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Bayesian and Frequentist approaches for the analysis of multiple endpoints

data resulting from multiple stressors.

Epiphanie Nyirabahizi

(ABSTRACT)

In risk analysis, Benchmark dose (BMD) methodology is used to quantify the risk asso-

ciated with exposure to stressors such as environmental chemicals. It consists of fitting a

mathematical model to the exposure data and the BMD is the dose expected to result

in a pre-specified response or benchmark response (BMR). Most available exposure data

are from single chemical exposure, but living objects are exposed to multiple sources of

hazards. Furthermore, in some studies, researchers may observe multiple endpoints on one

subject. Statistical approaches to address multiple endpoints problem can be partitioned

into a dimension reduction group and a dimension preservative group. Composite scores

using desirability function is used, as a dimension reduction method, to evaluate neurotox-

icity effects of a mixture of five organophosphate pesticides (OP) at a fixed mixing ratio

ray, and five endpoints were observed. Then, a Bayesian hierarchical model approach, as a

single unifying dimension preservative method is introduced to evaluate the risk associated

with the exposure to mixtures chemicals. At a pre-specified vector of BMR of interest, the

method estimates a tolerable area referred to as benchmark dose tolerable area (BMDTA)

in multidimensional Euclidean plan. Endpoints defining the BMDTA are determined and

model uncertainty and model selection problems are addressed by using the Bayesian Model

Averaging (BMA) method.
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Chapter 1

Introduction

In risk assessment of genotoxic carcinogens, it is considered that all levels of dose exposure

can produce adverse effects. The assumption is based on the United States Environmental

Protection Agency (USEPA, 1995) idea that a single molecule of genotoxicants may be suf-

ficient to cause a DNA damage that eventually may result in the development of a tumor.

Because of this assumption, cancer risk is treated as proportional to the dose. For agents

that are not genotoxic, a threshold below which there is no significant biological effects is

assumed. Classical risk analysis conducted in this scope consist of finding the NOAEL

(no observable adverses effect level) used to determine a point of departure(POD) for es-

tablishing tolerable exposures. The NOAEL is usually derived from animal data, using an

approach which is based on the statistical comparison of the mean response for each dose

group against the control group. The NOAEL is considered to be the highest dose for which

the mean response does not differ significantly from the mean of the control. In general, an

1
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uncertainty factor is then applied to the NOAEL for animal to man extrapolation, an un-

certainty factor is also used to account for differences in sensitivity in the human population.

These two factors are assigned a value of 10 (WHO, 1999). Thus, to obtain a guidance

value, the NOAEL is divided by a default value of 100 = 10×10. Using the NOAEL to

set standards for human exposure has been criticized in the literature (Kimmel and Gaylor,

1988; Leisenring and Ryan, 1992; USEPA, 1995) and the EPA adopted the benchmark dose

(BMD) method introduced by Crump (1984). It consists of fitting a mathematical dose re-

sponse to the data and the BMD is the dose corresponding to a pre-specified response also

called the benchmark dose response (BMR). The 95% lower bound on the BMD estimate,

or BMDL, has been accepted as a replacement of the NOAEL, (USEPA, 2000).

However, living objects are rarely exposed to one health hazard at a time, (Monosson,

2005). Exposure could be via food, water, or contaminated sites. Typical examples include

mixtures of pesticides on/in the food that we consume, petroleum hydrocarbons, metals and

metalloids in mining wastes materials. Specifically, health risk assessment of chemical mix-

tures can be complex and getting sufficient evidence-based data for proper evaluation can

be expensive. In many cases, experimental data are available for single chemical exposure.

But, the key features in risk assessment of chemical mixtures consist of understanding dose

response relationship and interaction of agents in the mixture. The EPA recommends the

use of a components approach, where the data for each individual chemical are combined

in an additive(zero interaction) if there is no adequate data on a particular mixture (U.S.

EPA 2000). In Chapter 2, we introduce a method that can be used to estimate the risk
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associated with exposure to a mixture of chemicals assuming additivity. In this Chapter, the

question of whether single chemical exposure data have enough information for predicting

the risk associated with the exposure to the mixtures, given chemicals in the mixtures do

not interact is answered.

Additivity

The term additivity (i.e., zero interaction) is based on the classical isobologram introduced

by Fraser (1870-1871). Different authors including Loewe (1953), Berenbaum (1981, 1989),

Wessinger (1976), later extended and reviewed the use of this method. Briefly, according to

Berenbaum, if Ei represents the concentration/dose of the ith component alone that yields a

fixed response, and if xi represents the concentration/dose of the ith component in combina-

tion with the c agents that yields the same response, if the chemicals combine in an additive

fashion i.e., with zero interaction, then

c∑
i=1

xi
Ei

= 1. (1.1)

If the interaction index equals 1, then the chemicals in the mixture are said to interact addi-

tively or additivity is observed. When the left-hand side of (1.1) is less than 1, then the effect

of the mixture is greater than additive and chemicals are said to interact synergistically, or

synergy is observed; whereas when the left-hand side of (1.1) is greater than 1, the effect of

the mixture is less than additive and the chemicals are said to interact antagonistically, or

antagonism is observed.
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In some toxicological studies, a single numeric value is often not sufficient to summarize

the toxicity effects caused by the exposure. Several measurements may be required to at-

tempt to describe a complex toxic effect like developmental, reproductive, neurobehavioral,

clinical chemistry, organ weight, or pathology effects (e.g., Faes et al., 2006; Moser, 2000;

Crowell et al., 2004; Reed et al., 2004). These types of studies result in large amounts of

data that poses a challenge in terms of statistical analysis and interpretation.

1.1 Analysis of Multiple endpoints studies in risk as-

sessment

1.1.1 Dimension reduction method

For risk assessment purposes, in the presence of multiple endpoints data, some authors

choose to use the analysis of the most sensitive endpoint as the base. In such a case, the

researcher conducts separate and independent analysis on each endpoint. Guidance values

can be derived following the analysis of the most sensitive endpoint, (Myers, 2001a; Reiss et

al., 2005; Moser et al., 2005). Another alternative to performing statistical tests on several

study endpoints is to combine multiple endpoints into one summary measure and perform

one test on that summary statistic, (Moser et al., 1995; Shih et al., 2003; Coffey et al.,

2007). In Chapter 3, a composite scores method using desirability functions as described

in Coffey et al., 2007, is used to evaluate the toxicity effect of the exposure to a mixture

of organophosphate pesticides (OP). The composite scores method is a dimension reduction
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tool flexible to allow combination of data of different types (e.g., continuous, categorical,

binary).

1.1.2 Dimension preservative method

When dealing with multiple endpoints data, one can use multiple regression (Kleinbaum,

Kupper, Muller, Nizam, 1998) or principal components analysis PCA (Johnson and Wichern,

2002). In risk assessment, the classical practice of using the analysis of the most sensitive

endpoint as the base may fail to properly identify tolerable doses when multiple endpoints

are measured from exposure to multiple sources of hazard. In fact, there may not be an

endpoint which is the most sensible to all levels of hazards under study, or there may not be

a single endpoint to consider as the most sensitive to all levels of hazard. The most sensitive

endpoint practice may fall short to capture all dose levels that may cause harmful effects.

Let us assume five endpoints are measured as a result of simultaneous exposure to two

chemicals or stressors (chem1 and chem2). Assume each endpoint is modeled separately

and the BMD is computed and plotted (Figure(1.1)). In Figure(1.1), let’s designate five

different areas by alphabetical letters A, B, C, D, and E. Let’s apply the most sensitive

endpoint practice to determine the area containing tolerable doses for both chemicals.

• At the BMRα of interest, BMDα of the first endpoint discards area D (Figure(1.1),1)

• BMDα of the second endpoint discards area E (Figure(1.1),2)

• BMDα of the third endpoint discards area C (Figure(1.1),3). By using the most
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Figure 1.1: The tolerable region associated with the exposure to stressors: A demonstrating

example



7

sensitive endpoints, area A and B are in the tolerable region. But plotting the BMDα

for the fourth endpoint shows that to use the analysis of the most sensitive endpoint

method to determine the tolerable region may not be adequate in some circumstances

like the one demonstrated here. In fact, (Figure(1.1),4) shows that, the entire tolerable

region as determined by the most sensitive endpoint may not be tolerable considering

the fourth endpoint.

• BMDα of the fourth endpoint discards area B (Figure(1.1),4), but this endpoint is not

the most sensitive neither for chem1 nor for chem2 as evidenced by the combination

of three line segments that define the upper boundary for A.

The scenario demonstrated above shows that determining guidance values based on the most

sensitive endpoint may fail in some circumstances like the one shown above. The scenario

suggests that modeling endpoints simultaneously may borrow strength across endpoints and

lead to a more accurate tolerable region. A method to simultaneously model multiple end-

points is introduced in Chapter 4 through the use of the Bayesian hierarchical model.

Bayesian Framework

The difference in the philosophy behind the two statistical branches (Bayesian vs. fre-

quentist) lays in model specification. The general problem to be considered is such that

y = (y1, ..., yn) are observed data with probability distribution characterized by vector of

unknown parameters θ. Interest is to draw inference on θ. For frequentists, unknown pa-

rameters, θ, are treated as fixed constants. Inference is based on repeatedly sampling from
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the distribution f(y|θ) or equivalently the likelihood L(θ|y), and to find the maximum

likelihood estimate (MLE), the values θ̂? that maximize the likelihood function. Bayesian

methods treat unknown parameters as random quantities that follow a certain distribution,

a prior distribution, π(θ). The prior distribution summarizes available information about

the unknown parameter before considering the data in hand. Inference about θ is based on

the posterior distribution which is the joint probability mass or density function of the prior

distribution and the sampling distribution p(y|θ). It is possible that a prior is improper (i.e.,

it does not integrate to 1 over its possible range). Such a prior may add to identifiability

problems (Gelfand and Sahu, 1999) so many studies prefer to adopt minimally informative

priors which are proper. The prior distribution may have unknown parameters called hyper-

parameters η. If we assume that hyperparameters η are known, then the prior is written as

π(θ) ≡ π(θ|η). Inference about θ is based on the posterior distribution:

p(y,θ)

p(y)
=
p(y|θ)p(θ)

p(y)
=

p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

. (1.2)

Conjugate priors lead to a posterior distribution belonging to the same family of distributions

as the prior. In the case where the prior parameters η depend on unknown parameters, the

Bayesian method quantifies the uncertainty in a next-stage prior distribution called the

hyperprior. A third stage (and higher) prior distribution is possible if hyperprior parameters

(or beyond) involve unknown quantities. The method of specifying a model over several

levels is called hierarchical modeling (Carlin and Louis, 2008). The integral in (1.2) can be

tedious due to high dimensionality. Markov chain Monte Carlo methods are popular methods

to handle high-dimensional numerical integration.
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Sampling from the posterior distribution

The majority of Bayesian Markov Chain Monte Carlo (MCMC) computing is accomplished

using one of two basic algorithms, the Metropolis-Hastings(M-H) algorithm (Metropolis et

al., 1953; Hastings, 1970) and the Gibbs sampler (Geman and Geman, 1984; Gelfand and

Smith, 1990).

Gibbs Sampling

Assume a model with k parameters of interest, θ = (θ1, ..., θk). Assume samples can be

generated from each of the conditional distributions p(θi|θj 6=i,y), i = 1, ..., k. Under mild

conditions the collection of full conditional distributions uniquely determine the joint pos-

terior distribution, p(θ|y), and hence all marginal posterior distributions p(θi|y), i = 1, ..., k.

Assume {θ(0)
2 , ..., θ

(0)
k }, are arbitrary starting values. The algorithm proceeds as follows:

For (t=1,..., T), repeat:

Step 1: Draw θ
(t)
1 from p(θ1|θ(t−1)

2 , θ
(t−1)
3 , ..., θ

(t−1)
k ,y)

Step 2: Draw θ
(t)
2 from p(θ2|θ(t)

1 , θ
(t−1)
3 , ..., θ

(t−1)
k ,y)

...

Step k: Draw θ
(t)
k from p(θk|θ(t)

1 , θ
(t)
2 , ..., θ

(t)
k−1,y)

It can be shown, under mild conditions, that the k -tuple obtained at the tth iteration,

(θ
(t)
1 , ..., θ

(t)
k ) converges in distribution to the posterior distribution p(θ1, ..., θk|y).
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Metropolis Algorithm

When the prior π(θ) and the likelihood f(y|θ) are not conjugates, some of the conditional

distributions p(θi|θj 6=i, y), i = 1, ..., k have no closed form. A rejection algorithm that requires

a function proportional to the distribution to be sampled and requires a rejection step from a

candidate density, namely, the Metropolis algorithm and Metropolis-Hastings extension are

used. If the goal is to sample from the unnormalized posterior p(θ|y) ∝ h(θ) ≡ f(y|θ)π(θ).

A proposal density q(θ?|θ(t−1)) which satisfies q(θ?|θ(t−1)) = q(θ(t−1)|θ?) is specified. Then

for t = (1, ..., T ), repeat:

Step 1: Draw θ? from q(.|θ(t−1))

Step 2: Compute the ratio r = h(θ?)/h(θ(t−1)) = exp[log(h(θ?))− log(h(θ(t−1)))]

Step 3: If r ≥ 1, set θ(t) = θ?;

if r < 1, set

θ(t) = θ?, (1.3)

with probability r ; and set

θ(t) = θ(t−1), (1.4)

with probability 1 − r. Under mild conditions like those supporting the Gibbs sampler, a

draw θ(t) converges in distribution to a draw from the true posterior density p(θ|y)

Metropolis-Hastings

The M-H algorithm doesn’t require the candidate density to be symmetric q(θ?|θ(t−1)) 6=

q(θ(t−1)|θ?). The acceptance ratio r in Step 2 of the Metropolis algorithm is replace by
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r = h(θ?)q(θ(t−1)
|θ?)

h(θ(t−1)
)q(θ?|θ(t−1)

)
. Under mild conditions, a draw θ(t) converges in distribution to a

draw from the true posterior density p(θ|y) as t→∞.

1.2 Model uncertainty and Bayesian Model averaging

Scientists use multiple regression as a tool to determine the relationship between a response

and a set of potential predictors. Often there are many candidate predictor variables, that

may describe or predict the response of interest. In such a case, researchers need a proper

way to search through all the possible models to determine an appropriate one to explain

the relationship between the predictors and response. Common methods for performing

model selection are Maximum adjusted-R2, forward, backward and stepwise selection meth-

ods (Hocking 1976), Mallow’s Cp, (Mallow 1973), Predicted REsidual Sum of Squares or

PRESS, (Allen 1974), the Bayesian Information Criterion or BIC, (Schwarz 1978), Akaike’s

Information Criterion or AIC, (Akaike 1974) and many more. Some algorithms search for the

simplest model or parsimonious model, others use criteria such as F-tests to allow covariates

in a model. These methods select predictors to put in the model and not the appropriate

model to use. The resulting model is considered as the true model. In such a case, the

uncertainty associated with the model is ignored.

A method which has gained popularity in the literature to describe model uncertainty is

Bayesian Model Averaging (BMA). It is based on using probabilistic arguments to determine

the model and to average over the model space. This technique incorporates model uncer-

tainty into the analysis using posterior model probabilities (see Kass and Raftery, 1995;
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Madigan and York, 1995; Raftery, 1996; Raftery, Madigan and Hoeting, 1997; Hoeting,

Madigan, Raftery and Volinsky, 1999).

Bayesian Model Averaging

Many of the existing methods for model selection are designed to select a single model, which

does not allow for model uncertainty. Hence, when the selection algorithm is completed, the

model selected is treated as the true model. The researcher then treats the data as if it were

generated by the selected model. This may lead to over-confident inferences and decisions.

Bayesian Model Averaging (BMA), on the other hand, allows the researcher to account for

model uncertainty and express this uncertainty in terms of probability (Madigan and Raftery,

1994; Kass and Raftery, 1995; Clyde, 1999; Hoeting et al., 1999). Let D be some data and

let M be a model space. To determine the posterior probability of a model P (Mi|D) we will

use Bayes’ Theorem. In order to use Bayes’ Theorem we need to assign each model Mi a

prior probability P (Mi)

p(Mi|D) =
p(D|Mi)p(Mi)∑M
j=1 p(D|Mj)p(Mj)

. (1.5)

Hence, we need the quantity p(D|Mi). This quantity can be obtained from:

p(D|Mi) =

∫
L(D|θi,Mi)p(θi|Mi)dθi (1.6)

where L(D|θi,Mi) is the likelihood of the data, θi is the vector of parameters of model Mi.

Once p(D|Mi) has been determined for all Mi, then we can average the models using the



13

law of total probability. For any quantity of interest ζ, the probability p(ζ|D) is given by:

p(ζ|D) =
∑
i∈M

p(ζ|D,Mi)p(Mi|D), (1.7)

where

p(ζ|D,Mi) =

∫
p(ζ|D, θi,Mi)p(θi|D,Mi)dθi (1.8)

Notice that p(ζ|D) does not depend on a model. This is the averaged model.

The BMA algorithm can be tedious and time consuming to implement as the model

space size can be very large since it grows as the number of covariates increases. Notice

that P (Mi|D) can be used to determine the model with the highest posterior probability if

the goal is to select the best single model. However, the averaged model which incorporates

the model uncertainty into the analysis can also be computed. It improves the validity of

inferences and results based on the averaged model do not depend on the model selected

but on the model space M. Bayesian Model Averaging was used in Chapter 5 to account

for model uncertainty in estimation of the risk associated with the exposure to mixtures of

chemicals.

This dissertation includes five primary chapters that are generally written in manuscript

format. Summaries of each chapter are provided in the following:

1.3 Prospectus

Chapter 2 introduces a method of estimating Benchmark doses for chemical mixtures and

evaluates the method using a mixture of 18 PHAHs. Chapter 3 is concentrated on evaluating
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Neurotoxicity of a Mixture of Five OP Pesticides Using a Composite Score and desirability

functions. Chapter 4 focuses on using a Bayesian approach for estimation of a tolerable

region in multiple endpoints and multiple hazards exposure. Chapter 5 addresses the problem

of model uncertainty using Bayesian Model Averaging in estimating the tolerable area for

multiple endpoints and multiple hazard exposure. Chapter 6 compares the analysis methods

using organophosphate pesticides data as reported in Moser et al., (2005), in Chapter 3 and

in Chapter 4. Chapter 7 provides a conclusion and discussion of future work.

1.3.1 Benchmark doses for chemical mixtures: Evaluation of a

mixture of 18 PHAHs.

Benchmark doses (BMDs), defined as doses of a substance that are expected to result in a

pre-specified level of benchmark response (BMR), have been used for quantifying the risk

associated with exposure to environmental hazards. The lower confidence limit of the BMD

is used as a basis for the point of departure (POD) in risk assessments, often with additional

uncertainty factors included. This risk estimate, however, does not account for potential

interaction of the substance with other chemicals included in human exposures. The present

work developed and tested a methodology to estimate BMDs for mixtures of chemicals at

fixed mixing ratios. Comparisons were made to the BMD under the assumption of additivity.

Young female Long-Evans rats were dosed via gavage with 18 different polyhalogenated

aromatic hydrocarbons [2 dioxins, 4 dibenzofurans, and 12 PCBs, including dioxin-like and

non-dioxin-like PCBs], or a mixture with the ratio of the 18 chemicals based on environmental
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concentrations, for 4 consecutive days. Serum total T4 was measured via radioimmunoassay

in samples collected 24 hours after the last dose. Analyses of these data (Crofton et al., 2005)

did not suggest departure from additivity in the low dose region of the mixture, implying

that the BMD for the mixture could be estimated via an additivity model based on single

chemical data. Our objective was to evaluate this assumption. Three candidate nonlinear

additivity models were considered and ranked with the AIC criteria. To calculate BMD,

BMR was selected to be a 5% or 10% shift in T4 (expressed relative to controls). The results

of a Wald-type test revealed no statistically significant difference between the BMD under

additivity compared to that from the mixture data using a 5% BMR. We conclude that use

of a BMD for this mixture could be based on single chemical data in an additivity model.

1.3.2 Evaluating Neurotoxicity of a Mixture of Five OP Pesticides

Using a Composite Score.

The evaluation of the cumulative effects of neurotoxic pesticides often involves the analysis of

both neurochemical and behavioral endpoints. Multiple statistical tests on many endpoints

can greatly inflate Type I error rates. Multiple comparison adjustments are often overly

conservative leading to reduced power to detect effects of interest. Furthermore, identification

of the most sensitive endpoint may be chemical dependent so that neurotoxicity may be

most evident on a per animal basis by evaluating many endpoints. Use of a composite score

focuses the inference and avoids inflated type I error rates. Coffey et al., (2007) described the

development of an overall score based on desirability functions for the many types of outcomes
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measured in neurobehavioral toxicology experiments. Our objective was to evaluate the

neurotoxicity of a mixture of five pesticides (Moser et al., 2005). In particular, the desirability

functions for neurochemical (blood and brain cholinesterase activity) and behavioral (motor

activity, gait score, tail-pinch response score) endpoints were calculated for single chemical

(acephate, diazinon, dimethoate, chlorpyrifos, and malathion) and mixture dose response

data, and a composite score of neurotoxicity was determined. Both an additivity model

using single chemical data and a model for an environmentally-relevant fixed-ratio mixture

were estimated. Focusing in the low dose region using 5%, 10% and 20% benchmark responses

(BMRs), departure from additivity was found at the 20% BMR with all five pesticides in the

mixture; additivity was observed at the lower BMRs. This methodology is therefore useful

in evaluating the overall neurotoxicity of pesticide mixtures. Using the same relevant mixing

ratio but without the most common chemical, malathion, departure from additivity was not

detected at all three BMRs. Finally, malathion significantly influenced the interaction of

the remaining chemicals in the mixture. This methodology is therefore useful in evaluating

the overall neurotoxicity of pesticide mixtures.

1.3.3 Bayesian approaches for estimation of tolerable region in

multiple endpoints and multiple hazards exposure.

Determining benchmark dosages (BMD) is of interest to toxicologists and risk assessors.

Often data come from experiments with multiple chemicals and multiple endpoints. Current

methodology evaluates each chemical and endpoint separately resulting in multiple statistical
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tests consequently inflating Type I error rates. Methods to adjust for multiple comparisons

such as Bonferroni correction are subject to reducing the power to detect effects of interest.

We introduce a Bayesian approach for both multiple endpoints and multiple chemical data

into a single unified model. This model is estimated using MCMC in WinBugs and R.

Inferences on the endpoint model and chemical effects are done via Bayes’ factors. Using

this method, and the benchmark dose method, a 95% estimation of a Bayesian’ tolerable

dose region is computed.

1.3.4 Bayesian Model Averaging for estimation of tolerable area

in multiple endpoints and multiple hazards exposure.

Risk assessors are frequently interested in estimating the dose associated with a pre-specified

excess risk above the background. These estimates depend on the model used. Risk related

endpoints are often estimated using animal toxicity studies where outcomes are modeled

as a function of the dose considered and excess risk is determined from this dose-response

model. In this setting, there often exist multiple dose response models that describe the data

well and risk assessors may not have a prior reason, to prefer a given model over the other

models considered. This problem becomes complex in the case where multiple endpoints

are observed. In fact, there may not be a model that fits all the endpoints well. Model

selection methods in regression do so by making decisions on which predictors should be in

the model based on pre-existing criteria. Existing model selection methods are not adequate

to select an appropriate model among multiple models. The method that has captured
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researcher’s attention in the case of model uncertainty is the Bayesian model Averaging

(BMA). Following the logic in Chapter 4 to determine the benchmark dose tolerable area or

BMDTA, we propose the Bayesian Model averaging in estimating the tolerable area in the

multiple endpoints and multiple hazards exposure setting. This model is estimated using

MCMC in WinBugs, R, and with the help of Monte Carlo integration. A 95% estimation of

a Bayesian Tolerable Area is computed.

1.3.5 Overall assessment of the analysis of organophosphate pesti-

cides data using composite scores and Bayesian hierarchical

modeling.

In toxicology, studies conducted to understand the health effect of stressors may require

observations of many outcomes simultaneously. Furthermore, some studies involve assessing

the simultaneous health effect of multiple stressors. Data resulting from these types of studies

are multidimensional and pose a challenge in terms of methods of analysis. Some authors

choose to analyze the most sensitive endpoint, others have considered models that combine

multiple endpoints into a composite score and therefore avoid having to select the most

sensitive endpoint. Statistical methods to analyze these types of data can be grouped into

two main parts. The first part includes dimension reduction methods; those methods that

collapse the data dimension (e.g., composite scores). The second part includes dimension

preserving methods uses methods (e.g., multiple statistical testing, Bayesian hierarchical).

In Chapter 6, we compare and contrast these methods from the two different groups as they
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were applied to OP data.



Chapter 2

Benchmark doses for chemical

mixtures: Evaluation of a mixture of

18 PHAHs.

2.1 Introduction

The EPA is responsible for establishing guidance values (such as the acceptable daily intake

(ADI)) governing exposure to hazardous environmental agents or chemical compounds. For

noncarcinogenic agents, a toxicological point of departure (POD) is identified and forms the

basis for derivation of the reference values for risk assessment. The POD may be defined as

the highest dose at which no adverse effects are observed (NOAEL). The NOAEL is usually

derived from animal data, using an approach based on the statistical comparison of the mean

20
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response for each dose group against the control group. The NOAEL is considered to be the

highest dose for which the mean response does not differ significantly from the mean of the

control. In general, uncertainty factors are then applied to the NOAEL for animal to man

extrapolation, and to account for differences in sensitivity in the human population. These

two factors are assigned a value of 10 (WHO, 1999). Thus, to obtain a guidance value, the

NOAEL is divided by a default value of 100 = 10 × 10. Additional uncertainty factors may

also be used.

Using the NOAEL to set standards for human exposure has been criticized in the

literature (Crump, 1984; Kimmel and Gaylor, 1988; Leisenring and Ryan, 1992; Allen et al.,

1994a; Barnes et al., 1995; U.S.EPA, 1995). Some pitfalls associated with this approach for

health risk assessment are summarized here:

1. The estimation of the NOAEL is dependent on both the dose and the sample size. By

definition, the NOAEL has to be one of the experimental doses. Furthermore, since

the NOAEL is the highest dose for which there is no significant difference from back-

ground, the power of the experiment for demonstrating such differences is critical. For

large sample sizes, it is possible to detect a significant difference that is not biologically

meaningful; for small sample sizes, there may be insufficient power to conclude that a

biologically meaningful difference is statistically significant.

2. The NOAEL approach inefficiently uses available information since it ignores the dose

response relationship.

3. In some studies, the NOAEL cannot be found. If the toxicological data are insufficient,
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particularly at low doses, the approach may fail to identify an NOAEL even though

one exists. If the chemical is considered to pose a risk at all levels of exposure to which

the substance can realistically be controlled, the NOAEL may be considered not to

exist.

The above listed limitations identified with the NOAEL approach have pushed researchers

to consider the use of the benchmark dose (BMD) as an alternative approach in health risk

assessment.

The BMD method, introduced by Crump (1984), consists of fitting a mathematical

model to dose response data. The BMD is defined as the dose of a substance that is

expected to result in a pre-specified level of benchmark response (BMR) and is estimated

via a dose response model. The lower statistical confidence limit on the BMD (the BMDL)

has been proposed to replace the NOAEL as a POD for determination of guidance values.

This approach makes more efficient use of the data than the NOAEL approach, because

it incorporates information from the full dose-response curve in the estimation process and

can be obtained even when the NOAEL cannot be determined. In addition, the use of

a lower confidence limit (BMDL) appropriately reflects the sample size of a study; larger

studies tend to result in shorter confidence intervals and thus lower uncertainty. Although

there is an increasing use of the benchmark dose approach in the health risk assessment of

environmental contaminants in North America, European researchers have not yet embraced

the method mainly because, in many cases, available data are from studies with a limited

number of dose levels (Kuljus et al., 2006).
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Chemicals and their mode of action.

Living objects are rarely exposed to one environmental contaminant at a time (Monosson,

2005). Exposure comes from many sources including food, water, and contaminated sites.

Types of exposure include mixtures of pesticides on/in the food that we consume, disinfectant

byproducts in drinking water, petroleum hydrocarbons, metals and metalloids in mining

waste materials. But exposure to environmental chemicals is not necessarily associated with

an increase in health risk. The key features in risk assessment of chemical mixtures consist

of understanding the dose response relationship and joint action of agents in the mixture.

In 1939, Bliss defined three main categories of joint chemical action that are still relevant

today. Briefly, according to Bliss, chemicals can:

• Independently act and have different modes of action (i.e., different mechanisms). This

mechanism is also termed response addition (U.S. EPA, 1986) or simple independent

action (Finney, 1971). This form of joint action is noninteractive; chemicals in the

mixture are not expected to affect the toxicity of one another and the combined toxicity

can be predicted from knowledge of the independent chemicals.

• Have similar joint action, also termed dose addition or simple similar action (Finney,

1971). This form of similar joint action is noninteractive; the chemicals in the mixture

do not affect the toxicity of one another and toxicity can be predicted with knowledge

of the individual chemicals.

• Have synergistic or antagonistic action, where the toxicity of the mixture cannot be
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assessed from that of the individual chemicals but depends upon knowledge of their

combined toxicity when used in different proportions.

Effects are antagonistic when the effect of one substance counteracts the adverse effect of

another, such that exposure to the substances in combination has less effect than the effects

of independent exposures. Effects are synergistic when the final effect observed is greater

than the effects of separate exposure to each substance. For analysis purposes, the EPA

recommends the use of a components approach, where the data for each individual chemical

are combined in an additive manner if there are no adequate data on a particular mixture

(U.S. EPA 2000).

Additivity

The definition of additivity (i.e., zero interaction) used in the present analysis is given by

Berenbaum (1981). It is based on the classical isobologram introduced by Fraser (1870-

1871). Different authors including Loewe (1953), Berenbaum (1981, 1989), and Wessinger

(1986), later extended and reviewed the use of this method. Briefly, according to Berenbaum

(1981), let Ei represent the concentration/dose of the ith component alone that yields a fixed

response, and xi represent the concentration/dose of the ith component in combination with

the c agents that yields the same response, if the chemicals combine in an additive fashion

i.e., with zero interaction, then
c∑
i=1

xi
Ei

= 1. (2.1)
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When the left-hand side of (2.1) is less than 1, the effect of the mixture is greater than

additive and chemicals are said to interact synergistically, or synergy is observed; when the

left-hand side of (2.1) is greater than 1, the effect of the mixture is less than additive and

the chemicals are said to interact antagonistically, or antagonism is observed.

The ray design, departure from additivity

Various experimental designs have been used to support the estimation of the response

surface of chemical mixtures. The classical approach is the factorial design where each level

of every component is combined with all other components. However as the number of

chemicals increase the experimental designs are infeasible. The ray design, described by

Martin (1942), Mantel (1958), Finney (1964), and others, enables researchers to describe the

relationship among multiple compounds using fixed mixing ratios of interest, is a method

for assessing departure from additivity in a mixture of c chemicals. Let the fixed-ratio ray

for the mixture be defined by the mixing ratio, a = [a1.a2.a3....ac], where the ai represent

the proportion of each chemical in the mixture with the constraint:

c∑
i=1

ai = 1. (2.2)

Let t represent the total dose of the mixture along the specified fixed-ratio ray. Hence, for

any given total mixture dose along the mixing ray, t, the dose of the ith chemical in the

mixture is xi = ait, and the dose response of the mixture can be modeled as a function of

total dose, allowing for the assessment of departure from additivity. In a study of a mixture of

18 chemicals, the mixing ratios are given in Table (2.1). We introduce new methodology for
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Table 2.1: Chemicals, dose range, and ratio of individual chemical in the mixture

Chemical Dose range(mg/kg) Ratio(Total mass)

TCDD (0.0001, 10) 0.000007

PCDD (0.003, 10) 0.000007

TCDF (0.3, 100) 0.000001

1− PCDF (0.03, 100) 0.000003

4− PCDF (0.03, 90) 0.000013

OCDF (0.1, 300) 0.000032

PCB − 28 (100, 90000) 0.039237

PCB − 52 (100, 90000) 0.077523

PCB − 77 (100, 30000) 0.000988

PCB − 101 (50, 30000) 0.076814

PCB − 105 (90, 90000) 0.038282

PCB − 118 (10, 10000) 0.190302

PCB − 126 (0.001, 100) 0.000302

PCB − 138 (100, 90000) 0.190181

PCB − 153 (100, 90000) 0.190861

PCB − 156 (10, 10000) 0.006541

PCB − 169 (1, 1000) 0.000197

PCB − 180 (100, 90000) 0.188700
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estimation of the BMD for a mixture of c chemicals. To demonstrate this new methodology,

we reanalyze the mixture of 18 PHAHs described by Crofton et al., (2005). We estimate the

BMD for the mixture as predicted under additivity; the BMD is also estimated from the

mixture data alone. The new methodology allows us to determine whether the additivity

assumption is appropriate in the estimation of the BMD for this particular mixture.

2.2 Methods

Single chemicals and mixture data

As described in Crofton et al., (2005), young female Long-Evans rats were dosed for 4

consecutive days via gavage with one or a mixture of 18 different polyhalogenated aromatic

hydrocarbons: 2 dioxins, 4 dibenzofurans, and 12 PCBs, including dioxin-like and non-dioxin-

like PCBs. Serum total T4 was measured via radioimmunoassay in samples collected 24 hours

after the last dose. A mixture was custom synthesized with the ratio of chemicals based on

concentrations found in breast milk, fish tissues and other sources of human exposure.

Modeling the data and estimating BMDs

EPA suggests that the selection of the model to be used for BMD calculation should be

based on the ability of the model to describe the data (EPA 1995). We considered nonlinear

sigmoid-shaped models of the form:

g(µ;ω) = β0 +
c∑
i=1

βixi, (2.3)



28

where g(µ;ω) is the link function that relates the doses of the chemicals to the mean response

(McCullagh and Nelder, 1989), and ω is a vector of nonlinear parameters. Let BMDadd

represent the total dose of the mixture that is associated with the relevant BMR, calculated

under the assumption of additivity of the chemicals in the mixture. Using the ray design,

BMDadd is a function of the mixing proportions and the single chemical BMDis. In fact

by setting BMDi = Ei and assuming additivity, equation (2.1) becomes:

c∑
i=1

ait

BMDi

= 1; (2.4)

where t is the total mixture dose along the mixing ray, in this case, equivalent to the BMDadd,

BMDi are the effective doses of each individual chemical that on their own produce the same

effect as the mixture, and defines ai as the proportions of the corresponding individual effect

doses present in the total mixture dose (see Table 1). Thus, the BMDadd, which is the

mixture total dose under the additivity assumption, is given by:

BMDadd =

[
c∑
i=1

ai
BMDi

]−1

. (2.5)

The BMDadd is statistically compared to the BMDmix, which is the total dose for the

mixture at the given BMR, by testing the nonlinear hypothesis

H0 : BMDadd = BMDmix. (2.6)

A Wald-type statistic can be used to test the nonlinear hypothesis, (Seber and Wild, 1989).

The delta method can be used to estimate the variance of BMDadd and BMDmix used in

the estimation of the lower 95% confidence limits, BMDLs.
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2.3 Application of the method to mixture of 18 PHAHs

data

To illustrate our approach, three nonlinear sigmoid-shaped candidate models were considered

namely, the Gompertz, logistic, and exponential. Model selection was based on goodness-of-

fit as indicated by the Akaike’s Information Criterion (AIC), (U.S. EPA 2000). The nonlinear

function selected for the analysis was the logistic function. Using single chemical data and

the mixture, we considered a nonlinear logistic function for decreasing dose-response curves

of the form:

µi = αi +
γi

1 + exp(−(β0 +
∑c

1 βixi))
, i = 1, ..., 19, (2.7)

where αi + γi
1+exp(−β0)

is the magnitude of the control response, xi is the dose for the ith

chemical, i = 1, ..., 18 and x19 is the total dose of the mixture, αi is the maximum effect

parameter for the ith chemical or mixture, γi is the response range for the ith chemical or

mixture, i = 1, ..., 19. β0 is the unknown intercept parameter, and βi is the slope parameter

for the ith chemical or mixture. For this model the link function is g(µ;ω) = −log(γ+α−µ
µ−α )

where ω is given by ω = [α, γ].

Model (2.7) was fit to single chemical and the mixture data simultaneously. For the

sake of parsimony, a forward selection algorithm was used to find common estimates for the

maximum effect parameter, αi, for groups of chemicals. Three groups were identified as (1)

the mixture; (2) PCB105, PCB118, PCB138, PCB156; and (3) the remaining chemicals.

Using the nonlinear logistic model in (2.7) where αi + γi
1+exp(−β0)

was set to 100, and µ0 =
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BMR

BMDi =
log
[
µ0−αi
100−µ0

]
− β0

βi
, (2.8)

and

BMDadd =

[
18∑
i=1

ai
BMDi

]−1

, (2.9)

and

BMDmix =
log
[
µ0−αmix
100−µ0

]
− β0

βmix
(2.10)

A Wald statistic of the form:

W =

(
(BM̂Dadd −BM̂Dmix)

2

V ar(BM̂Dadd) + V ar(BM̂Dmix)− 2Cov(BM̂Dadd, BM̂Dmix)

)
. (2.11)

was used to test (2.6), and the delta method was used to estimate the variance of the test

statistic. The Wald statistic was compared to a F-distribution with df = 1, 1341. A quasi-

Newton iterative algorithm (Proc NLMIXED in SAS; version 9.1) was used to estimate the

dose-response curves.

Results

The experimentally observed dose response data and additivity model predicted response for

each single chemical or the mixture are shown on Figure (2.1). From these figures a decreasing

relationship is evident between the mean response in T4 as single chemical doses increase.

Note that the dose-response model for OCDF was reduced to background (100%) because

the maximum effect parameter was not different from 100%. Figure (2.2) presents the dose-

response curves for the mixture and the mixture as predicted under additivity. From Table
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Figure 2.1: The dose-response curve for the each observed PHAH overlapped with predicted

T4 under additivity
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Figure 2.2: The dose-response curve for the each observed PHAH overlapped with predicted

T4 under additivity
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Figure 2.3: The dose-response curve for the each observed PHAH overlapped with predicted

T4 under additivity
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Figure 2.4: The dose-response curve (solid curve) for the mixture overlayed with the one of

the mixture as predicted for T4 under additivity (dashed).
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Table 2.2: Test results for the hypothesis that the BMD for the mixture data or BMDmix

values are equal to those predicted under the additivity model or BMDadd using BMR of 5%

and then 10%.

BMR Parameter Estimate SE p− value BMDL

BMDmix 165.82 32.17 < 0.001 112.86

5% BMDadd 178.54 59.28 < 0.001 80.96

BMDadd −BMDmix 12.71 62.97 0.84 95%CI : (−90.93, 116.37)

BMDmix 275.94 52.96 < 0.001 188.76

10% BMDadd 492.55 59.58 < 0.001 394.48

BMDadd −BMDmix 216.61 77.77 0.005 95%CI : (88.59, 344.62)

(2.2), the results of a Wald-type test revealed no statistically significant difference between

the benchmark dose under the additivity assumption (BMDadd) compared to that from

the mixture data (BMDmix) in the low dose region using a BMR of 5%, (p-value=0.84).

However, at the BMR of 10%, BMDadd for the mixture as predicted by single chemicals

was higher than that estimated from the mixture data (492.55 versus 275.94 mg/kg; p-

value=0.0054). The general relationship is provided in Figure (2.2), where the dose-response

curve for the mixture drops below that predicted under additivity (dotted line); but the

curves stay similar in the low dose region. Predicted BMD and BMDL (95% lower one-

sided confidence limit) from the single-chemical data in an additivity model or BMDadd,

predicted BMD and BMDL from the PHAH mixture or BMDmix, and their difference are
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shown in Table (2.2). At the BMR = 10%, the BMDmix is significantly lower than the

BMDadd suggesting the BMDadd underestimates the risk associated with the exposure to

the mixture of 18 PHAHS.

2.4 Discussion

We introduce a method to estimate the BMD for mixtures of chemicals under the assump-

tion of additivity and have applied the method to the 18 PHAHs data described by Crofton

et al., (2005). Crofton demonstrated that the exposure to the 18 chemicals resulted in an

additive effect in the low dose region. The ray design enables us to depict the relationship

among the 18 PHAHs at a fixed mixing ratio, and to derive the BMDadd as a function of

the mixing proportions and single chemicals BMDi, see equation (2.2). The BMDadd was

statistically compared to the benchmark dose from the mixture data or BMDmix. Three

candidate nonlinear models were considered and the Akaike’s Information Criterion (AIC)

was used to select the model that fits the best. The nonlinear logistic model was selected.

The dose-response model for OCDF was reduced to the background (100%) and its maxi-

mum effect parameter was not different from 100%. The single-chemical and mixture data

were modeled successfully using the nonlinear logistic model. A one sided lower confidence

interval, BMDL, was obtained using the delta method to estimate the variance (see Table

2.2 for 95% CI). A Wald type test was used to compare the BMDadd with the BMDmix.

The present work provides a methodology for researchers to estimate the risk associated

with exposure to mixtures of chemicals. Single chemicals are used since all possible mixtures
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cannot be observed. For any specified mixing ratio, we can estimate BMDadd which, in

this case, is proven to be a good estimate of the observed BMDmix in the low dose region.

Therefore the use of a BMD for this mixture could be based on single chemical data in an

additivity model.

Power and sample size have crucial roles in hypothesis testing and are determined at

the study design level. Insufficient power may lead to accept the null hypothesis when it is

false. In the case of testing departure from additivity at a given mixture point, additivity

may be incorrectly claimed, and such a decision may lead to serious consequences. The

problem of power and sample size calculation in toxicology studies has been discussed by

Meadows-Shropshire et al., (2005), who took the approach of computing sample size and

power for testing departure from additivity at specific mixture points. Casey et al., (2006)

improved the method by introducing sample size and power calculation for detecting depar-

ture from additivity along multiple fixed-ratio rays simultaneously, which was proved to be

appropriate for any hypothesis involving linear combinations of the model parameters. This

work does not consider the power and sample size problem, however they can be considered

in future work.



Chapter 3

Evaluating Neurotoxicity of a Mixture

of Five OP Pesticides Using a

Composite Score

3.1 Introduction

Toxicological studies generally gather observations from multiple endpoints on each subject.

The large amount of data resulting from these types of studies constitute a challenge to

statisticians in terms of methods of analysis and interpretation of the results. Researchers

may perform multiple statistical tests, which on one hand inflate Type I error rates. On the

other hand, adjustments for multiple testing such as the Bonferroni correction reduce the

power of the test by making the test more conservative. Other methods (Holm’s correction;

38
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Hochberg’s correction) have been shown to be less conservative but may still impact the

power (Holm, 1979; Hocberg, 1988). Examples of studies with multiple endpoints include

Moser et al., (2005), who analyzed each endpoint independently, and Reiss et al., (2005) who

analyzed the most sensitive endpoint.

Alternatively, Coffey et al., (2007) describe the development of an overall score

based on desirability functions to use in the analysis of multiple endpoints data resulting

from toxicology studies. Desirability functions were first introduced by Harrington (1965)

in the engineering field to use in optimization of the quality of a manufactured product.

Harrington’s idea is based on evaluating the quality of a manufactured product by measuring

multiple endpoints and using desirability functions to find the levels of the factors that

optimize the overall quality as measured by the many endpoints (Derringer and Suich, 1980;

Derringer, 1994).

The objective of this work is to apply the approach described by Coffey et al., (2007),

to data from five organophosphate pesticides (OP) described in Moser et al., (2005), and

to compare the results to an independent analysis of each endpoint as reported in Moser et

al., (2005). These authors evaluated the effect of exposure to an environmentally relevant

fixed ratio of a mixture of five OPs, by performing separate analyses of each endpoint.

The objective of each analysis was to test if the mixture effect can be estimated by single

chemical data assuming the chemicals in the mixture combine in an additive fashion or if

there is evidence of interaction (either synergy or antagonism).
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Desirability scores as defined by Coffey et al., (2007) (see Figure 3.1 ) for neurochemical

(blood and brain cholinesterase ChE activity) and behavioral (motor activity, gait score, tail-

pinch response score) endpoints were calculated for the single chemical and mixture data.

The overall desirability function combines all five endpoints into a single toxicity index via

the geometric mean. An additivity model from the single chemical data and a dose-response

curve for the two fixed-ratio mixtures were simultaneously estimated using the toxicity index.

The method of Casey et al., (2005) could not be used to test additivity as the maximum

effect for the mixtures were different from the maximum effect in the additivity model. The

comparison of the BMD under additivity to that estimated from the mixture data described

in Chapter 2 is a test of additivity at the BMR of interest. The benchmark doses (BMD)

under additivity and for the observed mixtures data were calculated and compared using 5%,

10%, and 20% benchmark response from the mixture dose-response curve. The estimate for

the BMD of the mixture under additivity (with a one sided lower 95% confidence interval)

provides exposure margins for the mixture at an environmentally relevant ratio using an

index for overall neurotoxicity.

3.2 Methods

3.2.1 Experimental design

Data are described in Moser et al., (2005). In short, behavioral measures (motor activity,

gait score, and tail-pinch response) were evaluated in adult male Long-Evans rats at the



41

Figure 3.1: The form of desirability functions as predicted in Coffey et al., (2007)
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time of peak effect following an oral dose of a single chemical or mixture. Measurement

for blood and brain cholinesterase were obtain from collected tissues. The mixing ratio for

the full (with all five chemicals included) mixture was (0.040, 0.031, 0.002, 0.102, 0.825)

for acephate (ACE), chlopyrifos (CPF), diazinon (DIA), dimethoate (DIM), and malathion

(MAL), respectively. For the reduced ray, where MAL was removed from the mixture, the

mixing ratio was (0.229, 0.011, 0.177, 0.583) for ACE, DIA, CPF, and DIM, respectively.

Five concentrations and a vehicle control (0, 3, 10, 30, 60 and 120 mg/kg) of ACE were

experimentally evaluated in 8 rats each (total 48 rats). Seven concentrations and a vehicle

control (0, 5, 25, 50, 75, 125, 150 and 250 mg/kg) of DIA were experimentally evaluated

in 16, 16, 16, 8, 16, 8, 8 and 8 rats, respectively (total 96 rats). Five concentrations and a

vehicle control (0, 2, 10, 20, 30 and 50 mg/kg) of CPF were experimentally evaluated in 8

rats each (total 48 rats). Two concentrations and a vehicle control (0, 100 and 500 mg/kg)

of MAL were experimentally evaluated in 7, 8, and 8 rats, respectively (total 23 rats). Five

concentrations and a vehicle control (0, 5, 10, 25, 50 and 75 mg/kg) of DIM were experi-

mentally evaluated in 8 rats each (total 48 rats). The fixed-ratio ray of the five pesticides in

the mixture data reflected the relative dietary exposure estimates of the general population

as projected by the US EPA Dietary Exposure Evaluation Model (DEEM).
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3.2.2 Statistical methods

Desirability functions were used to transform observed measurements to unitless scores

between 0 and 1. Scores depend on how the observed response is desirable. Different desir-

ability functions were utilized depending on whether a given response was to be minimized,

maximized, or given a target value (Coffey et al., 2007). The individual scores were combined

into a single composite score through the geometric mean. Standard statistical analysis are

performed on the newly created composite scores variable.

Coffey et al., (2007), collected questionnaire data from independent subject matter ex-

perts neurotoxicologists that were used to estimate the shapes of the desirability curves in

Figure (3.1). For continuous endpoints (e.g., motor activity, brain and blood ChE activity),

the basic shape of the function was determined by whether one is trying to maximize or min-

imize the response. The mathematical form of a maximizing and a minimizing desirability

function used in this analysis are described by Shih et al., (2003). Using Figure (3.1: D, E),

each category of a categorical endpoints (e.g., gait and tail-pinch responses) was assigned a

value between 0 and 1. For example, in the analysis conducted here, a gait score of 1 was

assigned a value of d=0.95; a gait score of 2 was assigned a value of d=0.86; a gait score

of 3 was assigned a value of d=0.65; and a gait score of 4 was assigned a value of d=0.37.

Individual desirability scores were then combined using the geometric mean to arrive at a

composite measure of the overall desirability, D, such that:

D = (d1 × d2×, ...,×dk)1/k, (3.1)

where k denotes the number of the responses, here k=5.
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Table 3.1: Demonstration of the calculation of the toxicity index for three rats from the control

group and two mixture dose groups. The desirability score can be read from Figure (3.1) for

the observed response values. The observed responses are transformed to % control values for

motor activity, brain ChE and blood ChE activity. The toxicity index is the geometric mean

of the desirability scores from the five endpoints.

Control Group Mixture:55 mg/kg Mixture:300 mg/kg

RatID = 2149 RatID = 2243 RatID =2251

Endpoint Observed Desirability Observed Desirability Observed Desirability

Motor Activity 212 0.90 221 0.89 122 0.60

( %control) (106.3) − (110.8) − (61.2) −

BrainChE 5.02 0.89 3.54 0.57 1.22 0.07

( %control) (90.5) − (63.8) − (22.0) −

BloodChE 0.48 0.91 0.05 0.22 0.06 0.23

( %control) (98.1) − (9.6) − (11.5) −

Gait 1 0.95 1 0.95 2 0.86

Tail pinch 4 0.88 4 0.88 2 0.63

Toxicity Index − 0.90 − 0.62 − 0.35
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Construction of an additivity model

Assuming a quasi-likelihood framework, the threshold additivity model relating the doses of

the chemicals under study to the mean through a link function, g(µ;α), can be expressed

for decreasing dose-response relationships as:

g (µadd) = α + (µ0 − α) exp (βi(xi − δi)(xi > δi)) , i = 1, · · · , c (3.2)

where g(µadd) is the specified link function of the response of interest, xi is the dose of the

ith chemical i = 1, · · · , c, µ0 is the mean of the control group and α is the maximum effect

parameter, βi is an unknown parameter associated with the slope of the ith pesticide, δi is

an unknown threshold parameter associated with ith chemical. In the case where the dose

threshold parameter is outside the experimental region, the threshold additivity model is

replaced by the corresponding smooth model:

g(µadd) = α + (µ0 − α)exp (βixi) , i = 1, · · · , c (3.3)

Using the single chemical dose-response curves, the total dose, t, of a mixture with mixing

proportions (a1 : a2 : a3 : a4 : a5) (where
∑5

i=1 ai = 1) associated with response µadd is given

by

tadd =

∑ ai
log
(
g(µadd)−α
µ0−α

)
βi


−1

(3.4)

When the observed response along the fixed-ratio mixture ray is more extreme than that

predicted under the additivity model, then synergy is claimed; if the response is less extreme

than that predicted under additivity, then antagonism is claimed, if the curves coincide, then

additivity is claimed (Gennings et al., 2002).
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The mixture data along the fixed-ratio ray were fit to a similarly parameterized model:

g(µmix) = αmix + (µ0 − αmix)exp (θmix(t− δmix)(t > δmix)) , (3.5)

where θmix is the slope of the mixture and t is the total mixture dose. When the threshold

is estimated outside of the experimental region, the following model is used:

g(µmix) = αmix + (µ0 − αmix)exp(θmixt) (3.6)

Models in (3.2) and in (3.5) are fit simultaneously to accommodate a common estimate

for α. At BMR of interest these models are used to estimate BMDadd under additivity and

BMDmix from the mixtures respectively. Applying the method developed in Chapter 2, the

BMDadd =

[
5∑
i=1

ai
BMDi

]−1

, (3.7)

where

BMDi =
log
[
µ0−α
gadd−α

]
βi

, (3.8)

and

BMDmix =
log
[

µ0−αmix
gmix−αmix

]
βmix + δmix

, (3.9)

where maxint is the maximum intercept.
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The BMDadd is statistically compared to the BMDmix, the total dose for the mixture,

by testing the following hypothesis:

H0 : BMDadd = BMDmix. (3.10)

Evaluate the effect of malathion on the remaining components of the mixture.

Malathion held the largest proportion of the mixture (i.e., 82.5%). To evaluate the effect

of malathion on the dose-response relationship of the other four pesticides, a reduced ray

was evaluated experimentally in which the remaining four pesticides were fixed at the same

relative ratios as given in the full ray, i.e.,

ai(full)
aj(full)

=
ai(reduced)

aj(reduced)

, (3.11)

where ai(full) , and aj(reduced) denotes values associated with the proportions of the five-

chemical mixture and in the reduced mixture (where malathion was removed), respectively.

The effect of malathion in the mixture was tested by comparing the dose-response curves

for the two rays while noting that treduced = tfull(1 − a5) for a5 = 0.825, the proportion of

malathion in the full mixture. The hypothesis of no malathion effect on the mixture can be

formulated as follows:

H0 =


θfull
κ

= θreduced

δfull = δreduced

(3.12)

where κ represents the proportion of the mixing ratio for the full ray associated with chemi-

cals that remain in the reduced ray study. The Wald type test was used to test the hypothesis
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in (3.10) and (3.12) and compared to a F-distribution. A quasi-Newton iterative algorithm

(Proc NLMIXED in SAS; version 9.1) was used to estimate the dose-response curves. The

delta method can be used to estimate the variance of BMDadd and BMDmix in estimation

of the lower 95% confidence limits, BMDL.

3.3 Application and Results

Using the desirability curves taken from the fit of the questionnaire data from subject-

matter experts (see Coffey et al., 2007) and reproduced in Figure (3.1), the observed data

are transformed into desirability scores between 0 and 1. For example, in Table (3.1), a rat

in the 300 mg/kg dose group of the mixture had an observed motor activity of 122 counts,

which was transformed to 61.2 percent control units. From Figure (3.1), a motor activity

of 61.2% of control is associated with a desirability score of 0.60. The calculations of the

other four desirability scores were obtained in a similar way. The geometric mean of these

five values resulted in a toxicity index of 0.35. Calculations are also demonstrated for a rat

from the control group and for a rat from a moderate dose group of 55 mg/kg (see Table

3.1). In these three rats, the toxicity index decreased as the dose of the mixture increased,

indicating the toxicity increased with dose.

Profile plots of the desirability scores for the full mixture study are provided in Figure

(3.2), and (3.3). In general, the control group and lowest dose group (10 mg/kg) of the

mixture did not exhibit toxicity in any of the endpoints. However, as the dose increased to

55 mg/kg, BrainChE and BloodChE activity are affected; motor activity is also affected at
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100 mg/kg and higher; but tail-pinch response and gait score are not highly affected until

the dose of about 200 mg/kg and higher.

The toxicity index was calculated for each rat in the single chemical and mixture by

taking the geometric mean of the individual desirability scores. The nonlinear exponential

model was fit to these data and BMD05, BMD10, and BMD20 were computed. The common

maximum-effect parameter for the single chemicals is 0.23, and that for both full and reduced

mixtures is 0.31. There is a dose threshold parameter for DIM (estimated at 1.72 mg/kg) and

for the full and reduced mixtures (estimated at 4.14 mg/kg and 8.89mg/kg, respectively). We

compared the BMDs for the mixtures under the assumption of additivity to that estimated

from the mixture data. For the full mixture, there was not a significant difference in the

BMD05s or BMD10s from the mixture compared to that predicted by the single chemicals

under additivity (p-value=0.75 and p-value = 0.33, respectively). However, BMD20 for the

mixture as predicted by single chemicals overestimated the MOE compared to that estimated

from the mixture data (36.02 versus 22.33 mg/kg; p-value = 0.001). The general relationship

is provided in Figure (3.3 (Full)).

For the reduced mixing ratio ray, there was no departure from additivity in the low

dose region, as measured by the BMD05 and BMD10; however, a departure from additivity

was observed at the BMD20. In fact, the BMD20 for the mixture data underestimated the

BMD20 of the mixture as predicted by single chemical data (5.51mg/kg versus 8.06mg/kg).

The general relationship is provided in Figure (3.3 (Reduced)). See Table (3.3), Table (3.4),

and Table (3.5) for estimates of the BMD05, the BMD10, and the BMD20 respectively; on
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each single chemical and on the full and reduced mixtures, and their corresponding BMDL.

To the hypothesis of no malathion effect on the mixture, there is evidence that malathion

has an effect on the mixture (p-value ≤ 0.001)

3.4 Conclusion: Comparing the results to Moser et al.,

(2005)

In Moser et al., (2005) a threshold additivity model, as described in Gennings et al.,

(1997), or a generalized linear model was used to fit each endpoint separately. Furthermore,

the effect of malathion, the least potent yet most prevalent chemical among the five chemicals,

was evaluated in the mixture. In particular, as described by Casey et al., (2004), the effect

of a subset of chemicals in a mixture can be evaluated by experimentally evaluating the

fixed ratio mixture with and without the subset and testing the appropriate hypothesis of no

effect of the subset. The method was applied to a full mixture of the five OPs compared to a

similar mixture (reduced mixture) with malathion removed. Using the likelihood ratio, a test

of additivity was rejected for both mixtures the full and the reduced when considering the

brain cholinesterase (ChE) endpoint. Appropriate comparison of the full and the reduced

ray, Casey et al., (2006), revealed that the two mixtures were not significantly different,

p-value = 0.421, which suggested that malathion did not interact with the remaining four

chemicals. The same conclusions were drawn when considering the motor activity endpoint.

For the blood ChE endpoint, the study did not find evidences of departure from additivity
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Table 3.2: Parameter estimates using the nonlinear threshold additivity model.

Chemical Parameter Estimate SE P-value

ALPHA α1,2,3,4,5 0.23 0.021 ≤ .001

ACE β1 −0.034 0.004 ≤ .001

CPF β2 −0.032 0.004 ≤ .001

DIA β3 −0.009 0.001 ≤ .001

δ4 3.06 1.5 0.465

DIM β4 −0.032 0.003 ≤ .001

MAL β5 −0.0003 0.0001 0.0005

αmix 0.31 0.014 ≤ .001

MIX βmix −0.017 0.002 ≤ .001

δmix 9.4 2.393 .001

MIXred βmixred −0.04 0.006 ≤ .001

δmixred 14.12 1.71 ≤ .001
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Table 3.3: ED5 estimates, their corresponding Confidence Intervals, and the p-value for the

additivity test. There is no departure from additivity at 5%BMR for both full and reduced

mixtures; p-value = 0.75 and p-value = 0.74 respectively.

Parameter Estimate BMDL P-value

ED1(05) 1.29 1.01

ED2(05) 1.36 1.18

ED3(05) 4.87 4.19

ED4(05) 3.05 0.37

ED5(05) 126.44 48.46

EDadd(05) 10.78 6.87

EDmix(05) 11.97 7.13

EDadd(05) - EDmix(05) −1.18(SE = 3.76) [−7.42, 5.05] 0.75

EDaddred(05) 2.53 1.30

EDmixred(05) 2.14 .65

EDaddred(05) - EDmixred(05) 0.38(SE = 1.79) [−1.55, 2.32] ≤ 0.74
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Table 3.4: ED10 estimates, their corresponding Confidence Intervals, and the p-value for the

additivity test. There is no departure from additivity at 10%BMR for both full and reduced

mixtures; p-value = 0.33 and p-value = 0.35 respectively.

Parameter Estimate BMDL P-value

ED1(10) 2.62 2.07

ED2(10) 3.00 2.43

ED3(10) 10.85 8.58

ED4(10) 4.61 1.41

ED5(10) 258.26 99.13

EDadd(10) 19.36 14.05

EDmix(10) 15.21 10.59

EDadd(10) - EDmix(10) 3.37(SE = 4.32) [−3.74, 10.49] 0.33

EDaddred(10) 4.36 2.83

EDmixred(10) 3.20 1.80

EDaddred(10) - EDmixred(10) 1.16(SE = 1.25) [−.921, 3.23] ≤ 0.35
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Table 3.5: ED20 estimates, their corresponding Confidence Intervals, and the p-value for the

additivity test.There is evidence of departure from additivity at 20%BMR for both full and

reduced mixtures; p-value = 0.001 and p-value = 0.003 respectively.

Parameter Estimate BMDL P-value

ED1(20) 6.01 4.35

ED2(20) 6.34 5.10

ED3(20) 22.86 18.04

ED4(20) 7.99 5.06

ED5(20) 543.15 207.98

EDadd(20) 36.02 29.72

EDmix(20) 22.33 19.56

EDadd(20) - EDmix(20) 14.45(SE = 4.11) [7.18, 21.71] 0.001

EDaddred(20) 8.06 6.48

EDmixred(20) 5.51 4.18

EDaddred(20) - EDmixred(20) 2.54(SE = 1.21) [0.54, 4.54] ≤ 0.003
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Figure 3.2: Profile plots of the desirability scores for the full mixture
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Figure 3.3: Profile plots of the desirability scores for the full mixture
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Figure 3.4: Observed (asterisk), and fitted (solid line) mean responses along the full five-

pesticide and reduced (where MAL was removed from the mixture) fixed-ratio rays.
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but this study found evidence that malathion did interact with the remaining four chemicals.

For the tail pinch endpoint, because of the irregularity shown in the data the results were

left inconclusive or not reliable. For the gait score endpoint, the comparison between the

reduced and full ray revealed a difference between the two mixtures suggesting that malathion

interacted with the remaining four chemicals. There was no evidence of departure from

additivity, p-value is 0.314 and 0.053 for the full reduced and full rays respectively. The

findings are summarized in Table (3.6). Moser et al., (2005) focused on a more full dose-

response range; the present analysis considers, only the low dose range.

In conclusion, for the full mixture ray, in the low dose region (defined by the 5%

and 10% BMR) there is not a significant difference between the BMDs under additivity

and that estimated from the mixture data. However, the BMD associated with a BMR of

20% as predicted under additivity from single chemical data overestimated the BMD from

the mixture data (36.02 versus 22.33mg/kg). For the reduced mixture ray, the mixture is

significantly greater than additive (p-value ≤ 0.003). There is not a significant difference

between the additive estimate of the BMDs and that estimated from the reduced ray mixture

data in the low dose region estimated by BMD05 and BMD10. Overall, in Moser et al.,

(2005), there were deviations from additivity for some endpoints but not others for both

mixtures, see Table (3.6). Using a composite scores approach, both the 5-OP mixture and the

4-OP mixture were significantly different from additivity. There is evidence that malathion

influences the chemicals remaining in the reduced ray. Chapter 4 develops a new methodology

based on Bayesian hierarchical model as a unique unifying model to simultaneously model



59

Table 3.6: OP data, independent analysis for each endpoint: Overall results as they were

published in Moser et al., (2005)

Endpoint Full Ray Reduced Ray Malathion effect

Motor Activity Synergy Synergy No

BloodChE Synergy Synergy Yes

BrainChE Synergy Synergy No

Tail pinch Synergy Synergy No

Gait Score Additivity Additivity Yes

multiple endpoints resulting from multiple sources of exposure.



Chapter 4

Bayesian Approach for Estimating the

Tolerable Region

4.1 Introduction

Toxicologists are concerned about the exposure of living organisms to potentially toxic ma-

terials and how to reduce the risk resulting from the exposure. The USEPA (Environmental

Protection Agency) is responsible to set up guidance values governing exposure to stressors

by establishing the Point Of Departure (POD) such as NOAELs (No Observable Adverse

Effect Level) and BMDs (Benchmark dose). The NOAEL is the classical method, usually

derived from animal data using an approach which is based on the statistical comparison of

the mean response for each dose group against the control group. The NOAEL is considered

to be the highest dose for which the mean response does not differ significantly from the

60
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mean of the control. A number of pitfalls associated with the NOAELs have been identi-

fied. Researchers have pointed out the problems with a single numerical value adequately

reflecting study size and the shape of the underlying dose-response curves (Crump 1984; Slob

1999). NOAELs are not fixed attributes of toxic substances; rather, they reflect features of

experimental design. Larger experimental studies will detect effects at lower exposures and

thus will yield lower NOAELs (Crump 2002, Scholze and Kortenkamp 2007). Because of the

abovementioned problems, the benchmark dose (BMD) has been introduced as a statistical

tool used to determine acceptable exposures to a stressor (Crump 1984). The BMD is a dose

that causes a pre-specified effect above the background or BMR and is estimated by fitting a

mathematical dose-response model to experimental data. EPA has accepted the replacement

of NOAELs by BMDs whenever appropriate quantitative data are available (USEPA 1994).

For the univariate case where measurements are taken on one endpoint, yi, resulting

from one source of exposure with different dose level, xi, the BMD is estimated by fitting a

mathematical dose response model relating the mean response to the exposure, pre-specifying

an admissible extra risk BMRη above the background, and inverse map the relationship to

get the corresponding dose.

Example: Let

yi = f(βxi),

where f is a link function that relates the mean-observations to exposure and β is a vector

of unknown parameters. Then, at the pre-specified response of interest η or BMRη above
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the background, the BMD is x∗ that satisfies the relationship

BMDη = f−1(η) = β′x∗

where f−1 is the inverse mapping of the function f or the link function, β′ is the unknown

parameter estimates in β that satisfy the equality. A quasi-Newton iterative algorithm (Proc

NLMIXED in SAS) can be used to estimate the dose-response curve and the delta method

may be used to estimate the variance of the estimates as described in Chapter 2.

In some studies it is important to consider multiple endpoints when assessing the

risk (Ryan, 1992). Data resulting from these types of studies are large and pose a challenge

in terms of statistical analysis and interpretation. The use of multiple statistical test method

results in Type I error rate inflation. Available methods to correct for Type I error when

performing multiple statistical test, such as the Bonferroni correction, trade the power of the

test to detect the effect of interest. Some authors proposed methods of combining multiple

endpoints in the same model or in one single composite index, others choose the analysis of

the most sensitive endpoint. Samuel et al., (1997) used a latent-variable model for mixed

discrete and continuous correlated outcomes. Coffey et al., (2007) introduced the use of

an overall score based on desirability function methods to construct a composite index for

analysis of multiple outcomes in toxicology studies. Reiss et al., (2005) chose the analysis

of the most sensitive endpoint. Coffey et al., (2007) used generalized estimating equations

with nonlinear models to combine mixed data types. Other authors have used pseudolikeli-

hood estimation when combining continuous and ordinal outcomes to simplify the numerical
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challenges of using a joint density (see for example, Faes et al., 2004, Geys et al., 1999).

Regan and Catalano (1999a), who evaluated the developmental effects of Ethylene Glycol

(EG) by focusing on fetus malformation and fetal weight, proposed the joint risk assess-

ment method for two outcomes considering separate BMR for each of the two responses.

They used generalized estimating equation methodology to account for correlations. Yu and

Catalano (2005) evaluated the parathion neurotoxic effects and proposed a likelihood based

model that allows separate dose-response models for each outcome while accounting for the

bivariate correlation and overall characterization of risk.

The Bayesian hierarchical method has been proposed as a method to analyze data

with multiple endpoints. Choi et al., (2004) used Bayesian Hierarchical methods for multi-

ple endpoint data resulting from exposure to Perchlorate. The study shows that exposure

to perchlorate inhibits the uptake of iodide in the thyroid thereby causing a reduction in

the hormones thyroxine (T3) and thriiodothyronine (T4), and an increase in thyroid stim-

ulating hormones (THS) in blood. Faes et al., (2006) used Bayesian hierarchical method

on multiple endpoints data resulting from exposure to EG on mice. The developmental

toxicity effect studied include fetal, low birth weight, and malformation(external, visceral or

skeletal). They proposed a two stage Bayesian hierarchical structure where the first stage

models the probability that a fetus is non-viable and the second stage models the probability

that a survivor fetus has malformation. Both Choi (2004) and Faes (2006) used Bayesian

hierarchical model to model the toxicity from the exposure to one single chemical/stressor

and each endpoint is modeled separately. But an assessment from joint risk may encompass
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greater overall sensitivity than evaluating the risk associated with each individual endpoint

separately.

4.2 Motivating Example

The problem of statistical analysis and interpretation for multiple endpoints data become

more complex for studies interested in multiple endpoints resulting from multiple sources

of stressors. EPA researchers are interested in understanding the neurotoxicity effect of

organophosphates pesticides (OP) commonly used in agriculture. The pesticides considered

here are acephate (ACE), diazinon (DIA), malathion (MAL), chlorpyriphos (CPF), and

dimethoate (DMI). Long-Evans rats were orally exposed to either a single chemical dose or

a mixture dose. The mixing proportions for the full mixture was (0.040, 0.031, 0.002, 0.102,

0.825) for ACE, CPF, DIA, DIM, and MAL, respectively. For the reduced mixture (with no

malathion), the mixing proportion was (0.229, 0.011, 0.177, 0.583) for ACE, DIA, CPF, and

DIM respectively. Five outcomes were evaluated at the time of peak effect, motor activity,

tail pinch, and gait score, and then tissues were collected for measurement of ChE activity

(blood and brain ChE activity). The doses considered are as follow: Five concentrations and

a vehicle control (0, 3, 10, 30, 60 and 120 mg/kg) of ACE were experimentally evaluated in 8

rats each (total 48 rats). Seven concentrations and a vehicle control (0, 5, 25, 50, 75, 125, 150

and 250 mg/kg) of DIA were experimentally evaluated in 16, 16, 16, 8, 16, 8, 8 and 8 rats,

respectively (total 96 rats). Five concentrations and a vehicle control (0, 2, 10, 20, 30 and 50

mg/kg) of CPF were experimentally evaluated in 8 rats each (total 48 rats). Two concentra-
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tions and a vehicle control (0, 100 and 500 mg/kg) of MAL were experimentally evaluated in

7, 8, and 8 rats, respectively (total 23 rats). Five concentrations and a vehicle control (0, 5,

10, 25, 50 and 75 mg/kg) of DIM were experimentally evaluated in 8 rats each (total 48 rats).

In this report, we used data for two chemicals, ACE and DIA, to demonstrate

our method. A two chemical study was chosen to accommodate graphical illustration of

the methodology. The choice of which chemicals was arbitrary as all five chemicals have

enough data in the region of interest (low dose region) except malathion which has only two

concentrations and a control group. This work only considered four endpoints (BloodChE

and BrainChE, motor activity and tail pinch). Figures (4.1) and (4.2) show each endpoint

versus the doses of the two chemicals considered. We chose to model the probability of no tail

pinch to achieve a mixed response behavior, i.e, as the doses increase some curves increase

and others decrease. Later in Chapter 6, the method is applied to all five chemicals. That

is, although the mixture data included 5 chemicals, the analysis considered the data to be a

function of the 2 selected chemicals. All the data are described in Moser et al., (2005).

Using the most sensitive endpoint as a method to determine the point of departure,

each endpoint is separately modeled by a simple exponential model of form

µi = exp(β0 + β1xi) (4.1)

and the BMDL50 computed. The delta method is used to estimate the variance of the

estimate. A quasi-Newton iterative algorithm (Proc NLMIXED in SAS; version 9.1) was

used for estimation. In Table (4.1), BloodChE is the most sensitive endpoint because of its
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Figure 4.1: Endpoints versus single chemicals: BrainChE and Tail pinch.
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Figure 4.2: Endpoints versus single chemicals: BloodChE and Motor Activity.
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Table 4.1: BMDL50 resulting from an independent analysis of each endpoint resulting from

exposure to DIA or ACE

Endpoint DIA ACE

BrainChE 111.51 21.73

BloodChE 7.92 23.79

MotorActivity 131.23 24.33

Tailpinch 160.44 56.44

min(Endpointi) 7.92 21.73

lower BMDL50 values considering exposure to DIA. Whereas, BrainChE is the most sensitive

considering exposure to ACE. In both cases, tail pinch is the least sensitive endpoint with

higher values for BMDL50. To determine guidance values, such as point of departure (POD),

the most sensitive endpoint method can be used. In this case, the POD for DIA is 7.92

mg/kg and 21.73 mg/kg for ACE and the shaded area in Figure (4.3) shows where all dose

combinations considered to be tolerable for exposure are located considering independent

analysis and the most sensitive endpoint. In figure (4.4) tolerable doses are shown considering

combination effect, i.e, assuming additivity.

Determining POD or tolerable doses in risk assessment as explained above may re-

sults in unacceptable levels of toxicity, especially if the correlation that may exist among

multiple measurements taken on the same subject is ignored, and simultaneous exposures
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Figure 4.3: Tolerable region as defined by the BMDL50 obtained using the analysis of the

most sensitive endpoint method and assuming independent endpoints.
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Figure 4.4: Tolerable doses considering combination effect: From inside out, BloodChE,

BrainChE, Motor Activity, and Tail pinch.
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are considered to be independent of exposures.

This work proposes a single unifying Bayesian hierarchical model to evaluate dose-

response relationships among multiple health endpoints that may be correlated resulting

from multiple exposures. Our method allows for determining a Benchmark Dose Tolerable

Area (BMDTA) which is the area covering all possible dose combinations considered to

be tolerable for exposure at a given BMR of interest. The method is based on Bayesian

hierarchical models to simultaneously model all four endpoints. Simultaneous modeling bor-

rows strength across endpoints by allowing correlation between endpoints and may lead to

a more conservative tolerable region. Furthermore we can determine which endpoints are

sensitive,in terms of which endpoints bound this area.

4.3 Method

Let yij be the response of the ith subject on the jth endpoint. For J endpoints this can

be formed into the vector Yi = (yi1, ..., yiJ) for all n, the total number of subjects. Let K

be the number of stressors considered, and let xik be the kth stressor on the ith subject,

where k = 1, 2, .., K. This can be formed into a vector Xi = (xi1, ..., xiK). The relationship

between the xik, yij, and a function f = (f1, ..., fJ) can be formed where each fj is an

invertible function. Let βj denote a vector of parameters corresponding to the jth endpoint.

Hence the model can be formed as:
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Yi = f(Xiβ) =



yi1

yi2

...

yiJ


=



f1(Xiβ1)

f2(Xiβ2)

...

fJ(XiβJ)


. (4.2)

This formulation allows for each endpoint to have its own model with parameters βj. For

consistency, in this formulation we have all stressors Xi in each of the endpoint models. For

a given BMRη = (η1, ..., ηJ) the inveribility of the fj allow for simultaneous determination

of the BMD or tolerable region, T , using the following inequality:

f−1(η) =



f−1
1 (η1)

f−1
2 (η2)

...

f−1
J (ηJ)


≥



β′1

β′2

...

β′J


(

X∗

)
,X∗ ≥ 0, (4.3)

where βj are the estimates of parameters βs in the model (4.2). Any stressors combination

X∗ that satisfies the above inequality is considered tolerable with respect to the BMRη.

4.3.1 Bayesian structure

Likelihood

The likelihood depends on the type of data corresponding to each endpoint. Since the

data may be of differing mixture types (discrete and continuous) the likelihood should be

appropriate to the endpoint. Let gj(yij|fj(Xiβj), γj) be the probability distribution for each
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endpoint j = 1, ..., J) where γj are additional parameters that may be necessary to define the

distribution. Given βj, the endpoints are conditionally independent and hence the likelihood

can be constructed as:

L(Y |βX) =
n∏
i=1

J∏
j=1

gj(yij|fj(Xiβj), γj). (4.4)

While the likelihood does not explicitly incorporate a correlation structure, the hierarchical

nature of the model captures the possible correlations among observations through the β’s

that are allowed to be correlated.

Prior specification

Proper prior distributions are employed to ensure the resulting posterior distribution is

proper (i.e.
∫
p(θ|D)dθ = 1 where θ represents all the parameters in the model). The

following prior distributions are used:

β ∼ N(µ,Ω)

Ω ∼ Wishart(R, ρ)

γj ∼ p(γj)

µ ∼ N(a,A)

where µ and Ω are the mean vector and precision matrix, respectively, for β. Here R is

specified as the J(K + 1) × J(K + 1) identity matrix. The prior distribution for γj, p(γj)

is an appropriate distribution and a and A are the hyperparmaters governing µ. To fit the

model Markov Chain Monte Carlo techniques can be used via WinBUGS or OpenBUGS.



74

The samples generated can be analyzed in R to ensure convergence of the chains and quality

of the samples. For more on MCMC methods and diagnostics see Gelman et al., (2005).

4.3.2 Evaluation of the Benchmark dose Tolerable Area

At BMRη of interest, the inequality in (4.3) defines TJ tolerable regions where J corresponds

to the jth endpoints. To define the tolerable region for all J endpoints, is to find the

intersection of all TJ tolerable regions; T = T1 ∩ T2 ∩ · · · ∩ TJ . The T defines the benchmark

tolerable region BMDT , the analogue to the tradition BMD. The T is used to evaluate the

benchmark dose tolerable area analogue to the traditional BMDL. Using MCMC samples,

for each MCMC sample there are T (m) tolerable regions where m corresponds to the mth

MCMC sample. AT (m) , the tolerable area for each MCMC sample is evaluated as:

AT (m) =

∫
T (m)

dX

the tolerable area can be ranked and a lower bound on the tolerable area is defined by the

β MCMC sample that correspond to the qth quantile of the AT (m) . This gives a 100 × q%

credible region for the lower bound for the BMDTA. This is analogous to the traditional

BMDL.
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4.3.3 Hyper-sensitive, co-sensitive, hypo-sensitive endpoints, and

feasible probabilities

A given endpoint i is said to be Hyper-sensitive if the following condition is met:

∩Jj=1Tj = Ti. (4.5)

Likewise, we define Hypo-sensitive endpoints, as those that satisfy the following condition:

∩Jj 6=iTj = ∩Jj=1Tj. (4.6)

For Z, a set of endpoints such that

Z = {j|j ∈ J} (4.7)

endpoints in Z∗, a subset of Z are co-sensitive if

∩j∈Z∗Tj = ∩Jj=1Tj, (4.8)

Briefly, a Hyper-sensitive endpoint is when one endpoint defines the tolerable region, Hypo-

sensitive endpoint is when an endpoint has no role in defining the tolerable region, and when

more than one endpoints define the tolerable region, those endpoints defining the tolerable

region are said to be co-sensitive.

In addition to determining a credible region, the MCMC samples can be used to

determine which endpoints define the tolerable area and their corresponding probabilities.
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This can be achieved using the GNU Linear Programming Kit (GLPK) available as a con-

tributed package in R. The GNU Linear Programming Kit (GLPK) is a library of routines

that use simplex algorithms, among others, to optimize (maximize or minimize) linear pro-

gramming problems of the form:

z = CTX (4.9)

subject to:

Ax ≤ b, LB ≤ x ≤ UB, (4.10)

where z is the objective function, C is a vector of objective function coefficients, b is a

vector of each constraint in the constraint matrix, UB and LB are upper and lower bounds

on variables x. In geometric context, each inequality in (4.10) specifies a half-space in

multidimensional Euclidean space, and their intersection region which is a polytope is the

set of all feasible values the variables can take. The resulting region is a polytope and the

goal is to determine which endpoints bound the polytope. To do so, let’s construct a linear

program (LP) as follows:

• First set C = 0

• Second, each inequality in 4.10 corresponds to

(β′j)
TX ≤ f−1

j (ηj), j = 1, ..., J (4.11)

• Third, for each endpoint in turn, define linear programming LP j by setting the jth
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inequality to equality

(β′j)
TX = f−1

j (ηj) (4.12)

for j= 1,...,J and check for feasibility.

If Lpj is feasible, then the endpoint defines or bounds the polytope. Apply the routine to

MCMC samples. Let ns be the number of MCMC samples, and let Z be the set of endpoints

that bounds the polytope. The feasible probability of each endpoint can be estimated by P̂j:

P̂j =

∑ns
ι=1 IEjι∈Z(Ejι)

ns
, (4.13)

where Ejι designates the jth endpoint for the ιth sample, I is an indicator function that takes

values 1 if the endpoint j bounds the polytope and 0 otherwise. The feasible probability for

an endpoint, estimated by P̂j, is the importance of that endpoint to define the polytope. If

the feasible probability for a given endpoint is estimated to be 1, then corresponding endpoint

is inevitable in defining the polytope. If on the other hand the feasibility probability for a

given endpoint is estimated to be 0, then corresponding endpoint does not have any role in

defining the polytope hence, the endpoint does not need further consideration.

4.4 Simulated data and results

To illustrate our method we simulated data with five endpoints resulting from two stressors.

Our goal is to find a tolerable area corresponding to a pre-specified BMR. Furthermore we

would like to find the feasible probability of each endpoint. A dataset of n = 100 observations
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is simulated.

Let, xi1 ∼ Unif(0, 1), xi2 ∼ Unif(0, 1) and let:

yi1

yi2

yi3

yi4

yi5


=



exp(−6xi1 − 1xi2)

exp(−8xi1 + 0xi2)

exp(0xi1 − 8xi2)

exp(−7xi1 − 7xi2)

exp(−1xi1 − 6xi2)


+



εi1

εi2

εi3

εi4

εi5


(4.14)

where εij ∼ N(0,0.05).

Notice that among the five endpoints, Y1, Y4, and Y5 are affected by both stressors, and

exhibit a decreasing relationship with respect to both stressors. Endpoint Y2 is only affected

by stressor 2 and Y3 is only affected by stressor 1.

The hierarchical structure is specified as follow:

yi1

yi2

yi3

yi4

yi5


∼



N (exp(β11xi1 + β12xi2), τ1)

N (exp(β21xi1 + β22xi2), τ2)

N (exp(β31xi1 + β32xi2), τ3)

N (exp(β41xi1 + β42xi2), τ4)

N (exp(β51xi1 + β52xi2), τ5)


(4.15)

To fully specify the model the following prior distributions are used:

β ∼ N(µ,Ω)

Ω ∼ Wishart(I10, 10)

µ ∼ N(0, 100)
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τj ∼ Gamma(1, 1)

where I10 is the 10×10 identity matrix. While the prior distributions are proper they should

be relatively vague. This formulation leads to the following posterior distribution:

P (β,Ω,µ, τ |Y ) ∝ e−
∑5
j=1 τ

2
j × e−

1
200

∑5
j=1 µ

2
j

× |Ω|(−5)e−trace(IΩ
−1

)/2

250Γ10(5)

× |Ω|−1/2e−
1
2

(β−µ)′Ω−1
(β−µ)

×

(
5∏
j=1

τ 2
j

)−n/2
e−

1
2

∑n
i=1

∑5
j=1 τ

−2
j (Yij−exiβj )2 .

Results

WinBUGS generated 4 chains of 1,100,000 MCMC samples from the posterior distribution.

Convergence of the chains is investigated. The first 1,000 samples from each chain were

discarded as burn-in samples. The remaining 1,099,000 samples were thinned by 10 to

minimize autocorrelation in the samples, which resulted in 109,900 samples from each chain.

The 109,900 samples from the first chain were used to draw inferences. Computation took 7

hours on The 109,900 samples from the first chain were used to draw inferences.

Table 4.2 shows the true value for βik and the 2.5%, 50% and 97.5% quantiles as well

as the R̂ value for each parameter. All of the posterior credible intervals captured the true

value that was used to generate the data. Hence the use of WinBUGS is reasonable for this

problem. Furthermore, the estimation of this model is feasible.
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Table 4.2: The quantiles of the posterior samples of parameters for simulated dataset. Based

on 109,900 posterior samples.

Endpoint Parameter True 2.5% 50% 97.5% R̂

y1 β11 -6 -7.768 -5.547 -4.185 1.000

β12 -1 -1.502 -1.036 -0.623 1.000

y2 β21 -8 -10.612 -8.089 -6.314 1.000

β22 0 -0.237 0.033 0.281 1.000

y3 β31 0 -0.376 0.078 0.527 1.000

β32 -8 -11.028 -8.601 -6.701 1.000

y4 β41 -7 -14.530 -8.951 -5.929 1.100

β42 -7 -16.737 -7.660 -3.543 1.100

y5 β51 -1 -1.505 -1.039 -0.629 1.000

β52 -6 -8.091 -5.835 -4.275 1.000
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Estimating the BMDTA

The goal is to determine the BMDTA that corresponds to a BMR50 on each endpoint.

Hence η = (1/2, 1/2, 1/2, 1/2, 1/2)T and by our model definition f−1
j = ln(ηj). For each

of the MCMC samples AT (m) was determined and the 50th quantile was found and the

corresponding β was determined. This gives the BMDTA50 as any dose combination point

x∗ that satisfies the following system of inequalities:

ln(1/2)

ln(1/2)

ln(1/2)

ln(1/2)

ln(1/2)


≥



−5.826 −1.239

−8.487 −0.313

−0.972 −8.507

−8.146 −7.907

−0.918 −6.526



 x∗1

x∗2

 ,x∗1 ≥ 0,x∗2 ≥ 0. (4.16)

To determine the level of sensitivity of each endpoint and feasible probability, GLPK

routine is applied to MCMC samples and feasible probabilities are recorded. The results

shows that, Y5 has the lowest feasible probability 0.006 followed by Y1 with 0.001 feasible

probability. Endpoint Y2 and Y3 have 0.670 and 0.613 feasible probabilities respectively. Y4

is essential to determine the tolerable area with feasible probability of 1. Endpoints Y2, Y3,

and Y4 are co-sensitive endpoints.

Sensitivity Analysis

A sensitivity analysis is conducted to investigate the robustness of our BMDTA estimate.

This is done by changing the precision ( 1
σ2 , where σ2 is the variance of µs) from 100 to 50
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Figure 4.5: The BMDTA50 for simulated data

then, to 10. The results shows that changing the precision from 100 to 50 does not affect

the BMDTA estimate. However, changing the precision from 100 to 10 results in area that

agrees with the previous one by 97%. These results indicate that the BMDTA estimates is

not affected by the assumption made on the prior distribution.
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4.5 Application on OP pesticides data and results

This method of determining a tolerable region when there are multiple sources of exposure

and multiple measurements are taken on each subject is applied to the OP pesticides data.

Each endpoint measurement was transformed to percent control by dividing each measure-

ment by the mean of the control group. We used a linearizable nonlinear exponential model

to fit the data simultaneously. The following model was used to model the data:



Y1i

Y2i

Y3i

Y4i


∼



N (exp(β10 + β11x1i + β12x2i), σ1)

N (exp(β20 + β21x1i + β22x2i), σ2)

N (exp(β30 + β31x1i + β32x2i), σ3)

Binom
(
ni,

1
1+exp(β40+β41x1i+β42x2i)

)


(4.17)

The hierarchical aspect of the model was specified as follow:

Yi =



y1i

y2i

y3i

y4i


∼



f 1(xi)|β

f 2(xi)|β

f 3(xi)|β

f 4(xi)|β


To fully specify the model the following prior distributions are used:

β ∼ N(µ,Ω)

Ω ∼ Wishart(I12, 12)

µ ∼ N(0, 100)

σj ∼ Gamma(1, 1)

where I12 is the 12× 12 identity matrix.
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The resulting posterior distribution is of the form:

P (β,Ω,µ, τ |D) ∝ e−
∑3
j=1 σ

2
j × e−

1
200

∑4
j=1 µ

2
j

× |Ω|(−6)e−trace(IΩ
−1

)/2

272Γ12(6)

× |Ω|−1/2e−
1
2

(β−µ)′Ω−1(β−µ)

×
n∏
i=1

 ni

Y4i

( 1

1 + exiβ4

)Y4i
(

1− 1

1 + exiβ4

)ni−Y4i

×

(
3∏
j=1

σ2
j

)−n/2
e−

1
2

∑n
i=1

∑3
j=1 σ

−2
j (Yij−exiβj )2

WinBUGS was used to generate 4 chains of 101,000 MCMC samples from the posterior

distribution. To verify convergence of the chains traceplots were examined for good mixing

and R̂ was verified to be less than 1.005 for each chain. The first 1,000 samples from each

chain were discarded as burn-in samples. The remaining 100,000 samples were thinned by

10 to minimize autocorrelation in the samples, which resulted in 10,000 samples from each

chain. The 10,000 samples from the first chain were used to draw inferences. This sampling

took 3 hours on an intel centrino Duo Pentium D620 Computer with 2GHz processor.

Results

Table 4.3 show the 2.5%, 50% and 97.5% quantiles as well as the R̂ value for each regression

parameter. Notice the coefficients indicate a decreasing relationship with both ACE and

DIA for all endpoints.
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Table 4.3: The quantiles of the posterior samples for parameters.

Endpoint Parameter 2.5% 50% 97.5% R̂

β10 −0.252 0.203 −0.161 1.000

Brain ChE β21 −0.005 −0.003 −0.002 1.000

β32 −0.126 −0.094 −0.069 1.000

β40 −0.585 −0.508 −0.435 1.000

Blood ChE β51 −0.061 −0.032 −0.018 1.000

β62 −0.131 −0.080 −0.044 1.000

β70 −0.193 −0.148 −0.107 1.000

Motor Activity β81 −0.003 −0.002 −0.001 1.000

β92 −0.054 −0.039 −0.027 1.000

β100 0.787 0.869 0.955 1.000

Tail pinch β111 −0.0009 −0.001 −0.003 1.000

β122 −0.002 −0.006 −0.010 1.000
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Evaluating BMDTA

To determine the BMDTAη, for each of the MCMC samples AT (m) was determined and the

5th quantile of AT (m) and the corresponding β were found. This results in a BMDTAη that

is any point (x∗1, x
∗
2) that satisfies the corresponding inequalities. Equations 4.18, 4.19, and

4.20 give the system of inequalities for BMDTA10, BMDTA25 and BMDTA50, respectively.

The BMDTA10 is any point (x∗1, x∗2) that satisfies the following:

ln
(
f1(0)

10

)
ln
(
f2(0)

10

)
ln
(
f3(0)

10

)
ln
(

p4(0)/10
1−p4(0)/10

)


≥



−0.193 −0.004 −0.086

−0.547 −0.023 −0.073

−0.158 −0.002 −0.054

−0.867 −0.003 −0.006




1

x∗1

x∗2

 , (4.18)

x∗1 ≥ 0, x∗2 ≥ 0.

The BMDTA25 is any point (x∗1, x∗2) that satisfies the following:

ln
(
f1(0)

4

)
ln
(
f2(0)

4

)
ln
(
f3(0)

4

)
ln
(

p4(0)/4
1−p4(0)/4

)


≥



−0.216 −0.004 −0.081

−0.581 −0.030 −0.082

−0.115 −0.002 −0.047

−0.860 −0.001 −0.008




1

x∗1

x∗2

 , (4.19)

x∗1 ≥ 0, x∗2 ≥ 0.
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The BMDTA50 is any point (x∗1, x∗2) that satisfies the following:

ln
(
f1(0)

2

)
ln
(
f2(0)

2

)
ln
(
f3(0)

2

)
ln
(

p4(0)/2
1−p4(0)/2

)


≥



−0.181 −0.004 −0.069

−0.550 −0.039 −0.090

−0.135 −0.003 −0.042

−0.861 −0.001 −0.003




1

x∗1

x∗2

 ,x∗1 ≥ 0,x∗2 ≥ 0. (4.20)

The 50% BMDTA associated with exposure to ACE and DIA is a polytope shown on

Figure (4.6). It corresponds to all possible dose combinations from ACE and DIA that are

considered to be tolerable for simultaneous exposure.

Endpoint Probability

To determine the level of sensitivity of each endpoint and feasible probability, GLPK routine

is applied to MCMC samples and feasible probabilities are recorded for η = 0.1, η = 0.25

and η = 0.5 and are given in Table 4.4. Notice that the probabilities of BrainChE and

BloodChE are quite high indicating that each endpoint is important and hence would be

deemed co-sensitive. Furthermore, the probability for Tail pinch is always 0, indicating it is

hypo-sensitive.

Sensitivity Analysis

A sensitivity analysis is conducted to investigate the robustness of our BMDTA estimate.

This is done by changing the precision from 100 to 50 then, to 10. The results shows that

changing the precision from 100 to 50 does not affect the BMDTA estimate. However,

changing the precision from 100 to 10 results in area that agrees with the previous one by
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Figure 4.6: BMDTA associated with exposure to ACE and DIA
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Table 4.4: Posterior endpoint sensitivity probabilities, for the OP data with exposure to

ACE and DIA. Based on 10,000 posterior samples.

Endpoint BMR10 BMR25 BMR50

BrainChE 0.674 0.705 0.775

BloodChE 0.998 1 1

Motor Activity 0.001 0 0

Tail pinch 0 0 0

86%. These results indicate that the BMDTA estimates is not affected by the assumption

made on the prior distribution.

4.6 Discussion

Multiple endpoints data pose a challenge to toxicologists. Adequate statistical methods to

analyze these types of data are still in need. This work proposes a Bayesian hierarchical

model as a single unifying method to analyze data with multiple endpoints resulting from

multiple source of exposure. In terms of risk analysis, this method can determine the min-

imum tolerable area associated with pre-specified BMR. The tolerable area is seen as the

area corresponding to all possible dose combination from stressors under consideration that

one can be exposed to before bad things happen. The area depends on sensible endpoints

and take into account correlation among endpoints. The BMDTA method leads to more

concise results because the method conserves the dimension of the data, but its flexibility to
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adopt different model types such as threshold models, interacting stressors, needs a closer

investigation. Determining endpoints that define the BMDTA is crucial, it may lead to cost

and time reduction in future research. Vice versa, it may be important to determine which

stressor is/are more dangerous (in terms of producing greatest adverse health effects) than

the others, but this topic is beyond the scope of the current study. Among advantages of the

method developed here, is to take into account the correlation between observations through

the specification of a single unifying Bayesian hierarchical structure of the model. With this

method, we can ensure that a good part of the correlation in the data is being accounted

for, but we can not guarantee that all the correlation is accounted for and further research is

needed to capture the entire correlation. It is important to notice that the method developed

here leads to a partial and an overall interpretation of the results. It provides information

on how endpoints are sensitive to the exposure partially and in overall. In the simulated

data study, we used 50% BMR, the EPA recommend up to 10% BMR. The higher BMR

is used for proof of concept purposes, lower BMR values were considered for the real data.

Sensitivity analysis is conducted by considering different values of the precision because we

believe precision is a major governor of data spread and variability.

The method developed here concluded that BloodChE is the most sensitive endpoint with

1 feasible probability, followed by BrainChE with 0.006 feasible probability. These findings

confirm the results from the independent analysis by Moser et al., (2005) as reproduced in

Table (4.4). In this table, BloodChE endpoint has the lowest estimated values for ED20 and

ED50 followed by BrainChE.
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Table 4.5: ED20 and ED50 Values for the predicted (under additivity) and Experimental

Mixture data, for full and reduced rays : Moser et al., (2005)

Full ray Reduced Ray

Endpoint Additivity Mixture Additivity Mixture

ED20 17.2 8.4 3.4 2.2

Brain ChE ED50 47.6 26.6 10.3 7.8

ED20 11.5 6.6 4.5 2.0

Blood ChE ED50 32.2 17.8 11.8 5.4

ED20 68 52.5 − −

Motor Activity ED50 210 81 − −

ED20 65.2 21.7 14.8 6.7

Gait Score ED50 94.4 31.4 21.5 9.7

ED20 224.4 63.3 − −

Tail pinch ED50 295 83.2 − −
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In this work, we only considered linearizable functions to model each endpoint to prove

our method. We begin with a combination of simple and linearizable nonlinear models to

model the four endpoint simultaneously. It may be interesting to know if the sample model

chosen is the best model and how good or bad discarded models would have performed, which

leads to the next Chapter that covers model uncertainty and Bayesian model averaging.



Chapter 5

Bayesian Model Averaging for

estimation of tolerable area in

multiple endpoints and multiple

hazards exposure

5.1 Introduction

Multiple regression is a tool used by scientists to determine relationship between a response

and its predictors. Often there are many candidates predictors variables with which they

wish to describe or predict the response of interest. In such a case, researchers need a proper

way to search through all the possible models to determine an appropriate one to explain

93
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the relationship between the predictors and the responses. Common methods for perform-

ing model selection are Maximum adjusted-R2, forward, backward and stepwise selection

methods (Hocking 1976), Mallow’s Cp (Mallow 1973), Predicted REsidual Sum of Squares

(PRESS, Allen 1974), the Bayesian Information Criterion BIC, (Schwarz 1978); Akaike’s

Information Criterion AIC, (Akaike 1974) and many more. The algorithms cited above use

different criteria to determine the best model. Some search for a parsimonious model, others

use criteria such as F-tests to allow covariates to enter in the model. These algorithms select

predictors to put in the model relieving the uncertainty about the relevant predictors to be

included in the mode but leave intact the uncertainty regarding the choice of the appropriate

model.

Toxicologist and risk assessors are concerned about how much environmental health

hazards (such as chemicals) living objects are exposed to; from food, drinking water, house-

hold daily use products. The exposure to these stressors causes multiple health defects as

most of them have the capability to disrupt the normal functionality of organs, such as

thyroid, in living objects body, Crofton et al., (2005); Desaulniers et al., (2003). Risk as-

sessors researchers in toxicology studies evaluate the risk associated with the exposure to

environmental health hazards by estimating the benchmark dose (BMD) associated with

a pre-specified benchmark dose response (BMR). Risk related endpoints are estimated us-

ing studies where outcomes are modeled as a function of the dose considered and BMD is

determined using this dose-response model. In this setting, there often exist multiple dose

response models that describe the data well and risk assessors may not have a prior reason,
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to prefer a given model over the other models considered, on the other hand, in studies where

multiple outcomes are observed, there may not be a single model that fits all endpoints best.

All model selection methods aforementioned are impaired as they are based on selecting

predictors to put in the model among multiple predictors; they cannot be used to select

appropriate models from multiple models. Bayesian Model Averaging (BMA) is one method

that has gained popularity in the literature to describe model uncertainty. It is based on

using probabilistic arguments to determine the model and to average over all possible mod-

els. It was introduced in statistics in the mid-1990s and it incorporates model uncertainty

into the analysis using posterior model probabilities (see Kass and Raftery (1995), Madigan

and York (1995), Raftery (1996), Raftery, Madigan and Hoeting (1997), Hoeting, Madigan,

Raftery and Volinsky (1999)). Since its introduction, the use of BMA in application has been

expanding into different fields: Clyde (2000), Lamon and Clyde (2000); Viallefont, Raftery

and Richardson (2001) employ these methods on case-control studies; Murphy and Wang

(2001) use BMA in infant survival studies; Fernandez, Ley, and Steel (2001) applied the

BMA in economics; Yeung, Bumgarner, and Raftery (2005) used BMA in biology; Morales

et al., (2006) used BMA in public health; Koop and Tole (2004) used BMA in toxicology.

The objective of this report is to address the problem of model uncertainty in analysis of

multiple endpoints in toxicological data by applying BMA.
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5.2 The data

Following the logic developed in Chapter 4 about determination of the benchmark dose tol-

erable area (BMDTA) as an estimate of the risk associated with stressors exposure, the goal

here is to use BMA to account for model uncertainty in estimation of the neurotoxicity effect

from simultaneous exposure to organophosphate pesticides. The study covered five pesticides

commonly used in agriculture: Acephate (ACE), diazinon (DIA), malathion (MAL), chlor-

pyriphos (CPF), dimethoate (DMI). Long-Evans rats were orally exposed to single chemical

dose or mixtures. The mixing proportions for the full mixture was (0.040, 0.031, 0.002, 0.102,

0.825) for ACE, CPF, DIA, DIM, and MAL, respectively. For the reduced mixture (with no

malathion), the mixing proportion was (0.229, 0.011, 0.177, 0.583) for ACE, DIA, CPF, and

DIM respectively. Five outcomes were evaluated at the time of peak effect, motor activity,

tail pinch, and gait score, and then tissues were collected for measurement of ChE activity

(blood and brain ChE activity). The doses considered are as follow: Five concentrations and

a vehicle control (0, 3, 10, 30, 60 and 120 mg/kg) of ACE were experimentally evaluated in

8 rats each (total 48 rats). Seven concentrations and a vehicle control (0, 5, 25, 50, 75, 125,

150 and 250 mg/kg) of DIA were experimentally evaluated in 16, 16, 16, 8, 16, 8, 8 and 8

rats, respectively (total 96 rats). Five concentrations and a vehicle control (0, 2, 10, 20, 30

and 50 mg/kg) of CPF were experimentally evaluated in 8 rats each (total 48 rats). Two

concentrations and a vehicle control (0, 100 and 500 mg/kg) of MAL were experimentally

evaluated in 7, 8, and 8 rats, respectively (total 23 rats). Five concentrations and a vehicle

control (0, 5, 10, 25, 50 and 75 mg/kg) of DIM were experimentally evaluated in 8 rats each
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(total 48 rats).

Although the mixture data included 5 chemicals, the analysis considered the data to

be functions of two selected chemicals and the responses were averaged over the remaining

chemicals in the mixture data. A two chemical study was chosen to accommodate graphical

illustration. The choice of which chemicals was arbitrary as all five chemicals have enough

data in the region of interest (low dose region) except malathion which has only two con-

centrations and a control group. This work only considered four endpoints (blood and brain

ChE, motor activity and tail pinch). To achieve a mixed response behavior, i.e, as the doses

increase some curves increase and others decrease we modeled the probability of no tail

pinch. In Chapter 6, the method is applied to all five chemicals. All the data are described

in Moser et al., (2005).

5.3 Bayesian Model Averaging

Existing model selection methods select covariates to put in the model. At the end of the

selection algorithm, the model selected is treated as the best fit model among a given set of

predictors. This process does not account for model uncertainty. Bayesian Model Averaging

(BMA), on the other hand, allows the researcher to account for model uncertainty and express

this uncertainty in terms of probability (Madigan and Raftery 1994, Kass and Raftery 1995,

Clyde 1999, Hoeting et al., 1999). Let M = (M1,M2,M3 · · ·MU) be the set of models under

consideration. Let Mu denote the uth model in the set M. The cardinality or size of Mus is
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denoted by |M|. Following Bayes Rule, the posterior probability for model Mu given some

data D is given by:

p(Mu|D) =
p(D|Mu)p(Mu)∑M
v=1 p(D|Mv)p(Mv)

. (5.1)

To compute P (Mu|D) we need to compute the probability of the data given model Mu,

P (D|Mu) for all Mu ∈M. We also need to specify the prior probability that the model Mu

is the correct model P (Mu) for each model Mu ∈M. The marginal likelihood of the data D

given the model

p(D|Mu) =

∫
p(D|θu,Mu)p(θu|Mu)dθu (5.2)

is the integrated likelihood of model Mu, θu is the vector of parameters of modelMu, p(θu|Mu)

is the prior density of the parameters under model Mu, p(D|θu,Mu) is the likelihood, and

p(Mu) is the prior probability that Mu is the true model. After determining p(D|Mu) for all

model, the law of total probability is used to average the models. The higher dimensionality

aspect of equation (5.2) makes its evaluation a very difficulty task. Monte Carlo Integration

method is one approach among others to numerically evaluate equation (5.2) (e.g., George

and McCulloch, 1997, and Raftery, Madigan, and Hoeting, 1997). A simple Monte Carlo

estimate of an integral is

∫
p(D|θu,Mu)p(θu|Mu)dθu ≈

1

t

t∑
u=1

p(D|θ(j)
u ,Mu) (5.3)

where θ
(j)
u , u = 1, · · · , t are samples from the posterior distribution.

Let ∆ be the quantity of interest, such as an effect size, a future observable, or a model
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parameter, then its posterior distribution given data D is:

p(∆|D) =
U∑
u=1

p(∆|D,Mu)p(Mu|D), (5.4)

which is an average of the posterior predictive distribution for ∆ under each of the models

considered, weighted by the corresponding posterior model probability.

To evaluate the posterior model probabilities using equation (5.1) we need to

specify the prior probability of model Mu being the true model. In the absence of any

information we can set P (Mu) = 1
|M| . For more information on selecting P (Mu) see Clyde

(1999), Madigan, Gavrin, and Raftery (1995), George (1999). If prior information about

the model space is available, we should incorporate this into our analysis. Once we have

obtained P (Mu|D) for all Mu ∈M we can estimate the posterior distribution any quantity

∆ given the data D by (5.4). Researchers have shown that the averaged has better predictive

ability than any single model (Hoeting, Madigan, Raftery and Volinsky 1999). The number

of models to be averaged can be high, which may result in computationally issues. Madigan

and Raftery (1994) introduced the idea of using Occam’s Window to shrink the model space

to m∗. Occam’s window is:

m∗ = [Mu :
maxMj∈Mp(Mj|D)

p(Mu|D)
≤ C], (5.5)

where C is set to some appropriate value.
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Model specification

Let n denote the total number of subjects in the study. Let assume, on each subject,

the number of measurements taken is J . If yij is the response of the ith subject on the

jth endpoint, then Yi = (yi1, ..., yiJ) vector of all measurements taken on ith subject can

be formed for all n subjects. Let K be the number of stressors considered, and let xik

represents the kth stressor on the ith subject. The relationship between the xik and yij, a

function f = (f1, ..., fJ) can be formed where each fj is invertible function. Let θj denotes

a vector parameters corresponding to the jth endpoint. Hence the model can be formed as:

Yi = f(Xiθ) =



yi1

yi2

...

yiJ


=



f1(Xiθ1)

f2(Xiθ2)

...

fJ(XiθJ)


. (5.6)

Where Xi = (xi1, ..., xiK) is a vector of all chemical dose applied on ith subject. In this

setting each endpoint has its own modelfj(Xiθ) where θ are parameters of interest and Xi

is a vector of chemical doses.

Likelihood

Let gj(yij|fj(Xiθj), γj) be the probability distribution for each endpoint (j = 1, ..., J) where

γj are additional parameters that may be necessary to define the distribution. The likelihood

depends on the type of data corresponding to each endpoint. Since the data may have of

mixed types (continuous, discrete, categorical,...), the likelihood should be appropriate to
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the endpoint data-type. Given θJ , the endpoints are conditionally independent and hence

the likelihood can be constructed as:

L(Y |θX) =
n∏
i=1

J∏
j=1

gj(yij|fj(Xiθj), γj). (5.7)

Prior distributions

Proper prior distributions are employed to ensure the resulting posterior distribution is

proper (i.e.
∫
p(θ|D)dθ = 1 where θ represents all the parameters in the model). To specify

prior distributions on the hierarchical structure of the model we assume θ ∼ N(µ,Ω) and

Ω ∼ Wishart(R, ρ) in return. Furthermore, we assume γj ∼ p(γj) and µ ∼ N(a,A) where

µ and Ω are the mean vector and precision matrix, respectively, for θ. Here R is specified as

the J(K+1)×J(K+1) identity matrix. The prior distribution for γj, p(γj) is an appropriate

distribution and a and A are the hyperparmaters governing µ.

5.3.1 From BMDL to BMDTA

For this work, we only considered linearizable nonlinear models. Each sample model is made

of 4 combinations of endpoints models.

Example of sample model:

Y1i

Y2i

Y3i

Y4i


∼



N (exp(θ10 + θ11x1i + θ12x2i), σ1)

N (exp(− exp(−(θ20 + θ21x1i + θ22x2i))), σ2)

N
(

1
1+exp(−(θ30+θ31x1i+θ32x2i))

, σ3

)
Binom

(
ni,

1
1+exp(θ40+θ41x1i+θ42x2i)

)


(5.8)
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Table 5.1: Linearizable nonlinear endpoint models considered for continuous endpoints (brain

ChE, blood ChE and motor activity), and for binary endpoint (tail pinch).

Endpoint Models Linearizable nonlinear models

exp(θ0 + θ1x1i + θ2x2i)

(1− exp(θ0 + θ1x1i + θ2x2i))

Continuous exp(− exp(−(θ0 + θ1x1i + θ2x2i)))

1− exp(−(θ0 + θ1x1i + θ2x2i))

1
1+exp(−(θ0+θ1x1i+θ2x2i))

1− exp(θ0 + θ1x1i + θ2x2i)

Binary 1
1+exp(θ0+θ1x1i+θ2x2i)

In total, there are 250 candidate models, |M| = 250. To specify prior distributions on the

hierarchical structure of the model we assume θ ∼ N(µ,Ω) and Ω ∼ Wishart(I12, 12), where

I is the identity matrix. Furthermore, we assume σj ∼ Gamma(1, 1) and µ ∼ N(0, 100).

For each of the 250 models, WinBUGS generated 4 chains of 11,000 MCMC samples from

the corresponding posterior distribution. The chains convergence was diagnosed. The first

1,000 samples from each chain were discarded as burn-in samples. The 10,000 samples from

the first chain were used to draw inferences. For more on MCMC methods and diagnostics

seen Gelman et al., (2005).

For a given BMRη = (η1, ..., ηJ), the tolerable region is obtained by solving the fol-
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lowing inequality:

f−1(η) =



f−1
1 (η1)

f−1
2 (η2)

...

f−1
J (ηJ)


≥



θ′1

θ′2

...

θ′J


(

X∗

)
,X∗ ≥ 0, (5.9)

where θ′j are the estimates of parameters θs in the model (5.8). We assume f is an invertible

function. Any chemical dose combination X∗ that satisfies the above inequality is considered

tolerable with respect to the BMRη. At BMRη of interest, the inequality in (5.9) defines

TJ tolerable regions where J corresponds to the jth endpoints. To define the tolerable

region for all J endpoints, is to find the intersection of all TJ defined by inequality in (5.9);

T = T1 ∩ T2 ∩ · · · ∩ TJ . The T defines the benchmark tolerable region BMDT , the analogue

to the tradition BMD. The region T is used to evaluate the benchmark dose tolerable area

analogue to the traditional BMDL.Using MCMC samples, for each MCMC sample there are

T (m) tolerable regions where m corresponds to the mth MCMC sample. AT (m) , the tolerable

area for each MCMC sample is evaluated as:

AT (m) =

∫
T (m)

dX

the tolerable area can be ranked and a lower bound on the tolerable area is defined by the

β MCMC sample that correspond to the qth quantile of the AT (m) . This gives a 100 × q%

credible region for the lower bound for the BMDTA.
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5.3.2 Hyper-sensitive, co-sensitive, hypo-sensitive endpoints, and

feasible probability

An endpoint i is said to be Hyper-sensitive if the following condition is met:

∩Jj=1Tj = Ti, (5.10)

Likewise, we define Hypo-sensitive endpoints, all endpoint that satisfy the following condi-

tion:

∩Jj 6=iTj = ∩Jj=1Tj, (5.11)

For any Z, a set of endpoints such that:

Z = {j|j ∈ J}, (5.12)

endpoints in Z∗, a subset of Z are co-sensitive if

∩j∈Z∗Tj = ∩Jj=1Tj, (5.13)

The method of determining important endpoints for the BMDTA and feasible proba-

bility has been introduced in Chapter 4. It consists of using a simplex algorithm, a part

of GLPK (GNU Linear Programming Kit) routine in R, applied to MCMC to determine

which endpoints define the tolerable area and their corresponding feasible probabilities. In

this process, a linear program problem subject to linear constraints is solved. The linear

constraint is constructed from the estimates of the parameter defining the BMDTA and the
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inequality in (5.9). The general linear program problem is constructed as follow:

z = CTX (5.14)

subject to:

Ax ≥ b, LB ≤ x ≤ UB. (5.15)

In this settings, UB and LB are upper and lower bounds on variables x, b is a vector

of each constraint in the constraint matrix A, z is the objective function, C is a vector

of objective function coefficients. In geometric context, each inequality in (5.15) specifies

a half-space in multidimensional Euclidean space, and their intersection region which is a

polytope is the set of all feasible values the variables x can take. The goal is to determine

which endpoints bound the polytope. A linear program (LP) is constructed such that C = 0.

Then, each inequality in (5.15) corresponds to:

(θ′j)
TX ≥ f−1

j (ηj), j = 1, ..., J (5.16)

For each endpoint in return, define linear programming LP j by setting the jth inequality to

equality

(θ′j)
TX = f−1

j (ηj) (5.17)

for j= 1,...,J and check for feasibility. If Lpj is feasible, then its corresponding endpoint

bounds the polytope. Applied this method to all MCMC samples, then the proportion of

time an endpoint is reported as feasible defines the estimate of its feasible probability. That
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proportion can be estimated by: P̂j

P̂j =

∑ns
ι=1 IEjι∈Z∗(Ejι)

ns
, (5.18)

where Ejι designates the jth endpoint for the ιth sample, I is an indicator function that takes

values 1 if the endpoint j bounds the polytope and 0 otherwise, ns denotes the number of

MCMC samples, and Z∗ denotes the set of endpoints that bound the polytope. The feasible

probability for an endpoint is the importance of the endpoint to define the polytope. If the

feasible probability for a given endpoint is 1 then corresponding endpoint is inevitable to

define the polytope. If on the other hand the feasibility probability for a given endpoint is

0, then corresponding endpoint does not have any role in defining the polytope, therefore no

further consideration.

5.4 Application to OP data

Since we have no information a priori about the models, we chose P (Mu) = 1/250. To

implement BMA, we computed P (Mu|D) for each model Mu ∈M using Monte Carlo inte-

gration. To reduce the number of models in which to average, we used an Occam’s window

approach, we only considered models Mu such that P (Mu|D) > 0.00005. This reduced our

averaged model space to 4 models and their corresponding posterior probabilities are 0.990,

0.005, 0.0004, 0.0003. These 4 sample models account for almost 100% of the total posterior

probability and are given in Table (5.2) with their respective posterior probabilities.

Averaged model coefficients were obtained by systematically sampling from the coef-
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Table 5.2: Sample models and their respective posterior probabilities considering endpoints

were modeled in the following respective order: BrainChE, BloodChE, Motor Activity, Tail

pinch

Sample models Posterior probability

N (exp(θ10 + θ11x1i + θ12x2i), σ1)

N (exp(θ20 + θ21x1i + θ22x2i), σ2) 0.994

N (exp(θ30 + θ31x1i + θ32x2i), σ3)

Binom
(
ni,

1
1+exp(θ40+θ41x1i+θ42x2i)

)
N (exp(θ10 + θ11x1i + θ12x2i), σ1)

N (exp(θ20 + θ21x1i + θ22x2i), σ2)

N (exp(θ30 + θ31x1i + θ32x2i), σ3)

Binom (1− exp(θ40 + θ41x1i + θ42x2i))

0.0004

N (exp(θ10 + θ11x1i + θ12x2i), σ1)

N (exp(− exp(−(θ20 + θ21x1i + θ22x2i))), σ2)

N
(

1
1+exp(−(θ30+θ31x1i+θ32x2i))

, σ3

)
Binom

(
ni,

1
1+exp(θ40+θ41x1i+θ42x2i)

)
0.0003

N (exp(θ10 + θ11x1i + θ12x2i), σ1)

N (exp(− exp(−(θ20 + θ21x1i + θ22x2i))), σ2)

N
(

1
1+exp(−(θ30+θ31x1i+θ32x2i))

, σ3

)
Binom (1− exp(θ40 + θ41x1i + θ42x2i))

0.005
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Table 5.3: Feasible probability for each endpoint using the averaged model

Endpoint Feasible Probability

MotorActivity 0

BloodChE 1

BrainChE 0.004

Tailpinch 0

ficients of the four candidate sample models with respect to their corresponding posterior

probabilities. These coefficients do not depend on a model. The averaged model is consistent

with biological expectations. The averaged model parameters are used to define BMDTA

by:

ln
(
f1(0)

2

)
ln
(
f2(0)

2

)
ln
(
f3(0)

2

)
ln
(

p4(0)/2
1−p4(0)/2

)


≥



−0.184 −0.004 −0.092

−0.605 −0.032 −0.046

−0.118 −0.002 −0.043

−7.224 −0.038 −3.942




1

x∗1

x∗2

 ,x∗1 ≥ 0,x∗2 ≥ 0. (5.19)

Figure(5.1) shows the tolerable area considering simultaneous exposure to ACE and DIA.

Table (5.3) shows BloodChE is a hyper-sensitive endpoint defining the BMDTA with 1

feasible probability. Motor Activity, Tail pinch and BrainChE endpoints are hypo-sensitive

and have 0, 0, 0.004 feasible probability respectively therefore they are not important out-

comes to define the BMDTA. These results reflect the importance of BloodChE endpoint

in studies aimed to assess the risk associated with the exposure to five OPs.
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Figure 5.1: BMDTA, under BMA, associated with exposure to DIA and ACE
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5.5 Discussion and Conclusion

The BMDTA as introduced in Chapter 4 is an estimate of the risk associated with multiple

endpoints and multiple exposure. In classical model selection procedures, the model that best

fits the data is selected. But when multiple endpoints are measured, there may not be a single

model that best fits all the endpoints. BMA is proven to be handy in such a situation. In the

current study, linearizable nonlinear models are considered to fit 4 endpoints simultaneously

equivalently 250 sample models. With one sample model that has almost 100% posterior

probability, we cannot conclude that the BMA was beneficial in this specific case, but it

is also imperative to notice that some use BMA to get the best model and do not have to

average. The goal of BMA is to account for the model uncertainty in the analysis. But it

is still difficult to take into account every possible uncertainty in the model especially when

some type of approximation has to be used through out the process. Approximations always

have some uncertainty associated with them. Due to this approximation uncertainty we have

not removed model uncertainty entirely. Instead, we have diminished its impact. Another

critical issue with the BMA approach is how to select the prior probability of the model, the

number of models to be included in the predictive distribution and the sampling distribution.

The Occam’s window approach proposed by Madigan and Raftery (1994) averages over a

set of good models, the selection of size of Occam’s razor is still unclear.



Chapter 6

Composite Scores, Bayesian

Hierarchical Models, and Independent

analysis of endpoint: Application to

Five Organophosphate Pesticides

6.1 Introduction

The analysis of multiple endpoints data has received attention in the literature with a variety

of approaches. Available statistical methods of analysis can be placed into two groups. The

first group consists of methods that reduce the dimensions of the data before the analysis, we

label it as dimension reduction methods. This group contains methods such as the composite

111
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score method, the analysis of the most sensitive endpoint, principle component analysis, and

any other simple or complex method based on reducing the dimensionality aspect of the data

before the analysis is conducted. The second group comprises those methods that maintain

the multi-dimensionality aspect of the data and may/ may not adjust the results accordingly.

We refer to the methods in this group as dimensions preservative methods. This group

contains methods such as multiple statistical tests, a unifying Bayesian hierarchical method

(as it is introduced in Chapter 4), or any other method that conserves the multidimensionality

aspect of the data. In the present work, two methods, one from each group have been

applied. In fact, in Chapter 3, a dimension reduction method, using a composite score

of multiple endpoint is used to analyze organophosphate pesticides data. In Chapter 4, a

single unifying Bayesian based dimension preservative method is introduced. In Chapter

4, the method of estimating the risk associated with the exposure to a mixture of five

organophosphate pesticides considered only two chemicals chosen arbitrarily. In the present

Chapter, we consider all five chemicals as they were considered in Moser et al., (2005) study.

Furthermore we compare and contrast the results from these two different analysis methods

and the analysis conducted by Moser et al., (2005) modeling each endpoint separately.

To understand the neurotoxicity effect resulting from the exposure to organophosphate

pesticides, Moser et al., (2005) published the results of a study in which multiple endpoints

were observed from exposure to a mixture of five organophosphate pesticides. Long-Evans

rats were exposed to single oral dose of a single chemical or mixtures of five OP pesticides:

acephate(ACE), chlorpyrifos (CPF), diazinon (DIA), diamethoate (DIM), and malathion
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(MAL). The proportions of each chemical in the full mixture are as follows: (0.040, 0.031,

0.002, 0.102, 0.825) for ACE, CPF, DIA, DIM, and MAL, respectively, i.e., the same relative

proportions as in the full mixture. For the reduced mixture, where malathion was removed

from the mixture, the proportion of each chemical in the reduced mixture was (0.229, 0.011,

0.177, 0.583) for ACE, DIA, CPF, and DIM respectively. These proportions reflect the

relative dietary exposure estimates of the general population as projected by the US EPA

Dietary Exposure Evaluation Model (DEEM). Single chemical dose-response studies were

initially conducted. Following single oral dose, measurements were taken on five endpoints

at the time of peak effect: Behavioral measures (motor activity, gait score, and tail-pinch).

Tissues were collected for measurements of blood and brain cholinesterase (ChE) activity.

In the present work, only four endpoints were considered: BloodChE and BrainChE, motor

activity and tail pinch.

6.1.1 An overview of the results from an independent analysis on

OP data by Moser et al., (2005)

The results published by Moser et al., (2005) are based on separate and independent analysis

of each of the five endpoints. The objective of each analysis was to test if the mixture effect

can be estimated by single chemical data assuming the chemicals in the mixture interact

in an additive fashion or if there is evidence of interaction (either synergy or antagonism).

Furthermore, the effect of malathion on the chemicals remaining in the reduced mixture was

assessed. Motor Activity and BrainChE were modeled by a threshold additivity model as
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described in Gennings et al., (1997). For brain ChE, the likelihood ratio test of additivity

was rejected for both mixtures. The experimental mixture model showed greater than ad-

ditivity effect in the low dose range. The comparison between the full and the reduced ray

as described in Casey et al., (2006) revealed that the two mixtures were not significantly

different (p = 0.421). This shows that there is no evidence that malathion had an effect

on the four remaining chemicals. For the motor activity endpoint, in the low dose range,

there was evidence to reject the test of additivity (p = 0.001) and the comparison between

the full and reduced rays showed no difference (p = 0.378). This shows that malathion

did not interact with the four chemicals. In Moser et al., (2005) analysis, blood ChE was

fit by a generalized linear model because the data fit a threshold outside the experimental

range. The likelihood ratio test of additivity was rejected (p = 0.001) suggesting evidence

of synergy in the low dose range for both full and reduced mixtures. There were indications

that the two mixtures ray differ (p = 0.001) which suggested that malathion interacted with

the remaining chemicals. These results are summarized in Table (6.1). Chapter 3 covers the

use of composite scores method using desirability function to analyze OP data.

6.1.2 A brief summary of the results from the composite scores

method applied to OP data

In this analysis a desirability function is used to transform the observed response to a unitless

score based on the appropriateness of the response. Then, the geometric mean is used to

combine the individual scores into an overall composite score. Statistical analysis is based
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Table 6.1: OP data, independent analysis for each endpoint: Overall results as they were

published in Moser et al., (2005)

Endpoint Full Ray Reduced Ray Malathion effect

Motor Activity Synergy Synergy No

BloodChE Synergy Synergy Yes

BrainChE Synergy Synergy No

Tail pinch Synergy Synergy No

Gait Score Additivity Additivity Yes

on the overall composite score. We used the threshold additivity model to fit the overall

composite score. For the full mixture data the analysis concluded that there is evidence

of departure from additivity. In fact, the mixture is significantly greater than additive

(p = 0.001) suggesting synergy. In the low dose region (defined by the 5% and 10% BMR)

there is not a significant difference between the BMDs under additivity and that estimated

from the mixture data. However, the BMD associated with a BMR of 20% as predicted

under additivity from single chemical data overestimated the BMD from the mixture data.

For the reduced mixture data we observed that the mixture is significantly greater than

additive (p ≤ 0.001). There is not a significant difference between the additive estimate of

the BMDs and that estimated from the reduced ray mixture data at BMR20. Overall, in

Moser et al., (2005), deviations from additivity were reported for some endpoints but not

others for both mixtures (see Table 6.1). Using this method, both the 5-OP mixture and the
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4-OP mixture were significantly different from additivity. There was evidence that malathion

has an influence on the four chemicals in the reduced ray. Chapter 4 introduces a unique

unifying Bayesian hierarchical model to simultaneously estimate the risk associated with the

exposure to OP pesticides. In the next section, the dimension preservative methodology

developed in Chapter 4 is applied to the mixture of all five pesticides. Issues raised by model

uncertainty are resolved using the Bayesian model averaging method, as described in the

next section.

6.2 Dimension preservative method as applied to five

OP data

In the context of dimension preservative methods, in Chapter 4 we introduce a unique

unifying Bayesian hierarchical model to analyze the OP data (Moser et al., 2005). The main

objective in this study was to estimate the benchmark dose tolerable area, BMDTA, as an

estimate of the risk associated with the exposure to a mixture of OPs. To demonstrate our

method, in Chapter 4, we only used data from two chemicals selected arbitrarily; now we

apply the method to data from all five chemicals, i.e., dose response data from each single

chemical and two fixed ratio mixtures.
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Bayesian structure

For each observation, four endpoints were measured and considered here as a result of ex-

posure to five chemicals. Let yij be the response of the ith subject on the jth endpoint. For

each subject, the response is a vector Yi = (yi1, ..., yi4) for all n subjects. And let xik be

the kth chemical on the ith subject, where k = 1, 2, .., 5. This can be formed into a vector

Xi = (xi1, ..., xi5). The relationship between the xik and yij, a function f = (f1, ..., f4) can

be formed where each fj is linearizable and invertible function. Let ψj denote a vector

parameters corresponding to the jth endpoint. Hence the model can be formed as:

Yi = f(Xiψ) =



yi1

yi2

...

yi4


=



f1(Xiψ1)

f2(Xiψ2)

...

f4(Xiψ4)


. (6.1)

In this setting, each endpoint has its own modelfj(Xiψj) where ψj are parameters of interest

and Xi is a (matrix) vector of stressors. Proper likelihood taking into account the mixed

types aspect of the data is considered.

Likelihood

The likelihood can be constructed as:

L(Y |ψX) =
n∏
i=1

J∏
j=1

gj(yij|fj(Xiψj), γj). (6.2)

j = 1, ..., 4 assuming that, given ψj, the endpoints are conditionally independent, where
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gj(yij|fj(Xiψj), γj) is the probability distribution for each endpoint and γj are additional

parameters that may be necessary to define the distribution.

Prior distribution specification

The prior on the hierarchical structure of the model is specified as follow: we assume ψ ∼

N(µ,Ω) and Ω ∼ Wishart(I24, 24). Furthermore, we assume σj ∼ Gamma(1, 1) and µ ∼

N(0, 100).

ψ ∼ N(µ,Ω)

Ω ∼ Wishart(I24, 24)

µ ∼ N(0, 100)

σj ∼ Gamma(1, 1)

where I24 is the 24× 24 identity matrix.

6.2.1 Application and Results

We fit the data with a linearizable nonlinear model:
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

Y1i

Y2i

Y3i

Y4i


∼



N
(
exp(ψ10 +

∑5
k=1 ψjkxik), σ1

)
N
(
exp(ψ20 +

∑5
k=1 ψjkxik), σ2

)
N
(
exp(ψ30 +

∑5
k=1 ψjkxik), σ3

)
Binom

(
ni,

1
1+exp(ψ40+

∑5
k=1 ψjkxik)

)


(6.3)

WinBUGS generated 4 chains of 11,000 MCMC samples from the corresponding posterior

distribution. The first 1,000 samples from each chain were discarded as burn-in samples. The

10,000 samples from the first chain were used to draw inferences.

Results

At any BMRη of interest, following the logic of determining BMDTA developed in Chapter

4, the benchmark dose tolerable area is obtained by solving the following inequality assuming

fj is invertible function:

f−1(η) =



f−1
1 (η1)

f−1
2 (η2)

...

f−1
J (ηJ)


≥



ψ′1

ψ′2

...

ψ′J


(

X∗

)
,X∗ ≥ 0. (6.4)

where ψ′j are the estimates of the parameters ψ in the model (6.3).
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Table 6.2: The quantiles of the posterior samples for parameters.

Endpoint Parameter 2.5% 50% 97.5% R̂

β10 −0.039 −0.004 −0.030 1.000

β21 −0.007 −0.006 −0.005 1.000

Brain ChE β32 −0.115 −0.089 −0.067 1.000

β43 −0.049 −0.037 −0.028 1.000

β54 0.000 0.000 0.000 1.000

β65 −0.022 −0.018 −0.014 1.000

β70 −0.072 −0.032 −0.007 1.000

β81 −0.111 −0.076 −0.055 1.000

Blood ChE β92 −0.045 −0.033 −0.025 1.000

β103 −0.050 −0.038 −0.030 1.000

β114 −0.002 −0.002 −0.001 1.000

β125 −0.045 −0.614 −0.479 1.000

β130 −0.045 −0.009 −0.025 1.000

β141 −0.004 −0.003 −0.002 1.000

Motor Activity β152 −0.035 −0.026 −0.019 1.000

β163 −0.017 −0.014 −0.010 1.000

β174 −0.003 −0.000 −0.000 1.000

β185 −0.030 −0.023 −0.018 1.000

β190 −0.877 −0.781 −0.687 1.000

β201 −0.004 −0.002 −0.000 1.000

Tail pinch β212 −0.011 −0.006 −0.001 1.000

β223 −0.009 −0.003 −0.001 1.000

β234 −0.001 0.000 0.000 1.000

β245 −0.018 −0.009 0.000 1.000
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

ln
(
f1(0)

2

)
ln
(
f2(0)

2

)
ln
(
f3(0)

2

)
ln
(

p4(0)/2
1−p4(0)/2

)


≥



−0.009 −0.005 −0.095 −0.040 −0.001 −0.021

−0.057 −0.092 −0.027 −0.049 −0.002 −0.591

−0.018 −0.004 −0.033 −0.021 −0.001 −0.026

−0.294 −0.001 −0.002 −0.003 −0.001 −0.000



 1

x∗k



(6.5)

where x∗k ≥ 0, k = 1, ..., 5.

The BMDTA is defined by the inequality in (6.5).

Geometrically, each of the above inequality results in a half Euclidean plan. The

intersection of all half Euclidean plan form a polytope that we call the benchmark tolerable

region. Using the quantile method as described in Chapter 4, we define the benchmark

tolerable area (BMDTA) for η = 10, η = 25, and η = 50. Due to the multidimensionality

aspect of the data, we are unable to plot BMDTA.

The BMDTA10 is any point x∗k ≥ 0, k = 1, ..., 5. that satisfies the following:

ln
(
f1(0)

10

)
ln
(
f2(0)

10

)
ln
(
f3(0)

10

)
ln
(

1/10p4(0)
1−1/10p4(0)

)


≥



−0.022 −0.005 −0.081 −0.037 −0.0002 −0.016

−0.049 −0.095 −0.034 −0.037 −0.0021 −0.652

−0.003 −0.004 −0.024 −0.014 −0.00001 −0.024

−0.761 −0.002 −0.004 −0.004 −0.00006 −0.017



 1

x∗k



(6.6)

where x∗k ≥ 0, k = 1, ..., 5.
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The BMDTA25 is any point x∗k ≥ 0, k = 1, ..., 5. that satisfies the following:

ln
(
f1(0)

4

)
ln
(
f2(0)

4

)
ln
(
f3(0)

4

)
ln
(

1/4p4(0)
1−1/4p4(0)

)


≥



−0.016 −0.005 −0.098 −0.035 −0.0002 −0.016

−0.053 −0.067 −0.029 −0.041 −0.0017 −0.568

−0.008 −0.003 −0.023 −0.013 0.00002 −0.024

−0.754 −0.003 −0.005 −0.002 −0.0010 −0.006



 1

x∗k



(6.7)

where x∗k ≥ 0, k = 1, ..., 5.

The BMDTA50 is any point x∗k ≥ 0, k = 1, ..., 5. that satisfies the following:

ln
(
f1(0)

2

)
ln
(
f2(0)

2

)
ln
(
f3(0)

2

)
ln
(

p4(0)/2
1−p4(0)/2

)


≥



−0.012 −0.005 −0.094 −0.023 −0.0002 −0.018

−0.053 −0.104 −0.032 −0.038 −0.0016 −0.590

−0.014 −0.003 −0.026 −0.012 0.00003 −0.027

−0.749 −0.001 −0.007 −0.002 −0.0007 −0.012



 1

x∗k



(6.8)

where x∗k ≥ 0, k = 1, ..., 5.

6.2.2 Endpoint Probability

To determine the level of sensitivity of each endpoint and feasible probability, GLPK routine

is applied to MCMC samples and feasible probabilities are recorded for η = 10, η = 25 and

η = 50 and are given in Table 6.3. Notice that the probabilities of BrainChE and BloodChE

are quite high indicating that each endpoint is important and therefore would be deemed

co-sensitive. Furthermore, the probability for Tail pinch and Motor Activity is always 0,

indicating it is hypo-sensitive.
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Table 6.3: Posterior endpoint sensitivity probabilities, for the OP data with exposure to five

OP. Based on 10,000 posterior samples.

Endpoint (yj) ED10 ED25 ED50

BrainChE 0.997 1 1

BloodChE 1 1 1

Motor Activity 0 0 0

Tail pinch 0 0 0

Given the criticism surrounding model uncertainty when modeling a given dataset, and

the statistical improvement brought in this field by Bayesian model averaging, we used the

BMA method to estimate BMDTA associated with the exposure to five OP pesticides.

6.2.3 Bayesian Model Averaging as applied to data resulting from

the exposure to five OPs

We used the combination of the following linearizable nonlinear models to create different

sample models.

The sample models are all possible combination of the above linearizable nonlinear mod-
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Table 6.4: Linearizable nonlinear endpoint models considered for continuous endpoints

(BrainChE, BloodChE and Motor Activity), and for binary endpoint (Tail pinch) as result

of five chemicals exposure.

Endpoint Models Linearizable nonlinear models

1− exp(−(ψ0 +
∑5

k=1 ψjkxik))

exp(− exp(−(ψ0 +
∑5

k=1 ψjkxik)))

Continuous 1− exp(ψ0 +
∑5

k=1 ψjkxik)

1
1+exp(−(ψ0+

∑5
k=1 ψjkxik))

exp(ψ0 +
∑5

k=1 ψjkxik)

(1− exp(ψ0 +
∑5

k=1 ψjkxik))

Binomial 1
1+exp(ψ0+

∑5
k=1 ψjkxik)
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els. In total there are 250 sample models, |M| = 250. Example of sample model:

Y1i

Y2i

Y3i

Y4i


∼



N
(
exp(− exp(−(ψ0 +

∑5
k=1 ψjkxik))), σ1

)
N
(
1− exp(ψ0 +

∑5
k=1 ψjkxik), σ2

)
N
(

1
1+exp(−(ψ0+

∑5
k=1 ψjkxik))

, σ3

)
Binom

(
ni, (1− exp(ψ0 +

∑5
k=1 ψjkxik))

)


(6.9)

To specify prior distributions on the hierarchical structure of the model we assume

ψ ∼ N(µ,Ω) and Ω ∼ Wishart(I24, 24), where I is the identity matrix. Furthermore,

we assume σj ∼ Gamma(1, 1) and µ ∼ N(0, 100). For each of the 250 models, WinBUGS

generated 4 chains of 11,000 MCMC samples from the corresponding posterior distribution.

The chains convergence was diagnosed. The first 1,000 samples from each chain were dis-

carded as burn-in samples. The 10,000 samples from the first chain were used to draw

inferences. Since we have no information a priori about the models, we chose P (Mu) =

1/250. To implement BMA, we computed P (Mu|D) for each model Mu ∈ M using Monte

Carlo integration. In this process, the sample model considered in equation 6.3 has almost

100% posterior probability and other models have extremely very low posterior probabilities.

We did not have to average. At 50%BMR, the BMDTA is given by the following inequality:
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

ln
(
f1(0)

2

)
ln
(
f2(0)

2

)
ln
(
f3(0)

2

)
ln
(

p4(0)/2
1−p4(0)/2

)


≥



−0.009 −0.005 −0.092 −0.038 −0.001 −0.023

−0.061 −0.089 −0.030 −0.050 −0.002 −0.571

−0.019 −0.004 −0.041 −0.019 −0.001 −0.028

−0.309 −0.001 −0.002 −0.003 −0.001 0.000



 1

x∗k



(6.10)

where x∗k ≥ 0, k = 1, ..., 5.

Geometrically, each of the above inequality results in a half Euclidean plan. The

intersection of all half Euclidean plan form a polytope that we call the benchmark tolerable

region. Due to the multidimensionality aspect of the data, we are unable to plot BMDTA.

However, it is important to know which endpoints define the polytope. Following the logic of

determining the endpoints probability i.e., which endpoints define the BMDTA, as described

in Chapter 4, we determined that BloodChE and BrainChE have each, 1 feasible probability

and are both co-sensitive endpoints, whereas Tail pinch and Motor Activity have each 0

feasible probability and are both hypo-sensitive endpoints.

6.3 Sensitivity Analysis

In terms of total mixture dose t, given the proportion of each chemical in the full mixture

(0.040, 0.031, 0.002, 0.102, 0.825) for ACE, CPF, DIA, DIM, and MAL, respectively, we

determined that the tolerable region intersects the full mixing ratio ray line at 131.73mg/kg,
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Table 6.5: Feasible probability for each endpoint using the averaged model.

Endpoint Probability

MotorActivity 0

BloodChE 1

BrainChE 0.9

Tailpinch 0

26.62mg/kg, 72.7mg/kg, and 312.56mg/kg for activity, BloodChE, BrainChE, and tail re-

spectively (see Table 6.5). These values were obtained by independently solving for t in each

equality in the following system of equations:

ln
(
f1(0)

2

)
ln
(
f2(0)

2

)
ln
(
f3(0)

2

)
ln
(

p4(0)/2
1−p4(0)/2

)


=



−0.009 −0.005 −0.095 −0.040 −0.001 −0.021

−0.057 −0.092 −0.027 −0.049 −0.002 −0.591

−0.018 −0.004 −0.033 −0.021 −0.001 −0.026

−0.294 −0.001 −0.002 −0.0036 −0.001 −0.0001



 1

ait



(6.11)

where ai, i = 1, 2, 3, 4, 5, are the proportions of chemicals in the mixture.

The minimum, 1.21mg/kg, 2.09mg/kg, 6.47mg/kg, 9.18mg/kg, 26.6mg/kg, is consid-

ered as the tolerable dose for the mixture at 5%BMR, 10%BMR, 20%BMR, 25%BMR,

50%BMR respectively. They all correspond to BloodChE endpoint, the most sensitive end-

point. The maximum, 60.21mg/kg, 61.24mg/kg, 113.21mg/kg, 171.16mg/kg, 312.5mg/kg,

is considered as the tolerable dose for the mixture at 5%BMR, 10%BMR, 20%BMR,
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Table 6.6: The total mixture dose where the tolerable regions intersect the full mixing ratio

ray.

Endpoint ED05 ED10 ED20 ED25 ED50

BrainChE 6.6 17.26 40.67 53.30 72.7

BloodChE 1.21 2.09 6.47 9.10 26.60

MotorActivity 4.56 10.35 23.06 30.10 131.7

Tailpinch 60.20 61.20 113.2 171.1 312.50

25%BMR, 50%BMR respectively. They all correspond to Tail pinch endpoint, the least

sensitive endpoint.

6.4 Independent analysis, Composite scores, and Bayesian

hierarchical model, side by side

Table (6.6) summarizes some characteristics associated with each method. The in-

dependent method consists of separate analysis of each endpoint is flexible and easy to

implement. Complicated models such as threshold models can be implemented using this

method. The method conserves the multidimensionality aspect of the data and does not

require data transformation methods. Furthermore, the method allows researchers to de-

termine which endpoint is most sensitive to the exposure. However, this method does not

account for combined effects of the chemicals (NRC 2008) which may lead to underestimat-
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Table 6.7: Independent analysis on each endpoint, Composite Scores, and unifying Bayesian

approach , side by side

Criteria Independent Composite Scores Bayesian Hierarchical

Easy to implement X X

Flexible X X

Countable number of dimensions X X X

Easy to comprehend X X

Recommended for mixture ray data X X X

Recommended for no ray mixture X

Partial or overall conclusion X X X
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Table 6.8: ED20 and ED50 Values for the predicted (under additivity) and Experimental

Mixture data, for full and reduced rays : Moser et al., (2005)

Full ray Reduced Ray

Endpoint Additivity Mixture Additivity Mixture

ED20 17.2 8.4 3.4 2.2

BrainChE ED50 47.6 26.6 10.3 7.8

ED20 11.5 6.6 4.5 2.0

BloodChE ED50 32.2 17.8 11.8 5.4

ED20 68 52.5 − −

Motor Activity ED50 210 81 − −

ED20 65.2 21.7 14.8 6.7

Gait Score ED50 94.4 31.4 21.5 9.7

ED20 224.4 63.3 − −

Tail pinch ED50 295 83.2 − −
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ing the risk. Independent analysis method lacks the whole animal evaluation because the

results are specific to one endpoint at a time. Omitting the dependence among observations

may also lead to inadequate estimate of the risk associated with the exposure. For assessing

the mixture effect, independent analysis method is implemented on mixtures with one fixed

mixing ratio ray data.

The side by side comparison of the independent analysis and the composite score

methods shows that both methods evaluate one or more fixed environmentally relevant ratio

of the mixture. Independent action is a dimension preservative method, composite score is

dimension reduction method. Although no specific correlation structure is used the compos-

ite score can intuitively evaluate correlated observations; independent action method ignores

the possible correlation between observations. The composite score method can evaluate

combined effects of the mixture, independent action method ignore the combined effect.

Contrary to the independent analysis and composite score methods the BMDTA can eval-

uate the risk at many environmentally relevant ratios. Furthermore, the BMDTA accounts

for the correlation among observations.



Chapter 7

Conclusions and Future work

We proposed the Bayesian hierarchical model as a dimension preservative method to analyze

multidimensional data. Specifically, the method was used to compute the BMDTA asso-

ciated with exposure to multiple stressors and multiple observations were taken. It allows

the parameters in the model to be correlated in order to capture the possible correlation

among observation taken on one subject. Its main advantage is the reliability of the results.

Because the method allow the use of the raw data without any transformation, all important

information are conveyed into the analysis. It can be applied to any number of dimensions

but due to computation requirement, this method is very time consuming and expensive. It

is possible that stressors interact between them, in the Bayesian hierarchical model used here

to compute the BMDTA, we did not account for possible interaction between stressors, this

method can be extended to consider interaction models. For proof of concept, we considered

simple models to start up with, but not all the endpoints are well fit with the simple model
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considered and specific individual models that are more complex such as threshold models

can be considered. The Bayesian hierarchical model we proposed is capable of capturing the

correlation among measurements through the hierarchical model specification which allow

parameters to be correlated. We cannot guarantee that, in this way, all the correlation is

being accounted for. Specifying correlation structure can be complex because observations

may be of different types (binary, categorical, continuous). A method that captures ’all’

the correlation is needed. It is assumed that all stressors can cause negative effects on each

endpoint, but the amount of negative effects differs depending on endpoint or stressor being

considered. To determine the BMDTA, it may be important to know which stressor is more

dangerous than the other in the sense of causing negative effects. The method presented

here can be extended to include methods that can allow stressor selection based on the sig-

nificance of their biological effects. In all experimental studies the design problem is very

crucial, in this case of determining the BMDTA it is important to have a proper design in

the low dose region where more emphasis is payed to.
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Appendix: SAS code

{SAS code for chapter 2}

goptions device=cgmof97L gsfname=pic gsfmode=replace colors=(black) ftext=swiss htext=1.8;*1.5;

title ’Analysis of Dioxin Dose-Response Data’;

data paper;

%infile ’E:\paper.txt’;

input obs block $ chemical $ dose perT4 chem;

run;

axis1 label=(a=90 ’T4 (%Control)’) order=(0 to 180 by 20);

axis2 label=(’Dose (ug/kg)’);

symbol1 v=star i=none;

symbol2 v=none i=join;

symbol3 v=none i=join l=2;

%filename BMD ’C:\Documents and Settings\nyirabahizie\Desktop\BMD’;

goptions colors=(black)device=cgmof97L gsfname=BMD gsfmode=replace colors=(black) ftext=swiss htext=1.9;
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proc gplot data=paper;

title ’Dioxin Dose-Response Data’;

plot perT4*dose/vaxis=axis1 haxis=axis2;

run;

quit;

data mixture;

set paper;

where chem=19;

run;

proc print data=mixture;

run;

proc means data=mixture mean n std noprint;

by chemical dose;

var pert4;

output out=meansmix mean=pt4mean std=pt4std var=pt4var n=pt4n;

data forplot;

chemical=’Mixture’;

do dose=0 to 2020 by 20;

output;

end;

do dose=5 to 70 ;
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output;

end;

data mix;

set mixture forplot;

total=dose;

maxdose=2100;

data alldat;

set paper;

where chem ne 19;

run;

proc sort data=alldat; by chemical dose;

data t4;

set alldat; by chemical dose;

retain chem;

% if _n_=1 then chem=0;

if first.chemical then chem=chem+1;

% log_pert4=log(pert4);

keep block chemical chem pert4 dose $log_pert4$;

proc format;
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value chem 1=’1-PCDF’ 2=’4-PCDF’ 3=’PCB101’ 4=’PCB105’ 5=’PCB118’ 6=’PCB126’

7=’PCB138’ 8=’PCB153’ 9=’PCB156’ 10=’PCB169’ 11=’PCB180’ 12=’PCB28’

13=’PCB52’ 14=’PCB77’ 15=’PCDD’ 16=’TCDD’ 17=’TCDF’ 18=’OCDF’ 19=’Mixture’;

value $ ais a1=’1-PCDF’ a2=’4-PCDF’ a3=’PCB101’ a4=’PCB105’ a5=’PCB118’ a6=’PCB126’

a7=’PCB138’ a8=’PCB153’ a9=’PCB156’ a10=’PCB169’ a11=’PCB180’ a12=’PCB28’

a13=’PCB52’ a14=’PCB77’ a15=’PCDD’ a16=’TCDD’ a17=’TCDF’ a19=’Mixture’;

run;

data forplot;

do chem=1 to 14, 17;

do dose=0 to 99 by .25;

output;

end;

do dose=100 to 300 by 10, 300 to 20000 by 100;

output;

end;

end;

do chem=15, 16;

do dose= 0 to 1 by .05, 1 to 3 by .1;

output;

end;
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end;

data temp;

set mix;

keep chemical dose total maxdose mix add chem pert4 ;

total=dose; maxdose=2100; mix=1; add=0; chem=19;

data ais;

a1= .000003;

a2= .000013;

a3= .076814;

a4= .038282;

a5= .190302;

a6= .000302;

a7= .190181;

a8= .190861;

a9= .006541;

a10=.000197;

a11=.188700;

a12=.039237;

a13=.077523;

a14=.000988;

a15=.000007;
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a16=.000007;

a17=.000010;

proc transpose data=ais out=aisfile;

$format _name_ ais.$;

run;

data two;

set t4 forplot temp;

x01=0; x02=0; x03=0; x04=0; x05=0; x06=0; x07=0; x08=0; x09=0;

x010=0; x011=0; x012=0; x013=0; x014=0; x015=0; x016=0; x017=0; x018=0; x019=0;

x1=0; x2=0; x3=0; x4=0; x5=0; x6=0; x7=0; x8=0; x9=0;

x10=0; x11=0; x12=0; x13=0; x14=0; x15=0; x16=0; x17=0; x18=0; x19=0;

a1=.000003; a2=.000013; a3=.076814; a4=.038282; a5=.190302; a6=.000302; a7=.190181;

a8=.190861; a9=.006541; a10=.000197; a11=.188700; a12=.039237; a13=.077523; a14=.000988; a15=.000007;

a16=.000007; a17=.000010; a18=.000032;

maxmix=2000;

mixdose1=a1*maxmix; mixdose2=a2*maxmix; mixdose3=a3*maxmix; mixdose4=a4*maxmix; mixdose5=a5*maxmix;

mixdose6=a6*maxmix; mixdose7=a7*maxmix; mixdose8=a8*maxmix; mixdose9=a9*maxmix; mixdose10=a10*maxmix;

mixdose11=a11*maxmix; mixdose12=a12*maxmix; mixdose13=a13*maxmix; mixdose14=a14*maxmix; mixdose15=a15*maxmix;

mixdose16=a16*maxmix; mixdose17=a17*maxmix; mixdose18=a18*maxmix;

if chem<19 then total=0;

if chem=1 then do; x01=1; x1=dose; maxdose=100; mixdose=mixdose1; end;
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if chem=2 then do; x02=1; x2=dose; maxdose=90;*20; mixdose=mixdose2; end;

if chem=3 then do; x03=1; x3=dose; maxdose=30000; mixdose=mixdose3; end;

if chem=4 then do; x04=1; x4=dose; maxdose=90000; *1200; mixdose=mixdose4; end;

if chem=5 then do; x05=1; x5=dose; maxdose=10000; *1200; mixdose=mixdose5; end;

if chem=6 then do; x06=1; x6=dose; maxdose=100; *4; mixdose=mixdose6; end;

if chem=7 then do; x07=1; x7=dose; maxdose=90000; mixdose=mixdose7; end;

if chem=8 then do; x08=1; x8=dose; maxdose=90000; mixdose=mixdose8; end;

if chem=9 then do; x09=1; x9=dose; maxdose=10000; *1000; mixdose=mixdose9; end;

if chem=10 then do; x010=1; x10=dose; maxdose=1000; *120; mixdose=mixdose10; end;

if chem=11 then do; x011=1; x11=dose; maxdose=90000; mixdose=mixdose11; end;

if chem=12 then do; x012=1; x12=dose; maxdose=90000; *20000;mixdose=mixdose12; end;

if chem=13 then do; x013=1; x13=dose; maxdose=90000; *20000;mixdose=mixdose13; end;

if chem=14 then do; x014=1; x14=dose; maxdose=30000; mixdose=mixdose14; end;

if chem=15 then do; x015=1; x15=dose; maxdose=10; *1.2; mixdose=mixdose15; end;

if chem=16 then do; x016=1; x16=dose; maxdose=10; *.4; mixdose=mixdose16; end;

if chem=17 then do; x017=1; x17=dose; maxdose=100; *5; mixdose=mixdose17; end;

if chem=18 then do; x018=1; x18=dose; maxdose=300; mixdose=mixdose18; end;

if mix=1 then do; chem=19; x019=1; x19=dose; maxdose=2100; end;

if chem<=18 then do; add=1; mix=0;end;

if dose<= max(maxdose,mixdose);

mixdoseresponse=0;



155

yp = (pert4-40)/60;

transy = log( yp/(1-yp) );

format chem chem.;

run;

proc sort data=two; by chem dose;

proc reg data=two;

model transy = x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19;

run;

proc nlmixed data=two ALPHA=.1;

where pert4 ne .;

parms alpha=0 alpha4579=0 alphamix=50

b0=1.5 b1=-.08 b2=-.06 b3=-.0003 b4=-.0008 b5=-.001 b6=-.3 b7=-.0003 b8=-.0001 b9=-.002

b10=-.007 b11=-.00005 b12=-.00003 b13=-.00003 b14=-.001 b15=-.8 b16=-2 b17=-.2

thetamix=-0.002 sig=310;

bigalpha = alpha*(chem=1) + alpha*(chem=2) + alpha*(chem=3) + alpha4579*(chem=4) + alpha4579*(chem=5)

+ alpha*(chem=6) + alpha4579*(chem=7)

+ alpha*(chem=8) + alpha4579*(chem=9) + alpha*(chem=10) + alpha*(chem=11) + alpha*(chem=12)

+ alpha*(chem=13) + alpha*(chem=14) + alpha*(chem=15) + alpha*(chem=16)

+ alpha*(chem=17) + alpha*(chem=18)

+ alphamix*(chem=19);

g=100-bigalpha;
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term= b1*x1 + b2*x2 + b3*x3 + b4*X4 + b5*x5 +b6*x6 + b7*x7 + b8*x8 +b9*x9 + b10*x10 + b11*x11 + b12*x12

+ b13*x13 + b14*x14 + b15*x15 + b16*x16 + b17*x17 ;

mu = bigalpha+ g/(1+exp(-(b0+ term*(chem<19) + thetamix*dose*(chem=19) )));

rangemix = (100-alphamix)/(1+exp(-b0));

muforED = alphamix+0.9*rangemix;

estimate ’interceptmix’ alphamix+rangemix;

range = (100-alpha)/(1+exp(-b0));

estimate ’intercept’ alpha+range;

range4579 = (100-alpha4579)/(1+exp(-b0));

estimate ’intercept4579’ alpha4579+range4579;

estimate ’mufored’ mufored;

edmu1 = (log( (mufored-alpha)/(100-alpha - mufored+alpha)) -b0)/b1;

edmu2 = (log( (mufored-alpha)/(100-alpha- mufored+alpha)) -b0)/b2;

edmu3 = (log( (mufored-alpha)/(100-alpha- mufored+alpha)) -b0 )/b3;

edmu4 = (log( (mufored-alpha4579)/(100-alpha4579- mufored+alpha4579)) -b0 )/b4;

edmu5 = (log( (mufored-alpha4579)/(100-alpha4579- mufored+alpha4579)) -b0 )/b5;

edmu6 = (log( (mufored-alpha)/(100-alpha- mufored+alpha)) -b0 )/b6;

edmu7 = (log( (mufored-alpha4579)/(100-alpha4579- mufored+alpha4579)) -b0 )/b7;

edmu8 = (log( (mufored-alpha)/(100-alpha- mufored+alpha)) -b0 )/b8;

edmu9 = (log( (mufored-alpha4579)/(100-alpha4579- mufored+alpha4579)) -b0 )/b9;

edmu10 = (log( (mufored-alpha)/(100-alpha- mufored+alpha)) -b0 )/b10;
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edmu11 = (log( (mufored-alpha)/(100-alpha- mufored+alpha)) -b0 )/b11;

edmu12 = (log( (mufored-alpha)/(100-alpha- mufored+alpha)) -b0 )/b12;

edmu13 = (log( (mufored-alpha)/(100-alpha- mufored+alpha)) -b0 )/b13;

edmu14 = (log( (mufored-alpha)/(100-alpha- mufored+alpha)) -b0 )/b14;

edmu15 = (log( (mufored-alpha)/(100-alpha- mufored+alpha)) -b0 )/b15;

edmu16 = (log( (mufored-alpha)/(100-alpha- mufored+alpha)) -b0 )/b16;

edmu17 = (log( (mufored-alpha)/(100-alpha- mufored+alpha)) -b0 )/b17;

edmix = (log( (muforED-alphamix)/(100-alphamix- mufored+alphamix)) -b0 )/thetamix;

estimate ’EDmix’ edmix;

edadd = 1/( a1/edmu1 + a2/edmu2 + a3/edmu3 + a4/edmu4 + a5/edmu5 + a6/edmu6 + a7/edmu7

+ a8/edmu8 + a9/edmu9 + a10/edmu10 + a11/edmu11 + a12/edmu12 + a13/edmu13

+ a14/edmu14 + a15/edmu15 + a16/edmu16 + a17/edmu17 );

estimate ’EDadd’ edadd;

estimate ’EDadd-EDmix’ edadd-edmix;

model pert4 ~ normal(mu, sig);

predict mu out=pred;

ods output parameterestimates=vars;

run;

*proc sort data=pred;

proc sort data=prednlin out=pred; by chem dose;

axis1 label=(a=90 ’T4 (%Control)’) order=(0 to 180 by 20);
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axis2 label=(’Dose (ug/kg)’);

symbol1 v=star i=none;

edmu5 = (log( (mufored-alpha4579)/(100-alpha4579- mufored+alpha4579)) -b0 )/b5;

edmu6 = (log( (mufored-alpha)/(100-alpha- mufored+alpha)) -b0 )/b6;

edmu7 = (log( (mufored-alpha4579)/(100-alpha4579- mufored+alpha4579)) -b0 )/b7;

edmu8 = (log( (mufored-alpha)/(100-alpha- mufored+alpha)) -b0 )/b8;

edmu9 = (log( (mufored-alpha4579)/(100-alpha4579- mufored+alpha4579)) -b0 )/b9;

edmu10 = (log( (mufored-alpha)/(100-alpha- mufored+alpha)) -b0 )/b10;

edmu11 = (log( (mufored-alpha)/(100-alpha- mufored+alpha)) -b0 )/b11;

edmu12 = (log( (mufored-alpha)/(100-alpha- mufored+alpha)) -b0 )/b12;

edmu13 = (log( (mufored-alpha)/(100-alpha- mufored+alpha)) -b0 )/b13;

edmu14 = (log( (mufored-alpha)/(100-alpha- mufored+alpha)) -b0 )/b14;

edmu15 = (log( (mufored-alpha)/(100-alpha- mufored+alpha)) -b0 )/b15;

edmu16 = (log( (mufored-alpha)/(100-alpha- mufored+alpha)) -b0 )/b16;

edmu17 = (log( (mufored-alpha)/(100-alpha- mufored+alpha)) -b0 )/b17;

edmix = (log( (muforED-alphamix)/(100-alphamix- mufored+alphamix)) -b0 )/thetamix;

estimate ’EDmix’ edmix;

edadd = 1/( a1/edmu1 + a2/edmu2 + a3/edmu3 + a4/edmu4 + a5/edmu5 + a6/edmu6 + a7/edmu7

+ a8/edmu8 + a9/edmu9 + a10/edmu10 + a11/edmu11 + a12/edmu12 + a13/edmu13

+ a14/edmu14 + a15/edmu15 + a16/edmu16 + a17/edmu17 );

estimate ’EDadd’ edadd;
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estimate ’EDadd-EDmix’ edadd-edmix;

model pert4 ~ normal(mu, sig);

predict mu out=pred;

ods output parameterestimates=vars;

run;

*proc sort data=pred;

proc sort data=prednlin out=pred; by chem dose;

axis1 label=(a=90 ’T4 (%Control)’) order=(0 to 180 by 20);

axis2 label=(’Dose (ug/kg)’);

symbol1 v=star i=none;

symbol2 v=none i=join;

symbol3 v=none i=join l=2;

proc gplot data=pred;

by chem;

plot (pert4 pred)*dose mixdoseresponse*mixdose/overlay vaxis=axis1 haxis=axis2;

title ’ ’;

run; quit;

proc transpose data=vars out=betas;

var estimate;

id parameter;

data muadd;
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merge betas ais;

do muadd = 53 to 98;

edmu1 = (log( (muadd-alpha)/(100- muadd)) -b0)/b1;

edmu2 = (log( (muadd-alpha)/(100- muadd)) -b0)/b2;

edmu3 = (log( (muadd-alpha)/(100- muadd)) -b0 )/b3;

edmu4 = (log( (muadd-alpha4579)/(100- muadd)) -b0 )/b4;

edmu5 = (log( (muadd-alpha4579)/(100- muadd)) -b0 )/b5;

edmu6 = (log( (muadd-alpha)/(100- muadd)) -b0 )/b6;

edmu7 = (log( (muadd-alpha4579)/(100- muadd)) -b0 )/b7;

edmu8 = (log( (muadd-alpha)/(100- muadd)) -b0 )/b8;

edmu9 = (log( (muadd-alpha4579)/(100- muadd)) -b0 )/b9;

edmu10 = (log( (muadd-alpha)/(100- muadd)) -b0 )/b10;

edmu11 = (log( (muadd-alpha)/(100- muadd)) -b0 )/b11;

edmu12 = (log( (muadd-alpha)/(100- muadd)) -b0 )/b12;

edmu13 = (log( (muadd-alpha)/(100- muadd)) -b0 )/b13;

edmu14 = (log( (muadd-alpha)/(100- muadd)) -b0 )/b14;

edmu15 = (log( (muadd-alpha)/(100- muadd)) -b0 )/b15;

edmu16 = (log( (muadd-alpha)/(100- muadd)) -b0 )/b16;

edmu17 = (log( (muadd-alpha)/(100- muadd)) -b0 )/b17;

edadd = 1/( a1/edmu1 + a2/edmu2 + a3/edmu3 + a4/edmu4 + a5/edmu5 + a6/edmu6 + a7/edmu + a8/edmu8 + a9/edmu9 + a10/edmu10 + a11/edmu11 + a12/edmu12 + a13/edmu13 + a14/edmu14 + a15/edmu15 + a16/edmu16 + a17/edmu17 );if edadd<2000 then output;

end;
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data muadd;

set muadd;

keep edadd muadd;

array edmu edmu1-edmu17;

do over edmu;

if edmu<0 then delete;

end;

run;

data atzero;

set betas;

muadd= alphamix+ (100-alphamix)/(1+exp(-b0)); edadd=0;

keep muadd edadd;

data muaddplus;

set muadd atzero;

chem=19;

data pred2;

set pred muaddplus;

*proc print data=pred2;

* where chem=19;

* var chem pert4 pred dose muadd edadd;

axis3 label=(’Total Dose of Mixture (ug/kg)’) order=(0 to 2100 by 300) ;
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proc gplot data=pred2;

by chem;

where chem=19;

plot (pert4 pred )*dose muadd*edadd /overlay vaxis=axis1 haxis=axis3;

title ’ ’;

run; quit;

{SAS code for chapter 3}

proc format;

value chem 1=’acephate’ 2=’diazinon’ 3=’CPF’ 4=’malathion’ 5=’dimethoate’;

proc contents data=allpest.sas7bdat;

/*proc print data=library.allpest;;

run;*/

*title ’OP pesticides and toxicity score’;

data analysis;

set library.allpest;

if pc=1 then delete;

if mixray=2 and dose=100 then delete;

/*proc print data=analysis;

where mixray=2;

run;*/
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proc sort data=analysis;by group ;run;

data analysis;

set analysis;

act=activity;

activity=100*(activity/199.4285714);

brnche=100*(brainche/5.5410714);

bldche=100*(bloodche/0.4882856);

gait=gaitscr;

tail=tailpinch;

actmin=1/(1+exp((activity-143.0)/12.2703));

actmax=1/(1+exp(-(activity-53.2243)/18.7851));

actdes=actmin*actmax;

brnmin=1/(1+exp((brnche-154.4)/10.9430));

brnmax=1/(1+exp(-(brnche-59.3959)/14.8480));

brndes=brnmin*brnmax;

bldmin=1/(1+exp((bldche-155.3)/7.2806));

bldmax=1/(1+exp(-(bldche-41.5173)/24.9715));

blddes=bldmin*bldmax;

tailmin=1/(1+exp((tail-5.0897)/0.4846));

tailmax=1/(1+exp(-(tail-1.6547)/0.6368));

taildes=tailmin*tailmax;
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gaitdes=1/(1+exp((gait-3.5469)/0.8582));

k=5-nmiss(actdes, brndes, blddes, gaitdes, taildes);

logactdes = log(actdes);

logbrndes = log(brndes);

logblddes = log(blddes);

loggaitdes = log(gaitdes);

logtaildes = log(taildes);

logd = sum(logactdes, logbrndes, logblddes, loggaitdes, logtaildes)/k;

D = exp(logd);

if pc=0;

proc sort data=analysis; by mixray group pc dose;

proc print;

run;

data forplot;

group=’MX1’;

do dose=0 to 10 by .2, 10 to 100 by 1, 100 to 450 by 10;

mixray=1;

output;

end;

group=’MX2’;

do dose=0 to 10 by .2, 10 to 78.8 by .5;
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mixray=2;

output;

end;

mixray=0;

group=’ACE’;

do dose=0 to 10 by .2, 10 to 120 by 1;

output;

end;

group=’CPF’;

do dose=0 to 10 by .2, 10 to 50 by 1;

output;

end;

group=’DIA’;

do dose=0 to 10 by .2, 10 to 100 by 1, 100 to 250 by 10;

output;

end;

group=’DIM’;

do dose=0 to 10 by .2, 10 to 75 by 1;

output;

end;

data analysis2;
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set analysis forplot;

x1=0; x2=0; x3=0; x4=0; x5=0; t1=0; t2=0;

x01=0; x02=0; x03=0; x04=0; x05=0; t01=0; t02=0;

if group=’ACE’ then do; x01=1; x1=dose; end;

if group=’CPF’ then do; x02=1; x2=dose;end;

if group=’DIA’ then do; x03=1; x3=dose;end;

if group=’DIM’ then do; x04=1; x4=dose;end;

if group=’MAL’ then do; x05=1; x5=dose;end;

if group=’CON’ then group=’MIX’;

if mixray=1 then group=’MX1’;

if mixray=2 then group=’MX2’;

if group=’MX1’ then do; t01=1; t1=dose;end;

if group=’MX2’ then do; t02=1; t2=dose;end;

run;

proc sort data=analysis; by group dose;

proc gplot data=analysis;

by dose;

plot (actdes brndes blddes gaitdes taildes D)*dose;

run; quit;

proc sort data=analysis2; by group dose;

proc means data=analysis2;
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where dose=0;

var d;

run;

data analysis3;

set analysis2;

if d ne .;

ods output ParameterEstimates=betas;

proc nlmixed data=analysis2 technique=quanew alpha=.1;

* where k=5;

parms alpha=.23 b1=-.034 b2=-.032 b3=-.009 b4=-.13 b5=-.0001 theta1=-.018 amix=.34

del4=4.7 sig2=0.001 delmix2=14 theta2=-.0417 delmix=10;

int=0.88;

mu1 = alpha + (int-alpha)*exp(b1*dose);

mu2 = alpha + (int-alpha)*exp(b2*dose);

mu3 = alpha + (int-alpha)*exp(b3*dose);

mu4 = alpha + (int-alpha)*exp(b4*(dose-del4)*(dose>del4));

mu5 = alpha + (int-alpha)*exp(b5*dose);

*mumix = amix + (int-amix)*exp(theta1*dose);

mumix = amix + (int-amix)*exp(theta1*(dose-delmix)*(dose>delmix));

mumixred= amix + (int-amix)*exp(theta2*(dose-delmix2)*(dose>delmix2));

* mumixred= amix + (int-amix)*exp((theta1/.175)*(dose-delmix2)*(dose>delmix2));
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mu = mu1*x01 + mu2*x02 + mu3*x03 + mu4*x04 + mu5*x05 + mumix*t01 + mumixred*t02;

model D ~ normal(mu,sig2);

*run;

mu0=.95*(int-amix)+amix;

estimate ’mu0’ mu0;

ED1 = log( (mu0-alpha)/(int-alpha))/b1;

ED2 = log( (mu0-alpha)/(int-alpha))/b2;

ED3 = log( (mu0-alpha)/(int-alpha))/b3;

ED4 = log( (mu0-alpha)/(int-alpha))/b4 + del4;

ED5 = log( (mu0-alpha)/(int-alpha))/b5;

edmix = log( (mu0-amix)/(int-amix))/theta1+delmix;

*edmix = log( (mu0-amix)/(int-amix))/theta1;

edmixred = log( (mu0-amix)/(int-amix))/(theta2) + delmix2;

estimate ’ed1’ ed1;

estimate ’ed2’ ed2;

estimate ’ed3’ ed3;

estimate ’ed4’ ed4;

estimate ’ed5’ ed5;

estimate ’edmix’ edmix;

*estimate ’edmixadj’ edmixadj;

a1=0.040; a2=0.031; a3=0.002; a4=0.102; a5=0.825;
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t0add = 1/(a1/ED1 + a2/ED2 + a3/ED3 + a4/ED4 + a5/ED5);

estimate ’edadd’ t0add;

estimate ’edadd-edmix’ t0add-edmix;

a1red=0.229; a2red=0.011; a3red=0.117; a4red=0.583; *a5=0;

t0addred = 1/(a1red/ED1 + a2red/ED2 + a3red/ED3 + a4red/ED4 );

estimate ’edmixred’ edmixred;

estimate ’edaddred’ t0addred;

estimate ’edaddred-edmixred’ t0addred-edmixred;

thetafulladj=theta1*(1/.175);

estimate ’thetafulladj’ thetafulladj;

*edmixadj= log(mu0-amix)/(int-amix)/thetafulladj;

*estimate ’edmixadj’ edmixadj;

*contrast ’fulladja’ theta2-theta1*.825,delmix2-delmix/.825;

contrast ’full’ theta2-theta1*(1/.175);

contrast ’addel’ delmix2-delmix;

predict mu out=prednl;

run;

proc transpose data=betas out=betast;

var estimate;

id parameter;

proc print data=betast; run;
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data add;

set betast;

mixray=0;

int=0.88;

group=’ACE’;

do dose=0 to 10 by .2, 10 to 120 by 1;

mu = alpha + (int-alpha)*exp(b1*dose);

output;

end;

group=’CPF’;

do dose=0 to 10 by .2, 10 to 50 by 1;

mu = alpha + (int-alpha)*exp(b2*dose);

output;

end;

group=’DIA’;

do dose=0 to 10 by .2, 10 to 100 by 1, 100 to 250 by 10;

mu = alpha + (int-alpha)*exp(b3*dose);

output;

end;

group=’DIM’;

do dose=0 to 10 by .2, 10 to 75 by 1;
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mu= alpha + (int-alpha)*exp(b4*(dose-del4)*(dose>del4));

*mu = alpha + (int-alpha)*exp(b4*dose);

output;

end;

group=’MAL’;

do dose = 0 to 500 by 100;

mu = alpha + (int-alpha)*exp(b5*dose);

output;

end;

data add;

set analysis add;

set prednl add;

if group=’CON’ then group=’MIX’;

if mixray=0;

symbol1 c=black i=none v=star;

symbol2 c=black i=join v=none l=1;

proc sort; by group dose;

proc gplot data=add;

by group;

*where group=’MIX1’;

plot (d mu)*dose /haxis=axis1 vaxis=axis2 overlay;
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title ’ ’;

run; quit;

data muadd;

set betast;

group=’MX1’;

a1=0.040; a2=0.031; a3=0.002; a4=0.102; a5=0.825;

mu0=0.88;

do muadd=0.35 to 0.88 by .01;

ED1 = log( (muadd-alpha)/(mu0-alpha) )/b1;

ED2 = log( (muadd-alpha)/(mu0-alpha) )/b2;

ED3 = log( (muadd-alpha)/(mu0-alpha) )/b3;

ED4 = log( (muadd-alpha)/(mu0-alpha) )/b4;

ED5 = log( (muadd-alpha)/(mu0-alpha) )/b5;

tadd = 1/(a1/ED1 + a2/ED2 + a3/ED3 + a4/ED4 + a5/ED5);

output;

end;

muadd=.; tadd=.; ed1=.; ed2=.; ed3=.; ed4=.; ed5=.;

do dose=0 to 300 by .5;

mufull = amix+(mu0-amix)*exp(theta1*dose);

*mufull = amix+(mu0-amix)*exp(theta1*(dose-delmix)*(dose>delmix));

*muredadjfull = mu0*exp((theta2*.175)*(dose-(delmix2*.175)))*(dose>(delmix*.175));
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muredadjfull =amix+ (mu0-amix)*exp((theta2*(1/.175))*(dose-(delmix1))*(dose>(delmix1)));

output;

end;

*proc print;

*var muadd tadd mu dose;

*run;

data pred;

set prednl muadd;

where group=’MX1’;

proc sort data=pred; by group dose;

*proc print data=pred;

*var group d pred dose mu muadd ed1 ed2 ed3 ed4 tadd;

*run;

symbol1 c=black i=none v=star;

symbol2 c=black i=join v=none l=1;

symbol3 c=black i=join v=none l=2;

symbol4 c=black i=join v=none l=4;

legend1 value=(’observed’ ’predicted’ ’additive’)

shape=symbol(4,2)

position=(bottom left inside)
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mode=share ;

data muaddred;

set betast;

group=’MX2’;

a1red=0.229; a2red=0.011; a3red=0.117; a4red=0.583; *a5=0;

mu0=0.88;

do muaddred=0.35 to 0.88 by .01;

ED1red = log( (muaddred-alpha)/(mu0-alpha) )/b1;

ED2red = log( (muaddred-alpha)/(mu0-alpha) )/b2;

ED3red = log( (muaddred-alpha)/(mu0-alpha) )/b3;

ED4red = log( (muaddred-alpha)/(mu0-alpha) )/b4;

taddred = 1/(a1red/ED1red + a2red/ED2red + a3red/ED3red + a4red/ED4red);

output;

end;

muaddred=.; taddred=.; ed1red=.; ed2red=.; ed3red=.; ed4red=.;

do dose=0 to 10 by .2, 10 to 78.8 by .5;

mured = amix+ (mu0-amix)*exp(theta2*(dose-delmix2)*(dose>delmix2));

*mufulladjred =amix+ (mu0-amix)*exp((theta1*(1/.825))*(dose-delmix/(1/.825))*(dose>delmix/(1/.825)));

*mufulladjred =amix+ (mu0-amix)*exp((theta1*(1/.825))*(dose-(delmix*.825))*(dose>(delmix *.825)));

mufulladjred =amix+ (mu0-amix)*exp((theta1*(1/.175))*(dose-(delmix2))*(dose>(delmix2)));

*mufulladjred =amix+ (mu0-amix)*exp((theta1*(1/.825)*dose));
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*mured = amix+ (mu0-amix)*exp(theta2*(dose-delmix2)*(dose>delmix2));

output;

end;

*proc print;

*var mured dose muaddred taddred mufulladjred;

*run;

data predred;

set prednl muaddred;

where group=’MX2’;

*if dose>80 then delete;

*if tadd>450 then delete;

proc sort data=predred; by group dose;

*proc print data=pred;

*var group d pred dose mu muadd ed1 ed2 ed3 ed4 tadd;

*run;
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