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Abstract 
 
 

MULTIVARIATE STEEPEST ASCENT USING THE BAYESIAN RELIABILITY 
FUNCTION 
 
By Jeffrey Norman Fuerte, Jr. M.S. 
 
A thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science at Virginia Commonwealth University.  

 
Virginia Commonwealth University, 2010.  

 
Major Director: Dr. David Edwards, Assistant Professor, Department of Statistical 

Science and Operations Research 
  

The path of steepest ascent can used to optimize a response in an experiment, but 
problems can occur with multiple responses.  Past approaches to this issue such as Del 
Castillo’s overlap of confidence cones and Mee and Xiao’s Pareto Optimality, have not 
considered the correlations of the responses or parameter uncertainty.  We propose a new 
method using the Bayesian reliability to calculate this direction.  We utilize this method 
with four examples: a 2 factor, 2-response experiment where the paths of steepest ascent 
are similar, ensuring our results match Del Castillo’s and Mee and Xiao’s; a 2 factor, 2-
response experiment with disparate paths of steepest ascent illustrating the importance of 
the Bayesian reliability; two simulation examples, showing parameter uncertainty is 
considered; and a 5 factor, 2-response experiment proving this method is not dimensional 
limited. With a Bayesian reliable point, a direction in multivariate steepest ascent can be 
found. 
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CHAPTER 1 Introduction 
 
 

In 1951, Box and Wilson proposed a revolutionary new way of thinking about industrial 

experiments, which would later pave the way for response surface methodology.  One 

usually views response surface methodology in the context of design of experiments 

(DOE), model fitting, and process optimization.  By introducing a chronological 

approach to experiments, including screening, region seeking (as well as steepest ascent), 

product optimization and other concepts, Box and Wilson seamlessly opened a new 

research field, which is continuing to evolve today.  The attention drawn to response 

surface methodology has been very intense in the last 20-25 years.  Progress in this 

interval has surpassed that of the previous 20-25 years, but much of this had to do with 

computing capabilities lagging behind until the 1980's.  The approach described by Box 

and Wilson involves a set of mathematical techniques consisting of designed experiments 

and basic optimization.  An experimenter is trying to find the optimal conditions for a set 

of input factors by using the designed experiment and analyzing the results.  By 

controlling some of the factors, the experimenter is able to manipulate the other inputs of 

interest to determine which combination of factors will yield the preferred result.  The 

experimenter is usually trying to either maximize or minimize this response.  For 

instance, a cost response and a yield response could be studied for the purpose of finding 

optimum operating conditions that reduce the cost and increase the yield simultaneously.  
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Similarly, a chemist may be interested in what percentages of compounds produce the 

optimal solution, minimizing the acid content, while maximizing the base content. 

In most response surface designs the true relationship between the response and 

the explanatory variables is not known.  Because of this, the first step in response surface 

methodology is to find an adequate approximation of this relationship, called the first-

order model, using estimates of the true parameters that define the true relationship.  This 

model represents only the linear relationship between the data; thus, it contains only main 

effects.  The least squares method is then implemented to approximate the parameters in 

the model and to screen the variables, eliminating the factors that are not significant.  

Usually, response surface methodology is a sequential approach; more than one 

experiment must be carried out, using the information gathered in the previous 

experiment.  By using the first order model, one can guide the experimenter swiftly and 

efficiently along a path of improvement in the direction of the optimum, using a step 

approach.  Thus, the first order model is represented by  

     (1) 

In this equation, ŷ  is the estimated response variable, 0β̂  is the estimate corresponding 

to the intercept, ˆ
kβ  is the estimate for the kth factor, and ix  corresponds to the point of 

interest in the design region.  Taking the partial derivatives with respect to the xis gives 

us: 

 
 

           (2)  
 
 
This yields the direction of steepest ascent, 
 

          (3) 

0 1 1 2 2
ˆ ˆ ˆ ˆˆ ... k ky x x xβ β β β= + + + +

ˆ ˆ   1, 2,....,i
i

dy
i k

dx
β= =

1̂
ˆ( ,... )   0kλ β β λ >
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Therefore, the points chosen along the path of steepest ascent are proportional to the first-

order model parameter estimates.  Once improvements in the response are no longer seen 

along the path of steepest ascent, the experimenter then performs another design, and 

repeats the path of steepest ascent if necessary.   

This process is simple when there is only one response being optimized.  The path 

is easy to obtain and easy to implement.  However, in most situations there is more than 

one response that needs to be optimized.  A simple approach to optimizing simultaneous 

responses is to build an appropriate response surface model for each response and then 

attempt to find a set of operating conditions that achieves the target value for each 

response, or at least maintains them in a desired range.  One way the experimenter might 

determine this is to build a contour plot for each response and overlay them, deciding 

where the overlap of the contour plots occurs and setting the operating conditions within 

that overlap.  The responses are guaranteed to be optimized based on the factor settings in 

the region where this overlap occurs. However, this approach is not appropriate for cases 

with more than three responses.  An alternative to setting target values for each response 

is constrained optimization, and usually nonlinear programming techniques are utilized to 

decide the optima. 

Several methods have been proposed to find the path of steepest ascent when 

there is more than one response, but most do not consider the correlation between the 

responses of future predictions.  Therefore, instead of using past techniques, we propose a 

new way to examine multiple response steepest ascents using a Bayesian technique: the 

posterior predictive reliability function, which does take into account the correlations of 

future predictions, as well as parameter uncertainty.  When looking at these two issues, it 
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is important to know why these can be harmful.  Del Castillo (2007) explains further, 

stating that classical methods provide a single point estimate where the process should be 

run, but this neglects the variability of the parameter estimates.  When a different 

experiment is run, it is possible that a different optimum could be obtained.  Along the 

same lines, a confidence region may be created, but this region cannot be interpreted as a 

region that contains the optimum with some probability.  This is merely interpreted in the 

classical sense of being a region that would results after repeated sampling and 

optimization.  Also, one of the central problems in multivariate optimization is that the 

responses may be correlated.  In the classical approach, the correlation can be considered 

when fitting the models, but not at the optimization step.  The Bayesian predictive 

approach considers the whole multivariate distribution of the responses, so it takes into 

account the correlation of the responses at the optimization step.  These two qualities are 

especially important in quality assessment.  Understanding the variability of the 

responses has been stressed by Myers (1999) as a highly significant issue for 

practitioners.   

Chapter 2 explores past literature concerning multiple response optimization, as 

well as multivariate steepest ascent.  The reliability function and how it is applied is 

examined in Chapter 3.  Chapter 4 looks at five examples using the reliability function to 

calculate the path of steepest ascent with multiple responses:  two simulation examples 

and three practical examples.  Lastly, Chapter 5 summarizes the conclusions from the 

examples and shows the reliability function’s advantages and future research which can 

be done. 
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CHAPTER 2 Literature Review 
 
 

In this section, we give a background to techniques that have been previously utilized for 

multiple response optimization.  According to Myers and Montgomery (2002), the main 

technique to solve this problem is to overlay contour plots to locate the best region to 

operate is for all responses.  Contour plots provide an illustration of the behavior of the 

multivariate system, which can provide valuable information and added insight into the 

problem of optimization.  This technique works best when there are only two factors and 

two responses.  However, as the number of factors and responses increases, contour plots 

become extremely hard to read, and misinterpretation becomes increasingly likely.  Also, 

contour plots graphically represent point estimates of the response value.  Random 

sampling error is not represented in the plot, and this problem increases exponentially as 

the number of responses increases.  As a result, other methods must be considered.  To 

combat the problem of dimensionality, researchers have employed various approaches. 

When there are only two responses, Myers and Carter (1973) introduced the dual 

responses approach, where two responses are classified as primary and secondary.  This 

approach attempts to maximize (or minimize) the primary response while placing a 

constraint on the secondary response.  That is, 

 

         (4) 

         

sec

Min  (or Max) 

Subject to: 

where  is a specified value.

primaryX

ondary

y

y ε

ε

=
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Various values of the secondary response are considered and the best operating condition 

is the one where the primary response is maximized (or minimized) based on those 

selected secondary responses.  Biles (1975) generalized this procedure, optimizing a 

primary response function while keeping secondary responses in specified ranges.  His 

procedure employs a modified version of Box and Wilson's original steepest ascent.  On 

the other hand, by constraining the secondary response, the experimenter might miss 

other possible operating conditions that are superior but were not considered; thus, a true 

optimum may not be found. 

Response surface optimization procedures use the estimates of the gradient of the 

surface with respect to each of the control variables.  The path of steepest ascent is a 

function of the measurement scales employed for each of the factors.  What the 

experimenter selects for the ranges of each control variable vastly affects the estimates 

and thus the path of steepest ascent.  Because of this, much discussion has been 

documented on what scales to use in order to predict future response.  Heller and Staats 

(1973) dubbed their method "cheapest ascent" to factor in cost of future measurement, as 

well as time.  They describe their method as follows:  1) running experiments at every 

point on a multidimensional grid, with the range determined by the cost of 

experimentation, estimates of the changes in operating conditions, and constraints on the 

variables or responses, 2) the resulting data are analyzed to locate the grid point having 

the best performance (maximizing or minimizing the response), and 3) if this point is on 

the boundary of the experimental grid, and if the estimated gradient is high enough, 

further experiments may be run; otherwise, the inputs are set to this point.  This method 
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does not take into account the uncertainty of the parameter estimates, and thus could lead 

to incorrect future predictions.  

Harrington (1965) introduced an analytic technique based on a desirability 

function.  Each response is transformed to a desirability value, f, ranging between 0 and 

1, such that as f increases, the desirability of the corresponding response increases.  

Taking the individual desirability values and combining them into one value, F (the 

geometric mean), Harrington gathered an overall measure for the quality of the system.  

This reduces the multivariate problem into a univariate one.   

Derringer and Suich (1980) extended this approach by introducing more general 

transformations of the responses into desirability values.  Derringer and Suich’s method 

allows for the use of a geometric mean of desirabilities that are defined according to 

power functions that are based on the impact priorities of the experiments regarding 

which specifications on the responses are the "tightest."  They propose converting each 

response variable into an individual desirability function that varies from zero to one 

where: 

        (5) 

 

Going further, depending on the response, one could have three potential desirability 

functions: 

• Larger-the-better response: 
ˆ0 if 

ˆ
ˆ if 

ˆ1 if 

s

i

y L

y L
d L y H

H L
y H

<


− = ≤ ≤ − 
 >

          (6) 

 
• Smaller-the-better response: 

0 if response is outside of target
1 if response is at target            

D


= 
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o 

ˆ0 if 

ˆ
ˆ if 

ˆ1 if 

s

i

y H

H y
d L y H

H L
y L

>


− = ≤ ≤ − 
 <

                                                  (7) 

 
• Target is best: 

o 

ˆ0 if 

ˆ
ˆ if 

ˆ
ˆ if 

ˆ0 
ˆ1 if 

s

s

i

y H

y L
L y T

T L

H y
d T y H

H T
y L

y T

>


−  ≤ ≤  − 

 − = ≤ ≤ − 
 <


=



                (8) 

In these equations, L is the lowest possible accepted response, H corresponds to the 

highest possible accepted response, and T is the target value.  The desirability function 

becomes linear when s=1.  When s > 1, more emphasis is placed on being close to the 

target value, whereas when 0 < s < 1, less importance is stressed on being near the target 

value. The individual desirability scores are then combined into an "overall" desirability: 

 
          (9) 

 

The design variables are then chosen to maximize this overall desirability.  This 

technique involves a compromise between important responses, as an experimenter is 

usually not able to maximize the desirability function without the cost of some of the 

other responses.  Some advantages of this approach are that optimization becomes 

simpler after the transformations, making the functions flexible, and theoretical optimal 

solutions can be stated.  On the other hand, disadvantages are present, such as the 

statistical properties of the desirability function are unknown, and the desirability model 

1/

1

ˆ
mm

i
i

D d
=

 
=  
 
∏
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used in the approach is assumed to be correct.  Also, Myers (1999) states another 

disadvantage concerning desirability functions:  "It is tempting to treat the optima or 

constrained optima as if they were based on deterministic functions.  One must always 

remember that optima are stochastic in nature and use of [any desirability function] 

should be followed by rather extensive confirmatory experiments."  He warns that all 

response surface models involve predicted values that have considerable variance, which 

causes the optima to have unknown variance.  Another disadvantage is that the 

importance of each response is imperative to know.  If an experimenter makes an 

incorrect judgment on the values in the desirability function, this could lead to poor 

predictions in the future.  Along these same lines, this approach does not take into 

account the variance and correlation structures of the responses.  By ignoring these 

correlations, the experimenter alters the overall desirability, which may harm the 

determination of optimum operating conditions. 

Khuri and Conlon (1981) utilize polynomial regression functions to handle the 

multivariate optimization problem.  They assume that all response functions depend on 

the input variables, and these functions can be represented by polynomial regression 

models of the same degree within a certain region of interest.  By removing linear 

dependencies first, and then obtaining individual optima of the estimated responses, an 

"ideal" optimum can be set where all individual optima are achieved.  Using a distance 

function, the deviation from the "ideal" optimum can be calculated, and ultimately 

minimized.  This minimized distance function, expressible in terms of the estimated 

responses and their covariance structure, can arrive at a set of operating conditions 

suitable for a "compromised" optimum.  Vining (1998) later established that the Khuri 
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and Conlon procedure is a special case of a weighted squared error loss function, and 

showed several other plausible weighting schemes.  However, the uncertainty of the 

parameter estimates is not considered, and this could lead to future predictions that are 

not suitable. 

Another approach is to use loss functions to provide a conceptual framework for 

combining different criteria into a single objective function.  This represents the "total 

loss to society" from departures of a vector of criteria from their target values.  Taguchi 

(1986) introduced the loss function to model the concept that any departure from 

intended targets causes economic loss.  This loss function describes the loss arising from 

deviations from a target as a result of random variation and systematic errors.  The total 

loss to society due to deviation in all the product characteristics may be taken as the sum 

of those due to the individual characteristics.  The first designed experiments using loss 

functions for multivariate optimization were conducted in 1984.  Since then, well over 

500 sets of loss functions have been undertaken for both process development and 

manufacturing support.  For very difficult problems, loss functions have proven to be 

powerful and flexible, because they provide a compact unified approach to compromising 

even large numbers with conflicting objectives.  The global quality loss function is 

defined as follows: 

          (10) 

 

where Vr is a random variable that measured the response at criteria r, Tr is the target 

value of Vr, and Wr is the weight factors which scale the importance of the different 

criteria.  The sum is taken over all the responses included in system Rg.  This formula 

2

1

( )
gR

r r r
r

GQL W V T
=

= −∑
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describes the weighted distance of the measured response from the target at each criteria, 

r.  By taking the sum over all the responses, we get an overall loss function. 

Ames et Al. (1997) recommends another loss function which includes only 

response polynomials and targets and does not include random errors because the errors 

are small compared to the errors in hitting the targets.  His equation models Vr as a 

function of the inputs: 

 

   
  

Minimizing these functions with respect to process inputs locates the best 

operating conditions.  However, this method requires the experimenter to compromise by 

putting all the multiple responses into one function.  Sometimes this cannot be done 

without causing a detriment to the responses so other methods need to be considered. 

Tang and Xu (2002) look at the approach of a dual response optimization in terms 

of the mean and the variance.  In the past, two models have been formulated, one for the 

mean and one for the standard deviation or variance: 

2
0

1 1

ˆ                              (12)
k k k

i i ii i ij i j
i i i j

y a a x a x a x xµ
= = <

= + + +∑ ∑ ∑∑  

2
0

1 1

ˆ                               (13)
k k k

i i ii i ij i j
i i i j

y b b x b x b x xσ
= = <

= + + +∑ ∑ ∑∑  

These equations are then optimized simultaneously in a region of interest.  However, 

Tang and Xu propose a unified formula: 

  

2 2

*

*

2

Min 

ˆsubject to: ( )                                          (14)

ˆ                 ( )

and either '  or l u

y x T

y x T

x x r x x x
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µ µ µ µ

σ σ σ σ
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ω δ
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+
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2
1 2

1

( ( , ...)) ) .                            (11)
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r
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=
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The objective function is the function to be minimized, where δµ and δσ are unrestricted 

scalar variables, so these can be positive or negative, including the mean and variance of 

the response variable, ωµ , ωσ (≥ 0) are user defined weights, and T* is the ideal response 

mean and standard deviation associated with a set of response functions.  Using this 

unified formula, Tang and Xu attempt to minimize this function.  However, this approach 

only considers the mean and variance for the two responses.  If the responses seeking to 

be optimized are not the mean and variance, then the formulation proposed by Tang and 

Xu does not optimize the responses.  

The preceding techniques are for the problem of multivariate optimization when 

looking at the second order model i.e., the main effects, interactions, and quadratics that 

are significant.  However, our proposed method takes the methodology a step back, 

merely looking at just the model with the main effects and interactions.  Here we look at 

the research that has been involved in only steepest ascent and the applications to our 

method. 

Del Castillo (1996) implements a method to deal with multiple response steepest 

ascent, proposing the use of confidence regions (if the responses are quadratic) or 

confidence cones (if the responses are linear) to analyze multiresponse processes.  The 

formula for finding the confidence region is defined as: 

2

12 2
, 1,

21

1

1
b

k

i ik
i

i b k vk
i

i
i

b X
b s F

k X
α

=
−

=

=

 
 
 − ≤
−

∑
∑

∑
  (15) 
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where 2
bs  = SSerror Cjj /(n-p), Cjj is the jth diagonal element of the (X'X)-1, and X is the 

model matrix of the experiment.  The direction the formula generates lies within the 

100(1-α)% confidence cone of steepest ascent if 

1

0
k

i i
i

b x
=

>∑                (16) 

or inside the 100(1- α) confidence cone of steepest descent if 

1

0
k

i i
i

b x
=

<∑     (17) 

The fraction of directions excluded by the confidence cone (see Box and Draper (1987)) 

is given by: 

1/2
2

1
1 2

, 1,

1 1 ( 1)

k

i
i

k
b k n p

b
T k

s Fα
φ =

−
− −

 
 
 − = − − −
 
 
 

∑
  (18) 

where Tk-1 denotes the Student's t distribution with k-1 degrees of freedom. 

The confidence region is a cone when there are two or three factors and a hyper 

cone if more than three variables with the apex at the design origin and all points a unit 

distance from the origin satisfying the inequality.  By first finding a confidence region 

around the direction that would maximize the responses, rather than just a path, the 

experimenter is able to decide where the cones overlap.  This overlap represents the 

compromise direction in which the experimenter can proceed, knowing that the 

experimenter is achieving the goal of optimizing the responses.  The experimenter can 

then operate the sequential experiments in that overlap of the optimum of the responses 

and continue analyzing as if there was only one response.  As described by Del Castillo, 

his "approach consists in finding operating points x that simultaneously satisfy 
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constraints [of the response variables]."  Once the best direction is found, sequential 

experimentation is continued and the process may be repeated if need be.  Del Castillo 

(1993) utilizes nonlinear programming techniques to determine operating conditions that 

are in the overlap of the confidence cones of the responses.  Del Castillo proposes solving 

the nonlinear programming problem: 

           (19)   

    

           (20) 

 

           (21) 

          
  (22) 
 
  (23) 
  (24) 

          

where xc represents the sample point and xl and xu denote vectors of lower and upper 

bounds respectively.  This model attempts to find the farthest point from the current 

operating point x0 such that it lies within the 100(1-α)% confidence cones of maximum 

improvement of all responses j and within the experimental region.  Del Castillo 

recommends using 0.01 ≤ α ≤ 0.1 for the "primary" responses and 0.001 ≤ α ≤ 0.01 for 

the "secondary" responses, providing wider confidence cones for the secondary 

responses.  If the equations above have no feasible solution, this indicates the experiment 

contains disparate paths of steepest ascent.  When this happens Del Castillo recommends 

using a different non linear program which includes some subjective considerations and 
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process knowledge to define priorities among the responses.  For example, if a subset of 

responses P are most important, Del Castillo advises using: 

 

           (25) 

 

 

 
           (26) 
 

 

           (27) 

           (28) 

 

           (29) 
           (30) 
 

where d1,d2, …, dr represent the estimated direction of maximum improvement for each 

linear response.   A weighted sum of the cosines of the angles between the desired vector 

x and each individual direction of maximum improvement is given in (25).  The weights 

are given by the fraction of directions excluded by each confidence cone.  In other words, 

the solution to the system of equations is a compromise of the paths of steepest ascent, 

weighted by the percentage of directions excluded by each cone.  More weight is given to 

the primary responses as their cones are smaller and exclude more directions.  Therefore, 

the result is inside the primary responses' confidence cones. 
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Del Castillo's method is adequate for finding a compromise path of steepest 

ascent when the directions are not disparate.  Del Castillo finds the path that is the best 

compromise, especially when the cones overlap.  However, if we consider disparate 

directions, the chosen path will be closer to the path for the "primary" response.  What if 

the best compromise path for the true optimum lies outside the "primary" responses' 

confidence cone?  This may present problems for future predictions. 

 Mee and Xiao (2008) (referred to from now on as MX) suggest a different method 

when tackling the problem of multivariate steepest ascent.  MX illustrate their method on 

an example with three responses and five factors, focusing on identifying useful 

compromise directions, especially for cases where the paths of steepest ascent are widely 

disparate.  The example the authors choose to motivate their method typifies this type of 

discrepancy.  First, MX prove that when considering compromise directions only convex 

combinations of the paths of steepest ascent should be considered:   

 1. Every nonnegative linear combination x  is Pareto Optimal 

                   among the set of vectors ||x||  ||x || .
c

c

Theorem

≤
 

The theorem infers that MX only considered paths that compromised all responses; thus, 

only the compromised path of steepest ascent that lies in the angle created by the original 

paths of steepest ascent were considered.  Considering only convex combinations of the 

paths allows the researchers to construct several graphs that make the choice of a suitable 

compromise direction easy.   

 To find the angle between two paths of steepest ascent, Mee and Xiao employ: 

'

'
'

, ' '
' '

( )
cos( ) ,

( )( )j j

j j
b b

j j j j

b b

b b b b
θ =    (31) 
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Where jb  represents the vector of ˆ ' sβ for the jth response and 'jb  represents the ˆ ' sβ  for 

the j’th response.  Formula (31) directly relates to the correlation between the predicted 

values for the two responses at the design points.  In fact, for any coded design D such 

that 1’D=0 and D’D=SxxI, the cosine and the correlation will be equal.  When calculating 

the cosine of the angle between the paths of steepest ascent, any angle that is greater than 

90o  will be disparate enough that the compromise direction will not be within the 

confidence cones that Del Castillo proposed.  

 Mee and Xiao use Pareto Optimal points to locate the desired compromise path of 

steepest ascent.  To calculate a Pareto Optimal point, MX considered only convex 

combinations of the paths.  First, MX let 1ˆ ˆ ˆ( ) ( ( ),..., ( )) 'jy x y x y x=  for any number of j 

responses, be the predicted responses at a given vector x and define the 

norm 1/2|| || ( ' )x x x= .  The vector ˆ( )POy x is said to be Pareto Optimal if for every vector x 

such that || ||   || ||POx x≤  and ˆ ˆ( ) ( )POy x y x≠ , there exists a j such that ˆ ( )j POy x  is 

preferred over ˆ ( )jy x .  MX also proved that every nonnegative linear combination cx  is 

PO among the set of vectors || ||   || ||cx x≤ .  Thus, by only considering convex 

combinations of the paths of steepest ascent, a simplification is made and the search is 

lessened greatly.  Once the PO points are calculated, the experimenter can create a Pareto 

Optimal plot, which includes all of the PO points a set radius from the design center, as 

well as the predicted values for the factorial design points.  In the PO plot, which can 

only be used when looking at two responses, one response is on the x-axis and the other 

response is on the y-axis.  In the plot, each point represents the x-values plugged into the 
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estimated first-order model.  This gives the experimenter an idea of where the best trade 

off for the responses occurs.  An example of this is given later in the thesis.   

Similarly, a “paths of improvement” region is found, and the set of vectors x, such 

that x is contained in the paths of improvement region for all j responses is 

1
{ : ' / || ||  ( ,..., )}

jc x x T x v vα α= >� , where T denotes k x J matrix of t statistics; i.e. each 

element of β  is divided by its standard error.  From this equation, the intersection of j 

cones is determined as the solution to a system of linear inequalities. 

However, because only convex combinations are considered, the researchers 

ignore all other points.  This is important because in doing so the researchers ignore the 

variances of the predictions because these variances could be high enough that the true 

path is not a convex combination.  By not including the convex combinations of the paths 

of steepest ascent in their search, valuable information could be missed and a better 

potential “compromise” path of steepest ascent may not be found.   

Peterson (2004) makes the claim that a new method for multiple response 

optimization must be used because most past methods do not consider the correlations 

among the responses and the variability of the predictions.  Also, most approaches do not 

factor in the uncertainty of the estimates of the model parameters.  The reason these are 

important is for quality assessment.  Peterson makes an effort to investigate past 

approaches and prove why each method cannot be used to accurately make future 

predictions.  Peterson goes further to discuss why loss functions should not be used:  

“These quadratic loss function methods … do not take into account the uncertainty of the 

variance-covariance matrix of the regression model error.”  Similarly, Peterson states that 

quadratic loss functions are difficult for practitioners to grasp.  Del Castillo’s method is 
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considered inadequate as a result of having to state “primary” responses and “secondary” 

responses, as well as not addressing the correlations among the responses.  Although 

Peterson goes on to praise Chiao and Hamada’s approach for including the variance-

covariance structure of the data and simplicity of interpretation, he is quick to state that 

uncertainty of the parameters is not considered.  As a result, Peterson proposes a 

Bayesian reliability approach which takes into account the correlation structure of the 

data, the variability of the process distribution and the model parameter uncertainty.  The 

reliability function utilizes the posterior predictive distribution of the multivariate 

response to compute the probability that a future multivariate response will satisfy 

specified quality conditions. 

First, Peterson lets Y= (Y1,…,Yp)’ be the multivariate (p x 1) response vector and 

x=(x1,…,xk)’ be the (k x 1) vector of factor variables.  Creating the standard regression 

model, we have: 

( ) ,Y Bz x e= +      (32) 

Where B is a p x q matrix of regression coefficients and z(x) is a q x 1 vector for x.  The 

error is distributed as a multivariate normal with mean vector 0 and variance-covariance 

matrix ∑ .  To account for the uncertainty in the model parameters, B and∑ , the 

posterior predictive density can be used.  Using the conventional noninformitive joint 

prior for B and ∑ and the model in (32), the Bayesian predictive density for Y given 

B,∑  and the data can be attained.  Because B is proportional to a constant and ∑  is 

proportional to ( 1)/2| | p− +∑ , the joint prior for B and ∑ is relative to ( 1)/2| | p− +∑ . 

From here, we can sample from the multivariate t-distribution because the 

Bayesian predictive density for a specified x-value has this distribution with υ degrees of 

1 ˆ ˆ0.5[ ( ) '( ' )( )]
.5

1
( | , , )

| |
tr V B B X X B B

Np Y X B e
−− ∑ + − −∑ ∝

∑
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freedom, where υ=n-p-q+1 and n is the sample size.  Therefore, using the joint prior, as 

well as the joint likelihood for X, B, and ∑ : 

 

 

The posterior predictive distribution is: 

( )/2
1 ˆ ˆ( | , ) 1 ( ( )) ' ( ( ))

p

f y x data c y z x H y z x
ν

β β
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− +
 = + − − 
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Z is the q x n matrix formed by the z(xi) covariate vectors. 

Peterson easily simulates Y-values from this distribution by simulating a 

multivariate normal random variable and an independent chi-square random variable: 

1 2

ˆ( / ) ,  for 1,...,

where ~ (0, ) and ~ ( )
ˆˆ ˆand  is the  element of ( ).

j j j

th
j

Y W U j p

W MVN H U

j Bz x

ν µ

ν

µ µ

−

= + =

Χ

=

   (34) 

After sampling from this distribution, we would want to maximize the probability, p(x), 

such that: 

*

*

( ( ) | )

( ( ) | )

P D Y D x

P Q Y Q x

≥

≤
,               (35)  

where *D  and *Q are chosen by experimenter, as the desirability function and the 

quadratic loss function, respectively.  Let x0 be such that it maximizes p(x) over the 

experimental region; we know that if p(x0) is sufficiently large, x0 will provide operating 



 21

conditions for future responses which have a high probability of satisfying desired 

conditions.  Peterson suggests having a product expert or a team of experts, deciding on 

what *D  and *Q should be, depending on what response levels develop a “good” product.  

Choosing a specific point around the design region, one can then find out what the 

Bayesian reliability is, or a variety of x-points can be tested to see if further 

improvements in reliability can be obtained.  If the reliability is large, the experimenter 

can feel comfortable that future predictions will produce good responses with a high 

degree of likelihood.  Peterson then stresses that validation runs should be performed to 

double check that the statistical model for the optimal factor conditions holds.  Remedial 

work is necessary if the reliabilities are not large.  Increasing the sample size will allow 

the experimenter’s reliability to sufficiently increase when reducing process variation 

does not do so.   

Similarly, one can modify and simulate from the posterior predictive distribution 

to add more data points.  This can be done by increasing the rows of the design matrix 

and changing the degrees of freedom accordingly.  This will give the experimenter an 

idea of how much the reliability can be increased by reducing model uncertainty.  These 

ideas are akin to the “preposterior” analysis described by Raiffa and Schlaiffer (2000).   

Using simulation, one can approximate the reliability p(x) for various x-values in 

the experimental region using: 

1

1
( ) ( ( ) )

N

s
s

p x I C Y S
N =

≈ ∈∑ ,   (36) 

where N is the number of simulations, I represents the indicator function that meets the 

criteria of the predicted y value, Ys, is a member of the region of interest, S, which 

contains the target response values.  Therefore, our interest is in ( )C y S∈ .  With a small 
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number of factors, it is computationally reasonable to grid over the entire experimental 

region to calculate the values of p(x).  However, when k ≥ 3 the researcher may want to 

have a more efficient approach to maximizing p(x) using general optimization methods.  

These approaches include methods discussed in Nelder-Mead (1964) or Chatterjee, 

Laudato and Lynch (1996). 

 If reliable results are not found then one should look at a finer grid over a sub-

region of the experimental model, along with another logistic model and more 

simulations.  A better fit is expected as a smaller response surface is explored.  This can 

be repeated as necessary. 

 One can look at the reliabilities for only one response.  In other words, because 

p(x) is a joint probability over all the responses, marginal probabilities can be easily 

computed using the equation: 

( ) ( | , )i i ip x P Y A x data= ∈ ,          (37) 

where Ai is an interval where the experimenter desires Yi to be.  The interval can be one 

or two sided.  The researcher can then monitor both ( )ip x  and ( )p x in chorus, so that by 

modifying A and iA , he can observe the economic impact on changing the criteria.  This 

can be used for other marginal (or joint, when looking at more than one response) 

probabilities as well. 

 A Bayesian credible region can be calculated for process ruggedness assessment 

in addition.  This can achieved by plotting out all the x-values for which p(x) is at least 

some probability (for instance .95).   

Peterson’s method assumes the correct model has been chosen already, so he is 

looking at the second order model, including all main effects, interactions, and quadratic 
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terms.  Peterson is trying to optimize the response after this second-order model has been 

fit.  In our own research, we will backtrack one step and use the posterior predictive 

distribution to compute steepest ascent reliabilities. 

For this paper, we use the posterior predictive distribution to find the optimal 

compromise path of steepest ascent for multiple responses.  Essentially, we use a grid 

search, sampling around the design region to determine the path with the highest 

Bayesian reliability.  By determining the highest reliability we hope that the best 

compromise path of steepest ascent will be found.  This method is most useful if there are 

multiple responses that have disparate paths of steepest ascent and there is no overlap 

between the confidence cones of the individual paths of steepest ascent.  Using our 

method, we also hope that when the confidence cones overlap our highest reliable point is 

not only within this overlap but also a convex combination of the paths of steepest ascent 

as well. 
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CHAPTER 3 Reliability Function 
 
 

Based on previous methods, it is clear that many issues need to be considered 

when considering multiple responses.  Del Castillo's method may be used if the paths are 

close together and their confidence regions intersect.  However, neither his method nor 

Mee and Xiao's method consider the correlation among the responses and the variability 

of the predictions gathered from the paths of steepest ascent.  This is a critical issue for 

quality assessment.  Similarly, neither of these methods takes into account the uncertainty 

of the model parameters estimates.  Peterson takes a Bayesian approach by using the 

reliability function to assess the accuracy of the first order model.   

The approach suggested in this paper takes into account the correlation of the 

responses, the variability of the predictions and the uncertainty of the estimates of the 

model parameters by implementing the method described by Peterson.  The standard 

regression model for multiple response optimization is: 

0 1 1 2 2( ) ( ) ... ( )

where  ~ (0, )
k ky x x x

MN

β β β β ε
ε

= + + + + +

Σ
         (38) 

In order to implement the method of steepest ascent, we first need to estimate β̂ , 

according to the formula, where X is the model matrix of interest with the main effects 

only: 

1ˆ ( ' ) 'X X X yβ −=            (39) 
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To account for the uncertainty in the model parameters, the posterior predictive density 

function ( | , )f y x data  can be used.  The Bayesian predictive density for a specified x-

value has the multivariate t distribution, with γ =n-p-q+1 degrees of freedom, where n is 

the sample size, p is the number of factors and q is the number of responses.  By 

sampling from this distribution for a given point outside of our design region, we can 

obtain a probability and compare this probability to other sampled points.  The point with 

the highest probability is the direction in which we move for a compromise path of 

steepest ascent.  Therefore, we need to perform a grid search around our design region 

with a given radius.  We perform this search by sampling from a multivariate t 

distribution, with mean 0, variance H-1 and degrees of freedom γ , where: 

1( )
1 '

ˆ ˆ( ) '( )

'

t t

V
H

x Dx

V y X y X

D X X

γ

β β

−

=
+

= − −

=

 

We can sample from this distribution using the R statistical program, with the 

rmvt package, specifying the mean, variance and degrees of freedom.  Sampling from this 

distribution and adding to it xt* β̂  (our mean) gives our simulated y.  From here we 

answer the question: does this y meet our criteria for the response?  We can find a 

probability based on the answer by running a large number of trials.  For each trial, we 

sought to determine if the sampled point produced ŷ s that were within our desired 

ranges.  We sampled from the posterior predictive distribution 1000 times to find a 

probability of meeting every response's goal.  But, the sample size can be altered and a 

higher sample yields a more precise probability.  Searching around a radius of 2  (which 
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is from the equation 2'x x r= , we implemented polar coordination transformation for two 

variables to grid around the surface of a circle.  Thus, we used: 

1

2

*cos( )

*sin( )

x r

x r

θ
θ

=

=
,    (40) 

where r= 2 and θ was the degree around the radius.  For each degree, and thus each 

point, we found the probability: 

( ) ( )p x P Y A= ∈ ,    (41) 

where A represents the desired conditions for each response, Y. 

The points were sorted from increasing to decreasing.  The point with the highest 

reliability is the new compromise direction for the path of steepest ascent.  When the 

number of factors exceeded two, a new method had to be used to grid search around the 

design region.  With only two factors, we simulated around a circle, sampling points 

every one degree (0.017 radians).  

To demonstrate this better, consider a small example with two factors and two 

responses.  Suppose we want to maximize both responses at values greater than 3.  To 

implement our method, we set up the radius of 2  and searched around the circle at only 

4 points.  The points searched were at θ=0, 90,180,270.  Therefore, to find the 

coordinates for each r and θ, equation (40) was used.  From here, we can sample from the 

posterior predictive distribution to determine if the yields for both responses are greater 

than 3.  If they are, the indicator function generates a 1.  Performing this process 500 

times, we can create a probability for each degree.  Thus, a reliability can be obtained at 

each sampled point.  Comparing the reliabilities, we can find the highest reliable point, 

which gives a direction to move for the compromised path of steepest ascent. 
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However, for more than two factors the run time for the grid search would grow 

exponentially.    Therefore, Peterson's (1993) method for polar coordinate transformation 

was implemented to provide a better way to search around the design region.  We need to 

obtain x in the form: 

x rθ= ,  (42) 

where 2 'r x x= , and θ is described for more than two dimensions below.  The general 

transformation is given by: 

1 1

1

1

1

1
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cos sin ,    2,..., 1,
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j
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k j
j
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=
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%

   (43) 

Here, a is a (k-1) x 1 vector of angles contained in the rectangular set 

1:  ( 1,..., 2),  .
2 2i kA a i k a
π π π π−

 = − < ≤ = − − < < 
 

a  (44) 

 

By grid searching over A, we can calculate the reliability function as before and find the 

highest reliabilities.  Whichever path maximizes this reliability is the path of steepest 

ascent chosen.  This approach was used in the case where k ≥ 3, such as the example in 

4.3.  After grid searching around the design region, the reliability as described above can 

be found for the number of trials.  Therefore we need to solve the system of equations: 

2 '

1

max  ( )

1
where ( ) ( ( ) ),

and ( ) is the desirable region for all responses

r x x

N

s
s

s

p x

p x I C Y S
N

C Y

=

=

≈ ∈∑   (45) 

The point with the highest reliability is the path to conduct further experiments.
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CHAPTER 4 Examples 

 

The following examples utilize the Bayesian reliability approach to steepest ascent.  We 

provide four examples, each illustrating a different advantage from previous methods.  

The first second example involves only two factors and two responses, and we employ 

Del Castillo’s and Mee and Xiao’s methods for finding steepest ascent, as well as our 

own method.  In this case, the paths of steepest ascent confidence cones will overlap.  

The second example involves a simulation, showing that our method produces results that 

match up with Del Castillo’s and Mee and Xiao’s methods.  For the third second example 

the two paths are disparate enough that they do not overlap, so we will show the highest 

reliability approach in that case.  The fourth example involves simulating data from 

known ˆ ' sβ and altering the error variance to point out how the error variance can affect 

the predictions.  The final example demonstrates that our method is not limited 

dimensionally using a five factor, two response example.   

 

4.1 Example 1 

The following example is used in Response Surface Methodology by Myers and 

Montgomery (2002).  Two variables, time and temperature, influence two responses, 

conversion and activity.  The goal is to maximize both conversion and activity.  The 

experimental runs are given in Table 4.1. 
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Table 4.1 – Example 1: Experimental Runs 
Intercept X1 X2 Y1 Y2

1 -1 -1 74 69
1 1 -1 51 50
1 -1 1 88 78
1 1 1 70 90
1 0 0 81 60
1 0 0 75 60.4
1 0 0 76 59.1
1 0 0 83 60.6
1 0 0 80 60.8
1 0 0 91 58.9  

This yields the estimates shown in Table 4.2, calculated from the formula 

1ˆ ( ' ) 'X X X yβ −= . 

Table 4.2 – Example 1: Estimates of the Responses 

 

From here, we can calculate the path of steepest ascent for both responses, shown in 

Table 4.3, with Figure 4.1 illustrating the paths of steepest ascent. 

Table 4.3 – Example 1: Paths of Steepest Ascent 

 

β̂ Y 1 Y 2 

0β̂    76.90    64.68

1̂β   -10.25 -1.75

2β̂    8.25 12.25

Y Step X1 X 2 
1     -1 .804878 
2     -2 1.609756 
3      -3 2.414634 
4     -4 3.219512 
1 -.1428571 0.95421

2 -.2857143 1.90842

3 -.4285714 2.86264
4 -.5714286 3.81685

Y2

Y1
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Figure 4.1 – Example 1: The paths of steepest ascent 
 

Based on Del Castillo's method, we should observe where the two confidence 

regions lie to attempt to find a compromise path of steepest ascent/descent.  Because we 

only have two factors, we can simplify the equation (15) into a simpler formula: 

2

1/2

2
, 1,

2

1

( 1)
arcsin b k v

k

i
i

k s F

b

αθ −

=

 
 −
 =
 
 
 

∑
,   (46)  

where θ is the angle between the confidence cone and the path of steepest ascent (in other 

words, the margin of error).  Computing this for each response, we have 
1y

θ = 44.40023  

and 
2y

θ = 60.13469.  Based on this result, we can now plot the confidence cones along 

with the paths of steepest ascent, with the first one shown in Figure 4.2. 
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Figure 4.2 – Example 1: Confidence cone for the first path of steepest ascent 
 
The second path and confidence cone is shown in Figure 4.3. 

 

Figure 4.3 – Example 1: Confidence cone for the second path of steepest ascent 
 

Therefore, Figure 4.4 shows where the overlap of the two confidence cones occurs (the 

shaded region). 



 32

 

Figure 4.4 – Example 1: Overlap of the confidence cone of the paths of steepest ascent 
 
Based on Mee and Xiao’s paper, we know that the Pareto Optimal points lie along 

convex combinations of the paths of steepest ascent, with this area shaded in Figure 4.5.  

 

Figure 4.5 – Example 1: Convex combinations of the paths of steepest ascent 
 
Each convex combination around the radius 2 is entered into equation (47), the first 

order model for each response to find the Pareto Optimal point: 
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1 1 2

2 1 2

ˆ 76.9 10.25 8.25
ˆ 64.68 1.75 12.255

y x x

y x x

= − +

= − +
    (47) 

We want to maximize both responses, so we should look for the Pareto Optimal point that 

performs this best.  Looking at the Pareto Optimal plot in Figure 4.6, we can see where 

the points lie in relation to the design and choose the point that maximizes both y1 and y2 

the best. 

 
Figure 4.6 – Example 1: Pareto Optimal plot 

 
The experimenter would calculate the best trade off at this point, and then move in that 

direction.  However, we can calculate the Bayesian reliable point to find which direction 

we should move. 

Utilizing our Bayesian reliability function, we consider all the points in the design 

region around the radius of x’x=r2, or 2 , to form our probability.  We randomly 

sampled from the multivariate t distribution with mean 0, variance H-1 and degrees of 

freedom γ =6.  From here we found the probability that a given point would create 

1 86y ≥ and 2 80y ≥ .  These responses were arbitrarily chosen to represent the desired 
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minimum trade off between the two responses.  The ten points with the highest 

probabilities are shown in Table 4.4.   

Table 4.4 – Example 1: 10 Highest Reliable Points 
X1 X2 Reliability

-0.770236 1.186059 0.394
-0.790818 1.172436 0.368
-0.851095 1.129441 0.368
-0.437016 1.344997 0.364
-0.749419 1.199321 0.364
-0.728374 1.212218 0.362
-0.663933 1.248676 0.36
-0.460423 1.337165 0.358
-0.318129 1.377967 0.356
-0.506809 1.320282 0.356  

From here, the point with the largest reliability is the direction to move in, shown in 

Figure 4.7: 

-4 -2 0 2 4

-4
-2

0
2

4

Highest Reliable Direction for the Paths of Steepest Ascent

X1

X
2

 

Figure 4.7 - Example 1: Highest reliable direction for the paths of steepest ascent 
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Plugging in the values for x1 and x2 into our first order model in equation (47), 

yielding the response values of 

1

2

ˆ 76.9 10.25*.77 8.25*1.186 94.577
ˆ 64.68 1.75*.77 12.255*1.186 80.556

y

y

= + + =

= + + =
 

Both of the responses are above our cutoff values.  What is interesting to note is that our 

method matches up with Del Castillo’s and Mee and Xiao’s methods.  However, what is 

different from our method is that Del Castillo and Mee and Xiao propose approaches 

where the experimenter is forced to choose the point based on his knowledge of the 

system.  On the other hand, our approach gives a specific point and direction for the 

experimenter who is not required to choose the point. 

 

4.2 Example 2 

For this example, we looked at a simulation, where we knew the true β s, as described in 

Table 4.5. 

Table 4.5 – Example 2: True β  

 

 

 

Using the X matrix described in Table 4.6, we are able to simulate data: 

 
Table 4.6 – Example 4: X Matrix 

β

0β

1β

2β

Y1 Y2
79.9 64.68

-10.25 -1.75

8.25 12.25

β

0β

1β

2β

Y1 Y2
79.9 64.68

-10.25 -1.75

8.25 12.25
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Intercept X1 X2

1 -1 -1
1 1 -1
1 -1 1
1 1 1
1 0 0
1 0 0
1 0 0
1 0 0  

From here, we can see where the path of steepest ascent is in relation to our design 

region, shown in Figure 4.8: 

 

Figure 4.8 – Example 2: Paths of steepest ascent 
 

Therefore, looking at the two paths, we know the Pareto Optimal point will be a convex 

combination of the two paths.  From here, we can calculate our ŷ s from the equations: 

1 1 2

2 1 2

ˆ 79.6 10.25 8.25
ˆ 64.68 1.75 12.25

y x x

y x x

= − +

= − +
 

 To simulate data, we looked at 1000 trials for two different error variances from a 

random error vector.  Thus, we chose to look at two different models for each response: 
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1 1 2

1 1 2

2 1 2

2 1 2

ˆ 79.6 10.25 8.25 ~ (0,1)
ˆ 79.6 10.25 8.25 ~ (0,3)
ˆ 64.68 1.75 12.25 ~ (0,1)
ˆ 64.68 1.75 12.25 ~ (0,3)

y x x N

y x x N

y x x N

y x x N

ε
ε
ε
ε

= − + +

= − + +

= − + +

= − + +

 

 We then ran through the same code as before, sampling from around the design 

region a radius of 2 .  To save computation time, we looked at every other degree.  For 

each sampled point, we found a probability for 1 90y ≥  and 2 75y ≥ for n=1000.  The 

values for the responses were arbitrarily chosen based on the first order models, with the 

responses optimized.  The point with the highest reliability was selected and placed into a 

matrix.  For all 1000 trials, there are 1000 points with each point being the highest 

reliability for that particular trial.  Figure 4.9 shows these points graphically for when the 

random noise is distributed normally with a mean of 0 and a variance of 1. 

 

Figure 4.9 – Example 2: Simulation of highest reliable points for error variance equal to 1 
 

The lines represent the true paths of steepest ascent.  As we can see from the graph, the 

highest reliable points are in fact convex combinations of the true paths of steepest 

ascent, matching up with what Del Castillo and Mee and Xiao proposed. 
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Similarly, Figure 4.10 shows the highest reliable points when the error is normally 

distributed with a mean of 0 and a variance of 3: 

 

Figure 4.10 – Example 2: Simulation highest reliable points for error variance equal to 3 
 
 We can see that in both cases, almost every trial produces reliable points that are 

convex combinations of the true paths of steepest ascent.  This matches up with past 

approaches and shows that our approach does produce similar results when the paths are 

not disparate. 

 

4.3 Example 3 

The following example was cited in Del Castillo's paper.  Two factors, temperature and 

reaction time, influence the response, the yield of the process.  Of interest is to measure 

both the mean yield (y1) and the variance of the yield (y2) based on the two factors.  

Therefore, an experiment was conducted using a full factorial design for the two factors, 

along with five center runs.  This is shown in Table 4.7. 
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Table 4.7 – Example 3: 2 Factors, 2 Responses Experiment 
X1 X2

-1 -1 456.5 8.76
1 -1 595.6 21.96
-1 1 808.7 21.21
1 1 849 40.77
0 0 757.9 9.18
0 0 760.7 24.14
0 0 761.3 22.31
0 0 757.5 10.16
0 0 764.9 22.62

1̂Y 2̂Y

 
 

From this experiment, we are able to calculate β̂  from the equation 1ˆ ( ' ) 'X X X yβ −= , 

shown in Table 4.8: 

Table 4.8 – Example 3: Estimates For The Responses 

 
 
From there, we can use the β̂ ’s to find our paths of steepest ascent.   Calculating four 

steps along the path of steepest ascent yields the results shown in Table 4.9: 

 
 
 
 
 
 
 
 
 
 
 
 

Table 4.9 – Example 3: Paths of Steepest Ascent 

β̂ Y 1 Y 2 

0β̂ 723.567 20.1233

1̂β   44.85 8.19

2β̂ 151.4 7.815
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Y Step X1 X2

1 0.29624 1

2 0.59247 2
3 0.88871 3
4 1.18494 4
1 1 0.95421

2 2 1.90842

3 3 2.86264
4 4 3.81685

Y2

Y1

 
 
Suppose we wish to maximize the mean yield, 1ŷ , and minimize the variation, 2ŷ .  Table 

4.9 represents the two paths of steepest ascent.  Because we want to minimize 2ŷ , we 

need to calculate the path of steepest descent for 2ŷ , we recalculate the paths as listed in 

Table 4.10: 

Table 4.10 – Example 3: Path of Steepest Ascent and Descent 
Y Step X1 X2

1 0.29624 1

2 0.59247 2
3 0.88871 3
4 1.18494 4
1 -1 -0.95421

2 -2 -1.90842
3 -3 -2.86264
4 -4 -3.81685

Y1

Y2

 
 
Figure 4.11 illustrates the two paths.  We notice that the two paths are disparate. 
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Figure 4.11 – Example 3: The two paths of steepest ascent 
 

Using equation (46), we can calculate the angle between the confidence cone and the path 

of steepest ascent, yielding 
1y

θ = 24.95363 and 
2y

θ = 49.10701 for each response.  

Calculating the confidence cones and adding them to the path of steepest ascent and the 

path of steepest descent, we can illustrate the disparity, shown in Figure 4.12. 

 

Figure 4.12 – Example 3: Confidence cones for the two paths of steepest ascent 
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From the figure, it is clear that the two cones do not intersect.  Therefore, we need to find 

a compromise path of steepest ascent/descent.  We can then utilize Mee and Xiao’s 

method of finding the Pareto Optimal point.  Based on this method, we should only 

consider points that are convex combinations of the two paths.  Thus, the point should lie 

somewhere in the shaded region of Figure 4.13.   

 

Figure 4.13 – Example 3: Convex combinations of the two paths of steepest ascent 
 
Each convex combination around the radius 2 is entered into equation (48), the first 

order model for each response to find the Pareto Optimal point: 

1 1 2

2 1 2

ˆ 723.5667 44.85 151.4
ˆ 20.12333 8.19 7.815

y x x

y x x

= + +

= + +
    (48) 

Because we want to maximize the first response and minimize the second, we should 

look at where the optimal trade off occurs.  Looking at the Pareto Optimal plot in Figure 

4.14, we can see where the points lie in relation to the design and choose the point that 

maximizes y1 and minimizes y2 the best. 
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Figure 4.14 – Example 3: Pareto Optimal plot for the two responses 
 
Based on Mee and Xiao’s approach, we should move in the direction of the point that 

best compromises our responses.  Thus, the experimenter would have to ask what 

compromises should be made in order to get the desired response.  Because we do not 

know the optimal trade off, a specific point is not chosen.  However, in a an actual 

analysis the experimenter would find the best trade off and continue in that direction with 

sequential experimentation. 

However, this method leaves some questions unanswered.  For instance, it is not 

clear what should be done if the true desired path is not a convex combination of the 

paths of steepest ascent.  Although this is something we would not know, it is possible 

this could happen.   Similarly, neither of those methods considers the uncertainty in the 

parameter estimates.  Peering at the confidence cone from the example above, the true 

paths could have been slightly different.  This would have made the convex combinations 

drastically different.  For instance, the path could have been the same for y1 but for y2, so 

we instead had the upper boundary of the confidence cone to be the actual path of 
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steepest ascent.  Because this is a 95% confidence cone, it is possible the true path of 

steepest ascent could be here.  Illustrating this in Figure 4.15, we could have had: 

 

Figure 4.15 – Example 3: Possible different paths of steepest ascent 
 
In this case, the convex combinations would have now been on the right side of the graph 

(the shaded region in Figure 4.16): 

 

Figure 4.16 – Example 3: Possible different convex combinations of the paths of steepest ascent 
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Therefore, a different method should be used to calculate the path of interest.  

Utilizing our Bayesian reliability function, we consider all the points in the design region 

around the radius of x’x=r2, or 2 , to form our probability.  We randomly sampled from 

the multivariate t distribution with mean 0, variance H-1, and degrees of freedom, γ =5.  

From here we found the probability that a given point would create 1 850y ≥ and 2 12y ≤ .  

These responses were arbitrarily chosen to represent the desired minimum trade off 

between the two responses.  The ten points with the highest probabilities are shown in 

Table 4.11.   

Table 4.11 – Example 3: 10 Highest Reliable Points 

            

X1 X2 Reliability
-1.14412 0.831254 0.192
-0.94629 1.050966 0.18
-0.8511 1.129441 0.162
-0.96449 1.03429 0.152
-0.87068 1.114416 0.15
-1.0173 0.982395 0.144
-1.03429 0.964491 0.144
-1.08335 0.909039 0.144
-1.05097 0.946294 0.142
-1.06732 0.927808 0.142  

The point with the highest probability is the point that we decided to move to, 

shown in Figure 4.17: 
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Figure 4.17 – Example 3: Highest reliable point 
 

Therefore, the new path is 1x = -1.14 and 2x = 0.83 to maximize 1y  and 

minimize 2y .  Plugging these into our first order model yields: 

1

2

ˆ 723.5667 44.85*1.14 151.4*.083 685.0039
ˆ 20.12333 8.19*1.14 7.815*.083 11.435375

y

y

= − + =

= − + =
 

In this case, the highest reliable point is not within our cutoff value for 1y , which explains 

the low reliability of 0.192.  However, the cutoff value for 2y is satisfied.  In order to 

increase the reliability, we might consider changing our cutoff value.  This is especially 

true because the point that was selected did not satisfy our criteria. 

 
 
4.4 Example 4 
 
Now let's consider a simulation example.  In this case, we want to see how the highest 

reliable point is affected as the error variance increases.  Consider the following β ’s: 

 
 
 

Table 4.12 – Example 4: True Values of the Parameter Estimates 
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From the X matrix in Table 4.13, we can then simulate data using these β ’s: 

 
 
 

 
Table 4.13 – Example 4: X Matrix 

Intercept X1 X2

1 -1 -1
1 1 -1
1 -1 1
1 1 1
1 0 0
1 0 0
1 0 0
1 0 0  

 From here, we can see where the path of steepest ascent is in relation to our 

design region, shown in Figure 4.18: 

-4 -2 0 2 4

-4
-2

0
2

4

Paths of Steepest Ascent

X1

X
2

 

Figure 4.18 – Example 4: Paths of steepest ascent 

β Y 1 Y 2 

0β 28.75 35.25

1β  8 -8

2β 4 -4.5
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Therefore, looking at the two paths, we know the Pareto Optimal point will be a 

convex combination, and thus between the two paths, shown in the shaded region in 

Figure 4.19. 

 

Figure 4.19 – Example 4: Convex combinations of the paths of steepest ascent 
 

Notice the two paths are almost completely disparate directions.  From here, we 

can calculate our ŷ s from the equations: 

1 1 2

2 1 2

ˆ 28.75 8 4
ˆ 35.25 8 4.5

y x x

y x x

= + +

= − −
 

To simulate data, we looked at 1000 trials for two different error variances from a 

random error vector. Thus, we choose to look at two different models for each response: 

11 1 2

21 1 2

12 1 2

22 1 2

ˆ 28.75 8 4 ~ (0,1)
ˆ 35.25 8 4.5 ~ (0,1)
ˆ 28.75 8 4 ~ (0,3)
ˆ 35.25 8 4.5 ~ (0,3)

y x x N

y x x N

y x x N

y x x N

ε
ε

ε
ε

= + + +

= − − +

= + + +

= − − +

 

We then ran through the same code as before, sampling from around the design 

region a radius of 2 .  To save computation time, we only looked at every other degree 
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(e.g. 1o ,3o  etc.).  For each sampled point, we found a probability for 1 31y ≥  and  2 31y ≥  

for n=1000.  The values for the responses were arbitrarily chosen based on the first order 

models and where the responses are optimized.  The point with the highest reliability was 

selected and placed into a matrix.  For each of the 1000 trials, there are 1000 points with 

each point being the highest reliability for that particular trial.  Figure 4.16 shows these 

points graphically for when the random noise is distributed normally with a mean of 0 

and variance of 1. 

 

Figure 4.20 – Example 4: Simulation highest reliable points for error variance equal to 1 
   

The lines represent the true paths of steepest ascent.  As we can see from the graph, the 

highest reliable points can be on either side of the paths, and they do not necessarily have 

to be convex combinations of the true paths of steepest ascent. 

Similarly, Figure 4.17 shows the highest reliable point when the error is normally 

distributed with a mean of 0 and a variance of 3: 
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Figure 4.21 - Example 4: Simulation highest reliable points for error variance equal to 3 
 
We can see the points are more spread out but in the same general area.  This is expected, 

as now we have a higher variance for the error.  On the other hand, once again the points 

can be on either side of the true paths of steepest ascent and are not necessarily a convex 

combination of these paths. 

 These simulations illustrate that using the highest reliable point gives a direction 

to move in for the path of steepest ascent, and this method takes into account the 

variances of the predictions to adequately provide this direction.  Using the highest 

reliable point, we are able to gleam the direction where future responses can be 

optimized.  Also, because the points are on either side of the shaded region, the 

uncertainties of the parameter estimates are considered. 

 However, what these simulations do not show is whether the highest reliable 

points are convex combinations of the simulated paths of steepest ascent.  For instance, in 

each simulation new estimates were found and thus new paths of steepest ascent were 

generated.  From these paths it is impossible to know if the highest reliable point is still a 
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compromise direction.  Therefore, we ran twenty additional simulations, each time 

looking at the graph for the simulated paths of steepest ascent and determining if the 

highest reliable point was a convex combination.  From these trials we found that the 

highest reliable point was always a convex combination; so it appears that Mee and 

Xiao’s method of finding the Pareto Optimal point does have some merit in that the 

compromise direction will always be a convex combination.  However, MX’s method 

gives the entire spectrum of points that are convex combinations and forces the 

experimenter to choose a point based on the best tradeoff.  In our method we give a 

specific point that leads to the direction for the path of steepest ascent.  This leaves no 

doubt from the experimenter as to if he chooses the right direction in which to move. 

 

4.5 Example 5 

Now let's consider an example with more that two factors.  The following example was 

originally in Videvogel and Sandra (VS) (1991), but Mee and Xiao utilized the same 

experiment to show their results.  VS conducted a five-factor, eight run fractional 

factorial design involving six responses to study the electrokinetic chromatography for 

separation of testosterone esters. Each run resulted in a chromatogram, and six 

characteristics of the chromatograms were measured.  Table 4.14 lists the experimental 

runs, as well as the responses, two of which are reported here: 

Re ,  the resolution for distinguishing the second and third esters

1/ ,  where  is the eluting time for the fourth ester.
s

Rate Time Time

Y

Y Y Y=
 

 
 
 
 
 

Table 4.14 – Example 5: Experimental Runs and Responses 
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Large values for YRes and YRate are desired, and the primary objective of the experiment is 

to simultaneously optimize both responses.  We first need to calculate β̂ , which yields: 

Table 4.15 – Example 5: Estimates for the Responses 

 

In this case, because we have more than two factors, grid searching around a circle is not 

logical because we have more than two dimensions.  Therefore, we implemented 

Peterson's search algorithm for multiple dimensions in order to sample around the design 

region.  We used the same formula for the radius as before, x’x=r2, yielding 5 .  From 

this, we were able to find the highest probability for maximizing both responses.  In this 

instance, we chose to look for 1 .86y ≥  and 2 .083y ≥ , as these are the means from VS’s 

experiment.  The results shown in Table 4.16 represent the ten highest reliable points to 

move along for the highest reliability. 

Intercept X 1 X2 X 3 X4 X5 Y Res YRate 
1 1 1 -1 1 -1 1.44 0.07315
1 1 1 1 -1 -1 0.2 0.09434
1 -1 1 1 1 1 0.5 0.08489
1 -1 -1 1 1 -1 0.6 0.08503
1 1 -1 -1 1 1 1.96 0.05163
1 -1 1 -1 -1 1 0.73 0.10215
1 1 -1 1 -1 1 0.6 0.07994
1 -1 -1 -1 -1 -1 0.84 0.099

Y 1 Y 2 

0β̂ 0.85875 0.083766 

1̂β  0.19125 -0.009001
2β̂ 0.14125 0.004866 
3β̂ -0.38375 0.002284 
4β̂ 0.26625 -0.010091
5β̂ 0.08875 -0.004114

 β̂  
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Table 4.16 – Example 5: 10 Highest Reliable Points 
X1 X2 X3 X4 X5 Reliability

-1.208153 0.783016 -1.710922 3.67E-17 9.81E-17 0.82
-1.208153 0.783016 -1.710922 7.39E-17 -7.42E-17 0.808
-1.208153 0.783016 -1.710922 -1.48E-17 1.04E-16 0.796
-1.208153 0.783016 -1.710922 1.02E-16 2.21E-17 0.794
-1.208153 0.783016 -1.710922 -1.04E-16 -7.41E-18 0.792
-0.158173 0.928202 -1.779876 -4.66E-01 -8.53E-01 0.79
-0.158173 0.928202 -1.779876 -8.18E-01 -5.25E-01 0.79
-0.158173 -0.157777 -1.952515 -8.98E-01 -5.76E-01 0.786
-0.158173 0.928202 -1.779876 -8.84E-01 4.05E-01 0.786
-1.208153 -0.133098 -1.647111 -4.31E-01 -7.90E-01 0.784  

Using the highest reliable point, we can see the estimated values for each response 

by entering in the values from the point into our first order model.  This yields: 

1

2

ˆ .85878 .19125*1.2 .14125*.783 .38375*1.71 .26625*0 .08875*0 1.1749
ˆ 0.083766 .009001*1.2 .004866*.783 .002284*1.71 .010091*0 .004114*0 .0945

y

y

= − − + + + =

= + + − − − =
 

Both responses are indeed above our cutoff values. 
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CHAPTER 5 Conclusion 
 

Past approaches to finding the path of steepest ascent have not considered several key 

aspects:  uncertainty in the model parameters, correlations and variances among the 

responses, and the variability of the process distribution.  These elements are extremely 

significant with quality assessment, and future predictions could be jeopardized by not 

taking them into account.  We can see from the examples that the Bayesian reliability 

method to calculate the path of steepest ascent provides a complete way to assess this 

quality.  This approach is currently the only one that takes the variance-covariance 

structure and model parameter uncertainty into account.  In addition, this method easily 

allows for the experimenter to measure the effect of changing the variance of the process 

being studied.  Similarly, this method is flexible in that the experimenter can easily 

change the criteria for selecting a path of steepest ascent.  

Computing a Bayesian reliability p(x) for a specific point takes very little 

computational time, so searching for a specific point outside of the design region for two 

factors takes little more with high precision.  When increasing the number of factors, the 

routine increases in runtime exponentially; this is why Peterson’s polar coordinate 

transformation was utilized.   

As we can see with Example 4.1, the Bayesian reliability method matches up with 

the overlap of the confidence cone as well as this point is a convex combination of the 

paths of steepest ascent.  This is what we expected and proves that Mee and Xiao were 
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correct in stating that the compromise path of steepest ascent is a convex combination.  

The difference with our method is that we can find a specific direction to take rather than 

choosing from a set of trade offs for the best path to take. 

For disparate paths of steepest ascent, we can see from Example 4.2 the Pareto 

Optimal point is not the best route to take.  Because Pareto Optimality criteria do not 

include the correlations of the responses the predictions could be negatively affected.  

Therefore, the optimal method is shown through the Bayesian reliability approach, which 

considers the correlations of the future responses and produces the highest point for 

accurate and precise results. 

This method is also not limited dimensionally.  For more than two factors a point 

can be found where the highest reliability is found, although the result cannot be 

illustrated graphically.  This point will lead us in the direction of the path of steepest 

ascent (descent), in which case sequential experimentation can be utilized to find a 

second-order model and continue optimization. 

When looking at the reliability, we can see from the simulation example that the 

path of steepest ascent for two variables can vary dramatically when the error variance is 

high.  The simulation also highlights that it is possible to have higher reliability all 

around the design region and not just in the convex combinations for the true paths of 

steepest ascent.  However, it is impossible to know if the highest reliable points are not 

convex combinations of the simulated paths of steepest ascent from the Figures shown in 

the Examples section. 

Future work can assess this reliability more accurately.  For example, a researcher 

can utilize this method in an actual experiment where one can fully see if the highest 
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reliable point gives the path for optimized responses.  Testing along this direction, one 

can see where the optimization occurs, and sequential experimentation can be performed, 

including generating a second-order model.  By utilizing the Bayesian reliability 

approach an experimenter can be sure that the responses generated consider the 

correlations between responses as well as parameter uncertainty.  

Future research will address how we can increase reliability as well as addressing 

the uncertainty of the model itself by using Bayesian model averaging.  To increase the 

reliability we might consider changing the cutoff values for the responses.  Along the 

same lines, we could check the simulated trials to determine if the highest reliable point 

was indeed a convex combination of the paths of steepest ascent. 

Similarly, when we looked at more than three dimensions, a coarse grid search 

was performed.  In the future, one could perform a coarse grid search first, but then as we 

find an area where the highest reliabilities are located, one could search a finer grid 

around that area.  This can be repeated until the highest reliability can be found.  In the 

same situation, we might try optimization techniques like the Nelder-Mead Simplex 

method. 

In addition, sensitivity analysis can be performed on the path of steepest ascent 

generated by the Bayesian reliability approach, i.e. finding a specific reliability.  One 

might want a reliability no smaller than 0.8.  In this case, we would have to search the 

around the design region as well as change the cutoff values for the responses to achieve 

this reliability. 

Using the Bayesian reliable approach that we did, we only looked at the vague 

prior to calculate our posterior distribution.  We could have updated the prior with some 
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knowledge of the parameters, such as adding a normal distribution to the betas, and then 

calculated the posterior predictive distribution to use for our sampled point.  This could 

have provided a higher reliability or might have lead us in a different direction, so it is 

worth exploring in the future. 
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