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Abstract 
 
 
 

A NOVEL METHOD TO DETECT FUNCTIONAL SUBGRAPHS IN BIOMOLECULAR 
NETWORKS 
 
 
Sterling Wells Thomas, Doctor of Philosophy 
 
 
A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor 
of Philosophy at Virginia Commonwealth University 
 
Virginia Commonwealth University, 2010 
 
Danail Bonchev, Ph.D., Sc.D., Senior Fellow, Professor and Director of Research on 
Bioinformatics, Center for the Study of Biological Complexity 
 
 
Several biomolecular pathways governing the control of cellular processes have been 
discovered over the last several years. Additionally, advances resulting from combining 
these pathways into networks have produced new insights into the complex behaviors 
observed in cell function assays. Unfortunately, identification of important sub-networks, 
or “motifs”, in these networks has been slower in development. This study focused on 
identifying important network motifs and their rate of occurrence in two different 
biomolecular networks. The two networks evaluated for this study represented both 
ends of the spectrum of interaction knowledge by comparing a well defined network 
(apoptosis) with and poorly studied network that was early in development (autism). 
This study identified several motifs that could be important in governing and controlling 
cellular processes in healthy and diseased cells. Additionally, this study revealed an 
inverse relationship when comparing the occurrence rate of these motifs in apoptosis 
and autism.   
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Chapter 1: Introduction 
 

Over the past decade scientists have discovered many genetic/molecular 

pathways responsible for the control of cellular processes. The purpose of this 

control is to activate or deactivate processes responsible for specific functions in 

the cell that are critical for cell survival, but not needed during the every step of 

the cell cycle. These cellular functions under control include cell cycle 

progression and division, DNA damage repair, apoptosis, synthesis and many 

more. Additionally, the controlling pathways for these functions have a 

significantly higher rate of mutation or deletion in solid malignant tumors. 

Resulting from the discovery of signaling pathways and their high rate of 

mutation and deletion, many new diagnostic and therapeutic studies are focused 

on testing and repairing these signaling networks. One of the major challenges of 

these studies is identifying all the networks formed by overlapping and redundant 

signaling pathways commonly found in Homo sapiens. During my preliminary 

studies it has been observed that biomolecular networks responsible for signaling 

and control of apoptosis include several closely related proteins termed slave 

that have similar functions but competitively suppress the activation of a 

controlling protein (termed master). The slave/master proteins thus form a 

redundant activation system that is resistant to minor mutations or deletions.  

The hypothesis of this thesis is a master/slave arrangement in signaling 

and regulatory networks represents a specific network motif that can be used to 

identify other signaling and controlling networks as targets for diagnostics or 

therapeutics. 
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Figure 1 - Visual model of ideal master/slave relationship described in the hypothesis. 

 

The following four stages of this study will aid in verifying motifs are 

influenced by both evolutionary pressures and functional pressures and whether 

this hypothesis holds true. 

Stage 1: Construct a network of cellular gene/protein agents and potential 

molecular regulatory pathways specific for apoptosis including the integrated 

Bcl2 family of genes and proteins from interactions reported in BioGRID, Cancer 

Cell Map, Human Protein Reference Database, IntAct, MINT, NCI/Nature 

Pathway Interaction and Reactome databases. Network nodes and interactions 

will be identified using mRNA expression data from gene arrays based on whole-

blood samples from individuals diagnosed with adenocarcinoma of the lung 

obtained from the Oncomine and Gene Expression Omnibus (GEO) databases. 

 

Stage 2: Model and simulate Bcl2 family genes and protein networks to identify 

subgraphs using cellular automata driven agent-based modeling. Calculate 

topological measures of the discovered subgraphs to identify those that follow 

the hypothesized master and slave node model. Topological measures include 
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but are not limited to connectivity (Zagreb M2 and Betweenness), node degree, 

number of second neighbor nodes (k1 and k2), number of first and second 

neighbor edges (A(k)). Develop a mathematical model describing the 

hypothesized relationship to be used in Stage 3 and 4. 

 

Stage 3: Identify a differential network of cellular gene/protein agents and 

potential gene regulatory pathways specific for functional changes associated 

with the progression of adenocarcinoma of the lung. Network nodes and 

interactions will be identified using mRNA expression data from gene arrays 

based on whole-blood samples from individuals diagnosed with adenocarcinoma 

of the lung obtained from the Oncomine and Gene Expression Omnibus (GEO) 

databases. Identify networks subgraphs that follow the proposed hypothesis. 

 

Stage 4: Identify a differential network of cellular gene/protein agents and 

potential gene regulatory pathways specific for functional changes associated 

with the progression of Autism Spectrum Disorder (ASD). Network nodes and 

interactions will be identified using mRNA expression data from gene arrays 

based on whole-blood samples from individuals diagnosed with ASD and 

obtained from the Autism Genome Resource Exchange (AGRE). Topological 

analysis will be limited to identification of subgraphs that follow the hypothesized 

functional structure from Aim 1. 

 

Significance: 

 

Lung Adenocarcinoma is the most common Non Small Cell Lung Cancer NSCLC 

and is the most common lung cancer among in life-long non-smokers. Lung 

cancer occurs in 62.5 of every 100,000 men and women in the United States, 

and is one of the most common occurring cancers (SEER).  Lung Cancer 

commonly metastasizes and is found distally at diagnosis in 56% of patents.  

Lung Cancer detected distally at diagnosis has a 5-year survival rate only of 

3.5% (SEER). Adenocarcinoma accounts for 40% of the tumors at diagnosis and 
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represents a significant challenge to the United States medical community.  The 

average age at diagnosis is 71 years, and although occurrence has recently 

declined by 0.8%, is expected to increase with the aging “Baby-Boomer” 

generation. 

The Genetic Epidemiology of Lung Cancer Consortia 

(http://epi.grants.cancer.gov/Consortia/) recently discovered potential familial 

lung cancer gene (Bailey-Wilson, Amos et al. 2004). Although many lung tumors 

are the result of environmental exposure (smoking), adenocarcinoma of the lung 

most commonly occurs in non-smokers and suggests a familial link.  The study 

identified regions on chromosome 6 showing alterations in a significant number 

of first degree family members with lung tumors, and less significant alterations 

on chromosomes 12, 14, and 20. These are considered milestones in the 

oncogenesis of lung cancer and do not represent a single hit cause of the 

disease. 

Recently, Drs. Bonchev and Kuznetsov (Kuznetsov, Thomas et al. 2008) 

developed a unique method to identify early detection biomarkers in 

Adenocarcinoma of the Lung. In this study Kuznetsov et al. identified a 5 gene 

biomarker that could be used to classify lung cancer using mRNA expression. 

The 5 gene marker set was revealed to represent cross-talk of 25 biomolecular 

pathways in lung cancer. Based on the network analysis, these 25 pathways 

have significant influence on the state of disease and control of cell growth and 

apoptosis. This type of study is a good representation of amount of biomarker 

research done in the lung cancer field. Based in the significant genetic and 

proteomic research done on lung cancer, it represents a good model for this 

study. 

Autism Spectrum Disorders (ASD), which include Autism, Asperger’s Disorder, 

and Pervasive Developmental Disorder-Not Otherwise Specified (PDD-NOS), are 

severe, extensive neurodevelopmental diseases characterized by deficits in 

social and emotional interactions and communication, as well as the presence of 

stereotypic behavior and restricted interests. Recently, the Centers for Disease 

Control along with Health Resources and Services Administration (HRSA) 
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reported that one in 100 children is affected with an ASD, and declared the 

condition “an urgent public health issue” [United States Centers for Disease 

Control, 2009(2007)]. Clinicians are now faced with a large population of children 

and teenagers with ASD who require accurate and comprehensive assessment 

and effective treatments. Understanding the biological underpinnings, including 

genetic characterization, of this group of disorders will directly impact diagnosis 

and treatment development. In addition, costs associated with healthcare and 

with special education of children with autism are enormous and have far ranging 

consequences on society. 

Twin and epidemiological studies have shown that ASD is the most frequently 

inherited psychiatric disease. Understanding the biological factors that influence 

the course and outcome of ASD is complicated by clinical heterogeneity in this 

group of disorders, by multiple gene etiologies that predispose an individual to 

the disease and by the innate complexity of dynamic gene/protein interactions. 

Identification of cellular protein biomarkers and gene regulatory pathways 

associated with ASD is essential to assess accurately the clinical prognosis and 

allow for the earliest possible intervention to correct behavioral anomalies 

associated with the disease. However, limited information of protein interaction 

networks and complexes involved in ASD is available.  

Insel and Abrahams both recently noted that understanding affected proteins and 

their associated cellular pathways in ASD and other psychiatric disorders is a 

necessary step that will improve diagnostic tests as well as treatments [(Insel and 

Lehner 2007), (Abrahams and Geschwind 2008)]. Inroads relating to analysis of 

genes involved in this complex phenotype have recently been reported.  

Transcription profiling through the use of cDNA microarrays has permitted 

simultaneous analysis of thousands of genes whose expression is either 

increased or decreased in individuals with ASD [(Purcell, Jeon et al. 2001), 

(Yonan, Palmer et al. 2003), (Baron, Liu et al. 2006), (Baron, Tepper et al. 2006), 

(Hu, Frank et al. 2006), (Walker, Segal et al. 2006), (Nishimura, Martin et al. 

2007), (Gregg, Lit et al. 2008)].   A bioinformatics analysis by Yonan et al. 

(Yonan, Palmer et al. 2003) of autism positional candidate genes using biological 
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databases identified 383 candidate genes predicted by a genomewide genetic 

linkage analysis of families that had two or more members diagnosed with ASD.  

In addition, peripheral blood and lymphoblastoid cell lines from autistic patients 

have been used successfully to identify autism-associated gene changes in 

peripheral cells ((Yonan, Palmer et al. 2003; Baron, Liu et al. 2006; Baron, 

Tepper et al. 2006; Hu, Frank et al. 2006; Walker, Segal et al. 2006; Nishimura, 

Martin et al. 2007).  Hu et al. (Hu, Frank et al. 2006) demonstrated that 

lymphoblastoid cell lines from monozygotic twins discordant for severity of autism 

have differential gene expression patterns as determined by microarray analysis.  

Furthermore, genes with the greatest degree of differential expression were 

those associated with nervous system development, structure and function. 

Many of these same genes mapped to chromosomal regions determined in 

earlier studies to be associated with autism candidate genes. A recent report by 

Gregg et al. (Gregg, Lit et al. 2008) also characterized gene expression 

differences in blood leukocytes of ASD patients using microarrays and found a 

small group of genes expressed predominately in natural killer cells, among 

others. Further, Nishimura et al. (Nishimura, Martin et al. 2007) utilized 

lymphoblastoid cell lines from autism patients and identified 68 genes that were 

dysregulated in common between autism with FMR1-FM and dup(15q). This 

study (Nishimura, Martin et al. 2007) also demonstrated increased expression of 

FMR1 interacting protein 1 (CYFIP1) in dup(15q) individuals, which suggests a 

putative link between FMR1-FM and dup(15q). 

Recently, Wall et al. (2009)(Wall, Esteban et al. 2009) compared gene networks 

associated with autism to those of 432 additional neurological diseases with the 

intent of defining shared molecular mechanisms and identifying new genes that 

were important in autism.  Sixty-six candidate autism genes were linked to one 

other disorder—these were referred to as multi-disorder gene set (MDAG). Gene 

networks and protein interactions with all MDAG genes were then defined, which 

extended the potential autism-specific genes to 334 candidates. Of these 334 

genes, 154 genes had not previously been linked to autism, but were 

differentially expressed in autistic individuals. The authors concluded that at least 
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a fraction of these genes may act as “sub-components” of the autism gene 

network and will provide insights into current gaps of our knowledge of this 

disease. Along this line, Purcell et al. (Purcell, Jeon et al. 2001) used microarrays 

to study gene expression on post-mortem brain tissue from individuals with 

autism and matched controls without any symptoms of autism. The study 

demonstrated differential regulation of 30 genes in individuals with autism 

compared to matched controls. Overall, these results affirmed that autism results 

from the dysregulation of multiple genes, which is predicted to have a profound 

effect on brain development.   Taken together, understanding the biological 

underpinnings, including genetic characterization and functional pathways, of this 

group of disorders will directly impact diagnosis and treatment development.  

Innovation 

This proposal is innovative because it proposes a new method to 

determine functional groups in signaling and protein interaction networks. The 

new method combines network topology analysis using existing methods and 

equations with simulation for the purpose of classifying each node in the network 

as master or slave. Existing network analysis tools provide an ideal way to 

classify the nodes in a network as central or peripheral (eccentric). These 

analyses make this classification based entirely on the structure of network, 

assuming there are no edge weights.  This method is ideal for networks of 

computers where each node shares basic characteristics.  This method is also 

ideal for early analysis of biological networks (signaling and protein interaction) to 

determine what nodes are central assuming each node share based 

characteristics.  The shortcoming of this method is that in biological networks 

each node does not always share basic characteristics.  An example of this is 

demonstrated by the diversity of protein structure and functionality found in most 

protein interaction networks.  This proposal addresses this shortcoming by 

combining the metrics described above with cellular automata simulation to 

provide an additional classification of master and slave. The master/slave 

relationship in the network topology might be considered by analogy with central 



8 
 

 

 
 

and peripheral nodes, but provides an additional level of information where there 

are multiple redundant pathways sharing the same or similar function.  

Additionally, simulation combined with existing topology metrics being used to 

describe the functionality of ASD progression networks has never been done and 

is badly needed.   
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Chapter 2: Network Construction 

 

Summary:  

This chapter is about construction of a network of cellular gene/protein 

agents and potential molecular regulatory pathways specific for apoptosis 

including the integrated Bcl2 family of genes and proteins from 

interactions reported in BioGRID, Cancer Cell Map, Human Protein 

Reference Database, IntAct, MINT, NCI/Nature Pathway Interaction and 

Reactome databases. Searching and extracting interaction data from 

databases represent the most common way of constructing biomolecular 

networks. This chapter describes the individual methods and techniques 

used to construct and maintain each of these databases. 

 

The current standard for creating visual representations of interacting 

molecules is to search curated databases of interacting molecules derived from 

peer-reviewed publications. The process of populating these databases is called 

“natural language searching”, a technology popularized with the rise of the 

Internet.  Natural language searching includes two major processes: 1. 

Identifying and extracting interaction data from peer-reviewed publications and 2. 

Indexing based on an existing Molecular Interaction ontology of the Proteomics 

Standards Initiative (PSI-MI) (Montecchi-Palazzi, Kerrien et al. 2009).  The 

resulting record represents a binary interaction with supporting data (experiment 

type and reference id).  A third party technology (i.e. Cytoscape) can then search 

these binary records and create n-ary interaction map describing linkages 

between binary records that produce biological interaction/signaling pathways. 
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Biomolecular Databases: 

 Biomolecular interaction databases store data submitted by 

experimentalists and extracted from peer-reviewed publications. The data 

extraction process is sometimes automated using optical character recognition 

software with a list of key words that describe interactions. When not automated, 

the extraction process is done manually. Subject matter experts (SME) read 

publications that describe biomolecular interactions. When enough evidence is 

described in the publications the SME will enter the interaction into the database 

they are curating for. Over time updated versions of the databases are released 

to the scientific community. Table 1 describes the data-capture technique and 

update schedule for each of the databases used for this work.  

 

Table 1 – Survey of publicly available sources of biomolecular interactions used in 

network analsis. 

Database Name Data 

Collection 

Method 

Update 

Schedule 

References 

BioGrid 

thebiogrid.org 

Manually 

Populated and 

Curated 

Monthly (Stark, 

Breitkreutz et al.) 

ChEMBL 

Ebi.ac.uk/chembl/ 

Automated Periodic 

(unscheduled) 

(Overington 

2009) 

DIP 

Dip-doe-mbi.ucla.edu 

Manually 

Populated and 

Curated 

Periodic 

(unscheduled) 

(Sprinzak, Cokus 

et al. 2009) 

INTACT 

Ebi.ac.uk/intact/ 

Manually 

Populated and 

Curated 

Weekly (Aranda, 

Achuthan et al.) 

IReflIndex 

Irefindex.uio.no 

Manually and 

Automated 

(Meta-DB) 

Continuous (Razick, 

Magklaras et al. 

2008) 
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MatrixDB 

Matrixdb.idcp.fr 

Manually and 

Automated 

(Meta-DB) 

Six Months (Chautard, Ballut 

et al. 2009) 

MINT 

Mint.bio.uniroma2.id/mint/ 

Manually 

Populated and 

Curated 

Yearly (Ceol, Chatr 

Aryamontri et al.) 

MPIDB 

Jcvi.org/mpidb/ 

Manually 

Populated and 

Curated 

Yearly (Goll, Rajagopala 

et al. 2008) 

Reactome 

Reactome.org 

Manually 

Populated and 

Curated 

Continuous (Croft, O'Kelly et 

al.) 

 

Construction of Networks 

Using the newly released Cytocape version 2.7.0, an interaction database 

search was conducted using the PSICQUIC Universal Web Service Client. 

PSCICQUIC is a Google sponsored implementation of the PSI-MI that provides 

programmatically accessible molecular interaction data through a standardized 

web service. The database schema, XML and web service client was to be 

installed locally at VCU to allow unpublished interaction data to be integrated into 

the database that was to be created by mRNA data. This became unnessary and 

will be described in a later section. PSICQUIC provides access to BioGrid, 

ChEMBL, DIP, IntAct, IReflIndex, MatrixDB, MINT, MPIDB and Reactome 

databases.  To identify records important for this study the keyword apoptosis 

was used.  As of writing this dissertation, a keyword search of PSCICQUIC 

produced 15396 records. The search tool produced individual networks from 

each of the data sources which were merged, and their overlap used as a basic 

network. A cursory analysis of the search terms was done to evaluate the validity 

of a semantic based analysis. Figure 2 describes the bases of this analysis 

where terms representing key experimental methods represent overlaps that can 

be used to improve the validity of a biomolecular network. 
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Figure 2 – Venn diagram of PSI-MI Tags from Apoptosis Network (PSI standard 

introduced by HUPO) 

 

IntAct is a database of interactions between bio-molecules ranging from 

large protein complexes to small ligands and synthesized molecules. The search 

included one term, Apoptosis, and produced a network of 6393 nodes and 14614 

interactions (as defined by PSI Molecular Interaction standard) (Figure 3 The 

nodes included 31 small molecules, 14 genbank sequences, 21 ensemble 

entities, 3 genbank nucleolus entities, 90 genbank proteins, 70 unique IntAct 

entities, 11 UniParc protein sequences, 6144 UniProt proteins.  The network was 

not completely connected, but included 169 components where the largest 

connected network had 5724 nodes. The second largest network component had 

43 nodes.   

 

Figure 1: Diagram of “Functional Modules” 
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Figure 3 - Largest apoptosis subnetwork from PSICQUIC search of apoptosis associated 

biomolecules. 

Search results from PSICQUIC connected databases (Figure 3) were 

studied for biological validity by analyzing the PSI-MI tags using Starlight 

Information Visualization System created by Pacific Northwest National 

Laboratory (http://www.eurekalert.org/features/doe/2002-03/dnnl-ias061402.php). 

PSI-MI tags describe the types of experiments that produced the interactions 

described in the above databases. Table 3 shows PSI-MI tags from the 

Apoptosis network. These terms are associated with different experimental 

protocols that share common methods. Starlight extracted the common methods 

from the PSI-MI tags and creates diagrams of overlap as seen in Figure 2. This 

analysis identified records that use unproven protocols which can be excluded, 

producing a higher confidence network.  

Search results from Cytoscape were extracted in XML format (XGMML). This 

format included all data provided with the interaction record (source, 

experimental type, publication reference, etc. This XML was imported into 

Starlight’s VIS system using the import wizard. Within the XML schema, edge 

attributes and their associated values were exported and visualized. Starlight 

identified 87,982 words, 219 of which were unique. Starlight was able to cluster 
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these words into 17 groups that were visually filtered into 10 groups (Table 2) 

that included words that described experimental techniques. 

Table 2 – Occurrence of words describing the biological evidence of each interaction in 

the apoptosis network. 

Keyword/s Occurrence in Edge Evidence 

Physical, Association 9011 

Bait, coimmunoprecipitation, anti 3387 

Hybrid, approach, pooling 3123 

Array, assay, microscopy, 

technology, peptide, 

chromatography, protein 

2123 

Tag, coimmunoprecipitation, anti 1543 

Pull 1534 

Purification, tandem, affinity 1524 

Interaction, direct 735 

Reaction, phosphorylation 231 

Chrystallography, x-ray, stelzl 159 

 

Starlight has the ability to visually depict the clusters in three dimensions (Figure 

4). The three dimensions were: occurrence, number of shared XML records, and 

distance between records. 
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Figure 4 - 3D clustering of key terms from PSICQUIC search using starlight visualization 

tool. 

  

Semantic modeling of data is becoming a more popular method of filtering 

search results from web search tools (Nelson, Avraham et al.). Semantic 

modeling is the bases for Starlight VIS, but represents only one type of analysis. 

To verify the results a word map was generated of the same terms used in 

Starlight.  

 In a word cloud the font size is determined by the occurrence of the word 

in the source data (Kaser 2007). The algorithm for determining font size is: 
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Figure 5 - Word cloud representation of interaction data from PSICQUIC search of 

apoptosis. This search was compared with the Starlight search to identify which 

experimental methods could be excluded to increase the quality of the apoptosis network. 

 

Although the word cloud represents a different analysis of using semantic 

grouping, the outcome is similar. From the analysis done in Starlight, combined 

with the word cloud analysis, a more accurate network was prepared (Figure 6). 

The number of protein coding genes is estimated to be around 23,000 

(Stein 2004). This could yield 50,000 to 100,000 thousand proteins in human 

cells. 6400 proteins would represent between 6 and 13% of the entire proteome. 

It is possible that apoptosis includes a high percentage of the proteome, it is 

more likely this network includes inaccuracies. To remove some of these 

inaccuracies, the PSI-MI codes for the experiments for each interaction were 

verified above.  76 Uniquely coded experiments were used to create the 
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Apoptosis network of 5714 nodes. 12 of the 76 were not associated with a 

protocol or were associated with a poorly represented protocol. Removing the 

records associated with these 12 missing protocols produced a network of 3414 

nodes with 5890 edges (Figure 6).  

 

Table 3 – PSI-MI returned during the PSICQUIC search for interactions associated with 

apoptosis. 

ID Term (Type of experiment used to verify interaction) 

MI:004 chromatography: affinity chromatography technologies 

MI:006 anti bait coip: anti bait coimmunoprecipitation 

MI:007 anti tag coip: anti tag coimmunoprecipitation 

MI:0010 beta galactosidase: beta galactosidase complementation 

MI:0012 bret: bioluminescence resonance energy transfer 

MI:0013 Biophysical 

MI:0016 cd: circular dichroism 

MI:0017 fluorescence spectr: classical fluorescence spectroscopy 

MI:0018 two hybrid 

MI:0019 coip: coimmunoprecipitation 

MI:0027 Cosedimentation 

MI:0028 solution sedimentati: cosedimentation in solution 

MI:0029 density sedimentatio: cosedimentation through density gradients 

MI:0030 cross-link: cross-linking studies 

MI:0031 protein crosslinking: protein cross-linking with a bifunctional reagent 

MI:0040 electron microscopy 

MI:0045 Experimental 

MI:0047 far western blotting 

MI:0049 filter binding 

MI:0051 fluorescence: fluorescence technologies 

MI:0053 fps: fluorescence polarization spectroscopy 

MI:0054 facs: fluorescence-activated cell sorting 

MI:0055 fret: fluorescent resonance energy transfer 
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MI:0065 itc: isothermal titration calorimetry 

MI:0067 light scattering 

MI:0071 molecular sieving 

MI:0077 nmr: nuclear magnetic resonance 

MI:0081 peptide array 

MI:0084 phage display 

MI:0089 protein array 

MI:0091 Not Found 

MI:0096 pull down 

MI:0099 spa: scintillation proximity assay 

MI:0107 spr: surface plasmon resonance 

MI:0111 dhfr reconstruction: dihydrofolate reductase reconstruction 

MI:0112 ub reconstruction: ubiquitin reconstruction 

MI:0114 x-ray: x-ray crystallography 

MI:0115 yeast display 

MI:0231 Not Found 

MI:0276 Not Found 

MI:0363 Not Found 

MI:0364 Not Found 

MI:0397 two hybrid array 

MI:0398 two hybrid pooling: two hybrid pooling approach 

MI:0399 2h fragment pooling: two hybrid fragment pooling approach 

MI:0401 Biochemical 

MI:0402 ch-ip:chromatin immunoprecipitation assays 

MI:0404 comigration in gel: comigration in non denaturing gel electrophoresis 

MI:0405 competition binding 

MI:0406 deacetylase assay 

MI:0411 elisa: enzyme-linked immunosorbent assay 

MI:0412 emsa supershift: electrophoretic mobility supershift assay 

MI:0413 emsa: electrophoretic mobility shift assay 

MI:0415 enzymatic studies 



19 
 

 

 
 

MI:0416 fluorescence imaging: fluorescence microscopy 

MI:0417 Footprinting 

MI:0419 gtpase assay 

MI:0423 in-gel kinase assay: in-gel kinase assay 

MI:0424 protein kinase assay 

MI:0426 light microscopy 

MI:0428 imaging techniques 

MI:0423 one hybrid 

MI:0434 phosphatase assay 

MI:0435 protease assay 

MI:0440 saturation binding 

MI:0510 Htrf 

MI:0515 methyltransferase as: methyltransferase assay 

MI:0663 Not Found 

MI:0676 Not Found 

MI:0678 Not Found 

MI:0728 Not Found 

MI:0729 Not Found 

MI:0826 Not Found 

MI:0841 Not Found 

MI:0921 Not Found 
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Figure 6 – Visual representation of the optimized apoptosis network produced using 

PSICQUIC enabled tools. 

 

 

Analysis of Optimized Network 

In order to predict the potential modules the largest network was analyzed 

for centroid and degree. Centroid is calculated by focusing on two nodes (w,v) 

and calculating the number of nodes that are closer to each of the nodes (w), 

compared to the other node in the pair(v) (Scardoni, Petterlini et al. 2009). This 

evaluation is then repeated exhaustively for an entire network.  This produces a 

centrality value where the higher the centroid index, the closer the node is to all 

other nodes in the network. Degree is the total number of interactions of each 

node. 

To estimate the functional modules described in this document (Figure 1), 

I calculated the centroid score and node degree for the largest connected 

network of the Apoptosis network described above. Node degree provided a 

general understanding of the connectedness of the entire network of 5724 nodes.  
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Figure 7 shows the range of degrees or connections of the over 5724 nodes. The 

range of degrees spans 378 to one, with one representing the most common 

degree (A biomolecule with degree 378 is unrealistic and demonstrates the need 

to improve the “biological validity” of the data).The protein with the highest 

degree is Q9Y4K3 or E3 ubiquitin lygase, critical for Map Kinase activity. The 

majority are terminal nodes with one connection that may connect to other 

networks not included in the search, or final products. Only 20 of the 5724 nodes 

had a degree of over 100, and without the centroid score most could not be 

interpreted as central. In Figure 8 the centroid score is combined with node 

degree to provide a clearer picture of centrality and control of the network. 

Several of the proteins with high degrees have relatively low centroid values. 

P25694 had a relatively high degree of 126, but a very low centroid score of -

5281. This protein is responsible for scaffold deconstruction, a function that is not 

involved in apoptosis activation.  P35438 also had a high degree and a low 

centroid score. The protein is key to magnesium sensitivity and little to do with 

initiating apoptosis. Both of these proteins represent the limitation of using node 

degree to determine key proteins in functional specific networks.  Although 

centroid provides a good measure of centrality, it cannot identify modules. The 

average centroid score is -5444, but the end of the second largest quartile is -

5480.  The heavy distribution of low scoring nodes demonstrated the low 

sensitivity of the centroid score for functional modules, even when the module is 

central to the network. 
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Figure 7 - Log Distribution Histograms of Node Degrees from Apoptosis Network (Top is from the 

complete network resulting from the search, bottom is the optimized network with unknowns and 

low scoring biological evidence removed) 
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Figure 8 - 3D Log Plot of Centroid Value by Node Degree by Occurrence number in Apoptosis 

Network. (Top is from the complete network resulting from the search, bottom is the optimized 

network with unknowns and low scoring biological evidence removed) 

 

 

Functional modules of signaling networks with related outcomes have a 

common structure of a “master” component that is highly connected and 

activates a series of redundant effected components, which competitively inhibit 

each other but lead to similar outcomes.  This property of the “master” 

component, or “Regulating Promoter” in Figure 1, will be centrally placed within 

the network. To determine whether existing centrality algorithms could predict 

these modules I searched the IntAct database for all records associated with 

Apoptosis and performed a centrality analysis using degree and centroid score.  
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Chapter 3: Network Simulation of Bcl2 Family Proteins 
 

Summary:   

Bcl2 is a family of proteins responsible for apoptosis and cell cycle 

pathways related to apoptosis. Bcl2 represents an ideal model of network 

motifs that control large cellular functions. To identify motifs represented 

in the Bcl2 family pathways I simulated Bcl2 family protein networks to 

using cellular automata driven agent-based modeling. The outcome was 

list of potential motifs that fit the behavior described in my hypothesis and 

a deeper understanding of why this these motifs demonstrate very complex 

behavior. 

   

Cellular Automata analysis 

Cellular Automata was introduced by John von Neumann and Stanislaw 

Ulam in the 1960’s (Kier, Seybold et al. 2010). Von Neumann proposed two-

dimensional CA systems represented on a grid could change states following 

rules derived from the state of the neighboring cells (Neumann and Burks 1966). 

Von Neumann’s early CA systems allowed for up-to 29 different states and 

provided limitless potential outcomes which made them become cumbersome to 

work with. In the early 1980’s, Stephen Wolfram (Wolfram 1983) developed one-

dimensional CA systems where the state of a cell was determined from the state 

of the cells during the previous iteration of the simulation. As iterations continued, 

one-dimensional CA’s produced a finite number of outcomes. Rules based on 

these outcomes have been used to develop a new theory for computational 

analysis (Wolfram 2002). 

 Two-dimensional simulations have been adapted for simulations used in 

molecular interaction and biology (Bonchev, Thomas et al. ; Kier 2008) . In these 

simulations, the grid introduced by von Neumann represented interstitial space, 

and each square was a molecule. The rules von Neumann used to change the 
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state of his cells were modified to closely follow molecular mechanics. 

Simulations resulting from these modified von Neumann systems were shown to 

predict the boiling point and melting point of several compounds, and predict the 

diffusion rate of one mixture through another (Kier, Seybold et al. 2010). 

Following completion of the interaction searches and network topology 

analysis, simulation using two dimensional CA systems was used to predict the 

behavior of the interaction network(Strogatz 2001; Kier, Bonchev et al. 2005). 

The rules were based on the maximal number of interactions for each molecule 

represented in the network coupled with structural analysis of bonding regions 

identified from 3D structures (from the protein databank). Structural analysis 

included evaluation of multiple isoforms, and mutated versions of proteins for 

lipophobicity and electrostatic potential using the Adaptive Poisson-Boltzmann 

Solver with Amber force-fields as described by Baker et al. (Baker, Sept et al. 

2001). These properties were mapped, color-coded and visualized for evaluation 

using PyMOL. Areas with high lipophobicity and high electrostatic potential were 

considered possible binding sights for the simulation but provided no additional 

rule not already extracted from the literature searches.  

Where graphical representations did not exist, generalizations were 

employed based on biochemical characteristics of the predicted solvent 

accessible surface combined with interaction reported in IntAct. Multiple 

generalizations were based on most probable conformation providing a range of 

bonding properties to be included in simulations were multiple confirmations were 

possible. Simulations were done on a 64 bit multiple node supercomputing 

cluster at the CSBC. CA models representing protein networks were comprised 

of four-sided shapes (cells). The cells were variegated allowing up to 4 unique 

protein-protein interactions per representative protein. Rules of motion were 

based on probability and govern movement, joining and breaking of cells. 

Movement, joining and breaking opportunities will be universal and have equal 

probability. The only variations in behavior resulted from rules of interaction 

defined above. Movement was applied randomly to each cell representing an 

asynchronous model (as seen in natural processes). Types of bonds and 
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complexes were tracked and represented the output of the simulation. Iterations 

begin with a random distribution of cells and executed until a steady state was 

identified (no change in binding for multiple iterations).  

A new set of simulations was conducted where each rule will was 

exhaustively changed and removed and run to reach a new steady state. As 

described below, not all rules needed to be changed to obtain the complete 

behavior of the network.. Many rules represented repetitive or redundant 

functions and only needed to be simulated by a single rule change. Changes or 

loss of steady state was tracked and evaluated for impact on the overall network. 

The results were molecular bonding probabilities (strengths) that separate 

equilibrium states or other simulation behaviors. Gene/protein representations 

that lead to large changes in the simulations were considered potential regulatory 

pathways with a “master” classification. Remaining genes/proteins were ranked 

by predicted impact on simulation behavior with a “slave” classification. 

Completion of these tasks resulted in network motifs that address the validity of 

the hypothesis. 

 

Bcl2 Simulations: 

Two Bcl2 networks were simulated. The first includes four agents {Bcl2, 

Bcl2L10 (BclX), Bax, Cytochrome C (CytC)}. These four agents may represent 

multiple states (activation) and interaction. Four models were created that 

included each of these agents. The variations between the models were based 

on disagreements in the literature about the interaction of BclX with Bcl2. The 

use of diverse but similar models also provided a useful method to identify 

higher-level behaviors that were used to establish methods for analysis.  

 The first model if his network included no interaction between BclX and 

Bcl2 (Figure 9). The model included changes in the states of Bax, Bcl2 and CytC.  

Bax changed states from activated Bax to survival factor (SV), to represent 

inhibition of Bax’s apoptosis promotion properties by BclX (Hoffmann and 

Valencia 2004). Bcl2  changed states from activated Bcl2 to deactivated Bcl2. 

This represents the inhibition of Bcl2’s apoptosis inhibition properties by Bax 
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.CytC changed state from inactive to active CytC (AcytC), associated with the 

release of cytochrome C from pores in the mitochondria promoted by Bax. CytC 

also changed to SV to represent direct inhibition of the release of cytochrome C 

from the mitochondrial pores by BclX and Bcl2  . This network represents five 

separate pathways. The second model (Figure 10) includes each of the 

interactions represented in Figure 9 but adds one change state. Bcl2 changed to 

Bc2 homodimer (B2B2) to represent homodimeriation reported in the literature 

(Figure 10)(Zhang, Szustakowski et al. 2009). The third model included each of 

the interactions represented in the first model (Figure 9), but added two changed 

states (Figure 11). Bcl2 changed to Bcl2 bonded to BclX (B2BX). BclX changed 

to B2BX. Each of these interactions had been reported in the literature (Cheng, 

Wei et al. 2001; Jourdan, Reme et al. 2009). The fourth model combined each of 

the previous three to create a more complete interaction map (Figure 12). This 

model includes eight individual pathways with seven changed states. 
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Competitive BindingBcl-2 Bax
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Competitive Binding

Figure 9 – First model of the Bcl-2 network used in cellular automata simulation of proteins 

associated with apoptosis. 

Figure 10 – Second model of the Bcl-2 network used in cellular automata simulation of proteins 

associated with apoptosis. This model expanded on the second model by including the Bcl-2 

homodimer reported in co-immunoprecipitation studies. 
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Figure 11 – The third model: A different version of the second Bcl-2 model where the Bcl-2 

homodimer was replaced with a Bcl-2, Bcl-X heterodimer. 

Figure 12 – The third Bcl-2 model used in cellular automata simulation. This model combined the 

two versions of the second model where Bcl-2 can produce a homodimer, and a heterodimer with 

Bcl-X 
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 When simulated using CA the results of the first model showed 

convergence of the SV (representing survival) and AcytC (representing 

apoptosis) concentrations between the bonding probabilities of 0.5 to 0.6 of BclX 

interacting with Bax (inhibition of Bax). This result was used to identify other 

convergence points in the other three models. New convergence points only 

emerged in the third (Figure 11) and fourth (Figure 12) models. The new 

convergence points in model three occurred from the interaction between BclX 

and B2BX at probabilities 0.01 to 0.02 and 0.07 to 0.08. In the fourth model 

convergence points emerged at the interactions of BclX and CytC at probabilities 

of 0.72 to 0.7; the interaction between BclX and Bax at probabilities of 0.42 to 

0.4; and the interaction between BclX and B2BX at probabilities of 0.015 to 0.01. 

The resulting narrow ranges of existence of the survival state demonstrate the 

significant challenges for drug discovery and clinical treatment of lung cancer. 

 

 The Bcl2 family-related apoptotic pathway is highly redundant of pro-

survival and pro-apoptotic proteins, which provides a unique network for 

modeling and simulation. The second Bcl2 network analyzed here was designed 

to uncover the impact of this redundancy on the Bcl2 protein, which has limited 

spatial accessibility. The model included the pro-survival proteins Bcl2 and BclX 

(Bcl2L1) and the pro-apoptotic BID and BIM (Bcl2L11) (Xue, Chiu et al. 2003; 

Kerrien, Alam-Faruque et al. 2007; Jourdan, Reme et al. 2009; Renouf, Wood-

Baker et al. 2009). We modeled the limited Bcl2 accessibility by altering the 

dissociation constant from 1 to 0. Also included were non-Bcl2 proteins that were 

reported to bind to Bcl2 family proteins in tumor formation. All interactions 

included in the model had been reported in the IntAct database (Kerrien, Alam-

Faruque et al. 2007) to be related to cancer or apoptosis. The completed model 

included 11 proteins with a total of 14 interactions (Figure 13). Two of the 11 

proteins were isoforms of included proteins that were reported in different 

pathways from the wild-type. To simulate the model each protein was 

represented in a CA simulation by a single variegated cell. A variegated cell has 
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more than one rule of behavior for each of its sides. The CA engine determines 

whether a variegated cell can bind by evaluating the rule of the specific side of 

the square cell that is neighboring another cell. In the case where a protein has 

one binding side the variegated cell would have two rules, one binding and three 

non-binding. The single binding side would be able to bind other proteins and the 

three non-binding sides would not be able to bind with any other protein. The 

ability to bind was determined by normalized probabilities (the sum of each cell’s 

binding probabilities, describing interactions with other cells, cannot exceed one). 

Of 14 interactions, four had published dissociation constants that were used as 

breaking probabilities between two cells in the CA simulation. Where no 

disassociation constant was reported, a breaking probability of zero was entered. 

Each summation was run for approximately 10,000 iterations to reach a steady 

state, and repeated 50 times.  

 

Figure 13 – This expanded Bcl-2 network included interacting partners that were not known to be 

Bcl-2 family members, but were similar in structure and had been reported as interacting partners 

with known Bcl-2 family proteins. 
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The CA input files included, among others, the list of all pairwise interactions and 

their probabilities (Table 4). 

Table 4 – List of interacting partners include in the expanded Bcl-2 network (Figure 13) 

Bcl2  Bcl2 

Bcl2  BclX:iso 

Bcl2  NLRP1 

Bcl2  BIM 

Bcl2  PPP1CA 

Bcl2  BIM:iso 

Bcl2  BID 

BclX  BID 

BclX  NLRP1 

BclX  PPP1CA 

BclX  BIM 

BclX  HRK 

BclX:iso  SIVA1 

PPP1CA  BAD 

 

The model probabilities were normalized to a unit (Table 5). 

 

Table 5 – List of probabilities created for each pathway found in the expanded Bcl-2 network (Figure 

13) 

BIM:iso-Bcl2 + Bcl2-Bcl2 + BID-Bcl2 + BclX:iso-Bcl2 + NLRP1-Bcl2 + BIM-

Bcl2 + PPPICA-Bcl2  1 

Bcl2-BclX:iso + SIVA1-Bclx:iso  1 

BAD-PPP1CA + BclX-PPP1CA + Bcl2-PPP1CA  1 

HRK-BclX + BID-BclX + NLRP1-BclX + BIM-BclX + PPP1CA-BclX  1 

BID-Bcl2 + BID-BclX  1 

BIM-Bcl2 + BIM-BclX  1 

NLRP1-Bcl2 + NLRP1-BclX  1: 
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Bcl2 had a dissociation constant of one, which was included in the control 

simulation. Three other simulations were then run representing the absence of 

the redundant BIM path (see Figure 13), the loss of Bcl2’s ability to dissociate 

and the combination of the two. The terminal path including the BIM isoform was 

monitored to evaluate the result of the changes. The loss of Bcl2’s ability to 

dissociate from its binding partners and the loss of BIM resulted in a 20% 

reduction of the BIM isoform complex. This is believed to be the result of 

sequestered free Bcl2. 

One may conclude that the highly redundant Bcl2 protein family network 

provides an ideal model for studying the effects of damaged redundant network 

paths in cancer, yielding alternative therapeutic approaches. The early results of 

this simulation provided a link to the effects of a lost redundant path to the 

sequestering of free Bcl2. We predict that the effects of a lost path, as a result of 

carcinogenesis, could be overcome by altering the dissociation of Bcl2.  

 

Resulting Motifs 

 In addition to the analysis of the importance of concentration in the Bcl2 

family network previously described, two motifs were identified in the second 

Bcl2 network (Figure 14). More network motifs would exist if the Bcl2 network 

was analyzed in context of the larger apoptosis network, discussed in the next 

chapter. The first identified network motif was a three-node two-edge directed 

one (Figure 15), representing a basic signaling cascade. This motif occurred 40 

times with a ratio of 1.05 (ratio = (observed in network)/(mean occurrence in 

random networks)) with a p-value < 0.01.  
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Figure 14 – 3-Node, 2 Edge Linear Motif 

 

 

Figure 15 – 4-Node 4-Edge Biparallel Motif 

The second motif of four nodes and four edges occurred twice with a ratio of 2 

and p-value <0.01. Further analysis of these motifs and the three additional 

networks that were dependent on the rest of the apoptosis network are discussed 

in the next chapter. 
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Chapter 4: Differential Analysis 

 

Summary: 

Recently, new methods to develop de novo networks from patient data 

have been developed. To identify a differential network of cellular 

gene/protein agents and potential gene regulatory pathways specific for 

functional changes associated with apoptosis I compared these methods 

to earlier described database searching methods. Although these methods 

are useful in evaluating networks associated with well understood 

functions in small populations, they can produce overly specific networks. 

For this reason the motif analysis only included networks from the 

databases described earlier. 

  

Analysis of Microarray Data from Lung Cancer Patients 

mRNA microarray expression data from individuals diagnosed with 

Adenocarcima of the lung were obtained from the Oncomine database, the NCBI 

GEO database and EBI’s ArrayExpress database. Experiments that share 

platforms, methods and patient characteristics including mRNA from adjacent 

tissue were merged to provide a dataset of interaction data from at least 200 

patients with adenocarcinoma of the lung. 

The first steps of the Network Builder algorithm involves extracting random 

directional vectors for each gene in Gene Ontology (GO) lists (Ashburner, Ball et 

al. 2000; Bard 2003). As stated in the Introduction, correlation-based methods 

show the most promise while maintaining the complex systems properties of 

biological networks. Current tools that offer “de-novo” network creation only 

calculate a pair-wise correlation. The tool used in this analysis correlated groups 

of probes represented by vectors. Network Builder, the tool used in this study, 

integrates a unique 2-D clustering with maximization of non-linear correlations 

that maintains dynamic behavior when creating a de-novo network from 



36 
 

 

 
 

experimental data. Recent studies by Zhang et al. (Zhang, Ji et al. 2007) have 

described the strength of multi-gene correlation analysis compared to pair-wise. 

This tool expanded on Zhang’s work by moving beyond three gene interactions. 

This study utilized expression vectors representing 3 to 50 interactions, which are 

evaluated using a combined clustering and correlation algorithm.  The algorithm 

aligned each vector individually on a two-dimensional grid. Clusters were 

identified using GAP statistic. Each pair of two genes that presents more than 

one significant cluster was recorded as having a potential interaction. The 

algorithm then organized networks for the entire pool of 1000 genes. Sub-

networks were created based on first neighbors for each gene starting with the 

gene represented with the highest node degree (potential interactions). Random 

vectors were extracted from each partition and non-linear correlation coefficients 

(Rho) was calculated between groups of vectors from genes in a sub-network 

between lung tumor samples and adjacent normal tissue. This value represented 

a random base correlation. In contrast, partial regression uses a linear-based 

reduction method that cannot account for compounding dynamic behaviors 

commonly seen in networks.   

New vectors were extracted from each partition after the data was 

redistributed based on clinical features (i.e., stage of tumor, age, etc) that are 

believed to vary in the patient pool. Spearman Rank Correlation Coefficient (Rho) 

was derived for each sub-network with each directional clinical-based 

distribution. Spearman correlation produces a coefficient between -1 and 1, 

where as the distance from 0 (on a number line) increases, the statistical 

dependence between two vectors increases. Clinical distributions with the largest 

rho (exceeding random base correlation) derived from these groups of vectors 

was selected and used in the following analysis representing directional base 

correlation. Sub-networks were reduced gene by gene with new values for rho 

calculated and comparisons done between patients with varying clinical 

characteristics.   

When rho for each group of directional vectors reached statistical significance 

(using distance from 0 and within a small range), subnetworks were then 
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combined to produce an accurate interaction network representing chromatin 

associated pathways.  Ontology terms were the used to partition the merged 

network into a subnetwork of apoptosis pathways associated with 

adenocarcioma of the lung and chromatin. This network will then be tested 

against networks described earlier.  Each network will be studied to identify 

topological limitations, i.e., the network diameter, node and edge degree as 

reported (Milo, Shen-Orr et al. 2002; Dorogovtsev, Goltsev et al. 2003; Rives and 

Galitski 2003).  These values described the maximum number of potential 

interactions.  

Subnetworks were then searched in the resulting network. It was expected 

that subnetworks will match and rho values will be evaluated to see whether they 

indicate a new unpublished interaction.  Whenever the rho value was too small, 

the interaction was labeled as a false positive and removed from the sub network 

and a comparison was done.  After this optimization step was complete, ontology 

terms were added to each sub network to see if the sub network represents a 

functional group. The chromatin example below provides an example of this de-

novo network building approach. 

 

Figure 16 – Normalized expression values were plotted after being sorted (low to high) by different clinical 

features. Each color represents a different clinical feature use for sorting the expression values. 
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Chromatin (This work was done in collaboration with Dr. Vladimir Kunetsov 

from the Bioinformatics Institute of Singapore): 

 An initial search of the Gene Ontology DB produced a list of 134 genes 

associated with chromatin (Ashburner, Ball et al. 2000). This list included genes 

that are associated with chromatin accumulation, assembly and remodeling. 

Modeling and simulating the entire group of 134 genes, as described earlier, was 

difficult. An alternative analysis of expression profiles using non-linear correlation 

coefficients and a proprietary clustering algorithm was employed. Expression 

data of 71 patients with adenocarcinoma of the lung compared were to 16 

healthy samples (Rhodes, Kalyana-Sundaram et al. 2007). Expression data was 

captured using an Affymetrix u95a platform. Results of the analysis identified 

pack-years followed by TNM staging as providing the most predictable 

coefficients (Figure 16). This analysis also identified 14 genes as potential core 

genes (Figure 17 – Created by Dr. Danail Bonchev). 
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Figure 17 – This network was produced using Ingenuity Systems IPA network analysis tool. A list of 

proteins/genes was entered into the search tool and this network was produced. The list of 

proteins/genes was produced using the correlation analysis described in the text. 

 
Table 6 - Ontology of chromatin genes identified as potential biological markers using the analysis 

described in the text. These markers could be used to discriminate between diseased and healthy 

tissue. 

 

H2AFV Histone Construct 

SFRS3 Splicing Factor/RNA Process 

RB1 Transcription Regulator 

HistH3 Histone Construct 

CBX6 Transcription Regulator 

HOXA9 Transcription Regulator 
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Hist1H4C Histone Construct 

NXF1 Transporter 

U2AF1 Unknown 

SFRS1 Splicing Factor/RNA Process 

SNRP70 Splicing Regulator/RNA 

CASP11 Splicing Regulator/RNA 

PRPF4B Kinase 

SFRS8 Splicing Factor/RNA Process 

 

We then used additional mRNA expression data for individuals diagnosed 

with adenocarcinoma of the lung from Oncomine (Rhodes, Kalyana-Sundaram et 

al. 2007) and from Genome Expression Omnibus (GEO, 2007) (Barrett, Troup et 

al. 2007). These were two very diverse datasets based on different platforms and 

even patients of different ethnicity, selected as a test for the classification 

reproducibility. The Oncomine U95A platform of expression data (12,600 probes) 

involved a classification study of patients with lung malignancies (Bhattacharjee, 

Richards et al. 2001) including 62 adenoncarcinomas and 17 normal samples. 

The 62 adenocarcinomas were selected based on agreement between 

assessments of two independent pathologists. Samples where one report did not 

indicate pure adenocarcinoma were excluded, and the same was done with the 

data for patients with secondary metastasis of a different morphology. This 

produced a dataset of pure adenocarcinomas with no metastasis, tumor sizes of 

1 to 8 cm, and all stages. The Bhattacharjee et al. expression data 

(Bhattacharjee, Richards et al. 2001) were thus partitioned into five subsets, four 

of which containing 15 or 16 tumor samples each randomly selected from the 

pool of 62 samples, and one set of expression data with 17 normal samples. The 

GEO U133A platform (22,284 probes) contained expression data from 27 

adenocarcinoma patients with accompanying data from adjacent normal tissue 

(Su, Chang et al. 2007). Expression data was thus presented in two sets of 27 

samples each (normal and diseased ones). 
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Our novel strategy limited strongly the starting gene list by focusing on 

certain hypothesis as to which biological processes and molecular functions are 

of importance in carcinogenesis. One can thus identify proteins that are strongly 

affected in the different stages of lung adenocarcinoma. Recent studies on the 

mechanisms of lung cancer pay a considerable attention on the chromatin 

structure changes, and histone as the chief protein component of chromatin 

(Cameron, Bachman et al. 1999; Reisman, Sciarrotta et al. 2003; Sasaki, 

Moriyama et al. 2004; Gibbons 2005; Medina, Carretero et al. 2005). Proteins 

related to DNA modification, MAP Kinases activity, and transcription were also 

considered of importance. This choice enabled the compiling of two lists of 

proteins. The first one with 98 genes was based on Gene Ontology Database 

[GO] (Ashburner, Ball et al. 2000; Bard 2003) classifications provided by 

Affymetrix Inc. The second list with 43 genes was a merge of Panther (Thomas, 

Campbell et al. 2003) and David (Sherman, Huang da et al. 2007) ontology and 

GO terms, of the four categories described above. Thus, our search started with 

a combined list of 141 genes.  

For each of the two gene expression datasets (Su et al. data (U133A)(Su, 

Chang et al. 2007) GEO ID GSE7670; Bhattacharjee data (U95A)(Bhattacharjee, 

Richards et al. 2001),  provided by Oncomine (add reference) we first calculated 

the Spearman non-parametric correlation coefficients ρ between pairs of 

hybridization signals of all probesets of expressed genes presented on a 

microarray for all patients included (complete cohort, normal and diseased). 

Gene expression was defined as the normalized signal for each probeset ID 

associated with a gene, as provided by Affymetrix Corporation. The number of 

probeset IDs per gene ranged from one to eight. The results of the pair-wise 

analyses did not provide clear results, due to large groups of predicted 

interactions with the same correlation coefficients. In addition, the correlation 

values were significant but not highly correlated. This result agrees with the 

recent conclusions of Zhang et al. (Zhang, Ji et al. 2007) that pair-wise 

correlation could be “a poor predictor of any molecular interaction associated with 

signaling and control of cellular function”. Instead, Zhang used correlation 
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between triples of genes. In this study, we applied a more sophisticated 

correlation analysis which extends the correlation to larger groups of 3 to 100 

genes and includes a clustering step (Thomas 2008). We employed two-

dimensional clustering using the so-called gap statistic to define a cluster of 

probesets. No pre-filtering procedure was used for removing noise signals and 

outlier patients. A cluster is defined as a group of expression signals where the 

number of members is greater than one, and the expression values used for 

input are from two different probesets representing two different genes (for 

example, a cluster including expression signals for probeset A and probeset  B 

with a cohort of 20 samples would consist of 40 unpaired expression signals). 

The Gap statistics uses the output of traditional clustering algorithms but 

determines the difference between an internal dispersion of the variables within 

the predicted cluster and a null distribution. The distance between two 

nonnormalized expression signals was determined as Euclidean distance. The 

two dimensional aspect of our clustering approach refers to the bivariate plot 

graph in which the clustering is determined. The graph x coordinate stands for 

the values for all expression signals for probeset of gene A across all samples, 

while y is the same for a probeset of gene B across the same samples. So, if an 

individual sample is denoted by k, the point on the graph representing that 

sample is denoted as kxy and the number of such points equals the total number 

of samples. Distance is then determined between each kxy and kx’y’ and 

compared to the null distribution created by the Gap Statistics. If the sum of 

distances within the entire subset is less than that in the null distribution, the 

subset is reported as a cluster, as defined above. If the clustering of two 

expression signals (probes A and B) produced two or more clusters, then an 

interaction between the genes presented by the two expression signals from the 

probes was recorded as a predicted interaction. Since this clustering step was 

done exhaustively, each gene in the gene lists had several other genes identified 

as potential interactions. The Spearman correlation coefficient ρ was then 

determined for each list of potential interactions. All lists of each probeset 

represented the hybridization signal of transcripts on microarray were then 
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combined and the number of predicted interactions for each probesets was 

counted. The count was used as a predicted node degree in a network 

representation of highly correlating genes, the nodes and edges in which 

represent the genes and their interactions, only correlation coefficients identified 

as significant (p < 0.05) were used.   

Supervised optimization was performed using Spearman’s ρ to compare potential 

interaction lists resulting from clustering. Optimization was considered complete 

when ρ reaches statistical significance (p < 0.001). The optimization process 

included removing the probe with the lowest cluster number, and reevaluating 

correlation. This was repeated for each probeset represented in the potential 

interaction lists. When the correlation coefficient increased, the probeset was 

permanently removed, and vice versa, when the correlation coefficient decreased 

the probeset was returned to the potential interaction list. After completing the 

optimization, network maps were built. Each probeset ID was replaced by a gene 

symbol and when multiple probe IDs existed for a single gene correlation 

coefficients were compared. If correlation coefficients were the same, the 

duplicated probe ID was dropped. If the coefficients were not the same, a study 

of the hybridization was done in the form of a literature search and the less 

reliable probe ID was dropped. This last step was not necessary, due to the 

normalization using Bioconductor (www.bioconductor.org) and similar tools done 

prior to analysis (Zhang, Szustakowski et al. 2009). The count of genes in the 

optimized list represents the final node degree in the network. The analysis of the 

close neighborhood of this network makes possible the prediction of other 

potential markers among the genes that are closely connected to the preliminary 

selected candidate genes.  For all predicted interactions determined by the 

correlation analysis we performed a literature search and Pathways Studio® 

(Nikitin, Egorov et al. 2003) search for information on existing regulatory, binding 

and other interactions or other relationships. This final step was used to verify 

potential biological implications of the constructed networks. Each network was 

also analyzed to identify topological limitations, such as network diameter, node 
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and edge degree, centrality, etc. (Milo, Shen-Orr et al. 2002; Dorogovtsev, 

Goltsev et al. 2003; Rives and Galitski 2003). 

 

Resulting Motifs 

  As a result of the high level specificity of the chromatin analysis I 

determined a that the network resulting from patient data was likely to not have 

enough information to identify important controlling motifs. The network used 

during the analysis was from the reduced, high confidence, PSICQUIC network 

shown in Figure 6. To identify motifs I used the NetMatch Cytoscape Plugin 

produced by the Bader lab at the University of Toronto (Ferro, Giugno et al. 

2007). Five motifs were identified as possible candidates to address the 

hypothesis.    
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Figure 18 – 4-Node, 4-Edge 

Non-Symmetrical Non-Linear 

Motif 

 

Figure 19 – 4-Node, 4-Edge 

Symmetrical Non-Linear Bi-Fan 

Motif 

 

Figure 20 – 4-Node, 4-Edge Bi-

parallel Motif 

 

Figure 21 – 6-Node, 9-Edge Tri-parallel Motif 

 

Figure 22 – 5-Node, 6-Edge Tri-parallel Motif 

 

A selected subgraph is only important and is called “motif” if it occurs at a rate 

different from that in random networks. To test this I generated 1000 random 

networks with the same average node degree, diameter, number of nodes and 

number of edges to compare the frequency of occurrence. Table 8 contains the 

results of this analysis. 
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Table 7 – Results of the motif search using NetMatch plugin with Cytoscape against the apoptosis 

network. All the ratios are low when compared to the mean network counts from all 1000 random 

networks. 

 

Figure 18 19 20 21 22 

Standard 
Deviation 

4004.16 990.74 285.68 1369.7 33,890 

Mean from 
Random Net. 
 

38,217 8561 19,643 4689 36,935 

Count in Network 3954 5732 706 2628 39084 
Standard Error 400 99 9.03 144.37 3572.4 
z-stat -85.57 -28.55 -2096 -14.27 0.587 
p-value <0.01% <0.01% <0.01% <0.01% 27.8% 
Ratio 0.103 0.669 0.036 0.560 N/A 

 
 FANMOD (Wernicke and Rasche 2006) is another tool commonly used for 

the identification and analysis of motifs in networks. FANMOD has strict 

formatting requirements that limit ability of this tool to read biomolecular networks 

generated from database searches (described earlier). The FANMOD input file 

must include only integers, representing vertices, and have one edge per row. 

Additionally the software can only read windows encoded Unicode 8-bit text files, 

even when the program is installed on a Linux or Unix machine. Due to these 

limitations, I was only able to analyze the autism network described in Chapter 5. 

The methods used to convert the network to be analyzed in FANMOD and the 

results are described in that chapter.  
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Chapter 5: Autism Networks 

 

Summary: 

To identify whether the motifs found in apoptosis were limited to 

only networks that are well studies I created a network of interactions 

reported in Autism Spectrum Disorder (ASD). From this network we 

identified the same motifs as those found in apoptosis, including increased 

significance in the larger motif. Interestingly, in the apoptosis network we 

found motif counts significantly lower than those in random networks, 

while in Autism we found motifs in consistently higher abundance than 

found in random networks. 

   

Analysis of Protein Interaction Networks 

 To generate a protein interaction network associated with apoptosis, I 

used the PSICQUIC search tools built into Cytoscape. This tool was unable to 

identify any interactions associated with Autism. The PSICQUIC tool is designed 

to use an XML based standard that has a limited ontology. As a result the user 

can get a network from a meta-database search with better specificity than 

searching each database individually. This removes the redundancy and reduces 

the false hits. Unfortunately, this also removes the diversity of terms available. 

Since most interactions are associated with cancer, without a cancer related 

term, it is difficult to get a larger representative network from PSICQUIC. 

 NCBI provides an additional search tool built into Cytoscape (Sayers, 

Barrett et al.). This tool allows Cytoscape users to search with the Entrez utility 

across NCBI’s databases. By using this tool, I was able to generate a network of 

biomolecular interactions in Autism with 1621 nodes and 3997 edges (Figure 23). 
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Figure 23 - Autism network produced using the NCBI search tool. This was the only search target 

and tool that was able to produce a network using search terms associated with autism. 

 

 In addition to NetMatch, FANMOD was used to search for and analyze 

motifs in this Autism network. NCBI uses integers as identifiers in networks 

generated by the Entrez tool. FANMOD is sensitive to gaps (missing integers) in 

the set of integers representing nodes, and cannot accept integers larger than 

65,500. The Autism network has 1621 nodes with, integers ranging from 100 to 

37,547,124. To compress the range of integers, I factored the numbers on a log 

scale ranging from 4 to 4000. The result was a set of integers that fit into the 

range of FANMOD. The factoring included a rounding step were factoring did not 

produce an integer. This step did result in the loss of several nodes, which may 

have significant impact on the results. This was made clear by the statistics of 

the Apoptosis network reported by FANMOD (number of nodes = 65107, number 

of edges = 1888). The error in node count is a programming bug where 

FANMOD reports the highest integer as the node count for the network. The loss 
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of half the edges could be a combination of multiple records (edges) for the same 

interaction, and loss resulting from the factoring and rounding of the integers. 

 

Resulting Motifs 

 As described in the previous chapter, 1000 randomized autism networks 

were generated to determine how far the occurrence count of the motifs deviated 

from that of random networks using the NetMatch Cytoscape plugin. The autism 

network included all five motifs (figures 18 - 22) which deviated significantly from 

the average 1000 random networks (Table 9). 

Table 8 - Results of the motif search using NetMatch plugin with Cytoscape against the autism 

network. All the ratios are high when compared to the mean network counts from all 1000 random 

networks. 

 

Figure 18 19 20 21 22 

Standard 
Deviation 

 10,402 696.56  31.87  465.5  399.04  

Mean from 
Random Net. 
 

 15,510  4760  50.24  561  482.5 

Count in Network  25158  9836  272  2412  2412 
Standard Error  1040  73.42  1.01  46.6  39.9 
z-stat  9.27  69.12  220  39.75  48.35 
p-value  <0.01%  <0.01%  <0.01  <0.01  <0.01 
Ratio  1.62  2.07  5.41  4.30  5.00 

 

The results obtained from FANMOD (Table 9) did not include the same 

motifs found using the NetMatch plug-in (Table 8), although, the motifs that were 

found existed in the same high ratios as discovered using NetMatch. 
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Table 9 - Results of the motif search using FANMOD against the autism network. All the ratios are 

high when compared to the mean network counts from all 1000 random networks. 

 

Motif 

    

Standard 

Deviation 

6.38 e-6 2.67 e-6 2.36 e-4 4.43 e-5 

z-score 5.39 4.4594 4.06 3.54 

p-value 0.005 0.004 0.005 > 0.01 

Ratio 9.43 4.67 4.61 2.4 

 

 Of the two tools used to study motifs, NetMatch is likely more reliable 

because it uses the networks in the original formatting without any modification. 

FANMOD is a more robust tool, because it has the ability to exhaustively search 

for motifs of a defined size. Unfortunately, the limited input formats make it less 

reliable for biomolecular networks created using interaction databases, even 

when the resulting network uses integers as identifiers for nodes. Accounting for 

the qualities and limitations of each program, high ratios were exhibited in all 

motifs found in the Autism network. Since it was found using both programs, it is 

difficult to define it as an artifact, but it is more likely a descriptive characteristic of 

the known Autism network, and could be useful in understanding the depth of 

existing knowledge about signaling and regulation associated with Autism. Due 

to the uncertainty associated with the FANMOD results, the following chapter will 

only discuss the NetMatch results. Further analysis with FANMOD should be 

performed for additional validation, but only in combination with a more robust 

input file conversion tool. 
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Chapter 6: Discussion and Future Work 

 

Summary: 

 The data resulting from this study has provided some support for the 

hypothesis that a master slave arrangement shown in a motif represents a 

key functional group of the network. The results between apoptosis and 

autism were inconsistent, but within each disease type they were very 

consistent. This suggests the ratio of occurrence is sensitive to the 

network completeness and could be exploited as a measure for this 

completeness, in addition to providing an indication of the presence of 

functional groups, affected by disease. 

 

Discussion 

The purpose of these studies was to discover if there is an optimized sub-

network (motif) structure that could be used to identify functional groups.  

Optimization, in this context, can have at least two meanings.  If the result of the 

optimized network is to accelerate the flow of information, then the optimized 

sub-network should have a higher frequency in biological networks. If 

acceleration of information flow is a secondary result of the optimization, and the 

primary result is to control the expression of pathways connected to the motif, 

then the sub-network should have a lower frequency in biological networks. I 

expected the second meaning of optimization to include biomolecular signaling 

networks associated with control. Although the design of this study was heavily 

influenced by these definitions, they are not exhaustive and need further 

investigation prior to being considered theory. 

 This study was limited to the optimization associated with pathway control 

seen in the Apoptosis in Lung Cancer network and the Autism network. This is 

because these two networks had the highest confidence, while being significantly 
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diverse and of large enough size.  After normalization by use of the semantic 

analysis of the PSI-MI tags, the Apoptosis network had 3400 nodes representing 

proteins, genes, ligands and small molecules. This network also had 5857 edges. 

Compared to the original network of 5724 nodes and 13810 edges, there was a 

reduction of 41% by node and a 58% reduction by edge from the semantic 

optimization. This optimization likely influenced the occurrence of the sub-

networks by removing false positives.  In each of the four node networks, tested 

in the CA simulation of the Bcl2 family proteins, the occurrence in the apoptosis 

network was lower than the null hypothesis (mean occurrence in simulated 

random networks), the opposite occurred in the Autism network. The three 4-

node sub-networks are displayed in figures 18-21 (reproduced below). 
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Figure 24 – 4-Node, 4-Edge 

Non-Symmetrical Non-Linear 

Motif 

 

Figure 25 – 4-Node, 4-Edge 

Symmetrical Non-Linear Bi-Fan 

Motif 

 

Figure 26 – 4-Node, 4-Edge Bi-

parallel Motif 

 

Figure 27 – 6-Node, 9-Edge Tri-parallel Motif 

 

Figure 28 – 5-Node, 6-Edge Tri-parallel Motif 

 

The motif in Figure 18 occurred at a ratio of 0.10 (ratio = (observed in 

network)/(mean occurrence in random networks)) in the Apoptosis network, 

versus 1.62 in the Autism network. This pattern continues through the motif in 

Figure 20 where the apoptosis network had a ratio of 0.67, vs. 2.07 in the Autism 

network. It also occurs in the motif in Figure 19 where the apoptosis network had 
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a ratio of 0.04, compared to 5.41 in the Autism network. Additionally this 

continued in the 6-node, 9-edge motif in Figure 21. The motif in Figure 22 could 

not be compared, because it was not significant in the apoptosis network, but the 

pattern remained in the Autism one.  

The ratio of the motifs found in apoptosis (Table 7), were consistently low 

in apoptosis and consistently high in the autism network. The consistency of 

these results suggests there are fundamental differences in the apoptosis 

signaling and autism networks. Apoptosis has been studied in detail for decades, 

producing a wealth of interaction data available in the databases used in this 

study. Autism has only recently received attention and little of the pathogenicity 

of autism is understood. The apoptosis network needed to be normalized to 

remove the noise of repeat or irrelevant data that was produced by a basic 

search that yielded more proteins than could occur naturally. Autism required 

multiple search attempts revealing a single data-source of uncurated metadata. A 

possible reason for this inconsistency is the apoptosis signaling network is 

focused on one group of functions, those of cell death through apoptosis, and it is 

well understood and heavily studied.  The autism network is likely a mix of 

functional groups and is still very incomplete. In apoptosis, these motifs do 

represent regions of functional control and therefore occur at a lower ratio when 

compared to random networks. In Autism these motifs are over represented 

because Autism is associated with a mix of functional groups and the network is 

incomplete. Additionally, in autism these motifs are occurring at a higher ratio 

because their role in controlling signaling and pathway selection/function 

increases the likelihood they are observed during the onset of autism. 

Based on this result, the ratio of motifs could be used to identify whether a 

larger network represents more than one functional group, possibly as a measure 

of biomolecular network completeness. Although this is not evidence the 

hypothesis holds true, this study suggests the ratio of these motifs area a 

reporter for the presence or absence of functional groups in larger biomolecular 

networks. 
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Future work 

 In order to understand the entire role of each of these motifs that hint at 

function, a study of the expression of their associated genes and proteins needs 

to be done. This would require the creation of a software based tool that will 

extract expression data from a data-source, calculate the average across all 

related disease types and stages, and then compare the ratio of occurrence of 

the motif with the expression of each gene and protein represented in the 

network. Cytoscape’s NetMatch would be an excellent tool because it has the 

ability to report the identity of each motif, even with over-represented interactions 

(where more than one edge is present between two nodes). The result of this 

study would be a list of network motifs and genes/proteins that would increase 

the likelihood for the network to be complete, and whether it includes few or 

many functional groups. This would be a significant expansion of the use of 

network motifs in studying biomolecular networks and their control of cell function 

and disease. 
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design, performance, submission format options, data query and retrieval utilities. 

GEO is accessible at http://www.ncbi.nlm.nih.gov/geo/ 

 

Bhattacharjee, A., W. G. Richards, et al. (2001). "Classification of human lung 

carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses." 

Proc Natl Acad Sci U S A 98(24): 13790-5. 

 We have generated a molecular taxonomy of lung carcinoma, the leading cause of 

cancer death in the United States and worldwide. Using oligonucleotide 

microarrays, we analyzed mRNA expression levels corresponding to 12,600 

transcript sequences in 186 lung tumor samples, including 139 adenocarcinomas 

resected from the lung. Hierarchical and probabilistic clustering of expression 

data defined distinct subclasses of lung adenocarcinoma. Among these were 

tumors with high relative expression of neuroendocrine genes and of type II 

pneumocyte genes, respectively. Retrospective analysis revealed a less favorable 

outcome for the adenocarcinomas with neuroendocrine gene expression. The 

diagnostic potential of expression profiling is emphasized by its ability to 

http://www.ncbi.nlm.nih.gov/geo/


59 
 

 

 
 

discriminate primary lung adenocarcinomas from metastases of extra-pulmonary 

origin. These results suggest that integration of expression profile data with 

clinical parameters could aid in diagnosis of lung cancer patients. 

 

Bonchev, D., S. Thomas, et al. "Cellular automata modelling of biomolecular networks 

dynamics." SAR QSAR Environ Res 21(1): 77-102. 

 The modelling of biological systems dynamics is traditionally performed by 

ordinary differential equations (ODEs). When dealing with intracellular networks 

of genes, proteins and metabolites, however, this approach is hindered by network 

complexity and the lack of experimental kinetic parameters. This opened the field 

for other modelling techniques, such as cellular automata (CA) and agent-based 

modelling (ABM). This article reviews this emerging field of studies on network 

dynamics in molecular biology. The basics of the CA technique are discussed 

along with an extensive list of related software and websites. The application of 

CA to networks of biochemical reactions is exemplified in detail by the case 

studies of the mitogen-activated protein kinase (MAPK) signalling pathway, the 

FAS-ligand (FASL)-induced and Bcl-2-related apoptosis. The potential of the CA 

method to model basic pathways patterns, to identify ways to control pathway 

dynamics and to help in generating strategies to fight with cancer is demonstrated. 

The different line of CA applications presented includes the search for the best-

performing network motifs, an analysis of importance for effective intracellular 

signalling and pathway cross-talk. 

 

Cameron, E. E., K. E. Bachman, et al. (1999). "Synergy of demethylation and histone 

deacetylase inhibition in the re-expression of genes silenced in cancer." Nat Genet 21(1): 

103-7. 

 Densely methylated DNA associates with transcriptionally repressive chromatin 

characterized by the presence of underacetylated histones. Recently, these two 

epigenetic processes have been dynamically linked. The methyl-CpG-binding 

protein MeCP2 appears to reside in a complex with histone deacetylase activity. 

MeCP2 can mediate formation of transcriptionally repressive chromatin on 

methylated promoter templates in vitro, and this process can be reversed by 

trichostatin A (TSA), a specific inhibitor of histone deacetylase. Little is known, 

however, about the relative roles of methylation and histone deacetylase activity 

in the stable inhibition of transcription on densely methylated endogenous 

promoters, such as those for silenced alleles of imprinted genes, genes on the 

female inactive X chromosome and tumour-suppressor genes inactivated in 

cancer cells. We show here that the hypermethylated genes MLH1, TIMP3 

(TIMP3), CDKN2B (INK4B, p15) and CDKN2A (INK4, p16) cannot be 

transcriptionally reactivated with TSA alone in tumour cells in which we have 

shown that TSA alone can upregulate the expression of non-methylated genes. 

Following minimal demethylation and slight gene reactivation in the presence of 

low dose 5-aza-2'deoxycytidine (5Aza-dC), however, TSA treatment results in 

robust re-expression of each gene. TSA does not contribute to demethylation of 

the genes, and none of the treatments alter the chromatin structure associated with 

the hypermethylated promoters. Thus, although DNA methylation and histone 
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deacetylation appear to act as synergistic layers for the silencing of genes in 

cancer, dense CpG island methylation is dominant for the stable maintenance of a 

silent state at these loci. 

 

Ceol, A., A. Chatr Aryamontri, et al. "MINT, the molecular interaction database: 2009 

update." Nucleic Acids Res 38(Database issue): D532-9. 

 MINT (http://mint.bio.uniroma2.it/mint) is a public repository for molecular 

interactions reported in peer-reviewed journals. Since its last report, MINT has 

grown considerably in size and evolved in scope to meet the requirements of its 

users. The main changes include a more precise definition of the curation policy 

and the development of an enhanced and user-friendly interface to facilitate the 

analysis of the ever-growing interaction dataset. MINT has adopted the PSI-MI 

standards for the annotation and for the representation of molecular interactions 

and is a member of the IMEx consortium. 

 

Chautard, E., L. Ballut, et al. (2009). "MatrixDB, a database focused on extracellular 

protein-protein and protein-carbohydrate interactions." Bioinformatics 25(5): 690-1. 

 SUMMARY: MatrixDB (http://matrixdb.ibcp.fr) is a database reporting 

mammalian protein-protein and protein-carbohydrate interactions involving 

extracellular molecules. It takes into account the full interaction repertoire of the 

extracellular matrix involving full-length molecules, fragments and multimers. 

The current version of MatrixDB contains 1972 interactions corresponding to 

4412 experiments and involving 259 extracellular biomolecules. 

AVAILABILITY: MatrixDB is freely available at http://matrixdb.ibcp.fr 

 

Cheng, E. H.-Y. A., M. C. Wei, et al. (2001). "Bcl-2, Bcl-X Sequester BH3 Domain-Only 

Molecules Preventing BAX- and BAK Mediated Mitochondrial Apoptosis." Molecular 

Cell 8(3): 705-711. 

  

Croft, D., G. O'Kelly, et al. "Reactome: a database of reactions, pathways and biological 

processes." Nucleic Acids Res. 

 Reactome (http://www.reactome.org) is a collaboration among groups at the 

Ontario Institute for Cancer Research, Cold Spring Harbor Laboratory, New York 

University School of Medicine and The European Bioinformatics Institute, to 

develop an open source curated bioinformatics database of human pathways and 

reactions. Recently, we developed a new web site with improved tools for 

pathway browsing and data analysis. The Pathway Browser is an Systems Biology 

Graphical Notation (SBGN)-based visualization system that supports zooming, 

scrolling and event highlighting. It exploits PSIQUIC web services to overlay our 

curated pathways with molecular interaction data from the Reactome Functional 

Interaction Network and external interaction databases such as IntAct, BioGRID, 

ChEMBL, iRefIndex, MINT and STRING. Our Pathway and Expression Analysis 

tools enable ID mapping, pathway assignment and overrepresentation analysis of 

user-supplied data sets. To support pathway annotation and analysis in other 

species, we continue to make orthology-based inferences of pathways in non-

human species, applying Ensembl Compara to identify orthologs of curated 

http://mint.bio.uniroma2.it/mint
http://matrixdb.ibcp.fr/
http://matrixdb.ibcp.fr/
http://www.reactome.org/
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human proteins in each of 20 other species. The resulting inferred pathway sets 

can be browsed and analyzed with our Species Comparison tool. Collaborations 

are also underway to create manually curated data sets on the Reactome 

framework for chicken, Drosophila and rice. 

 

Dorogovtsev, S. N., A. V. Goltsev, et al. (2003). "Spectra of complex networks." Phys 

Rev E Stat Nonlin Soft Matter Phys 68(4 Pt 2): 046109. 

 We propose a general approach to the description of spectra of complex networks. 

For the spectra of networks with uncorrelated vertices (and a local treelike 

structure), exact equations are derived. These equations are generalized to the 

case of networks with correlations between neighboring vertices. The tail of the 

density of eigenvalues rho(lambda) at large /lambda/ is related to the behavior of 

the vertex degree distribution P(k) at large k. In particular, as P(k) approximately 

k(-gamma), rho(lambda) approximately /lambda/(1-2 gamma). We propose a 

simple approximation, which enables us to calculate spectra of various graphs 

analytically. We analyze spectra of various complex networks and discuss the role 

of vertices of low degree. We show that spectra of locally treelike random graphs 

may serve as a starting point in the analysis of spectral properties of real-world 

networks, e.g., of the Internet. 

 

Ferro, A., R. Giugno, et al. (2007). "NetMatch: a Cytoscape plugin for searching 

biological networks." Bioinformatics 23(7): 910-2. 

 NetMatch is a Cytoscape plugin which allows searching biological networks for 

subcomponents matching a given query. Queries may be approximate in the sense 

that certain parts of the subgraph-query may be left unspecified. To make the 

query creation process easy, a drawing tool is provided. Cytoscape is a 

bioinformatics software platform for the visualization and analysis of biological 

networks. AVAILABILITY: The full package, a tutorial and associated examples 

are available at the following web sites: 

http://alpha.dmi.unict.it/~ctnyu/netmatch.html, 

http://baderlab.org/Software/NetMatch. 

 

Gibbons, R. J. (2005). "Histone modifying and chromatin remodelling enzymes in cancer 

and dysplastic syndromes." Hum Mol Genet 14 Spec No 1: R85-92. 

 Inactivation of tumour suppressor genes is central to the development of cancer. 

Although this inactivation was once considered to be secondary to intragenic 

mutations, it is now clear that silencing of these genes often occurs by epigenetic 

means. Hypermethylation of CpG islands associated with the tumour suppressor 

genes was the first manifestation of this phenomenon to be described. It is 

apparent, however, that this is one of a host of chromatin modifications which 

characterize gene silencing. Although we know little about what determines 

which loci are affected, our understanding of the nature of the epigenetic marks 

and how they are established has blossomed. There is no compelling evidence that 

cancer ever develops by purely epigenetic means, but it is apparent that 

perturbations in the apparatus which establish the epigenome may contribute to 

the development of cancer. This review will focus on the role of two classes of 

http://alpha.dmi.unict.it/~ctnyu/netmatch.html
http://baderlab.org/Software/NetMatch
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chromatin remodelling enzymes, those that alter histones by the addition or 

removal of acetyl and methyl groups and those of the SWI/SNF family of proteins 

that change the topology of the nucleosome and its DNA strand via the hydrolysis 

of ATP, and we shall examine the consequence of mutations in, or mis-expression 

of, these factors. In some cases, mutations in these factors appear to play a direct 

role in cancer development. However, their general role as important 

intermediaries involved in regulating gene expression makes them attractive 

therapeutic targets. In exciting developments, it has been shown that inhibition of 

these factors leads to the reversal of tumour suppressor gene silencing and the 

inhibition of cancer cell growth. 

 

Goll, J., S. V. Rajagopala, et al. (2008). "MPIDB: the microbial protein interaction 

database." Bioinformatics 24(15): 1743-4. 

 SUMMARY: The microbial protein interaction database (MPIDB) aims to collect 

and provide all known physical microbial interactions. Currently, 22,530 

experimentally determined interactions among proteins of 191 bacterial 

species/strains can be browsed and downloaded. These microbial interactions 

have been manually curated from the literature or imported from other databases 

(IntAct, DIP, BIND, MINT) and are linked to 24,060 experimental evidences 

(PubMed ID, PSI-MI methods). In contrast to these databases, interactions in 

MPIDB are further supported by 8150 additional evidences based on interaction 

conservation, co-purification and 3D domain contacts (iPfam, 3did). 

AVAILABILITY: http://www.jcvi.org/mpidb/ 

 

Gregg, J. P., L. Lit, et al. (2008). "Gene expression changes in children with autism." 

Genomics 91(1): 22-9. 

  

Hoffmann, R. and A. Valencia (2004). "A gene network for navigating the literature." 

Nat Genet 36(7): 664. 

  

Hu, V. W., B. C. Frank, et al. (2006). "Gene expression profiling of lymphoblastoid cell 

lines from monozygotic twins discordant in severity of autism reveals differential 

regulation of neurologically relevant genes." BMC Genomics 7: 118. 

  

Insel, T. R. and T. Lehner (2007). "A new era in psychiatric genetics?" Biol Psychiatry 

61(9): 1017-8. 

  

Jourdan, M., T. Reme, et al. (2009). "Gene expression of anti- and pro-apoptotic proteins 

in malignant and normal plasma cells." Br J Haematol 145(1): 45-58. 

 The survival of malignant plasma cells is a key event in disease occurrence, 

progression and chemoresistance. Using DNA-microarrays, we analysed the 

expression of genes coding for 58 proteins linked with extrinsic and intrinsic 

apoptotic pathways, caspases and inhibitor of apoptosis proteins. We considered 

six memory B cells (MBC), seven plasmablasts (PPC), seven bone marrow 

plasma cells (BMPC) and purified myeloma cells (MMC) from 92 newly-

diagnosed patients. Forty out of the 58 probe sets enabled the separation of MBC, 

http://www.jcvi.org/mpidb/
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PPC and BMPC in three homogeneous clusters, characterized by an elevated 

expression of TNFRSF10A, TNFRSF10B, BCL2A1, CASP8, CASP9 and 

PMAIP1 genes for MBC, of FAS, FADD, AIFM1, BIRC5, CASP CASP2, 

CASP3 and CASP6 for PPC and of BCL2, MCL1, BID, BIRC3 and XIAP for 

BMPC. Thus, B cell differentiation was associated with change of expression of 

pro-apoptotic and anti-apoptotic genes. Regarding MMC, the major finding was 

TRAIL upregulation that might be counteracted by a high osteoprotegerin 

production by BM stromal cells and a decreased expression of FAS, APAF1 and 

BNIP3 compared to normal BMPC. Out of the 40 genes, CASP2 and BIRC5 

expression in MMC had adverse prognosis in two independent series of 

previously-untreated patients. 

 

Kaser, O., Lamire, D. (2007). Tag-Cloud Drawing: Algorithms for Cloud Visualization. 

Tagging and Metadata for Social Information Organization (WWW 2007). 

  

Kerrien, S., Y. Alam-Faruque, et al. (2007). "IntAct--open source resource for molecular 

interaction data." Nucleic Acids Res 35(Database issue): D561-5. 

 IntAct is an open source database and software suite for modeling, storing and 

analyzing molecular interaction data. The data available in the database originates 

entirely from published literature and is manually annotated by expert biologists 

to a high level of detail, including experimental methods, conditions and 

interacting domains. The database features over 126,000 binary interactions 

extracted from over 2100 scientific publications and makes extensive use of 

controlled vocabularies. The web site provides tools allowing users to search, 

visualize and download data from the repository. IntAct supports and encourages 

local installations as well as direct data submission and curation collaborations. 

IntAct source code and data are freely available from http://www.ebi.ac.uk/intact. 

 

Kier, L. B. (2008). "A review of recent studies relating ligand diffusion, general 

anesthesia, and sleep." AANA J 76(2): 109-12. 

 This review article presents 3 theories related to ligand diffusion, general 

anesthesia and sleep. The first theory describes the diffusion of molecules across a 

protein surface to a receptor. It is based on the effect of the amino acid side chains 

on the protein surface on the structure of bulk water nearby. This influence creates 

pathways, called chreodes, through the water near the protein surface, permitting 

a rapid diffusion of molecules to the receptors. A second theory involving the role 

of chreodes presents a mechanism of action of nonspecific anesthetic agents. 

These agents interrupt the diffusion of neurotransmitter molecules to their 

receptors, bringing on the anesthetic effects. Finally, building on the similarities 

of anesthesia and sleep, a theory is presented proposing that an external agent 

influences sleep in a way similar to that of the nonspecific anesthetic molecules. 

This external agent is proposed to be elemental nitrogen. Several observations are 

presented to support this mechanism. 

 

Kier, L. B., D. Bonchev, et al. (2005). "Modeling biochemical networks: a cellular-

automata approach." Chem Biodivers 2(2): 233-43. 
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 The potential of the cellular-automata (CA) method for modeling biological 

networks is demonstrated for the mitogen-activated protein kinase (MAPK) 

signaling cascade. The models derived reproduced the high signal amplification 

through the cascade and the deviation of the cascade enzymes from the Michaelis-

Menten kinetics, evidencing cooperativity effects. The patterns of pathway 

change upon varying substrate concentrations and enzyme efficiencies were 

identified and used to show the ways for controlling pathway processes. Guidance 

in the selection of enzyme inhibition targets with minimum side effects is one 

outcome of the study. 

 

Kier, L. B., P. G. Seybold, et al. (2010). Cellular Automata Modeling of Chemical 

Systems, Springer. 

  

Kuznetsov, V., S. Thomas, et al. (2008). "Data-driven Networking Reveals 5-Genes 

Signature for Early Detection of Lung Cancer." 2008 International Conference on 

BioMedical Engineering and Informatics 1: 413-417. 

  

Medina, P. P., J. Carretero, et al. (2005). "Transcriptional targets of the chromatin-

remodelling factor SMARCA4/BRG1 in lung cancer cells." Hum Mol Genet 14(7): 973-

82. 

 BRG1, also called SMARCA4, is the catalytic subunit of the SWI/SNF 

chromatin-remodelling complex and influences transcriptional regulation by 

disrupting histone-DNA contacts in an ATP-dependent manner. BRG1 and other 

members of the SWI/SNF complex become inactivated in tumours, implying a 

role in cancer development. To understand the contribution of BRG1 to lung 

tumourigenesis, we restored BRG1 in H1299 lung cancer cells and used cDNA 

microarray analysis to identify changes in gene expression. Forty-three transcripts 

became activated, whereas two were repressed. Chromatin immunoprecipitation 

of resulting candidate genes revealed that the CYP3A4 and ZNF185 promoters 

recruited BRG1 and that recruitment to the CYP3A4 promoter was specific to this 

gene and did not involve the CYP3A5 or CYP3A7 family members. Moreover, 

specifically BRG1 but not its homologue BRM was recruited to the CYP3A4 and 

ZNF185 promoters. To explore their potential relevance in lung tumours, levels of 

CYP3A4 and ZNF185 transcripts were evaluated in seven additional lung cancer 

cell lines. CYP3A4 was undetectable in any of the lung cancer cells tested, and 

only the CYP3A5 family member was present in the A549 and Calu-3 cells. In 

contrast, the amount of ZNF185 transcript clearly varied among lung cancer cell 

lines and severely reduced levels were observed in BRG1-deficient cells, except 

those of A427. We extended these observations to 27 lung primary tumours using 

real-time RT-PCR (TaqMan) and observed that four (15%) and 14 (52%) of them 

had BRG1 and ZNF185 downregulation, respectively, when compared with 

normal lung. No significant correlation between reduced levels of BRG1 and 

ZNF185 was observed, indicating that additional mechanisms to BRG1 

inactivation may contribute to the loss of ZNF185 expression in lung tumours. In 

conclusion, our results provide evidence that transcriptional activation of ZNF185 

and CYP3A4 is mediated by direct association of BRG1 with their promoters and 
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also indicate that a decreased level of ZNF185 is a common feature of lung 

tumours and may be of biological relevance in lung carcinogenesis. 

 

Milo, R., S. Shen-Orr, et al. (2002). "Network motifs: simple building blocks of complex 

networks." Science 298(5594): 824-7. 

 Complex networks are studied across many fields of science. To uncover their 

structural design principles, we defined "network motifs," patterns of 

interconnections occurring in complex networks at numbers that are significantly 

higher than those in randomized networks. We found such motifs in networks 

from biochemistry, neurobiology, ecology, and engineering. The motifs shared by 

ecological food webs were distinct from the motifs shared by the genetic networks 

of Escherichia coli and Saccharomyces cerevisiae or from those found in the 

World Wide Web. Similar motifs were found in networks that perform 

information processing, even though they describe elements as different as 

biomolecules within a cell and synaptic connections between neurons in 

Caenorhabditis elegans. Motifs may thus define universal classes of networks. 

This approach may uncover the basic building blocks of most networks. 

 

Montecchi-Palazzi, L., S. Kerrien, et al. (2009). "The PSI semantic validator: a 

framework to check MIAPE compliance of proteomics data." Proteomics 9(22): 5112-9. 

 The Human Proteome Organization's Proteomics Standards Initiative (PSI) 

promotes the development of exchange standards to improve data integration and 

interoperability. PSI specifies the suitable level of detail required when reporting 

a proteomics experiment (via the Minimum Information About a Proteomics 

Experiment), and provides extensible markup language (XML) exchange formats 

and dedicated controlled vocabularies (CVs) that must be combined to generate a 

standard compliant document. The framework presented here tackles the issue of 

checking that experimental data reported using a specific format, CVs and public 

bio-ontologies (e.g. Gene Ontology, NCBI taxonomy) are compliant with the 

Minimum Information About a Proteomics Experiment recommendations. The 

semantic validator not only checks the XML syntax but it also enforces rules 

regarding the use of an ontology class or CV terms by checking that the terms 

exist in the resource and that they are used in the correct location of a document. 

Moreover, this framework is extremely fast, even on sizable data files, and 

flexible, as it can be adapted to any standard by customizing the parameters it 

requires: an XML Schema Definition, one or more CVs or ontologies, and a 

mapping file describing in a formal way how the semantic resources and the 

format are interrelated. As such, the validator provides a general solution to the 

common problem in data exchange: how to validate the correct usage of a data 

standard beyond simple XML Schema Definition validation. The framework 

source code and its various applications can be found at 

http://psidev.info/validator. 

 

Nelson, R. T., S. Avraham, et al. "Applications and methods utilizing the Simple 

Semantic Web Architecture and Protocol (SSWAP) for bioinformatics resource discovery 

and disparate data and service integration." BioData Min 3(1): 3. 
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 ABSTRACT: BACKGROUND: Scientific data integration and computational 

service discovery are challenges for the bioinformatic community. This process is 

made more difficult by the separate and independent construction of biological 

databases, which makes the exchange of data between information resources 

difficult and labor intensive. A recently described semantic web protocol, the 

Simple Semantic Web Architecture and Protocol (SSWAP; pronounced "swap") 

offers the ability to describe data and services in a semantically meaningful way. 

We report how three major information resources (Gramene, SoyBase and the 

Legume Information System [LIS]) used SSWAP to semantically describe 

selected data and web services. METHODS: We selected high-priority 

Quantitative Trait Locus (QTL), genomic mapping, trait, phenotypic, and 

sequence data and associated services such as BLAST for publication, data 

retrieval, and service invocation via semantic web services. Data and services 

were mapped to concepts and categories as implemented in legacy and de novo 

community ontologies. We used SSWAP to express these offerings in OWL Web 

Ontology Language (OWL), Resource Description Framework (RDF) and 

eXtensible Markup Language (XML) documents, which are appropriate for their 

semantic discovery and retrieval. We implemented SSWAP services to respond to 

web queries and return data. These services are registered with the SSWAP 

Discovery Server and are available for semantic discovery at http://sswap.info. 

RESULTS: A total of ten services delivering QTL information from Gramene 

were created. From SoyBase, we created six services delivering information about 

soybean QTLs, and seven services delivering genetic locus information. For LIS 

we constructed three services, two of which allow the retrieval of DNA and RNA 

FASTA sequences with the third service providing nucleic acid sequence 

comparison capability (BLAST). CONCLUSIONS: The need for semantic 

integration technologies has preceded available solutions. We report the 

feasibility of mapping high priority data from local, independent, idiosyncratic 

data schemas to common shared concepts as implemented in web-accessible 

ontologies. These mappings are then amenable for use in semantic web services. 

Our implementation of approximately two dozen services means that biological 

data at three large information resources (Gramene, SoyBase, and LIS) is 

available for programmatic access, semantic searching, and enhanced interaction 

between the separate missions of these resources. 

 

Neumann, J. V. and A. W. Burks (1966). Theory of Self-Reproducing Automata. Urbana 

and London, University of Illinois Press. 

  

Nikitin, A., S. Egorov, et al. (2003). "Pathway studio--the analysis and navigation of 

molecular networks." Bioinformatics 19(16): 2155-7. 

 SUMMARY: PathwayAssist is a software application developed for navigation 

and analysis of biological pathways, gene regulation networks and protein 

interaction maps. It comes with the built-in natural language processing module 

MedScan and the comprehensive database describing more than 100 000 events 

of regulation, interaction and modification between proteins, cell processes and 

small molecules. AVAILABILITY: PathwayAssist is available for commercial 

http://sswap.info/
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licensing from Ariadne Genomics, Inc. The light version with limited 

functionality will be available for free for academic users at 

www.ariadnegenomics.com/downloads/. 

 

Nishimura, Y., C. L. Martin, et al. (2007). "Genome-wide expression profiling of 

lymphoblastoid cell lines distinguishes different forms of autism and reveals shared 

pathways." Hum Mol Genet 16(14): 1682-98. 

  

Overington, J. (2009). "ChEMBL. An interview with John Overington, team leader, 

chemogenomics at the European Bioinformatics Institute Outstation of the European 

Molecular Biology Laboratory (EMBL-EBI). Interview by Wendy A. Warr." J Comput 

Aided Mol Des 23(4): 195-8. 

  

Purcell, A. E., O. H. Jeon, et al. (2001). "Postmortem brain abnormalities of the 

glutamate neurotransmitter system in autism." Neurology 57(9): 1618-28. 

  

Razick, S., G. Magklaras, et al. (2008). "iRefIndex: a consolidated protein interaction 

database with provenance." BMC Bioinformatics 9: 405. 

 BACKGROUND: Interaction data for a given protein may be spread across 

multiple databases. We set out to create a unifying index that would facilitate 

searching for these data and that would group together redundant interaction data 

while recording the methods used to perform this grouping. RESULTS: We 

present a method to generate a key for a protein interaction record and a key for 

each participant protein. These keys may be generated by anyone using only the 

primary sequence of the proteins, their taxonomy identifiers and the Secure Hash 

Algorithm. Two interaction records will have identical keys if they refer to the 

same set of identical protein sequences and taxonomy identifiers. We define 

records with identical keys as a redundant group. Our method required that we 

map protein database references found in interaction records to current protein 

sequence records. Operations performed during this mapping are described by a 

mapping score that may provide valuable feedback to source interaction databases 

on problematic references that are malformed, deprecated, ambiguous or unfound. 

Keys for protein participants allow for retrieval of interaction information 

independent of the protein references used in the original records. 

CONCLUSION: We have applied our method to protein interaction records from 

BIND, BioGrid, DIP, HPRD, IntAct, MINT, MPact, MPPI and OPHID. The 

resulting interaction reference index is provided in PSI-MITAB 2.5 format at 

http://irefindex.uio.no. This index may form the basis of alternative redundant 

groupings based on gene identifiers or near sequence identity groupings. 

 

Reisman, D. N., J. Sciarrotta, et al. (2003). "Loss of BRG1/BRM in human lung cancer 

cell lines and primary lung cancers: correlation with poor prognosis." Cancer Res 63(3): 

560-6. 

 A role for the SWI/SNF complex in tumorigenesis based on its requirement for 

retinoblastoma induced growth arrest and p53-mediated transcription and the 

appearance of tumors in SWI/SNF-deficient mice. In addition, Western blot data 

http://www.ariadnegenomics.com/downloads/
http://irefindex.uio.no/


68 
 

 

 
 

have shown that the SWI/SNF ATPase subunits cell, BRG1 and BRM 

(BRG1/BRM), are lost in approximately 30% of human non-small lung cancer 

cell lines. To determine whether loss of expression of these proteins occurs in 

primary tumors, we examined their expression in 41 primary lung 

adenocarcinomas and 19 primary lung squamous carcinomas by 

immunohistochemistry. These analyses showed that 10% of tumors show a 

concomitant loss of BRG1 and BRM expression. Moreover, patients with 

BRG1/BRM-negative carcinomas, independent of stage, have a statistically 

significant decrease in survival compared with patients with BRG1/BRM. This 

report provides supportive evidence that BRG1 and BRM act as tumor suppressor 

proteins and implicates a role for their loss in the development of non-small cell 

lung cancers. 

 

Renouf, D. J., R. Wood-Baker, et al. (2009). "BCL-2 expression is prognostic for 

improved survival in non-small cell lung cancer." J Thorac Oncol 4(4): 486-91. 

 OBJECTIVE: We used a large patient population to identify 

immunohistochemical biomarkers to enable improved prognostication in patients 

with non-small cell lung carcinoma (NSCLC). METHODS: A tissue microarray 

was constructed using duplicate 0.6 mm cores of formalin-fixed paraffin-

embedded tissue blocks from 609 patients with NSCLC. Immunohistochemical 

was used to detect 11 biomarkers including epidermal growth factor receptor, 

Her2, Her3, p53, p63, bcl-1, bcl-2, Thyroid transcription factor, carcinoembryonic 

antigen, chromogranin, and synaptophysin. A clinical database was generated 

prospectively at the time of tissue collection. Survival outcomes were obtained 

from a Provincial Cancer Registry database. Univariate and multivariate analyses 

were performed to look for a relationship between biomarker expression, smoking 

history, and survival. RESULTS: Survival data for 535 cases were available. As 

of June 2005, 429 patients (80%) had died; of these 286 (54%) died of lung 

cancer, 117 (22%) died of other known causes, and for 26 (5%) the cause of death 

was not available. Univariate analysis revealed that bcl-2 (p = 0.007) was the only 

biomarker prognostic for improved overall survival (OS). bcl-2 (p = 0.021) and 

p63 (p = 0.025) were both found to be prognostic for improved disease-specific 

survival (DSS). Multivariate analysis (using age and biomarker expression) 

revealed that bcl-2 expression is prognostic for improved OS (p = 0.005) and DSS 

(p = 0.021). CONCLUSIONS: Our results suggest that bcl-2 expression is 

prognostic for improved OS and DSS in NSCLC. Testing for bcl-2 expression in a 

prospective study will help to determine its clinical relevance in prognostication. 

 

Rhodes, D. R., S. Kalyana-Sundaram, et al. (2007). "Oncomine 3.0: genes, pathways, and 

networks in a collection of 18,000 cancer gene expression profiles." Neoplasia 9(2): 166-

80. 

 DNA microarrays have been widely applied to cancer transcriptome analysis; 

however, the majority of such data are not easily accessible or comparable. 

Furthermore, several important analytic approaches have been applied to 

microarray analysis; however, their application is often limited. To overcome 

these limitations, we have developed Oncomine, a bioinformatics initiative aimed 



69 
 

 

 
 

at collecting, standardizing, analyzing, and delivering cancer transcriptome data to 

the biomedical research community. Our analysis has identified the genes, 

pathways, and networks deregulated across 18,000 cancer gene expression 

microarrays, spanning the majority of cancer types and subtypes. Here, we 

provide an update on the initiative, describe the database and analysis modules, 

and highlight several notable observations. Results from this comprehensive 

analysis are available at http://www.oncomine.org. 

 

Rives, A. W. and T. Galitski (2003). "Modular organization of cellular networks." Proc 

Natl Acad Sci U S A 100(3): 1128-33. 

  

Sasaki, H., S. Moriyama, et al. (2004). "Histone deacetylase 1 mRNA expression in lung 

cancer." Lung Cancer 46(2): 171-8. 

 Histone deacetylases (HDACs) play a crucial role in tumorigenesis, however, the 

expression status of HDACs in lung cancer tissues has not been reported. We 

have investigated that HIDAC 1 mRNA levels and other clinico-pathological 

data, including MTA 1 mRNA expression in lung cancer. The study included 102 

lung cancer cases. The HDAC1 mRNA levels were quantified by real time 

reverse transcription-polymerase chain reaction (RT-PCR) using LightCycler 

(Roche Molecular Biochemicals, Mannheim, Germany). The HDAC1/GAPDH 

mRNA levels were not significantly different in tumor tissues from lung cancer 

(30.654 +/- 33.047) and adjacent non-malignant lung tissues (18.953 +/- 56.176 , 

P = 0.1827). No significant difference in HDAC1/GAPDH mRNA levels was 

found among age, gender, and lymph node metastasis. The HDAC1/GAPDH 

mRNA levels were significantly higher in stage III or IV lung cancer (50.929 +/- 

120.433) than in stage I lung cancer (11.430 +/- 25.611, P = 0.0472). 

HDAC1/GAPDH mRNA levels were significantly higher in T3 or T4 lung 

carcinoma (54.326 +/- 127.018) than in T1 or T2 lung cancers (14.790 +/- 48.670, 

P = 0.1601). HDAC1/GAPDH mRNA levels were correlated with 

MTA1/GAPDH mRNA levels (y = 0.0106x + 2.5827 , P = 0.0352 ). 

HDAC1/GAPDH mRNA levels were also correlated with HDAC1 protein (P = 

0.0484) expression by immunohistochemistry. Using the LightCycler RT-PCR 

assay, the HDAC1 gene expression might correlate with progression of lung 

cancers. However, further studies are needed to confirm the impact of HDAC1 for 

the molecular target of the lung cancer. 

 

Sayers, E. W., T. Barrett, et al. "Database resources of the National Center for 

Biotechnology Information." Nucleic Acids Res 38(Database issue): D5-16. 

 In addition to maintaining the GenBank nucleic acid sequence database, the 

National Center for Biotechnology Information (NCBI) provides analysis and 

retrieval resources for the data in GenBank and other biological data made 

available through the NCBI web site. NCBI resources include Entrez, the Entrez 

Programming Utilities, MyNCBI, PubMed, PubMed Central, Entrez Gene, the 

NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, 

OrfFinder, Spidey, Splign, Reference Sequence, UniGene, HomoloGene, 

ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related 
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tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence 

Read Archive, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction 

Database, Gene Expression Omnibus, Entrez Probe, GENSAT, Online Mendelian 

Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular 

Modeling Database, the Conserved Domain Database, the Conserved Domain 

Architecture Retrieval Tool, Biosystems, Peptidome, Protein Clusters and the 

PubChem suite of small molecule databases. Augmenting many of the web 

applications are custom implementations of the BLAST program optimized to 

search specialized data sets. All these resources can be accessed through the 

NCBI home page at www.ncbi.nlm.nih.gov. 

 

Scardoni, G., M. Petterlini, et al. (2009). "Analyzing biological network parameters with 

CentiScaPe." Bioinformatics 25(21): 2857-9. 

 SUMMARY: The increasing availability of large network datasets along with the 

progresses in experimental high-throughput technologies have prompted the need 

for tools allowing easy integration of experimental data with data derived form 

network computational analysis. In order to enrich experimental data with 

network topological parameters, we have developed the Cytoscape plug-in 

CentiScaPe. The plug-in computes several network centrality parameters and 

allows the user to analyze existing relationships between experimental data 

provided by the users and node centrality values computed by the plug-in. 

CentiScaPe allows identifying network nodes that are relevant from both 

experimental and topological viewpoints. CentiScaPe also provides a Boolean 

logic-based tool that allows easy characterization of nodes whose topological 

relevance depends on more than one centrality. Finally, different graphic outputs 

and the included description of biological significance for each computed 

centrality facilitate the analysis by the end users not expert in graph theory, thus 

allowing easy node categorization and experimental prioritization. 

AVAILABILITY: CentiScaPe can be downloaded via the Cytoscape web site: 

http://chianti.ucsd.edu/cyto_web/plugins/index.php. Tutorial, centrality 

descriptions and example data are available at: http://profs.sci.univr.it/ 

approximately scardoni/centiscape/centiscapepage.php CONTACT: 

giovanni.scardoni@gmail.com SUPPLEMENTARY INFORMATION: 

Supplementary data are available at Bioinformatics online. 

 

Sherman, B. T., W. Huang da, et al. (2007). "DAVID Knowledgebase: a gene-centered 

database integrating heterogeneous gene annotation resources to facilitate high-

throughput gene functional analysis." BMC Bioinformatics 8: 426. 

 BACKGROUND: Due to the complex and distributed nature of biological 

research, our current biological knowledge is spread over many redundant 

annotation databases maintained by many independent groups. Analysts usually 

need to visit many of these bioinformatics databases in order to integrate 

comprehensive annotation information for their genes, which becomes one of the 

bottlenecks, particularly for the analytic task associated with a large gene list. 

Thus, a highly centralized and ready-to-use gene-annotation knowledgebase is in 

demand for high throughput gene functional analysis. DESCRIPTION: The 

http://www.ncbi.nlm.nih.gov/
http://chianti.ucsd.edu/cyto_web/plugins/index.php
http://profs.sci.univr.it/
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DAVID Knowledgebase is built around the DAVID Gene Concept, a single-

linkage method to agglomerate tens of millions of gene/protein identifiers from a 

variety of public genomic resources into DAVID gene clusters. The grouping of 

such identifiers improves the cross-reference capability, particularly across NCBI 

and UniProt systems, enabling more than 40 publicly available functional 

annotation sources to be comprehensively integrated and centralized by the 

DAVID gene clusters. The simple, pair-wise, text format files which make up the 

DAVID Knowledgebase are freely downloadable for various data analysis uses. 

In addition, a well organized web interface allows users to query different types of 

heterogeneous annotations in a high-throughput manner. CONCLUSION: The 

DAVID Knowledgebase is designed to facilitate high throughput gene functional 

analysis. For a given gene list, it not only provides the quick accessibility to a 

wide range of heterogeneous annotation data in a centralized location, but also 

enriches the level of biological information for an individual gene. Moreover, the 

entire DAVID Knowledgebase is freely downloadable or searchable at 

http://david.abcc.ncifcrf.gov/knowledgebase/. 

 

Sprinzak, E., S. J. Cokus, et al. (2009). "Detecting coordinated regulation of multi-protein 

complexes using logic analysis of gene expression." BMC Syst Biol 3: 115. 

 BACKGROUND: Many of the functional units in cells are multi-protein 

complexes such as RNA polymerase, the ribosome, and the proteasome. For such 

units to work together, one might expect a high level of regulation to enable co-

appearance or repression of sets of complexes at the required time. However, this 

type of coordinated regulation between whole complexes is difficult to detect by 

existing methods for analyzing mRNA co-expression. We propose a new 

methodology that is able to detect such higher order relationships. RESULTS: We 

detect coordinated regulation of multiple protein complexes using logic analysis 

of gene expression data. Specifically, we identify gene triplets composed of genes 

whose expression profiles are found to be related by various types of logic 

functions. In order to focus on complexes, we associate the members of a gene 

triplet with the distinct protein complexes to which they belong. In this way, we 

identify complexes related by specific kinds of regulatory relationships. For 

example, we may find that the transcription of complex C is increased only if the 

transcription of both complex A AND complex B is repressed. We identify 

hundreds of examples of coordinated regulation among complexes under various 

stress conditions. Many of these examples involve the ribosome. Some of our 

examples have been previously identified in the literature, while others are novel. 

One notable example is the relationship between the transcription of the ribosome, 

RNA polymerase and mannosyltransferase II, which is involved in N-linked 

glycan processing in the Golgi. CONCLUSIONS: The analysis proposed here 

focuses on relationships among triplets of genes that are not evident when genes 

are examined in a pairwise fashion as in typical clustering methods. By grouping 

gene triplets, we are able to decipher coordinated regulation among sets of three 

complexes. Moreover, using all triplets that involve coordinated regulation with 

the ribosome, we derive a large network involving this essential cellular complex. 

In this network we find that all multi-protein complexes that belong to the same 

http://david.abcc.ncifcrf.gov/knowledgebase/
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functional class are regulated in the same direction as a group (either induced or 

repressed). 

 

Stark, C., B. J. Breitkreutz, et al. "The BioGRID Interaction Database: 2011 update." 

Nucleic Acids Res. 

 The Biological General Repository for Interaction Datasets (BioGRID) is a public 

database that archives and disseminates genetic and protein interaction data from 

model organisms and humans (http://www.thebiogrid.org). BioGRID currently 

holds 347 966 interactions (170 162 genetic, 177 804 protein) curated from both 

high-throughput data sets and individual focused studies, as derived from over 23 

000 publications in the primary literature. Complete coverage of the entire 

literature is maintained for budding yeast (Saccharomyces cerevisiae), fission 

yeast (Schizosaccharomyces pombe) and thale cress (Arabidopsis thaliana), and 

efforts to expand curation across multiple metazoan species are underway. The 

BioGRID houses 48 831 human protein interactions that have been curated from 

10 247 publications. Current curation drives are focused on particular areas of 

biology to enable insights into conserved networks and pathways that are relevant 

to human health. The BioGRID 3.0 web interface contains new search and display 

features that enable rapid queries across multiple data types and sources. An 

automated Interaction Management System (IMS) is used to prioritize, coordinate 

and track curation across international sites and projects. BioGRID provides 

interaction data to several model organism databases, resources such as Entrez-

Gene and other interaction meta-databases. The entire BioGRID 3.0 data 

collection may be downloaded in multiple file formats, including PSI MI XML. 

Source code for BioGRID 3.0 is freely available without any restrictions. 
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Strogatz, S. H. (2001). "Exploring complex networks." Nature 410(6825): 268-76. 

  

Su, L. J., C. W. Chang, et al. (2007). "Selection of DDX5 as a novel internal control for 

Q-RT-PCR from microarray data using a block bootstrap re-sampling scheme." BMC 

Genomics 8: 140. 

  

Thomas, P. D., M. J. Campbell, et al. (2003). "PANTHER: a library of protein families 

and subfamilies indexed by function." Genome Res 13(9): 2129-41. 

 In the genomic era, one of the fundamental goals is to characterize the function of 

proteins on a large scale. We describe a method, PANTHER, for relating protein 

sequence relationships to function relationships in a robust and accurate way. 

PANTHER is composed of two main components: the PANTHER library 

(PANTHER/LIB) and the PANTHER index (PANTHER/X). PANTHER/LIB is a 

collection of "books," each representing a protein family as a multiple sequence 

alignment, a Hidden Markov Model (HMM), and a family tree. Functional 

divergence within the family is represented by dividing the tree into subtrees 

based on shared function, and by subtree HMMs. PANTHER/X is an abbreviated 

ontology for summarizing and navigating molecular functions and biological 
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processes associated with the families and subfamilies. We apply PANTHER to 

three areas of active research. First, we report the size and sequence diversity of 

the families and subfamilies, characterizing the relationship between sequence 

divergence and functional divergence across a wide range of protein families. 

Second, we use the PANTHER/X ontology to give a high-level representation of 

gene function across the human and mouse genomes. Third, we use the family 

HMMs to rank missense single nucleotide polymorphisms (SNPs), on a database-

wide scale, according to their likelihood of affecting protein function. 

 

Thomas, S. W. (2008). "Network Builder 1.-." USPTO Application. 

  

Walker, S. J., J. Segal, et al. (2006). "Cultured lymphocytes from autistic children and 

non-autistic siblings up-regulate heat shock protein RNA in response to thimerosal 

challenge." Neurotoxicology 27(5): 685-92. 

  

Wall, D. P., F. J. Esteban, et al. (2009). "Comparative analysis of neurological disorders 

focuses genome-wide search for autism genes." Genomics 93(2): 120-9. 

 The behaviors of autism overlap with a diverse array of other neurological 

disorders, suggesting common molecular mechanisms. We conducted a large 

comparative analysis of the network of genes linked to autism with those of 432 

other neurological diseases to circumscribe a multi-disorder subcomponent of 

autism. We leveraged the biological process and interaction properties of these 

multi-disorder autism genes to overcome the across-the-board multiple hypothesis 

corrections that a purely data-driven approach requires. Using prior knowledge of 

biological process, we identified 154 genes not previously linked to autism of 

which 42% were significantly differentially expressed in autistic individuals. 

Then, using prior knowledge from interaction networks of disorders related to 

autism, we uncovered 334 new genes that interact with published autism genes, of 

which 87% were significantly differentially regulated in autistic individuals. Our 

analysis provided a novel picture of autism from the perspective of related 

neurological disorders and suggested a model by which prior knowledge of 

interaction networks can inform and focus genome-scale studies of complex 

neurological disorders. 

 

Wernicke, S. and F. Rasche (2006). "FANMOD: a tool for fast network motif detection." 

Bioinformatics 22(9): 1152-3. 

 SUMMARY: Motifs are small connected subnetworks that a network displays in 

significantly higher frequencies than would be expected for a random network. 

They have recently gathered much attention as a concept to uncover structural 

design principles of complex biological networks. FANMOD is a tool for fast 

network motif detection; it relies on recently developed algorithms to improve the 

efficiency of network motif detection by some orders of magnitude over existing 

tools. This facilitates the detection of larger motifs in bigger networks than 

previously possible. Additional benefits of FANMOD are the ability to analyze 

colored networks, a graphical user interface and the ability to export results to a 
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variety of machine- and human-readable file formats including comma-separated 

values and HTML. 

 

Wolfram, S. (1983). "Statistical mechanics of cellular automata." Reviews of Modern 

Physics 55(3): 601-644. 

  

Wolfram, S. (2002). A New Kind of Science, Wolfram Media, Inc. 

  

Xue, L. Y., S. M. Chiu, et al. (2003). "Photodamage to multiple Bcl-xL isoforms by 

photodynamic therapy with the phthalocyanine photosensitizer Pc 4." Oncogene 22(58): 

9197-204. 

 The antiapoptotic oncoprotein Bcl-2 is now a recognized phototarget of 

photodynamic therapy (PDT) with the phthalocyanine Pc 4 and with other 

mitochondrion-targeting photosensitizers. Photodamage, observed on Western 

blots as the loss of the native 26-kDa Bcl-2 protein, is PDT dose dependent and 

occurs in multiple cell lines, in the cold, and immediately upon photoirradiation. 

In our initial study, no photochemical damage was observed to Bcl-xL, in spite of 

its similarity in size, sequence, location and function to Bcl-2. The original study 

used a commercial anti-Bcl-xS/L antibody. We have revisited this issue by 

examining Western blots developed using one of three epitope-specific anti-Bcl-

xL antibodies from commercial sources, a polyclonal antibody generated to the 

entire protein, as well as the antibody used previously. All five Bcl-xL antibodies 

recognized bacterially expressed Bcl-xL, but not Bcl-2, whereas an anti-Bcl-2 

antibody recognized Bcl-2 and not Bcl-xL. All five Bcl-xL antibodies recognized 

at least one protein migrating at approximately 30 kDa; two of the antibodies 

recognized an additional band, migrating at approximately 33 or approximately 

24 kDa. We now observe Pc 4-PDT-induced photodamage to all Bcl-xL-related 

proteins, except the 33-kDa species, in several human cancer cell lines. The 

results indicate that, in addition to the expected quantitative differences that may 

reflect exposure of individual epitopes, the antibodies also detect proteins of 

different apparent molecular weights that may be distinct isoforms or post-

translationally modified forms of Bcl-xL. No evidence for PDT-induced 

phosphorylation or degradation was observed. Bcl-xL localized to mitochondria 

was considerably more sensitive to photodamage than was Bcl-xL in the cytosol, 

indicating that as previously found for Bcl-2, Bcl-xL must be membrane localized 

to be photosensitive. 
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Methods Mol Biol 573: 259-84. 
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 Gene expression profiling provides unprecedented opportunities to study patterns 

of gene expression regulation, for example, in diseases or developmental 

processes. Bioinformatics analysis plays an important part of processing the 

information embedded in large-scale expression profiling studies and for laying 

the foundation for biological interpretation. Over the past years, numerous tools 

have emerged for microarray data analysis. One of the most popular platforms is 

Bioconductor, an open source and open development software project for the 

analysis and comprehension of genomic data, based on the R programming 

language. In this chapter, we use Bioconductor analysis packages on a heart 

development dataset to demonstrate the workflow of microarray data analysis 

from annotation, normalization, expression index calculation, and diagnostic plots 

to pathway analysis, leading to a meaningful visualization and interpretation of 

the data. 
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Cardiovascular Genomics, Methods in Molecular Biology 573: 259-284. 
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