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In this work, we investigate the optical response of the semiconductor quantum 

wire array when excited by stationary UV light. The array is synthesized by selectively 

electro-depositing the semiconductor material in electrochemically self-assembled porous 

alumina templates. Our studies are based on the optical behavioral changes in CdS, ZnO, 

ZnSe and CdSe quantum wires of 50-, 25- and 10-nm diameters.  

We use a set of generalized Bloch equations to solve the interband polarization 

function of the semiconductors derived within the Hartree-Fock approximation, and 

theoretically model the UV excitation effect on the quantum wires. The solutions which 

 



 xiii
consider the effects of screening, Coulomb interaction between the carriers and many 

body effects on excitons are generated for a quasi-equilibrium regime using a devised 

accelerated fixed point method. The solution technique is developed in Mathematica to 

iteratively solve this complex set of equations. The optical constants generated for 

individual quantum wires are incorporated into a finite-element electromagnetic wave 

simulator, HFSS, to investigate the full behavior of the array of wires. Theoretically 

calculated values of the dielectric permittivity of the un-excited quantum wires are shown 

to decrease progressively as the wire diameter reduces. 

We perform the experimental analysis using a pump-probe excitation scheme 

incorporated in a sensitive Michelson interferometer in a homodyne setup. We measure 

extremely small changes in the phase shift between the interfering IR probe beams and 

hence measure the refractive index changes caused by the UV pump. While the 

decreasing filling factor acts to reduce the optical activity in narrower wire arrays, the 

shifting of the DOS function with additional quantum confinement serves to increase it.  

These competing effects give rise to the size-dependent non-monotonic optical activity 

experimentally observed in ZnO, CdS and ZnSe nanowire arrays. The simulation results 

show a rapid increase in the changes in effective permittivity values of the individual 

quantum wires as diameter decreases. The substantial changes observed in the refractive 

index for the whole thin film array at intermediate wire diameter sizes may be suitable for 

optical phase shifting, intensity modulation and switching applications in integrated 

optical devices. 

 

 



CHAPTER 1 

Introduction 
 
 
 
Within the past few decades, an enormous activity has been witnessed in studying the 

growth and structural, electrical, and optical properties of low-dimensional 

semiconductor structures such as quantum wells, quantum wires and quantum dots. 

Various advanced techniques to grow these structures have been developed over the 

period.  More research is being done in growing these structures using different type of 

materials and fabrication techniques to obtain an extremely uniform distribution of nano-

wires and dots, and with an excellent dimensional precision. The electronic and optical 

properties of the materials are altered due to the increase in confinement, as we proceed 

towards lower dimensional structures from quantum wells, to wires and dots. In general, 

the quantum confined structures exhibit a rich variety of enhanced optical properties as 

compared to their higher dimensional counterparts. The development of new fabrication 

techniques, the continuous improvements in the existing ones, the possibility of 

emergence of new physical phenomenon and their potential use in designing various 

novel and more efficient electronic as well as opto-electronic devices constitute some of 

the most important motivations behind the strong ongoing research in the area of low 

dimensional semiconductor structures.  In this work, quantum wires or 1-Dimesnional

1 



  2
semiconductor material systems are of special interest to us.  

 

 

Fig. 1.1 Density of states function of a 1-Dimensional system 

 

Fig. 1.1 shows the density of states functions in bulk and 1-Dimensional system. Its 

behavior in a 1-Dimensional system is a very peculiar one. It diverges at the bottom of 

each sub-band, and then decreases as the kinetic energy increases. This behavior of the 

density of states curve is very remarkable as it leads to a whole new set of optical and 

electrical effects peculiar to quantum wires.  
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The quantum wires find numerous applications in a wide variety of fields. Since the first 

suggestions by Sakaki [2] and the experimental realization by Petroff et. al. [3], 1-

Dimesional semiconductor structures have seen a tremendous amount of research. They 

have already emerged as the versatile nano-scale building blocks of the assembly of 

photonic devices [4]-[7], including polarization sensitive detectors [5], light emitting 

diodes [6], and electrical injection lasers [7]. Progress in the fields of such nano-photonic 

devices requires detailed understanding of how confinement of charge carriers and 

photons affects optical properties and gives rise to interesting optical phenomenon [7]-

[9]. For example, single nano-wires have been recently shown to function as optical 

waveguides and Fabry-Perot cavities [7]-[10]. Intense optical excitation of a single nano-

wire has produced stimulated emission and lasing [7],[11]-[12]. Lasing has also been 

obtained from quantum wire electrical injection devices. There are also efforts to develop 

Quantum Wire Tunable THz Phonon Detectors [13]. The development of ZnO nano-wire 

based white LEDs has also been reported to perform stable operation at ambient 

conditions for long hours [14].  

There is also a significant increase in the interest shown by the research community in 

self-assembled semiconductor nanostructures, which are fabricated by electro-deposition 

of semiconductor materials in porous alumina films [15]-[24]. These anodic alumina 

films are fabricated to produce a uniform distribution of arrays of nano-pores, which can 

be utilized for self-assembly of the semiconductor wires (or dots) of fairly uniform cross-

section. The increasing attention towards porous alumina is due to its relatively easy and 



  4
low cost processing. Moreover, the anodic alumina films possess an extremely regular 

and highly anisotropic porous structures, with pore diameters varying from 5-200nm.  

 

 

Fig 1.2 Raw atomic force micrograph of a porous alumina film [21] 

 

These pores are uniformly distributed, formed in the direction of growth, and hence are 

very well suited for growing well aligned arrays of quantum wires and dots. Such 

structures possess very interesting magnetic, electronic, as well as linear and non-linear 

optical properties. A giant photo-resistivity in electrochemically self-assembled CdS and 
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ZnSe quantum wires has been reported, that finds applications in the “Normally-ON” 

infrared detectors [21]. These structures also hold promise in single electronic 

applications.  They also have tremendous prospects in building nano-scale solid-state gate 

and logic devices suitable for miniaturization, self-assembled neural networks, etc. [22]. 

Just to name a few more, the applications of these structures also exist in the field of solar 

cells[25], carbon nano-tubes [26] and magnetic storage [27].  

We have focused our research towards investigating the optical properties of quantum 

wires deposited in these electrochemically self-assembled porous alumina templates. 

Great interest has been showed by the scientific community in studying the wide band-

gap, highly ionic semiconductors such as ZnO, CdS, GaN, ZnSe, CdSe for their potential 

applications in optoelectronic devices in the blue and UV regions of the electromagnetic 

spectrum.  We have chosen four of these exciting materials for our investigations, namely 

CdS, ZnSe, ZnO and CdSe to be deposited in the porous alumina. All of them belong to 

III-V semiconductor compound system.  

 CdS has wide fundamental band-gap of 2.5 eV at 300 0K. As it is very effective in 

visible-UV spectral region, CdS is extensively used in photo-conducting cells [28]. It is 

also widely used in manufacturing non-linear optical devices [29], heterogeneous solar 

cells [30], and a lot of other opto-electronic devices in the visible-UV range.  

ZnSe has played an important role in the development of the blue-green lasers or blue 

injection lasers [31]. Its large band-gap (2.69 eV) and closely lattice matched nature make 

it more attractive to be used as a passivation layer for GaAs and as an insulating layer of 



  6
GaAs Field-Effect-Transistors [32]. It is also widely used in various non-linear optical 

devices [33].  

ZnO has a band-gap of 3.35 eV at 300 0K.  Like CdS, as it is very effective in the visible-

UV spectral region, ZnO is used as a photo-conducting and fluorescent material.  The 

excellent optical, piezoelectric, and acousto-optic properties of a thin film ZnO make it 

suitable in the fabrication of cell windows [34], gas sensors [35], surface acoustic wave 

devices [36] and integrated acousto-optic devices [37]. ZnO platelets have also been 

reported for optically pumped lasing at very low pump power [38].  

CdSe has a comparatively smaller band-gap of 1.74 eV at 300 0K. It finds applications in 

the field of photovoltaic cells, photo-conductive materials, thin-film transistors, as well as 

optical data recording [39].  

Our work is directed towards studying the electrochemically self-assembled quantum 

wire array structures, fabricated by electro-depositing the above-mentioned wide band-

gap materials into porous alumina templates. All the research oriented towards improving 

the fabrication techniques for growing these nanostructures and thoroughly understanding 

the underlying physics involved would only improve the quality as well as performance 

of the devices in which these nanostructure are put into use. The ongoing research and 

developments in the field of porous alumina have gained pace, on account of its uniform 

distribution of nano-pores, and an easy, cost effective fabrication process. Their 

uniformity is especially useful in various optoelectronic devices. Investigation of certain 

optical behavior of the electrochemically self-assembled quantum wire arrays deposited 

in porous alumina, with the variations in diameters of the quantum wires, their material 
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compositions and the UV optical excitations, forms the core of this dissertation. We have 

developed a theoretical model to explain the effect of a stationary UV excitation on the 

optical behavior of this quantum wire array. This theoretical model could be used to 

calculate optical susceptibility, refractive index and absorption coefficient of the quantum 

wires under stationary excitation. The model is then incorporated into a finite-element 

electromagnetic wave simulator to examine the effects of UV excitation on the quantum 

wire array behavior, with the derived theoretical models in effect. We have also 

performed an experimental analysis using a pump-probe excitation scheme to measure 

the optical response of this quantum wire array in an optical homodyne setup using a 

Michelson interferometer.  

In this dissertation, we study the effect of stationary UV excitation on the optical behavior 

of the electrochemically self-assembled semiconductor quantum wire array. The quantum 

wire array is formed, by filling the pores of the porous alumina substrate with the 

semiconductor material under investigation. For our experiments, we have used four 

different types of wide band-gap materials, namely, CdS, ZnSe, ZnO and CdSe. This 

dissertation work is divided into three major components.  

a) Theoretical modeling,  

b) Electromagnetic wave simulations, and  

c) Experimental analysis. 

In the theoretical treatment, we have derived a model to investigate the variations of the 

optical parameters of cylindrical quantum wires when excited by stationary UV radiation.  

We have followed a step-by-step approach to reach the final models that we incorporate 
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in the numerical field simulations. Initially, we disregard the Coulomb interactions 

between the carriers generated due to optical excitations. Accordingly, electrons and 

holes are treated as quasi free particles. In this section of our treatment, we also address 

the transition selection rules, calculate the optical dipole matrix element and discuss the 

inter-band kinetic equations for the free carriers in a two band approximation. Later, 

many body Coulomb effects in a low or virtual zero excitation regime are considered. 

Finally, we extend our treatment to include the optically excited semiconductor quantum 

wires. As we have used stationary UV excitation during our experiments, a quasi 

equilibrium is assumed to have been reached in the system, meaning the carriers are at 

thermal equilibrium among themselves within their bands. The total crystal however 

remains out of thermodynamic equilibrium. The theoretical models are then implemented 

using mathematical software, Mathematica, to calculate various important optical 

parameters, like dielectric constant ε (or permittivity) of the wire, its susceptibility, 

refractive index n, absorption coefficient α, etc.  

In the electromagnetic wave simulations, we create a geometric model of the 

electrochemically self-assembled quantum wire array, assign typical material parameters 

to the quantum wires depending on what kind of material is used to fabricate the wires 

and incorporate derived theoretical models into this simulator. Basically, we re-create the 

same optical pump-probe experiment that is performed on the optical table, but in a 

simulation environment. We have used Ansoft Corporation’s simulation software called 

HFSS (High Frequency Structure Simulator) for the quantum wire array analysis. Instead 

of using the whole quantum wire array structure, we have divided it into hexagonal unit 
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cells. The unit cell is repeated using a Master-Slave boundary condition, over the period 

of 10×10 µm2 to give the effect of an array structure. Master-Slave boundary conditions 

enable us to model the planes of periodicity such that the electric field of one surface 

matches the electric field on another to within a phase difference. A single unit cell 

consists of a cylindrical wire of the semiconductor material embedded in hexagonal 

alumina. The wire lengths are set at 1 µm, while simulations are performed for wire 

diameters that match our experimental samples, e.g. 50, 25 and 10nm. We have also used 

an absorbing radiation boundary in which the model surface is electrically open, and the 

waves can radiate out of the structure and toward this type of boundary. The energy 

enters and exits the system via the ends of the hexagonal unit cells using a wave port type 

of excitation. This type of excitation is analogous to the practical situation where the light 

is incident on the device under test via an infinitely long waveguide. Using an adaptive 

meshing criterion, the mesh has been tuned to generate a very accurate and efficient mesh 

in the structure. Finally, a proper solution frequency point is chosen, which corresponds 

to our experimental value of 1308 nm, to compute the electrical performance of the 

device. Using a driven mode type of modal solution set, the S-parameters are generated 

to obtain the phase variations of the wave due to the array structure.  

We perform the experimental analysis of the quantum wire array using a pump-probe 

excitation scheme where we use a Michelson interferometer as a homodyne setup. The 

interferometer is constructed using IR laser probe, to which the quantum wire array 

sample is completely transparent. The sample is pumped using UV pulses. This UV 

excitation induces changes in the absorption coefficient and refractive index of the test 
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sample, which is continuously probed by the IR probe beam. The quantum wire material 

as well as alumina is completely transparent to the IR probe at 1308nm. Hence, as the 

quantum wire array sample is placed in one of the beam paths of the Michelson 

interferometer probed by the IR laser, absolutely no change in power is observed at the 

output of the interferometer. But when the sample is pumped using 365nm UV radiation 

of sufficient intensity, as the excitation photon energy is greater than the band-gap of the 

quantum wire material, a large number of electron-hole pairs are generated. This alters 

the optical behavior of the sample, including its refractive index and absorption 

coefficient. An interferometer is extremely sensitive to these changes. When the UV light 

is modulated at 1 KHz, any 1 KHz ac component at the output of the interferometer can 

be easily attributed to the effect of the UV excitation in the quantum wire sample. This ac 

component is then measured using a lock-in amplifier. Our calculations, which are 

explained in the later chapters, suggest that this ac component is an accurate measure of 

the phase changes in IR probe laser due the UV excitation behavioral changes of the 

quantum wire array. This component basically is the foundation of all our measurements. 

We have performed our experiments for four different types of semiconductor quantum 

wire arrays, namely CdS, Znse, CdSe and ZnO, each set with three different diameters, 

50nm, 25nm and 10nm. The optical parametric changes at six different intensity levels of 

the UV pump excitation are measured over four different device sample batches. 

Starting with the published values of the bulk dielectric constants of the materials under 

investigation, we calculate the theoretical permittivity values of the quantum wires using 

Mathematica. These values are then incorporated into the HFSS simulator. The phase 
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changes observed in all the sets are further matched with the experimental values to 

obtain the accurate optical parameters for the quantum wires under investigation. 

 

This thesis is organized as follows. Chapter II describes some fundamental physics 

essential for understanding all the topics covered in our work. Chapter III describes the 

theoretical treatment for the development of various optical properties of quantum wires 

under stationary UV excitation. In Chapter IV, the theoretical models are incorporated 

into an electromagnetic wave simulator, HFSS, to study the optical behavior of the 

quantum wire array.  Chapter V describes our experimental analysis of the data generated 

from the Michelson interferometer constructed as a homodyne setup and the pump-probe 

excitation scheme. The analysis and co-relation of all the studies performed in the 

previous chapters is provided in Chapter VI to demonstrate a good agreement in the 

theoretical and experimental data. Finally, the summary of all the dissertation work and 

conclusions are provided in Chapter VII.  

 



CHAPTER 2 

Fundamentals 
 
 
 
2.1   Low Dimensional systems: 1-D regime 

Low-dimensional systems have revolutionized semiconductor physics. Low-dimensional 

semiconductors are the structures in which carriers behave as though they are free to 

move only in two or less dimensions. Most of these structures are actually hetero-

structures, meaning they comprise more than one kind of material. Real electrons move 

in all three dimensions but they can be made to behave as though they are free to move 

only in fewer dimensions. Trapping them in a narrow potential well or a wire that 

restricts their motion in one, two or three dimensions at discrete energy levels can 

achieve this. If the separation between these energy levels of the adjoining materials is 

large enough, the electrons appear to be frozen into the ground state and no motion is 

possible in this constrained dimension.  

Generally, the dimensionality in the single electron states is determined by the length of 

an electron wave function λe (Debroglie wave function) in semiconductors and insulators, 

while in metals, the length is in reference to the Fermi wavelength λf. When the 

geometrical confinement length of the system is comparable to λe or λf, the electron 

motion in that direction is physically constrained and the system dimensionality reduces 

12 
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by one. In these conditions, the energy of the carriers is descretized, which is in contrast 

with the near continuum of the energy states for unconfined carriers, as in case of bulk 

materials. The major effect of reduced dimensionality on the electronic and optical 

behavior of the material arises from behavior of density of states function in low 

dimensional system.  

 

 

Figure 2.1 The statistical distribution of density of states for 2-D, 1-D and 0-D 
semiconductor structure plots as a function of energy [1]  

 
Fig. 2.1 shows that with reduction in the dimensionality, the density of states gets more 

confined in the energy spectrum and increases sharply around certain energy values.  

If we have to consider the simplest quantum wire geometry, the rectangular cross 

sectional wires surrounded by infinite barriers would be to the first you would think of, as 
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shown in Fig. 2.2. In this structure, while the electron movement is restricted in x-y 

direction due to the confinement potential, they are free to move only in z-direction. It is 

closely analogous to an electromagnetic wave guide. 
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Fig. 2.2 The infinitely deep rectangular cross section of quantum wire. 

 

Within the quantum wire, the potential is zero, while it is infinite outside the wire. Hence, 

the 2-D Schrödinger equation in the confined x-y direction is written as  
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Each value of εm,n described by the two principle quantum numbers m and n, is the total 

energy due to confinement, and becomes the bottom of 1-dimensional sub-band. It could 

be observed that, if Lx is considerably larger than Ly, the m levels form a ladder of small 

steps within the sub-band ladder of well separated n levels. However, for Lx ≈ Ly, the two 

ladders cannot be clearly separated and many energy levels are degenerate.  

The one dimensional density of states function is shown in Eqn.2.4 .  
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where Lz is the length of the quantum wire.  

This density of states function n(E) in 1-D system, also shown in Fig.1.1, is very peculiar 

on account of its sharp peaks. The behavior of the density of states curve is very 

remarkable as it leads to a whole new set of optical and electrical effects peculiar to 

quantum wires.  

 

2.2 Overview of the typical optical parameters 

Classically, in a dielectric medium, electrons are assumed to be bound by certain 

harmonic forces to the positively charged ions. If this medium is excited by a periodic 

transverse electric field of the light beam, the electrical polarization is induced due to the 

microscopic displacement of these bound charges. This electric polarization is the 

macroscopic sum of the dipole moments induced in the crystal by the external field. 

When an electric field is applied across a crystal, it causes a displacement “x” of an 
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electron with charge “-e” from its equilibrium position producing a dipole moment. 

Accordingly, polarization, which is the dipole moment per unit volume, can be written as  

    exnP 0=  

where “d = ex” is the dipole moment and “n0” is the mean electron density per unit 

volume. The relation between the polarization P and electric field E describes the nature 

of the dielectric medium in the linear regime. Accordingly, P can also be defined as 

    EP χε 0=  

where χ is a scalar constant called as electric susceptibility while ε0 is the permittivity of 

free space. The electric flux density D is related to polarization P and electric field E as  

    PED += 0ε  

Hence from the above equations, electric flux density D can be rewritten as   

    ED ε=  

where 

    ( )χεε += 10  

is a constant called as dielectric permittivity of the medium. The dielectric materials that 

absorb light have complex susceptibility (i.e. χ = χ’ + j χ” ) and hence complex 

permittivity (i.e. ε = ε’ + j ε” ).  

The ratio (ε / ε0) is called the relative permittivity or dielectric constant of the medium. In 

the discussion from here onwards, we would refer the term ε as the relative permittivity 

or dielectric constant of the medium, rather than assuming it to be an absolute value of 

the permittivity function. Hence from here onwards, the complex (relative) permittivity 
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function is given as ε(ω) = ε’(ω) + j ε” (ω) which can describe the optical properties of 

the medium at all photon energies E = ħω.  

From the causality and principle of superposition as applied to a linear medium, the 

Kramers-Kronig relations linking ε’  and ε”  can be derived.   
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Kramers-Kronig relationship allows us to calculate the real part of a (permittivity) 

function, if the imaginary part is known, and vice versa. This relationship is of 

fundamental importance.  

The complex refractive index n*(E) can then be written as 

   ( ) ( ) ( )ωκωω jnn +=*  

    ( ) ( )ωεωε "' j+=                     (2.6) 

where n(E) is called as the ordinary or real refractive index, while κ(E)  is called the 

extinction coefficient or the attenuation constant. n(E) and κ(E) are both real and positive 

numbers. A finite value of extinction coefficient κ demonstrates the dielectric losses in 

the material.  

Using equation (2.6), we can write 

          (2.7-A) 22' κε −= n

   κε n2"=        (2.7-B) 
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The absorption coefficient “α” determines the decay of intensity of the wave in the 

medium.  The intensity decreases by a factor of 1/e over the length “α”. The absorption 

coefficient (written in units 1/m) can also be expressed as the number of photons 

absorbed per unit distance.  

Wave-number k is the rate at which the phase of the wave changes due to the medium in 

the direction of propagation, hence rightly called as propagation constant. In the medium 

with effective refractive index n, the propagation constant “k” would simply be expressed 

as “nk0” where k0 is the vacuum wave-number 

Using equation (2.6) and (2.7), we can easily calculate the absorption coefficient “α” and 

ordinary refractive index “n”, as well as extinction coefficient κ in terms of the real and 

imaginary part of the (relative) dielectric functions. They are given as 
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Absorption coefficient α can also be written in terms of ordinary refractive index and 

imaginary part of the dielectric function as [40]  
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One of the important relevant discussions about the optical properties of semiconductors 

is the absorption of photons. Some of the photo-transitions that contribute to the overall 

absorption in a wide spectral region from far infrared up to ultraviolet spectra are briefly 

described below [41]. 

1. Inter-band Photo-transitions (Band-to-Band) : When an absorption of a photon causes 

the creation of electron-hole pair, it is called a Band-to-Band transition.  

2. Impurity to Band Transition : In doped semiconductors, an absorbed photon causes a 

transition between bound state of an impurity and the conduction or valence band. 

3. Free Carrier Transition (Intra-band) : An absorbed photon can transfer its energy to 

an electron or a hole, thereby increasing its energy within the same band. 

4. Excitonic Transitions : The absorption of a photon can lead to the formation of an 

electron and a hole in coupled states which are  called excitons. 

5. Phonon Transitions : Long wavelength photons can be absorbed in the excitation of 

lattice vibrations, i.e. the process of creating phonons. 

Although, impurity to band, phonon and free carrier type of transitions are also important,  

in the electrochemically self-assembled quantum wires that we use in our experiments, 

their effects remain negligible and/or irrelevant in the type of studies that we perform. 

For our topic, inter-band and excitonic types of transitions are the more important 

phenomena. 
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2.3     Excitons  

 

 

Fig 2.3 Optical spectra of a semiconductor near fundamental edge 

 

An exciton is a quantum of an excitation energy traveling in the periodic structure of a 

crystal. It is electrically neutral and hence its movement through the crystal gives rise to 

the transportation of energy, but no charge. When a negatively charged electron and a 

positive hole situated at a distance r apart in free space interact via an attractive force, the 

effect is considered as a Coulomb interaction. The magnitude of this Coulomb force 

between the two carriers is given as , where e is the carrier charge, while ε2
0

2 4/ re πε 0 is 

the permittivity or dielectric constant of free space. The electron-hole pair bound together 
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by this Coulomb force could be considered as a quasi particle called an exciton. Excitons, 

or these coupled pairs of electrons and holes, can propagate through the crystal as single 

particles.  

A typical band structure of the semiconductor consists of a conduction band and a 

valence band separated by an energy band gap Eg. Photo transitions are possible between 

the bands only when the photon energy ħw > ħwg(=Eg), where wg is the threshold 

frequency to the fundamental band edge. The absorption spectrum for a typical bulk 

semiconductor is shown in Fig. 2.3 as a dashed curve. The coulomb interaction between 

the electron and holes, in other words the excitonic effects, are completely disregarded in 

that absorption spectrum.  But, when excitonic effects are taken into consideration, we 

can observe a series of narrow lines or peaks in the spectrum, even below the 

fundamental band edge. These effects are usually suppressed at room temperature, but 

very much pronounced at low temperatures. The behavior of the semiconductor under 

this situation is shown in Fig. 2.3 as a solid curve.  The Corresponding E-k relations is 

shown in Fig. 2.4. 
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Fig. 2.4 E-k relation for Wannier excitons 

 

Using the analogy between the exciton and a hydrogen atom, the bound state energies for 

this electron hole pair are given by the Rydberg formula 
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where quantum numbers n takes the values n=1,2,3,……∞,  while a0 is the exciton Bohr 

radius given as 
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Here, m is the effective reduced mass given as memh/(me+mh).  
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As we can observe from the above equations (2.12) and (2.13), the excitonic behavior is 

closely associated with the relative distance between an electron and a hole comprising 

that exciton. Accordingly, an exciton can exist in different quantum states, a ground state 

with lowest energy associated with it, as well as in number of higher excited states. The 

series of peaks shown in Fig. 1.3 are basically these quantization effects in the optical 

spectrum of a semiconductor below the fundamental band edge.  The excitonic energies 

depend on various parameters like dielectric constant of the semiconductor material, the 

effective mass of electrons and holes in it, and so on.  Accordingly, different materials 

would have different excitonic energies associated with them. We can also observe the 

changes in the semiconductor band spectrum even above the fundamental band edge, 

which are attributed to the non-coupled or free electrons and holes generated in the 

semiconductor. The exciton radius is directly proportional to the dielectric constant ε of 

the medium. Hence, materials with larger dielectric constants would have larger exciton 

radius. Moreover, since effective mass is directly proportional to the band-gap, as the 

band-gap of the material increase, it also increases its ground state exciton energy. The 

mass dependence of the exciton bound states is extremely important in our experimental 

analysis. 

In case of GaAs with electrons and hole effective masses at 0.065m0 and 0.45m0 

respectively, and its static dielectric constant at 13.42, the exciton Bohr radius a0 and 

ground state energy E0 are calculated as 12.5 nm and 4.6 meV respectively. This 

demonstrates that in GaAs with lattice constant at 0.565 nm, the exciton extends over 

quite a few atoms of the lattice, and its radius is comparable with the dimensions of a 
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typical nanostructure. It possesses the properties of a particle; it is mobile and able to 

move around the lattice.  

All states of an electron-hole pair (or exciton) are excited states. As a matter of fact, a 

crystal said to be in the ground state corresponds to the valence band completely filled by 

electrons. Accordingly, there are no electrons in conduction band and no holes in valence 

band in a ground state of the crystal.  Any state of the crystal with an electron in 

conduction band and a hole in valence band would be an excited state. In other words, an 

existence of an exciton represents the excited state. Therefore, just like an excited state, 

an exciton would also have a finite lifetime. 

       There are two limiting types of excitons : 

1. The Wannier excitons   

2. The Frenkel excitons  

The Frenkel excitons  are the strongly and tightly bound state of an electron-hole pair, 

while Wannier excitons are the weakly bound state of an electron-hole pair. The Bohr 

exciton radius a0 of Wannier exciton is much larger than its lattice constant “a” as shown 

in Fig. 2.5.  Almost all the excitons encountered in semiconductors and nanostructures 

are Wannier excitons. As the spatial extent of a Wannier exciton is much larger than a 

lattice constant, their wave-function is also affected by the spatial geometry of the 

material. The Wannier exciton has three degrees of freedom, a center of mass motion, an 

electron-hole relative motion, and a spin configuration. The latter two are internal degrees 

of freedom. The important fact that we are concerned about is the wave function of an 
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electron-hole relative motion which are sensitive to the geometry of the semiconductor 

structures, and determine its optical properties [42].  

  

 

Fig. 2.5 Wannier and Frenkel type of excitons 

 

One more important point about the excitons that is relevant in this work, is the 

dimensionality of the exciton system, which depends on the ratio of the exciton Bohr 

radius a0 and the geometric confinement length L. In case, when L<a0, the exciton 

becomes quasi-1D for 1-D confinement.  Roughly, for a quantum wire of radius R, quasi-

1D excitons would exist, when R<0.1a0. 
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2.4 Phenomenon of Interference 

When we consider a region where two or more optical waves are present simultaneously, 

the total effect we observe would be due to the superposition of their individual 

wavefunctions. The total intensity of two waves with complex amplitudes A1 and A2 can 

be given as 

 *
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intensities I1 and I2 and phases φ1 and φ2. If we consider A as the superposition of the two 

waves at a point in space, then the intensity of the total wave would be 

  ( )ϕ∆++= CosIIIII 2121 2         (2.14)  

where ∆φ is the phase difference between the two waves i.e. ∆φ = φ2-φ1.  

                 

Fig 2.6 Superposition of two waves with phase difference ∆φ 

 

∆φ 0 2π 4π 

I
2121 2 IIII ++  

2121 2 IIII −+

-4π -2π 

 



  27
Equation 2.14 is generally called as an interference equation. Hence, the total intensity of 

the composite wave, as shown in Fig. 2.6, not only depends on the individual wave 

amplitudes (or intensities), but also depend on their phase difference. Hence, according to 

the interference equation, when two waves of equal amplitudes (or intensities) 

superimpose to form an interference pattern, the intensity of the observed interference 

fringes varies between certain minima and maxima, depending on the phase difference of 

the individual waves and their individual intensities. 

 If the waves are traveling in the same direction (say z), and one of the waves is lagging 

by a distance d with respect to other, then their phase difference would be (2πd/λ). If the 

path difference is an integer multiple of the wavelength of light, constructive interference 

is observed. On the other hand, if it is an odd multiple of half the wavelength, a 

destructive interference occurs. Accordingly, for two waves of equal intensities traveling 

in the same direction, the interference equation could be written as [43] 
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where I0 is the individual beam intensity.  

The interferometer works on the principle of amplitude splitting. The incoming wave is 

split into two waves using a beam-splitter, travels unequal distances and gets reflected or 

re-directed by a set of mirrors. The waves then recombine via the same (or different) 

beam-splitter to form an interference pattern. Four important types of interferometers are 

the Michelson interferometer, the Mach-Zehnder interferometer, Sagnac interferometer 

and Fabry-Perot etalon. The first three are shown in Fig. 2.7.  
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Fig 2.7 Michelson, Mach-Zehnder and Sagnac interferometers. Waves travel via   
different paths and path lengths to form an interference pattern.  
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The Michelson interferometer, which we have used in our experiments, consists of a 

single beam-splitter, which divides the incoming beam into two beams of equal 

intensities.  Both the beams are then reflected back along the same path by different 

mirrors, and recombined by the same beam splitter to form an interference pattern.  

The electrochemically self-assembled quantum wire samples are then placed in one of the 

beam paths. If there is a small change in the optical behavior of the sample, it would be 

converted to a change in the interference pattern.  

The intensity I is proportional to the phase difference between two waves, which could be 

rewritten as [43] 
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Accordingly, the interferometer can be used to indicate and measure variations of the 

distance d, refractive index n, or the wavelength λ0 (or frequency) of the wave. We can 

see that for a monochromatic beam of wavelength 1.3 µm and path length of 13 cm, a 

change ∆n=10ppm in refractive index, would create a phase difference of a full 2π. 

Hence, extremely small changes in the optical behavior of the device under test could be 

identified and measured using an interferometer.  
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2.5  Fabrication of the electrochemically self-assembled 

semiconductor quantum wire array 

The quantum wires that we have used in our experiments and theoretical investigations 

are fabricated using a simple electrochemical technique. In the process of quantum wire 

fabrication, a nano-porous alumina film is electrochemically self-assembled by anodizing 

the aluminum film. A two dimensional array of quantum wires are then formed by 

electro-depositing the material of interest within the pores of the porous alumina film.  

As described in the last section, anodic alumina films with a uniform distribution of 

arrays of nano-pores are widely used for self-assembly of the semiconductor wires (or 

dots) of fairly uniform diameter. [22]-[24]. A relatively easy and low cost fabrication 

process of anodic alumina can produce very regular and highly anisotropic porous 

structures, with pore diameters varying from 5-200 nm. The pore densities are in the 

range of 109 – 1012 /cm2. These pores are uniformly distributed, formed in the direction of 

growth, and hence are very well suited for growing well aligned arrays of quantum wires 

and dots. But as the size of the pores is reduced, the pores might become more or less 

disordered, and this effect is attributed to certain constraints in the structural property of 

porous alumina [44].  

The fabrication of nano-wires using the porous alumina method consist of three basic 

steps,  

a) Electro-polishing,  

b) Anodization, and  

c) Electro-deposition.  
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Fig. 2.8 Different stages in the fabrication process of porous Alumina. (A) Growth of 
Aluminum Oxide, (B) Fine featured pores being developed, (C) Enhanced pore growth, 
(D) Ultimate pore structure. D is the inter-pore separation, d denotes pore diameter, and L 
is the depth of the pores [45].  
 

Electro-polishing of the aluminum foils is performed to reduce inherent surface 

roughness to about tens of nanometers and produce a clean, flat surface. Foils are then 

electrolyzed using a strong acid solution (pH<4) to obtain a porous alumina film on the 

surface. During this process of anodization, simultaneous deposition and dissolution of 

aluminum oxide takes place. Aluminum oxide is formed due to the exposure of aluminum 

foil to air.  However, the dissolution of this Aluminum oxide due to the electrolysis in 
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presence of strong acid also takes place simultaneously. The effect of these two processes 

running together simultaneously results in the formation of porous alumina. The type and 

concentration of the acids used during this process, the amplitude of DC current passed 

through alumina as well as the anodization time determines the diameter “d” and depth 

“L” of the pores formed in the alumina template, as well as the inter-pore separation 

“D”[45] as shown in Fig. 2.8. 

 

Fig. 2.9 Ideal structure of anodic porous aluminum oxide [46]  
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As the anodization voltage is turned ON, the anodization current is responsible for pore 

formation as well as barrier layer growth. After a 5-10 minutes of anodization process, 

the anodic film is removed using strong acids to obtain a porous alumina film along with 

the barrier layer at the interface of aluminum and pores. Uniformity of the pores is 

improved using a multi-step anodization process, rather than a single-step anodization 

[47]. The final porous alumina structure looks as shown in Fig. 2.9. A uniformly ordered 

array of pores formed in alumina is shown in Fig 2.10, which is the scanning electron 

micrograph of the porous alumina template [45]. 

 

  

Fig. 2.10 SEM image of the porous alumina template 
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During the last step of electro-deposition, the pores are filled up with the materials of 

interest to form quantum wires or dots. The process could be either AC or DC type. The 

length of the wires depends on the type of electrolyte, its concentration as well as the 

electro-deposition time. In case of DC electro-deposition, barrier layer along with the 

aluminum at the bottom is chemically removed to create the alumina template with 

through pores. Wires formed using this process are easier to make an electrical contact 

with the external circuit and hence are potentially very useful in the fabrication of 

electrical and optical devices. 

 



CHAPTER 3 

Theoretical Modeling 
 
 
 
Charge carriers can be generated in a semiconductor material by a number of ways, like 

doping, electronic injection or optical excitation. Intra-band transitions (transitions within 

the band) are primarily responsible for the electronic properties of the semiconductor 

material. On the other hand, inter-band transitions are connected with the optical 

properties of the material. However, a strict separation is completely impossible. 

In this chapter, we primarily discuss the theoretical treatment to compute the optical 

properties of the quantum wires under stationary optical excitation. The purpose of this 

theoretical treatment is to study the optical changes in the quantum wires when they are 

excited by stationary UV light. In this chapter, we first describe the optical phenomenon 

at atomic level and explain the optical effects in free carrier system in quantum wires. 

Later, we include the Coulomb effects and study the optical phenomenon under low or 

virtually zero-excitation condition. Finally, the treatment is extended to include the effect 

of stationary or very long optical (IR/UV) excitation pulses on the optical properties of 

the quantum wires. The optical constants are solved as these theoretical equations are 

solved numerically using Mathematica. 
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3.1  Atomic Optical Susceptibility 

Let’s first consider some elementary treatment of the optical transitions of an atom. 

For an atom with a single electron, the stationary Schrödinger equation is written as 

( ) ( )rrH nnn ψεψ h=0  

where ψn(r) is the energy eigen-function while  ħεn are the corresponding eigen-values. 

When the atom is excited with the optical field, it creates the dipole moment of the atom 

and hence introduces the time dependent changes of the wave-function. Hence, 
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Here H1(t) is the time-dependent perturbation due to an optical field i.e. dipole interaction 

with light. 

)()()(1 tdEtexEtH −=−=           (3.1) 

Here, the electric field is assumed to be polarized in x direction, and hence causes the 

displacement of an electron (cloud) in x direction from its equilibrium. Note that, in the 

above equation, d is the dipole operator. 

The time-dependent solution for the above Schrödinger equation would be 
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Inserting H1 in time-dependent Schrödinger equation and then multiplying both sides by 

)(* tnψ  we get, 
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This leads us to an equation to calculate coefficients an as 
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where 

nmmn εεε −=  

is the frequency difference or the transition frequency, and 

∫ ≡∂= nmmn ddrmdn ψψ *3             (3.2) 

is the dipole matrix element. 

The value for an  has been solved in Ref. [48] and [49] as 
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In the above calculations, the optical field has been used in its Fourier Transform 

expression as 
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∂
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In the above expression, q is the wave number of the optical field. It is also addressed as 

photon momentum and is calculated as q = (2π / λ ). In the dipole approximation, as 

wavelength λ >> a0, the lattice constant of the crystal   q << kc, kv, which is the 

momentum of the electron in initial and final state. The electron momentum is 

approximately given as k = 2π/a0. Hence, the momentum of the photon, q can be 
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neglected in dipole approximation. This momentum q is used as an infinitesimal damping 

parameter such that, as  E(t) → 0 as t → ∞. 

If we consider only the linear response theory, i.e., only linear terms in the field are taken 

into account, the total wave function would be 
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As polarization is the macroscopic sum of the dipole moments induced by the field E(t), 

it is also expressed as the expectation value of the dipole operator, 

( ) ( ) ( )trdtrrntP mn ,,*3
0 ψψ∫∂=  

where n0 is the density of the non-interacting atoms in the system. 

From the above two equations and considering only the lower order terms, polarization P 

is calculated as 
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As E(t) is real, E*(-ω) = E(ω), and we can also substitute ω → -ω. Hence the  above 

expression simplifies to 
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But, as 
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and 
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( ) ( ) ( )ωωχω EP =            (3.7) 

the optical susceptibility χ for an atom is calculated as, 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
+−

−
++

= ∑ γεωγεω
ωχ

ii
d

n

lmlmm
lm

1120

h
       (3.8) 

According to Dirac's identity equation in Ref. [50]  
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where, ∆→0, P is the principle value of the integral under which this relation is used, 

while δ is the Dirac's delta function. 

Also, as  we are dealing with complex permittivity, i.e., 

( )"'1"' 0 χχεεεε jj ++=+=  

The imaginary part of the dielectric permittivity, using which we calculate absorption 

coefficient according to Eq. (2.11), is 
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In the above equation, as  l  is the initial occupied state and n  is the final state, first δ-

term represents light absorption. The optical transition takes place from the occupied 

lower state l  to higher energy state n , if the photon energy ħω is greater than the 

energy the difference ħεnl between the two states, i.e., 

( )ln εεω −> hh  

This energy difference between the states is referred as the band gap energy Eg. Hence, a 

photon with energy ħω excites a valence band electron to a conduction band and creates a 



 40
hole in the valence band. Naturally, as these electrons and holes are respectively 

generated in conduction and valence band, they interact on account of the Coulomb 

potential and hence influence the optical properties of the crystal. 

 

 

3.2  Free Carrier Transitions in a semiconductor crystal 

Now let’s move discussion from atoms towards a semiconductor crystal. As stated 

earlier, electron-hole pairs are generated in the semiconductor when excited by light of a 

photon energy ħω greater than the semiconductor band-gap. These carriers have opposite 

charges and interact on account of their mutually attractive Coulomb potential. For the 

sake of simplicity and to understand the phenomenon to the basics, the Coulomb 

interactions between the photogenerated electrons and holes are not considered in this 

section and they are treated as (quasi) free particles. 

 

 

3.2.1  Optical Dipole Matrix 

Generally electrons in semiconductor are not in pure states, but in mixed states [51]. Pure 

states are described by the wave function, while the density matrix describes mixed 

states. Using general completeness relation, 

∑ = 1,, kk λλ , 

The Hamiltonian of the electrons in a crystal in the unperturbed state could be written as 
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where λ denotes the sub-band number and k  is the wave vector. As described previously, 

the dipole interaction with the light is given as 

)(1 terEH −=  

where “er = d” is the projection of the dipole moment in the direction of the 

electromagnetic field. Using the completeness relation again, the dipole interaction H1 

can be expressed in the form 
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Here erλ’λ(k’,k) is the dipole matrix element. Let's limit our discussion here, purely to the 

inter-band transitions, i.e. λ’ ≠ λ. The above equation could be expressed in terms of the 

Poisson Bracket commutation relation [52] as 
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where p is a momentum operator. 

Using k.p theory, the electronic wave function ψλ(k,r) in the lattice can be written in 

terms of periodic Block function Uλ(0,r), which is periodic in real space as, 
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The above integral could be considered as the sum of the unit cell integrals spread over 

the whole crystal, all of which yield the same result. Note that the wave function is 

assumed to be normalized for the volume L3. Due to the periodicity of the lattice wave 

functions and their orthogonality, the optical dipole matrix element is calculated as 
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The δ function in the above equation indicates that dipole matrix element couples 

identical k-states in different bands (which is a selection rule for optical transitions) and 

the momentum is conserved. Hence, dipole approximation is equivalent to ignoring the 

photon momentum in comparison to a typical electron momentum in Brillion zone. Thus, 

the changes in wave vector k  are neglected during photo-transitions and they are actually 

shown as vertical transitions in the E-k diagram.  Vertical transitions are possible only in 

direct band gap materials, in which minimum of the conduction band and maximum of 

the valence band are situated at the same point of the k  space. 

The final expression for the optical dipole matrix element is written as 
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Except for the δ function, the k dependence of the dipole matrix element can often be 

neglected in the spectral region around the semiconductor band edge. The k -dependence 

is important only if the variation over the whole first Brillion zone is needed, as in 

Kramer-Kronig transitions or computations of refractive index. 

 

              

Fig. 3.1 E-k diagram (momentum conservation) 

 

3.2.2  Optical Inter-band Transitions in a semiconductor crystal 

Note that the calculations in this section are simplified by considering only the free 

carrier transitions, or in other words, neglecting the Coulomb interactions. The procedure 

could be more simplified by restricting our treatment to the conduction band c and 

valence band v only. Let’s call this as a two-band-approximation model. This kind of two 

E 

kc = kv

k 
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band model is a reasonable first order approximation to calculate the optical response of a 

real material, if all other possible transitions are sufficiently detuned with regards to the 

frequency region of interest. 

As discussed in the last section, Hamiltonian due to optical perturbations is given as 

kkdtEH
k

λλ
λλ

λλ ')(
,'

,'1 ∑
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In the above equation, only those optical dipole matrix elements that couple identical k-

states in conduction and valence band are considered. It also states that different k-states 

are not mixed if we ignore the Coulomb interactions between the carriers. Accordingly, 

two band approximation of the interaction Hamiltonian is 

[ ]ckvkdvkckdtEH cvcv
*
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where  is used. vccv dd =*

The time development of the inter-band matrix element in the interaction representation 

has been calculated in Ref.[53], [54]. The time development of the off-diagonal elements 

of the density matrix is given as 
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Note that, the interaction representation [51] in equation(3.17) above, is used to express 

any time dependent quantity x(t) in terms of its initial value, as 

tHitHi

exetx 00 )0()(int hh
−

=  

where H0 is the time independent Hamiltonian. The above equation shows that the off 

diagonal elements ρcv of the density matrix for the momentum state k couple to the 
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diagonal elements ρcc and ρvv of the same k state.  The coupling between the elements 

with different k-values would appear if the Coulomb interactions are taken into the 

account. 

Also note here that, 

vxcx vc =,  

where c   and v  are the bra-ket representations of the carrier eigen-function. 

The diagonal elements of the density matrix ρλλ give the probability to find an electron in 

the state kλ . In other words, ρcc is the population distribution of electrons in the 

conduction band. The time development of the diagonal elements of the density matrix is 

calculated in [53] as 
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In the above equations, has been used. Also,  *
vccv ρρ = λλλλ ρρ =int

The above time development equations (3.17)-(3.19) for the density matrix elements 

describe the inter-band kinetics of the free carrier system. Many body effects due to 

interaction between excited carriers haven't been incorporated in these equations yet. 

Here we have to take into account, two limiting cases of the non interacting systems. 
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1. Coherent Optical Inter-band Transitions : These transitions are realized, at least 

approximately, in the experiments in which ultra-short pulses are used. Here, the 

carriers follow the laser field coherently, i.e. without significant de-phasing. 

Optical Stark effect, photon echo, the observation of quantum beats; ultra-fast 

adiabatic following are some of the examples of coherent optical processes. 

 

2. A quasi-equilibrium situation : A quasi-equilibrium is typically reached when 

stationary excitation, or at least the excitation with optical pulses which are long 

in comparison to carrier scattering time, are used in the experiment. Under these 

conditions, the excited carriers have sufficient time to reach thermal equilibrium 

distribution within their bands. Note here that quasi-equilibrium means that the 

carriers are at thermal equilibrium among themselves within their bands, but the 

total crystal is out of thermodynamic equilibrium. In case of total equilibrium, 

there would be no carriers in the conduction band of the semiconductor. 

 

Generally, carrier scattering times are of the order of sub-picoseconds in bulk 

semiconductors, that too at lower temperatures. Hence for our experiment, where we 

excite the nano-wire array with UV pulses longer than few microseconds, carrier 

scattering time is definitely shorter than the UV pulse periods. This type of excitation 

appears to be a stationary optical excitation, and hence quasi-equilibrium is assumed to 

have been reached in the system. 

 



 47
3.2.3  Quasi-Equilibrium regime in quantum wires 

The dynamics of the distribution of electrons and holes within their bands, together with 

the treatment of all processes which generate or annihilate particles within one band, 

constitute the intra-band kinetics. To explore this, we derive and solve  quantum 

Boltzman equations fe,k(r,t) and fh,k(r,t). For typical plasma densities, it has been shown in 

[55]-[57]  that the relaxation times are of the order of sub-picoseconds. Femto-second 

hole burning experiments in [57] have shown that the relaxation time must be about 0.1 

pico-second in an inverted laser diode. Within this short time period of the inter-band 

carrier relaxation time due to the inter-band scattering, the optically created electrons and 

holes establish a local quasi-equilibrium within their bands. For all the processes which 

take place on a time scale larger than this relaxation time, we can assume that the electron 

and hole distribution is already in a local quasi-equilibrium. The term quasi is used to 

distinguish the partial thermal equilibrium within one band from the total equilibrium of 

the unperturbed semiconductor with practically no e-h excitations. 

The assumption of quasi thermal distribution of carriers (electrons in conduction band 

and holes in valence band) significantly simplifies the further calculations. As diagonal 

elements of the density matrix don't have to be calculated, (their being the population 

distribution of the carriers within their respective bands, given by the Fermi distribution), 

it provides a shortcut to the analysis of the optical response. The diagonal elements of the 

density matrix calculated according to the Fermi distribution would be 
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where, chemical potential EFλ (or Fermi energy) is determined by the condition that the 

sum would yield the total number of carriers N∑k kf ,λ λ in the band λ. In the above 

expression, KB is the Boltzman constant, while 1/KBT is called the inverse thermal 

energy. 

Under total equilibrium and when KBT << Eg, the valence band is completely filled and 

the conduction band is completely empty i.e. Nv = N and Nc = 0 where N is the number of 

atoms. Hence, we don't have to solve Eq. (3.18), (3.19) to calculate the diagonal elements 

of the density matrix.  Now consider the first equation (3.17) for the off-diagonal 

elements of the density matrix.  Using the optical field equation (3.3) in the form of its 

Fourier transform and the Fermi distribution equation (3.20) above, time development 

equation (3.17) for the off diagonal elements, when integrated over time t is rewritten as 
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Infinitesimal damping parameter q in the exponential in the above equation is deleted 

being a negligible term. 

The density matrix formalism of the optical polarization (which essentially is the sum of 

the dipole moments over all diagonal elements) is written as 
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But we know that 
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Hence, Optical Susceptibility χ as a function of frequency can be calculated as 
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Above equation gives the free carrier optical susceptibility, as we haven't yet considered 

the Coulomb interactions in our treatment. 

In the above equation, we can see that χ(ω) has the poles at ( ) iqkvkc −−±= ,, εεω , which 

are the resonant and non resonant parts respectively. As discussed previously in the 

section for atomic optical susceptibility, the term ( )kvkc ,, εε − describes light absorption. 

On the other hand, the term ( )kckv ,, εε −  describes the amplification of the light field, i.e. 

optical gain or the laser action. As we do not create the conditions for laser action in our 

experiment, this term is neglected. Hence optical susceptibility χ(ω) can be calculated as 
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Using Dirac's identity equation in (see Eq. (3.9)), the expression for optical susceptibility 

is simplified to 
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Optical transition takes place when photon energy ħω equals ( )kckv ,, εε −h . 

The energy difference in the above equation can be written as 
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where mr is the reduced electron-hole mass given as 
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and Eg is the band gap of the semiconductor material. 

Since valence band curve is negative, we get negative mass for the electrons there. In 

order to avoid dealing with negative masses, holes are considered as the quasi particles in 

the valence band with positive effective mass, i.e. mh = -mv.  Also, Fermi distribution of 

electrons in conduction band would be fe,k = fc,k and that of holes in valence band would 

be fh,k  = 1 - fv,k.. In this electron-hole notation, the free carrier optical susceptibility 

expression is simplified to 
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The above equation along with equations (2.8)-(2.11) directly gives us the refractive 

index and the absorption coefficient of the material. If the summation over k in the above 

expression is converted to an integral using 1D density of states, it yields free carrier 
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optical susceptibility expression exclusively for 1D regime, i.e. quantum wires that we 

have considered. 

 

 

3.3  Inter-band transitions with Coulomb effects: 

Low excitation regime 

In the previous sections, we discussed free carrier susceptibility as Coulomb effects were 

not considered.  Now, we will extend our calculations to accommodate the many body 

effects as well. The many body Coulomb effects are very important in semiconductors, as 

they describe the carrier-carrier interactions within the same band, i.e. intra-band 

interactions. But the optical properties, as we have discussed previously, are mostly 

related to inter-band transitions. The many body treatment of the e-h system in an excited 

semiconductor crystal affect its spectral properties, i.e. the energy shifts and broadening 

due to many body interactions. These optical properties, which basically are the 

renormalizations of the states, are linked with many body interactions depending on the 

kind of free carriers in the semiconductor. Hence, we eventually have to consider the 

Coulomb interactions for the accuracy in our treatment. 

Let’s first consider only the low excitation regime in this section. In that case, the 

electron and hole density in the semiconductor crystal is very small. 

As described previously, polarization is the microscopic sum of all the dipole moments 

induced by an external field in the material. If we write it as the expected value of the 

electron dipole “er” and integrate over the entire crystal, polarization is calculated as 



 52

∑∫∂= ),(),()( 3 trertrrtP t ψψ  

Here “ψt” represents a Hermitian conjugate of the original function “ψ”. If we consider a 

spatially homogeneous system, then the wave-function could be written in terms of Bloch 

functions ψλ(k,t) as 

( ) ( )∑=
k

k tktatr
,

, ,)(,
λ

λλ ψψ  

Following the very same treatment used in equation (3.10)-(3.15),  the expression for the 

polarization in a spatially homogeneous system comes out to be 
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where Pλλ’k(t) is a polarization pair function. For a two band model, if λ, λ’ are chosen to 

be valence and conduction band, the polarization pair function is written as 

)()()( ,,, tatatP kc
t

kvkvc =  

Polarization pair function describes the off-diagonal elements of the reduced density 

matrix. The inter-band density matrix elements would disappear in an equilibrium system 

without permanent dipole moment. But the optical excitation causes the inter-band 

transitions and hence the finite values of the inter-band polarization Pvc. 
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3.3.1  Hamiltonian 

Let's now define a Hamiltonian H of the electrons in conduction and valence bands that 

take into account the interaction terms due to light field, the Coulomb interaction terms, 

as well as kinetic energy terms of the non-interacting fermions. As described in equation 

(3.1), interaction Hamiltonian H1 is the interaction between optical field and 

semiconductor electrons and can be given as 

),(.1 trEerH −=  

      ( )[ ] ( ) ( )∫ −∂= rtrEerrr t ψψ ,.3  

As we are using an IR/UV optical field which has monochromatic space dependence, this 

excitation field could be modeled as 
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Hence, the interaction Hamiltonian H1 could be written in terms of Block functions 

ψλ(k,r) as the appropriate set for expanding the field operators as 
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In the above equation, we have considered only two bands and also the dipole 

approximation, i.e. q → 0. We can easily interpret from the interaction Hamiltonian term 

that the optical excitation causes transition of electrons from the valence and conduction 

band.  
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Other than the interaction with the external light field, we also have to consider the 

kinetic and Coulomb contribution from electrons. This Hamiltonian has been derived and 

used in Ref. [53],[58]-[62] as 
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where Vq is the interaction coulomb potential, while second quantization operators 

and  respectively describe the creation and annihilation of an electron in the band 

λ and state k. Note that, the energies E

t
ka ,λ ka ,λ

λ,k are defined for a single electron in a lattice.  The 

first summation term includes the kinetic energy of the non-interacting carriers in one 

band, while the second summation includes the Coulomb contributions in terms of 

second quantization formalism.  We have assumed that Coulomb interaction conserves 

number of carriers in each band. Hence, it can be observed that when a hole is annihilated 

in band λ  at state k, an electron is created in the same band at state (k + q). Similarly, a 

hole is annihilated in band λ’ at state k, an electron is created in the same band λ’ at state 

( k- q). Here again, I must mention the dipole approximation, i.e. q → 0, so that q = 0 in  

kinetic energy terms. Note that all those coulomb terms which do not conserve the 

number of electrons in each band, have not been considered in the above equation. These 

terms describe inter-band scattering which is energetically very unfavorable. 

For the two band model, the Hamiltonian Hel which considers the kinetic and coulomb 

contribution from electrons is given as 
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In equation (3.28), terms in the first summation describe the kinetic energy of non-

interacting electrons and holes. The second summation describes the Coulomb 

interactions of the electrons and holes. The first term inside the bracket describes the 

electron-electron Coulomb interaction, the seconds one represents hole-hole interaction, 

while the last term in the bracket is for electron-hole interaction. The first two terms in 

the bracket give rise to the electron and hole quasi-particle self energies, while the last 

term in the bracket for electron-hole interaction produces the exciton bound state. The 

single particle energies used in the above equation for conduction and valence band can 

respectively be given as 

c
gkckc m

kEE
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22
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v
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2

22
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h

h == ε  

Thus, using equation (3.26) and (3.28) total Hamiltonian of the electrons in valence and 

conduction bands is given by 

1HHH el +=           (3.29) 

where H1 represents the interaction terms due to light field, Hel has the Coulomb 

interaction terms, as well as kinetic energy terms of the non-interacting fermions. 
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3.3.2  Inter-band Polarization function 

Using the very same procedure with which we calculated Eq. (3.17)-(3.19), we get 
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In the above equation, a number operator (second quantization formalism) has been used, 

i.e. k
t

kk aan ,,, λλλ = , where n is the total number of carriers in band λ. A random phase 

approximation has been used to obtain the product of densities and inter-band 

polarizations. 

The free particle energy changes on account of the Coulomb interaction of the carriers 

[55],[59],[63],[64]. Hence, renormalized energies are used in the above equation, which 

are calculated as 
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The summation term in the above equation accounts for the shift of single particle 

energies due to many body (or Coulomb) interactions. This term is also called the 

exchange self energy term. 

As we have used stationary UV/IR pulses (stationary as compared to very rapid scattering 

processes) in our experiment, the system is believed to have attained a quasi-equilibrium 

state. The carrier distribution in this state could be easily approximated by the Fermi-

Dirac distributions. Therefore, nc,k  →  fc,k and   nv,k  →  fv,k

Hence, the above equation for inter-band polarization simplifies to 
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If we put V = 0 in the above equation, we get the same equation for polarization that we 

had calculated previously for free carriers. 

 

 

3.4  The situation of an unexcited quantum wire: 

        The linear optical properties 

In our pump-probe experiment, as we illuminate the system with IR light of 1308 nm, to 

which the CdS/ZnSe/CdSe/ZnO quantum wire samples are completely transparent, this 

could be treated as the case of unexcited semiconductor. Hence, as no carriers are being 

generated, fc,k = 0 and fv,k = 1. Using this distribution for an unexcited semiconductor, the 

Fourier transform of inter-band polarization equation (3.31) becomes 
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See equation (3.23) for reduced mass approximation here and the energy terms in the 

above equation. Note that Fourier transform of ( )ti ∂∂ /  is ( )δω i+ , where δ is a positive 

infinitesimal number. 

To solve the above equation, we have to expand Pvc into the solution of corresponding 

homogeneous equation, which actually is called the Wannier equation, given as 
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Wannier equation is of the form of two-particle Schrödinger equation for the relative 

motion of an electron and a hole interacting via the attractive coulomb potential V(r). As 

in hydrogen atom case, Eν is negative for bound states ( Eν < 0), while it is positive for 

ionization continuum states (Eν  > 0). Note here, that polarization pair equation as well as 

Wannier equation assumes the coulomb potential to vary little within the unit cell.  This 

assumption would be acceptable only when e-h pair Bohr radius a0  is considerably larger 

than a lattice constant as in [65]. 

 

z 

V1D(Z) Coulomb potential 

Regularized 
Coulomb potential 

 

Fig. 3.2 Quasi-1D Coulomb Potential [65],[66]  

 

The lattice constant for CdS is 5.8 Å which is considerably smaller than its excitonic Bohr 

radius of about 28  Å ( aexciton = aH εr / µ where excitonic radius in hydrogen aH  is 0.527 
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Å). For a quantum wire, the coulomb potential has to be replaced by the envelope 

averaged potential V1D derived in [65]-[66] developed in the approximation of a 

cylindrical quantum wire as 

Rz
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γε +
=

1

0

2
1          (3.34) 

where ε0 is the background dielectric constant, R is the radius of quantum wire with 

infinite lateral confinement, z is a relative coordinate of the e-h pair and γ is a fitting 

parameter. This coulomb potential has a cusp type cut-off at γR ≥ 0. This cut-off has been 

introduced to avoid the difficulty of divergence and to make the problem analytically 

solvable. Various cut-offs have been used Ref. [66]-[69], but the one in the equation 

(3.24) above is the most effective in discussing the optical properties of semiconductor 

wire structure [60],[70]. 

We can observe a one-to-one correspondence here with the hydrogen atom, if the proton 

is replaced by a valence band hole. This Wannier equation is solved in various Quantum 

Mechanics textbooks like Ref. [48] and [71]. Accordingly, the equation for radial part of 

the wave function in Wannier equation for a quantum wire is calculated as 
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while  α is a scaling constant. Parameter λ is going to be real for bound state and 

imaginary for ionization continuum. During the course of this derivation, some important 

terms have also been calculated, which would be required in our further calculations. 

Hence, exciton Bohr radius is calculated as 

rme
a 2

2

0
εh

=           (3.36) 

while exciton Rydberg energy i.e. energy unit E0 would be 

2
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h
=           (3.37) 

The Wannier equation or the radial part of it has to be solved for bound states which are 

generally called as Wannier excitons, as well as for ionization continuum states. 

Variational methods have been used to calculate exciton binding energies and wave 

functions in Ref.[72]. The effects of excitons on the optical spectra of quantum wires, 

assuming complete confinement in one direction has been investigated in Ref. [73]-[74]. 

Excitonic absorption has also been calculated analytically by a fractional dimensional 

space method in [75], which considers only one sub-band pair. The treatment in Ref. [70] 

and [76], which we have considered in this work to calculate inter-band polarization 

(optical properties) of an unexcited semiconductor, considers both the bound (excitonic) 

states, as well ionization continuum states, while taking into account the effect of mixing 

many sub-bands. We can also use this method for quantum wires with varying widths. A 

different, but principally similar approach has been followed in Ref. [77]-[78] to calculate 

high resolution spectra for both bound and continuum states. However, all these 

treatments confirm that single sub-band approximation works only for narrow quantum 
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wires less than about 75 nm, but they are less accurate beyond 75-100 nm wide wires. 

Hence, for narrow quantum wires for widths about 10-50nm, single sub-band 

approximation can be considered effectively without any appreciable errors. 

 

 

3.4.1   Bound states (or excitons where Ebound < Eg)  

The bound state solutions are generally called Wannier excitons. Note here that there are 

two limiting types of excitons: the Wannier excitons and the Frenkel excitons. We have 

considered only Wannier excitons, which are the weakly bound states of an electron and 

a hole. As the spatial extent of the Wannier exciton is much larger than a lattice constant 

as in our case, its wave-function is more sensitively affected by a spatial geometry than 

that of the Frenkel excitons. 

For a quantum wire, the Wannier equation above is written in the form of a Whittaker 

equation, as 
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where 2/1±=µ . 

The energy eigenvalues i.e. the 1D exciton bound state energies for the above equation, 

are given as 

2
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where E0 is the exciton Rydberg energy explained in equation (3.37). 
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The 1-D exciton wave-functions for the dipole allowed transitions (i.e. only those wave-

functions which couple to the light field) have been calculated in Ref. [53], [65] and [70] 

as, 
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where Nλ is a normalization constant, Wλ,µ are the Whittaker functions as given in [79]-

[80], Γ is a gamma function,  F and G are the fundamental solutions of the confluent 

hyperbolic equation and 
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as given in Ref. [65]. 

The approximate ground state eigenvalue for the thin wires (applicable for quantum wires 

that we have used) is determined using the equation 
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Accordingly, corresponding ground state binding energy is calculated as 

0

0
0 λλ

E
E =  

Note here that, as λ0 << 1 for ground state, and even smaller for thin wires, the ground 

state energy is very large as compared to the exciton Rydberg energy E0 for an infinite 

confinement potential. For more realistic confinement potentials in quantum wires, Eλ0 

may be as small as 5E0. For higher excited states, the eigenvalues λn approaches n, while 
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Whittaker eigenfunctions take the form of Laguerre polynomials. These higher wave-

functions vanish at the origin. 

 

3.4.2   Continuum (ionized) states where Eν ≥ 0  

The states in the ionization continuum with Eν  ≥  0, (i.e. unbound states) has a continuous 

energy spectrum. These continuous states, which contribute to the inter-band optical 

transitions, have the energy 
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while λ (See equation 3.35) is calculated as  -i/a0k. Accordingly, the Wannier equation for 

a quantum wire for the ionization continuum states is given as 
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The two independent solutions for the above equation are the Whittaker functions as 

calculated in Ref. [69], [76] as 
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where j=1,2 and Rikx γ2~ = , while F and G are the confluent hyper-geometric functions. 

Only one of the above Whittaker functions, ( )xW ~)1( , is optically allowed. Using the 
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typical normalization procedures, the optically allowed normalized wave-function for the 

unbound (ionization continuum) state is calculated [65] as 
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is calculated at Rikx γ2~ = . 

 

 

3.4.3  Optical spectra of quantum wires 

From the previous sections, we now can calculate the exciton and continuum wave-

functions, as well as the energy eigenvalues. Hence, we can solve the inhomogeneous 

equation (3.31) for the inter-band polarization and obtain the optical spectrum of a 

semiconductor quantum wire, in an unexcited (unpumped) condition. As the CdS / ZnSe / 

ZnO / CdSe quantum wires that we have used in our experiments are direct band-gap 

semiconductors, we will restrict our discussion to the optically allowed transitions for 

direct band-gap semiconductors only. However, the indirect band-gap materials possess 

much smaller, but finite, transition probability due to the involvement of phonons. 

In order to solve equation (3.31), we can expand the polarization function in terms of the 

Wannier equation solutions 
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Inserting above equation into equation (2.31), we can solve the polarization function as 
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We already know that  ( ) ( ) ( )ωωχω EP = . Also, as we had discussed previously in the 

section for free carrier susceptibility, the non-resonant part in the above equation (second 

fraction in the bracket) does not contribute to absorption and hence neglected. 

Accordingly, the susceptibility of a quantum wire under unexcited conditions can be 

calculated as 
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Note here that Coulomb potential has a cut-off at z = γR. Using the eigenfunctions for a 

quantum wire for bound as well as ionization continuum states from equation (3.39) and 

(3.41) that were described in last two subsections, the susceptibility equation of a 

quantum wire under unexcited condition is written as 
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B = Continuum State Contribution 

   ( )∫
∞

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−−++

−
∂=

0
2

0

0
2)2(

0

2)1(
0

2)2()1(
0

)1()2(
0

0 2
2

xEEi
E

DD

WDWDex
a g

x

δωπ

π

h
 

Here x = a0k is used as the integration variable in the contribution for the continuum 

states. Above equation, along with equations (2.8) and (2.11), directly give us the 

refractive index and the absorption coefficient of the quantum wire under unexcited 

condition. It has been reported in Ref. [63] and [65] that an absorption spectrum consists 

of sharp lines due to bound states and a broad absorption band due to ionization 

continuum. 

 

 

3.5 High Optical Excitation Condition: 

Quasi-Equilibrium Regime 

In our experiment to investigate the optical properties of the laser excited semiconductor 

quantum wires, we have used a pump-probe excitation scheme in an optical homodyne 

setup. The IR probe laser pulse prepares the system to be observed using a large area 

photo-detector, while a pump is used to test it after a variable time period. The CdS / 

ZnSe / CdSe / ZnO quantum wires are transparent to IR probe signal at 1308 nm 

wavelength. The sample is excited by 365-nm wavelength UV pump beam modulated at 1 

KHz frequency. As the single UV pulse appears to be a stationary excitation, or precisely, 

as the UV pulse width is much longer than the carrier scattering time (few picoseconds), 

the generated carriers reach a thermal quasi-equilibrium within their bands. Hence, in this 
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section, we describe the optical properties when quasi-equilibrium electron-hole plasma 

exists in the quantum wire. This section is an extension to our treatment in previous 

sections, where we performed the free carrier and low excitation regime calculations. 

As the electrons and holes generated due to a long UV have already relaxed to thermal 

(quasi) equilibrium, their distribution can be given by the Fermi distribution as 
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where i = e, h  for electrons and holes, KBT is the thermal energy  and EFi is the quasi-

Fermi energy which is determined using the concentration of carriers.  

The summation over k space for the electron and hole distribution gives the equation for 

the total number of electrons and holes at one time instant. Hence, 

∑=
k

kii f
L

n ,
2  

If we know the number of carriers at an instant in time, we can easily calculate the Fermi 

energy at that instant. We also, do not have to consider the intra-band scattering 

processes, as they do not change the total number of electrons and holes. We can also 

assume charge neutrality so that Ne = Nh. 

Due to the presence of electron-hole plasma (in quasi-equilibrium state) the bare 

Coulomb potential is screened. In this regime of stationary field excitation, the screening 

of the particle-particle interaction is fully developed, and can be described by its 

equilibrium form. Hence, in bulk (and 2-D) semiconductors, the bare Coulomb potential 

has to be replaced by a screened potential in the renormalized single particle energy 
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equations. But, the screening of Coulomb potential by confined plasma had been 

discovered to be of little importance in case of quantum wires [66]. Hence, we are using 

the same envelope averaged 1D coulomb potential V1D in equation (3.34) in all our 

calculations. The absorption spectra calculated using screened coulomb potential has 

been found to not differ substantially from the calculations otherwise [81].  

For a constant light field, the stationary equation for the inter-band polarization 

component using Fourier transform of equation (3.31) is written as 
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where 'kksV −  stands for Fourier transform of screened coulomb potential explained in 

equation (2.34), ei,k are renormalized single particle energies (which uses the screened 

coulomb potential in the calculation of exchange self energy in  equation (3.30)). Note 

that Fourier transform of  is ( )ti ∂∂ / ( )δω i+ , where δ is a positive infinitesimal number. 

The rate equation for electrons and holes can also be calculated using the renormalized 

Rabi frequency ωR,k as 
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The polarization equation above can be simplified as 
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As the polarization equation above is linear in the field (it becomes non-linear only via 

the plasma density which is a function of light intensity), we can introduce a 

susceptibility function as 

EP kk χ=  

Hence, we can write the susceptibility equation for an optically excited quantum wire as 
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0
kχ  is a free carrier susceptibility function calculated in previous section, only that we 

have used the re-normalized single particle energies in this equation (3.48). Note that the 

infinitesimal damping term δ → 0. The re-normalized single particle energies are 

calculated as 
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Therefore, the susceptibility equation above includes the band gap renormalization 

effects due to electron-hole plasma. 

Unlike extremely low-density situations where carrier-phonon and carrier-impurity 

scattering are the main sources of dissipation, at high-density situations carrier-carrier 

scattering dominates the de-phasing. We believe that our experiments do not belong into 

the extremely low-density regime; neither do they fall into the category of high density 
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situation. In our present discussion, we haven’t addressed the mechanism of damping and 

de-phasing in detail, and they are assumed to be not very relevant. But they are taken into 

account, as infinitesimal damping factor δ in the susceptibility expression has been 

replaced by a finite damping γ (de-phasing) of the inter-band polarization to get more 

realistic optical spectra. 

The term in the bracket of the susceptibility equation (3.47) is called the vertex function 

as in [63],[65] and [83]. It is denoted as Γk..

If we write the susceptibility equation as, 
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Then, the vertex function becomes, 
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The dipole matrix in the above equation can be simplified in effective mass 

approximation as in [53] and [82] as     
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The solution of the vertex equation above would solve our purpose here. This vertex 

function is solved using a numerical method to obtain an accurate solution using an 

Accelerated Fixed Point (AFP) method [84]. In the high density regime, where the carrier 
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density is greater than the Mott density  and exciton bound states cease to exist (i.e. 

exciton peaks disappear in the absorption spectra), an approximate but simpler Pade 

method described in Ref. [55], [63], and [85] has been used. The experimental estimated 

value for the Mott carrier density is n > 3x106 as given in [82]. 

 

 

3.5.1 Accelerated Fixed Point (AFP) method 

If we expand the vertex function Γk  in  equation (2.49) in the form 
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Hence, we can solve the above function iteratively, by accelerating it using a damped 

extrapolation scheme and updated values of Γk as they are available [84]. The integral is 

approximated by using a discrete sum with about 100 terms as 
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The points could be taken equidistantly, but better accuracy is obtained if the ki are taken 

as the points of support of a Gaussian quadrature. 
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The Coulomb potential term in the vertex function in equation (3.49) becomes singular 

for (k = k' )at low densities. This singularity has to be removed before the AFP iterations 

are performed. 

Finally, complex susceptibility is calculated as 
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Hence, complex dielectric function ε(ω) can be calculated using the relation ( )χε += 1 . 

Using equations (2.8) and (2.11), we can calculate the absorption coefficient α(ω) and 

ordinary refraction index n(ω). 

 

 

3.5.2 Pade approximation method 

Number of carriers generated in semiconductor quantum wire depends upon the light 

intensity. We have used a 365-nm light source with a maximum 100 mW intensity, a 

Nichia LED, as a source of UV excitation. While the LED is being operated at higher 

intensity, more light will be absorbed by the quantum wires and more carriers would be 

generated. In this high density limit, the attractive potential between the electrons and 

holes becomes weak. Here, plasma screening and phase-space occupation reduce the 

strength of the Coulomb potential. In that case, we can approximately solve equation 

(3.49) using Pade approximation method [63]. A power expansion of vertex function in 

equation (2.49) could be written in terms of interaction parameter λ as 

∑=Γ
n

n
nk q λ  
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The interaction parameter λ is assumed to be very small. The first coefficient q1 is 

calculated as 

∑ −=
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Vertex function in equation (3.49) could also be expressed in terms of the ratio of two 

polynomials as 
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where PNM(k,ω) is the (N,M) Pade approximation. rn and sn can be evaluated by 

comparing the above two expansions. The simplest form of (0-1) type Pade 

approximated vertex is calculated in [63] as 
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Accordingly, the optical susceptibility can be calculated as 
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Hence, complex dielectric function ε(ω) can be calculated using the relation 

( )χεε += 10  and, using equations (2.8) and (2.11), we can calculate the absorption 

coefficient  α(ω) and refraction index n(ω). 

 

 

3.6 Numerical calculations using Mathematica 

We have developed a program in Mathematica (see Appendix A) to numerically solve the 

theoretical models described in previous sections and obtain various optical parameters 

like susceptibility (χ), complex permittivity (ε = ε’ + jε” ), absorption coefficient (α), 

refractive index (n), excitonic Bohr radius ( a0 ), etc. As we have chosen quantum wire 

arrays of four different materials deposited in porous Alumina, namely CdS, CdSe, ZnO 

and ZnSe, of three different diameters (50 nm, 25 nm and 10 nm), the program is written 

for each one of them. We first developed a dummy program for the quantum wires of 

materials with known optical parameters (GaAs) and then modified it to accommodate 

other materials.  As the experiments are carried out at low UV intensities (of the order of 

few mWatts per cm2, small number of carriers are photogenerated inside the quantum 

wire materials. Hence, Pade method as described in the last section for high density 

approximation is not valid here. Therefore, we consider only AFP method for the 

numerical solutions. 

In the calculations, like all the other parameters, the intrinsic carrier density inside the 

quantum wires is extremely important for the accurate solutions. However, it is very 

difficult to experimentally determine its accurate value in the quantum wires deposited in 
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porous alumina structures due to practical constraints. As of now, the intrinsic carrier 

concentration has not been reported for these nanostructures. Therefore, we have to make 

certain practical assumptions, within applicable limits, to proceed further with our 

calculations. In our Mathematica programs, we have used published values of intrinsic 

carrier concentrations for the bulk materials. A small variation in the carrier 

concentration, brings about a large change in the quasi-Fermi levels for electrons and 

holes, which effectively alter the final values of the optical parameters. To avoid these 

errors appearing in our calculations, we have used a fitting parameter in the model values 

of the quasi-Fermi levels. The fitting parameters are adjusted such that, at the excitation 

wavelength of 1308 nm, the permittivity values calculated for the quantum wires made of 

certain semiconductor material match the published bulk values for those materials, in a 

limit when length L and radius R of the quantum wires are very large. We have used the 

bulk model where L and R are extended to 10 microns each, as these lengths are 

considerably larger than the laser wavelength. 

As explained earlier in this chapter, the electrons and holes generated due to stationary 

UV excitation that we used in our experiments are relaxed to their quasi thermal 

equilibrium. This means, the carriers are at thermal equilibrium among themselves in 

their respective bands, but the total crystal is out of thermodynamic equilibrium. Under 

this assumption, the carrier distribution is given by Fermi distribution fi,k. 
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where i = e, h stands for the carriers, while EFi represents their quasi-Fermi levels. In 

case of thermal equilibrium of the carriers, represented by Fermi-Dirac distribution, 

equal number of carriers exists and Fermi level remains identical for both the types of 

carriers. On the other hand, for non-thermal generation of carriers such as photo-

generation or injection, more carriers exist than are present at temperature T as dictated 

by the normal Fermi-Dirac distribution. Therefore, in case of photo-generated carriers, 

their distribution does not obey the Fermi-Dirac distribution. In this case, the position of 

the Fermi levels cannot simultaneously describe the number of free electrons and holes. 

Instead Fermi levels split into two quasi Fermi levels EFc and EFv for the conduction and 

valence band electrons, respectively. In such condition, the Fermi distribution function is 

modified to 
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and 
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where, EFc and EFv represent the quasi-Fermi levels. Here, we have to be careful about 

the sign conventions.  Since the valence band curve is negative, we get negative mass for 

the electrons (holes) there. We must mention here again, that the holes are considered as 

the quasi particles in the valence band with positive effective mass, i.e. mh = - mv. 

Also, fh = 1- fv. 
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We know that summations over k-space for electron and hole distributions give the 

equation for total number of electrons and holes, as 

∑=
k

kii f
L

n ,
2                      (3.55) 

where L  is the length of the quantum wire. If Boltzman approximation is used for room 

temperature distribution, quasi-Fermi levels are calculated using equations (3.54) and 

(3.55) as 
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Here, latconf  is the lateral confinement factor for the quantum wire, explained later in 

this section. For our calculations, we have considered a 1-D quantum wire of radius R 

such that R << L, where L is the length of the wire. The quantum wires are considered to 

be 1 micron in length. We have used envelope averaged, non-singular 1D interaction 

coulomb potential given in equation (3.34). Under this condition, the electron wave-

function is written as [86]  
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where r = (r,φ,z) are the cylindrical co-ordinates,  is the normalization factor, and  

is the j

l
jC l

jx

th zero of lth order Bessel function Jl. 

The envelope wave-function corresponding to the lowest confinement energy level is 

then calculated as [53]  
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Hence, the lowest confinement energy level latconf is given as 
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where α0= 2.405 is the first zero of zeroth order spherical Bessel function J0(x) = 0. 

Accordingly, in Mathematica, conduction band energy is calculated as 
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where ∆εe(k) is the energy correction factor defined in equation (2.30). Similarly, the 

valence band energy (for holes) is calculated as 
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Free carrier susceptibility is then calculated using equation (3.48). 

Vertex function in equation (3.49) is calculated using dipole matrix element in equation 

(3.50) and the Fourier Transform equation of screened Coulomb potential. The equation 

for the Fourier Transform of screened Coulomb potential  as explained in  [61] and [81] 

is written as, 
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where K0 is the zeroth order modified Bessel Function. This Coulomb potential has 

logarithmic divergence for small values of k, which is typical for 1-D system, while it 

decreases for large values of k as the corresponding 2-D potential.  

We have used an Accelerated Fixed Point method [84], explained in the previous section, 

to solve the k-dependent Vertex function in equation in (3.49). To obtain good 

convergence and accurate solutions, the integrals involved in all the calculations have 

been approximated using a discrete sum of 100 points spread equidistantly over the 

lattice space of 2π/a0, as explained in section 3.5.1. If “a0” is considered as the lattice 

constant of the material used, 100 k-points are distributed equidistantly over the lattice 

space such that 

   
00 a

k
a

ππ
≤≤−  

As, it could be observed in equations (3.49) and (3.51), the value of the k-dependent 

vertex function at each of these 100 k-points spread equidistantly over the whole lattice 

also depends on the other vertex functions at the remaining 99 k-points over the lattice 

space. This recursive vertex function is solved iteratively using numerical techniques. As 

, if we consider that the numerical value of optical susceptibility kkk Γ= 0χχ kχ  would be 

closer to its free carrier counterpart , then 0
kχ 1=Γk . Hence, we begin the iterative 

solution with the initial value of 1=Γk  for all 100 k-points. During the first iteration, 

equation (3.51) is first solved for kΓ  at ( )0/ ak π−= , and this updated value is used in 
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the calculation of kk ∆+Γ  where ⎟
⎠
⎞

⎜
⎝
⎛=∆

k
k π2

100
1 . Accordingly, during the first iteration 

cycle, all the  values over the lattice space are calculated by using updated values at all 

the previous k-points. The convergence criterion is set such that 

. We ran the Mathematica programs for about 11-13 

such iterations to reach a good convergence.  

kΓ

( ) ( ) ( ) 61 / 10k k kn n n −Γ −Γ − Γ ≤⎡ ⎤⎣ ⎦

Alternatively, the program could be simplified by using the kΓ  values from the previous 

iteration for all the 100 k-points. Accordingly, kΓ  values for all the 100 k-points in the 

first iteration are calculated with an initial assumption of 1=Γk  for all 100 k-points. 

Hence,   values (of equation (3.51)) are updated in every iteration using the 

corresponding  values in the previous iteration. This approach is rather slower with 

regards to convergence; however required processing time in Mathematica is improved. It 

also has an added advantage that the program is much simpler as compared to the 

previous approach. In this approach, about 16-19 iterations are required to reach a 

convergence within permissible limits. 

kΓ

kΓ

Finally, equation (3.52) is used to calculate the susceptibility value for the quantum wires 

at 1308 nm of excitation wavelength. This susceptibility value is then utilized to calculate 

other optical parameters for the quantum wire under consideration, as explained in 

section 2.2. 

To obtain the optical parameters of a single quantum wire, the information about several 

material parameters is required. Some of those important material parameters for all four 
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semiconductor materials, namely CdS, CdSe, ZnO and ZnSe, which are deposited in the 

nano-pores of porous alumina templates, are given in Table 1. 

 

  CdS ZnSe CdSe ZnO 

Band-gap 

( eV ) 
Eg

2.5 

[87],[88], 

[105] 

2.69 

[87]-

[88],[105] 

1.74 

[87],[94],[95],[101],

[102],[104] 

3.35 

[87],[93]-

[95],[104] 

Lattice 

Constant 

( Å ) 

a0
5.83 

[87],[88] 

5.6686 

[88] 

6.084 

 

5.2069 

[87] 

me / m0
0.2 

[88] 

0.16 

[88] 

0.13 

[88],[105] 

0.24 

[105] Carrier mass 

 
mh / m0

0.45 

[88] 

0.6 

[88] 

0.43 

[88],[105] 

0.78 

[105] 

Static dielectric 

constant 
ε0

8.9 

[87],[97]-

[101] 

9.12 

[87],[89]-

[92] 

9.29 

[87],[94],[95],[101]- 

[103] 

8.1 

[87],[96], 

[104] 

 

Table 1 Material parameters for quantum wire semiconductor materials 

 

In Mathematica, during the process of calculating the optical parameters of the quantum 

wires under consideration, few important points are to be taken care of. A constant value 
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of infinitesimal damping factor δ (for de-phasing) is used, its value is assumed extremely 

small such that meV2.0=δh .  

As we mentioned earlier, intrinsic carrier concentrations in the self-assembled quantum 

wires are not reported anywhere as of now. Being wide bandgap semiconductors, the un-

doped quantum wires under consideration are expected to have extremely small amount 

of intrinsic carrier concentration. The self-assembled quantum wires, although fabricated 

by selectively electro-depositing un-doped semiconductor materials in porous alumina, 

are un-intentionally doped due to the presence of trap (interface) states at the alumina-

semiconductor interface. The concentration of interface states in the electrochemically 

self-assembled quantum wires is approximately calculated as ~1013 /cm2 [106]. If we 

assume that each trap is singly charged, for a wire with diameter d, and length L, the total 

carrier concentration is calculated as follows 

volumewire
areasurfacewireionConcentratCarrier
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π
π      (3.60) 

Accordingly, the un-excited carrier concentration is calculated as 8×1018, 1.6×1019, 

4×1019 /cm3 for 50-, 25- and 10-nm diameter wires respectively. Note here that the 

presence of interface states makes the value of the carrier concentration as a function of 

wire diameter and is completely independent of the semiconductor material. We can 

observe that the carrier concentration increases with the reduction in wire diameter. 

However for practical reasons where all the trap states are not responsible for carrier 

generation, the values of the carrier concentration used in Mathematica program are in 
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the range of 1015-1016 /cm3. As these are the approximate values, a fitting parameter is 

added to the carrier quasi-fermi levels in the Mathematica program, which are the 

functions of carrier concentration. The quasi-fermi levels are adjusted such that the final 

permittivity values (at 1308 nm) approach the published bulk values for these materials, 

in the limit when length L and radius R of the quantum wires are of the order of 10 

microns. Table 2 gives bulk values of the permittivity for CdS, CdSe, ZnO and ZnSe  at 

an excitation wavelength of 1308 nm (0.95 eV). 

 

 CdS ZnSe CdSe ZnO 

Dielectric constant 

ε/ ε0

5.4 6.0355 6.2601 3.7334 

References [87], [97]-[101] [87]-[92] [87],[103] [87],[96] 

 

Table 2 Static dielectric constant of the quantum wire semiconductor materials at 0.95 eV  
at (1308 nm) and 300 0K in bulk 
 

Instead of using a random value of the fitting parameters, we have used Rydberg energy 

dependent fitting parameters. Rydberg energy unit E0, which is a unique value for every 

semiconductor material, is calculated using equation (3.37) as 

  22
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where a0 is the exciton Bohr radius, m is the reduced mass (
he

he

mm
mm

m
+

= ), and ε is the 

dielectric constant of the quantum wire material. The value of the fitting parameter that 

we have used in the Mathematica program varies between 0.5 E0 to 3.5 E0. The Rydberg 

energy unit E0 for various semiconductor materials that we have used varies between 10 

meV  to 40 meV.  

 

Table 3 – Table 6 show the optical parameters calculated for CdS, ZnSe, ZnO and CdSe 

quantum wires respectively. Each table gives these optical parameters calculated for bulk, 

as well as for wires with 50-, 25- and 10-nm diameters. The parameters include lateral 

confinement energy Ω in meV, complex susceptibility χ, complex permittivity ε, as well 

as absorption coefficient α and refractive index n. We have also mentioned the values for 

the Bohr excitonic radius and Rydberg energy for each material, as well as the fitting 

parameter used (in the carrier quasi-fermi energy values) in each Mathematica program. 
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Quantum wire Material: CdS 

 

Excitonic Bohr radius : 3.82991 nm 

  Rydberg energy unit (E0) : 20.6134  meV 

      Fitting parameter in EF : 2.247 E0

 

Parameters symbol bulk 50 nm 25 nm 10 nm 

latconf 

(meV) 
Ω  2.55273 10.2109 63.8183 

χ' 0.350239 0.349311 0.346547 0.328106 
Complex Susceptibility 

j χ” 0.000271381 0.00027021 0.000266735 0.000244024 

ε' 5.401234042 5.389569828 5.354838769 5.12310009 
Complex permittivity 

j ε" 0.00341027 0.003395554 0.003351889 0.003066493 

Loss tangent δ×10-3
0.631 0.630 0.626 0.616 

Refractive index n 2.324055632 2.321544822 2.314052469 2.263426905 

Absorption coefficient 

(1/cm) 
α 70.48791 70.25961 69.58071 65.081 

 

Table 3 Optical parameters calculated for CdS using Mathematica 
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Quantum wire Material: ZnSe 

 

   Excitonic Bohr radius : 3.40967 nm 

Rydberg energy unit (E0) : 23.7263 meV 

                                            Fitting parameter in EF : 3.078 E0     

 

Parameters symbol Bulk 50 nm 25 nm 10 nm 

latconf 

(meV) 
Ω  2.79819 11.1927 69.9547 

χ' 0.40054 0.399495 0.396386 0.375619 
Complex Susceptibility 

j χ” 0.0002383 0.000237294 0.000234307 0.000214756 

ε' 6.03332796 6.020206432 5.98113021 5.720172431 
Complex permittivity 

j ε" 0.002994566 0.00298192 0.002944387 0.002698705 

Loss tangent δ×10-3
0.496 0.495 0.492 0.472 

Refractive index n 2.456283439 2.453610972 2.445635004 2.391688263 

Absorption coefficient 

(1/cm) 
α 58.56361 58.37981 57.8331 54.2031 

 

Table 4 Optical parameters calculated for ZnSe using Mathematica 
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Quantum wire Material: ZnO 

 

   Excitonic Bohr radius : 2.34116 nm 

Rydberg energy unit (E0) : 37.9679 meV 

                                            Fitting parameter in EF : 2.388 E0     

 

Parameters symbol bulk 50 nm 25 nm 10 nm 

latconf 

(meV) 
Ω  1.92588 7.70351 48.1469 

χ' 0.217258 0.216956 0.216058 0.209916 
Complex Susceptibility 

j χ” 0.000177523 0.00017713 0.000175957 0.00016803 

ε' 3.730147177 3.726365031 3.715059233 3.637877249 
Complex permittivity 

j ε" 0.002230819 0.002225879 0.002211136 0.002111524 

Loss tangent δ×10-3
0.598 0.597 0.595 0.580 

Refractive index n 1.93135898 1.930379591 1.927448978 1.90732209 

Absorption coefficient 

(1/cm) 
α 55.48471 55.38991 55.10671 53.17951 

 

Table 5 Optical parameters calculated for ZnO using Mathematica 
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Quantum wire Material: CdSe 

 

   Excitonic Bohr radius : 4.88584 nm 

Rydberg energy unit (E0) : 15.8627 meV 

                                            Fitting parameter in EF : 0.6864 E0     

 

Parameters symbol bulk 50 nm 25 nm 10 nm 

latconf 

(meV) 
Ω  3.50434 14.0174 87.6085 

χ' 0.418672 0.416146 0.408706 0.362036 
Complex Susceptibility 

j χ” 0.000398698 0.000394605 0.000382658 0.000311472 

ε' 6.261191275 6.229445099 6.135948167 5.549478957 
Complex permittivity 

j ε" 0.00501019 0.004958747 0.004808619 0.003914073 

Loss tangent δ×10-3
0.800 0.796 0.784 0.705 

Refractive index n 2.502237454 2.495885832 2.477084801 2.355733357 

Absorption coefficient 

(1/cm) 
α 96.18291 95.43761 93.25061 79.81321 

 

Table 6 Optical parameters calculated for CdSe using Mathematica 
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The plot in Fig. 3.3 shows the confinement energy (in meV) as a function of quantum 

wire diameter.  Using Mathematica, we  calculated these values for quantum wires with 

six different diameters, including 100 nm, 50 nm, 25 nm, 15 nm, 10 nm and 5 nm. This 

data has been calculated for the wires of all four materials that we have been using, 

namely CdS, ZnSe, ZnO and CdSe.  

 

Fig 3.3 Lateral confinement energy (in meV) for quantum wires of different materials and 
diameters, including 100/50/25/15/10/5 nm.  

 

We can observe that lateral confinement energy Ω (meV) increases very slowly with 

decreasing diameters in quantum wires with large diameters. It remains very small, and 

almost constant (or rises with an extremely small slope) as the diameter reaches 25-20 nm 
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starting from bulk value. We can observe a very steep rise in the confinement energy, as 

the diameter decreases further, from about 20 meV to 200 meV and more.  

 

Fig. 3.4 Variation of unexcited quantum wire permittivity with diameters 

 

Fig. 3.4 shows the variation of permittivity in all four types of unexcited quantum wires, 

as a function of their diameters. Unlike the plots for lateral confinement energy Ω, the 

permittivity of quantum wire reduces sharply at the lower diameters. It first reduces 

extremely slowly as the diameter is reduced from bulk to about 25 nm diameter, and then 

follows a steep slope down, as diameter reduces further.  A peculiar thing to be noted 
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here is that the permittivity reduction in CdSe starts earlier as compared to other 

materials. Also, the slope is steeper in case of CdSe.  

 

Fig. 3.5 Real part of permittivity vs Confinement energy variations with diameter for 
unexcited CdS wires 

 

Fig. 3.5 displays the comparative variation in real part of permittivity and confinement 

energy Ω with diameter in the unexcited CdS quantum wires. This is a very important 

graph for our further analysis, while we study the experimental performance of the 

quantum wires. As the diameter of the quantum wire reduces, the change in lateral 

confinement is of the order of 200-300 times the initial bulk value. On the other hand, 

this large change in the confinement energy due to the variations in the diameter of the 
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quantum wire causes large changes (reduction) in their respective permittivity values. 

Theoretically, a change in the wire diameters, and hence the confinement of the energies  

is a major source of permittivity variations in the quantum wires, but more effects are to 

be taken into account when they are excited by UV radiation. We observe extremely 

small variations in the permittivity of the quantum wires during our experiments, when 

they are exposed to UV radiation. These small variations are attributed to various factors 

including the diameter of the quantum wires, their filling factor in the porous alumina, as 

well as the trap states distributed in the alumina. These effects will be discussed in detail 

in Ch. 6 and Ch. 7.  

 

Fig. 3.6 Variations in dielectric loss tangent with the quantum wire diameters 
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Fig. 3.6 is the plot of dielectric loss tangent of the unexcited quantum wires of four 

different materials with the variations in their diameters. For a semiconductor material 

with complex dielectric constant (ε = ε’ + jε” ), loss tangent δ is defined as (tan(δ) ≈ δ = 

ε” / ε’ ). The dielectric loss tangent is the measure of the losses in the semiconductor 

material, as it represents the material that dissipates power of a high frequency electric 

field. The larger the value of the loss tangent, more lossy the material is.   

As the wire diameter reduces, we can see that the value of the loss tangent also reduces. 

Our data suggests that both the real and imaginary parts of the permittivity reduce with 

wire diameters. But as loss tangent delta is the ratio of imaginary to real part of the 

permittivity (δ = ε” / ε’ ), the imaginary part reduces faster than the real part. This means 

that the losses in the quantum wire reduce with its diameter. In other words, absorption 

coefficient of the quantum wires, or the number of photo-generated carriers would reduce 

with the wire diameter. Dielectric loss tangent is found to be reduced to about 60-80% in 

5 nm diameter wire, when compared with the bulk values.  

Similar plots for the variations in absorption coefficients and refractive indices of the 

unexcited quantum wires are displayed in Fig. 3.7. We can see that CdSe with smallest 

band-gap (1.74 eV) and largest lattice constant (6.084 Å) of the four materials happens to 

have the largest value of dynamic refractive index and the absorption coefficient. On the 

other hand, ZnO with largest band-gap (3.35 eV) and smallest lattice constant (5.2069 Å) 

of the four materials have the smallest value of dynamic refractive index and the 

absorption coefficient. However, ZnO also has the smallest value of static dielectric 

permittivity (8.1), while CdSe has the largest (9.29). 
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Fig. 3.7 Variations in the refractive index (n) and absorption coefficient (α) of the 
quantum wires with their diameters. 
 
 



CHAPTER 4 

Electromagnetic Wave Simulations 
 
 
 
4.1  High Frequency Structure Simulation (HFSS) 

We use Ansoft Corporation’s High Frequency Structure Simulator (HFSS) for the 

electromagnetic wave simulations. HFSS is the industry-standard software for the 

electromagnetic simulations of high-frequency and high-speed components. It is a full 

wave electromagnetic simulator for arbitrary 3D volumetric passive device modeling and 

utilizes a 3D full-wave Finite Element Method (FEM) to compute the electromagnetic 

wave behavior of structures. With HFSS, we can extract network parameters (S, Y, Z), 

visualize 3-Dimensional electromagnetic fields (near and far-field), generate broadband 

SPICE models, and optimize the design performance of the device under investigation. 

Using HFSS, we can accurately characterize and effectively evaluate wave properties, 

including transmission path losses, reflection loss due to impedance mismatches, parasitic 

coupling, and radiations. HFSS also allows us to draw the device structure, specify the 

material characteristics for each object, and identify the excitation ports and any special 

surface characteristics. It then generates the necessary field solutions for the specified 

excitations. The block diagram of the HFSS simulator is given in Fig. 4.1. In section 4.1, 

we discuss the major building blocks of HFSS that we have used. 
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Fig. 4.1 Block diagram for the HFSS Simulator 
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4.2  Major building blocks of HFSS 

Although HFSS can perform a wide variety of operations, in this section we discuss only 

those capabilities that we have utilized in this work. The Electromagnetic Wave 

Simulator, HFSS, is divided into the following important constituents. They also are the 

consecutive steps of a typical simulation process in HFSS.  

 

4.2.1 Solution type 

The solution type defines the type of results that we need, the way we define the 

excitations, and the convergence criterion. There are three different types of solution 

types, namely, driven-modal, driven-terminal, and eigen-mode. Driven-terminal type of 

solutions are used to calculate the terminal based S-parameters of passive, high 

frequency structures and the results are in terms of voltage and current wave components. 

Eigen-mode solver is used to calculate the resonances of the structure, i.e. the resonant 

frequencies and the associated fields of the structure. We have used driven-modal type of 

solutions in our analysis.  

We use a monochromatic source of light in our experiments, and only one mode of the 

laser is excited. Hence, we use mode based solutions as it gives us the option to choose 

the number of modes present in the solution. This option allows us to calculate the mode-

based S-parameters of passive, high frequency structures such as waveguides, micro-

strips and transmission lines. The S-parameters generated are expressed in terms of 

incident and reflected components of the waveguide mode.  

 



  98
4.2.2 Boundary Conditions 

The boundary conditions in HFSS enable the user to control the characteristics of planes, 

faces, or interfaces between the objects. These boundary conditions allow us to define the 

field behavior across the discontinuous boundaries of the structure under investigation. 

Since they force the field behavior according to our assumption towards the right 

solutions, we must be confident that they are completely appropriate for our simulations. 

Any improper use of boundary conditions might lead us to the inconsistent or inaccurate 

results. On the other hand, when boundary conditions are used properly, they help us 

reduce the model complexity. Assigning the boundary condition is extremely important.  

When a geometric structure is defined for the simulations, unlike practical situations 

where the device under test is bounded by infinite space, HFSS automatically surrounds it 

by a background or outer boundary. This type of a boundary is also called as Perfect-E 

type, where the (background) material is a perfect conductor, and the boundary condition 

forces the field to be perpendicular to the surface of the conductor.  

In case of Perfect-H boundary, the simulator forces the field to be tangential to the 

boundary surface.  

A finite-conductivity boundary enables the user to define the surface of the geometric 

model as a lossy (Imperfect-E) conductor. A similar boundary is a Lumped-RLC type, 

which is a parallel combination of resistor, inductor and a capacitor. 

A radiation or an absorbing boundary makes the model surface electrically open, i.e. the 

waves can radiate out and toward the radiation boundary. The system absorbs the wave to 

the radiation boundary, and effectively converts the model to be placed in infinite space. 
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When radiation boundaries are defined in the models, the S-parameters take into account 

the radiation losses.  

 

 

 

Fig. 4.2 A quantum wire array device: A periodic geometric structure 

 

The most important and more relevant type for our purpose is the Master-Slave boundary 

conditions, which reduce the complexity of the structures with repetitious geometric 
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behavior. In our experiments, we use a quantum wire array device in which a cylindrical 

wire embedded in a hexagonally shaped alumina cell periodically repeats itself as shown 

in Fig. 4.2, and hence is a perfect fit for such boundaries.  

 

Fig 4.3 Master and Slave surfaces of a hexagonal unit cell 

 

An electric field on a Slave surface is defined such that it follows electric field on the 

Master surface within a phase difference. When the surfaces of the geometric model 

under investigation are defined as Masters and their respective Slaves are also assigned, 
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the boundary condition forces the electric field at each point on the Slave surface to 

follow its corresponding Master surface. 

There are certain constraints on a surface to be assigned a Master or a Slave. They must 

be plane surfaces. Curved surfaces cannot be assigned as a Mater or a Slave. Their 

geometries must also exactly match each other.  

Fig. 4.3 describes the Master-Slave boundary conditions as they are applied to a 

hexagonal unit cell, where a cylindrical quantum wire is embedded in hexagonal alumina. 

There are two pairs of Master-Slave surfaces in a hexagonal unit cell. Two adjacent 

surfaces are first assigned to be Master surfaces, and the surfaces opposite to them are 

then assigned as the corresponding Slave for each Master. All the boundary surfaces are 

rectangular in shape, and their electric fields have the same magnitude and direction. 

Moreover, we do not introduce any phase delay between the Master and Slave boundaries 

so that the electric field distribution Slave surface exactly follows that on the Master 

surface. When one more unit cell is introduced into the system, HFSS places its opposite 

surface (Slave surface) such that it overlaps the Master surface of the first unit-cell. If 

there was only one pair of Master-slave boundaries (assigned to opposite faces) in a 

hexagonal unit cell, it would create a row of wires placed next to each other. But as there 

are two pairs of Master-slave boundaries, the repetition procedure leads us to create a 2-

dimensional array of quantum wires. The model looks like the structure in Fig. 4.2, 

except that Fig. 4.2 shows only a limited number of unit cells. In the actual simulation, 

we have repeated the hexagonal unit cells so as to generate the structure of about 10 × 10 
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micron2 in size. The details of a unit cell and the whole geometric structure are described 

in section 4.3 later.  

 

4.2.3 Excitation 

The excitation ports could also be categorized as a separate boundary condition itself, 

where the excitation (boundary) surface permits the energy to flow into and out of the 

device under investigation. A 2-dimensional object or the face of a 3-dimensional 

structure is generally assigned as an excitation port. The excitation-field-patterns at each 

port are to be calculated before 3D electromagnetic fields inside the structure are 

determined.  

 

Fig. 4.4 Wave-port type of excitation 
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Wave-ports are defined on a surface to indicate the area where the energy enters and exits 

the background, or a default outer boundary. If Lumped-ports are used in the simulation, 

it is possible to model the internal ports within the structure. We have considered Wave-

port type of excitation. That is the excitation surface is connected to a semi-infinitely 

long waveguide that has the same cross section and material properties as the port.      

Fig. 4.4 shows one of the two excitation ports that we have used for a hexagonal unit cell. 

The other port is located at the bottom of the cell. Each port is excited individually and 

each mode incident on the ports contains 1 mW of time averaged power. However, we 

have used only one port for actual excitation, while the other remains the dummy port to 

allow the energy out of the structure. The Wave-ports calculate characteristic impedance, 

complex propagation constant, as well as the generalized S-parameters. As 

monochromatic light is used for wire excitation, we allow only a single mode to exist in 

the quantum wire structure, and hence all the simulations are performed for a single mode 

excitation. 

 

4.2.4 Analysis, Solution Setup, Solve loop and Results 

In order to perform an analysis in HFSS, a solution setup has to be added. The results are 

calculated at a pre-assigned solution frequency. As we use IR laser source at wavelength 

λ = 1308 nm (frequency = 229.3578 THz), it chosen as the solution frequency.  

Unlike the processes of choosing the solution type, setting up the boundary conditions, 

the excitations and building the geometric model, the process of solution generation and 
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formation of the mesh is a highly automated one. There are several stages the simulator 

goes through before generating the final solutions, which include the generation of initial 

mesh and the solution, adaptive refinement loop and frequency sweep.  

 

 

Fig. 4.5 Adaptive mesh generation 

 

We choose an adaptive meshing criterion, so that the mesh is automatically tuned to 

generate a very accurate and efficient mesh in the structure. It generates more robust 
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meshing for complex geometries. The adaptive meshing is based on the excitation field. 

Hence the solution frequency of 228.3578 THz is used to automatically refine the mesh to 

the electrical performance of the device.  The initial mesh is set using a Lambda-

refinement process, in which most element lengths are approximately one-third the 

wavelength for dielectrics. A wavelength is already set when we define the Single 

Solution-Frequency value.  

Adaptive meshing makes it extremely easy to generate the most accurate and efficient 

mesh possible. Fig. 4.5 displays the mesh generated in the hexagonal unit cell using the 

adaptive meshing criterion. Without this option, the process of generating the correct 

mesh would be extremely tedious and prone to errors. The adaptive meshing algorithm 

searches for the largest gradients in the electric field or error, and sub-divides the mesh in 

those regions. The mesh grown for every adaptive pass is controlled by the tetrahedron 

refinement given as a percentage, which ensures that between each pass, the mesh is 

sufficiently perturbed and there won’t be any false convergence. We use 20% tetrahedron 

refinement per adaptive pass. After the mesh is refined, a full solution is performed and 

the process is repeated until convergence. As S-parameters are extremely important in 

our calculations, the convergence criterion is based on the S-Matrix. After each adaptive 

pass, the S-parameters in the current mesh are compared with those of the previous mesh. 

The solution is assumed to have converged, when the answer in two consecutive passes 

has changed by a value smaller than the pre-defined value of ∆S. This value of ∆S is 

defined as the maximum change in the magnitude of S-parameters between two 

consecutive passes. As it is a magnitude of a vector quantity, ∆S can between 0 and 2. If 
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the convergence is reached, this technically means that the previous mesh is as good as 

the current mesh. All manufacturing processes have inherent errors associated with them, 

as well as the laboratory equipments, and the measurement processes. We should not 

expect the simulator to provide an accuracy which is much more than what we get in the 

real world. Hence, we have used ∆S value to be 0.02 which we believe represents a 

sufficiently good accuracy. The mesh for each port is also adaptively refined.  

The solutions are then generated at a solution frequency of 229.3578 THz during each 

adaptive pass. We have set a limit of maximum nine passes to achieve convergence. We 

have set a minimum limit of three adaptive passes, even though the convergence criterion 

is already achieved. It is also possible to generate the solutions for a wide frequency band 

using a frequency sweep criterion. However, we haven’t used the option as we need the 

solutions at a single solution frequency. Final values of S-parameters are then retrieved 

from the results section, to generate the phase delay generated as the wave passes through 

the quantum wire array.  

 

 

4.3 Geometric Model of the quantum wire array 

As we had explained in previous chapters, a 2-dimensional quantum wire array is formed 

by selective electro-deposition of the semiconductor material into the pores of a nano-

porous alumina template. The pores and hence the quantum wires are uniformly spread 

across the alumina and the structure possess an extremely regular geometry. Moreover, 

the wires are of fairly uniform cross-section (diameter) and the inter-pore separation 
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remains constant over the whole template. As we mentioned in the previous chapters, 

various parameters decide the diameter and depth of the nano-pores formed in the 

alumina templates, which include the type and concentration of the anodizing acids, as 

well as the anodizing voltage. 3% of oxalic acid, and a 40 V dc anodizing voltage 

produces 50 nm diameter pores, while the anodizing voltage of 25 V dc produces 25 nm 

pores. For 10 nm diameter pores, 15 % of sulfuric acid is used at 10V dc voltage. The 

wire diameter and inter-pore separation for the electrochemically self-assembled quantum 

wire array structures fabricated using the above parameters are displayed in Table 7. 

 

Wire diameter

(nm) 

Inter-pore separation

(nm) 

50 100 

25 80 

10 60 

 

Table 7 Wire diameter and inter-pore separation 

 

Hence, in HFSS, we have modeled a structure such that the quantum wires of identical 

diameters and lengths, are embedded in alumina and separated by equal distances. 

Moreover, the AFM and SEM images show that each wire is surrounded by six different 

wires as shown in Fig. 4.6. 
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Fig. 4.6 SEM image of quantum wires of 50-nm diameter. The black spots indicate the 
quantum wires 
 

The actual films that we have used in the experiments are about 6-7 mm in diameter. We 

also have to consider the fact that our collimated IR laser beam is about 2.2 mm in 

diameter. Hence even if we consider the area of 2.2 mm diameter of the quantum wire 

array, we have “sampled” about 1-5 million nano-wires in our experiments. Modeling 

this big array is completely impossible, if we plan to consider all the wires in the 

simulation structure. The complexity of the model would be drastically reduced by using 

a number of alternatives. First of them would be to consider a smaller area of the film. If 
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we consider the area of just 10×10 micron2, we still account for sizable amount of 

quantum wires to make a valid simulation. Moreover, as 10 micron >> 100nm (the inter-

pore separation) and also much larger than the involved light wavelength of 1.308 

microns, the area taken into account is a good approximation for the simulation. 

Secondly, rather than considering a 2D-array in a single simulation, we can model a unit 

cell and replicate it with required periodicity so as to generate the array structure identical 

to the actual quantum wire array.  

 

a) Hexagonal unit cell a) Rectangular unit cell 

 
 
Fig. 4.7 Unit cells that would generate a quantum wire array when placed with a specific 
periodicity 

 

Fig 4.7 shows two of the unit cells, which would generate the desired quantum wire array 

structure as shown in Fig. 4.6, when reproduced with a particular periodicity. The grey 

circles represent the quantum wires, while the white hexagon represents the surrounding 

alumina in which they are embedded. The quantum wire array formed using both the type 
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of unit cells are shown in Fig 4.8.  The rectangular unit cell has a simpler structure, as far 

as the application of the Master-Slave boundary conditions are concerned, as both the 

pairs of opposite faces are simply required to follow each other in order to generate the 

desired quantum wire array. 

 

a) Rectangular unit cell geometry 

b) Hexagonal unit cell geometry  
 

Fig. 4.8 The quantum wire array formed using rectangular and hexagonal unit cells 
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However, as the rectangular unit cell contains two (cylindrical) wires, more curvatures 

are included in the model, hence requires a much denser mesh. Moreover, for quantum 

wires of 50 nm diameter, the edge of one of the wires (lower one in the rectangular unit 

cell) becomes extremely close to the lower boundary of the unit cell, which further makes 

the mesh denser. This effectively increases the simulation time and slows down the 

convergence. On the other hand, two pairs of opposite faces are required as Master-Slave 

pairs in case of hexagonal unit cell. One hexagonal unit cell represents one wire. A 2-

dimensional array structure is obtained as both Slave boundaries follow their respective 

Masters. As fewer curvatures are involved, the processing time reduces, and convergence 

is faster. Although both the unit cells give very similar results, we have used the 

hexagonal unit cells in our simulations for faster processing time and more importantly 

for easier convergence.  

 

 

4.4  Final Simulations for the quantum wire array 

As described in the earlier sections, we have modeled a quantum wire array structure 

with a periodic placement of the hexagonal unit cell structures, using Master-Slave 

boundary conditions. A 10×10 micron2 area of the quantum wire array is considered for 

the simulation. A single unit cell consists of a cylindrical quantum wire, embedded in a 

hexagonal cylinder shaped alumina, as shown in Fig. 4.2-4.4. Each quantum wire is              

1 micron in length. The wires are excited by a single mode 1308 nm light source using 

Wave-port type of excitation. The Wave-ports are located on the hexagonal faces of 
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alumina unit cell as shown in Fig. 4.4. Simulations are performed for wires of four 

different types of III-V group semiconductor materials, namely CdS / ZnSe / ZnO / CdSe. 

These optical constants for a single wire have already been calculated and presented in 

Chapter 3. The dielectric constants (permittivity) calculated for the quantum wires of the 

semiconductor materials are incorporated in the simulations here. The real part of 

dielectric constants (ε’), along with the loss tangents for all the quantum wire materials 

are reproduced in Table 8. These two values calculated from the theoretical models 

described in chapter 3 are incorporated in HFSS to retrieve the phase shift induced by the 

quantum wire array.  

 

50 nm 25 nm 10 nm 

Wire 

Material 

Re(Dielectric 

Constant) 

Loss 

tangent 

( × 10-3) 

Re(Dielectric

Constant) 

Loss 

tangent 

( × 10-3) 

Re(Dielectric 

Constant) 

Loss 

tangent 

( × 10-3) 

CdS 5.389569828 0.63 5.354838769 0.626 5.12310009 0.616 

ZnSe 6.020206432 0.495 5.98113021 0.492 5.720172431 0.472 

ZnO 3.726365031 0.597 3.715059233 0.595 3.637877249 0.580 

CdSe 6.229445099 0.796 6.135948167 0.784 5.549478957 0.705 

 

Table 8 Real part of permittivity (ε’) and dielectric loss tangent values calculated using 
Mathematica for unexcited quantum wires and utilized as an important material 
parameter in HFSS. 
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We also need an accurate value of the alumina in which the wires are grown. The 

published values of porous alumina indicate its permittivity to be 3 at λ = 1308 nm [107]. 

Thompson et al. have performed an optical characterization of the porous alumina [108] 

and they came up with the permittivity values which are slightly on the higher side than 

those indicated in [107]. The alumina used in the studies performed in [108] is fabricated 

using the same procedure with which our porous alumina structures were fabricated. 

Similar results are reported by Kooij et al. in [109]. The higher permittivity values in 

alumina reported in [108] and [109] are attributed to the 28%  nano-porosity caused by 

extremely small scale voids present inside the solid fraction of the alumina materials 

[108]. Note here that, this value of permittivity ( ≈3 ) is for porous alumina. This means 

that in place of each quantum wire, these models in [107]-[109] have considered air (or 

vacuum) as the effective filling material. But in HFSS, we require bulk permittivity 

values of alumina, as the quantum wires are surrounded by bulk alumina. Hence, the 

permittivity for bulk alumina is chosen to be 8.6 as given in [107]. Note here that alumina 

remains completely transparent to IR and UV wavelengths of our interest. 

The above permittivity values for the quantum wire semiconductor materials as well as 

for alumina are used as the material parameters while modeling the unit cells in HFSS. 

The simulation is designed to calculate the phase shifts incurred by the light wave as it 

passes through the quantum wire array. When the array is excited by UV at the 

wavelength 365 nm, a number of electron hole pairs are generated. This effectively 

changes the optical behavior of the quantum wire array. In our experiments, we  measure 

the changes in phase shift as the UV excitation pulses are applied. However, we do not 
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indicate the UV excitation anywhere in the HFSS simulations. The presence of the UV 

pump has been accounted for in the simulations, by changing the permittivity of the 

quantum wire dielectric material as determined by the experiments.  During the 

experimental procedures, we measure the changes in phase shifts (in ppm) induced by the 

quantum wire samples as the UV pump is applied. We note these phase shift changes for 

six different UV intensities, for quantum wires of three different diameters ( 50 / 25 / 10 

nm), and for four different types of materials (CdS / ZnSe / ZnO / CdSe). Four samples of 

each type of the array are tested. Then, in the simulator, the permittivity values of the 

individual quantum wires (of same diameter and fabricated using the very same 

semiconductor material as that used in the corresponding experiment) are adjusted 

iteratively, so as to obtain the same changes in phase shifts that we measured 

experimentally.  

 

 50 nm 25 nm 10 nm 

CdS -59.98939609 
 

-78.82589711 
 

-97.31653501 
 

ZnSe -67.72140152 
 

-86.59647189 
 

-98.56166773 
 

ZnO -40.26385781 
 

-65.28188918 
 

-95.601994 
 

CdSe -72.292162 
 

-52.213521 
 

-94.669026 
 

 

Table 9 Phase shift of the probe wave (1308 nm) as it passes through the unpumped 
quantum wire array, as calculated in HFSS 
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Hence, using HFSS, we basically perform the same experiment that we performed on the 

optical table, but in a simulation environment. To correlate the experimental results with 

the simulations, phase shifts observed in the experiments due to UV excitations are 

treated as the matching parameters. In this chapter, we only include the data (Table 9) 

that shows these phase shifts of the IR wave due to each type and diameter of quantum 

wires, as calculated in HFSS. The phase shift changes between pumped and unpumped 

arrays and the relevant discussions are given in the Chapter 6. 

 

 

 

 



CHAPTER 5 

Experimental Analysis 
 
 
 
We have built a Michelson interferometer in a homodyne setup to investigate the optical 

response of an electrochemically self-assembled quantum wire array to a stationary 

excitation using a pump-probe excitation scheme. An interferometer is extremely 

sensitive to the variations in the optical behavior of the device under test. The 

interferometer is constructed using a 1308-nm probe IR laser, and a 365-nm UV LED 

pump. In this chapter, we explain the theoretical basis for our experimental setup, as well 

as prove the validity of the experiments.  

 

 

5.1 Theoretical basis for the experiment 

As discussed in Section 2.4 on Interference, the phenomenon of interference works on 

the principle of superposition of two coherent waves. Rewriting equation (2.14), where P 

is considered the superposition of two waves of amplitudes P1 and P2,  

  )(2 2121 ϕ∆++= CosPPPPP          (5.1) 
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where ∆φ represents the phase difference between the two waves. The phase difference 

is, in turn, dependent on the difference in the path lengths of the two waves. The equation 

for phase difference is written as 

  dnd ∆⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∆⎟

⎠
⎞

⎜
⎝
⎛=∆

0

22
λ
π

λ
πϕ          (5.2) 

Although the above equation shows that the phase difference changes with the difference 

in path lengths, it simultaneously is also a function of wavelength λ and the refractive 

index n of the medium the light passes through.  

In our experimental setup, we place the device under test (quantum wire array) in one of 

the branches of the interferometer. When excited by the UV light, the optical behavior of 

the array changes due to the generation of electron-hole pairs. Hence, this external 

perturbation effectively changes the optical properties of the quantum wire array. 

Irrespective of the cause which actually changed the array behavior, the amplitude and 

the phase of the probe beam passing through that branch of the interferometer changes. If 

we consider that P20 is the initial wave amplitude, and ∆φ0 is its initial phase (pre UV 

excitation state), final amplitude P2 and phase difference ∆φ of the wave (post UV 

excitation state) are given as 

( )tPPP 2202 δ+=        (5.3-A) 

( )tδϕϕϕ +∆=∆ 0        (5.3-B) 

Although, it is quite difficult to distinctly separate the parameters which directly modify 

the amplitude and phase of the wave passing through the quantum wire array when 

optically perturbed, changes in amplitude δP2(t) could be attributed to the change in 
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absorption coefficient of the array, while change in the phase shift δφ(t)  is attributed to 

the change in its refractive index.  

Using equation (5.1) and (5.3), we get 

  ( ) ( )( ) ( )( )tCostPPPtPPPP δϕϕδδ +∆++++= 022012201 2  

The term in the square root is simplified using binomial approximation as 

( )
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δ .  

Furthermore, using the expansion ( ) ( ) ( ) )()( BSinASinBCosACosBACos −=+ , the 

Cosine term in the above equation is simplified to ( ) ( ) ( )tSinCos δϕϕϕ 00 ∆−∆ , with an 

assumption that the change in the phase difference δφ(t) is extremely small. Hence, 

Cos[δφ(t)] → 1 , while Sin[δφ(t)]→ δφ(t).  

The change in the amplitude of the wave due to perturbation, δP2(t), is related to the 

change in absorption of the quantum wire array due to UV excitation. Absorption by the 

quantum wire array is directly proportional to the length of the quantum wires. But, as the 

wire length is just 1 micron, the term δP2(t) is extremely small. We must also consider 

the fact that the quantum wires are embedded in the porous alumina templates. This 

alumina, being a very wide band-gap material, remains completely transparent to the UV 

excitation that we have used. Hence, only the quantum wire semiconductor material, 

limited to the pores of the alumina structures, is actually responsible for any absorption. 

But the filling factor of this quantum wire array structure, which is defined as the ratio of 

the volume of the quantum wire to the volume of the surrounding alumina unit cell as 

discussed in the previous chapter, remains much smaller than unity. Hence, although the 
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complete array is excited by UV light, only a small portion of that, depending on the 

filling factor, is responsible for actual absorption.   

Hence, the interference equation becomes 

( ) ( ) ( ) (tSinCosPPtPPPP δϕϕϕδ 002012201 [2 ∆−∆×+++= )  
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In the above equation, there are two different types of terms. First category belongs 

purely to the constant or DC terms (P1, P20,and ∆φ0), which are independent of any 

external perturbation, a UV excitation in our case. On the other hand, perturbation or 

time-dependent terms (δP2(t) and δφ(t)) form the second category. These terms wouldn’t 

exist if there were no external perturbation, i.e. if there were no change in optical 

behavior of the quantum wire array.  

If the external perturbation is alternating in nature, all the DC terms in the above equation 

could be filtered out. Moreover, if the 2nd order small terms [containing δP2(t) × δφ(t)] 

are neglected, the alternating or perturbation affected terms P(t) are written as 

  ( ) ( ) ( ) ( ) ( ) (tPCos
P
PtSinPPtPtP 20

20

1
02012 2 δϕδϕϕδ ∆+∆−= )      (5.5) 

P(t) is referred as the ac component of the interference waveform. Due to the direct 

dependence of the change in the wave amplitude on the wire length, as well as on the 

filling factor, the term δP2(t) in equation (5.5) is extremely small. This also effectively 

makes P1 ≈ P20. If we adjust the initial phase difference ∆φ0 between the two interfering 

waves to be π/2,  Cos(∆φ0) → 0 , while Sin(∆φ0) → 1. 
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Under this condition, the ac component of the interference equation reduces to  

  ( ) ( ) ( )tPPtP δϕ212−=              (5.6) 

The term in the bracket is the noiseless-optical-gain of the system. Note here that δφ(t) is 

proportional to the change in index of refraction of the device under test due to UV 

excitation. 

According to Kramers-Kronig relation, for any time-invariant linear passive system, the 

real part of its frequency response function is related to its imaginary part and vice versa. 

Hence, as explained in chapter 2, as the refractive index of the material changes, due to 

the photo-generated e-h pairs, it also causes a change in the absorption coefficient of the 

sample. Accordingly, as the sample is excited by a UV pulse, that not only changes the 

path difference of the beams on account of a change in refractive index of the sample, but 

it also changes the amplitude (intensity) of the beam passing through the sample. But the 

overall absorption remains very small due to its direct dependence on the extremely short 

length of the quantum wires, as well as on the very small filling factor of the quantum 

wires in the array. Therefore, the change in the intensity δP2(t) of the beam passing 

through the array is expected to be too small to be detected by the receiver. On the other 

hand, the change in the refractive index is magnified due to the presence of the small 

optical wavelength term in the equation denominator, which we have discussed in section 

5.2. Thus, all our experiments are aimed at measuring the changes in the phase difference 

of the two waves when excited by stationary UV light.  
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5.2  Effective amplification of the change in the phase-difference 

Consider two light waves, traveling through distances L1 and L2, are superimposed at a 

point B as shown in Fig. 5.1. Consider an optically active material of length l, or a device 

under test (DUT), is placed in one of the beam paths. Suppose that the refractive index of 

the surrounding medium is n1, while the refractive index of the device under test is n20.   

 

Fig. 5.1 The interference situation 

 

For the situation when no external perturbation is present, using equation (5.2), the total 

phase difference between the two interfering waves at point B is 

  ( )[ ]2120110
2 LnlnLn −+=∆
λ
πϕ   

          ( )[ lnLLn 20211
2

+−=
λ

]π           (5.7) 

When the device under test (quantum wire array) is excited by UV light, depending on the 

B 

n1

n1

n20

l 

L2

L1 + l 
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intensity of the light used, there would be small changes in its refractive index n20. 

Suppose that the refractive index changes to n2 are 

  ( )tnnn 2202 δ+=            (5.8) 

A small change δn2(t) in the refractive index leads to a change in the phase difference. 

Hence the phase difference in the perturbed state is given as 

  ( )[ ] ( )tnllnLLn 220211
22 δ
λ
π

λ
πϕ ××++−=∆        (5.9) 

The first term in the above equation (5.9) is the initial phase difference ∆φ0 as shown in 

equation (5.7), while the second term is attributed to the change in the phase difference 

δφ(t) due to the excitation by UV light, as given in equation (5.3-B). It is an extremely 

important term for our calculations and the experiment. Thus, 

  ( ) ( )tnlt 2
2 δ
λ
πδϕ ××=         (5.10) 

As mentioned previously, the initial phase difference ∆φ0 can be adjusted by properly 

biasing the interferometer to ∆φ0 = π / 2. Hence, using equation (5.6), the ac component 

of the interference equation becomes 

  ( ) ( )tnlPPtP 2201
22 δ
λ
π

××⎟
⎠
⎞

⎜
⎝
⎛=         (5.11) 

We can observe in equation (5.11) that the ac component of the interference equation, or 

more precisely, the component of the interference equation which depends on the UV 

excitation of the quantum wire array is directly proportional to initial amplitudes P1 and 

P20  of the two waves, as well as the length l  of the quantum wires  and the change in the 

index of refraction δn2(t).  
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This ac component of the interference equation is the most important term for our 

experiments, which we intend to measure. But, as the length of the wires is just about 1 

micron (1×10-6), the ac component is also expected to be very small. However, it also has 

an inverse dependence on the wavelength λ of light, where λ  = 1308nm. Hence, a small 

wavelength in the denominator acts as an amplification factor, which strengthens the 

possibility that the ac component becomes sufficiently large to measure. We plan to 

experimentally measure the change in phase (path) difference between the two waves, 

which in turn is proportional to the refractive index of the material. Therefore, as λ is 

located in the denominator, the extremely small changes in the refractive index of the 

quantum wire array are amplified when excited by UV light, and are sufficiently large to 

measure.  

If we consider the IR light at λ  = 1308nm with individual beam amplitudes of 1 mW, and 

quantum wire of length 1 micron, a change of 1 ppm (parts per million) in the refractive 

index of the wire produces an ac component of the order of 9.6×10-9W. We have used a 

Large-area- photodetector, which has a responsivity R of 0.66 A/W at 1308 nm, and a 

Gain G of 105 V/A (at a medium gain setting that we have used), and  output voltage of 

the detector is given as Vout = R×G×P. This should produce a voltage of about 0.63 mV 

at the detector output, which is sufficiently large to measure when a proper amplification 

circuit is used. However, at the (medium) gain setting of 105 V/A, the detector saturates 

approximately at a power just less than 1 mW. Hence, the interferometer, where the 

maximum output power can be about four times the individual beam powers, would 

definitely saturate the detector if the individual beam power is of the order of 1 mW. 
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Hence, we introduce a neutral density (ND) filter to reduce the input power, which 

further suppresses the output voltage produced by the detector. Hence, we expected the 

output voltages of the order of few tens of microV to be detected experimentally, for a 

ppm (parts per million) level change in the refractive index of the device under test. The 

complete setup is explained in section 5.4 in detail.  

 

 

5.3   Initial biasing of the interferometer                

As mentioned previously, we have built a Michelson interferometer as a homodyne setup, 

to investigate the optical behavior of the quantum wire array to a stationary UV excitation 

using a pump-probe excitation scheme. As shown in Fig. 5.2, the interferometer works on 

the principle of amplitude splitting. The incoming wave is split into two waves using a 

beam-splitter, travels unequal distances and gets reflected by a set of mirrors. The waves 

then recombine via the same beam-splitter to form an interference pattern. Intensity of the 

interference pattern varies between certain minima and maxima, which are functions of 

the individual beam intensities and their path difference as in equation (5.1).  
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Fig. 5.2 Michelson Interferometer 

 

According to the interference equation (5.1), when two  waves of equal amplitudes (or 

intensities) superimpose to form an interference pattern, the intensity of the observed 

interference fringes vary from zero to four times the intensity of the individual waves, 

depending on the path difference of the individual waves. If the path difference is a 

multiple of the wavelength of light, constructive interference is observed. On the other 

hand, if the path difference is an odd multiple of half the wavelength, a destructive 

interference occurs.  

One of the mirrors in the interference setup is mounted on a precision steel translation 

stage, which allows us to control its path length and eventually the interference. As the 

position of the mirror changes, the difference in wave path lengths also changes the 

intensity of the interference.  
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It is very important that, before the quantum wire array is excited by UV light, the path 

difference between the two beams is adjusted such that the system is biased halfway 

between the maxima and minima of the interference signal detected by the photodetector, 

as shown in Fig. 5.3.               

 

Fig. 5.3 Bias point on the interference curve 

 

Hence, the bias point corresponds to the path-difference equal to the odd multiple of half 

the wavelength. The interferometer is biased at this particular point for two reasons. 

1) This region between the minima and maxima of the interference curve has a 

maximum slope. Therefore the interferometer is most sensitive to the changes in 

phase difference when biased half way between the minima and maxima.  As we 

move towards the extremes of the interference curve, its slope reduces, so does 

the sensitivity of the interferometer. 
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2) 

 of constant slope of the interference curve, 

To mai

steel precision stage with 20-nm accurate adjustment.  The entire interferometer is 

.4  Experimental Setup 

s we mentioned previously, an interferometer is extremely sensitive to any small 

e tween the two beams, which is reflected in terms of the 

The interference curve is linear around this point. Hence, we expect the bias point 

to remain within this (linear) region

while the system is excited with UV pump pulses. Therefore, any small changes 

in the phase difference are linearly amplified into the corresponding voltage 

signals.  

ntain an authentic control over the bias point, one of the mirrors is mounted on a 

mounted on a vibration-isolated breadboard. 

 

 

5

A

chang s in the path-difference be

intensity of the interference pattern observed at a point in space. When a device under test 

is introduced in one of its beam paths, the interferometer could be used to track any 

changes in its optical behavior. We build the experimental setup to investigate the optical 

behavior of the quantum wire array sample. The array is formed by selectively depositing 

the semiconductor material into porous alumina films. The light utilized to excite the 

quantum wires belong to a frequency band such that it interacts with the wire material, 

while the surrounding alumina remains transparent to it. We have used UV light pump at 

365 nm to excite the array. The interferometer is constructed using a 1308 nm probe laser 

beam, to which the alumina as well as the semiconductor wire material is transparent. We 
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have manipulated a pump-probe excitation scheme in Michelson's interferometric setup, 

as shown in Fig. 5.4.  

We worked on two alternate experimental setups before choosing the Michelson 

interferometer, namely a Fabry-Perot setup and Mach-Zender interferometer. A Fabry-

                                

Perot interferometer is a classic multiple pass (resonant) setup, where the beam passes 

through the cavity many times. Hence, if the sample is kept in the cavity of the Fabry-

Perot etalon, we can obtain better sensitivity and any small changes in the absorption or 

refractive index could be easily detected at the photo detector. But in this setup, we 

encountered difficulty on account of certain confocal mirror sensitivity and stability 

issues. We also worked on an all-fiber-coupled Mach-Zender interferometer in a 

homodyne setup. This was a very compact setup due to its polarization maintaining fiber-

coupled branches, but we had to abandon this novel concept on account of its fiber-air-

fiber coupling instability due to polarization launch issues. 

 

Fig. 5.4 Pump-probe excitation scheme 

Sample 

Pump 

Probe 

Photo
detect

 
or 
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We have implemented a ichelson interferometer. 

 constructed for our experiments. We 

 pump-probe excitation scheme in a M

As shown in Fig. 5.4, a probe laser prepares the system to detect the optical response for 

the device under test (DUT). In our case, as the probe is a part of an interferometer, it 

picks up extremely minuscule changes in the optical behavior of the DUT. The pump 

laser is used to induce the optical changes in the device. These changes are detected by 

the photodetector in terms of the variation caused in the probe signal. We use IR laser as 

a probe, while UV light is used as a pump signal.  

Fig. 5.5 shows the complete optical setup that we

have used a New-Focus tunable IR laser (1260-1370 nm) at 1308 nm as a probe signal for 

the quantum wire array. The IR laser is fed into the system via a collimator lens by OZ-

Optics (model HPUCO-23-1300/1550-P-11AS), which takes the rapidly diverging beam 

from the fiber exit of the tunable laser, and straightens (collimates) it. The diameter of the 

collimated beam is approximately 2.2 mm. The quantum wire array is located in one of 

the branches of the Michelson interferometer. Hence, the sample is continuously probed 

by the IR laser. The output of the interferometer is focused on the New Focus Large-

Area-IR-Photo-receiver (New Focus model 2033). It has a 5 mm diameter germanium PN 

photodetector. It operates in a wavelength range of 800-1750 nm, while it is able to detect 

powers as low as few nanoW to a maximum of 3-4 mW.  As we mentioned previously, it 

has a responsivity of 0.66 A/W at 1310 nm and we operate it at a medium Gain setting of 

105 V/A.  
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Fig. 5.5 Experimental Setup 

    



  131
To avoid the surrounding light getting into the detector and generating erroneous output 

voltages, the IR laser is fed through an aperture mounted on the detector. The aperture 

has a 3 mm diameter. As the probe is a CW IR laser, the intensity of the light seen by the 

detector remains constant, producing a DC voltage at its output. A 1.0 OD (10% 

transmission) neutral density (ND) filter is installed between the collimator and the beam-

splitter. This avoids the photodetector from saturating, while is it operated at medium 

gain setting.  

As the system is very sensitive to the vibrations, it has been installed on a floating optical 

breadboard. It is a desktop vibration isolation system by Melles Griot (model 07 OTT 

001/011). We use a TMC breadboard on which to install the lasers and other optics. 

Although the setup is quite stable, the output seen by the photodetector can slowly drift 

on account of certain unavoidable disturbances reaching the system. These disturbances 

include various noise signals such as building vibrations, acoustic vibrations, air currents 

sources, etc. This noise causes a slow oscillating drift in the intensity of light detected by 

the photo detector. Therefore, the photo detector output consists of the steady DC voltage 

due to the IR probe laser and the noise induced drift signal which vary extremely slowly 

with time. 

We use a non-polarizing cube-beam-splitter by Newport (model 05BC16NP .10), and two 

New- Focus mirrors (model 5103). Both the mirrors are mounted on Newport Ultra-align 

X-Y translation stages (model 561D) to simplify the alignment procedures. A nanometer 

precision translation stage is added to one of the mirrors, which enable us to move it in 
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the direction of beam propagation. This gives us the ability to precisely change the path 

difference of the two beams, and eventually control the interference.  

A thin film of electrochemically assembled semiconductor (CdS / ZnSe / ZnO / CdSe) 

quantum wire array constitutes the device under test. Photon energy at 1308 nm 

corresponds 0.95 eV, while the band-gap of quantum wire materials CdS / ZnSe / ZnO / 

CdSe is 2.5 / 2.69 / 3.35 / 1.74 eV respectively. Therefore, all these materials are 

essentially transparent to the probe beam (IR at 1308 nm). Hence, when this sample is 

placed in the path of one of the beams, absolutely no change in the power is observed on 

the photo detector. Moreover, the sample doesn't appear to distort the wave front of the 

beam, and the interference pattern is completely maintained.  

A 365-nm UV light is used as a pump in the experiment. We use a UV LED by Nichia 

Corporation (model NCCU033-T) to feed the UV light into the system. Fig. 5.6 shows the 

dimensions of the Nichia LED. Note that all the dimensions are in mm. The actual LED is 

just about 1×1 mm2 in size. The rank M (medium) type of LED that we use requires a 

forward voltage of 3.8-4.2 V and emits UV light centered at 365 nm wavelength at room 

temperature. The optical power of the emitted light varies between 110-130 mW 

depending on the forward voltage. The light emits out of the LED dice in a 60o angular 

cone. This LED generates considerable amount of heat (up to 2-3 W), even when it is 

operated within its normal specified limits. The increase in the temperature of the LED 

per unit electric power is affected by the thermal resistance of the circuit board. To 

facilitate better heat dissipation, the LED is mounted on a metal heat sink using a high 

thermal conductivity epoxy adhesive.  

    



  133
 

        

Fig. 5.6 UV LED (All dimensions are in mm) 

 

The UV light at 365 nm corresponds to 3.4 eV. As this photon energy is larger than the 

band gap of (all) the semiconductor material(s) that we use, a number of electron-hole 

pairs are generated. This effectively changes the optical behavior of the quantum wire 

array, which is detected by the IR probe laser. To explicitly distinguish the effect of UV 

light pump on the optical behavior of the array, the UV light is modulated at 1 KHz 

frequency. The DC component of the signal due to a stationary probe  excitation, as well 
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as all the noise- created-drift components are expected to remain steady on a time scale of 

at least several tens of milliseconds. Hence, any 1 KHz ac (1 ms time period) component 

in the voltage detected by the photo detector identifies the effect of UV excitation on the 

quantum wire array.  

 

 

Fig 5.7 LED modulation circuit 

 

Fig. 5.7 shows the circuit designed to modulate the UV light at 1 KHz frequency.   

The LED is powered by connecting it in the drain branch of a power MOSFET. We use 

Smartdiscretes Power-MOSFET by Semiconductor Components Industries (model 

MLP1N06CL). Its switching times are quite fast, and the turn ON/OFF time of the order 

of 1-5 µs, are much smaller than the time period of the modulated UV pulse.  Power 

MOSFET is switched on by giving Gate-to-Source voltage (VGS) of 5V. When the Drain-
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to-Source voltage (VDS) falls, the forward voltage applied across the Nichia LED also 

increases. Hence, the LED turns ON and starts emitting UV light as Vdiode (VGS) is raised 

above the LED threshold voltage of 3.8V. When a drop across 2Ω resistance is taken into 

account, the total Vdiode is required to be raised beyond ~4.1 V for the LED to emit UV 

light. A small increase beyond the LED threshold voltage causes a significant increase in 

the intensity of the emitted light.  

In order to modulate the UV light at 1 KHz frequency, the Gate-to-Source voltage VGS is 

powered by connecting it to a 50Ω function generator.  The output of the function 

generator is set to generate a 1 KHz square wave of 5V amplitude and a 2.5V offset. 

Accordingly, the LED turns ON for half a millisecond and is OFF for the next half. A 

maximum power output of about 120 mW is possible when forward voltage Vdiode is 

raised approximately to 4.3V. To stay within the safety limits of the LED and for its 

longer lifetime (steady state operating life time is about 500 hours), the power output of 

the LED is not raised beyond 60 mW. This corresponds to a Drain-to-Source current (or 

forward current Idiode) of 120 mA.  

Although the LED generates 60 mW of UV light, it is extremely difficult to tap all of it 

into the system. The extremely small size of the LED and the space constraints on the 

floating optical breadboard makes it very difficult to mount the LED near the quantum 

wire array which is inserted in one of the branches of the interferometer. Moreover, the 

emission angle (60o cone) of the light coming out of the LED dice, the distance of the 

dice from the glass window of the LED structure, as well as its mount (on an electrical 

breadboard, which consist of a Power MOSFET and a heat sink) complicates the focusing 
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issue. It is also advised to keep the LED away from the actual working space in order to 

avoid any accidental exposure to the UV light. Therefore, we use a 2-mm diameter 

unjacketed optical grade plastic fiber strand to tap the UV light into the system. In order 

to couple most of the UV light into the fiber, its one end is kept as close as possible (or 

touched) to the glass window of the LED. The other end of the fiber is then mounted very 

close to the sample, thereby increasing the power density of the excitation pulse at the 

device under test.  

 

 

Fig. 5.8  Forward current (Idiode) vs UV LED power (mW) calibration curve 
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The LED power output is calibrated for the diode current Idiode. Fig. 5.8 shows the UV 

calibration curve for the LED. The plot describes the amount of UV light coupled from 

the LED to the other end of the unjacketed fiber as a function of Idiode. The light emerges 

out at the other end of the fiber with a very large divergence angle. Hence, even though 

the fiber is placed very close to the quantum wire array, all the light is not used for the 

excitation. We estimate that approximately 20% of this light is actually used in the 

experiment. It is a very small value, on account of the smaller diameter (~2mm) of the 

probe beam, although the sample diameter is approximately 5mm. 

 

One of the mirrors is moved in the direction of probe beam propagation using the 

precision stage such that output voltage of the photo detector corresponds to the halfway 

point between the maxima and minima of the interference curve. The UV pump 

modulated at 1 KHz when turned ON, creates a 1 KHz ac component in this output 

detected by the detector. This ac component is measured using the lock-in amplifier. The 

output of the photo detector consists of both the DC and ac components. The required ac 

component is first filtered out using a simple RC filter circuit, as shown in Fig. 5.9. The 

filtered ac component coming out of the capacitor is then fed to the lock in amplifier. The 

DC component is detected by connecting point B to a DC scope. The voltage at point B 

indicates the position of the bias point on the interference curve. The experimental 

readings are valid only when this voltage remains very close to the point midway 

between the minima and the maxima. We also measure the voltage at point B using the 

lock-in amplifier to trace the ac component with the variations in the bias point.  The 
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lock-in amplifier is also able to measure the DC voltage at point B, when it is connected 

to the ADC AUX input of the lock-in amplifier as shown in Fig. 5.9.  

DC scope 

 

Fig. 5.9 Detection of the ac component 

 

We use a single-phase analog lock-in amplifier by Perkin Elmer Instruments (model 

5209) to measure the desired ac component in the photodetector output. The lock-in 

amplifier enables us to recover signals in the presence of a noise background. The 

fundamental purpose of a lock-in amplifier is to measure the amplitude of the component 

of the input voltage or current signal which is at the same frequency as that of a pre-set 

reference frequency (1 KHz in our case). Model 5209 is able to authentically detect and 

measure the signals in the frequency range of 0.5 Hz to 120 KHz, which are as small as 

100nV to 3V.  
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As shown in Fig. 5.9, the output of the photo detector is connected to DC scope to follow 

the possible drift of the bias point. It is also connected to ADC AUX input present at the 

back of the lock-in amplifier. Hence, the bias point is displayed on the lock-in output 

display, as well as can be measured using a computer interface. The ac component in the 

detector output is filtered using an RC circuit and connected to an input connector of the 

lock-in amplifier utilized for the voltage-sensitive mode measurements.  A float type of 

grounding is chosen, in which the shells of the input connector are returned to chassis 

ground through a 1 kΩ resistance in order to improve the ground loop interference 

rejection. The output display of the lock-in amplifier show four different types of outputs, 

namely, OUT, NOISE, RATIO and, LOG-R mode. Moreover, all these modes can 

measure the corresponding values in %FS (percentage of full scale deflection) and 

SIGNAL display mode. When the display is set at SIGNAL/OUT mode, the displayed 

value is the actual signal. On the other hand, when the display is set at %FS/OUT mode, 

the displayed value is calculated as 

  FSySensitivitOutputActual %
100

_ ×=  

Depending on the amplitude of the ac signal detected by the detector, we choose the 

sensitivity settings of the amplifier. If the detected signal is greater than the sensitivity 

setting, an overload (OVLD) indicator turns ON. We have used 10µV and 100µV 

sensitivity for all our measurements.  

 

The 34 dB attenuation of power line frequency (60Hz) as well as its second harmonic 

(120 Hz) is achieved using a line frequency rejection filter. Following this line-notch 
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filter, the signal passes through the main filter. The main filter is operated in low-pass, 

band-pass, notch and flat mode, and can even be bypassed. We choose band-pass type of 

main filter setting, and the filter frequency is set at 1 KHz. The filter frequency can be 

tuned manually or can automatically be set to track the reference frequency. The main 

filter achieves the roll-off of the frequencies both below and above the reference by 12 

dB, and therefore the interfering noise components in both the frequency regions are 

rejected. We use external reference mode. Hence, the SYNC output of the function 

generator (which modulates the LED amplitude at 1 KHz) is used as a reference signal 

and connected to the TTL-logic level input of the lock-in amplifier. In case, if the external 

reference is disconnected, the UNLK (unlink) indicator lights. Hence, the lock-in 

measures the amplitude of the 1 KHz signal detected, and whose phase does not vary with 

the external reference input. Moreover, the time variation of the output of the lock-in 

should follow the time variations of the input, as well as its magnitude and phase. The 

output filters are chosen accordingly to reduce the level of unwanted time variations. 

These unwanted time variations could be random or deterministic in nature, and are 

referred as output noise. One major source of this output noise is the shape of the input 

signal waveform. The output filters implement either 1st order (6dB) or 2nd order (12dB) 

low-pass functions by the use of a combination of analog and digital techniques and are 

normally specified by means of a time constant. As 6dB setting does not give satisfactory 

rejection of the non-random interfering signals which could possibly generate aliasing 

problems in analog to digital converts in the output stages, we choose 12dB option. As 

the random noise is expected to be present in the input signal, the output time constant is 
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increased to a value such that there appears to be a compromise between the output noise 

reduction and the amplifier response time. We have chosen the output time constant of 

about 10-100 ms. For smaller values of the amplitude of the input signal (when lock-in 

works at high sensitivity settings), lock-in sometimes show a non-zero value, called as a 

zero error. It is attributed to the unwanted coupling, or cross-talk between the reference 

channel and the input signal, and has to be taken care of by using a proper offset.  

The amplitude of the detected ac signal, as well as the bias point (DC) voltage provided 

at the ADC AUX INPUT of the lock-in is read via the computer interface. The 

communication between the lock-in and the computer is achieved using National 

Instrument’s GPIB PCI card. The data acquisition is performed using Signal Recovery’s 

Acquire data acquisition software. Using Acquire, we generate the plot of detected ac 

signal and the bias voltage as a function of time. 

Fig. 5.10 is the photograph of the experiment that was incorporated on the optical table.  
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. Fig. 5.10 Photograph of experimental setup 

 

 

5.5  Experimental Procedures  

We have investigated the optical properties of the electrochemically self-assembled 

quantum wire array using a Michelson interferometer in pump-probe excitation scheme. 

We have used four different types of semiconductor materials for the quantum wires, 

namely CdS, ZnSe, ZnO and CdSe. Each type of quantum wires is fabricated for three 

different diameters, 50 nm, 25 nm and 10 nm. Moreover, we have used four samples from 

different batches of one type of quantum wire samples, each for one type of material and 
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one diameter. Hence, we use 12 CdS samples, four each with 50-, 25- and 10-nm wire 

diameters. Thus we utilized, in all, 48 different quantum wire array samples in our 

experiments. In our experimental setup, we basically measure the phase shift caused by 

each type of the array, when excited by the UV light of 365 nm. The experiment is 

performed at six different intensities of the UV light for one type of the quantum wire 

sample. Hence, six readings are taken for each of the 48 samples, thus generating 288 

different values in total. As we generate four readings for the phase shifts for the quantum 

wires of one diameter and one type of material, one for each set, we average the recorded 

readings, making sure that the variations in the recorded values are not too large. All the 

fabrication processes for the quantum wire arrays are well refined; it is possible, 

however, that the sample might have some bad areas, discontinuities, etc. in its structure. 

If the probe beam is focused on that particular part of the array, the readings would be 

very much different than the rest of the samples. In that case, we disregard this sample 

and measure the test data for one more sample of the same type.  

Some of the important points and the procedure to perform one set of readings is as 

follows. 

1) Make sure that the IR laser is warmed up before the beginning of the experiment. 

We set the IR laser wavelength at 1308 nm.  

2) After the quantum wire array sample is installed in one of the beam paths, photo 

detector voltages for the individual beampath intensities, P1 and P20 are recorded, 

the sum of which yield the bias point as can be seen in Fig. 5.3. 
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3) The precision translation stage is used to adjust the path difference between the 

beams so as to generate the detector output voltage equal to the bias voltage as in 

step 2. 

4) The output of the detector is connected to the lock-in amplifier input via RC filter 

circuit to measure the ac component. All the settings in the lock-in are adjusted as 

described in the previous section. Bias point is followed by connecting it to the 

ADC AUX input.  

5) The function generator voltage (VGS for the MOSFET) is raised to 5 V, 1KHz and 

2.5 V offset. Hence, UV is ON for 0.5 ms and OFF for 0.5 ms.  

6) The intensity of UV light is increased by increasing the diode forward current. 

Fig. 5.8 describes the intensity of the UV light at various values of forward 

current. We take the measurements at six different values including 20, 40, 60, 80, 

100 and 120 mA. These current setting correspond to UV light intensities of 1, 2, 

3, 4, 5, 6 mW respectively. However, as mentioned previously, approximately 

only 20% of this light is actually utilized to generate the electron-hole pairs in the 

quantum wires.  

7) Before we record the first set of readings (for 6 intensities), the sample is rotated 

around the direction of beam propagation and fixed at a point which generates the 

maximum voltage at the detector.  

8) Make sure that the position of the unjacketed fiber end (source of UV in the 

system) remains absolutely constant throughout the period of all the 48 sets of 

experiments. We have used a reading for one specific 50nm diameter CdS sample 
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as a reference measurement. Before every set of experiments, we check that the 

set of outputs measured by the lock-in for that particular sample has not changed. 

This particular step fulfills the requirement that the experiment is performed when 

all the other conditions are constant.  

9) The sensitivity, input/output filters, reference signal, time constants and the output 

display of the lock-in are adjusted so as to display the correct value of the 1 KHz 

ac component generated due to UV excitation.  

10) Using Acquire data acquisition software, the bias voltage and amplitude of the ac 

component is recorded. The data is recorded for about one minute at the rate of 

about 1 data point per 10 milliseconds. We make sure that the bias point remains 

midway between the maxima and minima throughout the period of one minute 

measurement. The reading is repeated in case if any unexpected disturbance 

drastically changes the value.  We later average the curve over one minute to 

obtain the accurate value of the phase shift measurement.  

 

Fig. 5.11 shows the one such measurement taken. In Fig. 5.11, the upper curve indicates 

the bias point, which remains constant around 2V (right Y-Scale) throughout the 60 

seconds for which above data has been collected. Each data point is collected after every 

10 milliseconds. The lower curve represents the ac component of the photo detector 

output. The reading indicates the ac component to be around 20-25 µV value, according 

to the left Y-Scale. 
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Fig. 5.11 The Acquire data acquisition plot 

  

Table 10 and Table 11 describe the magnitude of the ac components (in µV) recorded for 

10/25/50 nm diameter quantum wire arrays of CdS, Znse, ZnO and CdSe materials, for 

six different UV intensities. Note that every single value in each table represent the 

average of the recorded readings of four separate quantum wire array samples of the same 

type, each of which is in turn averaged over the period of about one minute. The range of 

measured data points vary between 3-7% of their corresponding average values. 
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Wire diameters 

(nm) 

CdS ZnSe 

UV LED 
Forward 
Current 

(mA) 
50 25 10 50 25 10 

20 19.7125 22.74 16.5025 23.35 27.17 21.14 

40 48.7175 51.4475 39.5325 53.09 55.275 46.84 

60 73.5725 81.575 58.8575 83.4475 88.4825 73.76 

80 99.21875 109.6125 80.995 111.635 119.275 97.0675 

100 128.1075 143.9325 103.4675 145.75 150.415 122.045 

120 157.2748 176.7375 126.5475 179.0625 184.4625 151.2225

 

Table 10 LED Forward Current vs the ac component of the detector output (in µV)  for 
UV excited CdS and ZnSe quantum wire arrays. 
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Wire diameters 

(nm) 

ZnO CdSe 

UV LED 
Forward 
Current 

(mA) 
50 25 10 50 25 10 

20 25.73 31.39 22.068 21.295 20.05 16.81 

40 55.075 63.784 47.554 51.53 44.63 36.8033333 

60 85.515 101.504 75.184 81.5625 71.06 57.6633333 

80 114.535 132.416 98.626 107.1875 92.89 75.3433333 

100 144.8475 169.476 129.052 136.325 117.6175 95.3366667 

120 
173.8675 202.804 152.448 163.37 141.3825 115.033333 

 

Table 11 LED Forward Current vs the ac component of the detector output (in µV)  for 
UV excited ZnO and CdSe quantum wire arrays 
 
 
Note that the IR probe beam passes through the device under test twice in a Michelson 

interferometer, as could be seen in Fig. 5.2 and Fig. 5.5. Therefore, even though the 

actual length of quantum wires fabricated is approximately 1 micron, the phase changes 

we obtained are effectively due to 2 micron long wires.  

Fig. 5.12 shows the 1 KHz ac component detected by the lock in amplifier as a function 

of UV power, for four different samples of ZnSe wires of 10-nm diameter.  As all the 
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corresponding values for each sample do not vary much from their mean, the average 

value of the four samples is completely valid for the calculations.  

 

Fig. 5.12 ac component (in µV) detected by the lock-in amplifier for four different 10-nm 
diameter UV excited ZnSe quantum wire array samples 
 

The actual value of the changes in phase shift (∆(φ) and refractive index change of the 

quantum wire array) is calculated using equations (5.10) and (5.11).  The value of the 

amplitudes of the individual IR probe beam intensities are calculated in terms of the 

photodetector voltages. Fig. 5.13 shows the calibration of the photodetector voltage with 

respect to the probe beam intensity as measured using the New Focus photodetector and a 
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Newport precision power meter. The slope of the curve is 1 Volt per 16 µW of light when 

operated at the photodetector medium gain setting. 

 

 

Fig. 5.13 IR probe laser power vs photodetector voltage calibration curve 

 

The actual phase shift differences between the two beams in a Michelson interferometer, 

as the quantum wire array is excited by UV light at six different intensity levels, are 

presented and discussed in the next chapter, where we correlate all the theoretical model 

data (Mathematica and HFSS) and the experimental results.  

    



CHAPTER 6 

Results and Discussion 
 
 
6.1   The plausible sources of size-dependent non-monotonic                

         optical behavior  

As we observe in Table 10 and Table 11 in Chapter 5, the quantum wire arrays display a 

size-dependent non-monotonic behavior when excited by UV light. This non-monotonic 

behavior is explicitly demonstrated in the next section where we plot the changes in the 

optical behavior of the quantum wire arrays of CdS/ZnSe/ZnO/CdSe under stationary UV 

excitation. In this chapter, we analyze the plausible physical processes responsible for 

this size-dependent non-monotonic behavior, which include screening effect, phase-

space-filling effect, dielectric de-confinement, quantum confined Stark effect, effect of 

polarization, quantum confinement effect including the changes in the density of states 

function with wire diameter and the effect of filling factor variation with wire diameter. 

Although all these processes co-exist and compete with each other, in particular, the last 

two phenomena are dominantly responsible for the size-dependent non-monotonic nature 

of the optical behavior observed. In case of ZnO where energy bandgap is very close to 

the UV pump energy used in the experiment, the excitonic effects are also extremely 

important. In the next few sections, we explore these possible physical effects responsible 

for the non-monotonic behavior observed.  
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6.1.1  Screening effects 

+ - 

                   

Fig. 6.1 Electric field lines in quantum wire 

 

The term screening represents the shielding of the electric field by the mobile charge 

carriers. We already discussed the Coulomb interaction between the charge carriers. The 

charge carriers present in the vicinity of two interacting particles causes a damping effect 

on the electric field lines between them. This is called the screening effect.  

Figure 6.1 shows the electric field lines between two interacting particles. As the 

dimensionality of the system decreases, more and more field lines pass through the 

neighboring material. In case of quantum wires, most of the field lines pass through the 

material which surrounds them. Moreover, in our case, as the band gap of alumina is 

much larger (~8-10 eV) than the UV excitation energy, the carriers are not created in 

  



 153
alumina, and the photo-generated electrons and holes are confined to the quantum wire 

only. As there are no photogenerated charge carriers in the surrounding alumina, the 

electric field lines there cannot be screened. However, as very few lines pass through the 

wire material as depicted in Fig. 6.1, the effect of screening is extremely weak in 

quantum wires [53].  The effect of screening further diminishes as the wire diameter is 

reduced. Although this screening effect, which gives rise to spatial redistribution of 

electrons and holes, is usually suppressed in quantum wires, it might be intensified if the 

effects of image charges are taken into account [110].  

 

6.1.2  Phase Space filling effect 

As the dimensionality of the system is reduced, so is its density of states, as shown in  

Fig. 1.1. The density of states function is narrower in a 1-dimensional system, and 

diverges at the bottom of each sub-band. Moreover, due to the additional spatial 

confinements, fewer states are available for transitions. In case of an exciton, which 

consists of a bound pair of an electron and hole, both of which follow Pauli’s exclusion 

principle, only those electron-hole states may be utilized to create an exciton which are 

not occupied by the free carriers. For increasing excitation energy, when large numbers 

of electron-hole pairs are generated, the absorption peaks reaches saturation due to the 

filling of the phase space.  The effect of phase-space-filling in excitonic absorption is 

described extensively in [110]-[112]. However, in case of the width of the saturated 

peaks being too large, it might be attributed to the size dispersion of the wires (non-

uniform filling of the porous alumina), rather than the phase space filling effect.  
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Both phase space filling effect and screening cause the bleaching or saturation of the 

absorption effects in presence of high density of carriers, by reducing the Coulomb 

interaction potential. In case of quantum wires, screening effect is of minor importance as 

compared to the effect of filling the reduced number of states. Moreover, at higher 

excitation when large numbers of electron-holes pairs are generated, the filling of the 

states by the carriers, not screening, is mainly responsible for the ionization of excitons. 

As the wire diameter reduces, the effect of phase space filling is even more prominent 

than the screening effect. However, as no bleaching or saturation effect is observed in our 

experiments with low UV excitation energies, phase space filling as well as screening 

effects are expected to be unimportant.  

 

6.1.3 Dielectric confinement and image potentials 

It is possible to control the strength of Coulomb interactions and the exciton binding 

energy in a quantum well or wire by properly combining the semiconductor and barrier 

materials of different dielectric constants, and described as a realization of Coulomb 

interaction engineering by Keldysh in [113].  The exciton binding energy as well as its 

oscillator strength is dramatically increased when the barrier material surrounding the 

semiconductor (in a well or wire) is an insulator with smaller dielectric constant than the 

quantum well / wire material. The phenomenon is termed dielectric confinement or 

dielectric enhancement effect, and was first theoretically reported in [114]-[117]. The 

larger the mismatch between their permittivities, the larger is the dielectric enhancement 

effect. We know that there is weak Coulomb interaction between the charges in materials 
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with high dielectric constant, and a stronger interaction in materials with smaller 

dielectric constant. As shown in Fig. 6.1, in quantum wires, most of the electric field lines 

between the charge carriers pass through the surrounding insulator (with smaller 

permittivity), and thus enhances the Coulomb interaction between them.  

The effect could also be understood in terms of image potentials. Due to the large 

difference between the permittivities of the wire and surrounding material, image 

potentials play an extremely important role in determining the quasi-1D character of the 

excitons. The electrostatic field of a charge placed close to an interface can be 

represented in terms its unit charge and a mirror-like reflection of the  charge placed on 

the opposite side of the interface. The strength of the field depends on the ratio of the 

dielectric constants from both sides of the interface. As the dielectric constant changes 

abruptly at the interface, the Coulomb-like divergence occurs when a charge encounters 

its image. In a semiconductor, the charge is repelled away from the interface, while it is 

attracted towards the interface in the surrounding insulator. This greatly modifies the wire 

shape by reducing its diameter, and primarily affects the band gap, as well as exciton 

peak intensity and position [118]-[120]. Others have also explained the dielectric 

enhancement effect and suggested certain improvements with great details. [121]-[122]. 

 

References [123]-[125] observed a large enhancement in the exciton binding energies and 

their oscillator strengths in quantum wires deposited in electrochemically self-assembled 

porous alumina, which they attributed to the dielectric enhancement effect. But these 

groups erroneously assumed the dielectric constant of alumina to be ~2.2 which is much 
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smaller than that of CdS (5.4) and CdSe (6.26) quantum wire materials which they 

investigated. Actually, the value of alumina permittivity varies between 8-10 [107],[126]-

[127]. Although, such low value of permittivity of alumina has been reported in 

references [108] and [128], the reduction in the permittivity is attributed to the nano-

porosity of the porous alumna templates. In other words, the permittivity value in their 

work is averaged over the air-filled pores with dielectric constant of 1, which is not 

relevant in our case, as the pores in the alumina templates are filled with 

CdS/ZnSe/ZnSe/CdSe semiconductor materials. The absorption enhancement effects at 

smaller diameters observed in our experiments are actually in the presence of a dielectric 

de-confinement effect. This fact is recently corroborated by Bandyopadhyay in [129].  

 

6.1.4 Direction of optical field polarization 

One of the important properties of the low-dimensional nanostructures, which is also 

manifested in its optical spectra, is the significant anisotropy of optical signal with 

respect to the polarization of the applied electromagnetic field. [130]-[131]. In the 

nanostructures like the quantum array we have, for the wire radius much smaller than the 

wavelength of light, the light electromagnetic field inside the array can be treated as a 

plane wave modulated on the scale of a wire radius. When the excitation EM field is 

perpendicular to the wire axis, the local field inside the array is strongly modulated, while 

no such modulation takes place when the field is in the direction of the wire axis. Under 

such condition, the field component of light with polarization normal to wire axis is 
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weakened which minimizes the absorption for that component. Any absorption is 

completely attributed to the field component in the direction of the wire growth.  

It must be noted that inter-subband transitions like those in the far-infrared photo 

detectors (QWIPs), only TM polarization ( E
r

 field perpendicular to well layers or wire 

axis) is absorbed. However, in case of inter-band transitions, TE polarization ( E
r

 field 

parallel to well layers or wire axis) of the excitation light is also absorbed [132]. 

As we use unpolarized LED light for the sample excitation, this effect is not relevant to 

us. Moreover, the quantum wire array is excited with the UV light incident at an angle to 

the quantum wire axis to nullify any possible such effects. 

 

6.1.5  Quantum confined Stark effect 

When the electric field is applied across the quantum wire with a component 

perpendicular to the wire axis, there are significant changes in its optical properties like 

absorption, reflectance, photoluminescence, etc. This effect is termed as quantum 

confined Stark effect (QCSE) and was first reported in [133]-[135]. It is an extension to 

the Franz-Keldysh phenomenon in the low-dimensional systems, but its effects are 

extremely different in character from the Franz-Keldysh effect seen in bulk materials.  

Very distinct physical effects are found in quantum wells when the applied electric field 

is in the direction parallel to the well layers and when the electric field is perpendicular to 

the well layers.  

When electric field is parallel to the quantum well layers, the exciton peaks are 

broadened with the field. This broadening is essentially is due to the reduction in the 
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exciton lifetime due to the field ionization from the applied electric field. When the 

applied field is strong enough, no bound electron-hole pairs exist, as the particles tunnel 

through the resulting Coulomb potential barrier. This is qualitatively similar to the 

electro-absorption in bulk, or Franz-Keldysh effect.  

On the other hand, in addition to the broadening of the peaks, large energy shifts (to 

longer wavelength) are observed in the exciton peaks when the field is applied 

perpendicular to the well layers, while the peaks remain resolvable even for larger values 

of applied electric fields. Miller [135] also showed that the shifts in heavy hole exciton 

energy is more than the light hole exciton energy, making the phenomenon mass 

dependent. The electro-absorption effect due to the applied field is considered as the 

quantum confined Stark effect. As the electron and holes are pulled away from each other 

under the influence of the field, it increases the separation between them and reduces the 

Coulomb interaction. This causes an overall net reduction in the energy of electron-hole 

pair and a Stark shift is in the exciton absorption. But due to the confinement, the walls of 

the well impede the electrons and holes from tunneling out of the well, and hence the e-h 

interaction, although slightly weakened by their separation, might still be strong. Thus 

well defined exciton states still exist in stronger electric fields. The broadening due to 

tunneling of electrons and holes is important only at very strong electric fields.  

In case of quantum wires, the quantum confined Stark effect is due to the influence of the 

field perpendicular to the wire axis. The single electron particle energies under the 

influence of the electric field are given as  
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where j = e and h, while Ω represents the inter-subband spacing, and E is the applied 

electric field in the direction normal to wire axis. This clearly suggests that the particle 

energies decrease with the increase in the field strength. However, the influence of the 

field is reduced for materials with heavier charge carriers. Under the influence of external 

electric field, the overlap between the lateral electron and hole wave function is reduced, 

which effectively reduces the electron-hole interaction. Furthermore, there is also a 

reduction in the optical dipole transition element as 
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where ∆ is the measure of field induced electron-hole separation.  

Benner and Haug [61] showed the influence of the electric field on the linear optical 

absorption spectra of quantum wires. In the absence of the field, one may expect a small 

red-shift of the absorption peaks due to the reduction of the binding energy by Coulomb 

blocking. For weaker field though, there is a small blue shift in the exciton peaks, which 

indicate the stronger confinement effect. However, for large electric fields, the Stark 

effect dominates and the absorption peaks shift red. Under the influence of the electric 

field, the exciton absorption peaks consistently bleach due to the reduced electron-hole 

overlap. However, the reduction in oscillator strengths in extremely narrow quantum 

wires are reported to be largely dominated by the phase space filling effect, rather than 

the quantum confined stark effect [136].  
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6.1.6 Interface states, Fermi level pinning and built-in field effects 

Interface states, also known as surface states, interface trapped charges, defects, and fast 

states, are formed by incomplete covalent bonds at the surface (or interface) of the 

semiconductor [137] and are found only at the atom levels closest to the surface (or 

interface). While the surface states are present at any semiconductor surface, they can 

also be caused by impurities such as oxygen. The surface (interface) states exist within 

the forbidden gap due to the interruption of the periodic lattice structure at the surface of 

the crystal or at the interface of two materials, and due to the presence of the impurities, 

and result in energy levels within the band gap. These states do not have an equivalent in 

the band structure of the crystal, which peak near the surface (or interface) plane and 

decay in amplitude away from the surface. These surfaces or interfaces typically contain 

a large number of recombination centers because of the abrupt termination of the 

semiconductor crystal, which leaves a large number of electrically active dangling bonds. 

They could be donor or acceptor states depending on weather or not they are neutral 

when occupied. The surface state, or the interface trap is considered donor if it becomes 

neutral (or positive) by donating an electron. On the other hand, it is acceptor if it 

becomes neutral (or negative) by accepting an electron.  

The surface states cause the Fermi energy to be pinned, i.e. electrons from the valence 

band fall into the surface states until the Fermi energy coincides with the level to which 

the surface states are filled. This causes a natural surface depletion in the material where 

they exist (near the surface/interface), and a built-in potential is also created. However 
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pinning does not happen on every semiconductor surface, as the surface states are not 

necessarily positioned inside the band gap of some semiconductor surfaces.  

Here, the Charge Neutrality Level (CNL) concept is also important. At low temperatures, 

the surface states are populated from lowest energy level to the Fermi level. If electrons 

are filled to the point short of CNL, i.e. when Fermi level is lower that CNL, the closest 

surface region (i.e. the first few atomic planes on the surface) has net positive charge. 

When Fermi level is above the CNL, the surface has an excess of electrons and has 

negative charge. Even a relatively low density of surface states can fixe the surface Fermi 

level very close to the CNL, and Fermi level is said to be pinned by the surface states.  

As described above, any field present in the nanostructures in the absence of the external 

electric field is attributed to the built-in fields produced by these interface states or 

trapped charges.  Built-in fields have already been reported to be very strong, of the order 

of 10 MV/cm, in AlGaN/GaN quantum wells [138]. It has been reported in [129] and 

[139] that strong built-in electric fields are also present in the alumina templates that we 

have used in the experiments. These built-in fields might have possibly caused the 

quantum confined Stark effect in ZnO samples.  

 

6.1.7 Quantum confinement effect 

The density of states function changes with the reduction in wire diameter. The joint 

density of states (DOS) function in quantum wires (plotted in Fig. 1.1) is given as, 
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where L is the wire length, mr is reduced effective mass, Θ is the Heaviside unit step 

function and εn,p are the intersubband transition energies. With the reduction in wire 

diameter, blue shifts in εn,p are caused by additional quantum confinement, leading to an 

increase in the DOS function, as depicted in Fig. 6.2. As the confinement length (wire 

diameter) is reduced, more states are available for absorption for any excitation energy E1 

in wires with smaller diameters. Therefore, optical activity is expected to increase as the 

diameter of the wire is reduced.  

Confinement length 

 

Fig. 6.2   Changes in the DOS function with the reduction in wire diameter. 

 

The excitonic activity is also affected by the reduction in confinement lengths. The 

electron-hole Coulomb interaction in semiconductors leads to bound excitonic states, 
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which, at relatively low carrier densities, are found to be very crucial in determining the 

optical response of the system. When the exciton binding energy exceeds the thermal 

energy at room temperature, excitonic effects become dominant. It is possible to obtain a 

large enhancement of the binding energy and the oscillator strength by confining electron 

and hole wave functions in nanostructures of low dimensionality. The phenomenon is 

called as quantum confinement effect, which is more regular with the 1-dimensional 

systems. In quantum wires where carriers and excitons move freely in only one direction 

and are confined in other two, the exciton binding energy and their oscillator strength 

increases. The restriction of motion reduces the distance between an electron and a hole, 

which effectively enhances their Coulomb interaction and hence their binding energy. It 

has been predicted in [70] that for semiconductor quantum wires of radii comparable to 

or smaller than the bulk exciton Bohr radius, there is considerable increase in the exciton 

binding energies and their oscillator strengths. Keldysh [113] provided a detailed 

discussion to prove that the confinement in nanostructures with linear sizes smaller in 

comparison with the exciton Bohr radius is responsible for the enhancement of binding 

energy and oscillator strength. The binding energy for extremely thin quantum wire 

where r ≈ a0, or r < a0  is  evaluated in [113]  as 

            (6.4) ( )[ 2
0/ln**4 arRyEb ∝ ]

where a0 is the bulk exciton Bohr radius, Ry is the Rydberg energy unit, and r is the wire 

radius. Thus in case of extremely thin quantum wires, as the wire diameter is reduced as 

compared to the bulk exciton radius, the two dimensional confinement itself leads to a 
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significant increase in the binding energy. The oscillator strengths are also reported to be 

considerably enhanced. 

 

6.1.8 The effect of filling factor 

Classically, UV pump absorption should decrease in narrower wires since the amount of 

optical material present is reduced. As shown in Table 7 in Ch. 4, in the nanowire arrays 

used in the experiments, center-to-center distances between the pores in 50-, 25- and 10-

nm diameter wires are approximately 100-, 80- and 60-nm, respectively. Accordingly, the 

wire density is in the range of 109 – 1012 cm-2. This monotonically reduces the amount of 

optically active material per unit area of the wire array. Hence, the optical activity seen 

by the nanowire array is expected to reduce as the wire diameter decreases. Since the 

nanowire array has a honeycomb structure as shown in Fig. 4.6 and 4.8, filling factor f, 

the approximate ratio of total cross-sectional area of the wires to the total array area 

exposed to the IR probe, is calculated as the ratio of a single wire area to the area of the 

hexagonal unit cell. For an unperturbed wire array, the effective permittivity is 

approximated by 

 ε = fεwire + (1 - f)εalumina           (6.5) 

where εwire and εalumina are the permittivity of wire material and alumina, respectively. 

Under UV pump excitation, only the permittivity of the wire material changes. Hence, the 

effective permittivity of the UV excited wire array becomes,  

 ε’ = fε’wire + (1 - f)εalumina           (6.6) 

Therefore, the change in permittivity of the array sample, ∆ε = ε’ - ε, is given as  
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 ∆ε = f(ε’wire  -  εwire)                      (6.7) 

where we have assumed that there is no change in the permittivity of the alumina since its 

bandgap is much larger than the UV photon energy. Since εεδ ∆≈ )2/1(n , change in 

phase shift becomes directly proportional to the filling factor f  as, 
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Filling factor f is approximately calculated as 0.2267, 0.0886 and 0.0252 for 50-, 25-, and 

10-nm diameter wires, respectively. Since the filling factor reduces with the wire 

diameter, the optical activity in the DUT sample is expected to monotonically reduce as 

the wire diameters in the array decrease. 

 

 

6.2 Experimental Data Analysis 

We had discussed experimental procedure in detail in Ch. 5. As shown in Table 10 and 

Table 11 in Ch. 5, we measured the ac component of the photodetector output as function 

of forward current of the UV LED. The ac component output is then converted into the 

actual change in the phase shift induced by the quantum wire array under UV excitation, 

as per the discussion in section 5.2. The photodetector voltage output is converted to 

power using the photodetector power calibration curve as shown in Fig. 5.13, while 

equations 5.10 and 5.11 are used for the actual conversions. The actual power of the UV 

LED used for excitation is calculated using the calibration curve shown in Fig. 5.8. 

Figures 6.3-6.6 display the actual changes in phase shifts induced by the UV light at five 
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different intensities, for CdS/ZnO/ZnSe/CdSe quantum wire arrays respectively. Note 

here that changes in phase shifts are extremely small for the perturbational UV excitation 

used and are expressed in terms of parts per million (ppm). Moreover, as the IR laser 

passes twice through the quantum wire array in the Michelson interferometer, the 

effective length of the wires inducing the phase shift changes is 2 microns, double the 

actual length of the wires in the array.   

 

 

Fig. 6.3 Changes in phase shifts induced by UV light in CdS quantum wire array 
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Fig. 6.4 Changes in phase shifts induced by UV light in ZnO quantum wire array 
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Fig. 6.5 Changes in phase shifts induced by UV light in ZnSe quantum wire array 
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Fig. 6.6 Changes in phase shifts induced by UV light in CdSe quantum wire array 

 

There is an extremely peculiar behavior that the optical response of the entire sample 

shows in Figures 6.3 - 6.6. Although, the phase shift changes increases gradually with the 

UV intensity in all the samples, the activity shown by CdS and ZnO quantum wires does 

not vary linearly with the variations in their diameter. The optical activity (or the phase 

shift changes) shows a distinct increase as the wire diameter is decreased from 50 nm to 
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25 nm. This behavior is against the initial expectation that the changes in phase shifts 

would gradually reduce with decreasing filling factor as the wire diameter decreases.  

Using the data shown in Table 7 in Ch. 4, we estimate that the filling factor of the 

semiconductor in the quantum wire array falls rapidly with decreasing wire diameter.  As 

mentioned in section 6.1.8, filling factors for 50-, 25- and 10-nm diameter wires are 

calculated as 0.2267, 0.0886 and 0.0254 respectively. Although, semiconductor material 

available for UV absorption reduces by approximately 60% as the wire diameter is 

changed from 50 to 25 nm, the actual activity (changes in phase shifts) in 25 nm wires is 

significantly enhanced. 

As the wire diameter (in CdS and ZnO samples) is further reduced to 10 nm, the phase  

shift changes decline and reach the minimum value of all three wire diameters at the 

same UV intensity. 

A similar effect is also observed in ZnSe quantum wire arrays, although the increment in 

the optical activity as the wire diameter changes from 25 nm to 50 nm is suppressed as 

compared to that in case of CdS and ZnO samples. In case of CdSe quantum wire arrays, 

however, the phase shift changes reduce gradually as the wire diameter is decreased from 

50 nm to 25 nm and finally to 10 nm.  

The effect of the diameter variations in the quantum wires is displayed for all four types 

of samples, namely CdS / ZnO / ZnSe / CdSe, in Fig. 6.7, where we plot the phase 

changes induced by 1.2 mW UV excitation for all the four types of arrays.   
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Fig. 6.7 Changes in phase shifts as function of wire diameter. The values displayed here 
are the changes observed at 1.2 mW of UV excitation as a function of wire diameters. 
 
 
Fig. 6.8 is a similar plot which depicts these size-dependent non-monotonic changes in 

the refractive index of the quantum wire array samples, when excited by UV pump.  
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Fig. 6.8 Changes in refractive index as function of wire diameter. The values displayed 
here are the changes observed at 1.2 mW of UV excitation as a function of wire diameters. 
 

As can be seen in Fig. 6.7 (and 6.8), the changes in phase shifts and refractive index are 

very sharp in CdS and ZnO as compared to ZnSe, as diameter is changed from 50 to 25 

nm. This is also confirmed in Fig. 6.9, where we plot the %-change in the phase shifts 

with the wire diameters. We define a change coefficient η, calculated as  

  ( ) ( )[ ]
( ) 100
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δφδφη          (6.9) 

However, the actual values of the phase changes δφ in ZnSe are comprehensively larger 

than those observed in CdS, as clearly indicated in Fig. 6.7.  Therefore, although, CdS 
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shows stronger non-monotonic behavior in the phase variations as the wire diameter is 

reduces from 50- to 25-nm, the actual phase changes are larger in ZnSe.  

 

 
 
Fig. 6.8 Normalized changes in phase shifts ∆η. The plot shows the normalized variations 
in the phase changes observed by 25-nm diameter samples as compared to 50-nm 
diameter samples, for all four materials, as a function of UV Power. ∆η values are 
calculated as [ ] )50(/)50()25(% δϕδϕδϕ −  
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Fig. 6.10 Changes in phase shifts vs wire diameters as a function of UV excitation power 
in ZnO quantum wire array.  
 

Fig 6.10 shows the phase shift variations δφ as a function of wire diameter in ZnO for 

various UV excitations. We can observe a fairly uniform increase in the changes in phase 

shifts δφ at all diameters, including 25 nm sample. The changes δφ do not reach 

saturation, which would have compressed the curves in Fig. 6.10, i.e. the separation 

between the curves would have gradually decreased with every (or higher) increment(s) 

of the UV excitation. The saturation could also have been indicated in Fig. 6.9, if all (or 

any) of the curves had demonstrated a downward trend, or even flattened ends. Although 
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fig. 6.9 shows a very slight decrease at higher UV intensities in ZnSe, the possibility of 

saturation cannot be concluded due to the extremely small values (however almost 

constant) of the percent variations in the changes in phase shifts δφ. The lack of any 

saturation phenomenon in the samples verifies the absence of an absolute phase space 

filling effect, as explained in the last section. The phase space filling, which has a 

damping effect on the coulomb interaction potentials and the oscillator strengths, is 

definitely not dominant in our samples, not even at highest UV intensities for narrowest 

wires. Note here that even the unexcited nanowires have a large carrier density 

background (~1018-1019 /cm3) due to an unintentional doping of the wire materials on 

account of a high interface state density, ~1013 /cm2 [106]. More and more states are 

being filled as the UV intensity is increased, but that all the states are not completely 

filled to display saturation.  

Fig. 6.11 shows the normalized phase shift variations as a function of UV intensity for the 

25- and 10-nm wire diameters, where we plot, 

  ( ) ( )[ ]
( ) 100
25

1025
×

−
=∆

nm
nmnm

δϕ
δϕδϕη             (6.10) 

The separation between the CdSe and ZnSe curves and the curves for CdS and ZnO is 

distinctly visible. Although some variations are observed in the samples, they are small, 

and only appear larger being displayed on a small scale.  
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Fig. 6.11 The normalized changes in phase shifts ∆η observed by 10-nm diameter 
samples as compared to 25- nm diameter samples, for all four materials, as a function of 
UV Power. ∆η values are calculated as [ ] )25(/)10()25(% δϕδϕδϕ − .  
 

A sharp increase in the activity (or absorption) by the ZnO, CdS and ZnSe quantum wire 

arrays as the wire diameter is reduced from 50 nm to 25 nm is attributed to the changes in 

the density of states function with the reduction in wire diameter. The joint density of 

states (DOS) function in quantum wires is given as, 
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where L is the wire length, mr is reduced effective mass, Θ is the Heaviside unit step 

function and εn,p are the intersubband transition energies. The increase in optical 

absorption in narrower wires (ZnO / CdS / ZnSe) is attributed to blue shifts in εn,p caused 

by additional quantum confinement, leading to an increase in the DOS function. This is 

depicted in Fig. 6.12.  

 

          

Fig. 6.12   1-dimensional density of states as a function of wire diameter. 

 

While the rapidly decreasing filling factor acts to reduce the optical activity in narrower 

wire arrays, the shifting of the DOS function with additional confinement serves to 

increase it.  It is these competing effects that give rise to the size-dependent non-
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monotonic optical activity experimentally observed in CdS / ZnO / ZnSe nanowire 

arrays, as shown in Fig. 6.7 and 6.8. 

 

UV pump 
excitation 

Fig. 6.13 PL spectra of ZnO quantum wire array [139] 

 

ZnO nanowires are a special case in our experiments as ZnO bandgap energy (3.35 eV in 

bulk) is very close the UV pump excitation energy (3.4 eV). As shown in Fig. 6.12, since 

pump excitation wavelength is very close to the exciton peaks in ZnO [139], the 

increased optical activity may also be due to the enhancement in the excitonic effects due 

to progressively stronger quantum confinement effects in narrower wires, as explained in 

section 6.1.7. This quantum confinement effect becomes more dominant when confined 

dimensions (radius of the wires in this case) become comparable to the exciton Bohr 

radius in bulk. But as we have calculated in Table 3 and Table 5 in Ch. 3, the bulk 

exciton Bohr radius of ZnO is 4.7 nm which is still very small as compared to the actual  
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wire diameter (25 nm). However, it has already been reported for the electrochemically 

self-assembled quantum dots formed in porous alumina that the active size of the dots is 

considerably smaller than that shown by the TEM images [140]-[142]. This reduction in 

effective diameter is attributed to the side depletion of the dots caused by Fermi level 

pinning due to the presence of interface states. As mentioned in the previous section, the 

Fermi level pinning causes a natural depletion of the quantum wire semiconductor 

material. Bandyopadhyay [140] reported a ~7 nm side depletion which reduces the CdS 

quantum dot diameter from ~13 nm (±1 nm) to a mere 6 nm. Balandin [141] also reported 

the side depletion to reduce the dot diameter from ~10 nm to ~3.8 nm. More recently, 

similar reduction in the active wire diameter as compared to the TEM images are also 

reported in ZnO and CdS quantum wires in [129] and [142], where side depletion 

accounts for the reduction from 25 nm diameter to 6.8 nm. This side depletion is a 

plausible explanation for the strong quantum confinement effect in ZnO. As the effective 

wire diameter is now comparable to the exciton Bohr radius in the bulk, a strong 

confinement considerably enhances the exciton binding energy and the oscillator 

strength, which is reflected in the enhanced phase shift changes as the ZnO wire diameter 

is decreased from 50 nm to 25 nm.  

Unlike CdS, ZnO and ZnSe, however, quantum wires made of CdSe show a complete 

absence of size-dependent non-monotonic optical activity. More research is needed to 

find out the plausible explanation for this completely different behavior of CdSe wire 

array as compared to the rest of the wires we tested.  
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6.3   Mathematica and HFSS output 

In this section, we connect the experimental and theoretical analysis, i.e. the generated 

experimental outputs are obtained in the electromagnetic wave simulator using the optical 

parameters calculated by solving the theoretical models in Mathematica. Using a pump-

probe excitation scheme in a Michelson interferometer, the amplitudes of the ac 

component of the output is converted into corresponding phase shift changes induced by 

the quantum wire array when excited by UV light. To match the experimental outputs and 

the theory, these exact same phase shift changes are then re-created in HFSS simulation 

environment. As explained in Chapter 3, theory developed to model the quantum wire 

array is utilized to generate the permittivity and loss tangent values for various quantum 

wire materials at 1308 nm, which are incorporated into HFSS. The UV excitation creates 

photo-generated carriers which effectively change the optical behavior of the array, i.e. 

its permittivity. In Mathematica, we change a fitting parameter, effectively the carrier 

concentration values, which generate the excited values of the permittivity of the 

quantum wires. These changed values of permittivity are then incorporated in HFSS so as 

to obtain the exact same phase shift changes observed experimentally.  

The quasi Fermi levels (QFL) inside the quantum wires are redistributed due to the 

photogenerated carriers in the presence of the UV pump. We use these QFLs as 

adjustable parameters in our theoretical analysis to obtain the changes in the permittivity 

of the individual quantum wires. The electromagnetic wave simulations are then 

performed for the nanowire arrays to match the simulated phase shift changes (using the 

changed model values of the individual wire permittivities) with the experimentally 
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observed non-uniform phase shift changes of Fig. 6.3 – 6.6. The electromagnetic wave 

simulations accurately take into account the material parameters, the true filling factor, 

and the exact field distributions in the nanowire array structures to obtain its optical 

response.  

 

Fig. 6.14 Electric field distribution inside the unit cell of a 50-nm diameter CdS nanowire 
array structure. Circular semiconductor wire is embedded inside the hexagonal alumina. 

 

Fig 6.14 depicts the electric field distribution in a hexagonal unit cell of the 50-nm 

diameter CdS array structure. Since field lines generally concentrate in materials with 

higher permittivity, we can see that the field flux is stronger outside the wires, since the 
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permittivity of subject semiconductors is smaller than that of alumina. The simulation 

results show a rapid increase in the changes in effective permittivity values of the 

individual quantum wires as diameter decreases. The increase in quantum wire 

permittivity at 1.2 mW of UV pump power is shown in Fig. 6.15. Changes in the real part 

of the permittivity in 10-nm diameter wires are approximately 8-10 times larger than 

those in 50-nm diameter wires.  

 

 

Fig. 6.14 Changes in the real part of permittivity ∆Re(ε) of the quantum wire as 
calculated using HFSS to match experimentally observed phase shift changes at 1.2 mW 
of UV pump power. 
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Tables 12-13 give the changes in the real part of permittivity ∆Re(ε) calculated in HFSS 

and the refractive index ∆n and absorption coefficient ∆α as calculated in Mathematica 

for the CdS/CdSe/ZnO/ZnSe quantum wires as a function of UV intensity.  

 

Wire diameters and optical parameters 
UV  

∆Re(ε) (×10-6) ∆α /cm (×10-6) ∆n (×10-6)    
   

 

(mW) 50nm 25nm 10nm 50nm 25nm 10nm 50nm 25nm 10nm

0.2 
0.42 1.44 3.68 4.25 14.69 36.9 0.09 0.32 0.82 

0.4 
1.02 3.25 8.82 10.42 32.96 87.97 0.22 0.71 1.94 

0.6 
1.6 5.14 13.13 16.03 52.03 130.84 0.34 1.12 2.89 

0.8 
2.13 6.91 18.07 21.64 69.9 180.42 0.46 1.5 3.99 

1.0 
2.75 9.08 23.08 27.66 91.74 230.74 0.59 1.97 5.10 

C
dS

 

1.2 
3.38 11.1 28.23 34.07 112.4 282.56 0.73 2.41 6.25 

 

0.2 
0.5 1 3.99 5.6 11.21 43.19 0.1 0.204 0.847 

0.4 
1.2 2.21 8.74 13.41 24.74 94.54 0.242 0.45 1.855 

0.6 
1.93 3.52 13.69 21.56 39.35 148.1 0.389 0.717 2.907 

0.8 
2.54 4.6 17.89 28.35 51.31 193.5 0.511 0.934 3.798 

1.0 
3.23 5.82 22.63 35.99 64.59 244.8 0.648 1.17 4.804 

C
dS

e 

1.2 
3.87 7 27.3 43.12 77.88 295.3 0.777 1.42 5.796 

 
Table 12 Changes in the optical parameters as calculated in HFSS and Mathematica for 
CdS and CdSe quantum wires  
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Wire diameters and optical parameters 
UV  

∆Re(ε) (×10-6) ∆α/cm (×10-6) ∆n (×10-6) 

M
at

er
ia

l 

(mW) 50nm 25nm 10nm 50nm 25nm 10nm 50nm 25nm 10nm

0.2 
0.46 1.33 4.09 6.4 7.03 56.583 0.119 0.345 1.07 

0.4 
0.98 2.71 8.81 13.64 18.55 122.02 0.253 0.704 2.31 

0.6 
1.53 4.31 13.92 21.28 37.78 193.23 0.395 1.12 3.65 

0.8 
2.04 5.62 18.26 28.4 60.11 253.27 0.528 1.46 4.79 

1.0 
2.59 7.2 23.9 36.04 78.34 331.8 0.67 1.87 6.27 

Z
nO

 

1.2 
3.1 8.61 28.23 43.16 120.05 391.46 0.802 2.24 7.4 

 

0.2 
0.54 1.5 4.97 3.92 10.79 35.49 0.11 0.31 1.04 

0.4 
1.22 3.12 11.03 8.84 22.58 78.97 0.25 0.64 2.31 

0.6 
1.92 4.99 17.36 13.76 36.13 123.97 0.39 1.03 3.63 

0.8 
2.57 6.73 22.85 18.5 48.32 163.03 0.52 1.38 4.78 

1.0 
3.35 8.48 28.73 24.06 60.96 204.98 0.68 1.74 6.01 

Z
nS

e 

1.2 
4.12 10.4 35.6 29.62 74.78 253.97 0.84 2.13 7.44 

 

Table 13 Changes in the optical parameters as calculated in HFSS and Mathematica for 
ZnO and ZnSe quantum wires  
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Fig 6.16 Changes in the real parts of permittivity of all quantum wires at various UV 
pump powers as calculated using experimental data and HFSS 
 

Fig. 6.16 shows the permittivity change observed in all the quantum wires for various UV 

intensities. Note that these changes in the permittivity are with respect to their 

corresponding values in un-excited quantum wires. Fig. 6.17 shows the theoretically 

calculated variations in the real and imaginary parts of the permittivity of the quantum 

wires at 1308 nm as a function of their diameters in the absence of UV excitation. Both 

real and imaginary parts of the permittivity progressively decrease as the wire diameter is 

reduced.  
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Fig. 6.16 Variations in the theoretically calculated (a) real and (b) imaginary parts of the 
permittivity (ε) as functions of quantum wire diameter in the absence of pump. 
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The size dependence of the (unpumped) permittivity in low-dimensional semiconductors 

is well known. The theoretical treatment of the size dependence of the permittivity in 

quantum wells, wires and dots indicate the reduction in the value of the permittivity with 

the increase in quantum confinement [143]-[147]. A significant reduction in the 

permittivity is reported in the low-dimensional structures when the confinement is of the 

order of few nanometers, comparable to the Bohr radius in the semiconductor materials. 

We also observe similar effects in this theoretical treatment for quantum wires. 

According to Fig. 6.16, there is an extremely small reduction in the dielectric permittivity 

in thick wires. The reduction, however, becomes sharper in CdS, ZnSe and CdSe 

quantum wires below approximately 10 nm, which is close to the Bohr diameter for these 

materials (7.65-, 7-nm and 9-nm respectively). The bulk Bohr diameter is 4.6 nm in ZnO, 

below which its permittivity is expected to decrease sharply. 

 

  



CHAPTER 7 

Summary and Conclusions 
 
 
 
In this work, we have investigated the optical behavior of the quantum wires array when 

excited by a stationary high energy UV light. The quantum wires are fabricated by 

selectively electrodepositing the semiconductor material in electro-chemically self-

assembled porous alumina templates. The quantum wires are very distinct in their optical 

behavior amongst the low-dimensional structures on account of a very peculiar nature of 

their density of states. It has very sharp peaks which diverge at the bottom of each sub-

band. This gives rise to an enhanced binding energy and oscillator strength of excitons, 

and potentially to stronger optical absorption. Although all types of transitions like free 

carrier transitions, band-to-band transitions, exciton transitions, impurity-to-band 

transitions etc. take place, the effects we observed are more dominated by band-to-band 

transitions and exciton transitions.   

We developed a theoretical model to calculate the optical response of the quantum wire 

arrays to a UV excitation. The UV excitation light is modulated at 1 KHZ frequency; 

hence the excitation time is very large compared to the carrier scattering and 

recombination times. Therefore, the photo-generated carriers have sufficient time to reach 

thermal equilibrium amongst themselves within their respective bands, although the 
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complete structure is out of thermodynamic equilibrium. This gives rise to a quasi-

equilibrium regime. We derived a polarization equation which is solved numerically to 

calculate the bound state (exciton) and continuum state solutions at very low or virtual 

zero excitation. We also derive the solutions for higher excitation, which is still smaller 

than required to generate the carrier density exceeding the Mott density. The solutions are 

generated by taking into account the effects of screening, Coulomb interaction between 

the carriers as well as the many body effects on the excitons. A program is developed in 

Mathematica to solve these complex set of equations iteratively using an Accelerated 

Fixed Point (AFP) method. The real and imaginary parts of the theoretically calculated 

permittivity progressively decrease as the wire diameter is reduced. The optical 

parameters generated for individual quantum wires are then incorporated into an 

electromagnetic wave simulator, HFSS, to investigate the behavior of an array of wires. 

In HFSS, a unit cell consists of a single 1 micron long quantum wire embedded in a 

hexagonal alumina material. This unit cell is replicated with a desired periodicity so as to 

generate a 2-dimensional array structure identical to the actual quantum wire array. We 

have used four different types of quantum wire materials, namely CdS, ZnSe, ZnO and 

CdSe. Each type is investigated for three different wire diameters, i.e. 50, 25 and 10 nm. 

The Mathematica and HFSS models are developed for each of these types. 

Our experimental setup consists of a pump-probe excitation scheme in a Michelson 

interferometer. The interferometer is constructed using 1308 nm IR laser, which 

correspond to 0.95 eV of optical energy. As band gap of all the quantum wire 

semiconductor materials is much larger than this energy, the quantum wires are 
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completely transparent to IR laser, which is used as a probe. A Nichia LED is used as a 

source of UV light at 365 nm wavelength (3.4 eV). As this pump energy is higher than the 

band gap of the wire materials, electron-hole pairs are generated which effectively alter 

the optical behavior of the array. This changes the probe beam intensity (due to change in 

absorption coefficient of the sample) and the phase difference of the interfering beams 

(on account of the changes in actual path difference due to a changed refractive index of 

the sample). However, due to the direct dependence of the absorption coefficient on the 

extremely short length of the wires as well as very small filling factor, the change in 

beam intensity is too small to be detected. But the change in the phase difference induced 

due to UV excitation is effectively amplified due to its inverse dependence on the 

wavelength of light, which is extremely small. Therefore, we are able to experimentally 

measure the changes in the phase difference of the interfering beams, which constitutes a 

direct measure of the changes in refractive index. As the UV is modulated at 1 KHz 

frequency, any 1 KHz ac component present at output of the Michelson interferometer 

has to be due to the perturbation caused by UV light. The interference curve is biased 

halfway between its minima and maxima, where the slope of the curve and hence the 

output of the interferometer is almost uniform. As the slope is also maximum there, this 

biasing makes the interferometer extra-sensitive to any small perturbations. The 

generated ac component is captured using a combination of RC filter and a lock-in 

amplifier, which is numerically converted in terms of a change in phase difference. 

We observe a very strong size-dependent non-monotonic optical behavior of the ZnO, 

CdS and ZnSe quantum wires. As the diameter of the wires reduces, their optical activity 

  



 191
was also expected to reduce monotonically on account of the reduced amount of optically 

active material in the narrow wires. However, as the wire diameter is reduced from 50-nm 

to 25-nm, the optical activity is actually found to increase substantially. Array optical 

activity further reduces as the wire diameter is reduced to 10-nm creating a hump shaped 

(non-monotonic) characteristic. This size-dependent non-monotonic behavior is attributed 

to two major competing physical effects: the classical filling factor effect and the 

quantum confinement effect in the 1-dimensional density of states function with the 

reduction in wire diameter.  

The increase in optical absorption in narrower wires is attributed to blue shifts in the 

inter-subband energies caused by additional quantum confinement, leading to an increase 

in the joint DOS function. On the other hand, since the filling factor, a measure of 

optically active material present in the arrays, decreases with narrower quantum wires, 

the optical activity progressively reduces. While the decreasing filling factor acts to 

reduce the optical activity in narrower wire arrays, the shifting of the DOS function with 

additional confinement serves to increase it. These competing effects give rise to the size-

dependent non-monotonic optical activity experimentally observed in the nanowire 

arrays. In case of ZnO, where the pump excitation energy is very close to the exciton 

peaks, the enhancement in the excitonic effects due to progressively stronger quantum 

confinement effects in narrower wires may also contribute to the increased optical 

activity. Unlike CdS, ZnO and ZnSe, however, quantum wires made of CdSe show a 

complete absence of such non-monotonic optical activity. More research is needed to find 

out the plausible explanation for this completely different behavior of CdSe wire array as 
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compared to the rest of the wire material arrays we tested. Note here that due to the 

presence of interface states, there is a formation of depletion region inside the 

semiconductor material on account of Fermi level pinning, and hence the actual effective 

wire diameter is smaller than that shown in the SEM pictures of the array structures.  

Since the probe beam size samples the optical behavioral changes in a large number of 

quantum wires induced by the UV excitation, some important local effects might have 

been averaged out. A smaller beam size might be used to give better understanding of 

more local optical phenomenon. The large changes observed in the permittivity for arrays 

with intermediate wire diameter sizes may be suitable for optical phase shifting, intensity 

modulation, and switching applications. 
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