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Abstract 

BAYESIAN ANALYSIS, ENDOGENOUS DATA, AND CONVERGENCE OF BELIEFS 

By Andrew T .  Foerster, M.S. 

A Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at 
Virginia Commonwealth University. 

Virginia Commonwealth University, 2006 

Major Director: Dr. Hassan Sedaghat 
Associate Professor, Department of Mathematics 

Major Director: Dr. Patricia Pepple Williamson 
Associate Professor, Department of Statistics and Operations Research 

Problems in statistical analysis, economics, and many other disciplines often involve a 

trade-off between rewards and additional information that could yield higher future rewards. This 

thesis investigates such a trade-off, using a class of problems known as bandit problems. In these 

problems, a reward-seeking agent makes decisions based upon his beliefs about a parameter that 

controls rewards. While some choices may generate higher short-term rewards, other choices may 

provide information that allows the agent to learn about the parameter, thereby potentially 

increasing future rewards. Learning occurs if the agent's subjective beliefs about the parameter 

converge over time to the parameter's true value. However, depending upon the environment, 

learning may or may not be optimal, as in the end, the agent cares about maximizing rewards and 

not necessarily learning the true value of the underlying parameter 



Chapter 1: Introduction 

Statistical experiments and analysis often consider situations where a large quantity of data are 

collected and then the statistician makes a decision, such as estimation of a parameter. Another 

class of experiments requires witnessing only a small amount of data, making a decision, witnessing 

more data, making another decision, witnessing even more data, and so forth. In economics, a 

similar setup involves rewards generated by an unknown stochastic process, coupled with actions 

that yield rewards, and the actions can generate information about the stochastic process. 

In general, problems of sequential analysis have one key trade-off: the decision-maker can choose 

between either a known outcome or an unknown outcome. Choosing the known outcome has well- 

defined benefits, but choosing the unknown outcome can be beneficial in that the decision-maker 

can gain information about the nature of the unknown outcome. Specifically, the decision-maker 

has a set of possible actions to  choose from. One subset of those actions generates rewards from 

some process that is known and understood by the decision maker. A second subset of possible 

actions generates rewards from an unknown process, but choosing one of these actions helps reveal 

information about the unknown process, allowing learning to occur. 

Under what circumstances is it in the decision maker's best interest to take a risk and choose 

an unknown with hopes of learning? Learning in sequential analysis depends highly on endogenous 

data, which comes from an unknown process, but it leads to learning. Using Bayesian analysis, what 

are the best guidelines for making decisions? Using the optimal decision-making rules, learning may 

or may not occur, depending upon whether it is in the best interest of the decision-maker. There 

are certain conditions that a sequential analysis problem must satisfy to ensure learning, it is not 

always guaranteed. 

This paper discusses learning and endogenous data in a sequential analysis framework using 
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Bayesian analysis. The next two chapters provide a background: Chapter 2 discusses the measure 

theory definitions needed, Chapter 3 outlines other key concepts, such as optimality and martingales. 

The remainder of the paper discusses bandit problems, which are the typical sequential analysis 

problems. Chapter 4 establishes results regarding the most basic framework. Chapter 5 generalizes 

Chapter 4 by allowing more abstract mathematical spaces and functions. Learning, which is defined 

as the convergence of subjective probability beliefs, is the subject of Chapter 6. Chapter 7 presents 

an application of the results, and Chapter 8 concludes. 



Chapter 2: Measure Theory Concepts and Definitions 

While many applications of bandit problems will use familiar functions and parameter spaces, the 

fact that the results apply to a much larger class of objects expands their use, applicability, and 

generality. Chapter 4 presents a simple example that uses finite choices for parameters, and Chapter 

5 expands and generalizes to include more general sets. This chapter defines key measure theory 

concepts needed in Chapter 5. First, the spaces for parameters may be metric spaces. 

2.1 Metric spaces 

In the most common space R, the concept of distance, using the absolute value function, plays a 

critical role in establishment of a vast number of topics. Any topic that relies upon absolute value, 

such as continuity, convergence of sequences, and open or closed sets, implicitly depends upon how 

close two points or objects are from one another, or the distance between them. 

It is easy to see that in R, the distance between two points x and y, d (x, y), is the absolute value 

of their difference, so d (x, y) = Ix - yl. Similarly, this concept is extended to Euclidean space Rn by 

an expansion of the Pythagorean Theorem, so in R3 the distance between the points x = (xl,  2 2 ,  23) 

and Y = ( ~ l ,  Y2, ~ 3 )  is given by 

In general the distance between points in Rn is 



In all of these cases, the distance between two points is a positive real number, while the points are 

in some space. In Rn, the distance function is a function d : Rn x Rn -t R+. 

The distance function in Rn has several characteristics that, when generalizing the function to 

more abstract spaces, it will be necessary to maintain. Specifically, for points x, y ,  z E Rn the 

distance function has the properties: 

1. positive: d (x, y )  > 0, where d (x, y )  = 0 if and only if x = y ,  

2. symmetric: d (x, y )  = d ( y ,  x), and 

3. triangle inequality: d (x, y )  + d ( y ,  z )  2 d (x, z). 

To generalize the concept of the distance function to spaces that may not be as easily tractable 

as Euclidean space, it is important to keep these properties of the distance function. Now, given 

any arbitrary set, a metric on that set will generalize distance. 

Definition 1 A metric o n  a set R is a function p : R x R + R that satisfies the following conditions 

for all x, y ,  z E 0: 

1. positive: p (x, Y )  > 0, where p (x, y )  = 0 if and only if x = y ,  

2. symmetric: p (x, y )  = p ( y ,  x), and 

3. triangle inequality: p (x, y)  + p ( y ,  z )  > p (x, z ) .  

It is easy to see that the distance function d (., .) is a metric for Rn. So the term metric applies 

to the extension of the distance concept, and any set that has a metric on it is a metric space. 

Definition 2 A metric space is a pair (0, p), where R is  a set and p is  a metric on  that set. If the 

metric p is  obvious or  the exact function is  unimportant,  then  the metric space is  denoted by simply 

the set,  R. 



From the preceding discussion on distance and Euclidean space, it is clear that (Rn, d)  is a metric 

space. Since the metric d is obvious in this case, it is said that Rn is a metric space. 

Next, the concept of complete metric spaces will be used later. The definition of completeness 

depends upon the concept of Cauchy sequences, which first are extended to metric spaces. 

Definition 3 A Cauchy sequence in a metric space (R, p) is a sequence { x , ) ~ = ~  c fl where for all 

E > 0, there exists some N E W such that if n, m > N ,  then p (x,, x,) < E .  

Now using this concept of Cauchy sequences, the definition of complete metric spaces follows. 

Definition 4 A complete metric space is a metric space (R, p) where every Cauchy sequence in  R 

converges. In other words, if { x , ) ~ = ~  is a Cauchy sequence, with x, E fl for all n E W, then there 

exists x E R such that lim,,, x, = x .  

Continuing with the example of EXn, using the Euclidean distance metric d (., .), Rn is a complete 

metric space. 

Finally, later discussion requires the notion of a separable metric space. 

Definition 5 A separable metric space is a metric space ( 0 ,  p) such that there exists E c R where 

E is a countable, dense subset of R, meaning E is countable and its closure equals the space, E = fl. 

As a quick example of a separable metric space, consider the metric space (R, 1.1). The set of 

rational numbers, Q, is both countable and dense, since o= R. Consequently, the metric space of 

the real line with a metric of absolute value is separable. 

2.2 Borel Sigma Algebras 

Another necessary extension of Euclidean space to metric spaces is to define a-algebras, specifically 

the Borel a-algebra. First, recall the definition of a a-algebra, which does not depend upon the 

space. 



Definition 6 A a-algebra is a collection of subsets A of a set R that have the properties: 

1. closed under complementarity: if A E A, then AC E A, and 

2. closed under countable union: if c A, then  U,"==, An E A. 

In addition to the definition of a a-algebra, Borel a-algebras depend upon defining the smallest 

a-algebra containing any collection of subsets. The following Theorem ensures that such a a-algebra 

exists. 

Theorem 7 Let R be a set, and let C be any nonempty collection of subsets of 0. T h e n  there exists 

a smallest a-algebra of subsets of R containing C, called the a-algebra generated by C, and i s  denoted 

(C). 

Now, given any set and any arbitrary collection of its subsets, it is possible to define the smallest 

a-algebra containing that arbitrary collection. More specific to the purposes of this paper, if the 

set is a metric space, it is possible to define a-algebras on that space using subsets of the space. In 

fact, the Borel a-algebra for a metric space is the smallest a-algebra generated by the open sets of 

the metric space. 

Definition 8 The  Borel a-algebra of a metric space R i s  the a-algebra a ( 0 ) ,  where O is  the col- 

lection of open sets i n  R, otherwise known as the a-algebra generated by the collection of open sets. 

The properties of a-algebras allow the reduction of the collection of open sets to consider one 

specific type of open set, especially in R. Therefore, define B to be the Borel a-algebra on R. That 

is, 

B = a ((-co, a ) ) ,  for a E R. 

2.3 Topologies 

Another type of space that will be used in later chapters is that of a topological space. First, the 

definition of topology follows. 



Definition 9 A topology o n  a set R  is a collection 7 c R  where 

2. if S c 7,  then UoEsO E 7 ,  and 

3. if 01,02 E 7,  then  o1 n 02 E 7 .  

The definition of a topology directly leads to the concept of a topological space. 

Definition 10 A topological space is  a pair ( R , 7 )  where 7 is  a topology o n  the set R.  

For any given set R,  there may be multiple topologies on that set. Given two topologies on 0,  

say S and 7 ,  if S c 7 ,  then S is weaker than 7 .  Given R ,  it then makes sense to consider the 

weakest possible of all topologies on 0. 

Definition 11 A weak topology for a set R is  the topology given by IF = nTET7,  where 3 is a set 

of functions such that for every f E 3, ( A f ,  I f )  is  a topological space and f : R  -+ A f ,  and T is the 

set of topologies in R  for which the functions f E 3 are continuous. 

One important characteristic of a weak topology IF is that all f E 3 are continuous, and if 

S IF is another topology then there is some function f' E .F such that f : R  -+ Af  is not 

continuous with respect to S. 

2.4 Probability Spaces 

The use of probability distributions across potential events that comprise metric spaces makes it 

necessary to discuss probability spaces. However, probability and probability spaces depend on the 

concept of measure and measure spaces, which are now defined. 

Definition 12 A measure o n  a 0-algebra of subsets d of a set R  is  a function p : d -+ R, that has 

the following properties: 



1. non-negative: p (A) > 0 for every A E A, 

2. zero for the empty set: p (0) = 0, and 

3. countable additivity: if {A,), C A are pairwise disjoint, so Ai n Aj = 0 if i # j ,  then  

(U, An) = C, P (An). 

If such a function exists for a R and an A, then (0 ,  A) is a measurable space. The definition of 

measure space immediately follows from these definitions. 

Definition 13 A measure space i s  a collection (R,A,p) ,  where R i s  a set, A is a a-algebra of 

subsets of R, and p i s  a measure o n  A. 

The definition of a probability space is a measure space where the measure of the entire set equals 

one, and a probability measure is the measure on that space.. 

Definition 14 A probability space is  a measure space ( 0 ,  A, p) such that p (R) = 1. A probability 

measure is  the measure p that satisfies this condition, and is  usually denoted P .  

The fact that probability spaces are sets means that it is possible to define a probability space of 

a probability space. Specifically, if P (R) denotes the probability space ( 0 ,  A, p), A' is a a-algebra 

of sets of P (R), and p' is a measure on A' with p' (P (0) )  = 1, then P (P (0) )  = ( P  (R) , A', p') is 

also a probability space. This definition will be important when transition to subjective probability 

distributions arises in discussion of the bandit problem. But before probability distributions on 

probability spaces are discussed, it is necessary to define random variables on these spaces. 

Definition 15 A random variable o n  a probability space (0 ,  A, p) is  a real-valued function X : R -+ 

R where {w : X (w) E B )  E A for each B E B. 

This definition of random variables says the function X maps events onto the real line. Once 

random variables represent all possible events as real numbers, probability distributions represent 

the chance of those events occurring. 



Definition 16 A probability distribution of a random variable X on  the probability space ( 0 ,  A, p )  

is the set function on  8 ,  7rx (B) = P ( X  E B) .  

Therefore, the probability distribution function gives the probability that a random variable is 

in a given set B. Letting B vary across all possible collections in B shows that the probability 

distribution is defined on all possible real values that the random variable X maps to. Also, it 

is important to note that since B is the Bore1 a-algebra on R and 7rx (B) = 1, then 7rx (B) is a 

probability measure on B. 

Finally, the discussion of probability depends on almost surely convergence, which is analogous 

to the concept of almost everywhere in measure theory. 

Definition 17 A property holds p almost everywhere (p-ae)  for a measurable space ( 0 ,  A), zf it 

holds except for perhaps some D E A, where p ( D )  = 0. A sequence of random variables X, 

converges almost surely to  X ,  or with probability one, if the sequence converges P-ae .  T h e n  

P (limn,, X, = X )  = 1. 

2.5 Radon-Nikodym Derivatives 

A final measure theory concept to address in order to analyze the general cases of the Bandit 

problem is the Radon-Nikodym derivative. As the Lebesgue integral allows integration of functions 

with respect to Lebesgue measure, finding a method of differentiating functions with respect to 

some measure, not necessarily Lebesgue, helps improve generality. The Radon-Nikodym derivative 

applies to  a-finite measure spaces, which are now defined. 

Definition 18 A a-finite measure space is  a measure space ( a ,  A, p)  with a sequence {A,) of sets, 

where each A, is  A-measurable, U,A, = R, and p (A,) < co for all n. 

A measure space is therefore a-finite if the entire set can be expressed as the union of finite- 

measured sets in the a-algebra. With this concept in hand, it is time to turn to the concept of 

continuity in measure space. 



In R, the concept of integration and differentiation are significantly intertwined. By the Second 

Fundamental Theorem of Calculus, if, for t E [a,  b] ,  the function f ( t )  is continuous, and if F ( x )  = 

J: f ( t )  d t ,  then F' ( x )  = f ( x ) .  A similar method of inverting integration with respect to some 

measure gives the more general derivative. 

Differentiation depends upon the concept of continuity, which is now defined for general measure. 

Definition 19 A n  absolutely continuous measure v with respect to  measure p o n  the measurable 

space (0, A) is measure v such that p (A)  = 0 implies v (A )  = 0 for any A E A. 

The definition of absolutely continuous measures leads directly to the Radon-Nikodym Theorem. 

Theorem 20 (Radon-Nikodym Theorem) Let (0, A, p )  be a g-finite measure space and v a g-finite 

measure o n  A. If v is  absolutely continuous with respect t o  p ,  then there exists a nonnegative 

extended real-valued A-measurable function, f ,  o n  R such that 

v (A)  = f d p ,  for all A E A. J, 

I n  addition, if there exists a nonnegative extended real function A-measurable function g such that 

v (A )  = J' gdp  for all A E A, then g = f ,  p-ae., meaning that the function f is  unique except 

perhaps on  a set N with p ( N )  = 0. 

As in the basic case discussed above, the integral now contains all of the information needed to 

define the Radon-Nikodym derivative. 

Definition 21 The  Radon-Nikodym derivative of v with respect to  p,  denoted $, is  the function f 

i n  the Radon-Nikodym Theorem, where f ,  v and p satisfy the conditions of that theorem. 

The second part of the Radon-Nikodym Theorem ensures that the Radon-Nikodym derivative is 

unique, except on sets of p-measure zero. 



Chapter 3: Other Concepts and Definitions 

In addition to measure theory concepts and definitions, two other sets of concepts and definitions 

must be addressed before turning to the actual bandit problems. The two concepts are aspects 

of optimality and martingales. Discussion of converging subjective beliefs will depend upon mar- 

tingales, specifically the Martingale Convergence Theorem; the necessary concepts are discussed in 

Section 3.2. Before turning to martingales, the concept of optimality ensures that decisions that 

the agent or statistician makes are the best possible decisions given the information at the time of 

decision-making. 

3.1 Optimality 

Decision theory depends upon the agent making the best possible decision to maximize gain or min- 

imize loss. In Section 5.3, the discussion of optimal decision rules depends upon several definitions 

of optimality, especially to ensure existence of strategies that are optimal. In fact, producing re- 

sults from the generalized bandit problem depends upon framing the problem in terms of a dynamic 

programming problem. Dynamic programming problems in general solve optimization problems by 

considering subsets of those problems. In the context of bandit problems and sequential analysis, 

there is a set of states of nature, a set of rewards, and probability of transitioning from one state of 

nature to another. 

A dynamic programming problem consists of several elements. Let A be a Borel set, which 

denotes the choice of possible actions. Let S be another Borel set, which denotes possible states of 

nature. Define a function q : S x A -, S, which is the transition function, mapping current state 

and decision onto state for next period. Let x : S x A x S + IW be a reward function, which depends 

upon current and future states as well as action. Future rewards are discounted by some factor. 
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A given dynamic programming problem can therefore be summarized by (A, S, q, x). Let d (.) be 

some decision rule that indicates what action to take in any given state; in principle, this decision 

rule can depend upon all previous realizations of states and actions. A stationary decision rule is 

a decision rule d (s), where s E S denotes the current state, meaning only the current state factors 

into the decision. 

For a certain decision rule, denote the sum of all expected future benefits from using that rule 

to be U (d). Since there will be multiple decision rules, each yielding different future results, let V 

denote the supremum of the U's over all possible decision rules. That is, V = supd U (d). 

These basic aspects of a dynamic programming problem yield the following three definitions of 

optimality. The first, pure optimality, is the best a decision rule can possibly achieve. 

Definition 22 An optimal decision rule d* for the dynamic programming problem ( A ,  S, q, x) is one 

in which U (d*) = V. 

If a decision rule is not optimal, the next best alternative is that it can come as close as possible 

to achieving the value V. In the case of E-optimality, the goal is to come within some arbitrary E 

of the value achieved by optimality. 

Definition 23 An &-optimal decision rule dE for the dynamic programming problem (A, S, q, x) is 

one in which, for E > 0, U (dE) 2 V - E .  

Finally, if a decision rule is not &-optimal, the focus turns to whether there are situations in 

which a decision rule can be &-optimal or not. That is, there may be some probability distribution 

on the state space where, given that distribution, a decision rule can achieve E-optimality. 

Definition 24 A (p, E)-optimal decision rule dplE for the dynamic programming problem (A, S, q, x) 

is one in which, for E > 0 and p E P (S), p (U (dplE) 2 V - E )  = 1, where P (S) denotes the set of 

all probabilities on S. 



Several theorems regarding the existence of decision rules satisfying the varying definitions of 

optimality follow from these definitions. While the results of these theorems are important for later 

chapters, the proofs depend significantly upon dynamic programming concepts and are therefore 

beyond the scope of this paper. 

From the above definitions, it is obvious that of the three optimality concepts, the ( p ,  &)-optimal is 

the weakest. Stationary decision rules significantly increase the tractability of dynamic programming 

problems, so ideally a decision rule will depend only upon the current state, meaning it is stationary. 

The next theorem, by Strauch (1966), ensures that such a decision rule exists. 

Theorem 25 Let (A, S, q, x) be a dynamic programming problem, let E > 0 and p E P (S). T h e n  

there exists a stationary decision rule d ( s )  that is  ( p ,  &)-optimal. 

Again, since the previous theorem deals with the weakest of the three optimality definitions, 

existence of decision rules that satisfy the stronger optimality conditions would dominate these 

results. However, to ensure the existence of optimal decision rules, the conditions are stronger than 

those required for the weaker forms of optimality. The following two theorems provide conditions 

for the existence of optimal decision rules. The first is due to Blackwell (1965). 

Theorem 26 Let (A, S, q, x )  be a dynamic programming problem where A is finite. T h e n  there 

exists a stationary decision rule d ( s )  that is optimal. 

The next theorem is from Maitra (1968). 

Theorem 27 Let (A, S, q ,  x) be a dynamic programming problem where A is  compact, x is jointly 

continuous, and q is  jointly continuous. T h e n  there exists a stationary decision rule d ( s )  that i s  

optimal. 

From these theorems, if the setup of the bandit problem can be converted to the terms of dynamic 

programming problems, then it is possible to guarantee existence of decision rules that satisfy the 

three optimality definitions. 



3.2 Mart ingales 

Showing that the sequence of subjective distributions about some parameter converges over time 

to a fixed distribution, meaning that learning occurs, depends upon showing that this sequence 

is a martingale, and then showing, via the Martingale Convergence Theorem, that the martingale 

converges. First, given the definitions of probability spaces and random variables, the martingale 

definition follows. 

Definition 28 A martingale is a sequence {X,) ,  where X ,  is a random variable on a probability 

space (SZ, A, p ) ,  A1 c Ag c A3 C . . .  is an increasing sequence of a-algebras of A, and X ,  is 

A,-measurable, such that E [Xn+l IA,] = X ,  for all n E N. 

Closely related to the definition of martingales is the definition of supermartingales and sub- 

martingales. 

Definition 29 A submartingale is a sequence {X,) such that E [Xn+lIA,] 2 X ,  for all n E N. A 

supermartingale is a sequence {X,)  such that E [Xn+lIAn] < X ,  for all n E N. 

From these definitions, it is clear that a sequence is a martingale if and only if it is a submartingale 

and a supermartingale, and all martingales are both submartingales and supermartingales. In ad- 

dition, note that for n ,  k € N, E [X,+kIA,] = X ,  for martingales, with the corresponding inequality 

substituted for super- or sub-martingales.' 

Example 30 The classic example of martingales is the gambler's wealth problem. Let X ,  be the 

wealth of a gambler after n bets. Consider three betting systems: ( 1 )  a fair coin is tossed, the 

gambler receives one dollar if it lands heads, and loses a dollar i f  it lands tails, (2) a fair die is 

tossed, the gambler receives one dollar if it lands on a 5 or 6, and loses a dollar if it lands 1 through 

4,  (3) a fair die is tossed, the gambler receives one dollar if i t  lands 3 through 6, and loses one dollar 

if it lands 1 or 2. Given these frameworks, it is easy to see for each of the bets: 

This fact is established fairly easily by the use of induction on k. 



(1) X, i s  a martingale, since P (Xn+l = Xn + 1) = 4, P (X,+l = X, - 1) = $. T h e n  E [Xn+lIXn] = 

1 5 (Xn + 1) + 4 (Xn - 1) = Xn. 

(2) Xn i s  a supermartingale, since P (Xn+l = X, + 1) = +, P (Xn+l = Xn - 1) = $. T h e n  

E [ X ~ + ~ I X ~ ] = $ ( X ~ + ~ ) + ~ ( X ~ - ~ ) = X ~ - +  < X n .  

(3) X ,  i s  a submartingale, since P (Xn+l = X, + 1) = $, P = X, - 1) = i. T h e n  

E [ X ~ + ~ I X ~ ] = $ ( X ~ + ~ ) + + ( X ~ - ~ ) = X ~ + $  > X,. 

Several intermediate definitions and results need to be addressed in order to finish with the 

Martingale Convergence   he or em.' The first definition is one of stopping times. 

Definition 31 A stopping t i m e  for the  martingale {X,) o n  the sequence of a-algebras {A,) i s  a 

random variable r E N where {r = n )  E A,. 

Generally, a stopping time r is a time with which an individual can make a decision for some 

question about a string of random variables. For example, consider an infinite string of random 

variables (0,1, 1 ,0,1,1,0, .  . .). There exists a stopping time for the consideration "two ones have 

been witnessed," since at any timc, all the previous realizations can be examined to see if two ones 

have occurred. On the other hand, there is no stopping time for the consideration "the last one 

has been witnessed," since at any time, there may be (infinitely) more realizations of ones. In 

the context of the gambling problem, r = n indicates the gambler plays n times, has reached some 

pre-set money winnings or losings, and decides to stop. In general, stopping times simply end the 

sequence of random variables {X,). 

The first result is a Lemma that uses the definition of stopping times, where stopping times 

essentially put an end to a string of random variables, analyzing only the variables up to that time. 

Lemma 32 If {Xk)Lrl i s  a submartingale o n  probability space (R ,  A, P) ,  and the stopping t imes  

71, r z  E N are such that  1 < 71 < r 2  < n, then  E [X,,] 5 E [X,,]. 

2Doob (1953) was the first extensive discussion of martingale theory, and the proof of the Martingale Convergence 
Theorem has changed little over time. Ash (1972) and Billingsley (1986) present proofs with only slight modifications. 
I follow the standard methodology in these three sources. 



Proof. Let {Xk);=l be a submartingale, and define stopping times 7 1 , ~ ~  E N such that 1 5 

7 1  < 7 2  < n. Let A k  = X k  - Xk-1. Then 

= A,, +A, , - l+. . .+A, ,+,  

Next, since E [ X k l X 1 , .  . . , Xk-11 2 Xk-1, repeatedly applying expectation3 yields E [Xk]  > 
E [Xk-11, SO E [ A k ]  = E [Xk - Xk-l] = E [Xk]  - E [Xk- I ]  > 0. 

Consequently, 

Since E [X,,] - E [X,,] 2 0 ,  E [X,,] > E [X,,]. 

The next major result is a Theorem that depends upon the definition of upcrossings. 

Definition 33 The number of upcrossings of a sequence of random variables { X I , .  . . , X,) for an 

interval [a,  b], is the number of times the sequence goes from below a to above b. In other words, it 

is the number of pairs (c ,  d )  E N x N such that 1 < c < d < n, X ,  5 a, b 5 X d ,  and Xi  E ( a ,  b) for 

a l l z = c + l , c + 2  , . . . ,  d - 2 , d - 1 .  

Next, the following Theorem uses the definition of upcrossings and Lemma 32. 

Theorem 34 If {Xk)E=l is the initial segment of a submartingale, and if U is the number of 

3Note that  E [E [YIX]] = E [Y]. 



upcrossings for the interval [a, b] ,  then 

Proof. Let {Xk);=l be the initial segment of a submartingale, let [a, b] be an arbitrary interval, 

with U being the number of upcrossings on [a, b]. First, normalize the martingale and the interval, 

letting K = b  - a,  and for k = 1, . . . , n, define Yk = max {Xk - a, 0), SO that U now equals the number 

of upcrossings of the interval [0, K] by the submartingale {Yk);=l. Define a series of stopping times 

{T~):=~, with TO = 1 according to: 

Then for all k = 1, .  . . , n: (1) ~k < n,  (2) if ~ k - 1  = n, then ~ k - 1  = ~k = ~ k + l  = . . . = n, (3) 

if r k - 1  < n then r k - 1  < r k  (4) rn = ~ ~ + l  = ..  . = n. So, {~k):=~ is a nondecreasing sequence 

bounded above by n. 

Then 

T k  = < 

> (yTk - YTk-I) + c (yTk - yTk-l) 
k even k odd 

/ 

minj {(rk-1 < j < n) n ( j  : Y ,  1 K)) , k even and {(rkPl < j 1 n) n ( j  : 3 > K)) # 0 

n, k even and { ( r k - 1  < j 5 n) n ( j  : 5 > K)) = 0 

i n  ( - 1  < j < n) ( : = 0 k odd and {(rkP1 < j < n) n ( j  : = 0)) # 0 

n, k odd and {(~k-1 < j < n) n ( j  : Ej. = 0)) = 0 
\ 

Taking expected values, and applying equation (4) to  the expectation of the summation over odds: 

C (Kk -YT,-l) 
k even 



k even 

So now assume k is even (using summation over odds would require assuming k is odd, so this 

step is done without loss of generality). First consider ~ k - 1  = n,  SO Y,,-, = Y, = Y,,, meaning 

Y,, - Y,,_, = 0. Next consider ~ k - 1  < n ,  which implies Y,,-, = 0. Since Y,, > 0, Y,, - Y,,-, > 0. 

Consequently, regardless of ~ k - 1 ,  Y,, - Y,,-, 2 0. 

Now assume (c, d) constitutes an upcrossing of [0, r;] by {Yk)~=,, meaning Yc = 0, Yd > K, and 

Y,  E (0, K) for all i E Nn (c, d). Then there exists some k (k is even) such that ~ k - 1  < c < d = ~ k .  

Since Yc = 0 and Yd > r;, then Y,,-, = 0 and Y,, 2 K. Therefore, Y,, - Y,,-, 2 r;. Since the pair 

(c,d) was arbitrary, and there are U upcrossings, each of which generates a different ~k and ~ k - 1 ,  

Ck even (Y,, - YTkPl) > UK. Therefore, E [Y,] > E [UK]. Then 

E [UK] = r;E [U] = (b - a)  E [U] < E [Y,] = E [max{X, - a,  O)] < E [JX,(] + la1 . 

Now all the tools needed to show convergence of submartingales are assembled. 

Theorem 35 (Submartingale Convergence Theorem) Let {X,) be a submartingale, and define K = 

sup, E [(X,I]. If K < ca, then there exists a random variable X with E [(XI] < K and 

Proof. Let {X,) be a submartingale, and let [a, b] be an arbitrary interval. Define U,, to 

be the number of upcrossings of the interval [a, b] by the finite sequence X I , .  . . , X,. Also, let 

K = sup, E [IX,I]. By Theorem 34, 

E[IXn(] + a  K + a  
E [Un l<  b - a  5 -. b - a  



Since the number of upcrossings never decreases as n increases, {U,) is a nondecreasing sequence. 

Consequently, as {U,) is nondecreasing and E [U,] is bounded, then sup, U, is finite valued and 

integrable almost everywhere by the Monotone Convergence Theorem. 

Define X = limsup,,, X, and X= liminf,,, X,. Clearly, XI X. Suppose that X< X. 

Then, by the density of the rationals, there exists a ,  b E Q such that X< a < b < Z. However, 

this condition would imply limn,, U, = co, which is a contradiction, since sup, U, is finite. 

- 
Consequently, X= X ,  so limn,, X, =X= X = X .  Then, by Fatou's Lemma, where p is the 

probability measure, 

[IXll = J I X I ~ P  = / /ltinf IX,I dp I lirn inf (X,l dp = lim inf E [lX,l] 5 K.  n+m n J n+m n 

Thus, E [IXI] 5 K, X is finite since it is integrable, and P (lim,,, X, = X )  = 1. 

Theorem 36 (Martingale Convergence Theorem) Let {Xn) be a martingale, let M E [O ,  co), and 

let E [(X,(] 5 M for all n E M. Then X, converges to some random variable, denoted X ,  with 

probability 1, meaning 

Proof. Let {X,} be a martingale. Then {IX,I) is a submartingale, so {E [IX,l]) is a non- 

decreasing sequence. Let M E [O,co) and E[IX,I] 5 M for all n E N. Then {E [JXnI])r==l is 

bounded. Then 

supE[IXnl] n = lim E[IX,l] = K 5 M < 00. n-rn 

Thus, by the Submartingale Convergence Theorem (Theorem 35), there exists a random variable X 

with E [ I  X I ]  5 K and 



Chapter 4: Basic Bandit Problem 

Bandit problems are a class of sequential analysis problems in decision theory that involve a choice 

between multiple options that have some sort of uncertainty about the parameters that control the 

options. This chapter discusses the most basic case of a bandit problem, strategies for a sequence 

of choices, how future choices are discounted, and how priors affect the o ~ t c o m e . ~  

The most basic bandit problem involves two choices that have the same reward; the difference 

between the choices is that the probability of success associated with choice 1 is known, while the 

probability of success associated with choice 2 is unknown. There are many examples of applied 

bandit problems such as this in real life. For example, a doctor may have a choice between two 

prescriptions to give out, the first medicine being an old one that the doctor knows has a given 

probability of curing an ailment, the second a new medicine that the doctor has uncertainty about 

its probability of curing the ailment. Under what conditions would the doctor prescribe the first 

or the second medicine? Several factors that might influence this result are the success rate of the 

old medicine (the known probability), the doctor's thoughts about the potential of the new drug 

(the prior about the uncertain probability), the cost of failing to cure the ailment (the reward of 

success), and the desire to gather information about the success rate of the new drug so that the 

doctor can make more informed decisions in the future (the ability to create data and discounting 

of the future). 

Bandit problems are so named because the typical example uses slot machines. At every period 

t = 0 ,1 ,2 ,3 ,  . . . an agent approaches a two-armed machine. Arm 1 pays out one dollar with 

probability A, which the agent knows, and arm 2 pays out one dollar with probability 8, which is 

4Berry and Fristedt (1985) is a very complete source regarding bandit problems. The propositions in this chapter 
are based upon several results from Chapter 5. 
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unknown to the agent. The agent wishes to maximize the expected sum of discounted rewards, so 

his objective is 
-- 

max ~t C Pt+jXt+j 

where 0, is the discount factor at time t and Xt is the payout a t  time t 

4.1 Discounting 

The discount factor has an important role in the agent's decision. Intuitively, if the agent discounts 

the future heavily, he will be less likely to sacrifice income today to possibly earn more in the future. 

The two typical discount factors are finite-horizon discounting 

for some T > 0, where T represents the horizon, and geometric discounting, where 

The remainder of the paper will focus on geometric discounting.j 

4.2 Subjective Probability, Actions, and Rewards 

The parameter governing arm 2, 0, is fixed, but the agent does not know the value. Consequently, 

he will have subjective probability about the actual value of 0. Assume 0 E 0. While it is possible 

to constrain 0 to a smaller subset, assume 0 = [O, 11. Define the subjective probability or the prior 

at time t to be nt (0). Note that if P ( 0 )  is the probability space on 0, then .rrt (0) E P ( 0 )  for all 

5The restriction P E (0 , l )  disallows trivial results. If P = 0, the agent only cares about the current period, while 
0 2 1 means there is no penalty to postponing all earnings indefinitely. 

The use of finite-horizon discounting yields some interesting results, since the agent does not care about anything 
beyond the horizon T. The existence of a finite-horizon makes it necessary to use backward induction to reach these 
results. 



t. 

At each time t ,  the reward depends upon the action a from a set of possible actions A. Since 

the action must be either choosing lever 1 or lever 2, the action set A = {1,2). 

The reward structure is also easily derived from the structure of the problem. Clearly, xt E X ,  

where X is the set of possible rewards, with X = {0,1) for all t.6 At time t ,  xt  is the reward, but 

this reward depends upon the probabilities X and 0, as well as the action a.  Regardless of action 

choice, the payout occurs or it does not, so xt E { O , l )  for all t. In addition, the probabilities of 

success and failure of action 1 are 

and for action 2 are 

p (Xt  = llat = 2) = 0 andp(Xt  =Olat = 2) = 1 - 0 .  

Straightforward calculations for the expected reward show 

EIXtlat = 11 = X 

and 

E [Xtlat = 21 = 0. 

Depending upon the action taken and the reward received, the agent may observe a reward from 

arm 2, which provides additional information on the parameter 0. Using Bayes' Rule, the agent then 

6Note that at time t ,  the rewards for t,t + 1,t + 2,. ..have not been observed, and are a random variable denoted 
X t ,  X t + l ,  X t + 2 , .  . .. Previous realizations of the random variable have been observed and are denoted xt-1, x t -2 , .  . .. 



updates his subjective probability distribution for 0, creating the posterior r t + ~  (0). Specifically, 

The posterior for period t then becomes the prior for period t + 1, so r t + 1  (0) = r t+ l  (O(xt, at),  and 

the process continues. 

4.3 Decision Rules 

Given the setup of the problem thus far, the agent can determine a decision rule that tells him which 

arm to choose given his current information. The information at time t includes the prior at time 

t ,  rt (0), all past priors, and all of the past results that created potential observations regarding the 

true probability of 0. 

At any time t, there is a t-vector of observations ht that includes all results up to time t. Here, 

note that ht E Ht, where Ht is the set of all possible histories at time t .  So, if t = T,  then 

In the current example, HT is the set of all (T  - 1)-vectors consisting of ones and zeros, or Ht = Xt.  

The decision rule not only depends on the history of actions, but also the history of priors and 

the current prior. At each time t,  the prior regarding the distribution of 0 is 7rt (8) .  Define it 

to be the collection of all information at time t ,  the prior and outcome at all previous periods, 

and the current prior. In general, it E It, the set of all information sets possible at time t,  so 

It = ( P ( 0 )  x x ) ~  x P ( 0 ) .  

To make a decision, the agent needs to consider all information at the given point, and then 

make an action choice from the available options. Consequently, a decision rule is a function that 

maps the current information to the actions, so 6 : It + A. 



However, because of the use of Bayes' Rule, the decision framework simplifies from the entire 

information i t .  Because the posterior distribution .irt+l ( 0 )  depends upon the prior .irt ( 0 )  and the 

reward at ,  at  t = T ,  the prior . i r ~  ( 0 )  reflects all elements in i T .  Consequently, for a given period 

t ,  the decision should depend solely upon the prior for that period .irt ( 0 ) .  This discussion leads to 

the definition of a stationary decision rule. 

Definition 37 A stationary decision rule St ( i t )  is  one that depends solely o n  the current prior 

.irt ( 0 )  for all t .  That  is, 6t ( i t )  = 6,  (.irt ( 0 ) )  for all t .  

In a simple, one-period framework, or in a framework where the agent knew 0 ,  the simple decision 

would be to choose whichever had the highest expected value. Since the expected value of each 

action is given by the parameter governing that arm, the decision rule would be 

However, in the framework of the current problem, this decision rule disregards an important 

piece of information. Specifically, the choice a = 2 has additional value beyond the payout: its 

choice creates an observation that can help improve the agent's subjective probability about 0.  

To consider the value of the additional information, the value or utility of a decision or situation 

must be defined. 

Definition 38 The  utility of a decision rule 6 ,  given the prior .irt ( 0 )  and known probability A, 

denoted Us (nt ( 0 )  , A )  is  the expected discounted future rewards from the current period forward from 

following that decision rule. That  is, 

where E l L  [.] signifies expectations given prior .irt ( 0 )  and decision rule 6 .  



Definition 39 The value of a situation with prior .irt (8) and known probability A, denoted V ( r t  (8) , A) 

is the supremum over all possible decisions 6. That is, 

The optimal decision rule, S*, is a decision rule whose utility equals the situation value, meaning 

In general, the exact decision rule depends upon the distribution of the prior .irt (8), which is contained 

in the information set i t .  However, there are several important results that do not depend upon 

the specification of either. 

4.4 Results 

This section derives a few properties that optimal decision rules must have. In the basic framework, 

the value from choosing arm 1 is known, with expected value A. The value of choosing arm 2 

at time t is the expected payoff from choosing that arm, 8, plus the benefit of gaining additional 

information about the true value of 8. This second benefit from choosing arm 2 is very vague 

and potentially difficult to exactly quantify. However, the benefit is at least nonnegative, so if the 

expected immediate payoff from arm 2 is greater than that for arm 1, clearly it makes sense for the 

agent to choose arm 2. The first proposition states that the optimal decision rule must choose arm 

2 if the expected value of the immediate reward is higher than if arm 1 is chosen. 

Proposition 40 If E,",tt,z [Xt] 2 E:tt=l [Xt], then S* (it) = 2. 

Proof. Let 6: denote a decision rule at time t that chooses arm 1, and likewise 6; denote a 

decision rule that chooses arm 2. So the hypothesis states E"' [Xt] > E;: [Xt]. Let be an 
6 t t 

optimal decision rule at t + 1, and assume that it is optimal regardless of the choice and result at 



time t .  Then 

U,: ( r t  (9) ,A)  = [Xt] + E; C P'xt+j 
t+ l  

2 Ea; [Xt] + (from the hypothesis) 
t 

Thus, since a decision rule that chooses arm 2 is at least as good as a decision rule that chooses arm 

1, then the choice of arm 2 is optimal. w 

The previous proposition discusses under what conditions it is always optimal to choose arm 

2. Are there similar conditions for arm l? Again, the fact that the benefit from additional 

information may be difficult to quantify - it depends upon the subjective probability distribution 

and the expected rewards - makes finding a rule that always holds non-trivial. However, there is 

a fairly trivial result that says when arm 1 is always optimal, and does so without depending upon 

the exact specifications of the problem. 

Assume that in a given period, the agent decides to choose arm 2. Then he updates his 

subjective beliefs based upon the observed reward and makes another choice in the following period, 

which has ambiguous implications for decision rules. Now assume that in any given period, the 

agent optimally decides to choose arm 1. Then he receives a reward, but has gained no additional 

information about the unknown parameter 8, meaning that the prior for the following period, and 

the entire information set, is the same as for the preceding period. Since under the exact same 

circumstances it was optimal to choose arm 1, it must be optimal to choose arm 1 again. This 

intuitive result says that if arm 1 is optimal in any given period, it must be optimal to choose arm 

1 for all following periods. The following Proposition demonstrates this result more rigorously. 



Proposition 41 Given some i t ,  for an  optimal stationary decision rule S*, if IS* (it) = 1, then 

S* (it+l) = 1. 

Proof. Let bk be an optimal decision rule choosing arm k, and 6" be a decision rule specifying 

selection of arm k at time t followed by selection of 1 at t + 1, regardless of the outcome at  t .  Since 

b* (it) = 1 ,  U6; (.irt ( 6 )  , A) 2 U6: (xt  ( 6 )  , A),  and if at = 1 then .irt+l(6) = xt (6 ) .  Then 

U,I, ( T ,  ( 6 )  , A)  = E,":, = E;: [xt] + ~ ; + l  

Therefore, any rule 6'' is always at least as good as S12, SO if at = 1, then at+l = 1 must be optimal. 

Now consider any optimal strategy. If the agent chooses arm 1 at time t ,  he will continue to 

do so in t + 1, t + 2, .  . ., as stated in Proposition 41. If the agent chooses arm 2, he does so either 

because the expected immediate reward is higher, or because he wants to improve his subjective 

beliefs by viewing more reward outcomes. If the expected immediate reward for arm 2 is greater 

than for arm 1, then in period t the agent believes he will choose arm 2 in period t + 1 with the 

same expected reward. The same situation applies if the expected reward from arm 2 is lower than 

for arm 1. However, if the expected reward from arm 2 is lower than for arm 1, there is a chance 

that one more draw from arm 2 will sufficiently discourage the agent from choosing arm 2, making 

him switch to arm 1, which has higher immediate benefit. Therefore, a t  any given period t ,  the 



expectation from following an optimal strategy for xt+l must be at least as large as the expectation 

at time t for xt.  Stated more generally, because of the potential for additional information, the 

expected rewards from following an optimal strategy will increase. The following Proposition states 

these results in more concrete terms. 

Proposition 42 Given some it and A, there exists some S*such that E; [ x ~ + ~ ]  > E:: [ x ~ ] . ~  

Proof. Proposition 41 guarantees the result if 6; ( i t )  = 1, since SLl ( i t )  = 1 must follow, 

and the expected value is X in both periods. Consequently, assume 6: is the optimal decision 

rule that chooses arm 2 at time t .  Then if success is witnessed at time t ,  6,2+1 is optimal, and 

E:! [X t ]  = E:; [ x ~ + ~ ] .  If failure is witnessed at time t ,  either or 6:+1 is optimal. If a:+, is 
t+l 

optimal after failure, then as before, Ert [Xt]  = E$ [Xt+l].  Finally, consider if s:+~ is optimal 
6 ,  t+l 

following failure. In this case, S* is an optimal decision rule that picks 6: followed by s:+~ if xt = 1 

and if zt  = 0. Then the expected value following the decision rule S* 

But from Proposition 40, it follows that if the agent chooses arm 1 at t + 1, then X > Ert+l [O]. 

Then 

E:: [ ~ t ]  E:; t+l [x~+I] + (1 - E:: [xt]) X > E:: [Xt]  E;: t+l [Xt+l] + (1 - E:: [ x ~ ] )  ErL+l [O,xt = 01 

Next, note that, based upon expectations at t ,  Er; [Xt]  = E:: [ X t f l ]  = Ert [ O ] .  Also, from Bayes' 
6 ,  t+l 

Rule, 

' N o t e  that the expectation i n  both cases is  conditional o n  nt ( O ) ,  so the expectation at t ime t is  that xt+l is greater 
than xt. 



Therefore, 

Ei; [Xt] E:; [Xt+l] + ( 1  - Eii [ ~ t ] )  EX'+' [Qlxt = o] 
t+l 

= E"~  [02] + ETt [0] - EXt [02] 

= E"' [O] = E," [Xt]  . 

Thus E," [Xt+l] 2 E:: [Xt].  

While Proposition 42 states that expected rewards increase from following 6*, to the agent 

the future reward is discounted, and each period is exactly the same, so he is indifferent between 

two rewards in different periods, provided their discounted values are equal. However, in certain 

circumstances, it is important to note that if the rewards accrue to  outsiders as well, the fact that 

expected rewards increase means that later periods are better. 

More concretely, consider the discussion at  the beginning of this Chapter about the doctor and 

patients. Because the doctor is gaining information over the course of repeated trials of the medicine, 

he is essentially using the early patients as testing subjects, and perhaps even pursuing non-optimal 

decisions for them to gain information and help patients in the future. In the current framework, the 

doctor may, in acting optimally for society, give patients in earlier periods the new prescription in 

order to see how it works, even if he doesn't expect it to work as well. However, the doctor's choice 

under these circumstances is not necessarily in the best interests of the earlier patients. Proposition 

42 therefore suggests that, from the doctor's viewpoint, later patients can expect better treatment, 

since the doctor will have information about the effectiveness of the new prescription. 

These results pertaining to the basic bandit problem discuss some properties of optimal strategies, 

but more specific results depend upon the exact nature of the problem. In Chapter 7, I revisit this 



basic framework in an application. Before the applications, I now turn to a more abstract framework 

that generalizes the basic problem discussed in this chapter. 



Chapter 5: Generalized Bandit 

While the framework discussed previously used specific beliefs, parameter spaces, reward structures, 

and action choices, this chapter presents a similar environment that allows for the most general 

spaces, and a much larger action set beyond two choices. The discussion in this chapter and 

Chapter 6 is based upon the work in Easley and Kiefer (1989). 

5.1 General Environment 

Again, at t = 0 ,1 ,2 , .  . .the agent has a choice of actions whose rewards depend upon an unknown 

parameter 0. These actions yield a reward in every period, xt, and the agent maximizes the expected 

(geometrically) discounted infinite sum of the rewards, 

max Et 2 @xt+j, 

where, naturally, 0 E (0, l ) .  

The unknown parameter 0 again controls the rewards, but is not necessarily the probability of 

success. Let 0 E O, where the parameter space O is a complete, separable metric space. Define 

I to be the a-algebra generated by the open sets of O (the Borel a-algebra). In addition, define 

P ( 0 )  to be the probability space on O, assume that P ( 0 )  has the weak topology. Let F be the 

Borel a-algebra on P (0) .  The space ( P  ( 0 )  , F) is a complete, separable metric space. 

While the basic bandit problem and its extensions have a discrete choice set, each element of the 

set representing an arm of the machine, the action set now includes many other possibilities. The 

agent chooses action at E A, where the action space A is a Borel subset of a complete, separable 

metric space. Define X to be the Borel a-algebra on X. 

3 1 



While the reward structure in the basic example was a payoff of one under success and zero under 

failure, the reward structure now depends generally upon the state of nature 0 and the action at .  

That is, define the conditional distribution of Xt , given at and 0, to be q!~ (Xt lat, 0) = 77 (at ,  0). Also, 

assume that the reward function is continuous for all combinations of actions and states of nature, 

or (at ,  0) E X x O, with respect to the measure v on R. Define B to be the Borel a-algebra on R. 

The Radon-Nikodym derivative of 77 (at, 0) with respect to v defines the (unconditional) probability 

density function f : X x O x IR + IR for the reward structure. That is, 

d77 (at, 0) 
f (X t ,O , a t )=  dv . 

Consequently, given two parameter values 0 and at,  the expected reward is given by 

However, at the time of decision-making, the agent does not know the value of the parameter 0, 

but only has subjective beliefs about its value given by the prior .rrt (0). The expected reward with 

only knowledge of the prior is therefore the more important expected reward calculation. This 

expectation is given by the expectation of the reward knowing the value of 0, then considering the 

uncertainty about 0: 

Also, the rewards are bounded from above and below, meaning there exists K E R+ such that 

( E  [Xt lat, .rrt (O)] 1 < K for all possible values of (at, r t  (0)) E A x P (0 ) .  

In any period, the choice of action at and reward xt can be used to augment the prior from that 

period .rrt (0) by using Bayes' Rule, which gives the posterior distribution for t ,  which is the prior 

for t + 1. Since F is the Borel a-algebra on the probability space P (O), it contains all possible sets 
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that 6 could be a member of. Specifically, if 0 E 3, then the posterior probability that 6 E 0 is 

So f (Xt, 6, at) Kt  (do) 
Kt+l(Ol.t (6) , at,  xt) = 

J e f  (Xt,Q,.t)~t (do)' 

or, if the denominator is zero, 

Bayes' Rule takes the prior, action, and reward, and maps it to the posterior. Defining the function 

given by this mapping to be B : P ( 0 )  x A x R +P (O). Rieder (1975) shows that this mapping is 

well defined and F x A x B measurable. 

The Bayes' Rule mapping therefore takes the prior, action, and reward, and maps them to the 

posterior. The posterior distribution nt+l (6) is defined over O, so K ~ + I  (6) E P (0 ) .  There are 

many such elements in P (O), and the exact posterior depends upon the prior and the random 

variables at  and xt.  Consequently, there exists a probability space for the probability space, namely 

P ( P  (0) ) .  The reward variable xt is directly linked to the prior .irt (6) and the action a t ,  so it 

is possible to suppress consideration of that variable and determine the transition probability to 

an element in P ( P  ( 0 ) )  given a prior and an action. Intuitively, the transition probability is a 

function q : A x P ( 0 )  4 P ( P  (0 ) )  that determines the probability density function across posterior 

distributions, given the prior and the action. This function is 

for some set 0 E F, and lo (.) being the indicator function for the set 0. Easley and Kiefer (1989) 

show that the transition probability function is A x F measurable. 

The framework of the decision problem now depends only on the action space, the probability 

space, the reward structure, the transition probability, the degree of discounting, and the initial 



beliefs no ( 9 ) .  From the initial prior no ( 9 ) ,  the agent chooses an action based upon discounting the 

future, receives a reward, and uses the transition probability to move to a prior for the next period, 

which is a member of the probability space. 

5.2 Decision Rules 

As in the basic example, a t  time t ,  the information available to the agent is the past history of 

realizations, all previous priors, and the current prior. Again, let the information at  time t be 

denoted it, where it E It = ( P  (0) x x ) ~  x P ( 0 ) .  The agent processes previous priors and past 

realizations of outcomes according to Bayes' Rule, meaning the current prior, nt  ( 9 ) ,  contains all 

relevant information at time t. As before, a stationary decision rule uses only the current prior as 

criteria for the decision. 

A decision rule is once again a function S : It --+ A, which maps the current information onto 

a decision. Because of the generality of the current problem, specifically the action space A, it is 

difficult to determine any other particular aspects of the decision rule. Following the notation of 

the basic example, however, the utility of a decision rule 6 is the expected value of discounted future 

rewards: 

In addition, following previous notation, the value of a situation is the supremum over possible 

decisions of all utilities: 

V (nt ( 9 )  , A) = sup Us (nt ( 9 ) )  = sup EIt 
6 6 

5.3 Results 

As in Section 4.4 dealing with properties of optimal decision rules for the basic bandit problem, 

now I turn to some results regarding decision rules for the more general framework. Because of the 



nature of the basic problem, the earlier discussion took for granted the existence of optimal decision 

rules and instead focused on properties that optimal decision rules must have had. 

A similar approach is infeasible in the current setup of the problem because of the lack of 

restrictions on the parameter spaces and functions. Instead, the question becomes, are there 

decision rules that are optimal? Further, using the three optimality definitions of Section 3.1, 

are there circumstances where the weaker optimality conditions hold when the stronger ones do 

not? 

The most restricted definition discussed in Section 3.1, that of optimality, only holds under certain 

conditions. However, the most general of the three definitions presented, that of (p, E)-optimality, 

holds under less stringent conditions. 

Recall that the definition of a stationary decision rule in the current context is a decision rule 

that only depends upon the prior a t  the time of decision-making. Since the agent is assumed to 

process information and update his prior according to Bayes' Rule, only stationary decision rules 

pertain to the agent. Consequently, the existence of stationary decision rules, rather than other 

decision rules such as randomized rules, is the only existence question of importance. 

The first Proposition of this section establishes the existence of the most general form of optimal- 

ity under consideration. Specifically, the existence of (p, &)-optimal stationary decision rules under 

all circumstances means that given current beliefs, there is a decision rule that the agent believes, 

given current beliefs, is &-optimal. 

Proposition 43 Let p E P ( P  (0))  and let E > 0. Then there exists a stationary decision rule, 

St (it) = St (.irt ( O ) ) ,  that is (p,~)-optimal. 

Proof. Note that (A, P (Q) , q, X) form a dynamic programming problem. By Theorem 25, a 

(p, &)-optimal stationary decision rule exists. 

Now that the existence of (p, &)-optimal decision rules under any conditions has been established, 

it now makes sense to consider under what circumstances can the agent do better than this basic 



optimality. Two sets of conditions guarantee full optimality. The first of these has important 

implications for the basic bandit problem. 

Proposition 44 Let the action set A be finite. Then there exists a stationary decision rule, St (it) = 

St (rt ( Q ) ) ,  that is optimal. 

Proof. Note that (A, P (O) , q, X) form a dynamic programming problem. By Theorem 26, an 

optimal stationary decision rule exists. w 

Consequently, if the agent has a finite number of actions to choose from, there will always be 

a stationary decision rule that satisfies the strongest optimality condition. In the basic bandit 

problem, the agent only has two choices. Under this setup, then, an optimal decision rule exists, 

and the discussion of Section 4.4 deals with properties of such a decision rule. In addition, note that 

extensions of the two-armed bandit to multi-armed bandits will always have existence of optimal 

decision rules. A simple example demonstrates the previous result. 

Example 45 First, consider the action set A = {al, az , .  . . ,an) .  Then the value function for 

the problem is V (rt ( 0 )  , A) = sup {UI (rt (8 )  , A) , Uz (rt ( 8 )  , A) , . . . , Un (rt ( 8 )  , A)).  Clearly the 

supremum can be achieved, since it is the maximum of n elements, and the optimal decision rule is 

the one that chooses the maximum of the utilities. 

As  a counterexample, consider the action set A = [O, 11 and the reward function 

at if at # 1 for all 8 
.t = { 

0 i f  at = 1 for all Q 

In  this case, there is no optimal decision rule, since the agent will want to choose at as close as 

possible to 1 without choosing at = 1. Regardless of the choice of at E [0, l ) ,  there will be an action, 

say at + w, that yields a greater reward. Note, however, there exist &-optimal decision rules for 

all E, i n  which case the &-optimal decision rule is to choose at E ( 1  - E ,  1) .  



While the achievement of optimality under finite decision sets deals with a large strand of the 

literature on bandit problems, there are many circumstances where the decision set may have either 

countably or uncountably infinitely many possible actions. Consider a problem similar to estimation 

of statistical models: the agent has data from some process depending upon 6, then in each period 

he estimates 6 - his action, and simulates data using his estimate of 6, and earns a reward based 

upon the accuracy of his estimates. Under such situations, there may be infinitely many possible 

estimates for 6. The following Proposition deals with the cases where the action set A is infinite, 

but still provides for full optimality. 

Proposition 46 Let the action set A be compact, the expected reward function X : A x P ( 0 )  -+ R 

be jointly continuous, and the transition probability function q : A x P ( 0 )  -+ P ( P  (0 ) )  be jointly 

continuous. Then  there exists a stationary decision rule, St (it) = St (nt (O)), that is optimal. 

Proof. Note that (A, P ( 0 )  , q, X )  form a dynamic programming problem. By Theorem 27, an 

optimal stationary decision rule exists. H 

As a result of the preceding discussion, ( p ,  &)-optimal stationary decision rules always exist, while 

optimal stationary decision rules exist for some classes of decision rules. However, it remains to 

be seen whether the optimal decision rules lead to convergence of beliefs about the parameter 0.  

Learning about the parameter depends upon whether the decision rules lead the agent to generate 

more data. Depending upon the specifics of the problem, the goal of optimality or ( p ,  E)-optimality 

may constrain learning, that is, the agent's optimal decision may be to not learn. 



Chapter 6: Convergence of Beliefs 

Now that the essential aspects of the general bandit problem have been discussed, I now turn to the 

convergence of beliefs. That is, under what circumstances does the agent, through repeated trials 

and constant updating of his subjective beliefs, eventually learn the true value of the parameter 0? 

If the agent does learn the true value, there would be some limit prior at t = co such that the agent 

puts all probability mass on the true value. 

In addition to the discussion about learning, it is important to discuss optimal non-learning. 

In other words, times it may be optimal to not learn the true value of the parameter 0. As an 

example, assume that in the basic problem discussed in Chapter 4, the known parameter X = .99, 

and the true value of the unknown value 0 = .05. At some point, the agent's subjective probability 

distribution may say that P (0 E (0, . I))  = 1. Then the agent knows the known parameter is much 

higher. Clearly the benefit of knowing that 0 = .05 rather than, say, 0 = .06, is negative, since 

obtaining that additional knowledge comes at the cost of passing up the action that has a much 

higher expected value. As a result, then, the agent may decide that the optimal action is to not 

pursue knowledge of the true value of the parameter. 

The convergence of beliefs issue then becomes two related questions. First, do the agent's sub- 

jective beliefs converge over time to some probability distribution? Second, what are the properties 

of the limit beliefs if beliefs do converge? In other words, under what properties do beliefs converge 

to the true value of the unknown parameter 0? The goal then becomes to first show that beliefs 

do converge, and then show, using the three definitions of optimality discussed in Section 3.1, under 

what conditions those limit beliefs exactly learn the value of 0. 

For beliefs to converge, the sequence of subjective probability distributions {nt )zo  must converge 

almost surely to some probability distribution n,. To show this convergence, it suffices to show 
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that if C c O is any Borel-subset, then { r t  ( C ) ) z o  converges to n, (C) almost surely. 

Proposition 47 Let C c O be a n  arbitrary Borel-subset. T h e n  { r t  (C) )Eo  is a martingale. 

Proof. The first step to showing that { r t  ( C ) ) z o  is a martingale is to determine the relevant 

probability space. Let Z be the space of all possible rewards and actions during one period, so Z = 

A x R, let 2, be the space of all possible reward and action pairs over all time, that is Z, = ~ $ 2 .  

At a given timeT, the agent has witnessed pairs of actions and rewards at t = O , l , .  . . , T,  and knows 

that potential pairs in the form of Z exist at t = T + 1, T + 2 , .  . ., so if D C x ~ Z  is a Borel subset, 

then the a-algebra after T periods is LT = {S c Z, : S = D x ( x F + ~ Z ) ) .  Define L, to be the 

smallest a-algebra such that UzlLt  c L,. For every t ,  also define L,' = Lt x {B,O). 

Then, given a 8 E O and S E Lt,  where S = C x (~ ,00+~Z) ,  the probability of A given 8 

is P8 ( A )  = Po ((6 (ik) , rx):=l E c). The agent, knowing 8, no, f ,  p, and 6, can calculate the 

probability Pe (A). Also, since f ,  q ,  and 6 are Borel-measurable, so is Pe with respect to Q. Recalling 

that 7 is the Borel a-algebra on 0,  the measurable space of sample paths is (O x Z,, a (7 x L,)), 

which is the set of all pairings of the parameter with reward spaces, and the a-algebra generated 

by the Borel a-algebra on O and L,. The agent's beliefs over this space of sample paths is 

how the probability of S E L, given 8 changes with the initial prior no over C E 7; that is, 

P ( C  x S )  = Jc Pe (A) dro .  Denote this probability by P,, ( C  x S )  E P (O x 2,). Now, the 

relevant distribution for almost surely convergence is therefore the initial prior ro 

Consequently, at time t ,  the agent has beliefs that the parameter Q is contained in a Borel-subset 

C c 0, and this probability is r t  (C) = E [IIcxz,}  JL:-l]. As t -, ca, meaning {L,')El approaches 

L;, E IL,'] = E (L:-l], or E [ r t + l  (C)] = nt (C). Thus, the sequence of beliefs 

for C c O, {rt ( C ) ) z l ,  is a martingale. rn 

Since the sequence of beliefs is a martingale, and since r t  (C) must be a probability, and is there- 

fore between zero and one, the sequence { r t  ( C ) ) z 1  meet the criteria of the Martingale Convergence 

Theorem (Theorem 36). Therefore, there must be a limit belief to which the sequence converges. 



The following Proposition solidifies this idea. 

Proposition 48 There exists T, E P ( 0 )  such that .irt -+ T, almost surely with respect to TO 

Proof. Let C c Q be any arbitrary Borel-subset, then ~t (C) = E [ I ~ ~ ~ ~ , ~ ~ L , ' - , ] .  is 

an indicator function for the set {C x Z,), .irt (C) E [O,1]  almost surely for all t ,  so {rt ( C ) ) z ,  is 

uniformly bounded (by f 1), so by the Martingale Convergence Theorem (Theorem 36), { ~ t  ( C ) ) z l  

converges almost surely to some limit beliefs T, (C). 

Since Q is a complete, separable metric space, there exists a countable collection {Ci)E1 whose 

closure is O; this collection is used to determine convergence on 0 .  Since the collection is countable, 

there exists a set of sample paths S with P,, ( A )  = 1 where l imrt  (Ci) = .ir, (Ci) on S ,  for all i. 

Consequently, .irt -+ T, almost surely with respect to P,,. Since P ( 0 )  is complete and .rrt E P ( 0 )  

for all t, .ir, E P ( 0 ) .  

After verifying that the sequence of beliefs do indeed converge to some limit beliefs .ir,, it is time 

to consider what these beliefs may entail. The conditions on optimal decision rules will constrain 

the potential structure of limit beliefs. As the discussion beginning this section argued, in some 

circumstances it may not be optimal for beliefs about the parameter 0 to converge to  the actual 

value. In this case, the agent would want beliefs to converge enough to give him confidence that 

the action or actions that created endogenous data was sub-optimal relative to actions that did not 

provide information about 0, and then he would decide not to generate any more data, meaning that 

beliefs would never change, or that he had reached limit beliefs. If, on the other hand, the agent 

decides it is optimal (under one of the definitions of optimality) to generate data and learn the true 

value of 0, he would expect limit beliefs to converge so he puts probability one on the true value of 

0. 

For complete learning to occur, it is necessary to have some decision rule with the property that 

if the agent follows that decision rule, he will, in the limit, know the true value of 0. 

Definition 49 An identification decision rule 6' (it)  is a decision rule such that, given .ire and s', 



there exists a L,-measurable function g such that, for z E Zt,  g ( z )  = 6 almost surely with respect 

to .ire for all 6 E O. 

In the basic bandit problem, it is easy to see that S (it) = 2 is an identification decision rule, 

since if the agent chooses arm 2 every period, in the limit he can exactly determine 6. It is assumed 

that identification decision rules exist for every problem, note that they will not necessarily exist if 

6 changes over time. In addition, given the previous discussion on optimality and learning, it is not 

necessary for the identification rule to be optimal. Similarly, if the agent follows the identification 

rule for any problem, he will determine the true value of 6. 

The following Lemma says that if the agent follows a (p, &)-optimal decision rule, he can do so 

for a finite number of periods and then switch to any other decision rule and have the resulting 

sequence be (p, 2~)-optimal 

Lemma 50 Let E > 0 and p E P ( P  ( 0 ) ) .  Let 6' be a (p, E)-optimal decision rule. Then there 

exists T < cm such that {S),"=, = (61, S',, . . . , Sk, S;+,, ti&+,, . . .) is (p, 2~)-optimal for any sequen.ce 

of decision rules 6: : It + P ( A )  for k = T + 1, T + 2,.  . .. 

Proof. Let (6') denote a sequence of Sf decision rules and {S) denote a sequence of T Sf decision 

rules then switched to decision rule 6". Since there exists K E Rt such that IE [Xtlat, 011 5 K for 

all at and 6, then 

- (ag [e t=O atxt] + E;;.} [ 2 ptXt]) 
t=T+l 



if T is such that hT 5 w. 
With this Lemma in hand, the next Proposition guarantees the existence of a ( p ,  E)-optimal 

decision rule that leads to  learning the true value of 0. 

Proposition 51 Let E > 0 and p E P ( P  ( 0 ) ) .  I j  there exists an identification decision rule, then 

there exists a (p, €)-optimal decision rule such that nt (0) -+ T, almost surely with respect to no, 

where T, (0) = 1 at the true value of 0. 

Proof. Let 6' be a (p, €12)-optimal decision rule, and define T as in Lemma 50. Define 

zT = {Z~)T=~  be a sequence of T observations from 2, and let T T + ~  be the prior based upon zT. 

The identification decision rule guarantees the existence of a decision rule such that {nt)zT+l  

converges to Is almost surely with respect to P,,,, . Lemma 50 says that following 6* until time T 

and then following the identification decision rule is (p, &)-optimal. 

Define H c O x 2, to be the sequence of 0 and zt's such that rt -, Is. Then the probability 

of H given no for a given zT is the probability of N given no and zT multiplied the probability of 

zT. Integrating over zT gives the total probability of H given no. Specifically, 

Pro (H)  = PXo ( ~ ( 2 ~ )  p (zT) dzT. 
I T  

But P,, (HlzT) p (zT) is, by definition, P,,,, (H),  and integrating over all possible zT gives 

Note that up to this point, the results pertaining to learning have not used the concept of 

stationary decision rules. Unfortunately, while learning of the true value occurs given the situation 

discussed above, it is not necessarily a stationary decision rule that is the identification decision rule. 

A simple example suffices to prove that stationary decision rules may not lead to full learning. 



Example 52 Consider the case where 0 E O = [o, $1, a E A. Let there be a n  action a* that fully 

reveals 0 after one period, and let the conditional probability of rewards given state 0 and action at 

1, for all 0 if a # a* 
4 ( X t  10, at )  = 

0,  for all 0 if a = a* 

The  only way to  learn 0 is  t o  choose a = a*, which cannot be &-optimal if E < $ for any stationary 

policies. 

In this circumstance, and in the general setup, the agent does not care how accurate his beliefs 

are, he only cares about rewards, so under certain specifications of the reward function, it is very 

plausible that learning will not occur for stationary policies. Under the general specifications of the 

bandit problem discussed here, though, while beliefs will converge, the optimality concepts presented 

do not ensure that stationary decision rules will always lead to full information about 0. To see 

whether optimality encourages stationary decision rules to achieve full information, it is necessary 

to pin down specifics of the problem. 



Chapter 7: Application: Basic Bandit Revisited 

This chapter builds upon the discussion in Chapter 4 regarding the basic bandit problem. The agent 

approaches a two-armed machine, the first arm pays out a dollar with probability A, the second arm 

pays a dollar with probability 0. The agent knows X but not Q. Proposition 44 guarantees the 

existence of an optimal strategy since there are a finite number of action choices, in this case two 

possible actions. In addition, the discussion from Section 4.4 demonstrates that if ETt [Q] > X at 

any time t ,  then arm 2 is optimal, where if S* (it)  = 1, then S* (it+') = 1. 

Recall that the action space A = {1,2), the parameter space Q E O = [O, 11, and the reward 

function for arm 1 is Bernoulli(X) and the reward function for arm 2 is Bernoulli(0). In addition, 

assume the discount parameter p = .9. 

Even with a simple bandit problem such as this one, computation of optimal decision rules is 

difficult. To provide an example that illustrates learning while allowing the problem to be solved, 

assume that the prior at t = 0 is Beta(1, I),  which is uniform on [ O , l ] .  That is, 

7To (0) = 1. @GI 

A benefit of using the beta distribution as a prior is that the family of beta distributions is closed 

under Bayes' Rule when sampling from a Bernoulli distribution. Specifically, assume that .rrt (8) N 

Beta (a, b). Then the posterior, assuming xt E { O , 1 )  denotes failure or success, 

Beta (a, b) Bernoulli (0) 
Tt+l(Q) = 

Beta (a, b) Bernoulli (8) dQ 



Then after success (x t  = 1):  

L e a  ( 1  - elb-' 
B(a,b) 

( 1  - 0 ) b - 1  

Tt+l(Q) = - - r(a)T(b) 

/,l & ~ ( ~ + ' ) - l  ( 1  - Q ) ~ - '  do  J' - ~ ( ~ + l ) - l  ( 1  - elb-l 
0 r ( a ) r ( b )  

(a+b)r(a+b) 
- - - ar(a)r(b) 

ea ( 1  - elb-l 
- 

o. j-1 r(a+l+b) g(a+l)-1 ( 1  - e l b - 1  d e  j-1 T(a+l+b) e(a+l)-1 
(a+b) 0 r(a+l)T(b) 0 T(a+l)T(b) ( I  - elb-' d e  
r(a+l+b) e(a+l)-1 ( 1  - e)b-l 

- - r(a+l)T(b) 

1 
= Beta ( a  + 1 ,  b )  

and after failure (x t  = 0): 

r(a+b+l) ea-1  - e)(b+l)-I 
- - F(a)T(b+l) 

1 
= Beta ( a ,  b + 1)  

A similar argument using the Binomial distribution shows that after m successes and n failures for 

an agent with a Beta (a ,  b) prior will yield a posterior that is Beta ( a  + m, b + n). These derivations 

make it easy to see how the information set it is included in the prior at  time t ,  as if the prior is 

Beta (x, y ) ,  then the agent has witnessed x-  1 successes and y - 1 failures. In addition, the expected 

value of success given a Beta (a ,  b) distribution is 

Let b1 be a decision rule that chooses arm 1 and b2 be a decision rule that chooses arm 2. Since 

a choice of arm 1 will be repeated indefinitely, the utility from at = 1 at t is 



A choice of arm 2 has an expected probability of success of -&, which carries a payout and then 

the posterior is Beta (a + 1, b). The expected probability of failure is A, which pays out nothing 

and the posterior is Beta (a, b + 1). Consequently, the utility from at = 2 at t is 

Beta(a,b) U62 (Beta (a, b) , A) = E6, 

a - - - 
b 

[1+ V (Beta (a + 1, b) , A)] + - [V (Beta (a, b + 1) , A)] . (29) 
a + b  a + b  

The choices at = 1 and at = 2 are the only possible choices at every time t,  so the value at time 

t is the supremum of the utilities associated with these rules, 

{ 
X a 

V (Beta (a, b) , A) = max - - b 
[1+ V (Beta (a + 1, b) , A)] + - [V (Beta (a, b + 1) , A)] . 

1-,f? 'a+b a + b  1 
(30) 

The optimal decision rule is the rule that maximizes equation (30). This value function can be 

estimated by iteration until the values for a given prior Beta(a, b) converge.8 Appendix I discusses 

the computation used to estimate the value function (30). The following two sections use compu- 

tations to show examples of learning and optimality. In both cases, the agent has limit beliefs. 

The example where learning is optimal shows how beliefs converge to the true parameter, while the 

example where learning is not optimal shows how beliefs converge until the agent realizes learning 

is not optimal. 

7.1 Learning is Optimal 

This example will illustrate a case where learning is optimal. Since the initial prior is set to be 

(6) Beta (1, I),  E [XoJat = 2, Beta (1, l)] = .5. By Proposition 40, the nontrivial cases occur 

when A > .5, otherwise at = 2 is obviously the optimal decision rule. Consequently, set 6 = .8 and 

A = .7, so the initial expectation is below A, but the true value of 6 is greater than A. In a myopic 

8The value function satisfies necessary criteria for dynamic programming. See Gittins (1989) for a futher discussion. 



strategy (where ,B = O), the individual would always choose at = 1, but it is clearly the case that 

the best strategy would be to learn the true value of fl. 

Figure 1: Evolution of Priors, Learning Optimal 

Table 1 

Table 1 shows the prior, expected value, accuracy of the prior, and the utility for d2 at various 

times. Since the utility for at = 1 is & = 7.0, as long as  U62 ( r t  (8) ,A) > 7, the agent will choose 

t 

0 

10 

50 

100 

500 

at = 2 and eventually learn the true value of 8. Also, over time, the value of information decreases, 

rt (0) E [Xt I r t  (fl) , A] P ( r t  (fl) E (fl - .02,e + .02)) U62 ( r t  (fl) , A) 

Beta ( 1 , l )  .5 .040 7.01 

Beta(10,2) ,833 .I18 8.35 

Beta (41 , l l )  .788 .279 7.88 

Beta (86,16) .843 .I99 8.43 

Beta (402,100) .801 ,737 8.01 



and the entire utility is dominated by the expected value of the stream of payouts. 

Figure 1 shows the evolution of the priors over time. Note that they become increasingly 

accurate, as the agent's optimal policy is to choose at = 2. 

One disadvantage of having a uniform distribution for a prior is that it is easily shaped by early 

observations, making the agent susceptible to "discouragement" early in the process. For example, 

in the current example, since a failure at t = 0 after choosing arm 2 would lead to a Beta ( l , 2 )  

prior at t = 1, which has expected value E [xtlBeta (1,2)] = 9 ,  the agent would immediately become 

discouraged and choose arm 1 after that point. 

7.2 Learning is not Optimal 

This example will illustrate a case where learning is not optimal. Since the initial prior is set to 

be no (0) Beta (1, I ) ,  E [Xolat = 2, Beta (1, I)] = .5 .  As opposed to the previous section, the 

interesting case occurs when learning occurs for some time, then the agent realizes that it is not 

optimal to learn. Consequently, set 0 = .1 and A = .11, so the initial expectation is above A, but 

the true value of 0 is less than A. The individual would start to choose at = 2, then beliefs should 

stop converging when the agent realizes he should not pursue learning the true value of 0. 

Table 2 shows the prior, expected value, accuracy of the prior, and the utility for S~ at various 

times. Since the utility for at = 1 is = 1.1, as long as (n t  (0) , A) 1 1.1, the agent will 1-0 

choose at = 2. As soon as U62 (rt (0) , A )  < 1.1, the agent will stop learning and terminate the 

problem, choosing at = 1 for the rest of the time. 



Figure 2: Evolution of Priors, Learning Not Optimal 

Table 2 

Figure 2 shows the evolution of the priors over time. Note that they become increasingly 

accurate, but the agent decides to stop learning at  t = 58. 

Unlike the previous section, where the agent can become "discouraged" and stop trying to learn 

when it is good to learn, the quicker the agent becomes "discouraged," the greater his overall return. 

t 

0 

10 

50 

57 

71.t (6) E[Xt I r t (Q) ,X]  P ( r t ( Q )  E (Q- .02 ,Q+.02) )  u p ( r t ( Q ) , X )  

Be ta (1 , l )  .50 .04 5.01 

Beta(2,lO) ,167 .17 1.69 

Beta (6,46) ,115 .36 1.17 

Beta (6,53) .I02 .39 1.10 



Chapter 8: Conclusion 

This paper has discussed learning and endogenous data in sequential analysis or bandit problems. 

In both the basic and the more general bandit problems, optimal decision rules exist under certain 

circumstances, and the requirement of optimality may or may not allow complete learning. The 

sequence of subjective probability beliefs is a martingale, and consequently this sequence converges 

to limit beliefs. These limit beliefs, however, do not necessarily reflect complete learning, as the 

decision-maker's desire to maximize rewards may lead to the abandonment of the learning process. 

A simple example using the basic bandit framework shows that only slight manipulation of the 

environment can lead to learning being either optimal or not. 
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Appendix A: Computation 

This appendix describes the computation of the value function given in equation (30). Gittins 

(1989) notes that the value function can be estimated by recursion. See Stokey, Lucas, and Prescott 

(1989) for a discussion of dynamic programming methods. The steps for value function iteration 

are as follows: 

1. Set the parameters A, 8, 0.  

2. Create a (n + 1) x (n + 1) matrix N ,  initialized at  any aribitrary value. The (i, j)-element of 

N ,  denoted Nij, corresponds to V (Beta ( i , j )  ,A). Given that the intial prior is Beta (1, I ) ,  

the (1 , 1)-element , Nll, is the value at t = 0. 

3. Since the value function is 

V (Beta (a, b) , A) 

- - 
X a b 

ma{- - [1 + V (Beta (a + 1, b) , A)] + 
1 - , O 1 a + b  

iteration loops over i = 1, .  . . , n and j = I , .  . . , n. Specifically, 

where k denotes the kth iteration. 

4. After looping over i = 1 , .  . . , n and j =I, .  . . , n ,  the new matrix can be denoted N1, with 

typical element N:j. Then repeat Step 3 using N1 to get N2,  use N2 to get N3, etc. 



5. Iteration on N is complete when the matrix after k iterations is "close" to the matrix after 

k + 1 iterations, where "close" is defined as when 

When the convergence criterion is met, the value function matrix N* is the value function for 

each a and b in V (Beta (a, b) ,A). Note that in step 2, the value chosen for initialization of N 

will remain in row and column n + 1, since these are never updated. The rows and columns 

near n + 1 will be distorted by the chosen value. Two things can be done to remedy this 

distortion: (1) choosing n extremely large so the distortions only affect a small aspect of the 

matrix, for example, choosing n = 1000 when analysis will be done only on i, j 5 600; (2) 

repeating the entire iteration using a different initialization for N and ensuring that N* is the 

same for both for i ,  j 5 600. 

6 Using a Bernoulli ( 8 )  distribution, simulate a sequence of some large number, say 600, suc- 

cesses (x = 1) or failures (x = 0). Put these in a vector U, so U [t] is a success or failure if 

arm 2 is chosen at time t. 

7. Run the experiment. Starting at NT1 in t = 1, see if V (Beta (i, j )  , A) = NG > & . If yes, the 

agent chooses arm 2, so sample from U. If U [t] = 1, the agent moves to V (Beta (i + 1, j )  ,A) 

at t = 2. If U[t] = 0, the agent moves to V ( B e t a ( i , j + l ) , A ) .  If NG = &, the agent 

ceases the experiment and always chooses arm 1. Keeping track of i and j allows analyzing 

the evolution of the prior. 
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