4H), 4.89(s, 4H). 13C 

NMR (DMSOd6, 100MHz): 165.8, 153.9, 151.2, 138.3, 134.3, 128.84, 128.5, 127.62, 
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127.2, 123.2, 123.03, 120.4, 114.52, 66.29, 52.77. MS (ESI) calculated for 

C32H24N4Na2O11S2 [(M – Na)]-, m/z 750.66, found [(M – 2Na)]2-, m/z 351.861. 

(16S). 1H NMR (DMSOd6, 400MHz): 8.3(s, 2H), 8.25(d, J = 7.36Hz, 2H), 8.14(d, J = 

8Hz, 2H), 7.98-7.93(m, 4H), 7.58-7.37(m, 6H), 4.76(s, 4H), 2.0(s, 4H), 1.7(s, 4H). 13C 

NMR (DMSOd6, 100MHz): 166.29, 158.77, 153.88, 151.11, 138.41, 134.12, 128.81, 

127.59, 127.03, 123.189, 122.95, 120.42, 114.6, 66.77, 28.14, 25.4. MS (ESI) calculated 

for C34H28N4Na2O10S2 [(M – Na)]-, m/z 739.72, found [(M – 2Na)]2-, m/z 357.915. 

(17S). 1H NMR (DMSOd6, 400MHz): 8.4(d, J = 8.8, 4H), 8.1(d, J = 7.97Hz, 2H), 7.93-

7.89(m, 4H), 7.56-7.52(m, 2H), 7.34(d, J = 8.8, 4H), 4.74(t, J = 6.32Hz, 4H), 2.0(s, 4H), 

1.7(s, 4H). 13C NMR (DMSOd6, 100MHz): 166.29, 158.77, 153.88, 151.11, 138.41, 

134.12, 128.81, 127.59, 127.03, 123.189, 122.95, 120.42, 114.6, 66.77, 28.14, 25.4. MS 

(ESI) calculated for C33H26N4Na2O10S2 [(M – Na)]-, m/z 762.72, found [(M – 2Na)]2-, m/z 

357.947. 

(18S). 1H NMR (DMSOd6, 400MHz): 8.40(d, J = 8.6Hz, 4H), 7.8(d, J = 9.1Hz, 2H), 

7.51-7.48(m, 2H), 7.33-7.31(m, 6H), 4.73(t, J = 6.4Hz), 3.8(s, 6H), 2.0(s, 4H), 1.7(s, 4H) 

13C NMR (DMSOd6, 100MHz): 165.30, 157.34, 156.86, 146.78, 132.13, 129.13, 128.5, 

125.4, 119.8, 114.93, 101.39, 66.55, 55.48, 28.11, 25.34. MS (ESI) calculated for 

C36H32N4Na2O10S2 [(M – Na)]-, m/z 822.77, found [(M – 2Na)]2-, m/z 387.962. 

(19S). 1H NMR (DMSOd6, 400MHz): 8.4(d, J = 8.7Hz, 4H), 8.06(d, J = 8.16Hz, 2H), 

7.85-7.81(m, 4H), 7.53-7.5(m, 2H), 7.3(d, J = 8.7Hz, 4H), 4.65(t, J = 6.4Hz, 4H), 3.0(s, 

4H), 1.16(s, 1H), 1.08-1.0(m, 6H). 13C NMR (DMSOd6, 100MHz): 166.2, 158.88, 

156.07, 151.25, 134.04, 131.92, 128.92, 127.44, 126.68, 123.18, 119.81, 114.39, 66.73, 
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52.75, 28.58, 28.16, 25.57. MS (ESI) calculated for C35H30N4Na2O10S2 [(M – Na)]-, m/z 

776.74, found [(M – 2Na)]2-, m/z 364.987. 

(20S). 1H NMR (DMSOd6, 400MHz): 8.4(d, J = 8.8Hz, 4H), 8.13(d, J = 7.93Hz, 2H), 

7.94-7.88(m, 4H), 7.61-7.54(m, 2H), 7.34(d, J = 8.8Hz, 4H), 4.71(t, J = 6.4Hz, 4H), 2.09-

1.89(m, 4H), 1.56-1.47(m, 4H), 1.08(t, J = 7.2Hz, 4H). 13C NMR (DMSOd6, 100MHz): 

166.19, 158.89, 156.09, 151.25, 134.02, 131.91, 128.91, 127.44, 126.65, 123.16, 119.80, 

114.39, 66.72, 52.75, 28.69, 28.16, 25.52. MS (ESI) calculated for C36H32N4Na2O10S2 

[(M – Na)]-, m/z 790.77, found [(M – 2Na)]2-, m/z 371.962. 

(21S). 1H NMR (DMSOd6, 400MHz): 8.4(d, J = 8.8Hz, 4H), 8.13(d, J = 8.24Hz, 2H), 

7.95-7.89(m, 4H), 7.62-7.58(m, 2H), 7.34(d, J = 8.8Hz, 4H), 4.71(t, J = 6.4Hz, 4H), 2.1-

1.87(m, 4H), 1.54(s, 4H), 1.4(s, 6H). 13C NMR (DMSOd6, 100MHz): 166.22, 158.89, 

156.13, 151.15, 134.05, 131.83, 129.9, 128.93, 127.37, 126.68, 123.19, 119.80, 115.30, 

114.39, 66.76, 52.74, 28.86, 28.70, 28.64, 28.17, 25.55. MS (ESI) calculated for 

C37H34N4Na2O10S2 [(M – Na)]-, m/z 804.80, found [(M – 2Na)]2-, m/z 379.034. 

(22S). 1H NMR (DMSOd6, 400MHz): 8.4(d, J = 8.8Hz, 4H), 8.14(d, J = 8.3Hz, 2H), 

7.96-7.90(m, 4H), 7.63-7.60(m, 2H), 7.4(d, J = 8.8Hz, 4H), 4.71(t, 6.52Hz, 4H), 1.93-

1.86(m, 4H), 1.54-1.49(m, 4H), 1.4-1.34(m, 8H). 13C NMR (DMSOd6, 100MHz): 

166.22, 159.1, 134.16, 130.03, 128.99, 126.71, 126.50, 123.21, 119.80, 115.36, 114.17, 

66.81, 28.77, 28.61, 28.10, 25.44. MS (ESI) calculated for C38H36N4Na2O10S2 [(M – Na)]-

, m/z 818.82, found [(M – 2Na)]2-, m/z 386.042. 

(23S). 1H NMR (DMSOd6, 400MHz): 8.4(d, J = 8.8Hz, 4H), 8.13(d, J = 8.0Hz, 2H), 

7.94-7.88(m, 4H), 7.6(t, J = 1.6, 2H), 7.34(d, J = 8.8Hz, 4H), 4.7(t, J = 6.4Hz, 4H), 1.93-
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1.87(m, 4H), 1.53-1.48(m, 4H), 1.38-1.31(m, 10H). 13C NMR (DMSOd6, 100MHz): 

166.19, 158.89, 156.09, 151.26, 134.02, 131.90, 128.90, 127.45, 126.64, 123.16, 119.79, 

114.39, 66.72, 28.89, 28.85, 28.71, 28.55, 28.33, 28.15, 25.53. MS (ESI) calculated for 

C39H38N4Na2O10S2 [(M – Na)]-, m/z 832.85, found [(M – 2Na)]2-, m/z 392.986. 

(24S). 1H NMR (DMSOd6, 400MHz): 8.4(d, J = 8.8Hz, 4H), 8.14(d, J = 8.0Hz, 2H), 

7.97-7.91(m, 4H), 7.64-7.60(m, 2H), 7.35(d, J = 8.8Hz, 4H), 4.71(t, J = 6.5Hz, 4H), 1.91-

1.88(m, 4H), 1.53-1.49(m, 4H), 1.37-1.23(m, 12H). 13C NMR (DMSOd6, 100MHz): 

166.29, 159.08, 158.87, 134.20, 130.06, 128.99, 126.45, 123.22, 119.80, 115.36, 114.35, 

114.15, 66.78, 28.60, 28.08, 25.42. MS (ESI) calculated for C40H40N4Na2O10S2 [(M – 

Na)]-, m/z 846.88, found [(M – 2Na)]2-, m/z 399.962. 

5.3.5. Direct Inhibition of Factor XIa by Sulfated QAOs.  

A chromogenic substrate hydrolysis assay using a microplate reader (FlexStation III, 

Molecular Devices) was used to measure direct inhibition of FXIa, as described 

earlier.206,233 Generally, each well of the 96-well microplate had 85 µL of pH 7.4 buffer 

(50 mM TrisHCl, 150 mM NaCl, 0.1% PEG8000, and 0.02% Tween80) to which 5 µL of 

a potential FXIa inhibitor (or solvent reference) was added followed by 5 µL of FXIa to 

give 0.765 nM in the well. After 10 min incubation at 37 °C, 5 µL FXIa substrate S2366 

(345 µM in the well) was rapidly added and the residual FXIa activity was measured 

from the initial rate of increase in absorbance at 405 nm. Stocks of FXIa inhibitors were 

20 mM, which were then serially diluted to give twelve different aliquots in the plate 

wells. Relative residual FXIa activity at each concentration of the inhibitor was 

calculated from the ratio of FXIa activity in the presence and absence of the inhibitor. Eq 
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6 was used to fit the dose–dependence of residual proteinases activity to obtain the 

potency (IC50) and efficacy (∆Y) of inhibition. In this equation, Y is the ratio of residual 

factor XIa activity in the presence of inhibitor to that in its absence (fractional residual 

activity), YM and Y0 are the maximum and minimum possible values of the fractional 

residual proteinase activity, IC50 is the concentration of the inhibitor that results in 50% 

inhibition of enzyme activity, and HS is the Hill slope. Nonlinear curve fitting resulted in 

YM, Y0, IC50 and HS values. 

! = !! +
!! − !!

1+ 10 !"# ! !!!"#!!"!" ×!" !!!!!!!!!!!!!!!!!(!) 

5.3.6. Inhibition of Proteases of the Coagulation and Digestive Systems.  

The inhibition potential of 500 µM of 7S to 24S against coagulation enzymes including 

thrombin, factor IXa and factor Xa and digestive enzymes including trypsin and 

chymotrypsin was evaluated using chromogenic substrate hydrolysis assays reported in 

the literature. These assays were performed using substrates appropriate for the enzyme 

being studied under conditions closest to the physiological condition (37 °C and pH 7.4), 

except for thrombin, which was performed at 25 ºC and pH 7.4. The concentrations of 

enzymes and substrates in microplate wells, respectively, were: 6 nM and 50 mM for 

thrombin; 1.09 nM and 125 mM for factor Xa, 2.5 ng/ml and 80 mM for bovine trypsin; 

and 500 ng/ml and 240 mM for bovine chymotrypsin and 89 nM and 425 mM for FIXa. 

The ratio of the proteolytic activity of an enzyme in the presence of the sulfated QAO to 

that in its absence was used to calculate percent inhibition (%). 
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5.3.7. Michaelis–Menten Kinetics of Substrate Hydrolysis in Presence of 21S. 

The initial rate of S2366 hydrolysis by FXIa was obtained from the linear increase in 

absorbance at 405 nM corresponding to less than 10% consumption of S2366. The initial 

rate was measured as a function of various concentrations of the substrate (0.03–2 mM) 

in the presence of fixed concentration of 21S in 50 mM TrisHCl buffer, pH 7.4, 

containing 150 mM NaCl, 0.1% PEG8000, and 0.02% Tween80 at 37 OC. The data was 

fitted using the standard Michaelis–Menten eq 7 to determine the KM and VMAX. 

! = ! !!"#![!]!! + ! [!]
!!!!!!!!!!!!!(!) 

 

5.3.8. Equilibrium dissociation constant (KD) of Sulfated QAOs Binding to Human 

Factor XIa.  

Fluorescence experiments were performed using a QM4 spectrofluorometer (Photon 

Technology International, Birmingham, NJ) in 50 mM Tris-HCl buffer of pH 7.4 

containing 150 mM NaCl and 0.1% PEG8000 at 37 °C. The equilibrium dissociation 

constant (KD) of sulfated QAOs – FXIa complex was measured using the change in the 

fluorescence of the active site dansyl group due to binding. Titrations were performed by 

adding aliquots of a solution of sulfated QAOs (19S, 20S and 21S) in the above buffer to 

a fixed concentration of FXIa–DEGR (250 nM) and monitoring the change in the 

fluorescence of FXIa-DEGR at 547 nm (λEX = 345 nm). The slit widths on the excitation 

and emission side were 1mm each. The change in fluorescence at 547 nm was fitted using 

the standard Hill equation for ligand binding eq 8 for co-operative binding to obtain the 

apparent dissociation constant (KD,app) of binding. In this equation, ΔF represents the 
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change in fluorescence following addition of sulfated QAO from the initial fluorescence 

(F0), while ΔFMAX represents the maximal change in fluorescence. Hill coefficient ‘n’ is a 

measure of the cooperativity of binding.  

∆!
!!

= ∆!!"#×
[!"#$%&'(!!"!]!

(!!,!"")! + ! [!"#$%&'(!!"!]!
!!!!!!!!!(!) 

5.3.9. Activated Partial ThromboplastinTime (APTT) 

Intrinsic clotting time was measured in a standard one–stage recalcification assay with a 

BBL Fibrosystem fibrometer (Becton-Dickinson, Sparles, MD). For the aPTT assay, x µL 

of same molecules was mixed with (100-x) µL of citrated human plasma and 100 µL of 

prewarmed APTT reagent (0.2% ellagic acid). After incubation for 4 min at 37 OC, 

clotting was initiated by adding 100 µL of pre-warmed 25 mM CaCl2 and time to clot 

noted. The data were fit to a quadratic trend line, which was used to determine the 

concentration of the inhibitor necessary to double the clotting time. Clotting time in the 

absence of an anticoagulant was determined in similar fashion using 10 µL of deionized 

water and/or appropriate organic vehicle and was found to be 34.8 s for APT. 

5.3.10. Analytical Ultracentrifugation of FXIa and FXIa-21S complex. 

FXIa-DEGR was diluted to 0.2 mg/mL in 50 mM Tris-HCl buffer of pH 7.4 containing 

150 mM NaCl and 0.1% PEG8000 at 20 °C. Samples (420 µL) of FXIa alone and FXIa 

with 100 µM 21S, with a buffer sample were run at 25000 rpm overnight at 20° C in a 

Beckman Coulter Proteome Lab XL-I analytical ultracentrifuge. Absorbance (λ = 345nm) 

and interference scans were recorded until the boundary moved to the bottom of the cell. 

The continuous distribution c(S) distribution analysis was performed using SEDFIT 

(https://sedfitsedphat.nibib.nih.gov). 
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CHAPTER 6: SIGNIFICANCE OF CURRENT WORK AND FUTURE 

DIRECTIONS 

6.1. Novel Hexasaccharide Based Activators of Heparin co-factor II and 

Antithrombin 

Antithrombin activation has been the primary indirect mechanism of 

anticoagulation by heparin and its analogs. Structural studies, however, have revealed the 

specificity of interaction involved in this mechanism, shedding light on the fact that a 

similar system could exist for related serpins like HCII. Reports did suggest the lack of 

specificity in the HCII system primarily due to the lack of structural homogeneity in the 

sequences known to activate it and to the lack of any structural knowledge. The 

utilization of computational resources to solve this difficult puzzle could offer an 

alternative. The computational techniques we utilized did predict highly specific 

structures for both the HCII and the AT system. This lays the foundation for utilization of 

similar techniques on other unknown protein-GAG systems to predictively identify 

sequences. HX1 was identified as one of the first heparin based hexasaccharide 

sequences to potently target both AT and HCII. This property has the added advantage 

that this sequence is capable of targeting both venous and arterial thrombosis. Targeting 

HCII introduces the capability of inhibiting both free and bound thrombin.  

 



 

   146 

  

A major problem with heparin-based 

anticoagulants has been the occurrence of 

thrombocytopenia and bleeding complications. 

The problem of heparin-induced 

thrombocytopenia was diminished through the 

utilization of the smaller and homogeneous 

heparin pentasaccaharide; the hexasaccharide 

thus synthesized could also be postulated to possess a similar advantage. Other bleeding 

complication are generally attributed to the potent affinity of heparin pentasaccharide, 

however the moderate affinity observed with the hexasaccharide without the loss of 

activation potential could reduce the bleeding complications observed with simple 

measures like dialysis or the utilization of an antidote.  

The study thus performed is an initial step toward further understanding the 

complex HCII system. However, the utilization of our computational approach could 

have implications for this system. Experimental data brings to light the structural aspect 

 

HX1 

 
Antithrombin crystals 
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of these hexasaccharides. However, mechanistic understanding needs to be clarified. 

Some of the mechanistic studies that we are already in the process of undertaking include 

the salt dependent studies to recognize ionic component of the interaction of these 

sequences with HCII and AT. Structural elucidation through the utilization of X-ray 

crystallography could serve as important tool to gain a more comprehensive 

understanding. These have already been undertaken with numerous AT crystals being 

soaked with the potent HX1. However, efforts to obtain the structure and the site of 

binding have failed. Similarly, the promise these offer warrants animal studies, which we 

plan to undertake through the help of our collaborators. 

6.2. Differential Recognition of Coagulation Proteins by a Heparan sulfate 

containing 2-O-sulfated Glucuronic acid 

GAGs are highly heterogeneous structures decorated by an array of sulfates 

(!OSO3¯), the placement of which induces recognition and modulation of proteins that 

possess surfaces draped with positively charged Arg/Lys residues. The interaction 

patterns involved dictate the type of function modulated which range from physiological 

modulation of growth to pathophysiological ones like cancer and microbial invasion. The 

emphasis is on the structure of the GAG interacting with the protein.  

Our work involves recognizing such a rare sequence in the form of HS2S2S, which 

was found to be unique in many ways. Its natural occurrence and the possibility of it 

being used to unearth newer interaction profiles caught our attention. Our experimental 

findings suggest a novel profile with it targeting usual serpins like AT and HCII. 

However, the direct inhibition of thrombin is a feature not generally seen in heparin-
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based polymers. Further, the correlation of these results with our computational 

predictions suggests the importance of studying such rare sequences through the use of a 

more predictable model. 

Our study lays the foundation for similar studies to be performed to unearth novel 

interactions of GAGs with the variety of proteins these are known to interact. The 

computational resources we utilized thus offer an avenue to predictively study such 

systems. 

6.3. Sulfated Quinazolin-4(3H)-ones as Allosteric Modulators Targeting FXIa 

Numerous studies have signified the benefits of directly targeting upstream coagulation 

proteases like FXIa.  Targeting FXIa does not produce any bleeding complications, 

subsequently without altering the normal hemostasis. Additionally, the lack of FXIa does 

not produce significant problems in individual carriers of the mutation with it. Animal 

studies have revealed similar trends with no complications observed. Altogether these 

features make it a potentially attractive target.  

The dual element strategy, was successfully 

incorporated to develop the initial QAOs206, and 

similarly used to design allosteric inhibitor for 

thrombin.177 These initial QAOs were the first group 

of allosteric inhibitors of FXIa. Sulfated pentagalloyl 

glucoside are the other structurally diverse allosteric 

inhibitors of FXIa, which were reportedly found to function by a different allosteric 

mechanism. The present study extends our structural and mechanistic understanding of 

 
21S 
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the QAOs based inhibitors. The second generation of compounds has stretched the 

potency by 9-fold (21S) while maintaining a similar selectivity profile. This generation 

primarily focused on the linker domain, thus unearthing important features required in 

this domain especially in terms of its geometry and length, additionally the positioning of 

the sulfate group has also been deciphered. Mechanistically, the analytical 

ultracentrifugation studies have thrown light into the interference with the non-covalent 

dimer forming interactions as a possible route of inhibition, further confirming a non-

competitive mechanism of action. This study validates on the utilization of the dual 

element strategy and its extension to gain a reasonable structure-activity understanding of 

the binding site in addition to the mechanistic knowledge gained. 
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APPENDIX A 

Naming convention for the H/HS monosaccharides and the 36 disaccharide building 

blocks derived from them. 

Namea Name Conf.b Anomer Disaccharide Building Blocks 
uaA IdoAp 1C4 α- ZbB-YbCA ua2A-

YbC6A 
ua2A-

YbH36A ua2A IdoAp2S 1C4 α- ZbB-
YbC6A 

uc2A-
YbC6A 

uc2A-
YbH36A ucA IdoAp 2SO α- ZbB-Yb2A uaA-Yb2A ucA-Yb2A 

uc2A IdoAp2S 2SO α- Zb2B-
Yb2A 

ua2A-
Yb2A 

uc2A-
Yb23A Yb2A GlcNp2S 4C1 α- ZbB-

Yb26A 
uc2A-
Yb2A 

 
Yb23A GlcNp2S3S 4C1 α- Zb2B-

Yb26A 
uaA-

Yb26A 
 

Yb26A GlcNp2S6S 4C1 α- ZbB-
Yb23A 

ucA-
Yb26A 

 
Yb236A GlcNp2S3S6S 4C1 α- Zb2B-

Yb23A 
ua2A-
Yb26A 

 
Yb26A GlcNp2S6S 4C1 α- ZbB-

Yb236A 
uc2A-
Yb26A 

 
YbCA GlcNp2Ac 4C1 α- ZbB-YbHA uaA-

Yb23A 
 

YbC6A GlcNp2Ac6S 4C1 α- uaA-YbCA ucA-
Yb23A 

 
YbHA GlcNp 4C1 α- ucA-YbCA ua2A-

Yb23A 
 

YbH3A GlcNp3S 4C1 α- ua2A-
YbCA 

uaA-
Yb236A 

 
YbH36A GlcNp3S6S 4C1 α- uc2A-

YbCA 
ucA-

Yb236A 
 

ZbB GlcAp 4C1 β- uaA-
YbC6A 

ua2A-
YbH3A 

 
Zb2B GlcAp2S 4C1 β- ucA-

YbC6A 
uc2A-

YbH3A 
 

aSymbols: Z = D-GlcAp, u = L-IdoAp, Y = D-GlcNp. Ring conformations: a = 1C4; b = 
4C1; c = 2SO. Substituents: H = No substitution at position 2; Ac = N-acetyl, S = sulfate; 
Anomer configuration: A = α, B = β. bConformation. 
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APPENDIX B 

Average torsion across the 1→4 inter-glycosidic bonds used in this CVLS study. 

 

Disaccharide Building Block Φ 
(O5-C1-O1-C4’) 

Ψ 
(C1-O1-C4’-C5’) 

GlcAp(1!4)GlcNp -81.8 -114.0 
IdoAp(1!4)GlcNp -87.7 -128.3 

   
GlcNp(1!4)GlcAp 91.1 -151.6 
GlcNp(1!4)IdoAp 87.4 -132.3 
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