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Mast cells play a critical role in both acute and chronic inflammation and mature in 

peripheral tissues from bone marrow-derived progenitors that circulate in the blood as 

immature precursors. Mast cell progenitors are likely to encounter the serum-borne 

bioactive sphingolipid metabolite, sphingosine-1-phosphate (S1P), during migration to 

target tissues. Mast cells developed from human cord blood-derived progenitors cultured 

with stem cell factor (SCF) alone express intragranular tryptase (MCT), the phenotype 

predominant in the lung. S1P accelerated the development of cord blood-derived mast cells 

(CB-MCs) and strikingly increased the numbers of mast cells expressing chymase. These 

mast cells have functional FcεRI, and similar to skin mast cells that express both tryptase 

and chymase (MCTC), also express CD88, the receptor for C5a, and are activated by 
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anaphylatoxin C5a and the secretagogue compound 48/80. S1P induced release of IL-6, a 

cytokine known to promote development of functionally mature MCTC, from cord blood 

cultures containing adherent macrophages, and from highly purified macrophages, but not 

from macrophage-depleted CB-MCs. In contrast, S1P stimulated secretion of the 

chemokine, monocyte chemoattractant protein 1 (MCP-1/CCL2), from these macrophage-

depleted and purified CB-MCs.  

S1P produced by two sphingosine kinase isozymes, SphK1 and SphK2, has been 

implicated in IgE-mediated mast cell responses. However, studies of allergic inflammation 

in isotype-specific SphK knockout mice have not clarified their respective contribution. 

Furthermore, the role that S1P plays in vivo in a mast cell- and IgE-dependent mouse 

model of allergic asthma has not yet been examined. We used an isoenzyme-specific 

SphK1 inhibitor, SK1-I, to investigate the contributions of S1P and SphK to mast cell-

dependent airway hyperresponsiveness (AHR) and airway inflammation observed in this 

model. C57BL/6 mice received intranasal delivery of SK1-I prior to sensitization and 

challenge with OVA or only prior to challenge. SK1-I inhibited antigen-dependent 

activation of human and murine mast cells and suppressed activation of NF-κB, a master 

transcription factor that regulates expression of pro-inflammatory cytokines. SK1-I 

treatment of mice sensitized to OVA significantly reduced OVA-induced AHR to 

methacholine; numbers of eosinophils; levels of the cytokines IL-4, 5, 6, 13, IFN-γ, and 

TNF-α, and the chemokines eotaxin, and CCL2 in bronchoalveolar lavage fluid; and 

pulmonary inflammation as well as activation of NF-κB in the lungs of these mice. S1P 

and SphK1 play important roles in mast cell-dependent, OVA-induced allergic 
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inflammation and AHR in mice, in part by regulating the NF-κB pathway. The findings 

that intranasal administration of the specific SphK1 inhibitor SK1-I reduced allergic 

inflammation and AHR associated with asthma support the therapeutic potential of SphK1 

inhibitors for the treatment of allergic airway inflammation. Overall, these results suggest 

crucial roles for S1P in regulating development of mast cells and their functions and reveal 

a complex interplay between macrophages and mast cell progenitors in the development of 

mature human mast cells. 



 1 

CHAPTER 1: GENERAL INTRODUCTION 

 

   

1.1 Allergic disease and mast cells 

Allergic disease is a hypersensitivity disorder of the immune system that occurs to 

innocuous agents and if severe enough may result in life-threatening anaphylactic reactions 

and potentially death. Over the last decades, allergic disease has become increasingly 

widespread in developed nations and allergic asthma is now the most common chronic 

disease among children in the United States and affects approximately 300 million people 

worldwide. Unfortunately, the etiology of allergic disease is not well understood. Allergic 

reactions are triggered when an allergen crosses an epithelial and/or endothelial barrier and 

interacts with cell-bound antibodies. The release of cellular mediators then has multi-organ 

consequences leading to responses in the skin, respiratory tract, cardiovascular system, and 

possibly the gastrointestinal tract or nervous system, all target organs heavily populated 

with mast cells.  

Mast cells play an important role in the pathophysiology of allergy, initiating and 

amplifying immunoglobulin E (IgE)-mediated inflammatory responses including 

anaphylaxis, hay fever, eczema, and asthma. These cells are ubiquitous in vascularized 

tissues, but are able to relocate to sites of insult in disease. Their location at the interface 

between the external environment and host tissue, near blood vessels, nerves, and glands, 

places them in the ideal location to respond rapidly to perceived tissue insults. Mast cells 

express numerous receptors that allow them to respond to diverse stimuli (cytokine, 
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chemokine, eicosanoid, TLRs, secretagogues, etc). Nevertheless, they are best 

characterized based on expression of the high affinity receptor for IgE, FcεRI [1]. Cross-

linking of FcεRI by IgE/Ag results in receptor aggregation and initiates intricate pathways 

that ultimately culminate in mast cell degranulation [2-4]. During degranulation, mast cells 

release and synthesize a plethora of proinflammatory mediators into the surrounding 

milieu. Pre-stored components are harbored in cytoplasmic granules rich in bioactive 

amines, such as histamine, proteoglycans, proteases, such as tryptase, chymase and 

carboxypeptidase A, and cytokines such as TNF-α [5, 6]. De novo synthesized mediators 

produced in rodent and human mast cells include eicosanoids (leukotrienes and 

prostaglandins) and a vast array of cytokines and chemokines. The pattern of mediators 

released from mast cells varies depending on the stimulus and mast cell phenotype, 

demonstrating the versatility of mast cells to initiate an appropriate inflammatory response. 

Importantly, sphingosine-1-phosphate (S1P) is now widely recognized as a potent lipid 

mediator produced and secreted by mast cells that in turn regulate mast cell responses [4, 

7-14].  

 

1.2 Sphingosine-1-phosphate 

Over the last decade, the work of many investigators has established the importance 

of the bioactive lipid mediator sphingosine-1-phosphate (S1P) in regulating numerous and 

diverse cellular processes in various cell types, including proliferation, cell survival, 

motility and cytoskeletal rearrangements as wells as angiogenesis [15, 16]. S1P exerts the 

majority of its effects as an extracellular ligand for a family of five specific G protein 
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coupled receptors, denoted S1P1–5 [15]. These receptors all bind S1P with similar affinity 

and couple to a variety of G proteins, initiating various downstream signaling pathways 

thus enabling S1P to regulate a diverse array of biological responses [16]. In addition, 

every cell in the body expresses at least one of the S1P receptors, which are differentially 

expressed from cell to cell, further complicating the understanding of the wide ranging yet 

distinct actions of S1P. S1P also acts independent of its receptors [15]; newly discovered 

intracellular targets include prohibitin 2 [17], TRAF2 [18], and histone deacetylases [19].   

 

1.3 Sphingolipid metabolism and sphingosine kinases 

Intracellular levels of S1P are tightly regulated by the balance between its 

synthesis, which involves SphK1 and SphK2, and its degradation, which can occur either 

reversibly by two specific S1P phosphatases or irreversibly by S1P lyase (Figure 1). 

Therefore, this balance between S1P and its precursors – sphingosine and ceramide – and 

their overall regulation of opposing signaling pathways is instrumental in determining cell 

fate and has been termed the ‘sphingolipid rheostat’ [20]. SphK1 was the first isozyme 

discovered and characterized and is therefore, the most well studied. It is activated by 

numerous stimuli, including many growth factors and cytokines and crosslinking of 

immunoglobulin receptors [15]. Activation of SphK1, which requires its phosphorylation 

by ERK1/2 [21, 22], is accompanied by its translocation from the cytosol to the plasma 

membrane where its substrate sphingosine resides [11, 12]. Much less is known about the 

regulation of SphK2. Its subcellular localization is cell-type specific, appearing cytosolic in 

some cell types and mainly nuclear in others, and it can translocate between these 
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compartments in response to specific stimuli [23]. In rodent mast cells, SphK1 and SphK2 

are largely cytosolic under basal conditions and translocate to the plasma membrane 

following IgE-receptor engagement [11, 12]. 

Interestingly, although SphK1 and SphK2 are highly homologous and utilize the 

same substrate to produce the same product, they exhibit both functional and experimental 

differences. In contrast to the growth and survival promoting actions of SphK1, 

overexpression of SphK2 in many cells induces cell death and growth arrest [24]. 

However, very few studies to date have examined the role of endogenous SphK2. It has 

recently been demonstrated that SphK2 is also activated by phosphorylation [25], as well 

as by antigen crosslinking of IgE receptors [12]. Mice with knockouts of either sphk1 or 

sphk2 are viable and exhibit no obvious phenotypes, however, knockout of both sphk1 and 

sphk2 results in complete loss of S1P and is embryonically fatal [26], demonstrating the 

necessity of S1P for life. The circulating levels of S1P in sphk1
–/–

 mice are reduced 

compared to WT mice, whereas sphk2
–/–

 mice have higher levels of circulating S1P, 

possibly due to increased SphK1 activity in the red blood cells of these mice [13, 27, 28 , 

29]. Together, these observations also suggest that SphK1 and SphK2 may have some 

redundant, overlapping and/or compensatory functions. 
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Figure 1: The role of S1P in mast cell-mediated allergic responses and anaphylaxis. 

Antigens induce allergic responses via cross-linking of IgE-bound FcεRI receptors on the 

surface of mast cells, triggering elaborate signaling cascades that result in degranulation 

and release of a plethora of inflammatory mediators. One such pathway is the activation of 

SphK1 and 2 and the subsequent production of S1P. S1P can be degraded by SPP or SPL, 

leading to the production of PE. Intracellular S1P can then be secreted from mast cells via 

the ABCC1 transporter to bind its receptors extracellularly, or may act intracellularly to 

induce calcium release independent of phosphatidylinositol (3,4,5)-triphosphate. 

Extracellular signaling through S1P1 is important in migration of mast cells to sites of 

inflammation, while S1P2 inhibits motility, probably to resolve cellular movement upon 

arrival to target sites, and also enhances degranulation. Calcium influx is necessary for 

processes that are critical to the induction of allergic responses and anaphylaxis such as 

degranulation and activation of cPLA2, and various transcription factors. Histamine and 

PAF induce vasodilation, ASM contraction, and increase vascular permeability and mucus 

production. Activation of cPLA2 is the rate-limiting step in the production of all 

eicosanoids, including PGD2 and cysLTs, which themselves induce vasodilation, 

bronchoconstriction, vascular permeability, epithelial and endothelial cell activation and 

proliferation, immune cell recruitment, migration, and ASM activation & proliferation. 

Release of immediate mediators of inflammation from mast cells is followed by increased 

transcription of various cytokine and chemokines factors that induce mucus production, 

bronchoconstriction, and immune cell recruitment. Collectively, mast cell mediators 

promote inflammation and furthermore, function to activate and recruit other immune 

cells, thereby exacerbating the symptoms of allergy and anaphylaxis. Price et al. Future 

Lipidol. 2008. 

 

ASM: Airway smooth muscle; CysLT: Cysteinyl leukotriene; PAF: Platelet-activating 

factor; PE: Phosphatidylethanolamine; PG: Prostaglandin; SphK: Sphingosine kinases; 

SPL: S1P lyase; SPP: Specific phosphatases. 
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While both SphK1 and SphK2 can phosphorylate sphingosine and sphinganine 

(dihydrosphingosine) only SphK2 can efficiently catalyze the in-vitro phosphorylation of 

the immunosuppressive drug FTY720 (Fingolimod) [30]. The pro-drug FTY720 is a 

sphingosine analog that upon phosphorylation by SphK2 forms FTY720-phosphate, a S1P 

mimetic capable of binding with high affinity to all of the S1P receptors except S1P2. Its 

immunosuppresive action as a potent ligand of S1P1 on lymphocytes leads to prolonged 

downregulation of this receptor and its degradation [31-33]. Since S1P1 is required for 

lymphocyte egress from secondary lymph nodes and lymphoid organs, these cells are 

sequestered in this location by FTY720 administration, resulting in lymphopenia and 

rendering them incapable of contributing to inflammation [28, 34]. 

 

1.4 S1P receptors 

Mast cells express two of the five S1P receptors (S1P1 and S1P2) [11, 35]. S1P1 is 

widely expressed, with predominant expression found in brain, kidney, spleen, lung and 

the cardiovascular system [36]. S1P1 was first demonstrated to be important in 

angiogenesis when mice lacking this receptor were found to have incomplete vascular 

development and consequently died in utero [37]. This receptor is also a key player in the 

maintenance of vascular integrity, which is important for inflammation and asthmatic lung 

remodeling [38-40]. Importantly, S1P1 is also critical in lymphocyte egress from the 

thymus and peripheral lymphoid organs. Indeed, mice lacking expression of S1P1 in 

hematopoietic cells exhibit lymphopenia since mature T cells are unable to exit the thymus 
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[32]. Furthermore, S1P1 signaling is strongly upregulated prior to the exit of T cells from 

the thymus, suggesting a role in the chemotactic responsiveness of these cells [32]. 

S1P2 is also expressed in a variety of cell types. In contrast to S1P1
−/−

 mice, mice 

lacking S1P2 are viable and display a defect in proper development of auditory and 

vestibular systems, resulting in complete deafness [41-43]. In mast cells, S1P2 is important 

for effective degranulation [11]. In the vascular system, activation of S1P2 also increases 

vascular permeability, contrary to S1P1 [40]. Furthermore, S1P2 is considered to be a 

‘repellant’ receptor as binding of S1P to S1P2 decreases motility of many cell types, 

including mast cells [11].  

 

1.5 Role of SphK1 and SphK2 in mast cells 

Mast cells express the high-affinity receptor for IgE – FcεRI – which is an 

important component of allergic diseases. Its crosslinking by monomeric IgE bound to 

multivalent antigens initiates an elaborate and complicated cascade of signaling events that 

leads to degranulation and release of histamine and other mediators of immediate 

responses as well as the subsequent production and secretion of cytokines and chemokines 

and lipid mediators, such as eicosanoids and S1P [44, 45]. These mast cell mediators 

promote inflammation by enhancing vascular permeability while initiating the recruitment 

and activation of other immune cells involved in allergic and inflammatory responses. 

Crosslinking of IgE receptors on mast cells results in activation of several key 

regulators, including Lyn, Fyn and Syk, which are initiators of intricate pathways 

involving numerous downstream signaling molecules that ultimately coordinate and 
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control mast cell responsiveness [2]. Loss of Fyn or Lyn in mast cells has widespread 

effects, impairing degranulation and cytokine production. While Fyn and Lyn tyrosine 

kinases are associated with SphK1 and SphK2 in murine mast cells, activation of SphK1 

requires Fyn but Lyn is partly dispensable [12]. Both Lyn and Fyn contribute to SphK2 

translocation to the plasma membrane upon FcεRI triggering. Interestingly, SphK2 was 

reported to be the major contributor of S1P in murine mast cells derived from embryonic 

liver progenitors [13]. Mast cells derived from sphk2-knockout mice demonstrated 

impaired IgE-mediated degranulation and production of certain cytokines, primarily due to 

reductions in intracellular calcium levels and PKC activation. Impairment of degranulation 

in SphK2-deficient mast cells was partially restored by the addition of exogenous S1P. 

This confirmed that SphK2 is necessary, but not sufficient, for IgE-mediated responses, at 

least in murine mast cells [12]. By contrast, in human mast cells, SphK1 but not SphK2 is 

critical for antigen-induced degranulation, chemokine secretion and migration, while both 

isozymes are important for cytokine secretion [14]. Furthermore, downregulation of 

SphK1 reduced the rapid and transient increase in intracellular calcium induced by FcεRI 

crosslinking, which is necessary for mast cell degranulation [10]. In addition to the 

engagement of FcεRI, several other stimuli are capable of triggering secretion of 

inflammatory mediators from activated mast cells, including the anaphylatoxin C5a [46]. 

With regard to the actions of C5a, SphK1 expression is required for its ability to trigger 

calcium release, chemotaxis, degranulation, and cytokine release from human macrophages 

[47]. However, neutrophils isolated from sphk1-knockout mice showed normal responses 

to C5a [48].  
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1.6 Extracellular functions of S1P in mast cells 

Inside-out signaling, whereby S1P generated intracellularly by activation of SphKs 

is secreted and activates S1P1 and/or S1P2 receptors on the same or nearby cells, plays 

important roles in mast cell responses [49]. For example, activation of S1P1 is critical for 

migration of mast cells toward antigens and might be involved in the movement of mast 

cells up an antigen gradient to sites of inflammation [11, 50]. Furthermore, expression of 

the motility-inhibiting S1P2 receptor in mast cells is upregulated by crosslinking of FcεRI 

by antigens [11], suggesting that mast cells are attracted to an inflammation site by a S1P1-

dependent motility process and halt upon reaching their destination owing to upregulation 

of S1P2. Here, activation by inside-out signaling also enhances their degranulation. Thus, 

there appears to be an exquisite interplay of S1P controlled responses following FcεRI 

activation in mast cells. 

 

1.7 Secretion of S1P from mast cells 

The mechanism by which intracellularly produced S1P can exit from cells to 

interact with its receptors located on the extracellular leaflet of the plasma membrane has 

been a long standing mystery. It has been proposed that SphK1 may be secreted from cells 

and catalyzes the conversion of sphingosine to S1P extracellularly [51, 52], although no 

evidence has been found for this in mast cells [11]. A partial answer has now been 

provided by the discovery that the ATP-binding cassette transporter ABCC1 promotes the 

export of S1P across the plasma membrane of activated rodent and human mast cells 
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independent of their degranulation [53]. It is possible that other ABC transporters may also 

participate in export of S1P. 

 

1.8 Blood levels of S1P 

The concentration of S1P in blood is maintained at high levels. Plasma levels range 

from 0.1 to 0.6 µM, while serum levels range from 0.4 to 1.1 µM [54, 55]. S1P mainly 

circulates as a complex with albumin and lipoproteins. Platelets that produce, store and 

secrete large amounts of S1P, were long considered to be the major source of circulating 

S1P. However, recent studies suggest that erythrocytes may be the major source of S1P in 

blood [56, 57]. The vascular endothelium, in addition to the hematopoietic system, has also 

been suggested to be an important contributor of plasma S1P [29]. 

Levels of S1P in tissues are significantly lower than in blood, possibly owing to the 

presence of S1P phosphatase and S1P lyase, which are absent or low in platelets and 

erythrocytes [58]. This leads to the establishment of a concentration gradient of S1P 

between blood and tissues, which is important for cell trafficking. Intriguingly, deletion of 

either isoform of SphK in mice does not abolish this blood–tissue gradient of S1P [13], 

while loss of S1P lyase activity does so [58]. Similarly, secretion of S1P by mast cells may 

also serve to establish a gradient that aids in the recruitment of other immune cells whose 

chemotactic motility is stimulated by S1P. However, susceptibility to in vivo anaphylaxis 

correlated with circulating S1P generated by SphK1 that was predominantly from a non-

mast cell source(s) [13].  
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1.9 Intracellular actions of S1P in mast cells 

Although intracellular targets of S1P in mast cells have yet to be identified, S1P has 

intracellular second messenger actions that regulate calcium levels independently of 

phosphatidylinositol (3,4,5)-trisphosphate (InsP3) [7]. This calcium mobilization was 

recently demonstrated to be dependent on clathrin [59]. It has also been suggested that both 

InsP3 and S1P contribute to FcεRI-induced calcium release from the endoplasmic 

reticulum and that production of InsP3 is necessary for S1P to cause calcium mobilization 

from the endoplasmic reticulum [60]. 

Intriguingly, fetal liver-derived mast cells from mice lacking SphK2 display 

impaired calcium mobilization upon IgE-receptor activation, even when S1P is added 

exogenously [13]. Additionally, exogenous S1P only partially restored degranulation to 

mast cells isolated from mice lacking Fyn kinase [12]. Collectively, these data suggest that 

S1P may be a bona fide second messenger in mast cells, although acting in a manner that 

still requires clarification. 

 

1.10 Anaphylaxis 

Anaphylaxis is a severe and potentially fatal immediate systemic allergic reaction 

that occurs suddenly after contact with an allergy-causing substance and is primarily 

triggered by rapid, IgE-mediated immune release of potent mediators from tissue mast 

cells and peripheral basophils [61]. Mast cells reside at mucosal, submucosal and 

perivascular locations in close proximity to epithelial surfaces, near blood vessels, nerves 

and glands, where they are able to detect invading pathogens and changes in their 



13 

environment [45]. In humans, mast cell-derived mediators contribute to the 

pathophysiology of allergic diseases, inducing tissue edema, bronchoconstriction, 

increased vascular permeability, influx of inflammatory cells and mucus secretion. In 

addition, mast cells express numerous receptors for cytokines, chemokines and 

eicosanoids, as well as Toll-like receptors, which enable them to recognize diverse allergic 

stimuli. The diversity in cellular location, as well as the repertoire of receptors expressed 

and mediators released, permits mast cells to be key regulators of innate and adaptive 

immunity. 

Murine and human immune systems are reasonably similar and so animal models 

of anaphylaxis may provide information that is potentially relevant to human anaphylaxis. 

Systemic anaphylaxis in the mouse can be mediated via two independent mechanisms; a 

classical pathway mediated by IgE, FcεRI, mast cells, histamine and platelet-activating 

factor (PAF), and an alternative pathway mediated by IgG, FcγRIII, macrophages and PAF 

[62]. Most human systemic anaphylaxis is IgE-dependent, although there is some evidence 

for IgE-independent anaphylaxis [63]. Some potent food allergens, particularly peanuts and 

tree nuts, can stimulate an anaphylactic-like, non-IgE-mediated response, thereby 

synergizing with IgE-induced mast cell activation to exacerbate anaphylaxis. 

 

1.11 Role of S1P in anaphylaxis 

Recent studies indicate that SphKs are also determinants of anaphylaxis. SphK2 was 

shown to be the main isoform required for generation of S1P, calcium influx and 

degranulation of rodent mast cells [12]. However, susceptibility to anaphylaxis in mice 
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was correlated with circulating S1P generated by SphK1, predominantly from a non-mast 

cell source [13]. Mast cells do not contribute to basal circulating levels of S1P as mast cell-

deficient mice have similar levels of plasma S1P compared with their counterparts 

engrafted with normal mast cells [13]. Mice deficient in SphK1 have reduced levels of 

circulating S1P and are resistant to anaphylaxis. They also have impaired histamine 

responses despite normal mast cell function. However, mice deficient in SphK2 have 

enhanced levels of S1P in the blood and respond normally to anaphylactic challenge with 

normal histamine release [13]. Moreover, IgE-triggered anaphylactic responses were 

significantly attenuated by the S1P2 antagonist JTE-013 and in S1P2-deficient mice, in 

contrast to anaphylaxis induced by administration of histamine or platelet-activating factor  

[50]. 

Intestinal anaphylaxis (allergic diarrhea) is almost totally IgE-dependent and mast 

cell-dependent, but is mediated predominantly by PAF and serotonin. In a murine 

intestinal anaphylaxis model, S1P1 expression was preferentially associated with 

pathogenic CD4
+
 T cells induced by allergen challenge in the large intestine. The 

immunosuppressant drug FTY720 prevented allergic diarrhea by inhibiting the migration 

of these cells and decreased mast cell infiltration into the large intestine, but did not affect 

eosinophil infiltration or serum IgE production [64].  

 

1.12 Asthma 

Asthma is an obstructive lung disease that prevents exhalation from the lungs and 

thus reduces respiratory capacity due to allergic inflammation and narrowing of the 
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airways. In asthma, mast cells infiltrate the bronchial epithelium and, upon activation, 

release inflammatory mediators that influence bronchial epithelial function. Allergic 

asthma is often classified into early and late-phase reactions. Early-phase reactions are 

induced within seconds to minutes of allergen challenge and occur as a result of mediator 

secretion by mast cells at the affected site. Release of preformed mediators contributes to 

acute signs and symptoms of early-phase reactions. These signs and symptoms vary 

according to the site of reaction and the mast cell populations involved but can include 

vasodilation, increased vascular permeability, contraction of bronchial smooth muscle, and 

mucus secretion. Upon activation by IgE and allergen, mast cells also release a broad range 

of newly synthesized mediators that contribute to late-phase reactions and occur within 

several hours. Many mast cell products have the potential to recruit and/or activate other 

immune cells (TNF-α, IL-5, IL-6, IL-8/KC, eotaxin, CCL2, etc), and clinical features of 

late-phase reactions reflect the activities of both resident cells and immune cells that are 

recruited to the affected site, including eosinophils, neutrophils, monocytes/macrophages, 

and T cells. 

Mast cell numbers are greater in the mucosal epithelium of patients with asthma 

and allergic diseases compared with disease-free controls, with no substantial change in the 

numbers of mast cells in the adjacent connective tissues [65]. Chronic asthma is typically 

associated with increased number of mucus-producing goblet cells, increased production of 

cytokines and chemokines, severe inflammation, and airway remodeling. Abnormal airway 

smooth muscle function is a key feature in the pathophysiology of asthma, with a positive 

correlation between mast cell numbers and bronchial hyper-responsiveness [66]. 
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1.13 Role of S1P in asthma 

Previous studies demonstrated that S1P was elevated in the airways of asthmatic 

individuals after antigen challenge and that S1P modulates human airway smooth muscle 

cell functions that promote inflammation and airway remodeling in asthma [67] and can 

induce contraction of airway smooth muscle [68]. S1P can also amplify and enhance mast 

cell functions and may regulate their arrival to sites of inflammation [11, 69]. Rodent 

models in which asthma-like symptoms are introduced by sensitization and challenge with 

antigen are characterized by airway eosinophilia, which contributes to the observed airway 

hyper-responsiveness (AHR). It has recently been demonstrated that S1P induces dose-

dependent contraction of bronchi and increases AHR in ovalbumin (OVA)-sensitized mice 

[70]. These events were associated with increased expression of SphK1 and SphK2, as 

well as S1P2 and S1P3 receptors. Local administration of S1P caused inflammation and 

eosinophil recruitment in a rat-paw inflammation model [71]. Furthermore, S1P and the 

kinases that produce it play important roles in many types of immune cells involved in 

allergic responses and asthma (Table 1), implicating S1P as a pleiotropic lipid mediator 

important in the inflammatory and allergic reactions and asthma. 

FTY720 is highly effective in reducing the severity of autoimmune diseases in 

several animal models [72]. Neither FTY720 nor FTY720-phosphate, despite its similarity 

to S1P and ability to bind and activate four of the five S1P receptors, affect mast cell 

degranulation, yet both significantly reduce antigen-induced secretion of prostaglandin D2 

and cysteinyl leukotrienes [73]. FTY720 was suggested to be a direct inhibitor of cytosolic 
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phospholipase A2, the rate-limiting enzyme in the production of all eicosanoids [73]. 

Indeed, oral treatment of mice with FTY720 inhibits AHR induced by adoptive transfer of 

TH1 and TH2 cells and asthma induced by active immunization and challenge with OVA 

[74]. In addition, inhalation administration of FTY720 prior to, or during, ongoing allergen 

challenge suppressed TH2-dependent eosinophilic airway inflammation and bronchial AHR 

by inhibition of migration of lung dendritic cells to the mediastinal lymph nodes, thus 

preventing the formation of allergen-specific TH2 cells in the lymph nodes [75]. 
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1.14 Dissertation Objective 

 It is well recognized that mast cell phenotype varies depending on the environment 

they populate in vivo or the growth factors used in vitro [46]. Human mast cells have two 

distinct phenotypes which vary in migration behavior and responses to activating stimuli, 

based on the content of intragranular proteases. Both phenotypes appear to be derived from 

a common mast-cell progenitor with the ultimate phenotype determined by micro-

environmental factors in the surrounding milieu. However, the exact environmental cues 

governing mast cell differentiation remain to be determined. Thus, we investigated the 

involvement of S1P in the development of mast cells derived from human cord blood 

hematopoietic progenitors.  

 While the first portion of this work is focused on the emerging importance of S1P 

in the development of mast cells, the latter will focus on the consequence of S1P in mast 

cell functions. Although S1P has been implicated as an important component in the 

regulation of immune responses, many questions remain to be answered. There has been 

some debate regarding the importance of each of the SphK isoenzymes in mast cell-

mediated allergic responses. We examined the importance of SphK1 and S1P in vivo using 

an isotype specific SphK1 inhibitor, SK1-I, in a mast cell-dependent and IgE-dependent 

murine model of chronic asthma. These studies will provide the basis for enhancing 

existing therapeutic approaches by targeting SphKs, S1P receptors, and S1P itself, to 

suppress mast cell-mediated inflammation and related pathological conditions. 
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CHAPTER 2: SPHINGOSINE-1-PHOSPHATE INDUCES DEVELOPMENT OF 

FUNCTIONALLY MATURE CHYMASE EXPRESSING HUMAN MAST CELLS 

FROM HEMATOPOIETIC PROGENITORS 

 

2.1 INTRODUCTION 

Mast cells are key effector cells involved in orchestrating and perpetuating 

inflammatory responses. They are tissue dwelling cells derived from hematopoietic stem 

cells that circulate in the blood as committed progenitors until they enter the tissues to 

complete their maturation [45]. Once mature, mast cells reside in the perivascular spaces of 

all tissues and contain intracytoplasmic granules rich in acidic proteoglycans. There are two 

subpopulations of human mast cells based on the composition of their intragranular protease 

repertoire: those expressing tryptase only (MCT), resemble mucosal mast cells and are 

predominant in lung; and those that contain chymase in addition to tryptase (MCTC), are 

similar to connective tissue mast cells and the phenotype of skin mast cells [61, 76]. Stem 

cell factor (SCF), the Kit ligand, is an important growth factor required for mast cell 

survival and differentiation and is the only growth factor identified so far that by itself in 

vitro causes human hematopoietic progenitor cells to become tryptase producing mast cells 

[77, 78]. Several cytokines, including IL-3, IL-4, IL-5, IL-6, and IL-9, enhance the 

mitogenic effects of SCF on cord blood–derived cultured human mast cells (CB-MCs) in 

vitro, and some of them are also cytoprotective [79] [80] [81] [82]. Much less is known of 

how human hematopoietic progenitor cells differentiate into mature MCTC and the factors 

that influence chymase expression. A notable exception is IL-6 which induces chymase 
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protein expression in SCF-dependent cord blood–derived human mast cells that normally 

only express tryptase [83-86]. 

 Sphingosine-1-phosphate (S1P) is a potent lipid mediator produced and secreted by 

mast cells to regulate their functions (reviewed in [49, 87]). Similar to crosslinking of the 

high affinity IgE receptor (FcεRI), SCF also activates both isoforms of sphingosine kinase 

(SphK1 and SphK2), in mast cells leading to S1P formation [12]. It has been suggested 

that SphK2 is required in murine mast cells for production of S1P, cytokine secretion and 

degranulation. However, susceptibility of mice to in vivo anaphylaxis correlated with 

circulating S1P generated by SphK1 from a non-mast cell source [13]. Mast cells express 

two of the five known S1P receptors, S1P1 and S1P2, and activation of these receptors by 

secreted S1P is important in movement of rodent mast cells and their degranulation, 

respectively [11, 14].  

Mast cell precursors circulate in the blood where they have the opportunity to 

encounter various serum-borne growth factors, including S1P. Lysophosphatidic acid 

(LPA), another phospholipid mediator present in serum that is structurally related to S1P 

was shown to increase the number of cord blood-derived mast cells (CB-MCs) [88]. Given 

that S1P is also present in human serum at high nanomolar concentrations [16] and can 

influence mast cell responses [49, 89], it was of interest to examine the involvement of S1P 

in development of mast cells derived from human hematopoietic progenitors. Remarkably, 

S1P increased the number of cord blood-derived mast cells (CB-MCs) and strikingly 

increased expression of chymase and CD88, the receptor for C5a. Our results also reveal 
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that cooperation between monocytes/macrophages and mast cell progenitors may be 

important for the development of mature chymase expressing mast cells. 
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2.2 MATERIALS AND METHODS 

  

2.2.1 Reagents and antibodies 

  S1P was obtained from Biomol (Plymouth Meeting, PA). VPC23019 was from 

Avanti (Alabaster, AL). JTE-O13 was from Tocris (Ellsville, MO). SCF was a generous gift 

from Amgen (Thousand Oaks, CA).  Recombinant human IL-6 was purchased from R & D 

Systems (Minneapolis, MN).  Anti-tryptase and anti-chymase monoclonal antibodies (mAb) 

were obtained from Chemicon (Temecula, CA), Alexa Fluor 488-labeled goat anti-rabbit 

IgG was from Molecular Probes, Eugene, Ore. Dinitrophenyl-human serum albumin (DNP-

HSA, Ag),  heat-inactivated controlled process serum replacement medium (CPSR-3), C5a, 

and compound 48/80 were from Sigma-Aldrich (St. Louis, MO), anti-human IL-6 mAb was 

from Invitrogen (Carlsbad, CA). Anti-CD14 coated magnetic Dynabeads were from Dynal 

Biotech, ASA, (Oslo, Norway), and human cytokine ELISA kits were from BD Biosciences 

(San Diego, CA). 

 

2.2.2 Culture of human cord blood-derived mast cells 

  Umbilical cord blood was obtained at the time of delivery and collected in heparin-

containing tubes. The experimental protocol was approved by the Institutional Review 

Board at Virginia Commonwealth University. Cord blood was diluted and overlaid on 

Histopaque (density = 1.077 g/ml) and then centrifuged to remove erythrocytes. 

Mononuclear cells at the plasma-Histopaque interface were collected, washed, and 

subjected to a second Histopaque density gradient centrifugation. Purified mononuclear 
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cells were cultured in 24-well plates at 5 x 10
5
 cells/ml in RPMI 1640 containing 10% heat-

inactivated controlled process serum replacement medium (CPSR-3), 2 mM L-glutamine, 

0.1 mM nonessential amino acids, 10 mM HEPES (pH 7.2), 50 µM 2-mercaptoethanol, 200 

U/ml penicillin, 100 µg/ml streptomycin, and 100 ng/ml SCF in the absence or presence of 

S1P as indicated in figure legends. Culture medium with indicated supplements was 

replaced weekly. Slides were stained with toluidine blue to assess metachromasia and mast 

cell numbers. Cell numbers and viability (always >80% determined by trypan blue 

exclusion) were assessed immediately prior to experiments.  

 

2.2.3 Immunomagnetic purification of CB-MCs by negative depletion of CD14-

positive cells 

  Monocytes/macrophages were immunodepleted from cultures using anti-CD14 

coated magnetic Dynabeads (4 beads per target cell), essentially as recommended by the 

manufacturer except for the omission of sodium citrate/EDTA. Unattached CD14-negative 

cells (mast cells) were collected, cultured as described above and contained 95-99% mast 

cells as determined by toluidine blue staining. 

 

2.2.4 Preparation of macrophages from cord blood cultures 

  Macrophages were highly enriched by positive selection with biodegradable anti-

CD14-MicroBeads using a SuperMACS (Miltenyi Biotec, Auburn, CA), according to the 

manufacturer's protocol. 90-95% of the cells were positive for CD14 expression by 

immunofluorescence analysis. 
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2.2.5 Immunofluorescence and immunocytochemistry 

CB-MCs (5 x 10
4
) were smeared onto glass slides, fixed in methanol containing 

0.6% H2O2 for 30 min at room temperature, and stored at –80 ˚C. Slides were incubated 

with 10 µg/ml tetramethylrhodamine isothiocyanate conjugated anti-tryptase G3 mouse 

mAb (G3-TRITC) or isotype-matched negative control (MOPC-TRITC) for 1 h at 37
 
˚C, 

washed three times in 0.01 M Tris-buffered saline (pH 7.4) containing 0.05% Tween 20 

(TBST). Cells were visualized by fluorescence microscopy with a Nikon TE300 and 

percentage of positively stained cells was calculated. At least 200 cells were scored in a 

double-blinded manner. Images were also collected with a Zeiss LSM 510 Meta confocal 

microscope with the optical slice set to 1 µm for all channels. All images were exported 

directly using Zeiss LSM Image Examiner (v. 3.2.0.70) to 8 bit TIFF files without 

compression, contrast, or gamma adjustments. 

Slides were stained for chymase with biotin-conjugated anti-chymase B7 mAb (B7-

B) or isotype-matched negative control (MOPC-B) overnight at 4
 
˚C, washed in TBST and 

incubated with streptavidin-peroxidase conjugate (20 µg/ml) for 1 h at room temperature. 

After washing, slides were incubated with 3-amino 9-ethylcarbazole in 0.01% H2O2 for 7 

min at room temperature, and chymase positive mast cells identified by brown staining. 

Slides were examined with a Nikon Eclipse E800 microscope equipped with a 100X 

objective and percentage of positively stained cells was calculated. At least 200 cells were 

scored in a double-blinded manner. In some experiments, after washing, slides were 

incubated with alkaline phosphatase-conjugated anti-tryptase G3 mAb (10 µg/ml) at 4 °C. 
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Slides were then washed and incubated with SIGMAFAST Fast Red TR/Naphthol AS-MX 

phosphate (4-Chloro-2-methylbenzenediazonium/3-hydroxy-2-naphthoic acid 2,4-

dimethylanilide phosphate) and tryptase positive mast cells identified by pink-red staining.  

 

2.2.6 Degranulation 

CB-MCs were sensitized with 1 µg/ml anti-dinitrophenyl (DNP)-IgE overnight, 

washed once to remove unbound IgE, and then stimulated without or with DNP-HSA (Ag, 

30 ng/ml) at 37˚C. Degranulation was determined by measuring the release of the granule 

marker, β-hexosaminidase, with a colorimetric enzyme assay. Values are expressed as 

percentage of total cellular β-hexosaminidase released into the medium. Spontaneous 

degranulation of unstimulated cells was <10%. 

 

2.2.7 Flow cytometry 

To determine expression of surface CD88, CB-MCs were incubated with rabbit 

anti-human CD88 mAb (10 µg/mL) or a non-immune rabbit IgG (10 µg/mL) as a negative 

control, followed by staining with Alexa Fluor 488-labeled goat anti-rabbit IgG (5 µg/mL).  

After staining cells were washed once with PBS and re-suspended in FACS buffer.  Flow 

cytometric analysis was performed using the FC500 combined with CXP software 

(Beckman Coulter, Fullerton, CA). 
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2.2.8 ELISA 

  Human IL-6 and CCL2/MCP-1 were measured by ELISAs with purified 

biotinylated mouse or rat mAbs specific for each cytokine. Standard curves were prepared 

with recombinant cytokines (BD Biosciences, San Diego, CA). Assays were performed in 

Maxisorb 96-well plates (Nunc) according to the manufacturer’s protocols. Briefly, wells 

were coated overnight at 4°C with capture mAbs, blocked with PBS containing 10% FBS, 

washed in PBS containing 0.05% Tween 20, and incubated for 2 h at room temperature with 

standards or samples diluted in PBS with 10% FBS. Wells were washed, incubated with 

biotin detection mAbs and streptavidin-HRP conjugate for 1 h at room temperature, 

washed, and incubated with peroxidase substrate. Absorbance was measured at 450 nm with 

an EL800 microplate reader (Biotek, Winooski, VT). The lower limits of detection for IL-6 

and MCP-1/CCL2 were 4.7 and 7.8 pg/ml, respectively.  

 

2.2.9 Quantification of lipids 

Lipids were extracted from media and cells by the Lipidomics Core at VCU. 

Internal standards were added (0.5 nmol each, Sphingolipid Mixture II/LM-6005, Avanti 

Polar Lipids), lipids extracted, and sphingolipids quantified by liquid chromatography, 

electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS; 4000 QTRAP; ABI), 

as described [90]. 
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2.2.10 Statistical analysis 

  Experiments were repeated at least 3 times with consistent results. For each 

experiment, data from triplicate samples were calculated and expressed as means ± SD. 

Differences between groups were determined with the paired Student’s test, p ≤ 0.05 was 

considered significant. 
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2.3 RESULTS 

 

2.3.1 S1P induces development of cord blood progenitor cells to chymase expressing 

mast cells 

Mast cell precursors circulate in the blood where they have the opportunity to 

encounter various serum-borne growth factors, including S1P [16, 91]. Therefore, we 

sought to examine whether S1P might influence the development of mast cells derived 

from human hematopoietic progenitors. To this end, S1P was added to cord blood 

mononuclear progenitors cultured in chemically defined medium containing human SCF, a 

growth factor that is able to induce hematopoietic progenitor cells cultured in vitro to 

become mast cells [78]. The addition of 1 µM S1P, the concentration found in normal 

human plasma [55], had no significant effects on viability of cord blood mononuclear 

cultures compared to cells cultured in the presence of SCF alone. To examine the effects 

on development of mast cells, cultures were immunostained for tryptase, an intragranular 

marker of mast cells. After prolonged culture in the presence of S1P, a higher proportion of 

cells stained positively for tryptase compared to cultures with SCF alone (Figure 2A). 

Although co-culture of progenitors with SCF and S1P for 3 weeks had no significant 

effects on the proportion of tryptase-positive cells or on metachromasia (Figure 2B), by 6 

to 7 weeks, 1 µM S1P increased the proportion of tryptase positive cells compared to cells 

cultured with SCF alone. Similarly, after 8 weeks of culture with concentrations of 0.1 and 

1 µM S1P, there was an enhancement of numbers of tryptase-positive mast cells of 1.6- 
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and 3-fold, respectively (Figure 2A, 3). Lower concentrations of S1P did not show 

consistent effects.  



31 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: S1P accelerates tryptase expression in developing human mast cells. A,B, 

Cord blood mononuclear cells were cultured for the indicated weeks with SCF (100 ng/ml) 

alone (none) or in the absence (vehicle) or presence of S1P (0.1 and 1 µM). Cultures were 

stained with anti-tryptase mAb (G3-TRITC) to assess tryptase expression and tryptase 

positive cells quantified as described in Materials and Methods. A minimum of 200 cells 

was scored in a double-blind manner. A, Data are expressed as total number of tryptase 

positive cells. B, Results from a cord blood culture from another donor are expressed as 

percent tryptase positive cells. Data are means ± SD. *, p < 0.05, **, p < 0.01, compared to 

untreated controls. Similar results were obtained with two additional cord blood cultures 

from other donors. 
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Figure 3: Effect of S1P on tryptase expression in developing human mast cells. Panels 

show representative fields of cells from a different donor stained with G3-TRITC and 

corresponding DIC images after treatment without (vehicle) (A) or with S1P (0.1 µM) (B) 

for 8 weeks. Size bars, 50 µm. Similar results were obtained with two additional cord 

blood cultures from other donors. 
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In agreement with previous studies [83, 86, 88], human progenitor cells cultured in 

the presence of SCF alone only expressed tryptase and had no detectable chymase in their 

granules, as determined by immunocytochemistry (Figure 4A, 5A). Remarkably, culturing 

in the presence of S1P not only increased the number of mast cells but strikingly increased 

chymase expression (Figure 5, 6). A small increase was detected within 4 weeks of culture 

in the presence of 1 µM S1P (Figure 4A). However, after 6 weeks of culture, even a 

concentration of S1P as low as 0.1 µM induced a significant increase in chymase-positive 

mast cells (Figure 4A, B).  Tryptase staining in the granules of cells cultured for 8 weeks in 

the presence of S1P was observed by confocal microscopy (Figure 6B). These cells also 

contained granules that stained strongly with toluidine blue (Figure 6C). 

Immunocytochemistry of these S1P treated mast cells revealed strong chymase staining 

compared to cells cultured with SCF alone (Figure 5A, 6D). Moreover, as expected, the 

chymase expressing mast cells also expressed tryptase (Figure 6E). These results are 

reminiscent of many previous studies showing that after culturing cord blood mononuclear 

cells in the presence of SCF and IL-6 for 8 weeks, all mast cells had tryptase-positive 

granules, while ~ 20% also expressed chymase [79, 82, 92]. 
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Figure 4: S1P induces chymase expression in developing human mast cells. A, B, Cord 

blood mononuclear cells were cultured for the indicated weeks with SCF (100 ng/ml) alone 

(none) or in the absence (vehicle) or presence of the indicated concentrations of S1P. Cells 

were stained with anti-chymase mAb or negative control IgG and chymase-positive cells 

were quantified as described in Materials and Methods. A minimum of 200 cells was 

scored in a double-blind manner. A, Data are expressed as total number of chymase 

positive cells. B, Results from a cord blood culture from another donor are expressed as 

percent chymase positive cells. Negative control staining was <1%. Similar results were 

obtained with two additional cord blood cultures from different donors. Data are means ± 

SD. *, p < 0.05, **, p < 0.01, compared to untreated controls. 
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Figure 5: Effect of S1P on chymase expression in developing human mast cells. Panels 

show representative fields of cells from a different donor stained with anti-chymase mAb 

and photographed under light microscopy at 200x magnification after treatment without 

(vehicle) (A) or with S1P (0.1 µM) (B) for 10 weeks. Similar results were obtained with 

two additional cord blood cultures from other donors. 
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Figure 6: Histochemical characteristics of CB-MCs cultured in the presence of S1P. 
A-E, Cord blood mononuclear cells were cultured for 8 weeks with SCF and S1P (0.1 

µM). Cells were visualized by confocal microscopy for DIC (A) and tryptase staining (B). 

Size bars, 5 µm. Toluidine blue (C) and chymase (D) staining were visualized by light 

microscopy. (E) Cells were stained for both chymase and tryptase. Representative 

individual cells from three experiments are shown.  
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In agreement with previous studies showing that surface CD88, the receptor for 

C5a (C5aR), is only expressed by mast cells double positive for tryptase and chymase 

(MCTC) [93, 94], there was no detectable expression of CD88 on CB-MCs cultured for 8 

weeks in the presence of SCF alone (Figure 7B), whereas in the presence of 1 µM S1P, 

13% of mast cells expressed CD88 on the cell surface as determined by FACS analysis 

(Figure 7C). This result is consistent with the observation that 13.3% of the cells in this 

mast cell culture exposed to S1P are also chymase positive at that time (Figure 4B). 

Although similar levels of chymase expression were found in cultures from three donors, 

29% and 35% of the mast cells from two other donors were chymase positive after 

culturing with 1 µM S1P for 8 weeks. This is the first demonstration that a serum-borne 

bioactive lipid can induce differentiation of CB-MC progenitors to mature chymase 

expressing mast cells. 
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Figure 7: CD88 cell surface expression. Cord blood mononuclear cells were cultured for 

8 weeks with SCF in the absence (B) or presence of 1 µM S1P (A,C) and stained with 

rabbit anti-CD88 (B,C)  or with non-immune rabbit IgG (A) followed by staining with 

Alexa Fluor 488-labeled secondary antibody and sorted by flow cytometry. Quadrants are 

indicated. 
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2.3.2 S1P-induced secretion of IL-6 from cord blood-derived cultures is dependent on 

the presence of monocytes/macrophages 

As IL-6 induces chymase protein expression in SCF-dependent CB-MCs [83-86], it 

was of interest to determine whether the effect of S1P on chymase expression in 

developing mast cells was due to production and secretion of IL-6. In agreement with 

previous studies [86, 94], IL-6 was not detected in supernatants of mast cells cultured for 1 

week in the presence of SCF alone. However, cultures also treated with S1P secreted small 

amounts of IL-6 (Figure 8A). As secreted IL-6 is not stable for a period of 1 week [95], we 

next measured its secretion during the 24 h period after S1P addition to the culture 

medium. Interestingly, treatment with S1P induced secretion of significant amounts of IL-6 

as early as 6 h compared to cultures treated with SCF alone in the absence or presence of 

vehicle (Figure 8B). Maximum IL-6 accumulation in the medium was observed at 10 h 

following addition of S1P and declined thereafter, consistent with its degradation by mast 

cell-derived proteases [95]. However, it should be noted that levels of IL-6 were still 

significantly elevated even 24 h after addition of S1P.  

To determine whether IL-6 was derived from mast cells or from 

monocytes/macrophages that are also present in the hematopoietic precursor cultures, 

monocytes/macrophages were immunodepleted with anti-CD14 coated magnetic beads, as 

CD14 is a membrane-associated glycosylphosphatidylinositol-linked protein expressed at 

the surface of macrophages but not by mast cells. When these macrophage-depleted mast 

cells were cultured in the presence of S1P, there was no detectable production of IL-6 

(Figure 9), suggesting that the monocytes/macrophages are the source of IL-6. Indeed,  
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macrophages isolated from cord blood cultures by virtue of their expression of CD14, 

secreted large amounts of IL-6 in response to S1P (Figure 10). Significant IL-6 secretion 

was evident within 5 h after addition of S1P, reaching maximum levels at around 10 h 

(Figure 10). 
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Figure 8: S1P enhances IL-6 secretion from cultures of cord blood-derived 

progenitors. A, Cord blood progenitors were cultured for 8 weeks with SCF (100 ng/ml) 

alone (open bar) or in the presence of S1P (0.1 and 1 µM, filled bars). Cells  (10
6
) were 

then stimulated again with SCF in the absence or presence of S1P for one week and IL-6 in 

the supernatants measured by ELISA. *, p < 0.01, compared to vehicle treated. B, Cord 

blood progenitors were cultured for 8 weeks with SCF (100 ng/ml) alone (None, circles) or 

in the presence of vehicle (triangles) or in the presence of 1 µM S1P (squares). Cells  (10
6
) 

were then stimulated again for the indicated times and IL-6 in the supernatants measured 

by ELISA. Similar results were obtained with additional cord blood cultures. 
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Figure 9: S1P-induced secretion of IL-6 from cord blood cultures is not from purified 

CB-MCs. Cord blood progenitors were cultured for 8 weeks with SCF (100 ng/ml) alone, 

purified CB-MC (10
6
) in which monocytes/macrophages were removed with anti-CD14 

coated magnetic beads were treated without or with 1 µM S1P, as indicated. Supernatants 

were collected at the indicated times and IL-6 secretion determined by ELISA. Similar 

results were obtained with two additional cord blood cultures. 
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Figure 10: S1P-induced secretion of IL-6 from cord blood cultures is dependent on the 

presence of monocytes/macrophages. Cord blood progenitors were cultured for 8 weeks 

with SCF (100 ng/ml) alone, purified macrophages (10
6
) isolated with anti-CD14 coated 

beads were treated without or with 1 µM S1P, as indicated. Supernatants were collected at 

the indicated times and IL-6 secretion determined by ELISA. Similar results were obtained 

with two additional cord blood cultures. 
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It was of interest to examine the fate of S1P added to CB-MCs. The culture 

medium only contains 1.6 nM S1P, as measured by LC-ESI-MS/MS. Five minutes after 

addition of 1 µM S1P to CB-MCs, there was no significant decrease in S1P levels; 

however, only one-third remained after 1 h (Figure 11). Although the concentration of 

exogenous S1P in the media decreases rapidly, even after 24 h, the S1P concentration is 

still significantly elevated (Figure 11). Interestingly, treatment of 8-week CB-MCs cultures 

with 1 µM S1P for 1 or 2 days was sufficient to significantly induce chymase expression 

(Figure 12). In agreement with the observation that S1P induced rapid secretion of IL-6 

from cord blood cultures (Figure 8B), the presence of neutralizing anti-IL-6 antibody 

significantly decreased both IL-6- and S1P-induced chymase expression (Figure 13), 

further supporting a role of IL-6 in this process.  
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Figure 11: Time course of S1P disappearance. S1P levels in medium before and after 

addition (1 µM) to cord blood progenitors cultured for 8 weeks with SCF alone were 

determined at the indicated times by LC-ESI-MS/MS.  
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Figure 12: Time course of S1P effects on chymase expression. Cord blood progenitors 

cultured for 8 weeks with SCF alone were treated without or with 1 µM S1P for the 

indicated times. The percent of chymase expressing MC was determined as described in 

Materials and Methods.  
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Figure 13: S1P-induced chymase expression is IL-6 dependent. Cord blood progenitors 

cultured for 8 weeks with SCF alone were treated without or with 1 µM S1P or 50 ng/ml 

IL-6 in the absence or presence of anti-IL-6 antibody for 48 h as indicated. The percent of 

chymase expressing MC was determined as described in Materials and Methods.
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2.3.3 S1P enhances CCL2 release from purified CB-MCs but not from purified CB-

macrophages 

CCL2, also known as monocyte chemoattractant protein-1 (MCP-1), is an 

important chemoattractant for monocytes/macrophages, the other cell type co0generated in 

cord blood cultures. Cord blood progenitor cultures produce and secrete large amounts of 

CCL2, which was enhanced by culturing in the presence of S1P (Figure 14A). Although 

cord blood cultures spontaneously secrete CCL2, treatment with S1P induced significant 

increases compared to cord blood cultures exposed to SCF alone, in the absence or 

presence of vehicle (Figure 14B). Importantly, S1P induced secretion of CCL2 from 

purified CB-MCs depleted of monocytes/macrophages (Figure 15). A significant increase 

was observed within 2 h after addition of S1P to purified CB-MCs (devoid of 

monocytes/macrophages) and increased thereafter (Figure 15). Levels of CCL2 remained 

elevated for at least 24 h after addition of exogenous S1P (Figure 15). Because these mast 

cells express S1P1 and S1P2 receptors [14], we next examined which of the receptors was 

involved in S1P-induced CCL2 secretion. The S1P2 antagonist [96], JTE-013, markedly 

reduced CCL2 secretion in response to S1P, whereas VPC23019, an antagonist of S1P1 

[96], had no significant effect (Figure 16). In sharp contrast, although macrophages are 

capable of releasing large amounts of CCL2, no significant stimulation was observed in 

response to S1P (Figure 17). 
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Figure 14: S1P enhances CCL2/MCP-1 release from cultures of cord blood-derived 

progenitors. A, Cord blood progenitors were cultured for 8 weeks with SCF (100 ng/ml) 

alone (open bar) or in the presence of S1P (0.1 and 1 µM, filled bars). Cells  (10
6
) were 

then stimulated again with SCF in the absence or presence of S1P for one week. 

Supernatants were collected and CCL2/MCP-1 determined by ELISA. B, Cord blood 

progenitors were cultured for 8 weeks with SCF (100 ng/ml) alone (None, circles), or in 

the presence of vehicle (triangles) or 1 µM S1P (squares). Cells (10
6
) were then stimulated 

again for the indicated times and CCL2 in the supernatants measured by ELISA. Similar 

results were obtained with three additional cord blood cultures. 
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Figure 15: S1P enhances CCL2/MCP-1 release from purified CB-MCs. After 8 weeks 

in culture with SCF alone, purified CB-MC (10
6
) in which monocytes/macrophages were 

removed with anti-CD14 coated beads were treated without or with 1 µM S1P. 

Supernatants were collected at the indicated times and CCL2/MCP-1 secretion determined 

by ELISA. Similar results were obtained with or two additional cord blood cultures.  
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Figure 16: S1P-enhanced CCL2/MCP-1 release from purified CB-MCs is S1P2 

dependent. After 8 weeks in culture with SCF alone, purified CB-MC (10
6
) in which 

monocytes/macrophages were removed with anti-CD14 coated beads pretreated for 30 min 

with vehicle, 1 µM JTE-013, or 1 µM VCP23019 prior to stimulation without or with 1 

µM S1P. Supernatants were collected after 24 h and CCL2/MCP-1 secretion determined by 

ELISA. Similar results were obtained with two additional cord blood cultures. *, p < 0.01, 

compared to S1P treatment. 
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Figure 17: S1P does not enhance CCL2/MCP-1 release from purified CB-

macrophages. After 8 weeks in culture with SCF alone, purified macrophages (10
6
) 

isolated with anti-CD14 coated beads were treated without or with 1 µM S1P. Supernatants 

were collected at the indicated times and secretion of CCL2/MCP-1 determined by ELISA.  
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2.3.4 S1P triggers degranulation and induces functional features of CB-MCs 

expressing chymase 

An important functional difference between double positive MCTC and lung-like 

MCT is that the former are also known to respond in an IgE-independent manner to a 

number of secretagogues, such as synthetic polyamines like compound 48/80, and the 

naturally occurring anaphylatoxin C5a [94]. To examine the functional characteristics of 

chymase expressing CB-MCs developed in the presence of S1P, their capacity to 

degranulate in response to antigen, C5a, and 48/80 was determined by β-hexosaminidase 

release. In agreement with previous studies [83], MCT developed in the presence of SCF 

alone readily degranulated in response to crosslinking of FcεRI by antigen and substance P 

(a naturally occurring neurotransmitter) but did not respond to C5a or 48/80 (Figure 18). 

However, CB-MCs developed in the presence of S1P, which increases chymase and C5aR 

expression (Figure 4, 5, 7), degranulate in response to C5a (Figure 18), similar to skin-

derived MCTC [86]. Furthermore, these mast cells were also degranulated by compound 

48/80 (Figure 18). As expected, ionomycin (a calcium ionophore that is a universal mast 

cell activator) and substance P induced similar degranulation in both phenotypes of mast 

cells (Figure 18). In addition, antigen, substance P, and ionomycin, but not C5a and 48/80, 

enhanced secretion of CCL2 from MCT developed in the presence of SCF alone (Figure 

19). Conversely, C5a and 48/80 only enhanced release of CCL2 from MCTC, developed in 

the presence of S1P (Figure 19).  
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Figure 18: CB-MCs generated in the presence of S1P acquire functional features of 

skin MCTC. After culturing for 8 weeks with SCF in the absence (open bars) or presence 

of S1P (filled bars), purified CB-MC were stimulated for 2 hours with Ag, C5a (1 µg/ml), 

compound 48/80 (1 µg/ml), substance P (1 µM), or ionomycin (1 µM). Degranulation was 

assessed by β-hexosaminidase release. Similar results were obtained with two additional 

cord blood cultures from other donors. *, p < 0.01, compared to vehicle treatment. 
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Figure 19: S1P stimulates secretion of CCL2/MCP-1 from skin-like CB-MCTC. After 

culturing for 8 weeks with SCF in the absence (open bars) or presence of S1P (filled bars), 

purified CB-MC were stimulated for 2 hours with Ag, C5a (1 µg/ml), compound 48/80 (1 

µg/ml), substance P (1 µM), or ionomycin (1 µM). CCL2/MCP-1 in the supernatants was 

measured by ELISA. Similar results were obtained with two additional cord blood cultures 

from other donors. *, p < 0.01, compared to vehicle treatment. 
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2.4 DISCUSSION 

S1P has been added to the repertoire of mediators produced and released by mast 

cells that in turn regulate mast cell functions [4, 7, 8, 10-14]. FcεRI triggering has been 

shown to utilize SphK, the enzyme that produces S1P, to mobilize Ca
2+

 from internal 

stores, an event necessary for degranulation [7, 10]. Moreover, the balance between 

sphingosine and S1P determined by SphK is decisive for allergic responsiveness of mast 

cells [8]. Secreted S1P is able to bind and activate its receptors on mast cells. S1P1 induces 

cytoskeletal rearrangements, leading to the movement of mast cells towards an antigen 

gradient; whereas S1P2 is required for the degranulation response [11, 14]. S1P also 

increased expression of MCP-1, MIP-1α, MIP-1β, and MIP-2 in mast cells, all important 

modulators of monocyte, macrophage and eosinophil recruitment and inflammation [11, 

14, 71]. Production of S1P in mast cells has grown more complex with the recent 

demonstration that both SphK1 and SphK2 are activated upon FcεRI engagement [12] and 

are important in vivo for mast cell-dependent anaphylactic responses in mice [13]. These 

findings together with the observation that SCF, an important growth factor required for 

mast cell survival and differentiation, also activates SphK1 and SphK2 [12], emphasize the 

important role of S1P generation in mast cell physiology.  

Here we report that S1P also accelerates the generation of mast cells from 

hematopoietic progenitors and strikingly increases chymase expression. These CB-MCTC 

have functional FcεRI and similar to skin MCTC, are also activated by the anaphylatoxin 

C5a and the secretagogue 48/80. Thus, MCTC are functionally distinguished from MCT 

phenotypes of human mast cells, suggesting important differences that may affect their 
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participation in disease states. The ability of MCTC to be activated by agents not associated 

with FcεRI and IgE suggest this cell type may have a greater role in innate immunity by 

responding to either innate or microbial danger signals. Although human mast cells can be 

generated from umbilical cord blood progenitors cultured in medium supplemented with 

SCF and varied accessory factors, including combinations of cytokines [79, 81, 97, 98], 

remarkably, the percent of mast cells expressing chymase is similar to what we found 

utilizing SCF with S1P alone. Interestingly, the responses of MCTC to C5a and 48/80 are 

much greater than expected. There are several possible explanations for this. First, it is well 

established that mast cells of different maturity also differ in their histamine content and 

their ability to respond to cell activation [99]. Skin-like MCTC release much more histamine 

in response to IgE/Ag than lung-derived MCT [100]. Indeed, MCTC granules generally are 

more uniformly electron dense, larger, and more numerous than MCT granules [101]. 

Alternatively, a higher proportion of mast cells may be expressing C5aR than chymase, or 

smaller amounts of C5aR are needed for a functional response. It is also possible that C5a 

might activate MCTC to release another factor that can activate MCT through a pathway 

other than through C5aR. 

Although LPA, a serum borne lysophospholipid structurally closely related to S1P, 

has been shown to accelerate mast cell proliferation and differentiation to tryptase 

expressing MCT, interestingly, it had no effect on the small number of chymase expressing 

cells nor did it increase chymase activity [88]. The ability of S1P to induce expression of 

chymase and C5aR is most probably mediated via release of IL-6 from cord blood 

progenitor cultures that contain adherent macrophages. Indeed, highly purified 
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monocytes/macrophages from these cultures released IL-6 in response to S1P. Macrophages 

express multiple S1P receptors, of which S1P1 and S1P2 predominate [102-104]. In 

agreement, inhibiting S1P1 and S1P2 with specific antagonists significantly reduced S1P-

stimulated IL-6 release from macrophages (Figure 20). Of note, S1P stimulated secretion of 

CCL2 from mast cells independent of the presence of macrophages.  

Our data suggest crucial roles for S1P in regulating development of hematopoietic 

progenitors into functionally mature mast cells expressing chymase and reveal a complex 

interplay between macrophages and mast cells during the development of fully 

differentiated mast cells (Figure 21). According to this model, S1P (possibly from the 

blood) induces secretion of IL-6 from monocytes/macrophages and CCL2 from mast cells. 

IL-6 in turn may act on progenitors, enhancing the mitogenic and survival effects of SCF 

(most likely from fibroblasts) and promoting development and maturation of mast cells and 

inducing chymase and C5aR expression [83]. In addition, S1P induces CCL2 release from 

mast cells to recruit monocytes/macrophages to their vicinity, thereby enhancing the 

interaction between these different types of cells. In this regard, an elegant study in mice 

demonstrated that adult mast cell progenitors are derived directly from multipotential 

progenitors instead of, as previously proposed, common myeloid progenitors or granulocyte 

macrophage progenitors [105]. Moreover these mast cell-committed progenitors can give 

rise to both connective tissue-type and mucosal-type mast cells, which is determined by 

factors present in the site of differentiation [105]. Thus, S1P can regulate the phenotype and 

therefore the responsiveness of mast cells. This suggests that S1P present in the serum at 

high concentrations is capable of shaping a given physiological response. It is interesting to 
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speculate once this alteration in mast cell phenotype has occurred and the inflammatory 

response has been resolved whether mast cell phenotype reverses to MCT or rather remains 

a more responsive MCTC phenotype. 
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Figure 20: S1P1 and S1P2 both play a role in S1P-enhanced secretion of IL-6 from 

purified CB-macrophages. After 8 weeks in culture with SCF alone, purified macrophages 

(10
6
) isolated with anti-CD14 coated beads were pretreated for 30 min with vehicle, 1 µM 

JTE-013, or 1 µM VCP23019 prior to stimulation without or with 1 µM S1P. Supernatants 

were collected after 24 h and secretion of IL-6 determined by ELISA.  
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Figure 21: Proposed model of human mast cell development and the involvement of 

S1P. S1P stimulates release of IL-6 by monocytes/macrophages. In turn, IL-6 can act on 

developing mast cells at different stages of development, promoting proliferation and 

inducing chymase expression. S1P also enhances CCL2 secretion from mast cells, which is 

a chemoattractant for monocytes/macrophages, further enhancing crosstalk between 

monocytes/macrophages and mast cells in response to S1P. For simplicity, a multipotential 

progenitor capable of developing into MCT and MCTC is depicted.  
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We found that S1P can also induce release of IL-6 from macrophages. Interestingly, 

previous results have suggested that SphK1, which produces S1P, plays a key role in the 

generation and release of proinflammatory mediators from human macrophages triggered 

by anaphylatoxins [47] and in neutropenia, peritonitis, and cytokine production in vivo 

[106]. Anaphylatoxin C5a, one of the complement fragments produced by activation of the 

complement system, is involved in a variety of disorders in which mast cells play critical 

roles, including septic shock and adult respiratory distress syndrome. Our finding that S1P 

enhances mast cell expression of C5aR and their ability to respond to C5a further support 

the notion of a potential role of S1P in anaphylatoxin-triggered inflammatory responses in 

vivo [47, 106]. 

Chymase, a chymotrypsin-like serine protease that is only secreted from MCTC, has 

been associated with sepsis in various mouse models [107-109]. It has been suggested that 

increased intracellular chymase activity leads to enhanced microbiocidal activity directly 

or may function indirectly. Extracellularly, mast cell chymase can degrade endothelin-1, a 

potent constrictor of blood vessels that has been implicated in vascular changes associated 

with sepsis [110] and cleave chemokine precursors to generate activated chemokines that 

recruit neutrophils to bacterial infections [109]. Thus, murine mast cells, which express at 

least four chymase proteins, have the potential to help [108, 109], rather than harm. 

Nonetheless, earlier studies found that mice with mast cells deficient in chymases usually 

survive peritonitis induced by cecal ligation and puncture better than wild-type mice [107]. 

The serine peptidases seem to increase mortality by cleaving survival-enhancing cytokines, 

such as IL-6 [107]. Similarly, it has been demonstrated that a variety of cytokines 
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produced by cultured human skin MCTC, including IL-5, IL-6, IL-13, and TNFα, are 

cleaved by mast cell peptidases, primarily chymase [95]. However, there is only a single 

chymase gene in humans [111]. Recently, it was demonstrated that lipopolysaccharide 

upregulates chymase expression in human mast cells, suggesting that a gram negative 

bacterial infection may induce mast cells to express a unique composition of proteases 

beneficial for controlling and eliminating the infection [112]. Although chymase 

expression has been reported to be elevated in individuals dying from anaphylaxis [113], 

its functions in sepsis and anaphylaxis are still not well understood [111, 114]. Our results 

demonstrate an important role for S1P in regulating development of functionally mature 

chymase expressing human mast cells and their functions.  
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CHAPTER 3: A SPECIFIC SPHINGOSINE KINASE 1 INHIBITOR 

ATTENUATES AIRWAY HYPERRESPONSIVENESS AND INFLAMMATION IN 

A MAST CELL-DEPENDENT MODEL OF ALLERGIC ASTHMA  

 

3.1 INTRODUCTION 

Allergic asthma is a complex disease characterized by airway inflammation and 

airway hyperresponsiveness (AHR) that is becoming increasingly widespread in developed 

nations [115]. Mast cells are key effector cells that are increased in airways of asthmatics 

and can contribute to multiple features of allergic inflammation by secreting a vast array of 

inflammatory mediators that exacerbate vasodilation and vascular permeability, airway 

smooth muscle contraction, mucus secretion, and immune cells recruitment [45].  

Sphingosine-1-phosphate (S1P) is a new addition to the growing list of 

inflammatory mediators secreted by activated mast cells that is now emerging as a 

regulator of multiple aspects of both innate and adaptive immunity [87, 116]. S1P 

aggravates antigen-induced airway inflammation in mice [117] and its levels are elevated 

in the bronchoalveolar lavage (BAL) fluid of allergen challenged patients with allergic 

asthma [67]. The majority of actions of S1P in innate and adaptive immunity are mediated 

by five specific S1P receptors, denoted S1P1-5 [116]. However, recent studies demonstrated 

that S1P also has important intracellular actions required for activation of the transcription 

factor NF-κB important in inflammatory and immune responses. [18, 118].  

Crosslinking of the high affinity IgE receptor (FcεRI) on mast cells activates 

sphingosine kinase 1 (SphK1) [10, 11, 119] and possibly also SphK2 [12, 13] leading to 
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rapid increases in intracellular S1P and its subsequent secretion [11, 12]. Although it has 

long been recognized that SphKs are involved in mast cell activation [7], the importance of 

each of the SphK isoenzymes is still a matter of debate. Whereas silencing of SphK1 but 

not SphK2 impaired FcεRI-mediated mast cells activation [10, 11] [14], [120], in sharp 

contrast, calcium influx, cytokine production, and degranulation were abrogated in mast 

cells derived from Sphk2 and not from Sphk1 knockout mice [13, 119]. Furthermore, 

studies of allergic responses in isotype-specific SphK knockout mice have also yielded 

conflicting results [121]. In the present study, we utilized a mast cell- and IgE-dependent 

murine model of chronic asthma [122, 123] to investigate the role that SphK1 and S1P 

play in vivo in mast cell-mediated allergic responses. 

  

.   
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3.2 MATERIALS AND METHODS 

 

3.2.1 Reagents and Antibodies 

Dinitrophenyl-human serum albumin (DNP-HSA, Ag),  ionomycin, chicken 

ovalbumin (OVA), Acetyl-β-methylcholine chloride (Methacholine), and  type 1 DNase 

were purchased from Sigma (St. Louis, MO). FBS, L-glutamine, penicillin, streptomycin, 

sodium pyruvate, and HEPES were from Biofluids (Rockville, MD). Hyaluronidase was 

from Worthington Biochemical (Lakewood, NJ) and complete RPMI (cRPMI) 1640 

medium was from Invitrogen Life Technologies (Carlsbad, CA). Human cytokine ELISA 

kits were from BD Biosciences (San Diego, CA), murine cytokine ELISA kits were from 

Peprotech (Rocky Hill, NJ), and histamine ELISA kits was from Neogen (Lexington, KY). 

Anti-phospho-IKKalpha/Beta, anti- phospho-IκBalpha, anti-phospho-ERK1/2, and total 

ERK2 were from Cell Signaling (Boston, MA). Anti-p65 antibody was from Santa Cruz 

Biotechnology (Santa Cruz, CA). Protocol 10% Neutral buffered formalin was from Fisher 

(Pittsburgh, PA), Diff-Quik stain set was from Siemens Healthcare Diagnostics (Deerfield, 

IL), and Dako LSAB+ kit was Dako North America (Carpinteria, CA). 

    

3.2.2 Culture of human mast cells 

All protocols involving human tissues were approved by the human studies Internal 

Review Board at Virginia Commonwealth University (VCU).  Human skin-derived mast 

cells were dispersed from human skin tissue obtained after breast reduction, mastectomy 

for breast cancer, or from abdominoplasties through the National Disease Research 
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Interchange (Philadelphia, PA) or the Cooperative Human Tissue Network of the National 

Cancer Institute (Columbus, OH). Subcutaneous fat was removed by blunt dissection and 

residual tissue was cut into 1- to 2-mm fragments, which were incubated in a solution of 

Hanks balanced salt solution (HBSS) containing 1.5 mg/mL type 2 collagenase, 0.7 

mg/mL hyaluronidase, 0.3 mg/mL type 1 DNase, 1% fetal calf serum (FCS), and 1 mM 

CaCl2 for 2 hours at 37°C with constant shaking. The dispersed cells were separated from 

residual tissue by filtration through a No. 80 mesh sieve and suspended in HBSS 

containing 1% FCS and 10 mM HEPES. The remaining tissue was subjected to an 

additional digestion as above, and combined with the cells from first digestion. Cells were 

resuspended in HBSS, layered over a Percoll cushion, and centrifuged at 700g at room 

temperature for 20 minutes. Nucleated cells were collected from the buffer/Percoll 

interface. Percoll gradient-enriched cells were resuspended at a concentration of 1 × 10
6
 

cells/mL in serum-free X-VIVO 15 medium (Lonza, Walkersville, MD) containing 

100ng/ml recombinant human SCF. The culture medium was changed weekly and cells 

were split every 4–5 days or when they reached a concentration of ~2 × 10
6
 cells/mL. 

Cultures of human skin-derived mast cells were maintained for up to 3 months and were 

∼100% mast cells. 

 

3.2.3 Culture of murine mast cells 

Murine bone marrow-derived mast cells (BMMCs) were isolated and derived from 

mice by culture in complete RPMI (cRPMI) 1640 containing 10% FBS, 2 mM L-

glutamine, 100 U/ml penicillin, 100 µg/ml streptomycin, 1 mM sodium pyruvate, and 1 
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mM HEPES, supplemented with IL-3–containing supernatant from WEHI-3 cells and stem 

cell factor (SCF)-containing supernatant from BHK-MKL cells. The final concentration of 

IL-3 and SCF was adjusted to 1 ng/ml and 10 ng/ml, respectively, as measured by ELISA. 

BMMCs were cultured at 3-5 × 10
5
 cell/mL, washed, and incubated at 37˚C for 4-6 hours 

in cRPMI without cytokines prior to assays. Mast cell viability was determined by trypan 

blue staining. 

 

3.2.4 Degranulation and ELISA 

Human skin-derived mast cells (10
6
) in the presence of soybean trypsin inhibitor 

(SBTI; 100µg/ml) were sensitized overnight with 1 µg/ml anti-DNP IgE overnight, washed 

to remove unbound IgE, and then stimulated with 30 ng/ml DNP-HSA (Ag) at 37˚C for 24 

hours. Degranulation was measured by β-hexosaminidase assays as described previously. 

Murine BMMCs (10
6
) were sensitized overnight with 0.5 µg/ml anti-DNP IgE overnight, 

washed to remove unbound IgE, and then stimulated with 20 ng/ml DNP-HSA (Ag) at 

37˚C for 24 hours. SK1-I was added at the indicated concentrations during crosslinking. 

Degranulation was measured by β-hexosaminidase release, expressed as a percentage of 

the total cellular β-hexosaminidase released into the medium, or by histamine release 

determined by ELISA. Cytokine and chemokine release from these cells were measured by 

ELISA.  

 

3.2.5 Mice 
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 Female C57BL/6 mice were obtained from Jackson Laboratories (Bar Harbor, ME) 

and kept at the animal care facilities at Virginia Commonwealth University (Richmond, 

VA) under standard temperature, humidity, and timed light conditions, and were provided 

with mouse chow and water ad libitum. All experiments were performed in compliance 

with the “Guide for the Care and Use of Laboratory Animals” of the Institute of 

Laboratory Animal Resources, National Research Council, published by the National 

Academy Press (revised 1996), and with approval from the VCU institutional animal care 

and use committee. 

 

3.2.6 Induction of allergic inflammation and AHR  

 Eight weeks old C57BL/6 mice were sensitized by intraperitoneal (i.p.) injection of 

100 µl PBS or OVA (50 µg) on days 1, 3, 5, and 7. Mice were challenged by intranasal 

(i.n.) injection of 20 µl PBS or OVA (200 µg) on days 22, 25, and 28. Mice were assessed 

for airway hyperresponsiveness (AHR) and airway inflammation 24 hours after the last i.n. 

challenge. SK1-I (5 mg/kg in PBS) or vehicle (PBS) was administered i.n. 1 hour prior to 

OVA sensitization and challenge (SK1-I group 1) or prior to OVA challenge only (SK1-I 

group 2). 

 

3.2.7 Measurement of airway reactivity 

Mice were anesthetized by i.p. injection of 206.7 mg/kg of ketamine and 41.7 

mg/kg of xylazine, were ventilated after tracheotomies, and measurements of baseline lung 

function were made with the FlexiVent (Scireq, Montreal, QC, Canada). Mice were 



90 

exposed to aerosols containing increasing doses (0, 10, 25, 50, 100 mg/mL) of acetyl-β-

methylcholine chloride (Methacholine) and resistance (R), Compliance (C), Newtonian 

resistance (Rn), and tissue damping (G) were measured using the FlexiVent software 

version 5.3 (Scireq, Montral, Quebec, Canada). Results are expressed as relative increases 

over baseline values. 

 

3.2.8 BAL fluid collection 

BAL fluid was collected by lavaging the lungs twice with PBS (0.75 ml). Cells and 

supernatants were collected by centrifugation and cells resuspended in 100 µl PBS. Total 

cell numbers were determined and cytospin specimens were prepared, stained with Diff-

Quik, and proportions of different cell types quantified by counting of at least 150 cells per 

cytospin.  

 

3.2.9 Lung histology  

Following lavage, lungs were inflated through the trachea, removed, and fixed in 

10% neutral buffered formalin. The formalin-fixed tissues were embedded in paraffin and 

5 millimmeter sections stained with hematoxylin and eosin (H&E) or periodic acid Schiff 

(PAS). A Nikon ECLIPSE E800M microscope equipped with a Diagnostic Instruments 

Spot RT CCD camera was used to photograph the sections. Total lung inflammation was 

assessed as the severity of perivascular infiltration and was scored semi-quantitatively for 

the following features: 0, normal; 1, few cells; 2, rings of inflammatory cells 1 cell layer 
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deep; 3, rings of inflammatory cells 2–4 cells deep; 4, rings of inflammatory cells ≥4 cells 

deep.  

In some experiments, lung sections were stained with anti-p65 antibody and 

visualized with a Dako LSAB+ kit. 

 

3.2.10 Cytokine and chemokine measurements 

The following cytokines and chemokines in BAL fluid were measured with a 

Bioplex Array Reader (LUMINEX 100, Bio-Rad Laboratories, Hercules, CA) using a 

custom mouse Bioplex 8 panel (Bio-Rad Laboratories, Hercules, CA): IL-4, IL-5, IL-6, IL-

13, Eotaxin, IFN-γ, CCL2/MCP-1, and TNF-α, according to the manufacturer’s 

instructions. The Bioplex cytokine assay is a magnetic bead-based assay designed for the 

quantitative measurement of multiple cytokines in a single well. Briefly, 50 µl of 

cytokine/chemokine standards or samples (supernatants from BAL) were incubated with 

50 µl of anti-cytokine/chemokine conjugated beads in 96-well filter plates for 30 min at 

room temperature with shaking. Plates were then washed by vacuum filtration three times 

with 100 µl of Bio-Plex wash buffer, 25 µl of diluted detection antibody were added, and 

plates were incubated for 30 min at room temperature with shaking. After three filter 

washes, 50 µl of streptavidin-phycoerythrin was added, and the plates were incubated for 

10 min at room temperature with shaking. Finally, plates were washed by vacuum filtration 

three times, beads were suspended in Bio-Plex assay buffer, and samples were analyzed on 

a Bio-Rad 96-well plate reader using the Bio-Plex Suspension Array System and Bio-Plex 

Manager software (Bio-Rad Laboratories, Hercules, CA). 
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3.2.11 Mass spectrometry 

Lipids were extracted from lung tissues and serum by the Lipidomics Core at VCU. 

Internal standards were added (0.5 nmol each, Sphingolipid Mixture II/LM-6005, Avanti 

Polar Lipids), lipids extracted, and sphingolipids quantified by liquid chromatography, 

electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS; 4000 QTRAP; ABI), 

as described [90]. 

 

3.2.12 Statistical analysis 

Statistical significance was determined with the Student’s t test for unpaired 

samples. In vitro experiments were repeated at least three times in triplicate with consistent 

results. In vivo experiments were repeated four times and each experimental group 

consisted of at least seven mice. 



93 

3.3 RESULTS 

 

3.3.1 A specific SphK1 inhibitor attenuates activation of human mast cells 

 Although many studies using siRNA to downregulate SphK1 indicate that S1P 

formed by its activation is pivotal in IgE-mediated mast cell degranulation and secretion of 

pro-inflammatory cytokines [10, 11, 14, 119], others using mast cells derived from 

knockout mice concluded that SphK2 rather than SphK1 is indispensable for these mast 

cell functions [13]. To clarify this controversy, we examined the effect of a specific SphK1 

inhibitor, SK1-I, which does not affect SphK2 activity [120], on mast cell functions. SK1-I 

drastically inhibited degranulation of human skin-derived mast cells triggered by FcεR1 

crosslinking with antigen in a dose-dependent manner (Figure 22A). These concentrations 

of SK1-I had no effect on mast cell viability (Figure 22B) or degranulation induced by 

ionomycin (Figure 22A). In agreement with our previous results [14], S1P potently 

induced degranulation of human mast cells, which as expected, was not altered by 

inhibition of SphK1 (Figure 22A). In addition, SK1-I significantly reduced antigen-

induced secretion of the cytokines, TNF-α (Figure 23) and IL-6 (Figure 24), whereas the 

secretion of these cytokines in response to S1P or ionomycin was unaffected. Similarly, 

SK1-I only reduced antigen-induced but not S1P- or ionomycin-induced secretion of 

CCL2/MCP-1 (Figure 25), an important chemokine that plays a major role in a mast cell-

dependent model of allergic asthma [124].  
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Figure 22: Inhibition of SphK1 reduces activation of human mast cells. IgE sensitized 

skin-derived mast cells were treated without (open bars) or with SKI-1 (2.5 µM, grey bars; 

5 µM, black bars) and then stimulated with vehicle, 30 ng/ml Ag (IgE/Ag), 100 nM S1P, 

or 1 µM ionomycin. A, Degranulation was determined by β-hexosaminidase release and B, 

viability by trypan blue exclusion. Data are the means ± SD of triplicate determinations. 

*P<0.01. Similar results were obtained using cells from 2 different donors. 
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Figure 23: Inhibition of SphK1 reduces secretion of TNF-αααα from human mast cells. 

IgE sensitized skin-derived mast cells were treated without (open bars) or with SKI-1 (2.5 

µM, grey bars; 5 µM, black bars) and then stimulated with vehicle, 30 ng/ml Ag (IgE/Ag), 

100 nM S1P, or 1 µM ionomycin for 24 hours. Secretion of TNF-α was measured by 

ELISA. Data are the means ± SD of triplicate determinations. *P<0.01. Similar results 

were obtained using cells from 2 different donors. 
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Figure 24: Inhibition of SphK1 reduces secretion of IL-6 from human mast cells. IgE 

sensitized skin-derived mast cells were treated without (open bars) or with SKI-1 (2.5 µM, 

grey bars; 5 µM, black bars) and then stimulated with vehicle, 30 ng/ml Ag (IgE/Ag), 100 

nM S1P, or 1 µM ionomycin for 24 hours. Secretion of IL-6 was measured by ELISA. 

Data are the means ± SD of triplicate determinations. *P<0.01. Similar results were 

obtained using cells from 2 different donors. 
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Figure 25: Inhibition of SphK1 reduces secretion of CCL2/MCP-1 from human mast 

cells. IgE sensitized skin-derived mast cells were treated without (open bars) or with SKI-1 

(2.5 µM, grey bars; 5 µM, black bars) and then stimulated with vehicle, 30 ng/ml Ag 

(IgE/Ag), 100 nM S1P, or 1 µM ionomycin for 24 hours. Secretion of CCL2 was measured 

by ELISA. Data are the means ± SD of triplicate determinations. *P<0.01. Similar results 

were obtained using cells from 2 different donors. 
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3.3.2 Inhibition of SphK1 in murine mast cells reduces IgE-mediated degranulation, 

cytokine release, and NF-κκκκB activation  

We also investigated the effects of inhibition of SphK1 on functions of murine 

bone marrow-derived mast cells. Similar to human mast cells, treatment of murine mast 

cells with SK1-I greatly reduced their degranulation (Figure 26A) without affecting 

viability (Figure 26B). Moreover, SK1-I also significantly reduced secretion of the 

cytokines TNF-α (Figure 27A) and IL-6 (Figure 27B), and IL-13 (Figure 27C) and the 

chemokine MIP-1α (Figure 27D). Altogether, these data substantiate the notion that 

SphK1 is generally important for mast cell functions.  

 We recently showed that S1P formed by SphK1 plays a critical role in TNF-α-

induced activation of the master transcription factor NF-κB which regulates expression of 

many important pro-inflammatory cytokines [18]. As IL-6 and TNF-α production in mast 

cells is dependent on NF-κB [125, 126], it was of interest to determine whether the 

inhibitory effect of SKI-1 on production of these cytokines was related to NF-κB 

activation. To test this, we analyzed phosphorylation of the inhibitor of NF-κB (IκBα), as 

the common pathway leading to NF-κB activation requires its phosphorylation by 

phosphorylated IκB kinase (IKK) and degradation. This is a key step in release of NF-κB 

subunits (p50, p65), which then translocate from the cytosol to the nucleus and initiate 

cytokine gene transcription. Treatment of mast cells with SKI-1 nearly abolished 

phosphorylation of IKK and IkBα triggered in response to FcεRI ligation, without affecting 
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ERK activation (Figure 28), suggesting that SphK1 is also important for NF-κB activation 

downstream of FcεRI crosslinking.  
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Figure 26: Inhibition of SphK1 reduces murine mast cell activation. Sensitized 

BMMCs were treated without (open bars) or with SKI-1 (10 µM, black bars) and then 

stimulated with vehicle (PBS) or with 20 ng/ml Ag (IgE/Ag). A, Secretion of histamine 

was measured by ELISA and B, viability by trypan blue exclusion. Data are the means ± 

SD of triplicate determinations. *P<0.01. 
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Figure 27: Inhibition of SphK1 dampens cytokine release from murine mast cells. 

Sensitized BMMCs were treated without (open bars) or with SKI-1 (10 µM, black bars) 

and then stimulated with vehicle (PBS) or with 30 ng/ml Ag (IgE/Ag). Secretion of (A) 

TNF-α, (B) IL-6, (C) IL-13, and (D), MIP-1α were measured by ELISA. Data are the 

means ± SD of triplicate determinations. *P<0.01. 
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Figure 28: Inhibition of SphK1 nearly abolishes antigen-induced NF-κκκκB activation in 

murine mast cells. IgE-sensitized mast cells were treated without or with Ag for 5 min 

and cell lysates were immunoblotted with antibodies against p-IkBα, p-IKK, p-ERK1/2 

and total ERK2 as a loading control. 
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3.3.3 SK1-I treatment reduces development of mast cell dependent airway 

hyperresponsiveness to methacholine 

Having established that SK1-I inhibits in vitro mast cell activation, it was next 

important to examine the effects of SphK1 inhibition on mast cell functions and allergic 

responses in vivo. Previous studies of the role of SphK1 in mouse models of allergic 

responses all utilized ovalbumin (OVA) antigen sensitization with alum as an adjuvant 

[127-129]. However, mast cells and IgE are not essential for the development of airway 

allergic inflammation with this type of protocol [122, 130, 131]. Therefore, we examined 

the effects of SK1-I in the development of AHR in mice after sensitization with OVA 

without alum, a chronic allergic asthma model that is significantly mast cell–dependent 

[122, 123] [132]. In this protocol, mice were sensitized with OVA i.p. and challenged with 

OVA i.n. as shown in Figure 29A. In OVA-sensitized mice, AHR to methacholine was 

significantly increased in OVA challenged mice compared to mice challenged with PBS 

only (Figure 29B). Because SK1-I is water soluble, it was administered i.n. in PBS and had 

no effect on AHR to methacholine in unsensitized mice (Figure 29B). However, 

administration of SK1-I i.n. one hour prior to both sensitization and challenge (SK1-I 

group 1), significantly reduced AHR to methacholine. Lung resistance (Figure 29B), lung 

compliance, the ease with which lungs can be extended (Figure 29C), Newtonian 

resistance, a measure of central airway resistance (Figure 29D), and tissue damping (Figure 

29E) were all significantly attenuated compared to OVA-sensitized mice. Next it was of 

interest to examine whether later SK1-I treatment only during the challenge phase (SK1-I 

group 2) would be able to attenuate AHR induced by OVA. Interestingly, this treatment 
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significantly reduced lung resistance (Figure 29B), Newtonian resistance (Figure 29D), 

and tissue damping (Figure 29E). However, lung compliance was significantly different 

only at lower doses of methacholine (10, 25 mg/ml) compared to OVA-sensitized mice, 

but not at higher doses (50, 100 mg/ml; Figure 29C). These data suggest that inhibition of 

SphK1 can attenuate development of mast cell-dependent AHR. 
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Figure 29: Effect of SK1-I on development of OVA-induced mast cell-dependent 

AHR. A, Mast cell- and IgE-dependent allergic asthma model. Mice were sensitized and 

challenged with OVA administered i.p. (50 µg) and i.n. (200 µg), respectively, on the 

indicated days. PBS or SK1-I (100 µg) were administered intranasally 1 hour prior to OVA 

sensitization and challenge (group 1) or only prior to OVA challenges (group 2). 

Unsensitized mice received either PBS or SK1-I on days 1, 3, 5, 7, 22, 25, and 28. Airway 

responses to methacholine were measured on day 29, 24 hours after the last intranasal 

OVA or PBS challenge. B, lung resistance, C, compliance, D, Newtonian resistance, and 

E, tissue damping were measured with Flexivent apparatus. * P< 0.05, compared to OVA-

challenged mice. Data are means ± SEM from at least 7 mice in each group and are shown 

as fold changes. 
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3.3.4 SK1-I reduces cellular infiltration, pulmonary eosinophilia, and goblet cell 

hyperplasia 

As expected, OVA challenged mice displayed extensive inflammatory infiltrates 

into perivascular areas of the lung, whereas cellular infiltrates were nearly absent in PBS 

challenged mice as evidenced by H&E staining (Figure 30) as well as by semi-quantitative 

inflammatory scoring (Figure 31). Interestingly, treatment with SK1-I during sensitization 

and challenge markedly attenuated OVA-induced inflammatory infiltrates. Moreover, even 

treatment with SK1-I only during challenge also significantly reduced infiltration of 

inflammatory cells (Figure 30, 31). Similarly, significant increase in mucus production and 

goblet hyperplasia were evident by periodic acid-Schiff (PAS) staining only in OVA 

challenged mice which was greatly reduced by SK1-I treatment throughout and to a lesser 

but significant extent in the mice treated only during the challenge and fewer of the smaller 

bronchioles were positively stained (Figure 32).   

Consistent with these histology findings, IgE/Ag-challenge significantly increased 

infiltration of inflammatory cells, especially eosinophils and neutrophils (Figure 33). 

Treatment with SK1-1 throughout sensitization and challenge drastically reduced 

eosinophilia, whereas treatment with SK1-I only during the challenge had no significant 

effect on eosinophil infiltration (Figure 33). Taken together, these results indicate that 

SphK1 and S1P play an important role in progression of mast cell-dependent airway 

inflammation. 
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Figure 30: Inhibition of SphK1 attenuates airway immune cell infiltration and mucus 

secretion. Mice were sensitized, challenged, and treated as described in Fig. 3. At day 29, 

lung sections were fixed and stained with hematoxylin and eosin (H&E), scale bar 100 µm 

and photographed under light microscopy at 100x magnification. Selected areas are shown 

at higher magnification. Prominent infiltrates of inflammatory cells are present near the 

airways in OVA-sensitized and challenged mice but not in SK1-I-treated mice.  
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Figure 31: Inhibition of SphK1 reduces perivascular inflammation. Mice were 

sensitized, challenged, and treated as described in Fig. 3. At day 29, lung sections were 

fixed and stained with hematoxylin and eosin (H&E). Prominent infiltrates of 

inflammatory cells are present near the airways in OVA-sensitized and challenged mice 

but not in SK1-I-treated mice. Perivasuclar inflammation was scored as described in 

Materials and Methods. Data are means ± SEM. * P< 0.05, compared to OVA-challenged 

mice. 
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Figure 32: Inhibition of SphK1 diminishes mucus secretion in the airways. Mice were 

sensitized, challenged, and treated as described in Fig. 3. At day 29, lung sections were 

fixed and stained periodic acid/alcian blue/Schiff (PAS) and photographed under light 

microscopy at 200x magnification. Scale bar 50 µm.  
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Figure 33: SK1-I treatment reduces airway eosinophilia. Mice were sensitized, 

challenged, and treated as described in Fig. 3. BAL fluid was collected on day 29 and the 

percentages of eosinophils, neutrophils, macrophages, and lymphocytes were determined. 

* P< 0.05, compared to OVA-challenged mice. Data are means ± SEM from at least 7 mice 

in each group. 
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3.3.5 SK1-I reduces S1P levels in lung and in circulation in mast cell dependent 

airway inflammation  

It has previously been shown that S1P levels are increased in BAL fluid of 

asthmatics after ragweed challenge [67]. Therefore, it was of interest to determine changes 

in S1P levels following OVA challenge and the effects of SphK1 inhibition.  Indeed, levels 

of S1P were significantly increased in both lung and serum after OVA challenge (Figure 

34A, 35A), whereas dihydro-S1P, which is present at much lower levels, was elevated only 

in the serum (Figure 35A). Consistent with its effect on lung inflammatory responses, 

administration of SK1-I during sensitization and challenge markedly reduced these 

elevations of S1P in both the lung and in the circulation (Figure 34A, 35A), whereas 

treatment with SK1-I only during the OVA challenge was less efficacious and only 

reduced S1P levels in the lung. Administration of SK1-I intranasally during both 

sensitization and challenge resulted in higher levels of SK1-I than when administered only 

during the challenge not only in the lung (Figure 34B) but also in the serum (Figure 35B). 

Surprisingly, however, SK1-I levels in the lungs and serum of group 1 animals were 

greater than non-OVA treated mice even though the amount of SK1-I inhaled was 

identical, suggesting that either OVA administration or the inflammation itself increased 

retention or uptake of SK1-I (Figure 34B, 35B).  
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Figure 34: Effect of SK1-I on S1P levels in lung. Mice were sensitized, challenged, and 

treated as described in Fig. 3. On day 29, lungs, were collected and levels of S1P, dihydro-

S1P (DHS1P), and SK1-I were determined by LC-ESI-MS/MS. † P< 0.05, compared to 

PBS-treated mice. * P< 0.05, compared to OVA-challenged mice. 
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Figure 35: Effect of SK1-I on S1P levels in serum. Mice were sensitized, challenged, 

and treated as described in Fig. 3. On day 29, serum was collected and levels of S1P, 

dihydro-S1P (DHS1P), and SK1-I were determined by LC-ESI-MS/MS. † P< 0.05, 

compared to PBS-treated mice. * P< 0.05, compared to OVA-challenged mice. 



127 

 

 

 

 

 

 

 



128 

3.3.6 Inhibition of SphK1 decreases cytokines and chemokines  

 Because inhibition of SphK1 has been shown to greatly reduce production of 

cytokines and chemokines secreted from activated mast cells [11, 14, 119, 127, 128], we 

next examined effect of SK1-I administration on relevant chemokine and cytokine levels in 

the BAL fluid. In agreement with previous studies (reviewed in [133]), cytokines including 

TH2-type IL-4 and IL-13, which have been implicated in the induction of AHR associated 

with allergic inflammation in the lungs, IL-5 that contributes to eosinophilia, the 

chemokines eotaxin and CCL2 which are also involved in eosinophilia and diverse types of 

inflammatory cell recruitment, respectively, were all significantly elevated in OVA 

challenged mice (Figure 36). Notably, all of these increases were greatly diminished in 

both SK1-I treatment groups. Similarly, levels of the pleiotropic cytokine IL-6 and TNF-α, 

whose release from activated mast cells is dependent on SphK1 [14, 119, 127], were 

elevated in the OVA sensitized mice and were also significantly reduced by treatment with 

SK1-I. As was observed by others [131], levels of the TH1-type cytokine IFN-γ were not 

elevated following OVA challenge.  Taken together, these data demonstrate that SphK1 is 

involved in the regulation of numerous cytokines and chemokines and thus helps to 

perpetuate pulmonary inflammation. 
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Figure 36: SK1-I reduces OVA-induced pulmonary cytokines and chemokines. Mice 

were sensitized, challenged, and treated as described in Fig. 3. On day 29, BAL fluid was 

collected and levels of the indicated cytokines and chemokines were measured by Bioplex 

assay. Data are means ± SEM from at least 7 mice in each group. * P< 0.05, compared to 

OVA-challenged mice. 
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3.3.7 Inhibition of SphK1 decreases NF-κκκκB activation in lungs of OVA challenged 

mice  

As noted above, SphK1 is required for optimal NF-κB activation and 

proinflammatory cytokine production upon FcεRI triggering of mast cells. Therefore, it 

was of interest to examine the activation of NF-κB in vivo in mast cell dependent allergic 

responses. OVA challenge induced a marked increase in staining of the p65 subunit of NF-

κB in the infiltrated inflammatory cells and bronchial epithelial cells that was nearly absent 

in unchallenged mice treated with PBS or SK1-I (Figure 37). The increase of p65 staining 

was dramatically reduced in OVA challenged mice treated with SK1-I.  Similarly, OVA 

challenge induced phosphorylation of p65 (serine 536), known to be important for its 

transcriptional activity, was decreased by SK1-I treatment (Figure 38). 
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Figure 37: Inhibition of SphK1 reduces global expression of NF-κκκκB in the lungs of 

OVA-challenged mice. Mice were sensitized, challenged, and treated as described in Fig. 

3. At day 29, lung sections were fixed and stained with anti-p65 antibody and 

photographed under light microscopy at 200x magnification. Scale bar 50 µm. 
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Figure 38: Inhibition of SphK1 attenuates activation of NF-κκκκB in the lungs of OVA-

challenged mice. Mice were sensitized, challenged, and treated as described in Fig. 3. At 

day 29, lung sections were homogenized and equal amounts of proteins were analyzed by 

immunoblotting with anti-p-p65 antibody. Blots were stripped and blotted with p65 

antibody to demonstrate equal loading and transfer. 
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3.4 DISCUSSION 

S1P has emerged as an important regulator of mast cell effector functions and 

pathogenesis of allergic disease [116, 121]. S1P produced in allergically-stimulated mast 

cells is involved in their degranulation, cytokine and chemokine production, and migration 

towards sites of inflammation. Here we have shown that specifically inhibiting SphK1 with 

SK1-I effectively attenuated degranulation of both human and murine mast cells and also 

inhibited secretion of cytokines and chemokines that contribute to the pathophysiology of 

allergic disease. Our results support the notion that SphK1 is the key SphK isoenzyme 

involved in FcεRI mediated mast cell activation. Surprisingly however, BMMCs derived 

from SphK1 knockout mice had normal responses whereas silencing SphK1 markedly 

impaired BMMC functions [119], leading to the suggestion that this is due to a 

compensation mechanism during development of the mice with a deletion of this important 

gene [119].  

TNF-α and IL-6 expression in response to FcεRI ligation is strictly dependent on 

NF-κB [134]. Indeed, we found that inhibition of SphK1 nearly abolished antigen-induced 

phosphorylation of both IKK and IkBα, key players in the NF-κB pathway, and secretion 

of these proinflammatory cytokines, suggesting SphK1 is also important for NF-κB 

activation downstream of FcεRI crosslinking. Similar effects were found by 

downregulation of SphK1, but not SphK2, in BMMC [119]. 

 S1P levels are elevated in human asthmatics [67] and recent studies have 

implicated S1P and SphK1 in the pathogenesis of chronic asthma based on animal models 

of allergic airway inflammation [117, 127-129, 135, 136]. In mice, the administration of 
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S1P aggravates antigen-induced airway inflammation [117] and bronchial 

hyperresponsiveness [136]. Conversely, treatment of OVA challenged mice with a pan 

SphK inhibitor or with siRNA targeted to SphK1 reduced pulmonary infiltration of 

inflammatory cells, eosinophilia, cytokine and chemokine secretion, and AHR [127, 135]. 

In contrast, although SphK1 deficiency in mice decreased allergen-induced airway 

inflammation surprisingly however it increased pulmonary vascular hyperresponsiveness 

[128]. Moreover, treatment of OVA challenged mice with SKI-II, another SphK1 inhibitor, 

ameliorated bronchial smooth muscle hyperresponsiveness, yet had no effect on other 

features of airway inflammation [129]. Some of these apparent controversies regarding the 

roles of S1P and SphK1 in various features of mouse models of asthma probably reflect the 

pleiotropic actions of S1P in immune regulation and its diverse roles in many types of 

immune cells in addition to the regulation of the effector functions of mast cells. 

Furthermore, the majority of these reports utilized an allergic model with alum as an 

adjuvant, which can itself enhance TH2 responses and thus mask important functions of 

mast cells [137].  

 Using a murine model of allergic asthma that is strictly mast cell-dependent [122, 

131], we found that inhibition of SphK1 suppressed development of AHR, chronic 

inflammation including infiltration of eosinophils, and airway epithelial goblet cell 

hyperplasia. This suppressive action of SK1-I is consistent with previous findings that 

SphK1 expression is enhanced by OVA challenge [70], particularly around bronchial 

epithelial walls [135], and that S1P is important for recruitment of inflammatory cells, 

including mast cells, lymphocytes, and eosinophils to sites of inflammation (reviewed in 
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[87, 116]) and has also been implicated in production of MUC5AC and in goblet cell 

hyperplasia [135, 138]. SK1-I also suppressed OVA-induced secretion of the TH2 

cytokines, IL-4, IL-5, and IL-13, and the chemokines, eotaxin and CCL2, that orchestrate 

the inflammatory response in chronic asthma. Furthermore, inhibition of SphK1 with SK1-

I suppressed the pro-inflammatory cytokines TNF-α and IL-6 that amplify inflammation, 

probably by inhibition of the activation of NF-κB. In this regard, intracellular S1P 

produced by SphK1 has recently been implicated as a critical regulator of NF-κB either as 

a required cofactor for the K63-linked polyubiquitylation of RIP1 by TRAF2 [18], a key 

step leading to activation of NF-kB, or for activation of protein kinase Cδ (PKCδ), which 

promotes IκB kinase and NF-κB activation [118].  

 Interestingly, SK1-I was effective even when only administered during the OVA 

challenge, which has therapeutic implications for treatment of allergic patients.  It is likely 

that SK1-I was so effective at reducing lung inflammation because it is water soluble and 

could be administered intranasally. This maintained the SK1-I at a high enough 

concentration in the lungs to inhibit SphK1 and S1P production. Moreover, we 

demonstrated that inhalation of SK1-I not only prevented the OVA-induced increase in 

S1P levels in the lungs but also in the circulation. Therefore, modulating the production of 

S1P by specific targeting of SphK1 deserves consideration as a potential therapeutic 

approach to control chronic airway diseases and other mast cell-mediated allergic 

reactions. 
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CHAPTER 4: CONCLUSIONS 

 

4.1 S1P modulates immune responses 

S1P is an important regulator of mast cell functions, including degranulation, 

mediator production and migration towards sites of inflammation [116]. In these studies, 

we demonstrate that chronic exposure to S1P can influence the differentiation and 

responsiveness of mast cells. These hyperresponsive mast cells express chymase and 

tryptase, important intragranular proteases thought to play both pro-inflammatory 

(promoting bronchial hyperresponsiveness and influx of neutrophils and eosinophils, 

degrading proteins that regulate coagulation, and activating proteins that modulate 

extracellular matrix remodeling) and anti-inflammatory roles (degrading pro-inflammatory 

cytokines and chemokines, inducing vasoconstriction by cleavage of angiotensin I, 

targeting extracellular matrix proteins, inactivating toxic peptidases) in asthma and allergic 

rhinitis depending on the tissue and context in which they are released [5, 139]. Thus, 

changes in S1P levels can have drastic effects in the surrounding tissue. 

Normally, levels of S1P in tissues or inside cells remains low due to its degradation 

and/or dephosphorylation by S1P lyase and S1P phosphatases, respectively [58, 140, 141]. 

However, dysregulation or local increases in S1P levels occur in pathophysiological 

conditions such as acute inflammation [142], asthma [67], and rheumatism [143, 144], and 

therefore may alter immune responses. The mechanisms by which S1P levels are elevated 

are not fully understood, but mast cells and red blood cells are likely sources. Indeed, mast 

cell numbers are known to increase significantly in tissues during inflammatory conditions 
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such as in the joints with arthritis or in the lungs of patients with allergic asthma [66, 145, 

146]. In asthmatics, this is accompanied by an increase in circulating progenitor cells 

[147]. 

 During early stages of inflammation, increases in S1P correlate with mast cell 

degranulation [13]. Once activated, mast cells secrete S1P into the surroundings, which can 

signal in an autocrine and paracrine fashion to induce cytokine and chemokine release and 

promote migration to target sites. Maintenance of S1P gradients established within the 

tissues are critical for recruitment of progenitors, homing of lymphocytes, local S1P 

production, and regulation of S1P receptors in the area in order to mount an appropriate 

response [8, 11, 32, 71, 148-150]. S1P can also shift T-cell responses to favor TH2, which 

orchestrate inflammation in asthma, over TH1 responses. Indeed, we found that inhibition 

of SphK1 drastically reduced TH2 cytokines in the BAL fluid of OVA challenged mice 

(Figure 36) Additionally, S1P2 expression is enhanced during mast cell activation and S1P 

via S1P2 further enhances degranulation and induces vascular permeability [40, 151, 152]. 

In later, resolving stages of inflammation, S1P may act to dampen inflammation and 

restore homeostasis. S1P regulates the development of mast cells from recruited 

progenitors, shifting their phenotype and thus their intragranular protease composition. 

Upon release, these newly expressed proteases can begin to cleave pro-inflammatory 

cytokines such as IL-6 and IL-13, as well as SCF [139], a mast cell chemotactic factor 

[153-155] and the primary growth factor required for human mast cell differentiation. 

Furthermore, chymase can regulate blood pressure by cleaving angiotensin I to produce 

angiotensin II, a factor that induces vasoconstriction [139]. Engagement of S1P1 on 
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endothelial cells can begin to enhance and preserve vascular integrity [39, 151, 156, 157], 

thereby helping to restore and maintain blood pressure.  

The importance of S1P now extends well beyond the regulation of mast cell 

functions to the regulation of other immune cells and the surrounding environment. 

Physiologically, S1P production, degradation, and release are intricately controlled, as is 

regulation of its multiple cell surface receptors and mode of action (intracellular versus 

extracellular). Changes in S1P levels are therefore critical in modulating immune responses 

and these events allow for plasticity in response to this single molecule, depending on the 

type of cell, tissue, or surrounding environment.  

 

4.2 SphK1 versus SphK2 

Numerous S1P mediated events are relevant to the pathophysiology of allergic 

responses, asthma and the exacerbated anaphylactic reaction. Yet, controversies still 

surround the importance of SphK1 versus SphK2 in various features of mast cell-mediated 

responses. The differences observed (discussed previously) between SphK-deficient 

BMMCs or fetal-liver derived mast cells, mice with genetic deletions, and RNAi silencing 

may simply be due to alterations in mast cell phenotypes. Mast cell phenotype varies 

depending on the environment they populate or on experimental conditions employed, thus 

mast cells differentiated in vitro may not reflect the phenotype of mast cells in vivo. These 

differences may also be due to off-target effects of siRNA or possible compensatory 

mechanisms present in SphK-deficient mice. Use of siRNA in vivo or SphK-deficient mice 

affects multiple cell types, suggesting responses seen in these studies may not be attributed 
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to mast cells alone. Moreover, genetic deletion of SphKs may induce epigenetic changes, 

resulting in differences in mast cell phenotpyes, in mast cells or bone marrow progenitors 

themselves, or in cellular distribution and localization of SphKs and S1P in these cells or 

in the surrounding environment. Location of S1P production may be the major determinant 

of the resulting phenotype, its mode of action, and its pleiotropic roles in various types of 

immune cells. Regardless of these unresolved issues, overall these and other studies 

demonstrate a critical role for SphKs in mast cell-mediated allergic responses.  

 

4.3 SphK inhibitors: new targeted anti-allergic therapies? 

Current therapeutic strategies for allergic diseases are primarily targeted against 

mast cell mediators intending to suppress symptoms that are consequences of airway 

inflammation and hyperresponsiveness. Moreover, they are often of poor efficacy and 

associated with undesirable side effects. Complete allergen avoidance is very difficult to 

achieve. Desensitizing immunotherapy has been performed for many years, with doubtful 

efficacy in many cases and has occasionally even been hazardous. Thus, new approaches 

for the development of novel inhibitors of allergic diseases have great potential. 

Modulating the production of S1P and/or specifically targeting its receptors are attractive 

novel approaches for the management of mast cell-mediated allergic diseases. Promising 

observations in preclinical models of allergic disease provide proof of concept for the 

importance of SphKs and production of S1P as targets in inflammatory responses. For 

example, increased levels of proinflammatory cytokines in the peritoneal cavity of mice 

administered C5a were substantially decreased by treatment with the pan SphK inhibitor, 
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N,N-dimethylsphingosine (DMS) [106]. This was accompanied by suppression of C5a-

induced neutropenic responses, as well as by increased vascular permeability [106]. 

Moreover, C5a activates SphK in human neutrophils and the SphK inhibitor DMS largely 

blocked C5a-stimulated calcium mobilization, chemotaxis and cytokine production [47]. 

However, although an in vivo model of bacterial lung infection revealed an accelerated 

progression of disease in SphK2 but not SphK1-knockout mice, effector functions of 

SphK1- or SphK2-deficient neutrophils and their capacity to kill bacteria were normal 

[48]. 

A recent study by Lai et al. utilized the pan-SphK inhibitor DMS and 

downregulation of SphK1 expression to demonstrate that both effectively suppressed 

airway eosinophilia, pulmonary inflammation and secretion of TH2 cytokines and 

chemokines, and markedly attenuated OVA-induced AHR in sensitized mice [127]. Serum 

levels of OVA-specific IgE were reduced by SphK1 siRNA, suggesting that production of 

S1P may regulate B-cell trafficking and IgE production. In another study, OVA inhalation 

caused S1P release into bronchial alveolar lavage (BAL) and expression of SphK1 around 

bronchial epithelial walls. Inhalation of pan-SphK inhibitors decreased S1P in BAL, 

accompanied by decreased eosinophil infiltration and eotaxin expression. Furthermore, 

bronchial hyperresponsiveness to inhaled methacholine and goblet cell hyperplasia were 

improved by SphK inhibitors [135]. 
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4.4 Concluding remarks and future perspective 

Although S1P has been implicated as an important component of the regulation of 

immune responses, there are still many questions waiting to be answered. The lack of 

SphK isozyme-specific inhibitors has made it challenging to assign specific functions to 

SphK1 and SphK2. However, the recent development and availability of specific S1P 

receptor agonists and antagonists, as well as our water soluble, isozyme specific SK1-I 

inhibitor, will likely encourage more preclinical and clinical trials to target effects 

mediated by S1P. In conclusion, the relevance of mast cells, S1P, SphKs and S1P receptors 

for the maintenance of normal physiology, or in disease states, constitutes an outstanding 

and intricate combination of players important for immune responses at the cellular, 

signaling and molecular levels. The need for specific SphK inhibitors is driving the 

development of new compounds by many pharmaceutical companies. Combining 

knowledge gained from molecular strategies and conditional gene knockouts to interfere 

with expression of enzymes that regulate S1P levels with pharmacological approaches will 

surely aid in this quest. 
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