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Heparin, a glycosaminoglycan (GAG), is a complex biopolymer of varying chain 

length and consisting of uronic acid and glucosamine residues, which are sulfated at 

various positions. The interaction of heparin with antithrombin is the basis for 

anticoagulation therapy. Heparin accelerates the antithrombin mediated inhibition of factor 

Xa and thrombin by a conformational activation mechansism and bridging mechanism, 

respectively. The sequence specific pentasaccharide DEFGH in full length heparin is the 

most important fragment for high affinity and activation of antithrombin, without which 

the heparin is incapable of binding to antithrombin.  Although heparin is a commonly used 
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anticoagulant, it suffers from serious side effects including bleeding complications, 

heparin-induced thrombocytopenia, and intra- and inter-patient dose response variability.  

Desai and co-workers have shown that it is possible to replace the GAG skeleton 

by small, non-saccharide sulfated molecules as antithrombin activators. However, the 

designed molecules were found to be weak activators of antithrombin due to their binding 

to the extended heparin-binding site (EHBS), instead of the pentasaccharide-binding site 

(PBS), of antithrombin.  

To design better non-saccharide antithrombin activators, a virtual screening-based 

approach was employed. Combinatorial virtual screening of 24576 molecules based on 

tetrahydroisoquinoline core scaffold resulted in 92 hits that were predicted to bind 

preferentially in the PBS of activated antithrombin with good affinity. The work resulted in 

a predicted pharmacophore consisting of a 5,6-disulfated bicyclic tetrahydroisoquinoline 

and a 2′,5′-disulfated unicyclic phenyl ring connected by a 4- to 5-carbon linker.  The work 

has led to several hypotheses, which are being tested in the laboratory through synthesis 

and biochemical evaluation. 

To understand the mechanism of heparin binding to thrombin in greater detail, 

structural biology and molecular modeling approaches were used. More specifically, the 

nature of the heparin binding to thrombin was studied with a special focus on 

understanding the specificity of recognition. Comparative analysis was performed with 

heparin–antithrombin interaction to assess similarities and differences between the two 

heparin binding systems. In antithrombin, three important amino acids are involved in 

heparin pentasaccharide binding, while in thrombin, at least seven basic amino acids are 
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predicted to be involved. For biological systems, one would expect greater specificity with 

more interacting points. However, the heparin–thrombin system interestingly displays a 

lack of specificity. The molecular basis for this lack of specificity is not clear.  

A study of antithrombin and thrombin crystal structures with regard to surface 

exposure, flexibility, and geometry of basic amino acids present in the respective heparin 

binding site provides the basis for the specificity of recognition (or lack thereof) in the two 

systems. Interestingly, analysis of thrombin exosite-II showed that Arg101, Arg165 and 

Arg233 are spatially conserved and form a local asymmetric center. Using in-silico 

docking techniques, selected tetrasaccharide sequences were found to specifically 

recognize this triad of amino acids indicating the possibility of specific recognition of 

thrombin. This hypothesis led to the design of a putative lead sequence that is 50% smaller 

in size and contains 62.5% fewer charges in comparison to the literature reported known 

exosite II sequence. The design of novel putative ‘specific’ exosite II sequence challenges 

the idea that the thrombin–heparin interaction is completely non-specific and gives rise to 

novel opportunities of designing specific thrombin exosite-II ligands. 
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CHAPTER 1  

INTRODUCTION 
 

 

Drug design is the process of finding drugs for a particular disease or condition by 

design, unlike the traditional trial-and-error method or serendipitous discovery. Design, by 

definition, implies that there is a strategy involved to confront a problem. If design 

involves rational thoughts and reasoning, then such a process is termed rational drug 

design. Rational drug design that utilizes the known three-dimensional geometry of a 

biological target is known as structure-based drug design (SBDD).1 In contrast, drug 

design directed only by the known geometry of a potent ligand is referred to as ligand-

based drug design (LBDD).1,2  

The fundamental principle that forms the basis for structure-based design is 

structural and chemical complementarity between the target and its ligand. The three-

dimensional geometry of a target is used either to design completely new ligands or to 

choose existing ligands by screening collections of compounds. Identifying completely 

new chemical classes of molecules that are chemically distinct from previously 

characterized leads for a biological target is termed de novo drug design.1 However, 

modifying a ligand to improve its physiochemical, pharmacological and drug-like 

properties is known as lead optimization.  
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Development of a drug that is potent, efficient, and orally bioavailable, and has 

minimal or no side effect is a lengthy process involving major investments including an 

enormous amount of time (usually about 10 to 12 years) and billions of dollars. Any effort 

or tools that reduce the time and money spent in drug discovery can significantly influence 

the way drugs are discovered, and is considered an utmost need for pharmaceutical 

interests and for the benefit of suffering patients.  

1.1.  Computer-Aided Drug Design (CADD)1  

The important role of CADD in the drug discovery process is to accelerate the 

identification of new lead compounds and lead optimization for a biological target/process 

(Figure 1). The pipeline of drug discovery from idea to market consists of the following 

general basic steps: a) disease selection, b) target selection, c) lead compound 

identification, d) lead optimization and e) preclinical and clinical studies. 

In practice, these steps are repeated and revisited at several stages based on the 

results in each step. The compounds for testing can be obtained from natural sources such 

as plants, animals, microorganisms and by chemical synthesis. Not all compounds become 

lead compounds with optimal properties that can go on to become a drug candidate, and 

many fail owing to the absence of activity, poor pharmacokinetic disposition, unacceptable 

toxicity, insufficient efficiency, or even complexity of synthesis.  

Extensive genome decoding of various organisms, including man, proteomic 

investigations, discoveries of molecular mechanisms of many diseases, and advances in 

protein chemistry have led to a dramatic increase in the number of new potential targets. 
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The advancement in these areas of science and the results they produce could be exploited 

to find new lead compounds by employing computer-based theoretical and experimental 

approaches. 

 

 
Figure 1. Pathways of computer-aided drug design (simplified). LBDD: Ligand-Based 
Drug Design, SBDD: Structure-Based Drug Design, QSAR: Quantitative Structure-
Activity Relationship. Adapted from Veselovsky, A. V.; Ivanov, A. S. Strategy of 
computer-aided drug design. Current Drug Targets – Infectious Disorders 2003, 3, 33-40. 
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1.2. Hardware and Software Requirements  

Modeling of the interactions of macromolecules with ligands requires various 

methods of calculations and structural visualization. Such studies often require 

multiprocessor computer systems under UNIX management.  Two widely used 

commercial software packages for CADD are SYBYL (http://www.tripos.com) and Insight 

II/Discovery Studio (http://www.accelrys/insight). These software packages have many 

modules that are designed to facilitate various aspects of the drug design process. Many 

other freeware and shareware molecular modeling programs are also available for 

molecular modeling purposes. It is crucial to have access to databases with structures of 

macromolecules and small compounds. The structures of proteins are assembled in Protein 

Data Bank (PDB; http://www.rcsb.org/pdb) as PDB files from which protein coordinates 

can be downloaded. Small molecules are available in the Cambridge Structural Database 

(CSD; http://www.ccdc.cam.ac.uk/prods/csd/csd.html). Primary sequence data is provided 

by the National Center for Biotechnology Information (NCBI; 

http://www.ncbi.nlm.nih.gov), and the European Molecular Biology Laboratory (EMBL; 

http://www.ebi.ac.uk/embl/) and the Swiss Institute of Bioinformatics 

(http://www.expasy.org). Many other databases of low-molecular weight compounds are 

also available, but databases with commercially available compounds are preferable for 

practice, because these compounds can be quickly acquired for experimental testing 

(ZINC; http://zinc.docking.org). 

 



   

5 
 

1.3. Ligand-Based Drug Design 

Ligand-based drug design is applied when the three-dimensional structure of the 

macromolecular target is unknown. These methods are based on analysis of sets of ligands 

with known biological activity. They include the design of pharmacophore models,2 

analysis of quantitative structure-activity relationships (“classic” QSAR)3 and its relative 

3D-QSAR (which takes into account spatial structure of compounds),4 quantitative 

structure-property relationships (QSPR),5 among others. Methods of LBDD can be used 

for lead compound discovery and lead optimization of previously known ligands. 

Pharmacophore models consist of a set of points in space with the specific 

physiochemical properties and corresponding distances between them that define the 

elements necessary for the binding of a given group of ligands with a target. 

Pharmacophore elements include positively and negatively charged atoms, cyclic groups, 

aromatic rings, and hydrogen bond donor or acceptor atoms. Such a model is designed by 

alignment of a set of known ligands to reveal commonly-shared features of different 

molecules in one molecular space area.  

1.3.1. Classic QSAR  

Quantitative structure-activity relationships are mathematical relationships linking 

the chemical structure and pharmacological activity in a quantitative manner for a series of 

compounds. It is generally accepted that Crum-Brown and Fraser were the first to link 

physiological action θ and “chemical constitution” C using the expression shown below.6 



   

6 
 

ߠ ൌ  ݂ሺܥሻ  Eq. (1) 

Meyer and Overton correlated biological activity with oil/water partition 

coefficients of a series of narcotic substances, which added credence to the above 

equation.7,8 One of the most widely utilized, successful empirical approaches using 

descriptors is Linear Free Energy Relationships (LFER) as embodied in the early work of 

Burkhard, the equations of Louis Hammett and the contributions of Corwin Hansch.9-12 

Corwin Hansch considered drug action to be a result of two independent processes: 

i) Transport of the drug from the site of application to the site of action and ii) Non-

covalent interactions of the drug with its binding site receptor. Since neither very polar nor 

very lipophilic compounds have a good chance to permeate several lipid and aqueous 

phases, he formulated a nonlinear lipophilicity relationship for the transport. Later, 

lipophilicity terms and electronic parameters, molar refractivity and steric terms were 

combined in a linear free energy related model to describe the ligand-receptor interaction.  

From the inception of QSAR, various descriptors have been developed. The 

following are important categories of descriptors that have been combined to generate the 

linear and nonlinear equations that are common to QSAR. 

Electronic Descriptors: Hammett’s electronic descriptor σ is described by the following 

equation:  

σ ൌ log KX KHൗ     Eq. (2) 
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KX and KH represent the ionization constants in water at 25 °C of substituted and 

unsubstituted benzoic acids, respectively. Sigma (σ) is defined as a substituent constant 

such that positive values of σ represent electron-withdrawing substituents and negative 

values of σ pertain to electron-releasing substituents.  It was subsequently modified as: 

ρσ ൌ logKX KHൗ   Eq. (3) 

The proportionality constant rho (ρ) is defined as a reaction constant and is specific 

for each reaction under its unique constraints. Thus, ρ is a measure of the susceptibility of a 

given reaction to the electronic effects of substituents. Numerous other Hammett-based 

electronic parameters are available. 

Hydrophobicity: Hydrophobicity may be defined as the tendency of organic molecules to 

shy away from water and partition into a less polar phase, which constitutes their own 

bulk.13 The classical model of hydrophobic interactions was delineated by Kauzman to 

assess van der Waals attractions between the nonpolar parts of two molecules immersed in 

water.14 The "squeezing out" of water molecules in the vicinity of the mutually bound 

apolar surfaces provides the driving force for hydrophobic interactions. Thus, the gain in 

entropy is primarily governed by the repulsion of hydrophobic solutes from solvent water 

and the limited but critical capacity of water to maintain its network of hydrogen bonds.15 

A hydrophobe immersed in water decreases the entropy of the water by forcing the water 

molecules to form a ‘clathrate’ cage structure around the hydrophobic portion. The 

decrease in entropy is thermodynamically unfavorable. 
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Steric Descriptors: Steric descriptors represent the bulkiness of molecules. The first steric 

effect in physical organic chemistry to be numerically defined was Taft's ES parameter.16 It 

was defined as the ratio of the log of acidic hydrolysis of aliphatic esters of the type 

RCOOR' and CH3COOR'. 

௦ܧ ൌ log ݇ோ ݇ுൗ   Eq. (4) 

Other often-utilized steric descriptors in SAR studies include Charton's steric 

parameter,17,18 Hancock's steric parameter,19 molar refractivity,20 Verloop's STERIMOL 

parameters21 and Hopfinger's molecular shape analysis.22 

Hydrogen Bonding Descriptors: The importance of hydrogen bonding, a fundamental 

chemical property in biological systems, is highlighted by its critical role in defining the 

structure of biomacromolecules like proteins and nucleic acids. Hydrogen bonding ability 

is classified into hydrogen bond donor and acceptor capacities. The importance of 

hydrogen bonding is unequivocally recognized in ligand-receptor interactions. Most often, 

the hydrogen bonding capacity of a molecule is encoded as the number of hydrogen bond 

donors, acceptors or donatable hydrogens. 

Dipole Moments: Dipole moments, μ, have been successfully used to correlate biological 

activity where whole-molecule parameters are critical. A large number of group dipole 

moments for aromatic and aliphatic substituents have been assessed by Lien et al.23,24 

Quantum Chemical Indices: Use of quantum chemical descriptors is constantly 

increasing because of the developments in high-speed computing, as well as the accuracy 
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and precision of computed values.25 Direct derivation of electronic descriptors can be 

obtained from the molecular wave function. The most common approach utilized for 

solution of the electronic Schrödinger equation is the Hartree-Fock self consistent field 

(SCF) method.26 Thus, each electron is assumed to move in the average field of all the 

other electrons. Two different approaches are used to solve the molecular Schrödinger 

equations: ab initio and semi-empirical. 

ab initio calculations include all electrons and all one- and two-electron integrals. 

Computational time is proportional to a high exponential of the number of electrons in the 

molecule (N4 or N5). Thus ab initio calculations are limited by the types of atoms and size 

of molecules.27  

In semi-empirical methods, only valence electrons are explicitly included; some 

integrals are neglected and others are approximated.28 CNDO (neglect of diatomic and 

single atom atomic orbital overlap), MNDO, AM1 and PM3 (neglect of diatomic overlap 

only) are commonly used to methods calculate molecular descriptors such as atomic 

charges (qX), molecular orbital energies (EHOMO, ELUMO, ELUMO–EHOMO), 

superdelocalizabilities (s), molecular polarizability (α), dipole moments (μ) and energies 

(ET). For a detailed description of all parameters, see reference 25. 

Topological Indices: In general, topology refers to the way in which atoms are connected 

to each other in a molecule thus representing the shape of the molecule. The best-known 

topological parameters are the molecular connectivity indices which are strictly based on 

molecular structure. 
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1.3.2. 3D-QSAR 

In 3D-QSAR, the 3D structure of the compounds is considered instead of only 2D 

structure. 3D-QSAR has some advantages over classical 2D-QSAR. For example, more 

heterogeneous sets of compounds can be included than in classic QSAR. Molecular fields 

are calculated instead of substituent constants, and contour maps can be prepared to show 

the effect of certain properties in specific regions. CoMFA (Comparative Molecular Field 

Analysis)4 and CoMSIA (Comparative Molecular Similarity Index Analysis)3 are well-

known examples of 3D-QSAR. 

The ligand-based drug design methodologies like classic QSAR and 3D-QSAR 

have been used for its predictive power more often than design purposes, in part due to the 

difficulties involved in translating the descriptor information into meaningful structural 

interpretation. In recent years, SBDD has been employed more extensively than LBDD 

since the former provides detailed and easily-interpretable information about the target of 

interest. However, LBDD can be employed to model ADME-Tox (Absorption, 

Distribution, Metabolism, Excretion and Toxicity) properties.  

1.4. Molecular Docking and Scoring 

The docking process can be defined as the search for the correct binding geometry 

of the ligand (binding mode or pose) in a target binding site. In general, the docking 

process consists of two interrelated components namely; identification of the binding mode 

and the prediction of binding affinity.29  
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The first part of the docking process is the sampling of the ligand (and sometimes 

the receptor) conformational space and placement of the ligand into the receptor binding 

site. The second part is strictly a ranking process of the different docked solutions (poses) 

using the scoring function, which in turn may be correlated to binding affinity.   

The docking process involves the translation of theoretical model of the enzyme 

inhibition or ligand recognition into a computational model. For example, for an enzyme E 

and inhibitor I, docking aims at predicting the correct structure of the complex [E+I] = [EI] 

under equilibrium conditions. 

ሾEሿୟ୯ ൅ ሾIሿୟ୯ ՞ ሾEIሿୟ୯ Eq. (5)

KA ൌ  KIିଵ ൌ ሾEIሿሾEሿሾIሿ
 Eq. (6)

ܩ∆ ൌ  െܴ݈ܶ݊ܭ஺ Eq. (7)

Calculation of the free energy of binding (ΔG) is related to binding affinity KA by 

equations 6 and 7. Although prediction of the correct binding geometry of the [E+I] 

complex does not require information about KA, prediction of biological activity requires 

this information. Therefore, docking process must consider the following important 

factors: steric, electrostatic, hydrogen bonding, inhibitor strain (if flexible) and enzyme 

strain. In addition, when considering the equilibrium shown in Equation 5, the following 

factors are also important: desolvation, rotational entropy and translational entropy. 
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1.4.1. Molecular Docking Algorithms 

 Protein-ligand docking is a geometric search process. The output from the docking 

algorithm includes a list of protein-ligand complexes rank-ordered by a given scoring 

function.30 Several docking algorithms have been developed that place rigid or flexible 

ligands in mostly rigid-but recently also somewhat flexible protein binding sites (e.g., 

DOCK,31-34 MOE-Dock,35AutoDock,36 FlexX,37-39 Hammerhead,40 GOLD,41 FLOG,42 

Glide,43 PRO_LEADS44). Some algorithms allow partial protein flexibility. Docking 

algorithms are complemented by scoring functions that are designed to identify the correct 

binding mode. Various functions have been developed to measure the protein-ligand 

binding affinity in the docking algorithms. Since many of the functions are not strictly 

related to binding free energies, functions designed to rank different protein-ligand 

complexes are referred to as scoring functions.45-48 

A. Rigid Docking 

In rigid docking, the docking problem is simplified by neglecting the 

conformational degrees of freedom of the ligand molecule. The algorithms based on this 

approximation can be applied to docking of small or rigid molecules, molecule fragments 

or conformational ensembles of molecules. 

a. Clique Search-Based Approaches 

The docking of two rigid molecules can be implied as a problem of matching 

characteristic features of the molecules in space.49 A distance compatibility graph is used 
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to search for matching features. The algorithm for rigid-body docking in the DOCK 

program is based on the idea of searching for distance-compatible matches. Since its first 

introduction in 1982, the DOCK software has been extended in several directions. 

Furthermore, several scoring functions are now applied in combination with the DOCK 

algorithm.50-54 Algorithms based on clique-search based approaches also include LUDI,54,55 

CLIX56 and ADAM57 but differ in the features used for matching and the way in which 

they are represented. 

b. Geometric Hashing30,58 

Hashing is a computer science technique which allows fast access to data. The 

geometric hashing algorithm has two phases: the preprocessing phase, in which the 

geometric hash table is constructed from a single ligand or a set of ligands to be docked 

and the features are stored. In the recognition phase, the protein features are used to vote 

for hash entries of the ligand. A vote means that there is a protein feature that matches a 

ligand feature. Geometric hashing is a time-efficient method. Pose clustering is another 

approach used in molecular docking, which is primarily based on pattern recognition but 

also uses the hashing scheme to match features.59,60 

B. Flexible Ligand Docking 

Rigid docking is very limited in that the conformation of the bound ligand must be 

known before the docking process begins in order to obtain accurate results. Since most 

drug-like molecules have at least a few rotatable bonds or even flexible ring systems, it is 
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important to incorporate ligand flexibility into any generally applicable docking algorithm. 

Algorithms that treat ligand flexibility can be classified into essentially three categories: a) 

systematic methods (incremental construction, conformational search, databases); b) 

random or stochastic methods (Monte Carlo, genetic algorithms, tabu search) and c) 

simulation methods (molecular dynamics, energy minimization). 

I) Systematic methods 

a. Conformational Search 

In principle, every conformer of a set of flexible ligands could be evaluated with 

rigid-body docking algorithms. However, as the size of the conformational ensemble 

increases computing time also increases exponentially. Thus a balance between computing 

time and the desire to cover all of conformational space is required. The Flexibase and 

FLOG docking algorithms are based on conformation ensembles and use libraries of pre-

generated conformations.61-63 

b. Fragmentation 

Fragmentation is one of the most popular approaches for handling ligand 

flexibility. The ligand is divided into smaller fragments which can be treated as 

conformationally rigid or by a small conformational ensemble. There are two ways of 

handling fragments in the active site, namely “place-and-join” and “incremental 

construction”.  
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In place-and-join strategy64-67 all (or a subset of) fragments are placed in the 

receptor site independently and reconnected in favorable orientations until they constitute a 

complete ligand.  

Incremental construction is the preferred fragmental molecular docking approach, 

in which a fragment is first placed in the receptor site and then the remaining fragments are 

added to the orientations of the first one. The first incremental construction based docking 

algorithm was developed by Leach and Kuntz68 for the DOCK program. FlexX is a fully-

automated incremental construction algorithm-based molecular docking approach 

developed for virtual screening.69-72 Glide43 and Hammerhead40 are two other approaches 

that are based on incremental construction.  

II)  Random or Stochastic Methods 

a. Genetic Algorithms 

 The genetic algorithm73 is a general purpose optimization method that adapts the 

principles of biological competition and population dynamics. Application of the genetic 

algorithm in molecular docking includes a linear representation of a ligand and receptor 

conformation called chromosomes and a fitness function to decide which individuals 

survive and produce the offspring. The chromosomes that correspond to the best 

intermediate solutions are subjected to crossover and mutation operations analogous to 

gene recombination and mutation to produce the next generation of ligand/receptor 

conformations.  
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For docking applications, the genetic algorithm solution is an ensemble of possible 

ligand conformations. Jones et al. developed one of the first genetic algorithms for 

molecular docking and their ideas are implemented in the GOLD docking program.74,75  

b. Monte Carlo Algorithms 

In Monte Carlo (MC) simulation, the local movements of the atoms are performed 

randomly. The two major components of the MC algorithm are the description of the 

degrees of freedom and the energy evaluation. The degrees of freedom should be described 

such that high-energy states are avoided. The energy evaluation is the most time-

consuming part of the process and must be made as efficient as possible. Often energy 

potentials are precalculated on a grid to speed up this step. QXP, ICM, and PRODOCK are 

examples for MC-based docking algorithms.76-78 

c. Tabu Search 

 Tabu search starts with an initial random structure and new structures are created 

by random moves. During the optimization iterations, a list (the tabu list) is maintained 

containing the best and most recently visited configurations. Moves resulting in 

configurations close to one in the tabu list are rejected except if they are better than the 

best-scoring one. This technique improves the sampling properties by avoiding revisitation 

of previously sampled configurations. Tabu search is the underlying method of docking in 

PRO_LEADS.79 
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III) Simulation methods 

 Simulation approaches begin their calculation with a starting conformation and 

move locally to conformation with lower energy instead of trying to list the population of a 

discrete low-energy subspace of the problem. Simulated annealing and molecular 

dynamics are two important simulation techniques for solving the docking problem. 

a. Simulated Annealing80-83 

The simulation process starts with an initial configuration A of a ligand in an active 

site with energy E(A) or score value. This initial configuration is scored. Then, it generates 

a new configuration B with energy E(B) and also scored. If a new solution scores better 

than the previous one, it is immediately accepted. These steps are repeated until the desired 

number of configurations is obtained. The AutoDock program for protein-ligand docking 

developed by Goodsell et al. is based on the simulated annealing technique.80 

b. Molecular Dynamics 

Molecular Dynamics simulations can in principle be used to solve molecular 

docking problems.84-89 However, the limitation with this methodology is that it is quite 

time consuming. It follows a path from a starting orientation to low-energy configurations. 

In addition, several simulations with different starting orientations must be performed to 

get a statistically significant model. Though this method is not very popular for virtual 

screening, it is a valuable method for analyzing small sets of ligands.  
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1.4.2. Molecular Docking: Scoring Functions 

 Scoring functions in molecular docking process have a twofold function: to direct 

the docking and to predict the binding affinity of the final poses. The evaluation and 

ranking of predicted ligand conformations (pose) is a vital part of the structure-based 

virtual screening.  

Binding free energy is a collective term of many factors and can be written as: 

௕௜௡ௗ°ܩ∆ ൌ ௦௢௟௩ܩ∆
° ௖௢௠௣௟௘௫ െ ௦௢௟௩ܩ∆

° ௣௥௢௧ െ ௦௢௟௩ܩ∆
° ௟௜௚  ൅ ∆ܩ°௜௡௧  െ ܶ∆ܵ°  ൅ ∆ߣ Eq. (8) 

where, ∆ܩ°
௕௜௡ௗ is total binding free energy, ∆ܩ௦௢௟௩

° ௖௢௠௣௟௘௫ is solvation energy of the 

protein−ligand complex, ∆ܩ௦௢௟௩
° ௣௥௢௧ is solvation energy of the protein, ∆ܩ௦௢௟௩

° ௟௜௚ is solvation 

energy of the ligand, ∆ܩ°௜௡௧ is interaction energy of the protein−ligand, ܶ∆ܵ° is change in 

the entropy for protein−ligand interaction and ∆ߣ is conformational change in 

protein−ligand complex.90 

Accurate and reliable prediction of binding free energy by computational methods 

is a very challenging task. For example, the entropy, a phenomenon that is very influential 

in the physiological condition where the protein-ligand interaction takes place, can only be 

crudely estimated. Another problem is that the fast estimation of binding free energy 

implemented in docking programs makes various assumptions and simplifications 

contributing to inaccuracy in the result. We will briefly discuss the different scoring 

functions here in this chapter. 
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Essentially, four types or classes of scoring functions are currently applied: force 

field-based, semi-empirical, empirical and knowledge-based scoring functions.  

Scoring functions derived from a force field use non-bonded interaction terms to 

calculate the score, sometimes in combination with solvation terms. Semi-empirical 

approaches are those in which molecular mechanics terms are supplemented by additional 

parameters or terms that are empirically derived from observation. Empirical scoring 

functions employ multivariate regression methods to fit coefficients of physically 

motivated structural functions by using a training set of protein-ligand complexes with 

measured binding constants. Knowledge-based scoring use statistical atom pair potentials 

derived from structural databases as the score.  

A. Force Field Scoring 

Standard force field scoring functions were originally based on the idea of using 

only enthalpic gas-phase contributions to estimate the binding free energy. The main 

advantage of force field scoring is that when used on a precomputed grid, it is fast and 

transferable. The disadvantage is that force field scores evaluate only parts of the relevant 

energies, namely, potential energies and ignoring some fundamental contributions such as 

hydrophobic interactions, solvation, and entropic effects. Though there are many force 

fields used, the well-known and widely-applied molecular mechanics (MM) force fields 

include AMBER,91,92 CHARMM,93 TRIPOS,94 MM2,95 MM396 and MM4.97  
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Energy calculations performed by these methods are essentially the sum of 

electrostatic and van der Waals potentials, plus internal (i.e., intramolecular) distance, 

angle and torsion contributions:90 

෍ ൌ
௧௢௧௔௟

෍ ݎ௥൫ܭ െ ௘௤൯ݎ
ଶ

௕௢௡ௗ௦

൅  ෍ ߠ௘൫ܭ െ ௘௤൯ߠ
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൨௜ழ௝    Eq. (9) 

Where, Kr is spring constant, r is the distance between two atoms, req is the 

equilibrium bond length, Ke is angle bending force constant, θ is bond angle and θeq is 

equilibrium bond angle, Vn is the torsional barrier, n is periodicity, φ is the torsion angle, γ 

is phase shift (offset), Aij is repulsive force constant, Bij is attractive force constant, Rij is 

distance between atoms i and j, qi is charge (partial charge) of atom i, qj is charge (partial 

charge) of atom j and ε is dielectric constant. 

Most force field scoring functions only consider a single protein conformation, 

which makes it possible to omit the calculation of internal protein energy, which greatly 

simplifies scoring.  

B. Semi-empirical Scoring Functions 

Semi-empirical approaches imply the use of empirical or empirically-calibrated 

energetic terms for calculating interactions not commonly computed by molecular 

mechanics. Although this strategy allows the inclusion of contributions for fundamental 
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biological interactions, e.g., hydrogen bonding or solvent effects, semi-empirical models 

partially lose the universal applicability typical of MM force fields. ICM, GOLD, 

AutoDock, SDOCK, are some of the docking algorithms that includes semi-empirical 

scoring functions.   

C. Empirical Scoring Functions 

Empirical scoring functions estimate the binding free energy by summing 

interaction terms derived from weighted structural parameters, as first proposed by Böhm. 

The design of empirical scoring functions is based on the idea that binding energies can be 

approximated by a sum of individual uncorrelated terms. The weights are obtained by 

fitting the scoring function to experimental binding constants of a training set of protein–

ligand complexes.  

The functional forms of empirical scoring functions are often simpler than force-

field scoring function and are simple to evaluate, but they are based on approximations 

similar to force field functions. The main drawback of empirical scoring functions is that it 

is unclear whether they are able to predict the binding affinity of ligands structurally 

different from those used in the training set.98,99 

D. Knowledge-Based Scoring Functions 

Knowledge-based scoring functions are designed to reproduce experimental 

structures rather than binding energies. Knowledge-based scoring functions represent the 

binding affinity as a sum of protein−ligand atom-pair interactions. Popular 
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implementations of such functions include Potential of Mean Force (PMF),100-102 

DrugScore103 and SMoG.104 The major advantage of knowledge-based scoring functions is 

their computational simplicity, which permits screening of large compound databases.  

E. Consensus Scoring 

Given the fact that currently no scoring function performs consistently better than 

the others for multiple targets,105 two strategies have emerged: identifying the best 

performing function for each target or merge several scoring functions in a consensus 

approach. Consensus scoring could reduce the number of false positives identified by 

individual scoring functions. The concept of consensus scoring was first introduced by 

Charifson106 based on the assumption that the combination of different functions would 

overcome inherent individual weaknesses and lead to better and more general scoring 

performance. A very good example for implementation of consensus scoring is X-

CSCORE107 which combines GOLD-like, DOCK-like, ChemScore, PMF and FlexX 

scoring functions. A limitation of consensus scoring arises when terms in different scoring 

functions are significantly correlated, where calculation errors are amplified rather than 

balanced. 

1.5.  Molecular Docking: GOLD Docking Protocol108 

GOLD (Genetic Optimization for Ligand Docking) is a genetic algorithm for 

docking flexible ligands into protein binding sites. GOLD was written by Gareth Jones 

(University of Sheffield, UK) in DTI LINK (the Department of Trade and Industry) 
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collaboration with GlaxoWellcome and the Cambridge Crystallographic Data Centre 

(CCDC). 

1.5.1. Preparing the Protein Structure for Docking 

Protein coordinates extracted from PDB (Protein Data Bank) files usually need to 

be pre-processed prior to docking. All hydrogen atoms are added including those necessary 

to define the correct ionization and tautomeric states of residues such as Asp, Glu and His. 

All bond types are checked. The sequence order, name of the sequence and atoms are 

correctly typed and named. Any unusual bonds such as disulphide bridges are checked to 

see if they have CONECT records. If a metal ion is present, all bonds between the ion and 

coordinating protein or water atoms are deleted (GOLD finds them automatically).  

The corrected protein file is saved in MOL2 format. GOLD assigns atom types 

from the information about element types and bond orders in the input structure file, so it is 

important that these are correct.  

1.5.2. Preparing the Ligands for Docking 

Structure building tools are available in many modeling software packages 

including SYBYL. Ligands can be drawn and energy-minimized before docking. In order 

to predict correct protein−ligand binding modes for the ligand, all hydrogen atoms, 

including those necessary to define the correct ionization and tautomeric states are added 

and that all bond types are checked for its correctness.  
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For groups which can be drawn in more than one way (i.e., have more than one 

canonical form), such as nitro, carboxylate, sulfate and amidinium a special attention must 

be paid in defining their atom type and bond type (Figure 2).  

The starting geometry of the ligand should be reasonably low in energy, since 

GOLD will not alter bond lengths or angles, or will rotate rigid bonds such as amide 

linkages, double bonds and certain bonds to trigonal nitrogens. However, GOLD optimizes 

the values of torsion angles around rotatable bonds. The corrected ligand is saved as a 

MOL2 file. 

 
 

A. Standard sulfate 
representation 

 
 

B. Sulfate representation for GOLD docking 
(SYBYL atom type o.co2) 

 

C. Standard carboxylate 
representation 

 

D. Carboxylate representation for GOLD 
docking (SYBYL atom type o.co2) 

 

Figure 2. Standard molecular representation of sulfate and carboxylate groups (A and C). 
In GOLD, the bond types of all three terminal S-O and two C-O bonds are treated as 
aromatic bonds and the terminal oxygens are treated equally as charged carboxylate 
oxygens (B and D). This redefinition of sulfate group is important for docking purposes in 
order for GOLD to correctly recognize the sulfate group. In reality, each of the terminal 
oxygens are (partially) charged, not just one as shown in the standard representation (A 
and C). 

¯

¯
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The precise geometric positions of rotatable (e.g., hydroxyl and amino) hydrogen 

atoms do not matter, as they are optimized during the GOLD run. GOLD deduces 

hydrogen-bonding abilities from the presence or absence of donatable hydrogen atoms. For 

example, the protonation state of a carboxylic acid group can be controlled by adding or 

removing the ionizable hydrogen atom.  GOLD ignores assigned atom charges, both 

formal and partial. It deduces whether an atom is charged by counting the bond orders of 

the bonds that it forms and comparing the result with the atom’s normal valence. 

Since ring conformations and the torsion angles around rigid bonds such as amide 

linkages, double bonds and certain bonds to trigonal nitrogens are normally fixed at their 

starting values during docking, a good practice is to perform a few cycles of molecular-

mechanics minimization to take the ligand close to its local potential-energy minimum. 

GOLD does not alter stereochemistry. Care must be taken to ensure that the ligand 

possesses the correct stereochemistry. In cases where we are not sure about the 

stereochemistry or if it is undefined, alternate stereoisomers must also be generated to 

make comparisons between fitness scores for dockings of different stereoisomers. 

1.5.3. Ligand Flexibility: Fixing Rotatable Bonds 

Although GOLD is designed to dock flexible ligands into protein binding sites, it 

also can be useful to fix the geometry of part or all of the ligand e.g., in order to study the 

possible binding of a pre-determined ligand geometry. This also restricts the search space, 

therefore convergence may be higher. This can be used to greatly simplify the docking of 

large molecules with inflexible regions (i.e., the rigid backbone hypothesis).109  
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1.6.    Molecular Docking of Sulfated Molecules 

1.6.1. Molecular Docking Sulfated Glycosaminoglycans (GAGs)  

Glycosaminoglycans (GAGs) are complex carbohydrate biopolymers also known 

as mucopolysaccharides because of their viscous lubricating properties as found in mucous 

secretions. GAGs interact with a wide range of proteins and exhibit important roles in 

various physiological and pathological processes such as inflammation, coagulation, 

angiogenesis, cell adhesion and viral invasion by interacting with several different 

proteins.110-112  

 

 

 

 

 

 

 

 

 

Figure 3. A simple classification of glycosaminoglycans. 

The linear, sulfated, negatively charged GAGs are built up of several different 

sulfated disaccharide units.113 The repeating units are composed of alternating uronic acids 

(D-glucuronic acid or L-iduronic acid) and amino sugars (D-galactosamine or D-
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Dermatan sulfate (DS) 
Keratan sulfate (KS) 
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glucosamine). GAGs are differentiated according to the type of hexosamine, hexose or 

hexuronic acid unit that they contain, as well as the geometry of the glycosidic linkage 

between these units (Figure 3). 

The disaccharide unit may be sulfated or unsulfated at various positions and the 

ring system can exist in different conformation. GAGs also vary in the geometry of the 

glycosidic linkage (α or β). As a result, there exists exquisite structural complexity in the 

GAG sequences.114 At physiological pH, all carboxylic acid and sulfate groups may be 

deprotonated, giving GAGs very high negative charge densities (heparin has the highest 

negative charge density of any known biomolecule).115 

 

A. IdoA2S β (1→4) GlcNS6S 

 

B. GlcA β (1→3) GlcNAc 

Figure 4.  Examples of basic structural units of GAGs. A. L-iduronic acid 2-O-sulfate and 
D-glucosamine 2-N-sulfate-6-O-sulfate linked together via α (1→4) glycosidic bond is a 
major disaccharide unit in heparin. B. D-glucuronic acid and D-N-acetyl glucosamine, 
linked together via alternating β (1→3) and β (1→4) glycosidic bonds is a repeating 
disaccharide unit in hyaluronic acid. 
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The structural complexity of GAGs and their roles in various physiological 

processes makes their targets excellent candidates for structure/ligand-based drug design, 

where recent developments in molecular modeling techniques could be applied to expedite 

the understanding of this complex system (structural complexity and molecular modeling 

details in Chapter 3). 

Molecular modeling and docking as a tool for drug design has been successfully 

used in many instances where small organic molecules modulate the actions of 

macromolecules, but molecular docking of sulfated GAGs has not been explored much due 

to their high negative charge density and conformational flexibility. If all possible 

conformations of the GAG oligosaccharide and all rotamers of charged side chains in a 

protein are to be taken into account, an accurate prediction of GAG-protein binding 

becomes an extremely challenging task. 

Molecular modeling techniques have been described for the successful prediction 

of sulfated GAG binding sites on the surface of proteins. These methods include energy 

mapping of ligand probes on the surface of proteins, molecular docking and scoring, and 

molecular dynamics simulations.116,117 

The prediction of the location of GAG binding sites on the surface of the proteins 

have been attempted by mapping of sulfate interaction energies using GRID followed by 

ligand-protein docking to predict the most favorable anchoring position for a charged 

sulfate group on the surface of proteins.118 Such studies have been performed with a 

number of proteins such as aFGF (acidic Fibroblast Growth Factor), bFGF (basic 

Fibroblast Growth Factor), antithrombin and IL-8 (Interleukin-8).119  
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Most docking studies on heparin-binding proteins have been focused on predicting 

the amino acids that make up the heparin binding sites.120 Simulated annealing and genetic 

algorithms have been used to dock GAGs to their putative proteins or receptors.121-126  

Since heparin and related GAGs are structurally complex, the prediction of binding 

modes and energies for these molecules to their biological receptors requires a sufficiently 

large conformational sampling from the large search space along with an adequate scoring 

function.  

Lam et al. have reported molecular modeling studies to predict the binding of a 

heparin hexasaccharide to the multi-component complex between bFGF and FGFR1 

(Fibroblast Growth Factor Receptor-1).126 The proposed structural model of the 

biologically functional dimeric bFGF-heparin complex between heparin, bFGF and 

FGFR1 has a stoichiometry of 1 heparin: 2 bFGF: 2 FGFR1. This model is consistent with 

the binding mechanism of FGF to its receptor, the receptor dimerization, and the reported 

site-specific mutagenesis and biochemical cross-linking data.126  

In another study, molecular docking predicted that long heparin fragments such as a 

dodecasaccharide or a tetradecasaccharide are required for binding to the dimer of 

chemokine stromal cell-derived factor 1α (SDF-1α).127 

A study of the interaction between a heparin pentasaccharide and AT-III has been 

carried out by Grootenhuis and van Boeckel by homology modeling and manual docking. 

However, the geometry determined by them was different from the original crystal 

structure.128  
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The first approach of combinatorial library screening for Heparin/Heparan Sulfate 

(heparin/HS) GAGs has been reported and this study demonstrates that library screening is 

feasible for heparin/HS oligosaccharides, especially if a high-resolution crystal structure of 

the protein is available.109 This work describes identification of high-affinity high 

specificity heparin/HS sequences that bind antithrombin utilizing a combinatorial virtual 

library screening approach. The approach relies on a dual-filter strategy involving affinity 

and specificity filters and is based on an average heparin/HS backbone hypothesis. The 

approach uses a genetic algorithm-based docking and scoring protocol (additional 

information in Chapters 2 and 3). 

Current docking methods aimed at predicting high-affinity GAG sequences have 

certain limitations that need to be addressed. Since most docking methods based on coarse 

docking generally fail to take into account any conformational changes that may occur in 

the protein receptor, it is necessary to include sequences that have both 1C4 and 2SO ring 

conformations for iduronic acid. Molecular dynamics simulations suggested that the chair 

form (1C4) predominates at monosaccharide level of IdoA2S and the skew-boat (2SO) may 

contribute from ~40% to 60% of the total IdoA2S conformational preference in the entire 

polysaccharide chain depending on the heparin sequence.129-132  

In addition, GAG oligosaccharides have many rotatable bonds (large number of 

degrees of freedom), posing a significant challenge for the search of the correct binding 

mode. An additional problem arises due to the presence water-mediated interaction that is 

being neglected in many docking protocols.  
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Very few Molecular Dynamics (MD) simulations have been performed for sulfated 

GAGs such as heparin and HS.  MD simulations have been performed for the complex of a 

heparin pentasaccharide with AT-III in order to characterize the energetic contribution of 

important amino acids required for the interaction with GAG fragments and the ability of 

GAG fragments to induce the observed conformational change in AT-III.133  

1.6.2. Molecular Docking of Small Organic Non-Carbohydrate Sulfated Molecules 

Most of the research on sulfated molecules has been focused on GAGs due to their 

extensive role in many physiological processes and disease conditions. This is based on the 

assumption that a GAG sequence is a critical pharmacophore needed for recognition and 

activation/inhibition of the target protein.  

This concept was challenged by Gunnarsson et al. in Desai’s lab when they 

designed a non-carbohydrate sulfated molecule to mimic the trisaccharide to activate 

antithrombin.134 The rational design strategy is based on a study of complexes of natural 

and mutant antithrombins with heparin-based oligosaccharides using hydropathic 

interaction (HINT) technique, a quantitative computational tool for analysis of molecular 

interactions.  

Using this approach, a small, nonsugar, aromatic molecule, (-)-epicatechin sulfate 

(ECS), was designed by Gunnarsson et al. to mimic the non-reducing end trisaccharide unit 

DEF of the sequence specific heparin pentasaccharide DEFGH. The designed (-)-

epicatechin sulfate (ECS) was the first small non-saccharide molecule reported as an  

activator of antithrombin for the accelerated inhibition of factor Xa, a key proteinase of the 
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coagulation cascade.134 (+)-Catechin sulfate (CS), a chiral stereoisomer of ECS, was found 

to be more active than the (-)-epicatechin sulfate (ECS).135 The molecular docking study 

using HINT suggested plausible binding of CS in the extended heparin binding site, which 

is adjacent to the binding domain for the reference trisaccharide DEF.135 

 Following this dramatic change in designing non-carbohydrate sulfated molecules, 

many papers have been published by Desai’s lab describing new methodologies for 

docking of sulfated molecules and advances in synthetic methods for efficient synthesis, 

characterization and biological evaluation (more details in Chapter 2). 

1.7.    Antithrombin-Based Anticoagulants 

1.7.1. Antithrombin Structure and Mechanism of Inhibition 

Clotting is a natural defense mechanism of the body to prevent excessive loss of 

blood and ingestion of microbes upon injury. Yet, unintended clot formation can be very 

dangerous and is a leading common cause of death. Anticoagulants are used 

therapeutically in the treatment and prevention of clot formation and clot growth in 

thromboembolic disorders.  

Endogenous antithrombin (AT) is a major regulator of blood clotting. It inactivates 

a number of proteinase enzymes of the coagulation cascade, especially thrombin and factor 

Xa.136 Antithrombin alone is a poor inhibitor. However, heparin-based anticoagulants 

enhance its proteinase inhibitory activity. Because of this, heparin-based anticoagulants are 

also called antithrombin activators. 



   

33 
 

Human antithrombin is a glycoprotein with 432 residues with major (α-

antithrombin) and minor form (β-antithrombin). Antithrombin is also a member of the 

serine proteinase inhibitors (serpin) superfamily of proteins. It shows structural and 

functional similarity with homologous serpin members including α1-proteinase inhibitor, 

heparin co-factor II, and plasminogen activator inhibitor-I.137,138 

The structure of intact, uncleaved, free antithrombin has nine α-helices surrounding 

three β-sheets.139-141 There are two striking features: a dominant five-stranded β-sheet A, 

approximately in the center of the inhibitor and an exposed 15-residue sequence called 

reactive center loop (RCL) containing the reactive bond between Arg393 and Ser394 that 

serves as the substrate for serine protease (Figure 5A). These features are common to all 

serpins.137,138,142,143  

Antithrombin has another unique feature known to be present in only one other 

serpin, heparin co-factor II.144 Two residues, P15-P14 (Gly379-Ser380) at the N-terminal 

end of the reactive center loop, are partially inserted as a short β-strand between strands 3 

and 4 of β-sheet A (Figure 5A).  

The overall structure of antithrombin cleaved at the reactive center loop (RCL) is 

similar to the intact form, except that the RCL is inserted as strand 4a in β-sheet A (Figure 

5B). This structural change results in the movement of the P1 residue to the opposite side 

of the protein, a distance of approximately 70 Å. This dramatic conformational change 

following cleavage by the target enzyme leads to significant thermodynamic stabilization 

of the molecule.145,146   
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A. Native antithrombin B. Cleaved antithrombin 

Figure 5. Ribbon diagram of native (A) and cleaved (B) plasma antithrombin. The crystal 
structure is from PDB entry 1ath. The Reactive Center Loop (RCL) is shown in red. 
Reactive bond residues Arg393 (P1) and Ser394 (P1′) and the partial insertion loop Gly379 
(P15) and Ser380 (P14) are shown in ball-and-stick representation. The P1 residue, in an 
exposed orientation in the native structure, moves to the opposite end of the molecule 
following cleavage with a proteinase, whereupon the RCL is inserted as strand 4 in 6-
stranded β sheet A. The proteinase moves with the P1 residue to the bottom of the inhibitor 
and is covalently trapped. Adapted from Desai, U. R. New antithrombin-based 
anticoagulants. Med Res Rev 2004, 24, 151-181. 

 

A recent crystal structure of the α1-proteinase inhibitor–trypsin complex147 and 

biochemical results148,149 indicate that the dramatic structural change following cleavage of 
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the P1-P1′ bond is critical for the disruption of the catalytic triad of the proteinase, which 

results in the inactivation of the enzyme. 

Thrombin and factor Xa inhibition by antithrombin is referred to as the serpin 

‘mousetrap’ mechanism. Antithrombin (AT) acts as a bait to trap the target enzyme (E) in 

an equimolar, covalent, inactive complex (AT -E ). In the first step, the RCL interacts 

with the active site of the proteinase to form a Michaelis complex (AT:E). This is rapidly 

followed by cleavage of the scissile bond P1-P1’ in the RCL to form an acyl-enzyme 

intermediate (AT-E), which undergoes a major rearrangement to disrupt the enzyme’s 

catalytic triad147-150 resulting in inhibition (E -AT ) (Inhibition Pathway, Figure 6). In the 

substrate pathway (Figure 6), structural perturbations in antithrombin (e.g., mutational 

changes) may facilitate rapid hydrolysis of the acyl-enzyme intermediate E-AT to yield an 

active enzyme (E) and a cleaved inhibitor (ATC) that diminishes efficacy of inhibition. 

 
 
Figure 6. A model of the serpin ‘mouse trap’ mechanism of inhibition (See text for 
details). Reproduced from Desai, U. R. New antithrombin-based anticoagulants. Med Res 
Rev 2004, 24, 151-181. 
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1.7.2.  Rates of Antithrombin Inhibition of Thrombin and Factor Xa 

The antithrombin inhibition of factor Xa and thrombin is a slow process. The 

typical uncatalyzed in vitro thrombin inhibition rate at pH 7.4 and 25 °C is in the range of 

7–11×103 M-1 sec-1,151-153 while for factor Xa, it is 2–3×103 M-1 sec-1.154 The slow rates of 

factor Xa and thrombin inhibition are dramatically increased in the presence of heparin. 

The second-order rate constant for thrombin inhibition by antithrombin–heparin complex 

is in the range of 1– 4×107 M-1 sec-1, which is an acceleration of more than 2,000-fold, and 

for factor Xa inhibition this constant reaches 1.5×106 M-1 sec-1 representing an increase of 

~600-fold.155-158 Under physiological conditions, the acceleration of factor Xa inhibition 

may be even higher due to the presence of calcium ions.159 

1.7.3.  Mechanism of Heparin Activation of Antithrombin 

A two-step induced-fit mechanism is involved in antithrombin activation by the 

high-affinity ligands heparin or heparin pentasaccharide (H5). In the first step, heparin 

recognizes the native antithrombin (AT) and forms a low-affinity complex (AT:H) in rapid 

equilibrium, then is followed by a major conformational change to give a high-affinity 

complex (AT*:H).160  

 
ܶܣ ൅  ܪ ֐ ܪ:ܶܣ ֐  Eq. (10) ܪ:כܶܣ

 
 

In  equation 1, K1 is the rapid equilibrium constant of first step of the induced-fit 

pathway; K2 and K-2 are forward and reverse rate constants for the conformational change 

K1 K-2 

K2 
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step. The conformational change results in the expulsion of the partially inserted RCL 

residues. This significantly changes the conformation of the P1-P1′ reactive center loop 

and exposes an exosite in antithrombin (Figure 7).150,154,157,158,161 This process is called the 

conformational activation of antithrombin. The altered RCL in heparin-antithrombin co-

complex is better recognized by factor Xa resulting in accelerated cleavage of the P1-P1′ 

bond and rapid formation of the covalent inhibited complex (E*-AT* in Figure 6). Thus, 

conformational activation of antithrombin is necessary and sufficient for accelerated factor 

Xa inhibition. 

 

 

 
Figure 7. Two major mechanisms of heparin activation of AT and subsequent inhibition of 
factor Xa, factor IXa or thrombin: conformational activation and bridging mechanism. 
AT*:H = antithrombin–heparin complex; H5 = high-affinity pentasaccharide sequence in 
heparin; RCL = reactive center loop; ‘+++’ = exosite on enzyme; HBS = heparin-binding 
site. Reproduced from Desai, U. R. New antithrombin-based anticoagulants. Med Res Rev 
2004, 24, 151-181.  
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Thrombin inhibition is accelerated only two-fold through the conformational 

activation mechanism (Figure 7).158 The acceleration of thrombin inhibition by heparin 

primarily arises from a bridging mechanism. The H5 sequence in full length heparin tightly 

binds to antithrombin and is followed by the binding of thrombin to the same heparin chain 

at non-specific sites to form an antithrombin–heparin–thrombin ternary complex (Figure 

7). Thrombin then diffuses along the polyanionic chain to encounter the inhibitor. This 

whole process results in a ~2,000-fold acceleration in inhibition under physiological 

conditions. A saccharide length of ~18 residues is needed to simultaneously hold thrombin 

and antithrombin for the accelerated inhibition.162-163 A sequence-specific H5 is necessary 

for tight binding of heparin chains, but H5 alone cannot potentiate antithrombin inhibition 

of thrombin. 

1.7.4.  Heparin Binding Site and Reactive Center Loop in Antithrombin 

The heparin binding site in antithrombin is located about 20 Å away from the 

reactive center loop. This binding site specifically recognizes a heparin pentasaccharide 

sequence with high-affinity.158 The heparin-binding domain in antithrombin is formed by 

positively charged residues of helices A and D, and the polypeptide N-terminus. The 

crystal structure of antithrombin pentasaccharide co-complex (PDB entry 1AZX, (Figure 

8) shows that residues Arg47, Lys114, Lys125, and Arg129 in this region are commonly 

referred to as the pentasaccharide binding site (PBS), interact with H5.164 This observation 

is also consistent biochemical studies with antithrombin mutants.165-169  
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Figure 8. Ribbon diagram of plasma antithrombin complexed with natural pentasaccharide 
DEFGH (A) and a close-up view of the heparin-binding site (B). The crystal structure co-
complex is obtained from PDB entry 1azx. Ribbon in red is the RCL, and magenta is the 
heparin-binding site. Pentasaccharide DEFGH is shown in ball-and-stick representation 
and individual residues are identified. Helices D, P and A form the heparin-binding site 
(HBS). Arg46, Arg47, Lys114, Lys125, and Arg129 form the pentasaccharide binding site 
(PBS) and Arg132, Lys133, and Lys136 form the extended heparin-binding site (EHBS).  
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A full-length heparin, in addition to interacting with PBS, also binds to an extended 

region formed by the basic residues Arg132, Lys133, and Lys136 at the C-terminal end of 

helix D (the EHBS).170  

1.7.5.  Heparin, LMWHs and Heparin Pentasaccharide DEFGH  

Heparin is an anticoagulant that is a linear polysaccharide of varying chain length 

and is composed of uronic acid and glucosamine residues that are variably sulfated and 

acetylated.158,171-172 Although heparin is a commonly used anticoagulant, its use as an 

anticoagulant is still limited by serious side effects such as excessive bleeding 

complications.173  

In addition to bleeding complications, unfractionated heparin (UFH) and low 

molecular weight heparin (LMWH) suffer from significant intra- and inter-patient dose 

variability that requires laboratory monitoring. Heparin-induced thrombocytopenia (HIT) 

is a potentially lethal complication of heparin therapy that is associated with thrombosis. 

HIT refers to a significant drop in platelet count between 4 and 14 days after the initiation 

of therapy.174  

Low Molecular Weight Heparins (LMWHs) is a better choice compared to heparin 

as anticoagulant.175-177 LMWHs are much smaller in size (MR 4,000–6,000) and are 

produced from heparin by chemical or enzymatic depolymerization.  Ardeparin, dalteparin, 

enoxaparin, nadroparin, reviparin and tinzaparin are examples of available LMWHs.178 

In comparison to heparin, LMWHs have greater bioavailability at low doses, better 

pharmacokinetics, and a more predictable dose response, which allows for fixed doses to 



   

41 
 

be administered without laboratory monitoring.175-181 However, the risk of bleeding is not 

completely eliminated. In fact, there is not much difference between UFH and LMWHs 

when comparing preoperative hemorrhagic risk.182-185 In addition, other concerns 

originating from the structural variations of LMWHs still need to be addressed. For 

example, different methods of preparation may introduce considerable variation in the in 

vivo efficacy among the LMWHs.186 A report in 2007 revealed that heparin contaminated 

with oversulfated chondroitin sulfate (OSCS) was responsible for at least 81 reported 

deaths. Another concern arising from animal-derived heparin products due to the presence 

of potentially toxic substances that have a chemical structure similar to heparin.187-192  

A sequence-specific heparin pentasaccharide-based compound, Fondaparinux, is 

perhaps the best anticoagulant in the heparin class due to the lack of HIT and a more 

predictable patient response. It also is not completely devoid of the risk of bleeding and 

lacks an effective antidote to reverse excessive iatrogenic bleeding.193-198 A new 

pentasaccharide called idraparinux is being developed as a once-a-week injection, but 

because of its structural similarity to fondaparinux it is likely to carry a similar bleeding 

risk and antidote problem.199-201 

Most of the side effect complications are attributed to the nature of structural 

complexity and diverse roles of heparin and heparan sulfate in a number of physiological 

and pathological processes. These side effects are reduced by using homogeneous heparin 

preparations such as fondaparinux, which is a synthetic five-residue sequence based on the 

naturally occurring DEFGH sequence (Figure 9). 
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H5 consists of three 2-N- and 6-O-sulfated glucosamines (β-D-GlcNp2S6S; residues 

D, F, H) interspersed with a 2-O- sulfated iduronic acid (α-L-IdoAp2S; residue G) and a 

glucuronic acid (β-D-GlcAp; residue E), in which the central glucosamine residue F has a 

unique 3-O-sulfate group (Figure 10). This sequence is abbreviated as GlcNp2S6S (1 → 4) 

IdoAp2S (1 → 4) GlcNp2S3S6S (1 → 4) GlcAp (1 → 4) GlcNp2S6S and labeled as 

DEFGH, in line with the history of its identification.202-205  

Detailed structure-activity studies show that several anionic groups of DEFGH are 

critical for its high-affinity interaction with antithrombin (Figure 9).206 More importantly, 

studies with truncated variants of DEFGH indicate that trisaccharide sequence DEF is the 

minimum structure that retains the functional role of heparin, i.e., antithrombin activation, 

albeit with significant loss of affinity under physiological conditions.206 

The multidimensional limitations associated with heparin based anticoagulants 

warrants the need for the design of newer anticoagulants. For example, antithrombin (AT)-

based anticoagulants including heparin, low molecular weight heparin (LMWH) and 

fondaparinux (FX)207 are only effective when administered parenterally. Compared to 

heparin or LMWHs, results from clinical trials with fondaparinux are more promising with 

a low probability of causing HIT (Heparin Induced Thrombocytopenia) but its long term 

efficacy and safety is yet to be ascertained.208 In addition, fondaparinux does not interact 

with protamine sulfate, the heparin antidote, making it difficult to manage drug-induced 

bleeding. However, the initial success of fondaparinux has validated factor Xa as a target 

for antithrombin-based anticoagulants. 
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Heparin or Low Molecular Weight Heparins 

 

 

 

DEFGH Sequence 

 
 
 
Figure 9. Structure of a heparin chain/LMWHs, and the sequence-specific heparin pentasaccharide DEFGH. Note the 
variations in the structure of glucosamine (GlcNp) and uronic acid residues (IdoAp or GlcAp). Numbers 1 and 4 refer to 
saccharide positions and the 1→4 linkages. Groups in magenta are critical for high affinity interaction with antithrombin. 
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1.8.  Designing Synthetic Non-Sugar Antithrombin Activators 

1.8.1. Hypothesis  

Our research group has challenged the assumption that the saccharide-based 

skeleton is essential for the activity of specific glycosaminoglycan (GAG) sequences. We 

hypothesized that specific GAG sequences can be replaced by non-saccharide skeletons 

which may provide several advantages over the GAG skeleton. These include 1) ease of 

chemical synthesis, 2) likelihood of oral delivery due to enhanced hydrophobic character, 

3) opportunity to gain additional non-ionic binding energy, 4) enhanced specificity for the 

target protein and 5) the ability to modulate responses in either an agonist or an antagonist 

manner. The following sections describe the methodologies used and the advances made in 

designing non-saccharide antithrombin activators. 

1.8.2.   First Generation Non-sugar Antithrombin Activators  

Numerous attempts have been made to design or discover new molecules that 

activate antithrombin.158,160,207
 However, each of these searches has relied on utilizing a 

saccharide scaffold as a mimic of heparin. Implicit in these designs was the expectation 

that a saccharide scaffold was necessary to induce antithrombin activation.  

Designing non-saccharide, antithrombin activators is not an easy task for some 

critical reasons. As mentioned earlier, antithrombin activation is a two-step induced-fit 

process that involves an initial recognition phase and followed by conformational 

transformation of AT.160,206 Mimicking such a two-step process by design is challenging. 

Heparin mimics invariably must possess several negative charges, which can induce 
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recognition of many electropositive domains on protein surfaces, leading to potential 

unwanted side effects. Mimicking heparin, or even pentasaccharide DEFGH (~20–25 Å 

long), by substituting organic scaffolds with multiple sulfate and carboxylate groups 

presents substantial design and synthetic challenges.209  

Desai and co-workers have shown through structure-activity relationship studies 

that, while residues D, E, F, G, and H of the pentasaccharide sequence are required for 

high-affinity binding (50 nM) and complete activation (300 fold) of antithrombin, residues 

D, E and F can bring about full activation at 1000 fold higher concentrations (Figure 10 

A).206 Thus, based on the trisaccharide DEF as a template, small, non-saccharide sulfated 

flavans were designed by Gunnarsson et al. using hydropathic interaction (HINT)210 

analysis (Figure 10B). 

These designed molecules were found to be weak activators of the inhibitor AT 

(~10 fold).134 The results indicated that sulfated flavans bind to AT with an affinity 

between 18 and 500 μM and bind in the adjoining extended heparin-binding site instead of 

the targeted pentasaccharide-binding site in AT.135 This result explains the weak activation 

of AT. In order to determine structure-activity relationships, several analogs of sulfated 

flavans including sulfated flavones were synthesized (Figure 10B).  

However, initial synthetic efforts towards sulfated flavones were unproductive 

because these non-saccharide designs possess significantly greater charge density than 

GAGs.211 Hence, Gunnarsson et al. developed an alternate synthetic route to sulfated 

flavones that involved reductive cleavage of 2,2,2-trichloroethyloxysulfonyl-protected 

flavonoids (Figure 11).212 Using this method, six sulfated flavones bearing different sulfate 
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group distributions were synthesized and evaluated. These sulfated flavans and flavones 

were also found to bind non-specifically to the smaller extended-heparin binding site in AT 

and resulted only in weak activation of antithrombin. 

 

 

 
 

A. DEF sequence

 
 

B. Sulfated flavans and flavones
 
Figure 10. A) Structure of the DEF fragment. Critical groups for binding to antithrombin 
are shown in magenta. B) Non-saccharide DEF mimics. 
 

 

 
 
 
Figure 11. TCE-protection-deprotection strategy for the synthesis of sulfated flavones 
[TCE = 2,2,2–trichloroethyloxysulfonyl (CCl3CH2OSO2

−)]. 
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1.8.3. Tetrahydroisoquinoline-Based Lead Compounds  

To improve on the antithrombin activation potential of these organic activators, a 

tetrahydroisoquinoline-based bicyclic-unicyclic sulfated activator IAS5 (Figure 12) was 

designed using a pharmacophore-based approach (Figure 12). The pharmacophore was 

extracted from DEF and four critical groups were connected in three-dimensional space 

using a linear carbon linker to arrive at a first ‘blueprint’ of an activator.209,213  

 

 

  
 

 

 

 

 

 

 

 

 

 
Figure 12. Rationale used in the design of tetrahydroisoquinoline-based organic activator 
IAS5. Four critical anionic groups (highlighted as filled ovals) of trisaccharide DEF formed 
the pharmacophore. Connecting the groups using a carbon framework followed by 
engineering of rigidity that matches their orientation gave rise to a ‘blueprint’, which was 
transformed into a synthetically plausible target, IAS5. Reproduced from Raghuraman, A.; 
Liang, A.; Krishnasamy, C.; Lauck, T.; Gunnarsson, G. T.; Desai, U. R. On designing non-
saccharide, allosteric activators of antithrombin. Eur J Med Chem 2009, 44, 2626-2631. 
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IAS5, the tetrahydroisoquinoline-based activator containing an acid functionality 

and five sulfate groups was synthesized from commercially available precursors by 

Raghuraman et al.209 These studies showed that IAS5 activates antithrombin nearly 30-fold, 

an increase of nearly 2 to 3-fold higher than the first-generation rationally designed 

agents.134,135  

The previously reported non-saccharide antithrombin (AT) activators in our 

laboratory, including sulfated flavonoids and sulfated tetrahydroisoquinoline derivatives, 

were found to bind the extended heparin-binding site (EHBS), although they were 

designed to target the pentasaccharide-binding site (PBS). The affinity capillary 

electrophoretic based competitive binding assays developed by our lab (Dr. Aiye Liang) 

showed that the tetrahydroisoquinoline-based molecules do not compete with a high 

affinity heparin pentasaccharide. In contrast, the affinity decreased dramatically in the 

presence of an extended heparin binding site ligand.214 

The X-ray crystal structures of antithrombin alone215,216 and in complex with 

heparins217,218 show that the PBS is exposed to solvent, implying that the binding domain 

should be freely available. Yet, biochemical studies in solution show that the N-terminus 

of the polypeptide overlays on the PBS.219 This implies that the three key residues, Lys114, 

Lys125 and Arg129, are not readily accessible to ligands in solution. Thus, it is likely that 

sub-optimal activators that cannot engage all three key residues find it difficult to form a 

productive PBS-based antithrombin–ligand initial recognition complex167-169 that can 

initiate the induced-fit conformational change in the serpin. Rather, the sub-optimal 
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activators are ensnared by an adjacent electropositive domain, the EHBS, resulting in 

lower activation. 

1.8.4. Questions Remaining Unanswered 

The previously reported non-saccharide sulfated flavans and 

tetrahydroisoquinoline-based molecules are binding at the EHBS of activated antithrombin 

and are weak activators of antithrombin. Thus, the questions that arise include: Can we 

design molecules that bind in the PBS of activated antithrombin with high affinity? 

Further, can we design molecules that interact with the PBS of activated antithrombin with 

high specificity?  Chapter 2 describes the computational and experimental methodologies 

used to address these questions. 

1.9. Desinging Specific Thrombin Exosite-II Modulators 

As mentioned earlier, heparin is a complex carbohydrate biopolymer made of linear 

polysaccharides of varying chain length and is composed of uronic acid and glucosamine 

residues.113 Although heparin is a commonly used anticoagulant it suffers from serious side 

effects such as excessive bleeding complications, heparin induced thrombocytopenia, and 

significant intra- and inter-patient dose response variability.173,174  

Most of the side effect complications arise primarily from its structural complexity 

and its interaction with numerous proteins other than coagulation proteins factor Xa (fXa), 

thrombin, and antithrombin. Implicitly these diverse roles must arise from an optimal 
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combination of specificity and affinity. However with the exception of a few cases, the 

specificity of heparin interactions has been poorly understood and not explored in detail. 

In antithrombin, three important amino acids are involved in heparin 

pentasaccharide binding, while in thrombin, at least seven basic amino acids are predicted 

to be involved. For biological systems, one would expect greater specificity with more 

interacting points. However, the heparin–thrombin system interestingly displays a lack of 

specificity. The molecular basis for this lack of specificity is not clear.  

1.9.1. Questions Remaining Unanswered 

The heparin binding sites (HBS) of antithrombin and thrombin are lined with Arg 

and Lys residues. Whereas the antithrombin-heparin interaction is specific, the thrombin-

heparin interaction is considered to be non-specific. Thus, the questions that arise include: 

What is the structural and molecular basis for the specificity of the antithrombin-heparin 

interaction and the non-specificity of the thrombin-heparin interaction? Is it possible to 

design ligands that are specific for thrombin exosite-II? 

Chapter 3 describes the structural biology and molecular modeling approaches used 

to study the specific and nonspecific interactions of heparin with antithrombin and 

thrombin. Also the mehodolgies used in designing specific thrombin exosite-II ligands 

using molecular docking techniques have been described. 
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CHAPTER 2  

VIRTUAL SCREENING OF TETRAHYDROISOQUINOLINE 
SCAFFOLD AS ANTITHROMBIN ACTIVATORS  

 

 

2.1.  Virtual Screening of a Library of Tetrahydroisoquinolines  

As mentioned in Chapter 1, the previously designed small, sulfated non-saccharide 

molecules are binding to the extended heparin binding site (EHBS) of antithrombin. Thus, 

they are poor activators of antithrombin. The lack of ability of the small, sulfated non-

saccharide molecules to fully activate the antithrombin could be remediated by devising a 

credible non-saccharide design strategy that would facilitate the design of better non-

saccharide anionic molecules with appropriate charge distribution with which to engage 

the the pentasaccharide binding site (PBS) amino acids residues Lys114, Lys125 and 

Arg129, and thus, turn the ‘key’ to open the ‘lock’.  

As mentioned in Chaper 1, the design of sulfated flavonoids and sulfated 

tetrahydroisoquinoline derivatives was based on the structure of trisaccharide DEF. It was 

time-consuming and user-biased because it involved manual pre-positioning of the ligand 

in the pentasaccharide-binding site in AT. This reduces the number of structural variations 

that could be effectively tested.  

In addition, to increase our chances of targeting the PBS, we decided to use an 

approach that would categorize the ligands as either PBS-binding or EHBS-binding 

structures in AT (native and activated AT).  Also, to explore a large number of 
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possibilities, such a method would have to be rapid and automated.  Virtual screening (VS) 

was selected as the most appropriate method to achieve the aforementioned goals. VS is a 

computational technique that involves the rapid in silico assessment of large libraries of 

chemical structures in order to identify those structures most likely to bind to a drug target, 

typically the protein receptor or enzymes. 

We have used the GOLD docking program for virtual screening of molecules 

bearing the tetrahydroisoquinoline scaffold with customized fitness functions to identify 

the hit molecules in an efficient manner, and also with high degree of reproducibility.  

VS of the tetrahydroisoquinolines included the following components: i) 

constructing a library of tetrahydroisoquinoline based compounds using LEGION, ii) 

structural optimization and energy-minimization of the tetrahydroisoquinoline library for 

docking, iii) molecular docking of the library of compounds using the GOLD docking 

program onto activated and native antithrombin at the pentasaccharide biding site (PBS) 

and extended heparin binding site (EHBS), iv) identifying and analyzing the hit molecules 

and the core structural features proposed to be necessary for AT binding, v) analysis of 

protein-ligand interactions and their putative binding modes. 

2.1.1. Designing Virtual Tetrahydroisoquinoline (ISOQ) Library 

The success of combinatorial virtual library screening for glycosaminoglycans 

(GAGs) using GOLD in our lab suggested that it should be possible to use the previously 

reported protocol with modifications to study the tetrahydroisoquinoline based bicyclic-
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unicyclic chemical structures for antithrombin activation. The core structure is derived 

from the tetrahydroisoquinoline-based compound IAS5 (Figure 12). In order to find the 

appropriate position of sulfate group, substitutions were allowed at different positions. This 

library also consisted of 16 types of linkers (L) to study the effect of type and size of 

different linkers that connects the tetrahydroisoquinoline and phenyl ring system on 

antithrombin affinity. This combination of linkers and variation in the substitution pattern 

in the rings (S1 to S9 and X, Figure 13) resulted in a virtual library of 24576 compounds. 

 

 

L: Linker, S1 to S9: H/-OSO3
−,  

X: H/COO− (Both R- and S-isomers included) 
 

 
Figure 13. Combinatorial virtual library based on IAS5 with linkers containing 1 to 6 
atoms. The library was created by variation of substituents S1 to S9, X, and the linker L. 
  

–CO– (keto),  –CH2CH2CH2CH2– (n-butylene) 
–CONH–(amide), –CH2CH2CH2CH2CH2– (n-pentylene) 
–CH2– (methylene),  –CH2CH2CH2CH2CH2CH2– (n-hexylene)
–CH2CH2– (ethylene),  –CH=CHCH2CH2– (1-butenyl) 
–CH2CH2CH2– (n-propylene), –CH2CH=CHCH2– (2-butenyl) 
–CH=CH– (ethenyl),  –CH2CH2CH=CH– (3-butenyl) 
–CH=CHCH2– (1-propenyl, allyl) –CH=CHCH2CH2CH2– (1-pentenyl) 
–CH2CH=CH– (2-propenyl, isoallyl), –CH2CH2CH2CH=CH– (4-pentenyl) 
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Figure 14. Docking protocol used to screen a combinatorial library of 24576 
tetrahydroisoquinoline-based compounds. Color filled box: general dual-filter algorithm.  
(See text for details).  
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Molecular modeling of the combinatorial virtual library was performed using 

SYBYL (Tripos, St. Louis, MO). The small molecule non-saccharide library was built 

using the LEGION combinatorial library design module. LEGION rapidly generates 2D 

structures in SYBYL Line Notation (SLN) in a combinatorial manner. A plausible 3D 

geometry of the 2D structures generated by LEGION was obtained using CONCORD and 

these structures were subjected to energy minimizations (Section 2.9.2) in an automated 

manner using in-house SYBYL Programming Language (SPL) scripts. The SPL scripts 

were written to simultaneously modify the atom and bond types of the sulfate groups so 

that they were identical to the types used for GAGs. The protocol used for virtual 

screening of non-saccharide molecules was identical to the previously reported dual-filter 

algorithm used for saccharides, but with additional functions (Figure 14).109 

2.2. Docking of ISOQ Library onto Activated Antithrombin (PBS and EHBS) 

Previous studies in our lab on the docking of the H5 sequence and its variants to the 

activated crystal structure of AT predicted that the modified GOLDScore (see 

experimental methods) of the H5 sequence is 140 and its binding geometry was repeatedly 

predicted to within 2.5 Å in multiple docking experiments.109 Thus, our search for small 

organic activators used these benchmarks as targets.  

We docked these virtual 24576 molecules onto the activated form of antithrombin 

(PDB entry 1TB6) as mentioned in the docking protocol.109,248 Following the affinity filter 

step, a normal Gaussian distribution of molecules was noted, as expected, with the 

majority showing poor binding to antithrombin (Figure 15). 
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Figure 15. Histogram depicting the distribution of modified GOLDScore in 10 unit 
intervals for the 24576 tetrahydroisoquinoline compounds docked onto activated 
antithrombin PBS following the first phase (affinity filter) of the dual-filter screening 
algorithm. 

 

The virtual 24576 molecules were docked to the pentasaccharide binding site (PBS) 

of antithrombin in affinity filter step (10,000 iterations). The molecules that had GOLD 

score greater than 100 (GOLD score for DEF = 115, while that for DEFGH = 140) were 

then docked in triplicate (100,000 iterations) onto the activated form of AT with 

‘specificity’ as the second filter, where only 211 molecules passed the 2.5 Å cut-off filter 

(i.e., the top ranked 2 solutions were within 2.5 Å in each run). Of these 211 molecules, 

only 92 molecules passed the stringent test of specificity filter (The RMSD of the top 

ranked 2 solutions from each run and across runs is within 2.5 Å (Table 2: RMSD data for 

92 hit compound, a measure of ‘specificity’ (At the end of this chapter with experimental 
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section). Thus, our combinatorial virtual screening results indicate that 92 molecules are 

likely to bind in the PBS of activated antithrombin with good affinity (Table 1). 

 
Table 1. Modified GOLDScore for 92 hit compounds and their structural information. 
 
Compounds with 1-Carbon Linker 
 

 

Compound ID ISOQ 
Ring 

Carboxylate 
Group 

Phenyl 
Ring  

Total 
Charge 

Mod. GOLD 
Score 

ISOQ_6162 5, 6 − 2′,3′,6′ −5 108 
ISOQ_R_6082 5,6 (R) COO− 2′,4′ −5 104 
ISOQ_S_6153 5,6 (S) COO− 2′,3′ −5 107 
ISOQ_S_6330 5,6,8 (S) COO− 3′ −5 107 

 

Compounds with 2-Carbon Linker 

 

Compound ID ISOQ 
Ring 

Carboxylate 
Group 

Phenyl 
Ring  

Total 
Charge 

Mod. GOLD 
Score 

ISOQ_S_1873 6,8 (S) COO− 2′,3′,4′ −6 102 
ISOQ_S_4255 5,8 (S) COO− 2′,4′,5′ −6 117 
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Compounds with−CONH− Linker 

 

Compound ID ISOQ 
Ring 

Carboxylate 
Group 

Phenyl 
Ring  

Total 
Charge 

Mod. GOLD 
Score 

ISOQ_R_1059 7, 8 (R) COO− 2′,3′,6′ −6 116 
ISOQ_R_277 7 (R) COO− 2′,4′,5′ −5 109 
ISOQ_R_5183 5,7,8 (R) COO− 2′ −5 109 
ISOQ_R_5218 5,7,8 (R) COO− 2′,3′ −5 119 
ISOQ_R_5325 5,7,8 (R) COO− 2′,5′ −6 121 
ISOQ_S_2072 6,8 (S) COO− 2′,5′ −5 108 
ISOQ_S_6463 5,6,8 (S) COO− 2′,5′ −6 127 
ISOQ_S_6623 5,6,8 (S) COO− 2′,4′ −6 117 
ISOQ_S_7547 5,6,7,8 (S) COO− 3′,4′ −7 121 
ISOQ_S_7832 5,6,7,8 (S) COO− 2′,4′,6′ −8 117 

 

Compounds with 3-Carbon Linker 

 

Compound ID ISOQ 
Ring 

Carboxylate 
Group 

Phenyl 
Ring  

Total 
Charge 

Mod. GOLD 
Score 

ISOQ_5809 5,6 − 2′,4′ −4 113 
ISOQ_R_1960 6,8 (R) COO− 3′,4′ −5 105 
ISOQ_S_6652 5,6,8 (S) COO− 2′,5′ −6 120 
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Compound ID ISOQ 
Ring 

Carboxylate 
Group 

Phenyl 
Ring  

Total 
Charge 

Mod. GOLD 
Score 

ISOQ_1903 6,8 − 2′,5′ −4 118 
ISOQ_2561 6,7 − 3′,4′,5′ −5 109 
ISOQ_6435 5,6,8 − 3′ −4 112 
ISOQ_R_1875 6,8 (R) COO− 2′,3′,4′ −6 111 
ISOQ_R_2106 6,8 (R) COO− 2′,4′ −5 106 
ISOQ_R_5769 5,6 (R) COO− 3′ −4 109 
ISOQ_R_6018 5,6 (R) COO− 2′ −4 107 
ISOQ_R_6053 5,6 (R) COO− 2′,5′ −5 117 
ISOQ_R_6408 5,6,8 (R) COO− 3′,4′ −6 120 
ISOQ_S_6960 5,6,7 (S) COO− 2′,5′ −6 114 

 

 

Compound ID ISOQ 
Ring 

Carboxylate 
Group 

Phenyl 
Ring  

Total 
Charge 

Mod. GOLD 
Score 

ISOQ_2096 6,8 − 2′,4′ −4 106 
ISOQ_S_5963 5,6 (S) COO− 2′,4′,5′ −6 117 
ISOQ_S_6159 5,6 (S) COO− 2′,3′ −5 108 
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Compounds with 4-Carbon Linker 

 

 

Compound ID ISOQ 
Ring 

Carboxylate 
Group 

Phenyl 
Ring  

Total 
Charge 

Mod. GOLD 
Score 

ISOQ_EXT_S_6462 5,6 (S) COO− 2′,3′,6′ −6 124 
ISOQ_EXT_5142 5,7 − 2′ −3 101 
ISOQ_EXT_6294 5,6 − 2′,5′ −4 123 
ISOQ_EXT_6550 5,6 − 2′,3′,6′ −5 123 
ISOQ_EXT_R_3182 6,7 (R) COO− 3′,4′ −5 117 
ISOQ_EXT_R_6318 5,6 (R) COO− 3′,5′ −5 117 
ISOQ_EXT_R_6542 5,6 (R) COO− 2′,3′ −5 121 

 

Compound ID ISOQ 
Ring 

Carboxylate 
Group 

Phenyl 
Ring  

Total 
Charge 

Mod. GOLD 
Score 

ISOQ_EXT_S_1229 7 (S) COO− 3′,4′ −4 113 
ISOQ_EXT_R_2861 6,8 (R) COO− 2′,5′ −5 115 
ISOQ_EXT_R_6253 5,6 (R) COO− 3′,4′ −5 117 
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Compound ID ISOQ 
Ring 

Carboxylate 
Group 

Phenyl 
Ring  

Total 
Charge 

Mod. GOLD 
Score 

ISOQ_EXT_S_6185 5,6 (S) COO− 3′ −4 129 
ISOQ_EXT_3201 6,7 − 3′ −3 108 
ISOQ_EXT_6225 5,6 − 2′,4′ −4 110 
ISOQ_EXT_R_6217 5,6 (R) COO− 4′ −4 112 
ISOQ_EXT_R_6281 5,6 (R) COO− 3′ −4 117 
ISOQ_EXT_R_6297 5,6 (R) COO− 2′,5′ −5 120 
ISOQ_EXT_R_6345 5,6 (R) COO− 3′,4′ −5 126 
ISOQ_EXT_R_6409 5,6 (R) COO− 2′ −4 118 
ISOQ_EXT_R_6473 5,6 (R) COO− 2′,5′ −5 124 
ISOQ_EXT_R_6857 5,6,8 (R) COO− 3′,4′ −6 122 
ISOQ_EXT_R_6921 5,6,8 (R) COO− 2′ −5 123 

 
Compound ID ISOQ 

Ring 
Carboxylate 

Group 
Phenyl 
Ring  

Total 
Charge 

Mod. GOLD 
Score 

ISOQ_EXT_S_1243 7 (S) COO− 2′,4′,5′ −5 118 
ISOQ_EXT_S_6411 5,6 (S) COO− 2′ −4 113 
ISOQ_EXT_S_6971 5,6,8 (S) COO− 2′,3′,6′ −7 138 
ISOQ_EXT_S_6987 5,6,8 (S) COO− 2′,4′ −6 132 
ISOQ_EXT_6467 5,6 − 2′,4′ −4 110 
ISOQ_EXT_979 8 − 2′,3′,4′,6′ −5 123 
ISOQ_EXT_R_6411 5,6 (R) COO− 2′ −4 121 
ISOQ_EXT_R_6443 5,6 (R) COO− 2′,5′ −5 127 
ISOQ_EXT_R_6555 5,6 (R) COO− 2′,3′,6′ −6 125 
ISOQ_EXT_R_6955 5,6,8 (R) COO− 2′,5′ −6 132 
ISOQ_EXT_R_731 8 (R) COO− 2′,3′,6′ −5 120 
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Compounds with 5-Carbon Linker 

 
 
 

Compound ID ISOQ 
Ring 

Carboxylate 
Group 

Phenyl 
Ring  

Total 
Charge 

Mod. GOLD 
Score 

ISOQ_EXT_S_6815 5,6,8 (S) COO− 2′,5′ −6 129 
ISOQ_EXT_855 8 − 2′,4′,6′ −4 108 
ISOQ_EXT_R_2591 6,8 (R) COO− 2′ −4 110 
ISOQ_EXT_R_3279 6,7 (R) COO− 3′,4′ −5 121 
ISOQ_EXT_R_6687 5,6,8 (R) COO− 2′ −5 125 

 
 

 
 
Compound ID ISOQ 

Ring 
Carboxylate 

Group 
Phenyl 
Ring  

Total 
Charge 

Mod. GOLD 
Score 

ISOQ_EXT_S_6234 5,6 (S) COO− 2′,4′ −5 121 
ISOQ_EXT_S_6410 5,6 (S) COO− 2′ −4 105 
ISOQ_EXT_2850 6,8 − 2′,5′ −4 121 
ISOQ_EXT_2866 6,8 − 2′,3′,6′ −5 119 
ISOQ_EXT_3906 6,7,8 − 2′,4′ −4 125 
ISOQ_EXT_6402 5,6 − 2′ −3 107 
ISOQ_EXT_6434 5,6 − 2′,5′ −4 118 
ISOQ_EXT_706 8 − 3′,4′ −3 111 
ISOQ_EXT_7938 5,6,7,8 − 2′ −5 112 
ISOQ_EXT_R_6170 5,6 (R) COO− 2′ −4 120 
ISOQ_EXT_R_6474 5,6 (R) COO− 2′,4′ −5 127 
ISOQ_EXT_R_6538 5,6 (R) COO− 2′,3′ −5 128 
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Compound ID ISOQ 

Ring 
Carboxylate 

Group 
Phenyl 
Ring  

Total 
Charge 

Mod. GOLD 
Score 

ISOQ_EXT_S_6236 6 (S) COO− 2′,4′ −4 113 
ISOQ_EXT_S_6988 5,6,8 (S) COO− 2′,4′ −6 120 
ISOQ_EXT_6532 5,6 − 2′,3′ −4 118 
ISOQ_EXT_R_2956 6,8 (R) COO− 2′,3′ −5 111 
ISOQ_EXT_R_6444 5,6 (R) COO− 2′,5′ −5 119 
ISOQ_EXT_R_6732 5,6,8 (R) COO− 4′ −4 106 
ISOQ_EXT_R_6988 5,6,8 (R) COO− 2′,4′ −6 131 

 

Compounds with 6-Carbon Linker 

 

Compound ID ISOQ 
Ring 

Carboxylate 
Group 

Phenyl 
Ring  

Total 
Charge 

Mod. GOLD 
Score 

ISOQ_EXT_S_6448 5,6 (S) COO− 2′,5′ −5 123 
ISOQ_EXT_7064 5,6,8 − 2′,3′,6′ −6 132 
ISOQ_EXT_R_3408 6,7 (R) COO− 2′,4′ −5 118 
ISOQ_EXT_R_6224 5,6 (R) COO− 4′ −4 109 
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2.2.1. Can these hit molecules preferentially bind to PBS and not to EHBS? 

Experimental evidence clearly showed that (-)-epicatechin sulfate, one of the 

reported earlier lead compounds, has reasonably good binding affinity with antithrombin 

but weaker activation. It has been found that epicatechin and related molecules that were 

designed and synthesized in our lab are able to bind antithrombin tightly, but unable to 

activate is due to fact that they were binding in the EHBS of antithrombin and not PBS. 

 Docking results of these newly designed molecules (ISOQ-hits) in contrast are 

showing GOLD scores equivalent to DEF and DEFGH on PBS of activated antithrombin. 

In order to confirm that these compounds are indeed preferentially binding in the PBS but 

not in the EHBS, we have docked the hit molecules onto EHBS of activated antithrombin. 

The binding site has been predefined to include only the EHBS, so that GOLD docking of 

hit molecules is guided into the EHBS. Out of 92 hits that recognize the PBS consistently, 

90 of them do not recognize the EHBS consistently in triplicate, indicating that our hit 

molecules are predicted to bind only the PBS and not the EHBS. 

Only 2 molecules, ISOQ_5809 and ISOQ_EXT_R_6542 were predicted to have 

significant affinity for both binding sites. However, the comparison of the GOLD scores 

and binding geometries at PBS and EHBS of these 2 molecules (Figure 16 and Table 3) 

shows that these molecules also tend to be docked preferably at the PBS, and not to the 

EHBS.   

ISOQ_EXT_R_6542 is taken as a model for explaining the preferential binding to 

PBS and not to EHBS. Figure 19 show that the predicted binding geometry in the EHBS 
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makes minimal interactions, whereas the predicted geometry in PBS has the maximal 

number of interactions.  

 

Table 3. Predicted interaction profile for hit ISOQ_EXT_R_6542 in PBS and EHBS 
 

 

Binding site Ligand group Amino acid Distance in Å 
 
 
 

PBS 

2′-O-sulfate Arg129 2.8 
3-Carboxylate Lys125 3.5 

5-O-sulfate Lys125 
Lys114 

3.1 
3.0 

6-O-sulfate Lys114 
Arg47 
Arg46 

3.0 
2.7 
3.1 

 
 

EHBS 

2′-O-sulfate Arg132 2.5 
5-O-sulfate Arg129 

Lys133 
3.0 
3.4 

6-O-sulfate Lys125 2.7 
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Figure 16. Predicted binding geometry for hit ISOQ_EXT_R_6542 in PBS and EHBS. A. 
Hit 6542 is shown in cyan stick form. B. Hit 6542 is shown green ball-and-stick form. In 
both figures, heparin binding amino acids are shown in capped stick form in orange and 
the helices A and D in magenta. The pentasaccharide sequence is shown in capped stick 
form in SYBYL atom type color, for reference.  
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This study predicts that indeed these compounds would preferentially bind at PBS 

and not at EHBS. This finding that our newly designed molecules predicted to be 

preferably binding at PBS, and not on EHBS, is a key in activation of antithrombin-

mediated indirect fXa inhibition. As mentioned earlier, previous lead compounds from our 

lab (epicatechin and related compounds) are able to bind antithrombin tightly, but are 

weakly activating antithrombin; this is due to the binding of these molecules at EHBS, and 

not at PBS. Docking experiments of these newly designed molecules suggest that these hit 

molecules bind at PBS and are approximately equivalent to DEFGH in GOLD score. 

2.3. Docking onto Native Antithrombin 

As discussed earlier, a two-step induced-fit mechanism is involved in antithrombin 

activation by the high-affinity heparin or a heparin pentasaccharide (H5). In the first step, 

heparin recognizes the native antithrombin (AT) and forms a low-affinity complex (AT: H) 

in rapid equilibrium, then is followed by a major conformational change to give a high-

affinity complex (AT*:H). The conformational change results in the expulsion of the 

partially inserted RCL residues. This is called conformational activation of antithrombin. 

The conformationally activated antithrombin recognizes the factor Xa better, thus 

increasing the effectiveness of the inhibition. 

2.3.1. Can the ISOQ hits produce the necessary conformational changes in AT as H5 

does? 

To predict whether or not this can happen, we docked our 92 hit compounds in 

triplicate onto the native antithrombin PBS (PDB entry 2ANT)141 to see if they have any 
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preferential binding to the native form of antithrombin. These molecules were in general 

had lower GOLD scores when docked to native antithrombin. Also they were not docked 

consistently as in the PBS of activated form. This can be interpreted to mean that they are 

mimicking the initial recognition (low affinity complex formation) with the native 

antithrombin. Since the conversion of native antithrombin to activated antithrombin 

happens in rapid equilibrium, it is hard to say how much GOLD score would be required to 

bring about this change. 

 

Compound GOLD score for 
native AT 

GOLD score for 
activated AT 

ISOQ_R_277 93 109 
ISOQ_R_6018 107 107 
ISOQ_EXT_R_6411 92 121 

 
Figure 17. Structures of ISOQ_R_277, ISOQ_R_6018 and ISOQ_EXT_R_6411 that are 
docked consistently to both native and activated forms of antithrombin in triplicate 
docking experiments. Groups in magenta shows the structural similarity between 
ISOQ_R_6018 and ISOQ_EXT_R6411. 
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Interestingly, there are 3 molecules of the 92 hit docked onto native antithrombin in 

triplicate experiments within 2.5 Å RMSD: ISOQ_R_277, ISOQ_R_6018 and 

ISOQ_EXT_R_6411 (Figure 17). Comparison of GOLD scores for ISOQ_R_6018 and 

ISOQ_EXT_R_6411 in native and activated antithrombin shows an interesting 

phenomenon. Both structures are structurally very similar, except that the hit 6411 has a 4-

carbon linker and a double bond close to the phenyl ring, whereas the hit 6018 has a 3-

carbon linker and a double bond close to the bicyclic ring. 

 

 
 
Figure 18. Predicted binding geometry for hit ISOQ_R_6018 and ISOQ_EXT_R_6411 in 
the PBS of activated antithrombin. Hit 6411 shown in cyan capped stick and hit 6018 in 
green. Activated antithrombin heparin-binding amino acids (labeled in black) are shown in 
capped stick form in orange and the helices A, D and P in magenta; whereas native form 
amino acids are shown in capped stick form in white (labeled in red), and the helices A and 
D in tan. The protein-ligand interactions are circled. Note the differences in orientation of 
heparin binding amino acids in native and activated antithrombin. 
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The predicted binding mode of both the compounds are similar as shown in Figure 

18, except that the phenyl ring orientation is better for hit 6411, perhaps due to the π-bond 

effect in the phenyl ring end (3-ene) placing the ring system more appropriately to gain 

hydrophobic interaction with the long side chain of the spatially conserved Arg129 (see 

detail in Chapter 3, Section 3.4.1). This explain why the GOLD scores in the PBS of 

activated thrombin for the hit 6018 with a short linker (3-carbon) and the hit 6411 with an 

extended linker (4-carbon, thus the notation EXT for 4 or more carbon length) are 107 and 

121, respectively. 

Interestingly, the hit 6018 with a 3-carbon linker has the better GOLD score of 107 

for native antithrombin than the hit with a 4-carbon linker that has the GOLD score of 92 

for native, but a better profile for activated antithrombin. A closer look at the predicted 

binding geometries of these hit molecules show that the short linker hit 6018 interacts with 

Arg129, Lys125 and Arg47 of native antithrombin well within H-bond distances.  

However, the extended linker hit 6411 makes only a few interaction in the native 

antithrombin PBS (Figure 19A and 19B).  

The results show that our hit molecules predicted to preferentially bind to activated 

antithrombin rather than native antithrombin. However, they are also predicted to have 

significant recognition capability for native antithrombin, which is very important for the 

two-step induced-fit mechanism of antithrombin activation.  The compounds with a 4-

carbon linker may be promising candidates for initial recognition of native antithrombin, 

and also to activate fully antithrombin to inhibit factor Xa.  
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Figure 19. A. Predicted interaction of the short linker hit 6018 with native AT.

 
Figure 19. B. Predicted interaction of the extended linker hit 6411 with native AT. 
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2.4. Analysis of Predicted Binding Modes in the PBS of Activated Antithrombin 

a. Linker types 

In total, 16 types of linkers were explored that connect the bicyclic-unicyclic ring 

systems in the core structure (Figure 13). Structural analysis of the 92 hit molecules in the 

linker region showed the order of significance of the linkers as follows based on how many 

molecules had the particular linker type.  

 

Figure 20.  Histogram plot of the number of atoms in the linker for the 92 hits obtained 
from virtual screening of a non-saccharide sulfated library 
 

It is predicted that a 4- or 5- carbon linker with a double bond at either end of the 

linker provides optimal geometries for these structures, allowing them to have strong 

interactions with antithrombin. Of the 92 hits, 32 had an all-carbon 4-atom linker, while 24 

had an all-carbon 5-atom linker (Figure 20). Of the 56 hits that had a 4- or 5-carbon linker, 

34 had as (E) double bond configuration with a strong preference to be alpha to either the 
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nitrogen atom or the phenyl ring (Figure 21) while 10 contained a (Z) double bond 

configuration alpha to the phenyl ring system. The remaining 12 contained a fully 

saturated linker.  

The order of preference for the linkers is as follows:  

-CH=CHCH2CH2CH2- (12) > -CH=CH2CH2CH2- (11) = -CH2CH2CH=CH- (11) > 

-CH=CHCH2- (10) > -CONH- (10) > CH2CH2CH2CH2- (7) > -CH2CH2CH2CH=CH- (7) > 

-CH2CH2CH2CH2CH2- (5) > -CH2CH2CH2CH2CH2CH2- (4) = -CH2- (4) > -

CH2CH=CHCH2- (3)> -CH2CH2CH2- (3) CH2CH=CH2 (3) > CH=CH- (2). 

 

 

 

 

 

ISOQ_EXT_R_6345 

 

ISOQ_EXT_R_6443 

Figure 21. The hit structures with 4-carbon linkers showing double bond positions either 
close to tetrahydroisoquinoline ring (6345) or phenyl ring system (6443). 
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Of 25 molecules that have a double bond in the 4 carbon linker, 22 of them have 

the double bond either close to isoquinoline ring or phenyl ring system (1-ene or 3-ene).  

This indicates that the restricted rotation around the bulky ring system may help in 

orientation of negatively charged functional groups in the binding site (Figure 21).  

b. Importance of 3-carboxylate group 

The 3-carboxylate in the tetrahydroisoquinoline ring may form a hydrogen bond 

interaction with Lys125, provided that other sulfate groups in the tetrahydroisoquinoline 

ring are appropriately positioned. Of 92 hit molecules, 69 (75%) of them has the COO− 

group at position 3 of tetrahydroisoquinoline ring. The large percentage of hits containing 

the 3-carboxylate indicates that substitution at this position with a negatively charged 

group is of great significance.  

 The protein-ligand interaction analysis shows that out of 69 molecules with COO− 

group, 43 of them are (R)-isomer and 26 are (S)-isomer. Though statistically the (R)-isomer 

is preferred, (S)-isomers also have equally high GOLD scores (Table 1), indicating that 

either isomer should be fine in that position, depending on other substitutions.  

For example, the unique feature that facilitates the COO¯  interaction with Lys125 

is the presence of 5-O-sulfate and 6-O-sulfate in the tetrahydroisoquinoline ring. In 

particular, if the structure has 6, 7 or 6, 8 position sulfates, it is the 7-O-sulfate or 8-O-

sulfate that interacts with Lys125 and not the 3-carboxylate (Figure 22). 
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Figure 22. ISOQ_R_6018 shows double hydrogen bond with Lys125 through the 5-O-
sulfate and 3- carboxylate, but ISOQ_R_1059 hydrogen bonds with Lys125 through the 8-
O-sulfate. 
 

  It is predicted that the presence of 5-O-sulfate and 6-O-sulfates in the ligand 

structure helps Lys125 of antithrombin to form a double hydrogen bond, which makes the 

ligand a better candidate for affinity (Figure 23). This distribution favors the molecule to 

bind in such a way that facilitates the interaction of 3-carboxylate to Lys125. This is also 

the reason why other compounds do not interact with Lys125. The presence of sulfate 

groups only at the 6- and 8-, or 7-and 8- positions in the tetrahydroisoquinoline ring system 

changes the face of the molecule in the opposite way such that the 8-O-sulfate interacts 
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with Lys125 rather than the COO¯. There is a mutual competition between the 8-O-sulfate 

group and the 3-COO¯ for Lys125, which is determined by the distribution of the rest of 

the sulfate groups in the system. 

 

Figure 23. Predicted binding geometry for hit ISOQ_R_6955 in the PBS of activated 
antithrombin showing the influence of the 5- and 6-O-sulfates on the 3-carboxylate 
interaction. The capped stick form of ‘hit’ 6955 is shown in green and sulfate groups in 
SYBYL atom type. Activated antithrombin heparin binding amino acids are shown in 
capped stick form in orange and the helices A, D and P in magenta. Note that the 3-
carboxylate and 5- and 6-O-sulfates are in the same direction, whereas the 8-O-sulfate 
faces in the opposite direction. 
 
 

c. Distribution of sulfate groups determines the binding mode 

Overall, it is the distribution of sulfate groups in the core structure that make 

hydrogen bond and ionic interactions with basic amino acids that determines whether a 

molecule is going to bind and activate antithrombin or not. Although it looks simple, there 

Lys125 
Lys114 
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is a significant preference for the presence of sulfate group in certain positions over others. 

Structural information analysis of GOLD-docked dual filtered hit molecules reveals that 

certain patterns of sulfate group substitution occur present more often than others. The 

average number of sulfate groups in the tetrahydroisoquinoline and phenyl ring system that 

is necessary is 2.  

The frequency of charges at various positions of the core structure is shown in the 

histogram (Figure 24), indicating the importance of charged functionalities at different 

positions. 

 

 

Figure 24. Histogram plot of the frequency of charged groups (carboxylate and sulfate) in 
various positions of the 92 hit compounds obtained from virtual screening of a non- 
saccharide sulfated library. 
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In Figure 25, the important positions are shown in color-filled ovals with their 

respective percent sulfation among the 92 hit molecules. With respect to number and 

distribution of negative charges, the majority of hits contained 4 to 6 negative charges.  

Most interestingly, 48 of the 92 hits contained a 3,5,6-trisubstitutedtetrahydro 

isoquinoline fragment (Figure 26) suggesting that sulfate groups at the 5- and 6-position of 

the tetrahydro isoquinoline ring favorably contribute towards affinity .  

 

 

 

 
Figure 25. Core structure showing the putative pharmacophore (colored ovals) for a series 
of ISOQ analogs binding in the pentasaccharide binding site of activated antithrombin (L = 
Linker size of 4- to 5-carbon length, R = –OSO3¯). 
 
 
  

 

3,5,6-trisubstituted tetrahydroisoquinoline fragment 

Figure 26. Key pharmacophore of the bicyclic ring system (referred as fragment I for 
discussion purpose in the text) identified by docking to the PBS. 

86% 

 71% 

 75% 

 77% 



   

79 
 

The number of sulfate groups in the ring systems predicts the binding mode to be 

one of two poses. The following example highlights the uniqueness of the distribution of 

the sulfate groups and their impact in determining binding mode. Molecule ISOQ_R_277 

is binding to activated antithrombin at PBS just exactly opposite direction compared to 

molecule ISOQ_R_5183 (Figure 27).  

 

 

 
Figure 27. ISOQ _R_5178 and ISOQ_R_277 interactions with key basic amino acids 
showing a complete reversal in its binding mode based on sulfate group distribution. 
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The two molecules hit 5178 and hit 277 are essentially the same in its core structure 

except in the distribution of sulfate groups. Hit 5183 has 5-, 7-, and 8-O-sulfate groups in 

the tetrahydroisoquinoline ring system and the 2´-O-sulfate in phenyl ring system whereas 

hit 277 has 2´-, 4´-, and 5´-O-sulfates in phenyl ring and 7-O-sulfate in 

tetrahydroisoquinoline ring. This results in a complete predicted reversal of binding mode. 

Furthermore, this kind of ‘flip’ is only observed when the tetrahydroisoquinoline 

ring has one sulfate group and phenyl ring has more than 1 or 2, but if the number of 

sulfate groups in the tetrahydroisoquinoline ring becomes 2 then the tetrahydroisoquinoline 

stays in its preferred original binding mode even if the phenyl ring has 3 sulfate groups. 

This prediction indicates that the number of sulfate group in the tetrahydroisoquinoline 

ring predominantly determines the binding mode. 

d. Predicted Binding Geometry of the Representative Hit Molecule 

Hit molecule ISOQ_EXT_R_6955 represents one of the high-scoring favorable 

molecules that have all of the above mentioned structural features. Hit 6955 contain a 4-

carbon linker with a double bond alpha to the phenyl ring. 3-carboxylate, 5-, 6-, and 8-O-

sulfates in the bicyclic ring, and 2′-, and 5′-O-sulfates in the phenyl ring system. Since this 

molecule represents the common binding mode among most of the hit molecules, we will 

discuss in detail its interactions with activated antithrombin at PBS (Figure 28 and Table 

4). 
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Figure 28. Predicted binding geometry for hit ISOQ_R_6955 in the PBS of activated 
antithrombin. The capped stick form of hit 6955 is shown in green and sulfate groups in 
SYBYL atom type. Activated antithrombin heparin-binding amino acids are shown in 
capped stick form in orange and the helices A, D and P in magenta. The interactions are 
shown as dotted lines between ligand and amino acids. 
 
 
 Analysis of protein-ligand interaction predicted that the 3-COO− to interact with 

Lys125, the 5-O-sulfate with Lys125 and Lys114, and the 8-O-sulfate with Arg46.  The 6-

O-sulfate is predicted to interact with Arg46, Arg47 and/or Lys114. Its position is optimal 
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Arg132 
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in that it can anchor itself in the middle of Lys114, Arg46 and Arg47. It is interesting to 

see that 79 of 92 hit molecules (86%) have a 6-O-sulfate, which in all cases interact with 

Arg46, and Arg47/or Lys 114. This implies that this group may preferentially recognize a 

specific feature in the protein. The 6-O-sulfate and other sulfate groups H-bond 

specifically and exhibit a preferential binding mode. Analysis of sulfate group distribution 

also reveals that with some preferable combinations it is possible to attain positive 

interactions with critical basic amino acids (3-COO¯, 5-O-sulfate and 6-O-sulfate).  

 In the phenyl ring system, the 2′-O-sulfate is interacting with Arg129 and the 5′-O-

sulfate with Arg132, with additional interactions beyond those observed for the 

pentasaccharide. A combination of 2′- and 5′-O-sulfates appears to be optimal on this end. 

 
Table 4. Predicted interaction profile for hit molecule ISOQ_EXT_R_6955 at activated 
antithrombin PBS. 
 

Fragment Ligand group Amino acid Distance in Å 

 

Bicyclic ring 

(Tetrahydro 

isoquinoline) 

3-Carboxylate Lys125 3.5 

5-O-sulfate Lys125 

Lys114 

3.3 

2.8 

6-O-sulfate Lys114 

Arg47 

Arg46 

3.0 

2.9 

2.6 

8-O-sulfate Arg46 3.1 

Unicyclic ring 

(Phenyl) 

2′-O-sulfate Arg129 3.0 

5′-O-sulfate Arg132 2.9 
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Structural and predicted binding geometry analysis of the following hit molecules 

show that although they share many common features, differences in one or two important 

positions can have a significant or insignificant effect on binding affinity in terms of 

GOLD score (Figure 29 and 30).  

Comparison of structures of ISOQ-EXT_R_6955, ISOQ-EXT_R_6411, ISOQ-

EXT_R_6443 and ISOQ_EXT_6467 allows us to identify critical features needed for a 

high GOLD score. For example, ISOQ-EXT_R_6443 is essentially the same as ISOQ-

E6955 except for the absence of an 8-O-sulfate.  

 

 

 
Figure 29. Representative structures showing the importance of sulfate and carboxylate 
groups and their contribution to the modified GOLDScore. Important groups in the 
reference hit 6955 are shown in the color filled ovals. Red icons indicate the absence of 
that particular substitution in comparison to the reference structure. 
 

ISOQ_EXT_R_6955 (GOLD SCORE 132) ISOQ_EXT_R_6443 (GOLD SCORE 127)

ISOQ_EXT_R_6411 (GOLD SCORE 120) ISOQ_EXT_6467 (GOLD SCORE 110) 
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Figure 30. Predicted binding geometry of hit molecules in the activated antithrombin PBS. 
Green crosses show the interactions of reference hit 6955. Red crosses show the missing 
interactions in comparison to the reference compound responsible for reduction in the 
GOLD score.  
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The absence of the 3-carboxylate group makes a large difference in GOLD score of 

ISOQ-EXT_6467 (127 to 110) and is well below the average GOLD score for a ‘hit’ 

candidate. (The average GOLD Score for hit compounds is 119). This indicates the 

importance of 3-carboxylate group.  

Hit 6443 is predicted to lose one interaction with Arg46 due to the absence of the 

8-O-sulfate. Hit 6411, in addition to the 8-O-sulfate, does not have a 5′-O-sulfate group 

which is predicted to result in the loss of another hydrogen bond interaction with Arg132. 

This supports the idea of having 2 negatively charged groups in the phenyl ring system 

preferably in the 2′- and 5′- positions. The 2′-O-sulfate is predicted to interact with Arg129 

and the 5′-O-sulfate with Arg132.  

The 3-ene double bond in the linker provides an additional structural feature that 

restricts flexibility along the linker and places both 2′- and 5′-O-sulfate groups 

appropriately for interactions with Arg129 and Arg132 respectively.   

Interestingly, even though some of the interactions are missing in these molecules 

in comparison to the reference structure (hit 6955), the presence of 5- and 6-O-sulfates and 

the 4-carbon linker appears to play an important role in maintaining the same binding 

geometry (Figure 30). 
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Figure 31. Hit molecule ISOQ_EXT_R_6955 showing the critical pharmacophore. Ovals 
in tan color represent the minimal requirements to recognize the PBS, whereas the ovals in 
light green make additional interactions. 
 

Based on the molecular docking predictions, we propose that the bicyclic ring 

(tetrahydroisoquinoline) and the unicyclic ring (phenyl) connected by a 4-carbon linker 

with a ‘trans’ double bond alpha to the phenyl ring, and 5-, 6- and 2′-O-sulfates form the 

basis for recognition of activated antithrombin PBS in a consistent manner. Additional key 

interactions are made by 8-O-sulfate (Arg46), 3-carboxylate (Lys125) and 5′-O-sulfate 

(Arg132) groups for higher GOLD score, and presumably higher affinity (Figure 31). 

e. Summary of structural features of most favorable hits 

 The representative hit ISOQ_EXT_R_6955 from the virtual screening study shows 

the best fit in the PBS of activated antithrombin (Figure 28 and Table 4), but how well 

does this molecule mimic the interactions of DEFGH, a heparin pentasaccharide? Figure 

32 shows an overlay between pentasaccharide H5CRYS (Figure 9) and the hit 6955 from the 

virtual screening study that contains the 3, 5, 6-trisubstituted tetrahydroisoquinoline 

fragment shown above and a 2′-O-sulfate group in the unicyclic ring. The indicated pose of 

Arg46 
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and Lys114 

Lys114/125 

Lys125 
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ISOQ_EXT_R_6955 was repeatedly predicted in triplicate docking experiments to be 

within 2.5 Å RMSD (Table 2).  

The figure shows the predicted striking similarities in the location of 4 negative 

charges: 1) the 2′-O-sulfate group of ISOQ_EXT_R_6955 overlaps with the D-ring 6-O-

sulfate group of H5CRYS, 2) the 3-carboxylate overlaps with the E-ring carboxylate of the 

H5CRYS, 3) the 5-O-sulfate overlaps with the critical unique F-ring 3-O-sulfate of the 

H5CRYS and 4) the 6-O-sulfate overlaps with the G-ring carboxylate group of the H5CRYS. 

Figure 32. Overlay of heparin pentasaccharide H5 (gray), obtained from the crystal 
structure (PDB: 1TB6) and the consistently-predicted docking pose of hit 
ISOQ_EXT_R_6955 (green, structure shown in in-lay) from the virtual screening study of 
sulfated non-saccharide molecules. Overlying negative charges (sulfate and carboxylate 
groups) are circled. The critical PBS residues Lys114, Lys125 and Arg129 interact with 
the 6-O-sulfate, 5-O-sulfate and 2′-O-sulfate groups of ISOQ_EXT_R_6955, respectively, 
which in turn overlay with the G-ring carboxylate, F-ring N-sulfate and D-ring 6-O-sulfate 
groups of the H5 sequence. In addition, the 3-carboxylate of ISOQ_EXT_R_6955 and the 
E-ring carboxylate of H5 overlap and interact with Lys125. The 5′-O-sulfate makes an 
additional interaction with Arg132. 
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These charges are predicted to interact with the critically important positively charged triad 

(Lys114, Lys125 and Arg129) which is located in the pentasaccharide-binding site (PBS) 

in antithrombin (AT). Additionally, the 5′-O-sulfate group of ISOQ_EXT_R_6955 is 

predicted to interact with the extended heparin-binding site residue Arg132. Thus, the 

bicyclic ring is predicted to bind in the center of the PBS, and the unicyclic ring at the 

interface of the PBS and EHBS. 

It is important to note that the 6-O-sulfate group in ISOQ_EXT_R_6955 overlaps 

with a carboxylate group of H5CRYS. Since the 6-O-sulfate group is well-placed in the 

middle of Lys114, Arg46 and Arg47, and the sulfate group contains three potential 

interaction points, it is predicted to simultaneously interact with Lys114 (Helix P) and the 

N-terminal residues Arg46 and Arg47 (Helix A) (Figure 27 and table 6). At the same time, 

the G ring carboxylate of H5CRYS appears to interact only with Arg46 (hydrogen bond and 

ionic interaction).  

Another interesting result of our virtual screening study is the dependence of the 

overlap of structures shown in Figure 33 with linker length for the series of hits that 

contain fragment I and the 2´-O-sulfate group of the unicyclic ring. 

Figure 34 reveals that, irrespective of the exact nature of the linker, the docking 

pose orients the interacting negative charges in an identical manner. For example, 

ISOQ_EXT_R_6748 with a 5-carbon linker containing a (Z)-double bond has a predicted 

binding mode similar to ISOQ_EXT_R_6687 that contains a fully saturated linker. This 

binding mode does not depend on the configuration of the carboxylate group (R- and S- 

isomers dock similarly) or even the absence of this group (not shown). This prediction 
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supports our conclusion that while 5- and 6-O-sulfates are necessary for favorable binding 

mode in PBS, a 4- to 5- carbon linker is predicted to be optimal for placing the unicyclic 

ring to reach for interaction with Arg129.  

Table 5. Summary of structural features of hit molecules  

 
Fragment I Number 

of ‘hits’ GOLD Scores 
Percentage with 

4 or 5 carbon 
linkers 

 

37 104-132 76% 
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ISOQ_EXT_R_6170 (Cyan) 

 

ISOQ_EXT_R_6687 (Gray) ISOQ_EXT_R_6988 (Black) 

Figure 33. The hit structures with fragment I, but with variation in the linker 
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Figure 34. Overlay of different docked poses of hits cotaining core fragment I and 2'-
substituted unicyclic ring. Note the striking similarity of ortientation of the bicyclic ring 
and circled negative charges. Green capped stick: ISOQ_EXT_R_6955; Cyan capped 
stick: ISOQ_EXT_R_6170; Gray capped stick: ISOQ_EXT_R_6687; Black capped stick: 
ISOQ_EXT_R_6988.  
 

2.5. Initial Biochemical Validation of Modeling Results 

The molecular modeling results presented in the above sections lead to several 

hypotheses, as may be apparent from the discussion following results. Of special 

importance are three hypotheses. The modeling results suggest 1) an optimal length of the 

4 to 5 atom linker; 2) 2′,5′-disulfated unicyclic ring; and 3) 3,5,6-trisubstituted bicyclic ring 

are to be important. The hypotheses form the basis of synthetic work currently in progress 

in the Desai laboratory. The synthesis of highly sulfated molecules is challenging as 

demonstrated by previous work on such molecules in the laboratory.209 To date, no 
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molecule with all three features has been synthesized. Yet, the laboratory has just 

synthesized and tested one molecule that may serve as initial test of molecular modeling 

experiments. 

 
 
Figure 35. Structure of synthesized molecule 67A2L25. 

 

 
 
Figure 36. The predicted binding modes for the synthesized molecule 67A2L25 in 
triplicate docking experiment (2 top ranked solutions from each experiment). The solid 
black lines show the possible interactions between the ligand and the protein. Maximum 
GOLDScore is 97.2. 
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Potential activator 67A2L25 (Figure 35) was synthesized (by Mr. Al-Horani) and 

evaluated (by Dr. Liang) using the standard antithrombin activation protocol developed by 

the laboratory. Activator 67A2L25 has a 6,7-disulfated bicyclic ring (instead of 5,6-

disubstitution), a two carbon linker (instead of 4 or 5 carbon linker); and a 2,5-

disubstituted unicyclic ring (as desired).  

Biochemical analysis of 67A2L25 shows an antithrombin activation potential in the 

region of 50- to 100-fold (the high variance is because of the very high salt content as 

impurity in the sample). The activation potential of 67A2L25 is much less than full 

antithrombin activation (300-fold), but significantly more than 8 – 30-fold activation 

achieved with previous designs.134,135,209 The antithrombin affinity was found to be 

between 1 and 5 μM at pH 7.4. This is significantly higher than affinities of all previous 

designs (50 to 500 μM),171,212,214 though still less than most potent saccharide-based 

activators (50 to 100 nM).  

Since the synthesized molecule was not originally present in the virtual library, this 

molecule was docked using the same docking parameters. Modeling results for the 

synthesized molecule shows that the GOLD score for 67A2L25 is 97.2, which is lower 

than the scores for the hit molecules identified in the virtual library screening, and the 

binding modes are also divergent in triplicate docking experiments.  

Several conclusions may be derived based on this single data point. 1) The 

activation is not full (50-100 fold in comparison to 300-fold) for compound 67A2L25 

probably because of the absence of optimal structural features, as predicted by GOLD 

modeling; 2) the activation is much better than that realized with previous designs 
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probably because of the slightly longer linker and/or 2′,5′-disulfation of the unicyclic ring; 

3) the antithrombin affinity of 67A2L25 is found to be higher perhaps because of more 

optimal features (slightly longer linker and/or 2,5-disulfation of unicyclic ring) than those 

present in previous designs; and  4) the antithrombin affinity of 67A2L25 is not as great as 

the most optimal saccharide activators because all features suggested by the docking 

experiments have not been introduced. Overall, the antithrombin binding and activation 

results obtained with 67A2L25 are consistent with the GOLD-based molecular modeling 

results obtained and provide stronger impetus to synthesize and test the ‘high-affinity, 

high-specificity’ molecules identified in this work.  

2.6. Experimental Section 

2.6.1. Software/Hardware  

SYBYL 7.2 (Tripos Associates, St. Louis, MO) was used for molecular 

visualization, for minimization, and for adding hydrogens to protein structures from the 

Protein Data Bank. All modeling was performed on MIPS R16K or R14K IRIX 6.5-based 

SGI Tezro and Fuel graphical workstations. GOLD version 3.0 was used for docking 

experiments. Combinatorial tetrahydroisoquinoline bicyclic-unicyclic small molecule 

structures were built using LEGION, a structure building module that creates all possible 

structures in compliance with the given input limits for a core structure. Then the structures 

were converted into 3D form by the program CONCORD and checked for atom types in an 

automated manner using in-house SPL (SYBYL Programming Language) scripts. 
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2.6.2. Energy Minimizations 

Energy minimization of modeled structures was performed to optimize the 

geometric conformation of small molecules in the library and the protein antithrombin. 

Except where stated, energy minimization was performed using the Tripos Force Field 

with Gasteiger-Hückel charges, a fixed dielectric constant of 80, and a non-bonded cutoff 

radius of 8Å. Minimization was carried out for a maximum of 5000 iterations subject to a 

termination gradient of 0.05 kcal/(mol-Å) for protein whereas for small molecules 10000 

iterations subject to a termination gradient of 0.01 kcal/(mol-Å). 

2.6.3. Protein Coordinates  

The coordinates for the activated form of AT were extracted from the crystal 

structure of the ternary AT–pentasaccharide–thrombin complex (PDB entry 1TB6). 

Hydrogen atoms were added in SYBYL 7.2 and the structure was minimized with fixed 

heavy-atom coordinates using the Tripos force field for 1000 iterations subject to a 

termination gradient of 0.05 kcal / (mol-Å). Single-point correction was made on AT 

(1TB6) at Lys133 side chain which is incomplete in its original crystal structure 

(AT_K133). The side-chain of the corrected residue was optimized through energy– 

minimization in which the all other side chains were held rigid. Native antithrombin 

coordinates were extracted from PDB structure 2ANT.  

2.6.4. Coordinates for ISOQ Virtual Library  

The coordinates for the virtual library of 24576 compounds based on the 

tetrahydroisoquinoline scaffold were generated with a series of SPL scripts from a core 
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structure with variable substitutions using LEGION and CONCORD. Atom type checks 

and appropriate changes were made by an in–house SPL script.109 The structures were then 

minimized using the Tripos force field for 10000 iterations subject to a termination 

gradient of 0.01 kcal / (mol-Å) in an automated manner. 

2.6.5. Docking Protocol 

Docking of the virtual library onto the activated and native form of antithrombin 

was performed with GOLD v.3.0. The Pentasaccharide Binding Site (PBS) in activated 

antithrombin is predefined as all atoms within 16 Å from the Cζ atom of Phe121 in the D 

helix. This definition of the binding site covers all important known heparin binding 

residues including Lys11, Arg13, Arg46, Arg47, Trp49, Lys114, Phe121, Lys125, Arg129, 

and Arg132. 

The Extended Heparin Binding Site (EHBS) in activated antithrombin is predefined 

as all atoms within 14 Å from Cα of Lys133 in the D helix which includes Lys125, Arg129, 

Arg132, Lys133, Lys136, and Lys139.  

The binding site in native antithrombin is predefined as all atoms within 19 Å from 

the terminal N atom of Lys125 in the D helix which includes Lys11, Arg13, Arg46, Arg47, 

Trp49, Lys114, Phe121, Lys125, Arg129, and Arg132. 

GOLD is a “soft docking” method that implicitly handles local protein flexibility 

by allowing a small degree of interpenetration, or van der Waals overlap, of ligand and 

protein atoms. GOLD also optimizes the positions of hydrogen-bond donating atoms on 
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Ser, Thr, Tyr and Lys residues as part of the docking process. Unless specified otherwise, 

default parameters were employed during the GOLD docking runs. 

When docking the virtual combinatorial library, a two-step docking protocol was 

utilized. The first step consisted of docking all structures in the library using 10000 GA 

iterations (7×8 speed up) and GOLD score evaluation of only the top-ranked solution. In 

this step, most promising candidates were identified (structures with GOLD Score of 100 

and above, GOLD Score for DEF is 115 and for DEFGH is 140). The second step 

consisted of docking of hits obtained from the first step in triplicate using no speed-up 

and a genetic algorithmic search with 100000 iterations for each of 10 runs to ensure 

reproducibility and to reduce false positives. In this search, GOLD starts with a population 

of 100 arbitrarily docked ligand orientations, evaluates them using a scoring function (the 

GA “fitness” function) and improves their average “fitness” by an iterative optimization 

procedure that is biased toward high scores. As the initial population is selected at random, 

several such GA runs are required to more reliably predict correct bound conformations. In 

this study 10 GA runs were performed with the GOLD score as the “fitness” function. 

Collectively, these 10 GA runs will be referred to as one docking experiment. In addition, 

to enhance speed, the GA was set to preterminate if at any point during the docking run the 

top two ranked solutions were within 2.5 Å RMSD. The top-ranked solution of each 

docking experiment was considered for further analysis.  

Docking was driven by the GOLD scoring function. Although this scoring function 

correlates with the observed free energy of binding, a modified form of the scoring 

function has been found to be more reliable for this purpose. This modified GOLDScore, 
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which utilizes hydrogen-bonding and van der Waals interactions (Eq.1) was used to rank 

the final docked solutions. 

௠௢ௗ݁ݎ݋ܿܵܦܮܱܩ  ൌ ௘௫௧ܤܪ  ൅ 1.375 ൈ ܦܸ ௘ܹ௫௧ .ݍܧ ሺ2ሻ  
 

HBext and VDWext are the “external” (non-bonded interactions taking place between the 

ligand and receptor) hydrogen bonding and van der Waals terms, respectively. Unless 

otherwise noted, the terms ‘GOLD Score’ and ‘modified GOLDScore’ in this work both 

refer to Equation 2.  

 

Table 2. RMSD data for hit molecules which passed the affinity and specificity filter 
convergence cut off value 2.5 Å in triplicate. 
 

SL. 
NO. 

COMPOUND DOCK 1 DOCK 2 DOCK 3 RMSD RMSD RMSD 
RMSD RMSD RMSD 1 to 2 2 to 3 1 to 3 

1 ISOQ_1903 1.4 1.5 1.2 1.5 1.8 1.6 
2 ISOQ_2561 2.4 2.2 1.8 2.2 2.4 0.9 
3 ISOQ_6435 0.9 1.4 0.8 1.5 1.1 1.1 
4 ISOQ_2096 2.0 1.3 0.5 1.5 1.5 0.7 
5 ISOQ_5809 1.6 2.3 1.7 1.3 1.6 1.8 
6 ISOQ_6162 1.1 0.8 1.4 1.3 1.3 1.3 
7 ISOQ_R_1875 0.9 2.4 1.0 1.7 1.2 1.7 
8 ISOQ_R_2106 1.8 1.4 1.1 1.8 1.3 1.7 
9 ISOQ_R_5769 1.3 1.4 1.8 1.5 1.1 1.5 
10 ISOQ_R_6018 0.5 0.5 0.5 0.8 1.1 1.1 
11 ISOQ_R_6053 0.2 0.7 2.3 1.0 1.2 1.2 
12 ISOQ_R_6408 1.5 1.1 2.2 1.8 1.2 1.8 
13 ISOQ_R_1960 0.5 1.4 1.5 1.1 1.8 1.6 
14 ISOQ_R_6082 1.8 1.6 0.8 1.4 1.4 1.2 
15 ISOQ_R_1059 1.1 0.5 0.6 0.8 1.0 0.9 
16 ISOQ_R_277 0.4 1.1 0.3 1.1 1.1 0.9 
17 ISOQ_R_5183 2.3 0.2 0.9 1.1 1.0 0.9 
18 ISOQ_R_5218 1.3 0.7 2.3 1.0 0.9 1.1 
19 ISOQ_R_5325 1.4 1.0 1.8 1.7 2.2 1.8 
20 ISOQ_S_1873 1.4 1.2 1.2 1.7 1.2 1.5 



   

98 
 

21 ISOQ_S_2072 0.2 1.9 0.7 1.9 1.6 1.5 
22 ISOQ_S_4255 1.4 0.5 1.3 1.5 1.3 1.2 
23 ISOQ_S_5963 0.8 1.0 0.6 1.0 0.9 1.0 
24 ISOQ_S_6153 2.4 1.3 2.3 2.4 1.1 2.5 
25 ISOQ_S_6159 1.6 0.6 1.0 1.0 1.2 1.0 
26 ISOQ_S_6330 0.8 1.7 1.0 1.3 0.9 1.1 
27 ISOQ_S_6463  1.7 1.9 0.9 1.6 1.3 1.4 
28 ISOQ_S_6623 0.9 1.0 1.0 1.4 0.6 1.4 
29 ISOQ_S_6652 1.6 1.3 0.6 1.8 1.5 1.7 
30 ISOQ_S_6960' 2.4 2.2 2.4 2.4 2.4 1.2 
31 ISOQ_S_7547 0.9 1.6 0.7 1.1 1.5 1.7 
32 ISOQ_S_7832 0.8 0.7 1.4 0.9 1.2 1.1 
33 ISOQ_EXT_S_1229 1.1 0.3 1.1 1.0 1.0 1.0 
34 ISOQ_EXT_S_1243 0.7 1.3 0.2 1.3 0.7 1.3 
35 ISOQ_EXT_S_6185 0.6 1.1 0.7 1.2 1.1 1.4 
36 ISOQ_EXT_S_6234 1.6 2.0 2.5 1.4 1.5 1.5 
37 ISOQ_EXT_S_6236 2.1 1.0 1.1 1.7 1.7 1.1 
38 ISOQ_EXT_S_6410 2.3 1.5 2.0 2.1 1.8 1.6 
39 ISOQ_EXT_S_6411 1.5 0.5 1.4 1.1 1.2 1.2 
40 ISOQ_EXT_S_6448 0.7 0.6 1.2 1.7 1.4 2.1 
41 ISOQ_EXT_S_6462 1.5 1.4 1.1 0.9 2.0 1.9 
42 ISOQ_EXT_S_6815 2.0 1.6 1.3 1.8 1.4 1.8 
43 ISOQ_EXT_S_6971 1.4 0.9 1.7 1.7 1.1 1.6 
44 ISOQ_EXT_S_6987 2.0 2.3 0.6 1.7 1.1 1.6 
45 ISOQ_EXT_S_6988 0.8 1.7 2.4 1.5 1.6 1.9 
46 ISOQ-EXT_5142 1.6 1.3 1.8 1.1 1.5 1.0 
47 ISOQ-EXT_6294 1.2 0.4 0.8 0.9 1.3 0.9 
48 ISOQ-EXT_6550 0.5 1.8 1.3 1.2 1.5 1.8 
49 ISOQ-EXT_3201 2.2 0.5 1.0 2.2 1.8 1.5 
50 ISOQ-EXT_6225 1.2 0.9 0.4 1.3 1.6 1.0 
51 ISOQ-EXT_6467 1.1 1.7 2.3 1.5 1.4 1.4 
52 ISOQ-EXT_979 1.4 1.0 1.2 1.9 1.8 1.6 
53 ISOQ-EXT_2850 1.2 1.6 0.9 1.8 1.6 1.7 
54 ISOQ-EXT_2866 2.2 2.4 1.1 2.2 1.8 1.4 
55 ISOQ-EXT_3906 1.4 1.9 1.5 1.9 2.0 1.1 
56 ISOQ-EXT_6402 2.0 1.1 2.1 1.2 1.1 0.9 
57 ISOQ-EXT_6434 0.8 2.4 1.4 1.4 1.7 1.9 
58 ISOQ-EXT_706 1.0 0.6 1.2 1.4 1.4 1.0 
59 ISOQ-EXT_7938 2.3 1.2 1.3 1.4 1.8 1.7 
60 ISOQ-EXT_6532 0.6 2.3 2.5 1.2 1.6 1.4 
61 ISOQ-EXT_855 1.7 2.5 0.5 1.5 1.5 1.0 
62 ISOQ-EXT_7064 2.1 2.2 1.6 2.4 2.4 1.7 
63 ISOQ-EXT_R_3182 1.3 0.9 2.1 2.5 1.3 2.4 
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64 ISOQ-EXT_R_6318 1.4 1.6 1.5 2.0 2.4 1.7 
65 ISOQ-EXT_R_6542 0.6 0.9 1.3 1.4 1.0 1.6 
66 ISOQ-EXT_R_6217 1.3 1.8 2.3 1.7 1.0 1.5 
67 ISOQ-EXT_R_6281 0.9 0.9 2.3 0.8 1.4 1.4 
68 ISOQ-EXT_R_6297 0.6 0.4 1.1 1.4 1.1 1.2 
69 ISOQ-EXT_R_6345 0.9 1.5 1.0 1.5 1.3 1.2 
70 ISOQ-EXT_R_6409 2.4 2.3 2.0 0.7 1.9 2.2 
71 ISOQ-EXT_R_6473 2.1 0.6 0.7 1.6 1.1 1.6 
72 ISOQ-EXT_R_6857 2.4 2.5 2.2 1.5 2.1 2.0 
73 ISOQ-EXT_R_6921 1.1 2.3 1.8 1.5 1.4 1.8 
74 ISOQ-EXT_R_2861 1.8 0.9 2.2 1.8 1.4 1.3 
75 ISOQ-EXT_R_6253 2.5 0.9 2.2 2.4 1.2 2.5 
76 ISOQ-EXT_R_6411 0.6 1.2 0.4 1.0 1.3 1.4 
77 ISOQ-EXT_R_6443 1.1 1.1 0.4 0.9 1.0 0.9 
78 ISOQ-EXT_R_6555 1.6 1.1 1.6 0.8 1.4 1.4 
79 ISOQ-EXT_R_6955 1.2 1.5 1.2 1.1 1.0 0.8 
80 ISOQ-EXT_R_731 0.7 1.5 1.2 1.3 2.5 2.2 
81 ISOQ-EXT_R_6170 1.7 1.5 1.2 2.0 2.0 1.1 
82 ISOQ-EXT_R_6474 1.5 1.5 1.3 1.2 1.8 1.8 
83 ISOQ-EXT_R_6538 1.4 1.4 0.9 1.0 1.6 1.5 
84 ISOQ-EXT_R_2956 1.8 2.3 2.2 1.9 2.0 1.5 
85 ISOQ-EXT_R_6444 1.8 2.2 2.2 1.9 2.0 1.4 
86 ISOQ-EXT_R_6732 2.2 1.6 2.2 2.5 2.4 1.8 
87 ISOQ-EXT_R_6988 1.3 2.4 1.6 1.5 1.6 1.4 
88 ISOQ-EXT_R_2591 1.3 2.0 0.8 1.6 1.4 1.2 
89 ISOQ-EXT_R_3279 1.6 2.3 1.7 2.4 1.4 2.5 
90 ISOQ-EXT_R_6687 1.9 0.6 2.1 2.4 2.5 0.9 
91 ISOQ-EXT_R_3408 1.8 1.7 2.5 1.3 1.5 1.7 
92 ISOQ-EXT_R_6224 1.9 1.3 1.7 1.8 2.4 2.2 
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CHAPTER 3  

DESIGNING SPECIFIC THROMBIN EXOSITE-II MODULATORS 
 

 

3.1. Introduction  

As described in chapter 1, heparin is a complex carbohydrate biopolymer made of 

linear polysaccharides of varying chain length and is composed of uronic acid and 

glucosamine residues.113 Although heparin is a commonly used anticoagulant it suffers 

from serious side effects such as excessive bleeding complications, heparin induced 

thrombocytopenia, and significant intra- and inter-patient dose response variability.173,174  

Most of the side effect complications arise primarily from its structural complexity 

and its interaction with numerous proteins other than coagulation proteins factor Xa (fXa), 

thrombin, and antithrombin (Table 6). Implicitly these diverse roles must arise from an 

optimal combination of specificity and affinity. However with the exception of a few 

cases, the specificity of heparin interactions has been poorly understood and not explored 

in detail.  

A major reason for the limited understanding of heparin–protein interactions is due 

to the phenomenal structural diversity of heparin. Structural diversity of heparin is a result 

of the complex, highly anionic polysaccharides composed of alternating 1→4-linked 

glucosamine and uronic acid residues, which are variously modified through sulfation, 

acetylation and epimerization.172 These modifications can produce 48 different 
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disaccharide building blocks, of which 23 have been found to date (Figures 37 and 38).220 

In addition, the iduronic acid residue (IdoAp) can exist in multiple conformations, 

especially 1C4 and 2SO for internal locations that can inter-convert relatively easily (Figure 

39).132,221 As a result, the combination of structural and conformational variability 

generates millions of sequences, of which few are expected to specifically recognize a 

target protein.  

Specificity in heparin-protein interaction is a function of both the target protein and 

the heparin sequence that binds the protein. Capila, I and Linhardt R. J. have reviewed the 

interactions of heparin with many different proteins (Table 6).115  

 

Table 6. Characteristics of selected list of GAG binding proteins. Adapted from Capila, I.; 
Linhardt, R. J. Heparin–Protein Interactions. Angew. Chem. Int. Ed. 2002, 41, 390-412. 

    
Heparin-
binding protein 

Physiological/ 
pathological role 

KD Oligosaccharide 
size 

Sequence features# 

Antithrombin Coagulation cascade ~20nM 5-mer GlcNS3S6S 
Thrombin* Coagulation cascade 7µM 8-mer HS 
FGF-1 Cell proliferation, 

differentiation, 
morphogenesis and 
angiogenesis 

nM 4-mer to 6-mer IdoA2S-GlcNS6S 

FGF-2 As FGF-1 nM 4-mer to 6-mer IdoA2S-GlcNS 
PF-4 Inflammation and 

wound healing 
nM 12-mer HS/LS/IS 

IL-8 Pro-inflammatory 
cytokine 

~6µM 18-mer to 20-mer HS/LS/IS 

SDF-1α Pro-inflammatory 
mediator 

~20nM 12-mer to 14-mer HS 

HIV-1 gp120 Viral entry inhibition 0.3µM 10-mer HS 
HSV gB and gC Viral entry inhibition − − − 

 
*Data is obtained from Huntington et al. J Biol. Chem. 2005, 280, 2745-2749. #HS: high sulfation, IS: 
intermediate sulfation, LS: Low sulfation 
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HS2 

 
 

HS8 

 
HS3 

 
HS3a 

 
HS9 

 
HS9a 

 
HS6 

 
HS6a 

 
HS12 

 
HS1 

 
Figure 37. The glucuronic acid-containing disaccharide subunits known to be present in 
heparin/heparan sulfate. Groups in magenta show the difference in sulfation pattern 
between the pairs (the names of the disaccharides containing a 2-O-sulfate glucuronic acid 
residue end with the letter ‘a’). Adapted from Esko, J. D.; Selleck, S. B. Order out of 
chaos: Assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 2002, 71, 
435-471. 
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HS14 (1C4 and 2SO) 

 
HS14a (1C4 and 2SO) 

 
HS20 (1C4 and 2SO) 

 
HS20a (1C4 and 2SO) 

 
HS15 (1C4 and 2SO)  

HS15a (1C4 and 2SO) 

 
HS21 (1C4 and 2SO) 

 
HS21a (1C4 and 2SO) 

 
HS18 (1C4 and 2SO)  

HS18a (1C4 and 2SO) 

 
HS24 (1C4 and 2SO) 

 
HS16a (1C4 and 2SO) 

 
Figure 38. The iduronic acid-containing 
disaccharide subunits known to be present in 
heparin/heparan sulfate. Groups in magenta show 
the difference in sulfation pattern between the pairs 
(the names of the disaccharides containing a 2-O-
sulfate iduronic acid residue end with the letter ‘a’). 
 HS22a (1C4 and 2SO) 
Adapted from Esko, J. D.; Selleck, S. B. Order out of chaos: Assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 
2002, 71, 435-471. 
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1C4   4C1    OS2   2SO 

 
Figure 39. Iduronic acid conformations (1C4 and 2SO predominantly exist in GAGs) 

 
On the protein front, Cardin and Weintraub were the first to study the general 

structural requirements for GAG-protein interactions.222 They have demonstrated that the 

heparin binding domain in the protein has defined binding motifs of linear consensus 

sequences with specific repeat pattern. Others have suggested a spatial distance 

relationship to be important for heparin binding.223,224 

Arginine and lysine residues in the protein surfaces dominate heparin-binding sites 

and are known to be critical in heparin binding. It is also known that not all arginine and 

lysine interactions with sulfate and carboxylate groups of heparin are identical. Arginine 

has been shown to bind 2.5 times more tightly than lysine due to the strong bidendate 

interaction of the guanidino group with sulfate and carboxylate groups.225 Even though 

heparin–protein interactions are known to be primarily charge-based interactions, the 

degree of ionic contribution varies significantly among heparin-binding proteins. In the 

case of antithrombin and basic fibroblast growth factor, the ionic binding energy 

contribution is ~40% and 30% respectively, but with thrombin, it is ~80%.206,226,227  

Although the importance of individual amino acids in recognizing heparin 

fragments has been studied in many proteins, the optimal 3D orientation that generates 

high specificity and affinity remains unclear. Considering the complexity of heparin 
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structure and its diverse physiological functions, molecular modeling and computational 

docking approaches represent a powerful means to address the structural complexity of 

heparin and exploring the issue of specificity and binding affinity of heparin–protein 

interactions.  

In the present work, we have used molecular modeling approaches to explore the 

nature of the heparin binding site in antithrombin and thrombin with a special focus on 

understanding specificity/non-specificity. Understanding the features that are important for 

specificity in this complex system both in protein and GAGs, extracting the hidden 

information and decoding them will enable us to design new therapeutic agents possibly 

without the above-mentioned side effects and limitations associated with GAG-based 

anticoagulants.      

3.2. Rationale  

The interaction of heparin with antithrombin and thrombin is the basis for 

anticoagulation therapy. On one hand, the interaction of heparin with antithrombin is a 

known example of specific interaction. A specific five-residue present in heparin, called 

pentasaccharide DEFGH sequence (Figure 40), mediates the interaction with antithrombin. 

In fact, the absence of this sequence makes the heparin chain incapable of binding to 

antithrombin under physiological conditions. The importance of individual amino acids 

interacting with this sequence-specific pentasaccharide and the role of each residue in the 

pentasaccharide responsible for recognition and affinity to antithrombin has been 

extensively studied.166,167,206,207,209 
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On the other hand, heparin interaction with thrombin is considered to be a non-

specific interaction. Equilibrium binding studies of heparin binding to thrombin by Olson 

et al. clearly showed that heparin interaction is a non-specific electrostatic interaction.227 

This is also supported by the crystal structure study of thrombin bound to heparin 

octasaccharide.228 In the crystal structure, heparin octasaccharide has two different 

orientations (binding mode) in the heparin binding site also known as thrombin exosite-II 

(Figure 44).  

In antithrombin, there are three important amino acids involved in heparin 

pentasaccharide binding: Lys114, Lys125 and Arg129.  In thrombin, there are at least 

seven basic amino acids predicted to be involved in heparin octasaccharide binding: 

Arg93, Arg101, Arg126, Arg165, Arg233, Lys236 and Lys240. In general, one would 

expect less specificity with fewer interacting points in the target protein, or alternatively 

greater specificity with more interacting points. However, what has been observed is the 

reverse: whereas thrombin with more Lys and Arg shows non-specific interaction, 

antithrombin with fewer Lys and Arg makes specific interaction. The molecular basis 

responsible for the origin of this specificity/non-specificity is not clear. We reasoned that 

molecular modeling techniques may be used to analyze this issue.  

3.3. Antithrombin-Heparin: Specific Interaction 

As mentioned earlier, a specific five-residue GAG sequence present in heparin, 

called pentasaccharide DEFGH (Figure 40), mediates the interaction with antithrombin. 
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Absence of this sequence renders the heparin chain incapable of binding to antithrombin 

under physiological conditions. 

 

 

Figure 40. Structure of a specific five-residue heparin pentasaccharide DEFGH. Groups in 
magenta are known to be important for specificity. 
 

Heparin chains containing the DEFGH sequence are referred to as high-affinity 

heparin (HAH) chains. Pentasaccharide DEFGH binds to antithrombin with ~50 nM 

affinity under physiological conditions. This binding affinity accounts for ~95% of the free 

energy of binding of the full-length polymer. This binding energy is contributed due to the 

interactions of 6-O-sulfate group of D ring, 6-COO¯ group of ring E, 2-O-sulfate and 3-O-

sulfate of F ring, and 2-N-sulfate of ring H in the pentasaccharide binding site (PBS).217 Of 

these, the rare 3-O-sulfate group of the central glucosamine F plays the key role without 

which the affinity of the sequence is lost.217,229 This sequence-specific interaction of 

DEFGH with antithrombin serves as a model for specificity. (Figure 41) 

 

 

 

 

D E F G H 
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Figure 41. A close-up view of the structure of the heparin-binding sites in antithrombin 
(PBS and EHBS). The structure of co-complex was obtained from PDB entry 1AZX. 
Pentasaccharide DEFGH is shown in ball-and-stick representation. Helices D, P and A (C-
terminal end) form the heparin-binding site. Arg46, Arg47, Lys114, Lys125 and Arg129 
form the pentasaccharide binding site (PBS), while Arg132, Lys133 and Lys136 form the 
extended heparin-binding site (EHBS).  
 

It appears that DEFGH specificity in antithrombin is a result of its multiple 

interactions with the Lys and Arg residues of the HBS. These include residues of the N-

terminus, helix A, and helix D. Of these, Lys114, Lys125 and Arg129 of helix D 

contribute ~50%, ~25-33% and ~28-35% of the total binding energy, respectively, and 

form a coordinated network of interactions.166-170,230 The domain formed by these three 

residues is called the pentasaccharide-binding site (PBS, Figure 41). The PBS also contains 

Lys114 

Arg46 

Arg132 

Lys125 Arg129 
Lys133 

Lys136 

Arg47 

EHBS 

PBS 

D
E F

G
H 
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other residues that play an important role in heparin binding, including Lys11, Arg13, 

Arg24, Arg47, Trp47, and Phe122.231-233 A full-length heparin binds to PBS in 

antithrombin and to an extended region formed by residues Arg132, Lys133 and Lys136 at 

the C-terminal end of helix D. This extended region is termed the extended heparin binding 

site (EHBS, Figure 41). Although the detailed architecture responsible for specificity in 

antithrombin remains unclear, it can be concluded that DEFGH interaction with 

antithrombin is specific and well-defined. 

3.3.1. Molecular Modeling of Antithrombin-Heparin Specific Interaction 

Previous computational attempts to model heparin pentasaccharide binding site on 

antithrombin using molecular dynamics and docking by both Grootenhuis and van 

Boeckel234 and Bitomsky and Wade119 resulted in geometries that are significantly different 

from the co-crystal structure. In contrast, with a robust docking protocol based on dual-

filter strategy the Desai lab predicted the high-specificity GAG sequences that bind 

antithrombin with remarkable accuracy.109  The docking protocol using GOLD program 

predicted the binding geometry of natural pentasaccharide sequence DEFGH with an 

“average GAG backbone” conformation to within 2.5 Å (Figure 42). 

The docking results suggested that the sulfate groups organized in a specific three-

dimensional orientation to afford the specificity of interaction, a conclusion proposed 

earlier on the basis of a large number of structure-activity studies.109  
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Figure 42. Comparison of GOLD predicted binding geometry of natural pentasaccharide 
H5 having ‘average backbone’ with that of H5CRYS determined in the crystal structure. An 
overlay of 6 solutions from three independent docking runs shows high consistency in the 
predicted binding geometry, which matches the crystal structure geometry with an RMSD 
less than 2.5 Å. The structure in green is the crystal structure geometry (DEFGH with an 
additional residue in the non-reducing end), while those in atom-type color (red, yellow, 
grey and blue) are 6 docking solutions. Note the identical orientation of key groups, 2- and 
3-OSO3

- of residue F (2SF and 3SF), 6-COO- of residue E (6AE)  and 6-OSO3
- of residue D 

(6SD). Helices A, D and P of antithrombin (in ribbon diagram) are indicated by hA, hD and 
hP, while D, E, F, G, and H labels correspond to residues of the pentasaccharide. K114, 
K125 and R129 are shown in ball-and-stick representation. Reproduced from Raghuraman, 
A.; Mosier, P.D.; Desai, U. R. Finding a Needle in a Haystack: Development of a Virtual 
Screening Method for Identifying High Specificity Heparin/Heparan Sulfate Sequence(s). J 
Med Chem. 2006, 49, 3553-3562. 

 
Raghuraman et al. also docked pentasaccharide variants to antithrombin and found 

a significant correlation between GOLD scores and binding affinity (slope of 4.2 GOLD 

score units per kcal/mol and an intercept of 78.9 GOLD score units). The result indicated 

R129 K125

K1143SF

hD

hA6SD

2SF6AE

D E
F G

H

X-ray
GOLD

hP
R129 K125

K1143SF

hD

hA6SD

2SF6AE

D E
F G

H

X-ray
GOLD

hP



   

111 
 

that self-consistency of docking geometries is sensitive to sulfate group distribution and 

pentasaccharide topology. The dual-filter strategy rapidly sorted a combinatorial virtual 

library of nearly 7,000 heparin hexasaccharides into specific and non-specific sequences,∗ 

thus suggesting its potential use for identifying ‘needle(s) in a haystack’.  

While this work by Raghuraman et al. has added a significant contribution in the 

understanding of the specificity in terms of the GAG-ligand, the counterpart, the protein 

architecture responsible for such a defined specificity in antithrombin, has not been 

addressed. Though there are many papers published in detailing the importance of amino 

acids in heparin binding site, the detail architectural details responsible for specificity 

remains unclear. However, in one case, an observation was made in reference to the 

appropriate position of the Arg129 side chain in activated antithrombin due to the H-bond 

effect of primarily Glu414 and Thr44 to keep the pentasaccharide anchored to the activated 

state of the inhibitor.169 

3.4. Thrombin-Heparin: Specific or Non-specific Interaction? 

Thrombin is a serine proteinase enzyme and has four important binding sites: the 

active site, Na+ binding site, exosite-I and exosite-II (Figure 43a-b). Of these, exosite-I and 

II are cationic domains located at approximately opposite ends of the thrombin molecule 

and approximately 10–20 Å away from the active site.235 

                                                 
∗ In this paper, ‘specificity’ was defined as to the existence of a few, structurally unique HS sequences from a 
combinatorial library of all possible sequences that can recognize the protein binding site in a single, well-
defined binding mode. Therefore, specific HS sequences were determined by performing multiple molecular 
docking experiments to assess the reproducibility of computed binding modes. 
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Exosite-I, also called anion-binding site-I is located on the right of the active site 

(‘east’ in standard view shown in Figure 43a) and is involved in binding fibrinogen. In 

addition to fibrinogen, several other physiologic and non-physiologic anions bind in 

exosite-I. For example, fibrin, coagulation factors V, VIII, and XIII, hirudin, bivalirudin, 

dipetalogastin II, bothrojaracin, and many others interact with exosite-I.   

Exosite-II, also called anion-binding exosite-II, is biophysically and spatially 

discrete from exosite I and binds to highly-charged heparin. Thrombin exosite-II domain 

include His91, Arg93, Arg101, Arg126, Arg165, His230, Arg233, Lys236, Trp237, and 

Lys240 (Figure 43b). Thrombin exosite-II also interacts with heparan sulfate, chondroitin 

sulfate and dermatan sulfate, and glycoprotein Ibα. Thrombomodulin interacts with both 

exosites simultaneously by a hydrophobic domain in its EGF-like repeats to interact with 

exosite-I and an anionic chondroitin sulfate sequence to interact with exosite-II.236 

The binding of ligands in exosites I and II induces significant conformational 

changes in the active site of thrombin. This allosteric effect has major influence on the 

specificity and reactivity of thrombin towards its macromolecular substrates.236-239 For 

example, the binding of thrombomodulin to exosite I alters the preference of thrombin 

from fibrinogen to protein C. Similarly, the binding of heparin to exosite II induces a much 

greater reactivity with antithrombin. Exosite II, being a more positively charged domain 

than exosite-I, has a preference for sequences that contain a greater proportion of acidic 

residues. This simple analysis is supported by binding energy contributions measured in 

solution. Salt dependence studies of the dissociation constant of heparin–thrombin 

interaction show ~80% contribution from ionic interactions.227 
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Figure 43a. Topology of thrombin. The thrombin surface is 
shown in a space-filling representation in the standard 
orientation using PDB entry 1PPB. Thrombin is bound to the 
active site inhibitor D-Phe-Pro-Arg-chloromethylketone 
(PPACK, shown in stick form). The surface shows the 
orientations of exosites I and II (dark blue surface), the 60-loop 
(orange surface) and the γ-loop (green surface), and the Na+ 
binding site (yellow surface). The active site is shown as a red 
surface.  

Figure 43b. Thrombin exosite-II key amino acids interacting 
with heparin octasaccharide. The crystal structure 
representation is from Protein Data Bank entry 1XMN. Shown 
is the important amino acids of exosite-II in different colors in 
AB monomer of the crystal structure. 

Exosite II

Exosite I

60-loop

γ-loop

Na+ site
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Exclusive exosite-II ligands GAGs do not alter the catalytic efficiency (kCAT/KM) of 

thrombin and thus do not function as direct thrombin inhibitors (DTI).238,240,241 This 

‘golden rule’ is likely to change with the discovery of some chemo-enzymatically prepared 

lignin-based macromolecules, which have been found to reduce the kCAT of small peptide 

hydrolysis by binding in or near exosite-II, the first in this class of DTIs.242,243 

As discussed earlier heparin interaction at thrombin exosite-II is considered to be 

non-specific interaction. In vitro, both high- and low-affinity heparins bind to thrombin 

with an apparent KD of 0.7–2 µM, suggesting that the DEFGH structure is not critical for 

thrombin binding.244 The µM affinity of heparin for thrombin arises from the presence of 

an electropositive domain called exosite-II.  

Equilibrium binding studies of heparin binding to thrombin by Olson et al. clearly 

showed that heparin interaction is a non-specific electrostatic interaction.227 Their study 

showed that the strong dependence of the thrombin-heparin binding interaction on NaCl 

concentration, its minimal dependence on temperature, and the increase in apparent 

binding affinity with increasing heparin oligosaccharide chain length were best accounted 

for by a non-specific electrostatic association of thrombin with 5 to 6 anionic residues 

contained in a 3-disaccharide binding site of heparin. This interaction was characterized by 

an intrinsic dissociation constant (KD,obs) of 6-10 µM at physiological ionic strength (Table 

7).227 
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Table 7. Dissociation constants for thrombin-oligosaccharide interactions (Olson et al.). 
 
 

Oligosaccharide 

chain length 

Non-specific binding model,  

KD,obs µM 

3-disaccharides (6-mer) 7.7±0.9 

4-disaccharides (4-mer) 6.5±0.6 

5-disaccharides (10-mer) 7.2±0.6 

7-disaccharides (14-mer) 5.4±0.4 

9-disaccharides (18-mer) 6.3±0.3 

~13-disaccharides (26-mer) 10±1 

 

The non-specific binding model of thrombin-heparin interaction is also supported 

by the crystal structure study of thrombin bound to heparin octasaccharide.228 The crystal 

structure of the α-thrombin and octasaccharide co-complex of 1.85 Å crystallographic 

resolution (PDB entry 1XMN) is an asymmetric unit, consists of four thrombin monomers 

denoted AB, CD, EF and GH, to reflect the two chains of the human α-thrombin monomer 

(Figure 44). A heparin octasaccharide is sandwiched between two thrombin monomers, so 

that the asymmetric unit comprises two nearly equivalent thrombin dimers AB-GH and 

CD-EF. It should be noted that in the crystal structure 1XMN, only 6 residues of the 

octasaccharide is resolved in the AB-GH dimer and 5 residues in the CD-EF dimer, and are 

shown to bind in both directions; one running from the reducing end to the non-reducing 

end (AB-GH) and the other running from the non-reducing end to the reducing end (CD-

EF) (Figure 44). Although the orientation of heparin is different in the two dimers, the 

amino acids involved are from the same basic patch known as exosite-II.   
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Figure 44. Ribbon representation of thrombin bound to heparin as observed in PDB structure 1XMN. The asymmetric unit 
consists of four thrombin monomers crystallized into two nearly equivalent dimers AB-GH and CD-EF. The ribbon in gray 
corresponds to monomer AB, green to CD, orange to EF and cyan to GH.

AB CD 

EF GH 

Reducing end 

Non-reducing end 
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As discussed earlier, although electropositive residues line the HBS both in 

antithrombin and thrombin, the antithrombin-heparin interaction is highly specific but the 

thrombin-heparin interaction appears to be non-specific. We reasoned that although 

arginine and lysine are the common residues in heparin binding site at thrombin and 

antithrombin, there must be some critical differences in 3D geometry and topology, 

flexibility of the side chains and their neighboring amino acids, and/or the 

symmetry/asymmetry in the binding site. Those differences should determine the nature of 

the heparin–protein interaction. We have used molecular modeling methodologies to 

compare and contrast the nature of this unequivocally complex phenomenon of 

specificity/non-specificity. 

3.4.1. Questions Remaining Unanswered 

The HBS of antithrombin and thrombin are lined with Arg and Lys residues. 

Whereas the antithrombin-heparin interaction is specific, the thrombin-heparin interaction 

is considered to be non-specific. Thus, the questions that arise include: What is the 

structural and molecular basis for the specificity of the antithrombin-heparin interaction 

and the non-specificity of the thrombin-heparin interaction? Is it possible to design ligands 

that are specific for thrombin exosite-II? 

3.4.2. Molecular Modeling: Specificity (Antithrombin) versus Non-specificity 

(Thrombin)  

A. Accessibility: Exposed Versus Buried Nature of the Flexible Side Chains 
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The interaction of heparin with thrombin and antithrombin is primarily a charge- 

based interaction on the surface of the protein. The important amino acids involved in the 

heparin binding site of antithrombin are Arg46, Arg47, Lys114, Lys125, Arg129 and 

Arg132 (Figure 45a). Thrombin exosite-II consists of the basic amino acids Arg93, 

Arg101, Arg126, Arg165, Arg233, Lys236 and Lys240 (Figure 46a). 

As a first step toward identification of the differences in the residues responsible 

for specific/non-specific interaction, the topology of the residues, in terms of the extent of 

the surface exposure or the buried nature of the critical amino acids quantitatively, was 

studied. The crystal structure of thrombin co-complexed with heparin used for this study 

was the AB monomer of 1XMN, and for antithrombin, it was 1TB6, a ternary complex of 

thrombin, antithrombin and heparin. Surface areas were calculated using the Fast Connolly 

Surface in the MOLCAD module of SYBYL for each amino acid either within the context 

of the protein crystal structure (exposed residue surface area in Table 8) or by itself (total 

residue surface area in Table 8). 

The surface area calculation indicates that in thrombin most of the basic amino 

acids are more than ~60% surface exposed, except Arg101. In antithrombin, Lys114, 

Lys125 and Arg129, the key residues considered to be more important in the recognition 

phase of the antithrombin binding to pentasaccharide, are only 43-50% exposed (Figures 

45b and 46b, Table 8). More surface exposure in thrombin allows flexible basic side chains 

to adapt to structure of the ligand counterpart. However, less surface exposure in 

antithrombin limits the access, requiring some kind of specific geometry in the ligand for 

interaction.  
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Figure 45a. Antithrombin: Key heparin binding site residues (PDB entry 1TB6); Figure 45b. Surface area exposure map 
shown for critical amino acids in antithrombin, the heparin binding site (Red: Arg46, Orange: Arg47, Yellow: Lys114, 
Green: Lys125, Cyan: Arg129 and Violet: Arg132). The number on the colored surface is the percent surface exposure of the 
individual amino acids (Note: Arg132 is not a part of PBS, a subsite within the heparin binding site). 
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Figure 46a. Thrombin exosite-II: Key heparin binding residues (PDB entry 1XMN); Figure 46b. Surface area exposure map 
shown for critical amino acids in thrombin exosite-II (Red: Arg93, Orange: Arg101, Green: Arg165, Cyan: Arg233, Yellow: 
Arg126, Blue: Lys 236 and Violet: Lys240). The number on the colored surface is the percent surface exposure of the 
individual amino acids.  
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Table 8. Surface area (SA) contribution and radius of gyration (Rg) analyses of the 
important heparin-binding amino acids in antithrombin and thrombin. 
 

ANTITHROMBIN 
 

 
   THROMBIN 

 
Amino acid Exposed  

Residue SA  

Total  

Residue SA 

% Exposure No. of 

observations 

Rg H-Bond 

partner (s) 

H91 23.45 135.48 17 11 0.50 Aromatic* 

R93 102.90 168.59 61 11 2.52 — 

R101 42.70 169.43 25 11 0.77 D100 

R126 114.37 164.69 69 10 3.10 E127† 

R165 100.75 169.16 60 11 0.52 M180 

H230 24.96 134.89 19 11 0.29 Aromatic* 

R233 100.46 171.67 59 11 2.20 — 

K236 122.33 154.62 79 7 3.29 — 

W237 44.54 179.33 25 11 0.32 Aromatic* 

K240 80.04 152.70 52 8 1.81 Q244 

 
*W49, H91, H230, and W237 are in fixed position due to the burial of hydrophobic aromatic ring. 

# Lys114 is held in place in antithrombin due to the hydrophobic influence of Phe122 and Pro12, which 
thermodynamically favors Lys144 to stay close to the protein rather than being solvent-exposed. 

† E127 is adjacent to R126 in thrombin which could theoretically be an H-bonding partner but does not due to 
the helical turn; they face away from each other. 

 

Amino 

acid 

Exposed  

Residue SA  

Total 

Residue SA 

% Exposure No. of 

observations 

Rg H-Bond 

partner (s) 

R46 122.17 170.82 72 9 3.08 — 

R47 54.51 169.37 32 13 0.32 S112, T115 

W49 45.59 180.40 25 13 0.86 Aromatic* 

K114 77.63 152.24 51 13 0.75 P12, F122# 

K125 71.52 153.62 47 10 1.87 N45 

R129 73.39 169.28 43 12 0.63 T44, E414 

R132 101.84 163.08 62 8 3.46 — 
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B. Flexibility: Calculation of Radius of Gyration (Rg)  

The flexibility of the long basic amino acid side chains is expected to be another 

contributing factor in determining specificity/non-specificity. The radius of gyration can be 

used as a measure of the flexibility in basic amino acids in heparin binding sites. The 

radius of gyration Rg is the root-mean-square distance (RMSD) of the points from their 

center of mass (COM), and can be used as a measure of the variability in the position of 

the basic side chain functionalities in the GAG binding sites (more details in experimental 

section).  

In order to calculate the radius of gyration, we collected from the Protein Data 

Bank, thrombin and antithrombin crystal structures co-complexed with heparin or heparin-

based ligands (Table 9). All antithrombins were aligned to the reference antithrombin 

monomer from 1TB6 and thrombin monomers were aligned to the AB monomer of 

1XMN. The alignments were performed using the Fit Monomers facility of SYBYL using 

the residues depicted in figures 45a and 46a. When crystal structures were aligned, we 

found that some amino acid residues are spatially conserved and some are spatially 

divergent. Calculation of the radius of gyration identified the residues that are spatially 

conserved in a quantitative manner.   

In antithrombin, the pentasaccharide binding site amino acids Arg47 (Rg = 0.3 Å), 

Lys114 (Rg = 0.8 Å), Arg129 (Rg = 0.6 Å) are highly spatially conserved in a series of 

antithrombin crystal structures (Figure 47a). Lys125 exhibits modest spatial conservation 

(Rg = 1.9 Å). Arg46 (Rg = 3.1 Å) and Arg132 (Rg = 3.5 Å, the EHBS amino acid) show a 

very low degree of spatial conservation.  
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In thrombin, the Arg93 (Rg  = 2.5 Å), Arg126 (Rg = 3.1 Å), Lys233(Rg = 2.2 Å), 

Lys236 (Rg = 3.3 Å) and Lys240 (Rg 1.8Å) positions are highly variable in a series of 

thrombin structures indicating that they have high degree of flexibility in contrast to 

antithrombin heparin binding site basic amino acids (Figure 48a). Interestingly, Arg101 

(Rg = 0.8 Å) and Arg 165 (Rg = 0.5 Å) are highly spatially conserved. Although Arg233 

has Rg = 2.2 Å, it can still be considered to be spatially conserved as (Figure 48a) it is 

localized in only two groups indicating a bimodal distribution with a high degree of spatial 

conservation within the two groups. 

Although antithrombin and thrombin HBS are lined with Arg and Lys, based on 

our study, their relative surface exposure and flexibility does not appear to be the same. So 

we reasoned that there must be some differences in their surrounding amino acids. To find 

out why some amino acids are spatially conserved and others are not, we closely examined 

the environment or neighboring amino acids to see if there is anything structurally unique 

that makes the long rotatable side chains of the key amino acids stay in a fixed 

conformation. The ones that are spatially conserved had H-bonding partners within H-bond 

distances (Figures 47b). This hydrogen bonding network anchors the side chain to a 

particular orientation, which in turn makes some of the binding site basic residues uniquely 

positioned to engage the ligands with certain structural features, but not others. 
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Table 9. Crystal structures considered in the thrombin exosite-II and antithrombin PBS 
basic residue analyses. 

PDB ID Chain     
 T AT Description Ra (Å) Missing residues Ref. 
1XMN AB  Thrombin-Heparin 1.85 K236 (228) 
 CD    K236, K240  
 EF    R126  
 GH    K236  
3B9F LH  Thrombin-Protein C Inhibitor-Heparin 1.60 K236, K240 (245) 
1E0F AD  Thrombin-Haemadin 3.10  (246) 
 BE      
 CF      
1JMO* LH  Thrombin-Heparin Cofactor II 2.20  (247) 
       
1TB6 LH  Antithrombin-Thrombin-Heparin 2.50 K240 (248) 
  I     
2B5T AB  Antithrombin-Thrombin-Heparin 

Mimetic (non-productive) 
2.10  (249) 

 CD      
  I   R132  
1SR5  A Antithrombin-Anhydrothrombin-

Heparin (mimetic) 
3.27  (250) 

       
1T1F*  A Antithrombin (native) 2.75 R47, K114, K125 (249) 
  B   R47, K114, K125  
  C   R47, K114, K125  
1AZX  I Antithrombin (active)-Pentasaccharide 2.90  (217) 
  L Antithrombin (latent)-Pentasaccharide    
1E03  I α-Antithrombin-Pentasaccharide 2.90 K125 (251) 
  L     
1NQ9  I Antithrombin-Heparin 2.60 R46, K125, R132 (250) 
  L   R46, R132  
2GD4  I Antithrombin-S195A Factor Xa-

Heparin 
3.30  (253) 

  C     
3EVJ  I Antithrombin (Intermediate State)-

Natural Pentasaccharide 
3.00 R46, K125, R132 (254) 

  L   R46, R129, R132  
 

aCrystallographic resolution. *1T1F is not included in the calculation of radius of gyration (Rg), an outlier 
that has incompletely built important amino acids including R47, K114 and K125 and is not an activated 
form of antithrombin. 
*1JMO is not included in the calculation of radius of gyration, an outlier that is not bound to GAG. 
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In the case of antithrombin, Arg47 (Hbond partners Ser112 and Thr115), Lys125 

(Hbond partner Asn45) and Arg129 (Hbond partners T44 and Glu414) have H-bonding 

partners within H-bond distances. Lys114 is held in place in antithrombin not because of 

H-bond partners but due to the hydrophobic influence of Phe122 and Pro12, which 

thermodynamically favors Lys144 to stay closer to the protein rather than solvent exposed 

(Figure 47b). The same is true with thrombin, the residues that are in fixed orientation like 

R101 (Hbond partner Asp100), R165 (Hbond partner Met180) and K240 (Hbond partner 

Gln244) have H-bonding partners within H-bond distances (Figure 48b).  

 In summary, the heparin binding site amino acids in antithrombin are spatially 

conserved and contribute to specificity, while in thrombin many of them are highly 

flexible, which appears lead to considerable non-specificity.  
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Figure 47a. The side chain conformation variation of the primary basic and other residues in antithrombin pentasaccharide 
binding site (PBS) for a series of antithrombin crystal structures.  The reference structure shown in this picture is from PDB 
entry ‘1tb6’. The radius of gyration (ROG) is specified for each residue in angstroms and is shown as a dashed line.  Sampled 
points are shown as small spheres. Color code: blue = 1TB6, green = 1AZX, orange = 1E03, cyan = 1NQ9, red = 1SR5, 
white = 2B5T, purple = 2GD4, tan = 3EVJ. 
 
Figure 47b. H-bonding partners anchoring key side chains in antithrombin. The crystal structure The line in magenta shows 
the distance between the hydrogen bonding atoms of the amino acids with distance in Å.*In Asn45, the position of Oxygen 
and Nitrogen is interchanged from the crystal structure to show the possible H-bond between Asn45 and Lys125.  
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Figure 48a. The side chain conformation variation of the primary basic and other residues in thrombin Exosite II for a series 
of thrombin crystal structures. The reference structure shown in this picture is from PDB entry ‘1xmn’.   The radius of 
gyration (ROG) is specified for each residue in angstroms and is shown as a dashed line.  Sampled points are shown as small 
spheres. Color code: red = 1XMN, yellow = 1TB6, green = 3B9F, cyan = 1E0F, blue = 2B5T. 
 
Figure 48b. H-bonding partners anchoring key side chains in thrombin (PDB entry ‘1xmn’). The line in magenta shows the 
distance between the hydrogen bonding atoms of the amino acids with distance in Å. 
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C. Symmetry/Asymmetry 

Ionic sulfate-Lys and sulfate-Arg interactions may be approximately treated as     

equivalent and non-directional.  Thus, the spatial arrangement of the basic amino acid 

residues in the heparin binding sites becomes more important in addition to surface 

exposure and flexibility in determining specificity.  Ligands that recognize a binding site 

of high symmetry may exhibit more binding modes than those that recognize a lower-

symmetry binding site.  

In antithrombin, there are three important amino acids involved in heparin 

pentasaccharide binding including Lys114, Lys125 and Arg129.  In thrombin, there are at 

least seven basic amino acids involved in heparin octasaccharide binding including Arg93, 

Arg101, Arg126, Arg165, Arg233, Lys236 and Lys240. Figure 49a-b shows some 

examples of how different geometry can impact the ways in which the ligand can interact 

with the target protein.  

Analysis of the relative geometrical position and shape of the antithrombin binding 

site shows that it has an element of asymmetry in the binding site (Figure 50a). Lys114, 

Arg125 and Arg129 forms a scalene triangle that restricts the number of ways in which 

ligand can interact which favors the specific interaction with pentasaccharide (Note also 

that Lys125 is somewhat flexible, allowing the three important residues of the PBS to 

match the isosceles triangle). 

 In case of thrombin, we see an approximate element of symmetry that explains the 

apparent contradiction that even with more interacting points instead of providing 

specificity, thrombin exhibits non-specific interaction with heparin. When roughly divided 
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by placing a line between R101 and R126, exosite-II shows 2 equivalent points of 

interaction on either side in a linear fashion (Figure 50b). On the right side of the vertical 

are R233 and R165 and on the left side are K236 and K240. On the top is R101 and on the 

bottom is R126. This resembles the square/cross model symmetry with the distribution of 

positively charged amino acids in a symmetric fashion (Figure 49a). This symmetrical 

distribution of basic amino acids in exosite-II favors the non-specific interaction of heparin 

oligomers. 

Even though thrombin exosite-II appears to be a target for non-specific heparin 

interaction, we have identified some spatially conserved amino acids in the upper-right-

hand corner of thrombin exosite-II including Arg101, Arg165 and Arg233 that may 

represent a locally specific sub-pocket within exosite-II. This finding suggests that it may 

be possible to design specific sequences that recognize the spatially conserved residues in 

exosite-II. This would likely change the spectrum of future developments in thrombin 

exosite-II- related research. 

 
 
Figure 49a. Symmetric four-point receptor geometry (square/cross) with multiple 
degenerate binding modes for ligands. 

Square/Cross 4 Degenerate 
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Figure 49b. A. Equilateral triangle receptor (‘three-point pharmacophore’) showing limited binding mode for the typical R- 
and S- isomer of tetrahedral ligands. Three substituents (represented by different shapes) are non-equivalent. B. Lys-sulfate or 
Arg-sulfate kind of non-directional interactions exhibit multiple binding modes in equilateral triangle receptor geometry. C. 
Isosceles and D. Scalene triangles show single binding mode. 
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Equilateral Triangle 3 Degenerate 

Isosceles Triangle 2 Degenerate 
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Figure 50a. Asymmetry in antithrombin pentasaccharide binding site (PBS). Scalene triangle geometry is present between 
three important pentasaccharide binding amino acids Lys114, Lys125 and Arg129 responsible for specificity. 
 
Figure 50b. Element of symmetry in thrombin exosite-II. A vertical line between Arg101 and Arg126 divides exosite-II 
approximately into two equal parts. Lys236 and Lys240 are on the left side of the horizontal axis. Arg233 and Arg165 are on 
the right side of the horizontal axis.  This element of symmetry favors non-specific interaction. The isosceles triangle (Green 
lines) between the spatially conserved Arg101, Arg165 and Arg233 on the right side of the symmetry represents a local 
spatially conserved asymmetry. 
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3.4.3. Molecular Docking of Library of Heparin Octasaccharide Sequences 

A. GOLD Predicts the Binding Geometry of Natural Octasaccharide to  

Within 3 Å 

The crystal structure of α-thrombin and octasaccharide co-complex of 1.85 Å 

crystallographic resolution from PDB entry 1XMN was used for molecular docking. The 

crystal structure asymmetric unit consists of four thrombin monomers denoted AB, CD, EF 

and GH, to reflect the two chains (heavy and light) of the human α-thrombin monomer. A 

heparin octasaccharide is sandwiched between two thrombin monomers, so that the 

asymmetric unit comprises two nearly equivalent thrombin dimers AB-GH and CD-EF. It 

should be noted that in the crystal structure 1XMN, only 6 residues of the octasaccharide 

are resolved on the AB-GH dimer and 5 residues on the CD-EF dimer. These are shown to 

bind in both directions: one running from the reducing end to the non-reducing end (AB-

GH) and the other running from the non-reducing end to the reducing end (CD-EF) (Figure 

44). Since the AB-GH dimer in the crystal structure represents the maximal primary 

interactions between thrombin and heparin this dimer was considered for docking 

experiments.228 

In order to test whether the GOLD docking program is able to dock the crystal 

structure octasaccharide sequence reasonably within the predefined binding site as in the 

crystal structure, the natural octasaccharide was docked onto the thrombin dimer in 

exosite-II. On comparison of docked solution to the backbone of hexasaccharide in crystal 

structure, the docked solutions were found to be within 3 Å of the crystal structure. Among 
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the docked poses, the top 6 solutions (2 solutions × 3 docking experiments) were well 

within 2.5 Å in repeated experiments. Although the docked solution of octasaccharide 

backbone approximately matches the crystal structure, the directionality is opposite (Figure 

51).  This preliminary experiment shows that our protocol for docking of GAGs to the 

thrombin exosite-II reliably reproduces one of the two binding orientations and supports 

the non-specific nature of the thrombin-heparin interaction. 

 

 

 

 
 
Figure 51. Comparison of the binding orientations of the docked solution of 
octasaccharide to the observed octasaccharide fragment in the crystal 1XMN. The 
octasaccharide backbone of the docked solution approximately matches the crystal 
structure but the directionality is opposite. In the crystal structure, only 6 residues of the 
octasaccharide are resolved on the AB-GH dimer and 5 residues on the CD-EF dimer, and 
are shown to bind in both directions: one running from non-reducing end to reducing end 
and the other running from reducing end to non-reducing end. (See details in experimental 
section). Docking predicts one of the two binding modes for the octasaccharide. Docked 
solution of the octasaccharide (green) and the binding mode of the 6 residues of the 
resolved crystal structure octasaccharide (cyan) are shown as ball-and-stick models. 

Reducing End 

Non-Reducing End 

Non-Reducing End 

Reducing End 
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B. Docking of a Library of Octasaccharide Sequences: Selected Sequences 

Preferentially Bind to Thrombin. 

The crystal structure thrombin co-complex with octasaccharide is considered to be 

a reference in deciding the length of the heparin oligomers (1XMN) to be tested for 

specificity. As discussed earlier, 48 different disaccharide building blocks of GAGs are 

possible, of which only 23 are known to exist. If we use all 23 building blocks and include 

both 1C4 and 2SO conformations for iduronic acid-containing disaccharides (23+13) to 

build the octasaccharide, the virtual library would result in (36×36×36×36) 1,679,616 

sequences (Figure 38b). This is computationally a very challenging task. To limit our 

preliminary experiment, we have narrowed the number of disaccharide building blocks to 

8, based on the common disaccharides present in heparin octasaccharide structure with 

varying sulfation pattern (Figure 52). 

 

HS14a and HS14a_1C4 (Charges: 2) 

 

HS20a and HS20a_1C4 (Charges: 3) 

 

HS15a and HS15a_1C4 (Charges: 3) 

 

HS21a and HS21a_1C4 (Charges: 4) 

Figure 52. Building blocks for heparin oligomers used to build the octasaccharide library 
of 4096 sequences. Disaccharide units are named as HS+number+a where ‘a’ denotes an 
additional sulfate group at 2nd position of the iduronic acid. Since iduronic acid can exist in 
1C4 or 2SO forms, a suffix 1C4 is added. No suffix indicates 2SO conformation. 
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The octasaccharide library of 4096 sequences was built in SYBYL in an automated 

manner using an in-house SPL (SYBYL Programming Language) and was docked to the 

AB-GH thrombin dimer using GOLD v3.0 (See experimental section for details). In the 

first phase of the docking program, GOLD filtered high-affinity sequences from the 4096 

sequences, whose modified GOLDScore followed a Gaussian distribution. These 

sequences were then subjected to the specificity filter (Figure 53).  

 

Figure 53. Histogram showing the distribution of 4096 octasaccharide sequence modified 
GOLDScore following the first phase of combinatorial library screening with thrombin.  
 

The top-scoring sequences (~1%) from the first phase are then docked in triplicate 

under more rigorous docking conditions. Application of the specificity filter (top 2 

solutions from each experiment must be within 2.5 Å) resulted in 14 hit sequences for 

thrombin dimer (Table 10).   

17 41

238

513

881

1006

821

431

118
30

0

200

400

600

800

1000

1200

x 
≤ 
40

40
 <
 x
 ≤
 5
0 

50
 <
  x
 ≤
 6
0 

60
 <
  x
 ≤
 7
0 

70
 <
  x
 ≤
 8
0 

80
 <
  x
 ≤
 9
0 

90
 <
  x
 ≤
 1
00

 

10
0 
< 
 x
 ≤
 1
10

11
0 
< 
 x
 ≤
 1
20

12
0 
 <
  x
 

FR
EQ

U
EN

CY

X= GOLD SCORE DISTRIBUTION



   

136 
 

Table 10. Modified GOLDScore for hit octasaccharide sequences of a library of 4096 
heparin oligomers. The score in the table represents the maximum score for 3 independent 
docking runs. 
 

HIT SEQUENCES Run 1 Run 2 Run 3 Max. score 

HS20a_1C4__HS14a__HS15a__HS20a_1C4 112 129 138 138 

HS20a_1C4__HS20a__HS15a__HS20a_1C4 134 110 137 137 

HS21a_1C4__HS20a__HS21a__HS20a_1C4 134 114 119 134 

HS21a_1C4__HS21a__HS21a__HS20a_1C4 131 118 121 131 

HS21a__HS21a_1C4__HS21a_1C4__HS15a_1C4 108 128 108 128 

HS20a_1C4__HS21a__HS21a__HS20a_1C4 120 126 112 126 

HS21a_1C4__HS21a_1C4__HS21a_1C4__HS21a_1C4 116 101 126 126 

HS21a_1C4__HS21a__HS15a__HS14a_1C4 121 124 112 124 

HS21a_1C4__HS21a__HS20a__HS20a_1C4 107 122 112 122 

HS15a__HS21a_1C4__HS14a_1C4__HS15a_1C4 121 93 94 121 

HS21a__HS21a__HS15a__HS20a_1C4 120 121 106 121 

HS14a_1C4__HS21a__HS15a__HS20a_1C4 110 117 106 117 

HS20a__HS20a__HS15a__HS21a 109 103 110 110 

HS20a__HS21a__HS15a__HS20a 108 107 110 110 

 
 

These sequences fall into two general pattern of binding orientation, one with non-

reducing end to reducing end (Binding mode A) and another with reducing end to non-

reducing end (Binding mode B) (Figure 54). This is fully in consistent with what is 

observed in the crystal structure 1XMN wherein the AB-GH and CD-EF dimers of 

thrombin show opposite orientations for the octasaccharide in exosite-II.  
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Out of the final 14 sequences, 11 of them follow binding mode A. Although it 

seems that both binding geometries are possible, one binding mode is preferentially 

selected over the other. A comparison of the binding modes and structural features of the 

sequences show that sequences having the 1C4 conformation for units 3 and 5 adopt 

binding mode B. On the other hand, 11 sequences adopt binding mode A and are uniquely 

different by having the 2SO conformation at units 3 and 5. This subtle difference in the 

 
Red-filled hexagon: Iduronic acid 
with 2So conformation; Blue-filled 
hexagon: Iduronic acid with 1C4 
conformation; Unfilled hexagon: 
Glucosamine; Solid green line: 
Presence of N-sulfate or O-sulfate; 
Solid red line: Absence of N-
sulfate or O-sulfate.  
 
Figure 54.  Cartoon representing 
the hit sequences identified by 
docking of the octasaccharide 
library shows 2 binding modes in 
thrombin exosite-II  

Sequences with binding mode B 

Sequences with binding mode A 
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conformation reverses the direction in which octasaccharide binds to thrombin at exosite-

II. Just as observed in the crystal structure, most of the octasaccharide interactions are 

observed with the AB monomer of thrombin and few interactions with the GH monomer 

(R93 and K240 only).  

C. Design of Smaller Sequences for Thrombin Exosite-II 

Molecular docking of the library of octasaccharides showed that the important 

critical interactions are from the central part of the octasaccharide while the end residues 

flank the thrombin exosite-II. Based on this observation, we decided to build a small 

library of tetra-, hexa-, and octasaccharides based on the highly-sulfated disaccharide 

shown in Figure 55 to test if the shorter sequences will be able recognize the same binding 

mode. If so, it may serve as a framework to design ‘specific’ sequences that recognize the 

spatially conserved residues in exosite-II (see Section 3.4.1). 

 

  
 

HS21a and HS21a_1C4 

 
 
Figure 55. Structure of a highly-sulfated iduronic acid containing disaccharide. Both 1C4 
and 2SO forms are considered. Negatively charged groups are indicated with ovals. 
 

The small library consisting of 4 tetrasaccharide, 8 hexasaccharide and 16 

octasaccharide sequences was docked in triplicate to exosite-II of the AB-GH dimer of 
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thrombin crystal structure 1XMN.  The 2 top-scoring solutions of each hit tetra-, hexa-, 

and octasaccharides were within 2.5 Å in triplicate experiments. The analysis of binding 

modes shows that, regardless of the size of the sequences, there exists a common binding 

motif for these sequences where certain interactions are always consistent in each case 

(Figures 56 and 57).  

 

SEQUENCE   NO. OF CHARGES  GOLD SCORE  
TETRA_PER_SO

3 
  8  118 

HEXA_PER_SO
3 
  12  155 

OCTA_PER_SO
3 
  16  145 

 

Figure 56. Cartoon showing the hit tetra-, hexa-, and octasaccharides and their interaction 
with thrombin exosite-II amino acids. The tetrasaccharide sequence is a substructure 
contained within the octasaccharides and maintains the same interaction profile at 
thrombin exosite-II regardless of the size of the sequence. From this, a core tetrasaccharide 
pharmacophore is elucidated. The table lists the hit sequences, the number of charges and 
their corresponding modified GOLDScores. A green star represents O-sulfate or N-sulfate, 
and a red cup represents carboxylate. 
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Figure 57. Docking poses of tetra- (green), hexa- (cyan) and octasaccharide (magenta) 
sequences in thrombin exosite-II. All of them have similar binding mode running from 
non-reducing end to reducing end. The ribbon representation of the AB monomer of the 
crystal structure 1XMN is displayed (monomer GH not displayed for clarity). Thrombin 
exosite-II amino acids are shown in capped stick representation. 
 

A closer look at these sequences and their interaction with thrombin exosite-II 

amino acids revealed that it may be possible to remove certain non-interacting redundant 

sulfate groups in the central core tetrasaccharide pharmacophore. But is it possible to 

remove these functionalities and still retain the same binding mode? To study the impact of 

the absence of these non-interacting groups in determining the binding mode, we have 

removed certain non-interacting sulfate groups in these hit sequences in the tetrasaccharide 
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region and docked them in triplicate to thrombin exosite-II (Figure 58). The result showed 

that, these sequences recognize the same amino acids and were docked consistently in the 

same binding mode even after removing some charges, which confirmed our optimism that 

designed sequences would specifically recognize spatially conserved amino acids in 

thrombin exosite-II (Figures 58 and 59). It is important to recall that this interaction has 

been considered to be a non-specific interaction.  

Table 11. Modified GOLDScore for the sequences docked consistently in thrombin 
exosite-II. 
 
HIT SEQUENCES MODIFIED 

GOLDScore 
AVERAGE* 

TETRASACCHARIDE 

HS21a__HS21a_1C4  108 113.0 

HS21a_1C4__HS21a  118 

HEXASACCHARIDE 

HS21a__HS21a__HS21a 142  

 

141.5 

HS21a__HS21a__HS21a_1C4 135 

HS21a__HS21a_1C4__HS21a_1C4 134 

HS21a_1C4__HS21a_HS21a 155 

OCTASACCHARIDE 

HS21a__HS21a__HS21a__HS21a 123  

 

 

126.0 

HS21a__HS21a__HS21a__HS21a_1C4  132 

HS21a__HS21a_1C4__HS21a_1C4__HS21a_1C4  125 

HS21a_1C4__HS21a__HS21a__HS21a  132 

HS21a_1C4__HS21a__HS21a__HS21a_1C4  145 

HS21a_1C4__HS21a_1C4__HS21a__HS21a 111 

*The GOLD score average for the subset of sequences of a given length.  
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HIT SEQUENCES MODIFIED 
GOLDScore 

TETRASACCHARIDE 
HS14a__HS15  100 
HS15a__HS15  106 
HEXASACCHARIDE 
HS21a_1C4__HS14a__HS15 111 
HS21a_1C4__HS15a__HS15 127 
OCTASACCHARIDE 
HS21a_1C4__HS14a__HS15__HS21a_1C4 112 
HS21a_1C4__HS15a__HS15__HS21a_1C4 126 

 
 
Figure 58. Cartoon showing the hit tetra-, hexa-, and octasaccharides with fewer charges 
and their interaction with thrombin exosite-II amino acids. The tetrasaccharide sequence is 
also a part of hexa-, and octasaccharide which is maintaining the same interaction profile at 
thrombin exosite-II even after removing some of the redundant charges from the 
sequences. The accompanying table lists the sequences and their modified GOLDScores. 
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Figure 59. Docking poses of tetra- (green), hexa- (cyan) and octasaccharide (not shown for 
clarity) sequences in thrombin exosite-II. These sequences are stripped of some redundant 
charges and still maintain the same binding mode just like their highly-sulfated 
counterparts. All of them have a similar binding mode running from non-reducing end to 
reducing end. Important thrombin exosite-II amino acids in the AB monomer of the crystal 
structure 1XMN are displayed in capped stick representation. These are the sequences with 
only the “minimally required” sulfate groups (in the conserved tetrasaccharide region), 
displayed without the ribbon. 
 

These sequences with only the “minimally required” sulfate groups not only 

docked consistently in repeated experiments but also recognized the spatially conserved 

Arg101, Arg165, and Arg233, which approximate isosceles triangle geometry in thrombin 

exosite-II. This indicates that an optimally designed heparin sequences may bind to 

thrombin exosite-II in a specific manner (Figure 59).  
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D. Designing ‘High Affinity’ and ‘High Specificity’ Tetrasaccharide Sequences as 

Thrombin Exosite-II Modulators 

Although it is presumed that the heparin-thrombin interaction is non-specific, our 

molecular modeling study showed that there is a region within exosite-II with significant 

spatial conservation including amino acids Arg101, Arg165 and Arg233. These amino 

acids assume isosceles triangle geometry with a local asymmetry in a symmetrical 

thrombin exosite-II. Docking experiments showed that a unique tetrasaccharide sequence 

was docked consistently in the same binding mode in exosite-II recognizing the above 

mentioned amino acids. The binding mode for this unique tetrasaccharide is consistent in 

multiple docking experiments.  

This observation of specific binding mode of tetrasaccharide sequence is not 

changed even after removing the non-interacting groups (redundant charges) on the 

tetrasaccharide. When the binding modes of tetrasaccharide sequences were analyzed, we 

found that the 2-O-sulfate in the non-reducing end iduronic acid was not close enough to 

effectively H-bond with Arg101, but instead faced Arg233. Based on distance and 

geometry calculations, we hypothesized that a 3-O-sulfate in the same ring would be 

optimal to gain interaction with Arg101 and additionally to Arg93.  To test this hypothesis 

we designed the following tetrasaccharide sequences where in one case we simply 

substituted 2-O-sulfate by 3-O-sulfate and in another case added 3-O-sulfate in addition to 

the existing 2-O-sulfate in the non-reducing end (Figure 60).  
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Figure 60. ‘High affinity’ and ‘high specificity’ tetrasaccharide sequences. The sequence 
in the middle is the highly-sulfated sequence with 8 charges that served as a 
pharmacophore in designing sequences with fewer charges. Appropriately placing the 
charges in the tetrasaccharide framework yields sequences of equal or higher GOLD score. 
The circled positions were modified in generating new sequences. 
 

Docking of these designed sequences with fewer charges resulted in equal or higher 

GOLD scores in repeated experiments and each time when they were docked they docked 

in the same binding mode with less than 1 Å RMSD (Figure 61). As shown in Figures 60 

and 62 the initial hit tetrasaccharide has 8 charges and has a GOLD score of 118.  The 

sequences we have designed are the same size but with 5 or 6 charges; these have equal or 

HS15a_3-O-SO3__HS15: GOLD Score 127 

HS21a_1C4__HS21a: GOLD Score 118 

HS15a_3-O-SO3 (No_2-O-SO3) __HS15: GOLD Score 118 
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higher GOLD score (127) and predicted to recognize the same binding mode including the 

spatially-conserved R101, R165, and R233 and also make accessory interactions with 

R126 and R93, making a strong case for ‘specific’ exosite-II modulators. 

 

 

Figure 61. Docking poses of ‘high affinity’ and ‘high specificity’ tetrasaccharide 
sequences shown in green (ball-and-stick) is the highly-sulfated reference structure. Blue 
and magenta (capped stick) are the sequences with fewer charges. Sequences are docked to 
within 1 Å RMSD. Important thrombin exosite-II amino acids in the AB monomer of the 
crystal structure 1XMN are displayed in capped stick without the backbone ribbon. 
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Figure 62. Cartoon structures representing the ‘high affinity’ and ‘high specificity’ 
sequences and their binding amino acids in thrombin exosite-II 

 

The newly-designed ‘best hit’ HS15a_3-O-SO3__HS15 sequence is 50% smaller in 

size and has 62.5% fewer charged functionalities but has a nearly equal GOLD score in 

comparison to the hit octasaccharide sequences that have 13-16 charges (Figure 63). Not 

only is this tetrasaccharide smaller in size with fewer charges, but has a better probability 

of making ‘specific’ interactions at thrombin exosite-II. 

 



   

148 
 

 

 

 

 

Figure 63. Structure of hit octasaccharide and tetrasaccharide sequences. 

The average GOLD score for the fully-sulfated hit octasaccharide sequences is 126. 

The GOLD score for the designed tetrasaccharide with only 6 charges is 127. This shows 

that we have designed tetrasaccharide sequences with the essential pharmacophore to 

recognize the important amino acids in thrombin exosite-II in a ‘specific’ manner. Our 

optimism is partly based on the reproducibility of the docking results predicting the same 

binding mode in repeated experiments. This design challenges the much-believed concept 

of non-specific interaction of heparin to thrombin exosite-II. Since heparin is larger and 

has many more charges, it can interact many different ways at thrombin exosite-II. This 

presumably would not be true for the small designed tetrasaccharides. 

3.5. Summary and Conclusions 

Heparin, a clinically used anticoagulant exhibits its effect by interacting with 

antithrombin and thrombin. Heparin also interacts with many other proteins besides 

antithrombin and thrombin, a property which is responsible for its side effects. However, a 

HS15a_3-O-SO3__HS15: GOLD Score 127 

HS21a_1C4__HS15a__HS15__HS21a_1C4: GOLD Score 126 
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heparin pentasaccharide sequence specifically recognizes antithrombin and this interaction 

has been studied extensively. Although the antithrombin–heparin interaction is considered 

a specific interaction, the architecture responsible for specificity in antithrombin remains 

unclear.  

Our molecular modeling studies of antithrombin crystal structures explain some of 

the factors that are responsible for specificity. Even though, one would expect long side 

chain amino acids, such as Lys and Arg, that form the heparin binding site (HBS) in the 

surface of the antithrombin to be highly surface exposed, it was found that most of the 

critical amino acids in HBS are instead ~60% buried. In addition to the buried nature, they 

are also held in place by neighboring H-bonding partners such Asp and Glu, which restricts 

the flexibility of the long side chains. In some cases, like Lys114, the hydrophobic 

environment keeps the long side chains close to the protein rather than solvent exposed.  

Calculation of radii of gyration indicated that most of the critical amino acids in HBS are 

spatially conserved. Analysis of the relative geometry revealed an important feature where 

Lys114, Lys125 and Arg129 form a non-equilateral scalene triangle, which in principle 

would favor specific interaction and require a complementary match from the ligand to be 

recognized. Since pentasaccharide is a molecule with appropriately distributed charge 

functionalities that meet the 3D geometrical requirements of antithrombin HBS, the 

antithrombin-pentasaccharide interaction becomes specific rather than just ionic driven 

interactions between negatively charged ligand and positively charged protein.  

At the same time the heparin-thrombin interaction is presumed to be non-specific 

even though the type of interaction is same as antithrombin.  In contrast to antithrombin, 
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we found that most of the basic long side chain amino acids in thrombin exosite-II are 

more than ~60% surface exposed and are highly flexible. Also the important amino acids 

in thrombin exosite-II form an approximate symmetric model which favors non-specific 

interaction.  

Calculation of radii of gyration showed that within this non-specific favored 

thrombin exosite-II, some amino acids are spatially conserved including Arg101, Arg165 

and Arg233, forming a local asymmetric center. Using molecular docking experiments, we 

have designed novel tetrasaccharide sequences to specifically recognize these amino acids. 

The newly designed ‘best hit’ HS15a_3-O-SO3__HS15 sequence is 50% smaller in size 

and contains 62.5% fewer charged functionalities but has a nearly equal GOLD score in 

comparison to the hit octasaccharide sequences that have 13 to 16 charges. This 

tetrasaccharide is not only smaller in size with fewer charges but has better probability of 

making ‘specific’ interactions at thrombin exosite-II based on our repeated docking 

experiments.  

The design of novel ‘specific’ tetrasaccharide sequences challenges the existing 

idea that the thrombin–heparin interaction is non-specific and leads to the possibility of 

designing and synthesizing of heparin-based specific thrombin exosite-II modulators.  

Since we have already shown in our lab that it is possible to replace the saccharide 

backbone by a non-saccharide skeleton in designing non-saccharide antithrombin 

activators, in principle it is also possible to design non-saccharide mimics based on this 

novel sequence for thrombin exosite-II.  
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3.6. Computational Methods 

Software/Hardware: SYBYL 7.1 (Tripos Associates, St. Louis, MO) was used for 

molecular visualization, for minimization, and for adding hydrogens to protein structures 

from the Protein Data Bank. All modeling was performed on an IRIX 6.5-based SGI Tezro 

graphical workstation. GOLD, version 3.0, was used for docking experiments. Heparin 

oligomeric sequences were built combinatorially in an automated manner using in-house 

SPL (SYBYL Programming Language) scripts. 

Energy Minimizations: Heparin oligomers and thrombin structures were energy-

minimized to get optimal geometric conformation. Except where stated, energy 

minimization was performed using the Tripos Force Field with Gasteiger-Hückel charges, 

a fixed dielectric constant of 80, and a non-bonded cutoff radius of 8 Å. Minimization was 

carried out for a maximum of 5000 iterations subject to a termination gradient of 0.05 

kcal/(mol-Å). 

Protein Coordinates: The coordinates for the thrombin dimer ABGH were extracted from 

the crystal structure of the thrombin-heparin complex (PDB entry 1XMN). Hydrogen 

atoms were added in SYBYL 7.1, and the structure was minimized with fixed heavy-atom 

coordinates using the Tripos force field for 1000 iterations subject to a termination gradient 

of 0.05 kcal/(mol-Å).  

Coordinates for Natural Heparin Octasaccharide: In the 1XMN thrombin-heparin 

crystal structure, thrombin was crystallized as a tetramer with 1 heparin sequence for each 

dimeric partner. In total, for 4 thrombin units there are 2 heparin sequences. Though they 
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have used octasaccharide for crystallization, in one dimer the heparin sequence was 

resolved only up to 6 saccharide units (AB-GH) and 5 units in the other dimer (CD-EF). In 

order to build the natural octasaccharide, the crystal structure-resolved hexasaccharide was 

extracted from the crystal structure and 1 saccharide unit has been added to both ends of 

the hexasaccharide. In SYBYL, the atom type of sulfur and oxygen atoms in SO3 groups 

were modified to S.o2 and O.co2, respectively, and the bond type between these atoms 

were modified to aromatic bond. Hydrogen atoms, absent in the PDB structure, were added 

in SYBYL, and the resultant structure was minimized to optimize the geometry of 

hydrogen atoms only (no change in non-H atoms) at an average ФHΨH values for inter-

glycosidic torsion angles using the same protocol for building glycosaminoglycan (GAG) 

sequences as reported previously.109 

Coordinates for Heparin Oligomers: The coordinates for the heparin oligomeric 

sequences were generated using a series of SPL scripts and a set of 8 disaccharide building 

blocks. Although the number of possible Heparin-Like GAG [UAp (1→4) GlcNp] 

disaccharides is 48, only 23 have been experimentally observed. On the basis of natural 

octasaccharide sequence, we restricted our library to include only IdoAp sequences that 

contain IdoAp2S and do not contain GlcNp3S. Because IdoAp residues in heparin can 

exist either in the 2SO or 1C4 conformations, each IdoAp residue was modeled explicitly in 

these two different states. Thus, our virtual library of octasaccharide consists of 8 IdoAp-

containing disaccharide building blocks (Figure 52). 2SO-IdoAp-containing disaccharides 

were generated using the GH residues from the 1TB6 co-crystal structure as template,220,248 

while the template for the 1C4-IdoAp disaccharides was obtained from the 1BFC 
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structure.255 Appropriate side-chain modifications were made to generate the 8 building 

blocks. Each disaccharide was minimized at the average ФHΨH value subject to a 

restraining force constant of 0.01 kcal-mol-1-deg-2. The 8 disaccharides were then used to 

build a combinatorial HS octasaccharide library using an SPL script, following which each 

sequence was minimized with 10000 iterations as described above in an automated 

manner. Thus, the HS combinatorial library contained 8×8×8×8 = 4096 octasaccharide 

sequences.  

Crystal Structures for Specific and Non-specific Interaction: 

To explore the specific/nonspecific interaction of heparin to antithrombin and 

thrombin, we have used the reported crystal structures of antithrombin and thrombin co-

crystallized with heparin fragments. The list of antithrombin and thrombin crystal 

structures used for this study with their PDB entry and reference is reported in Table 9. 

Theoretical Background for Calculation of Radius of Gyration: 

The radius of gyration is often used as a measure of the compactness of a group or 

cluster of points. To measure the radius of gyration, first the center of mass (COM, 

Equation 1) of the set of n points with masses mi is calculated: 

ܯܱܥ ൌ ቆ
∑ ݉௜ݔ௜௡
௜ୀଵ
∑ ݉௜
௡
௜ୀଵ

,
∑ ݉௜ݕ௜௡
௜ୀଵ
∑ ݉௜
௡
௜ୀଵ

,
∑ ݉௜ݖ௜௡
௜ୀଵ
∑ ݉௜
௡
௜ୀଵ

ቇ ൌ ሺݔ஼ைெ, ,஼ைெݕ ஼ைெሻ (1)ݖ

 
The COM is the point in 3D space where all of the masses are perfectly balanced.  

If all of the masses are equal, which is true in our case (we are using either the Cζ carbon 

atom [for the Arg residues] or the Nζ nitrogen atom [for the Lys residues]), the COM is just 

the average position of the n individual point masses (Equation 2): 
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ܯܱܥ ൌ ቆ
∑ ௜௡ݔ
௜ୀଵ
݊ ,

∑ ௜௡ݕ
௜ୀଵ
݊ ,

∑ ௜௡ݖ
௜ୀଵ
݊ ቇ ൌ ሺݔ஼ைெ, ,஼ைெݕ ஼ைெሻ (2)ݖ

 

The distance r between two points (x1, y1, z1) and (x2, y2, z2) is given by Equation 3: 

ݎ ൌ ඥሺݔଵ െ ଶሻଶݔ ൅ ሺݕଵ െ ଶሻଶݕ ൅ ሺݖଵ െ ଶሻଶ (3)ݖ
 

The moment of inertia I of the set of masses rotating about the COM is the product 

of the mass and the square of the distance from the COM for each point (Equation 4): 

ܫ ൌ෍݉௜

௡

௜ୀଵ

௜ଶݎ ൌ෍݉௜

௡

௜ୀଵ

ሾሺݔ௜ െ ஼ைெሻଶݔ ൅ ሺݕ௜ െ ஼ைெሻଶݕ ൅ ሺݖ௜ െ ஼ைெሻଶሿ (4)ݖ

 
 

I is dependent on the number of points, their individual masses, and their distances 

from the COM.  If the masses are all equal to m, then Equation 4 may be simplified to 

Equation 5: 

ܫ ൌ ݉෍ሺݔ௜ െ ஼ைெሻଶݔ ൅ ሺݕ௜ െ ஼ைெሻଶݕ ൅ ሺݖ௜ െ ஼ைெሻଶݖ
௡

௜ୀଵ

 (5)

 
Multiplying the right-hand side of Equation 5 by unity (n/n) gives Equation 6: 

ܫ ൌ ݊݉
∑ ሺݔ௜ െ ஼ைெሻଶݔ ൅ ሺݕ௜ െ ஼ைெሻଶݕ ൅ ሺݖ௜ െ ஼ைெሻଶ௡ݖ
௜ୀଵ

݊  (6)

 
The total mass of the points is nm.  Now, imagine that all of this mass is distributed 

evenly in a thin layer on the surface of a sphere, such that the moment of inertia I is the 

same as that for the individual points.  The radius of gyration Rg is the radius of this 

sphere, where M is the total mass of the system: 

ܫ ൌ ௚ଶ (7)ܴܯ
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Rearranging Equation 7 and solving for Rg: 

ܴ௚ ൌ ඨ ܫ
(8) ܯ

 
Substitution of Equation 6 for I, nm for M and simplification yields: 

ܴ௚ ൌ ඨ∑ ሺݔ௜ െ ஼ைெሻଶݔ ൅ ሺݕ௜ െ ஼ைெሻଶݕ ൅ ሺݖ௜ െ ஼ைெሻଶ௡ݖ
௜ୀଵ

݊  (9)

 
Thus, when all of the masses are equal, Rg is the root-mean-square distance 

(RMSD) of the points from their COM (Equation 9), since in general 

ܦܵܯܴ ൌ ඨ∑ ݀ଶ௡
௜ୀଵ
݊  (10)

 
Where d is a general distance measurement between two arbitrary points.  The two 

points could represent (for example) a lysine side chain nitrogen atom and the COM as in 

Equation 9. Alternatively, the two points could represent the position of a particular atom 

in two different docked poses of the same ligand, as we do when we analyze the similarity 

of docked GAG backbone positions. 

Docking of Heparin Oligomers:  

Docking of saccharide ligands onto the AB-GH dimer of thrombin (PDB ID = 

1XMN) was performed with GOLD v.3.0. The binding site in thrombin was defined based 

on the crystal structure ligand resolved 6 unit ‘hexasaccharide’ of the octasaccharide as a 

reference with any amino acid residues within and around the ligand for 18 to 20 Å in the 

protein. This definition of the binding site covers all important known exosite II residues 

including H91, R93, R101, R126, R165, R233, K236, K240, and W237. 
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GOLD is a “soft docking” method that implicitly handles local protein flexibility 

by allowing a small degree of interpenetration, or van der Waals overlap, of ligand and 

protein atoms. GOLD also optimizes the positions of hydrogen-bond donating atoms on 

Ser, Thr, Tyr, and, most importantly, Lys residues as part of the docking process. Whereas 

all saccharide bonds were constrained for the rigid body docking experiment, only the 

inter-glycosidic bonds were constrained when docking structures with the average torsion 

angles. Unless specified otherwise, default parameters were employed during the GOLD 

docking runs. 

For the smaller set of tetra-, hexa-, and octasaccharide sequences, docking was 

performed using no speed-up and a genetic algorithmic search with a default automatic 

setting to determine the appropriate iterations by GOLD based on the number of rotatable 

bonds in the sequence. In this search, GOLD starts with a population of 100 arbitrarily 

docked ligand orientations, evaluates them using a scoring function (the GA fitness 

function) and improves their average “fitness” by an iterative optimization procedure that 

is biased toward high scores. As the initial population is selected at random, several such 

GA runs are required to more reliably predict correct bound conformations. In this study 

10 GA runs were performed with the GOLD score as the fitness function. Collectively, 

these 10 GA runs are referred to as one docking experiment. In addition, to enhance speed, 

the GA was set to pre-terminate if the top two ranked solutions were within 2.5 Å RMSD. 

Docking experiments were performed in triplicate to ensure reproducibility and to reduce 

false positives. The top two solutions of each docking experiment were considered for 
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further analysis. Thus, a typical triplicate docking experiment would yield a minimum of 

six solutions. 

When docking the octasaccharide combinatorial library made from 8 disaccharide 

building blocks, a two-step docking protocol was utilized. The first step consists of 

screening all possible sequences using 30000 GA iterations (7 to 8× speed up) and GOLD 

score evaluation of only the top-ranked solution. This step identified the most promising 

sequences (top 1%) that have a relatively high GOLD score. The second step consisted of 

docking these most interesting sequences in triplicate for 300,000 iterations. Docking was 

driven by the GOLD scoring function. Although this scoring function correlates with the 

observed free energy of binding, a modified form of the scoring function has been found to 

be more reliable.256 This modified GOLDScore, which utilizes hydrogen-bonding and van 

der Waals interactions (eq. 1), was used to rank the final docked solutions. 

 
௠௢ௗ݁ݎ݋ܿܵܦܮܱܩ ൌ ௘௫௧ܤܪ ൅ 1.375 ൈ ܦܸ ௘ܹ௫௧ (11)

 
 
Where, HBext and VDWext are the “external” (non-bonded interactions taking place between 

the ligand and receptor) hydrogen bonding and van der Waals terms, respectively. Unless 

otherwise noted, the terms ‘GOLD Score’ and ‘modified GOLDScore’ in this work both 

refer to Equation 11.  
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CHAPTER 4 
CONCLUSIONS 

 

Numerous attempts have been made to design or discover new molecules that 

activate antithrombin.158,160,207
 However, each of these searches has relied on utilizing a 

saccharide scaffold as a mimic of heparin. Implicit in these designs was the expectation 

that a saccharide scaffold was necessary to induce antithrombin activation. Our research 

group has challenged the assumption that the saccharide-based skeleton is essential for the 

activity of specific glycosaminoglycan (GAG) sequences. We hypothesized that specific 

GAG sequences can be replaced by non-saccharide skeletons which may provide several 

advantages over the GAG skeleton. These include 1) ease of chemical synthesis; 2) 

likelihood of oral delivery due to enhanced hydrophobic character; 3) opportunity to gain 

additional non-ionic binding energy; 4) enhanced specificity for the target protein; and 5) 

the ability to modulate responses in either an agonist or an antagonist manner.  

Desai and co-workers have designed small, non-saccharide sulfated flavans based 

on the trisaccharide DEF as a template using hydropathic interaction (HINT)210 analysis. 

The reported sulfated flavans were found to be weak actvators of antithrombin. To improve 

on the antithrombin activation potential of these organic activators, a 

tetrahydroisoquinoline-based bicyclic-unicyclic sulfated activator IAS5 was designed using 

a pharmacophore-based approach by Raghuraman et al.209 These studies showed that IAS5 

activates antithrombin nearly 30-fold, an increase of nearly 2- to 3-fold higher than the 

first-generation rationally designed agents.134,135 However, the designed molecules were 
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found to be weak activators of antithrombin due to their binding to the extended heparin 

binding site (EHBS) instead of the pentasaccharide binding site (PBS) of antithrombin. 

To design better non-saccharide antithrombin activators, a virtual screening-based 

approach, which categorizes the ligands as either PBS- or EHBS-binding molecules in 

native and activated antithrombin, was employed. Combinatorial virtual screening of 

24576 molecules based on a tetrahydroisoquinoline (ISOQ) core scaffold resulted in 92 

hits that were predicted to bind preferentially in the PBS of activated antithrombin with 

good affinity. The molecular modeling results lead to several hypotheses. Of special 

importance are three hypotheses. The modeling results suggest 1) an optimal linker length 

of the 4 to 5 atoms; 2) a 2′,5′-disulfated unicyclic ring; and 3) a 3,5,6-trisubstituted bicyclic 

ring are predicted to be important. The hypotheses formed the basis for the synthetic work 

currently in progress in the Desai laboratory.  

As mentioned earlier, the synthesis of highly sulfated molecules is challenging.209 

To date, no molecule with all three features has been synthesized. Yet, the laboratory has 

just synthesized and tested one molecule that may serve as initial test of molecular 

modeling experiments. 

 
 

Activator 67A2L25 
 



   

160 
 

The potential activator 67A2L25 was synthesized (by Mr. Al-Horani) and 

evaluated (by Dr. Liang) using the standard antithrombin activation protocol developed by 

the laboratory. Activator 67A2L25 has a 6,7-disulfated bicyclic ring (instead of 5,6-

disubstitution), a two carbon linker (instead of 4 or 5 carbon linker); and a 2,5-

disubstituted unicyclic ring (as desired).  

Biochemical analysis of 67A2L25 shows an antithrombin activation potential in the 

region of 50- to 100-fold (the high variance is because of the very high salt content as 

impurity in the sample). The activation potential of 67A2L25 is much less than full 

antithrombin activation (300-fold), but significantly more than 8- to 30-fold activation 

achieved with previous designs.134,135,209 The antithrombin affinity was found to be 

between 1 and 5 μM at pH 7.4. This is significantly higher than the affinities of all 

previous designs (50 to 500 μM),171,212,214 though still less than most potent saccharide-

based activators (50 to 100 nM).  

Since the synthesized molecule was not originally present in the virtual library, this 

molecule was docked using the same docking parameters. Modeling results for the 

synthesized molecule shows that the GOLD score for 67A2L25 is 97.2, which is lower 

than the scores for the hit molecules identified in the virtual library screening and the 

binding modes are also divergent in triplicate docking experiments.  

Several conclusions may be derived based on this single data point. 1) The 

activation is not full (50-100 fold in comparison to 300-fold) for compound 67A2L25 

probably because of the absence of optimal structural features, as predicted by GOLD 

modeling; 2) the activation is much better than that realized with previous designs 
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probably because of the slightly longer linker and/or 2′,5′-disulfation of the unicyclic ring; 

3) the antithrombin affinity of 67A2L25 is found to be higher probably because of more 

optimal features (slightly longer linker and/or 2,5-disulfation of unicyclic ring) than those 

present in previous designs; and  4) the antithrombin affinity of 67A2L25 is not as great as 

the most optimal saccharide activators because all of the features suggested by the docking 

experiments have not been introduced. Overall, the antithrombin binding and activation 

results obtained with 67A2L25 are consistent with the GOLD-based molecular modeling 

results obtained and provide stronger impetus to synthesize and test the ‘high-affinity, 

high-specificity’ molecules identified in this work.  

In the second project, the specific and nonspecific interactions of heparin with 

antithrombin and thrombin have been studied. Heparin exhibits its anticoagulant effect by 

interacting with antithrombin and thrombin. Although the heparin binding sites in both 

antithrombin and thrombin are lined with Arg and Lys amino acid residues, the 

antithrombin-heparin interaction is specific, whereas the thrombin-heparin interaction is 

considered to be nonspecific. 

Our molecular modeling studies and the crystal structure analyses of antithrombin 

and thrombin explain some of the factors that are responsible for specificity. Even though 

one would expect long side chain amino acids such as Lys and Arg, which form the 

heparin binding site (HBS) on the surface of antithrombin, to be highly surface exposed, it 

was found that most of the critical amino acids in the HBS are instead ~60% buried. In 

addition to the buried nature, they are also held in place by neighboring H-bonding 

partners such Asp and Glu, which restricts the flexibility of the long side chains. In some 
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cases, like Lys114, the hydrophobic environment keeps the long side chains close to the 

protein rather than solvent exposed.  Calculation of radii of gyration indicated that most of 

the critical amino acids in HBS are spatially conserved. Analysis of the relative geometry 

of the basic residues revealed an important feature wherein Lys114, Lys125 and Arg129 

form a non-equilateral scalene triangle, which in principle would favor specific interaction 

and require a complementary match from the ligand to be recognized. Since 

pentasaccharide is a molecule with appropriately distributed charge functionalities that 

meet the 3-D geometrical requirements of antithrombin HBS, the antithrombin-

pentasaccharide interaction becomes specific rather than simple nonspecific ionically 

driven interactions between negatively charged ligand and positively charged protein 

functional groups.  

At the same time the heparin-thrombin interaction is presumed to be non-specific 

even though the receptor-ligand interactions are very similar to those in antithrombin. In 

contrast to antithrombin, we found that most of the basic long side chain amino acids in 

thrombin exosite-II are more than ~60% surface exposed and are highly flexible. Also, the 

important amino acids in the thrombin exosite-II are arranged in a highly symmetric 

pattern which favors non-specific interaction due to multiple or degenerate binding mode.  

However, calculation of radii of gyration showed that within this non-specific 

favored thrombin exosite-II, Arg101, Arg165 and Arg233 are spatially conserved and form 

a local asymmetric center. Using molecular docking experiments, we have designed novel 

tetrasaccharide sequences to specifically recognize these amino acids. The newly-designed 

‘best hit’ HS15a_3-O-SO3__HS15 sequence is 50% smaller in size and contains 62.5% 
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fewer charged functionalities but has a nearly equal GOLD score in comparison to the hit 

octasaccharide sequences that have 13 to 16 charges. This tetrasaccharide is not only 

smaller in size with fewer charges but has better probability of making ‘specific’ 

interactions at thrombin exosite-II based on our repeated docking experiments.  
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The design of novel ‘specific’ tetrasaccharide sequences challenges the existing 

idea that the thrombin–heparin interaction is non-specific and leads to the possibility of 

designing and synthesizing heparin-based specific thrombin exosite-II modulators.  Since 

we have already proved in our lab that it is possible to replace the saccharide backbone by 

a non-saccharide skeleton in designing non-saccharide antithrombin activators, in principle 

it is also possible to design non-saccharide mimics based on this novel sequence for 

thrombin exosite-II.  
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APPENDIX A 
 

ABREVIATIONS 

AT: Antithrombin 

HBS: Heparin binding site 

PBS:  Pentasaccharide Binding Site 

EHBS: Extended Heparin Binding Site 

GAG: Glycosaminoglycan 

DEFGH (H5): Natural sequence-specific heparin pentasaccharide 

LMWHs: Low Molecular Weight Heparins 

ISOQ: Tetrahydroisoquinoline 

QSAR: Quantitative Structure-Activity Relationship 

QSPR: Quantitative Structure-Property Relationship 
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