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Secreted Phosphoprotein-24 (Spp24) was initially isolated and characterized as a 

component of bovine cortical bone matrix. Subsequent characterization has shown it is 

multiply phosphorylated and homologous to cystatin and TGF-β receptor type II. Spp24 is 

a minor component of the serum fetuin mineral complex that binds calcium-phosphate 

minerals and prevents their deposition. The TGF-β receptor homology domain binds BMP-

2 weakly in vitro and enhances BMP-2’s osteogenic effects in vivo. The ability of Spp24 to 
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affect BMP activity suggests an important role for Spp24 as a native, bioactive component 

of bone that regulates bone development.  

 Spp24 was highly up-regulated in rat cortical kidneys following a low calcium diet 

regime. Tissue distribution of both Spp24 protein and RNA showed that while Spp24 

accumulates in bone, a majority is produced at distant sites, namely the liver and kidney. 

Additionally, Spp24 was present in more tissues than previously believed. Spp24 migrates 

to a number of different molecular weights, suggesting multiple, alternative post-

translational modifications may generate subtly different forms of the protein. The 

expression of Spp24 in the kidney may be regulated to counteract changes in serum 

mineral levels. Additionally, homology in the Spp24 sequence suggests that it, like other 

bone and dentine matrix proteins, may interact with mineral as an important influencer of 

mineral calcification. 

 Utilizing microarray analysis of primary bone marrow-derived mesenchymal stem 

cells transduced with Spp24 and control viruses we examined changes elicited by the 

overexpression of Spp24. A change in overall morphology was observed for cells 

transduced with the Spp24 similar to changes described in cells undergoing osteoblastic 

differentiation. Nodule formation was also seen in the Spp24 transduced cells. Microarray 

results showed key markers of osteoblast differentiation, CBFA1/RUNX2 and osterix 

(OSX), were not up-regulated although there were distinguishable changes in the gene 

expression profile of mesenchymal stem cells. The cells appeared to be blocked from 

differentiation into a number of mesenchymal lineages: adipocytes, myocytes and 

chondrocytes. The changes appeared to prime cells for signals that activate osteoblast 
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differentiation by blocking other pathways and altering internal signaling response 

pathways to those signals.   

This document was created in Microsoft Word 2003 

 



1 

 
 
 
 

Chapter One 

General Introduction 

 

 

 

 Bone is an important organ with myriad functions in the body ranging from 

mechanical support of the body to the protection of internal organs; it is also a critical 

metabolic tissue used as a reservoir for vital minerals. Bone is a specialized extracellular 

matrix laden with calcium phosphate crystals in the form of hydroxyapatite, 

[Ca10(PO4)6(OH)2]. Bone is not a static mechanical support but rather is in a constant state 

of flux with bone producing cells, called osteoblasts, and bone destroying cells, called 

osteoclasts, in constant juxtaposition. Osteoblasts are responsible for the creation of the 

complex extracellular matrix that provides the framework for cell attachment and mineral 

deposition that enhances the mechanical strength of the bone while osteoclasts are uniquely 

specialized to dissolve the mineral and then degrade the extracellular matrix of bone. The 

continuous activity of these adversarial processes results in the turnover of the entire 

skeleton roughly every 10 years (Parfitt 1998); the coupled processes of bone formation 

and destruction are crucial to the strength of healthy bone and the repair of bone injuries 

and fractures. Disruption of the delicate balance of these two opposing functions causing 
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an excess of either formation or destruction can lead to serious pathophysiological 

consequences.  

Bone development is a highly synchronous process with a multitude of cytokines, 

growth factors, and other signaling molecules carefully orchestrating the recruitment, 

differentiation, development, and function of osteoblasts. Particularly important are wnt 

family proteins and members of the transforming growth factor-β (TGF-β) family of 

cytokines including bone morphogenetic proteins (BMPs). Similarly, a variety of signals 

control osteoclastic bone resorption by regulating osteoclast differentiation and action.  

This introduction will cover bone remodeling including the role of osteoblast and 

osteoclasts; the basics of skeletal development; the differentiation of osteoblasts; and the 

role of BMPs in osteoblast function. The focus will then shift to convey the current 

understanding of Spp24 and its relation to several known bone matrix proteins. 

 

Cellular Composition of Bone 

Osteoblasts 

Osteoblasts have specific molecular and morphological adaptations making them 

particularly well suited for the task of producing the bone matrix. Osteoblasts are 

mesenchymally derived cells that produce osteoid. They make prodigious amounts of 

collagen type I, the principal bone ECM component. Smaller amounts of type III and V 

collagen (Ashhurst 1990; Wood, Ashhurst et al. 1991) are present as part of the bone 

matrix as well as bone sialoprotein and other non-collagenous matrix proteins. Several of 

the FACIT (fibril associated collagens with interrupted triple helices) collagens, which are 
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non-fibril/non-triple helical collagens that associate with fibril collagens, have been found 

in bone and articular cartilage including collagen type IX, XII, and XIV (Walchli, Koch et 

al. 1994; Dharmavaram, Huynh et al. 1998; Opolka, Ratzinger et al. 2007). Osteoblasts 

have a large rough endoplasmic reticulum and Golgi apparatus (Baud 1968; Cameron 

1968; Mandi, Gyarmati et al. 1974); the large volume of proteins that are produced and 

eventually directed to the ECM requires this greater than normal amount of intracellular 

machinery for the production and export of these proteins.  

Terminally differentiated osteoblasts take on a cuboidal shape while the 

proliferating osteoblast precursors maintain a more spindle-shaped morphology (Nijweide, 

van der Plas et al. 1988; Cheng, Yang et al. 1994). Osteoblast in in vitro culture cluster 

together forming closely associated nodules (Nefussi, Boy-Lefevre et al. 1985; Bhargava, 

Bar-Lev et al. 1988). Osteoblasts are in close contact with each other in bone; N-cadherin 

and cadherin-11 play a major role in forming the junctions between osteoblasts in addition 

to several integrins (Cheng, Lecanda et al. 1998; Ferrari, Traianedes et al. 2000; Lecanda, 

Cheng et al. 2000). Terminal differentiation is also marked by increased expression of 

several mineral-interacting non-collagenous proteins such as osteopontin, osteocalcin, and 

bone sialoprotein (Huq, Cross et al. 2005). Extracellular matrix vesicles are deposited by 

osteoblasts, and chondrocytes, acting to accumulate sufficient concentrations of component 

ions of hydroxyapatite crystals to aid in mineralization of the matrix (Anderson 1989; 

Wiesmann, Meyer et al. 2005). It is thought that a number of constituents of the 

extracellular matrix vesicles, such as phospholipids and mineral ions, can act to form a 
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nucleation core for the growing crystal, aiding in the formation of the initial crystal – the 

most energy consuming step in the process of mineral formation (Wuthier 1989). 

 An oft utilized characteristic of these cells is their production of alkaline 

phosphatase. Many histological examinations of bone utilize staining to detect alkaline 

phosphatase as a marker of osteoblasts in tissue or osteoblast character in differentiating 

cells. Alkaline phosphatase’s role in mineralization was debated for some time with 

different proposed roles for alkaline phosphatase such as degrading inhibitors of 

mineralization; however the hypothesis of Robison that alkaline phosphatase creates a 

local increase in inorganic phosphate concentration by hydrolyzing phosphate esters 

(Robison 1923) appears to have been borne out.  

 

Osteocytes 

 As the functional osteoblasts create bone matrix they are surrounded within their 

own organic matrix; this matrix eventually becomes mineralized, trapping the osteoblast 

inside the bone. These trapped osteoblasts extend long processes and decrease their size 

and abundance of organelles as they become less metabolically active. Transformed 

osteoblasts embedded within the bone interior are called osteocytes. Osteocytes are the 

most numerous cells in the bone, largely occupying the interior volume of the bone while 

most other cells such as osteoblasts and osteoclasts are present only on or near the bone 

surface. Osteocytes produce far less extracellular matrix than the more active osteoblasts 

(Nefussi, Sautier et al. 1991). Osteocytes are important regulators of bone metabolism and 

communicators of mechanical stresses upon the bone. Osteocytes have a large number of 
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long cellular projections that connect to other osteocytes through small tunnels in the bone. 

The small tunnels, or cannaliculi, form an extensive network that allow interaction of 

osteocytes and connect internal cells to the bone surface. Deformation of the osteocyte due 

to strains on the bone and fluid flow through the cannaliculi have both been shown to act 

through osteocytes to create changes in bone metabolism (Klein-Nulend, Helfrich et al. 

1998; Plotkin, Mathov et al. 2005). A large number of different mechanisms have been 

explored in the detection and communication of mechanical stress. Membrane ion channels 

that are activated by the mechanical stress have been found in bone cells (McDonald and 

Houston 1992; Ypey, Weidema et al. 1992; Rawlinson, Pitsillides et al. 1996). In addition, 

integrins that act both as extracellular adhesion molecules and transmembrane receptors 

(Hughes, Salter et al. 1993); the plasma membrane and its constituent proteins (Rubin, 

Rubin et al. 2006); and cytoskeletal structures and their associated proteins all likely play a 

role in the mechanotransduction in bone (Rubin, Rubin et al. 2006). One interesting 

anabolic effect on bone in response to stress is the rapid upregulation of the canonical wnt 

signaling in response to loading (Robinson, Chatterjee-Kishore et al. 2006; Armstrong, 

Muzylak et al. 2007). Osteocytes, though not directly involved in the formation and 

destruction at the bone surface, are critical components of healthy bones and the 

maintenance of bone metabolism, and they sense and relay stresses to the cellular 

components of bone.  
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Osteoclasts 

Mature, multi-nucleated osteoclasts are formed by the fusion of mono-nuclear 

osteoclast precursors. Activation occurs as the non-resorbing or inactive osteoclast reaches 

and adheres to the bone surface. Morphological changes allow the creation of a contained 

compartment between the osteoclast and the bone called the resorption lacuna that is the 

site of resorption. The degraded bone fragments are then removed and secreted away from 

the bone surface. The specialized morphology of the osteoclast makes it extremely 

efficient at absorbing bone. 

Active osteoclasts are highly polarized cells with specific features characterizing 

the surface adjacent to the bone. After recruitment, receptors on the plasma membrane 

interact with the bone matrix to form the sealing zone, a tight interaction that creates a 

sealed extracellular compartment between the osteoclast and bone. A portion of the cell 

membrane, called the ruffled border, encircled by the sealing zone undergoes changes 

resulting in significant endosomal character and finger-like projections of the membrane 

towards the bone surface. Activation of the osteoclast triggers intracellular vesicles to fuse 

with the membrane contained within the sealing zone. Fusion releases acid (H+) and other 

vesicular contents into the resorption lacuna (Blair, Teitelbaum et al. 1989; Vaananen, 

Karhukorpi et al. 1990). Fusion also increases the amount of membrane encompassed by 

the sealing zone, leading to the  
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development of the folds and extensions of the membrane into the resorption lacuna. 

Within the ruffled border a high concentration of vacuolar ATPase were found (Vaananen, 

Zhao et al. 2000). Osteoclasts use the many vacuolar ATPases to pump H+ into and further 

acidify the resorption lacuna. Vesicle fusion and the activity of vacuolar ATPases are key 

functions of the ruffled border that create an environment conducive to bone resorption 

within the resorption lacuna. Degradation products from the organic bone matrix are 

endocytosed by the osteoclast and trafficked to the apical region of the cell, called the 

functional secretory domain, where they are secreted into the extracellular space.  

Following osteoclast activation the resorption lacuna becomes highly acidic as 

fusion of intracellular acidic vesicles with the ruffled border releases acid into the area of 

active resorption and vacuolar ATPases pump protons across the membrane into the 

resorption lacuna. The low pH achieved is necessary to dissolve the hydroxyapatite 

crystals surrounding the organic matrix of the bone. Mineral crystals in bone must be 

dissolved for the degradative enzymes secreted by the osteoclast to access the organic 

matrix. Hydroxyapatite crystals in the bone store a majority of the calcium in the body, and 

osteoclastic dissolution of the mineral component of bone is an important mechanism for 

maintaining serum levels of calcium and other ions contained in bone such as phosphate. 

Accordingly, the activity of osteoclasts is regulated in response to conditions such as 

hypocalcemia to maintain suitable concentration ranges of those ions.  

Following demineralization the osteoclast secretes enzymes that further degrade the 

bone. The extracellular matrix made by osteoblasts and osteocytes is principally composed 
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of collagen but contains other non-collagenous extracellular matrix proteins as well. The 

matrix is principally degraded by two types of proteases, cathepsins and metalloproteinases 

(MMPs). Cathepsins are lysosomal proteases active at acidic pH. Their activity at low pH 

shows the importance of the osteoclast machinery responsible for lowering the pH of the 

resorption lacuna in providing a suitably acidic environment for cathepsins and other acidic 

proteases in addition to dissolving the hydroxyapatite. Osteoclasts produce cathepsin B, C, 

D, E, G, L, and K (D and E are aspartatic proteases while the others are cysteine proteases) 

(Goto, Yamaza et al. 2003). Cathepsin K, a lysosomal cysteine protease, has high 

enzymatic activity towards type I collagen, the main component of bone, as well as type II 

collagen (Bromme, Okamoto et al. 1996; Kafienah, Bromme et al. 1998). Cystatin C, a 

secreted protein produced by osteoclasts, osteoblasts, as well as cells in the liver and 

kidney (Yamaza, Tsuji et al. 2001), is an inhibitor of cysteine proteases.  In vitro assays 

have shown the addition of cystatin C decreases bone resorption (Lerner, Johansson et al. 

1997).  

MMPs are zinc-dependent proteases produced by a wide variety of cells in the 

body. In bone osteoblasts, osteocytes, osteoclasts, and cells adjacent to and associated with 

osteoclasts at the bone surface are all capable of producing MMPs. Many of the MMPs 

present in bone show degradative activity against collagen. While most overlap in the 

ability to degrade collagen and gelatin in some manner their specificity betrays their native 

substrate. Several MMPs are made by osteoclasts including MMP-2, 9, 12, and 13. MMP-

13 is a collagenase capable of degrading triple helical collagen fibers. MMP-2 and -9 are 

both gelatinases capable of degrading gelatin, byproducts of collagen hydrolysis. MMP-13 
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is also known as macrophage metalloelastase as it has high specificity for hydrolyzing 

elastin in addition to other ECM proteins.  MMPs function in bone matrix degradation as 

well as being important in allowing osteoclast migration. MMP-9 and -14 are critically 

important, though distinctly so, in allowing osteoclast migration in bone (Delaisse, 

Andersen et al. 2003). MMPs are regulated by tissue inhibitors of metalloproteinases 

(TIMPs). Treating bone resorptive pathologies by targeting MMPs has proven an 

important and successful pharmacological methodology. Although the administration of 

bisphosphonates is used to inhibit and downregulate MMPs in bone resorption and other 

diseases such as the metastases of cancer (Teronen, Heikkila et al. 1999), long term 

consequences of these therapies are proving to be serious; numerous reviews detail these 

effects including the greatly reducing bone turnover rate as well as the conferring a greater 

risk of developing osteonecrosis of the jaw (Liberman 2006; Ponte Fernandez, Estefania 

Fresco et al. 2006; Woo, Hellstein et al. 2006). 



    10 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Osteoclast Differentiation and Bone Resorption 
 
Extensive research has showed that the accessory cells (osteoblasts and stromal cells) 
express two key molecules that are essential and sufficient to promote osteoclastogenesis: 
M-CSF and RANKL. Osteoclasts are multinucleated giant cells deriving from 
hematopoietic progenitors of the monocyte–macrophage lineage. Stromal cell/osteoblast 
cells express RANKL, OPG, and M-CSF and their expression is regulated by factors such 
as 1,25(OH)2D3, PTH, PGE2, and glucocorticoids. RANKL and M-CSF will interact with 
the cell surface receptors on mono/macrophage cells. These will trigger the 
osteoclastogenesis process. These postmitotic committed precursors fuse to form 
multinucleated osteoclasts, which are then activated to resorb bone. Osteoblasts or bone 
marrow stromal cells are required as supporting cells for the in vitro differentiation of 
osteoclasts from their progenitor cells. Source: Adapted from American Association for the 
Advancement of Science (Teitelbaum 2000); Springer (Quinn, Neale et al. 1998); and 
International and American Assciation for Dental Research (Reddy and Roodman 1998).  
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Bone Remodeling 

The extracellular matrix of bone is continually undergoing both resorption and 

formation by cells of the bone. This activity, termed bone remodeling, is important in 

maintaining the mechanical properties of bone necessary to support the weight of the entire 

body and in releasing important minerals and growth factors embedded in the bone matrix. 

Early in bone development, at embryonic and nascent stages, the bone matrix is a more 

porous, disordered mat of collagen fibers known as woven bone (Weiner and Wagner 

1998). As development progresses, bone remodeling removes and replaces the woven bone 

with the mature lamellar bone that is easily identified by its parallel collagen fibers that 

endow the bone with greater mechanical strength (Martin, Lau et al. 1996). Bone 

remodeling is also critical in the maintenance of mineral homeostasis within the body. 

Calcium and phosphate, the primary components of hydroxyapatite crystals, are liberated 

from bone in response to signals that counteract dropping serum concentrations of these 

minerals. Likewise, growth factors that have effects outside the bone can also be freed 

from the bone matrix.   

Bone continuously undergoes the process of bone remodeling where the both bone 

formation and resorption are essential to the health of the bone. The loss of balance 

between osteoblastic formation and osteoclastic degradation of bone is a key feature of 

bone resorptive pathologies such as rheumatoid arthritis, osteopetrosis, osteoporosis, 

periprosthetic osteolysis, and osteolytic malignant cancers among others (Nakashima, 

Wada et al. 2003).  
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Embryonic Skeletal Development 

In the embryo, condensations of mesenchymal cells give rise to the mature skeletal 

features. Cells from the neural crest, paraxial mesoderm, and the lateral plate mesoderm 

are the ultimate sources of the mesenchymal cells that pattern skeletal development. 

Mesenchymal precursor cells are pluripotent stem cells and the source of osteoblasts in the 

skeleton. Mesenchymal stem cells (MSCs) have the capacity to become numerous types of 

cells such as osteoblasts, chondrocytes, adipocytes, and myoblasts (Pittenger, Mackay et 

al. 1999). The composition of the extracellular milieu of cytokines and growth factors 

drives the differentiation of MSCs by signaling through pathways that eventually up- and 

down-regulate a variety of transcription factors in a manner characteristic of the cells’ 

eventual fate.  

Following MSC condensation there are two mechanisms for the creation of the 

skeletal bones: membranous or endochondral ossification. Membranous ossification is the 

process that begets many of the cranial and facial bones; MSCs differentiate into 

osteoblasts and begin synthesizing bone matrix in the place of the prior mesenchymal 

condensations. The differentiation of MSCs into osteoblasts occurs through the activity of 

wnt family cytokines (Rawadi, Vayssiere et al. 2003). These extracellular ligands bind to 

receptors on mesenchymal cells resulting in elevated β-catenin levels (Akiyama 2000) that 

promote osteoblast differentiation (Bain, Muller et al. 2003; Westendorf, Kahler et al. 

2004) and inhibit chondrocytic (Hill, Spater et al. 2005) and adipogenic (Kennell and 

MacDougald 2005) differentiation. Endochondral ossification is a multi-step process in 

which a cartilaginous matrix is produced by chondrocytes (in a low β-catenin environment) 
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as a pre-cursor to the eventual bone. In a process requiring β-catenin, the chondrocytes will 

cease to proliferate and transition to hypertrophy. The hypertrophic chondrocytes and their 

matrix will eventually be replaced by osteoblasts and bone matrix. 

During development, mesodermal cells form segmented structures on either side of 

the dorsal midline of the embryo called somites. Cells in the somites will eventually 

migrate nearer the dorsal midline and become the sclerotomes that gives rise to the spine 

and ribs. Cell-cell interactions are particularly important in the patterning and transition of 

cells that ultimately comprise the skeleton. Crucial to the patterning of cells in the somites 

are interactions between the cell surface receptor notch, of which there are four types 

Notch1 through Notch4, and the ligands for those receptors such as Delta-like ligands 

including δ-like 3 (DLL3) and Jagged family ligands like Jagged-1 (Artavanis-Tsakonas, 

Rand et al. 1999; Rida, Le Minh et al. 2004); significant skeletal defects are observed 

when these interactions are disrupted (Li, Krantz et al. 1997; Oda, Elkahloun et al. 1997; 

Saga, Hata et al. 1997; Wong, Zheng et al. 1997; Bulman, Kusumi et al. 2000). Notch 

ligand proteins are single-pass transmembrane proteins and as such the notch/delta/jagged 

signaling system is a two-cell paradigm requiring the presence of cells expressing the 

ligand on their surface and cells expressing the receptor in order for signaling to occur. 

Another protein, Sonic hedgehog, has been shown to also play a critical role in early 

patterning that eventually yields skeletal development (Chiang, Litingtung et al. 1996). 

This secreted protein produced in the adjacent notochord, another mesodermally derived 

structure, regulates the differentiation of cells in the sclerotome.   
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Figure 2. Notch Signaling 
 
Notch signaling requires the presence of two cells; one with a notch ligand while the other 
presents notch receptor so that the two molecules may interact in the extracellular space 
with the receptor transducing the signal. Hedgehog signaling is also shown with the 
transcription factor Gli acting as the effector of hedgehog signaling. Source: (Bailey, Singh 
et al. 2007) 
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Limb Development 

Similar to embryonic bone development, the formation and growth of the adult 

skeleton is under comparable regulation in the limbs. The long bones of the limbs, with the 

exception of a subperiosteal layer of bone, are created through endochondral ossification. 

Mesenchymal progenitor cells in the limb begin the differentiation to chondrocytes due to 

the signaling of fibroblast growth factors, sonic hedgehog, TGF-β family cytokines and 

others. As the development of the nascent limb progresses chondrocytes create a 

cartilaginous model of the skeletal features. These cartilaginous pre-patterned skeletal 

features, often called anlagen, lengthen the limb in the proximal to distal direction.  

Sonic hedgehog and Indian hedgehog are also important regulators of the transition 

of cells through stages of chondrocytic differentiation, increasing the proliferation of 

chondrocytes and playing a role in regulating the rate of hypertrophic transition (Stott and 

Chuong 1997; St-Jacques, Hammerschmidt et al. 1999). Indian Hedgehog (Ihh) also 

enhances osteoblast differentiation during the process of endochondral bone formation 

(Krishnan, Ma et al. 2001). Hedgehog signaling acts via the expression of PTH related 

peptide (PTHrP). PTHrP limits chondrocyte differentiation to hypertrophy, and PTHrP 

signaling through the PTHrP receptor has been shown to limit Indian hedgehog expression. 

The interplay of hedgehog proteins and PTHrP generates an axis of signaling where Ihh 

signaling maintains proliferative chondrocytes at the ends of bone while PTHrP blocks Ihh 

expression allowing the transition to hypertrophy in more proximal portions of the limb 

(Shum and Nuckolls 2002). The development of cartilage from mesenchymal 

condensations occurs in areas of low β-catenin (Hill, Spater et al. 2005). The low β-catenin 
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results in the up-regulation of SOX-9, a critical transcription factor for chondrogenic 

differentiation (Akiyama, Lyons et al. 2004; Jin, Lee et al. 2006). This development 

contrasts MSC differentiation to osteoblasts which requires the presence of extracellular 

Wnt ligands that signal to increase β-catenin, leading to increased activity of osteoblast-

specific transcription factors, among them core binding factor A1 (CBFA1/Runx2) and 

osterix (Osx) (Kato, Patel et al. 2002).    

As chondrocytes continue producing anlagen there is a change at the apical end that 

transforms the chondrocytes. Chondrocytes at the leading edge continue to proliferate in 

the developing bone while those behind the leading edge begin to differentiate into non-

proliferative, hypertrophic chondrocytes. This process of appositional growth through the 

formation of growth plates lengthens the forming bones. In the growth plates, proliferative 

chondrocytes continue to divide resulting in bone lengthening. Behind the proliferative 

chondrocytes the hypertrophic chondrocytes undergo subtle changes in preparation for the 

beginning of bone formation. Eventually hypertrophic chondrocytes will die and be 

replaced by osteoblasts as the bone lengthens. The matrix produced by the chondrocytes is 

different from that of osteoblasts; there is even a great variance between the matrix made 

by hypertrophic and proliferative chondrocytes. Proliferative chondrocytes produce a 

collagenous matrix principally composed of type II collagen (Sandberg and Vuorio 1987). 

Hypertrophic chondrocytes also produce type II collagen, however they are distinct in their 

production of type X collagen and, as such, type X production is used as an indicator of 

hypertrophic character (Hjelle and Gibson 1979; Schmid and Conrad 1982; Schmid and 

Linsenmayer 1983; Capasso, Tajana et al. 1984; Solursh, Jensen et al. 1986; Bashey, 
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Iannotti et al. 1991). As chondrocytes transition to hypertrophy they slow their 

proliferation and also begin to express VEGF-A, an important angiogenic protein that 

increases vascularization in preparation of osteoblast invasion and activity (Hall, 

Westwood et al. 2006). The changes in the cartilaginous matrix of the hypertrophic region 

create the necessary vasculature to allow osteogenesis to occur (Hall, Westwood et al. 

2006). Mesenchymal cells recruited to the hypertrophic region that are exposed to Wnt 

signaling and high vascularity begin the process of commitment to the osteoblast rather 

than chondrocyte lineage and begin forming osteoid.   

As endochondral ossification progresses more changes take place that lay the 

groundwork for the subsequent osteoblast activity. FGF-18 is thought to play an important 

role in dampening chondrocyte proliferation as well as initiating vascularization through 

the up-regulation of VEGF and playing a role the transition to hypertrophy (Liu, Lavine et 

al. 2007). Among the changes that occur during the differentiation of chondrocytes to the 

hypertrophic stage is the increased expression of the transcription factor CBFA1/RUNX2 

that results in a variety of changes including increased vascularization (Zelzer, Glotzer et 

al. 2001). Vascularization is a necessary step to allow the pre-osteoblast cells to begin 

invading the hypertrophic region (Zelzer, Mamluk et al. 2004). The osteoblasts begin to 

finally lay down the bone matrix while proteases from chondrocytes and other cells act to 

break down the cartilaginous matrix made in earlier stages of endochondral development 

(Wu, Mwale et al. 2001; Chung 2004). Osteoblasts then proliferate from the center of the 

bone to the ends following the proliferating and hypertrophic chondrocytes in sequence. 

After the initial bone is formed, bone elongation occurs via the appositional growth 
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through the epiphyseal growth plate with proliferative chondrocytes expanding the border 

of growth plate and then transitioning to hypertrophic chondrocytes before dying. 

Osteoblasts follow the hypertrophic chondrocytes and lengthen the bone through the 

process of endochondral ossification as the growth plate moves distally. 

 

Osteoblast Differentiation  

Osteoblast differentiation is a key step in the generation of a normal, healthy 

skeleton. Several steps and differentiating signals have been mentioned in previous 

sections; however there is an abundance of other documented cytokines and growth factors 

that influence osteoblast differentiation and activity. The extensive body of research on 

osteoblastogenesis attests to its importance in skeletal development as does the number of 

studies demonstrating both human and analogous pathologies in other species when there 

is a disruption of the process.  

In the differentiation of mesenchymal precursors to either osteoblasts or 

chondroblasts canonical wnt signaling is the first major signaling point. Wnts are 

extracellular ligands that show homology to the drosophila gene wg (wingless), and 

vertebrate Int-1 genes; the combination of the two names yields “wnt” (Li, Chong et al. 

2005). Wnt cytokines bind to their cognate extracellular receptors, members of the frizzled 

family, and Lrp 5/6, a co-receptor, to transmit their signal to intracellular effectors (Bodine 

and Komm 2006). Wnt signaling raises intracellular β-catenin levels by activating a protein 

called disheveled (DSH) that blocks the proteasomal degradation of β-catenin in the cells 

(Lee, Ishimoto et al. 1999; Seidensticker and Behrens 2000; Zhong, Gersch et al. 2006). 
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Inhibition of proteasomal degradation allows the accumulation of β-catenin; elevated β-

catenin levels in the cell are responsible for stimulating osteoblastic genes and inhibiting 

chondrocytic genes (Day, Guo et al. 2005). Conversely, cells fated to become chondrocytes 

are low in β-catenin allowing the up-regulation of transcription factors of the SOX family, 

specifically SOX-9, that stimulate chondrocyte-specific genes (Hill, Spater et al. 2005; 

Yano, Kugimiya et al. 2005). In cells along the pathway to osteoblasts, the elevated β-

catenin levels lead to up-regulation of other transcription factors (Komori and Kishimoto 

1998; Gaur, Lengner et al. 2005), chief among them being CBFA1/RUNX2, a critical 

transcription factor in osteoblast development (Komori, Yagi et al. 1997; Otto, Thornell et 

al. 1997; Komori and Kishimoto 1998). CBFA1 also up-regulates another transcription-

factor OSX that is critical to osteoblast development (Nakashima, Zhou et al. 2002). Wnt 

signaling has also been shown to regulate OSX expression in osteoblast differentiation of 

mesenchymal progenitor cells (Day, Guo et al. 2005). CBFA1-null mice do not express 

Osx while in Osx null mice no bone formation occurs showing that it is a transcription 

factor acting downstream of CBFA1 in osteoblast differentiation (Nakashima, Zhou et al. 

2002).  

There is an alternate pathway of Wnt signaling called the non-canonical β-catenin 

signaling pathway that utilizes the same frizzled receptor to bind and transduce Wnt 

signaling however it acts independent of β-catenin levels and signaling. Alternately called 

the Wnt/Calcium or Wnt/JNK pathways, these signaling mechanisms lead to an 

intracellular release of calcium following Wnt binding to frizzled and result in activation of 

calcium sensitive enzymes such as calcium-calmodulin dependent kinase II (CamKII) and 
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protein kinase C (PKC) or calcineurin (CaCN)(Kuhl, Sheldahl et al. 2000; Sheldahl, 

Slusarski et al. 2003). Wnt/Calcium signaling has been shown to affect Xenopus 

development (Kinoshita, Iioka et al. 2003) as well as skeletal muscle formation in mice 

(Steelman, Recknor et al. 2006).While not fully understood this alternate signaling 

pathway for Wnts may be critically important in development and given the prevalence of 

Wnt signals in bone its role in skeletal development needs further exploration.  
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Figure 3. The Canonical Wnt Signaling Pathway 
 
ß-Catenin exists in a cadherin-bound form that regulates adhesion; in a complex with axin, 
APC, and GSK-3ß, where it is phosphorylated and targeted for degradation by ß-TrCP; or 
in the nucleus. Wnt signaling, proceeding through Frizzled and Arrow–LRP-5/6, activates 
Dishevelled (Dsh), which results in uncoupling ß-catenin from the degradation pathway 
and its entry into the nucleus, where it acts to control transcription. The Wnt pathway is 
also subject to extensive regulation and feedbackcontrol by extracellular factors that bind 
Wnt [Wnt inhibitory factor (WIF) and Frizzled-related protein (FRP)] or the coreceptor 
LRP (Dickkopf). Source: (Nelson and Nusse 2004)
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In addition to the key roles of wnt/canonical β-catenin signaling and the 

characteristic osteoblast transcription factors CBFA1 and Osx, there are a variety of 

growth factors and cytokines that affect osteoblast differentiation and activity. Perhaps the 

most widely known group of bone anabolic factors is the bone morphogenetic protein 

family or BMPs that will be discussed in detail in the following section. Among the many 

other cytokines affecting osteoblast differentiation are insulin-like growth factors (IGFs), 

epidermal growth factors (EGFs), hepatocyte growth factor (HGF), vitamin D, TGF-β, 

parathyroid hormone (PTH), platelet derived growth factor (PDGF) and fibroblast growth 

factors (FGFs). TGF-β cytokines have been shown to have dual effects; at early stage 

osteoblast differentiation they can act to promote differentiation while they suppress 

terminal differentiation of mesenchymal cells to osteoblasts (Moses and Serra 1996; 

Janssens, ten Dijke et al. 2005). PDGF, IGFs, EGFs, and HGF have all been shown to 

work to maintain osteoblast progenitors in proliferating stage and prevent terminal 

differentiation (Stephan, Renjen et al. 2000; Rasubala, Yoshikawa et al. 2003). These are 

important factors that increase osteoblast number as bone grows to keep pace with the 

growing skeleton. Vitamin D, through its active metabolite 1α, 25-dihydroxyvitamin D3 

(1,25(OH)2D3), has been shown to increase differentiation of osteoblast progenitors as seen 

in increased alkaline phosphatase activity and osteocalcin expression (van Driel, Koedam 

et al. 2006; van Driel, Koedam et al. 2006; Bosetti, Boccafoschi et al. 2007). Interestingly, 

a recent experiment coupled both HGF and 1,25(OH)2D3 and saw an increase in osteoblast 

number and characteristics including mineralization which was not seen with 1,25(OH)2D3 
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treatment in the absence of HGF (D'Ippolito, Schiller et al. 2002). This illustrates the 

complex interconnections of the cadre of cytokines acting to promote osteoblast 

development in the skeleton and the synergistic manner in which they can act.  

PTH is an important hormone in bone biology with diverse anabolic effects in bone 

as well as regulation of osteoclast function. Consistent administration of PTH increases 

osteoclast number and activity while intermittent administration has anabolic effects on 

bone (Dobnig and Turner 1995; Schmidt, Dobnig et al. 1995; Lotinun, Sibonga et al. 

2002). PTH related protein (PTHrP) is produced and acts locally, instead of being 

produced in the parathyroid gland and acting systemically as does PTH. Both PTH and 

PTHrP bind to and activate the PTH/PTHrP receptor (Lanske, Divieti et al. 1998).  

FGFs play an important role in osteoblast biology by decreasing proliferation and 

up-regulating osteoblast genes. FGF-2 promotes osteoblast differentiation and 

responsiveness of mesenchymal cells in bone marrow to BMPs (Hurley, Tetradis et al. 

1999; Montero, Okada et al. 2000; Marie, Debiais et al. 2002). FGF-2 can also activate 

CBFA1 by phosphorylation in osteoblasts (Xiao, Jiang et al. 2002; Franceschi and Xiao 

2003). A further effect of FGF-2 is to protect osteoblasts from apoptosis (Chaudhary and 

Hruska 2001). FGF-18 is expressed in bone and cartilage and seems to play an important 

role in the progression of limb development as mice lacking the gene for FGF-18 show 

delayed ossification and increased chondrocytes at their joints (Ohbayashi, Shibayama et 

al. 2002). Similarly, mutations of FGF receptors cause serious skeletal defects; mutations 

in the gene for FGF receptor-3 (fgfr3) cause achondroplasia resulting in skeletal dwarfism 

(Rousseau, Bonaventure et al. 1994; Shiang, Thompson et al. 1994; Ikegawa, Fukushima et 
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al. 1995; Horton and Lunstrum 2002). There are a wide variety of other diseases that result 

from mutations in any of the four FGF receptors (Ornitz 2005).  
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Figure 4:  Overview of Osteoblastogenesis 
 
Figure 4 provides a pictorial overview of the process of osteoblastogenesis.  
Osteoblastogenesis is the result of many different signals being received by stem cells that 
ultimately result in the formation of new osteoblasts.  As can be seen, osteogenic and 
chondrogenic cells arise from very similar cells. Adapted from Trends in Cell Biology  
(Hartmann 2006). 
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Bone Morphogenetic Proteins 

Marshall Urist described the isolation of non-collagenous proteins from decalcified 

bone matrix and how their implantation into muscle induced ectopic bone formation (Urist 

1965). This seminal discovery paved the way for the exploration of bone morphogenetic 

proteins, their signaling mechanisms and effects. While the discovery of BMPs was a 

watershed moment in orthopaedic discovery there were important studies that preceded 

Urist’s. While using decalcified bone as a mechanism to deliver iodoform as an antiseptic 

treatment for osteomyelitis, Senn discovered the ability of the decalcified bone matrix he 

implanted to create new bone at the site of the osteomyelitic defect (Senn 1889; Senn 

1889). Similar discoveries were made in subsequent decades using alcohol-extracted 

(Levander 1934; Levander 1938) and EDTA-extracted (Ray and Holloway 1957; Sharrard 

and Collins 1961) bone matrix showing bone formation in muscle tissue and juvenile 

spinal fusion, respectively. These discoveries occurred over a long time period, with 

publication dates ranging from 1889 for Senn (Senn 1889) to 1961 for Sharrard and 

Collins (Sharrard and Collins 1961). Progress was initially slow in identifying the 

component of bone matrix responsible as results were not easily reproducible and there 

were technical hindrances to fully isolating and identifying the osteogenic component. 

Additionally, there existed no functional assay to identify the transforming component 

found in the bone matrix.   

Marshall Urist’s discovery in 1965 of a substance he described as non-collagenous 

proteins/bone morphogenetic proteins (NCP/BMPs) (Urist 1965) occurred while he was 

investigating the mineralization of bone. His primary research and funding at the time was 
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concerned with investigating the possibility of using strontium and tetracycline as therapies 

in the treatment of osteogenic sarcoma; mineralization of bone was, at the time, a side 

interest (Reddi 2003). Urist showed that demineralized bone matrices implanted in animals 

as controls induced bone formation leading to the theory of autoinduction (Reddi 2003). 

That discovery was the cornerstone in a brilliant career that saw Urist oversee the journal 

Clinical Orthopaedics and Related Research for 27 years as editor as well as significant 

research contributions in areas including: estrogen effects on bone, for which he won a 

kappa delta award; the development of total hip replacements using metal components; and 

bone induction.  

Urist and others earnestly worked on isolating the bone inductive factor found in 

the demineralized bone matrices. The work of Urist and other investigators eventually 

resulted in the isolation and cloning of several BMPs, and in the decades since their initial 

discovery, over thirty BMPs have been identified including a number in species other than 

humans (Ducy and Karsenty 2000; Chen, Zhao et al. 2004). Many BMPs were cloned in 

early stages of research in the field, including BMP-2 through BMP-7; however Urist’s 

original BMP was never completely isolated to homogeneity. Several key characteristics of 

Urist’s original substance were relayed in several papers (Urist, Chang et al. 1987; Urist, 

Huo et al. 1987): An N-terminal sequence of 14 amino acids was obtained (Urist, Huo et 

al. 1987); repeated attempts at more complete sequencing were hindered by a blocking of 

the N-terminus (Urist, Huo et al. 1987); The protein was estimated to be 18.5 kDa; 

reduction abrogated the osteoinductive effect of the substance (Urist, Chang et al. 1987); 

limited proteolysis with pepsin or trypsin resulted in smaller fragments of the BMP with 
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increased osteoinductive activity (Urist called the digested, more active form BMP-p for 

BMP polypeptides) (Urist, Chang et al. 1987); and finally, Urist related in a personal 

communication to collaborators that purification approaching homogeneity resulted in a 

loss of osteogenic activity and that rescue of that activity was possible by combination 

with other fractions (Behnam, Phillips et al. 2005). Despite all of the work and the great 

many things that were known Urist’s BMP was never fully isolated, although Wozney, et 

al. cloned a protein that co-eluted with other BMPs in their isolations that encoded a 

structurally distinct protein from the other BMPs and named this protein BMP-1. Unlike 

other BMPs which are TGF-β family cytokines, BMP-1 is a secreted metalloprotease that 

contains a proteolytic domain, a protein-protein interaction domain, and an epidermal 

growth factor-like domain (Bond and Beynon 1995; Zhang, Ge et al. 2006; Hopkins, Keles 

et al. 2007).  Despite the fact that the name BMP-1 suggests it is one in the same with 

Urist’s original osteoinductive factor, Wozney’s isolation procedure differed significantly 

in later steps and “distinguish it from any previously identified factor” (Wozney, Rosen et 

al. 1988). Consequently, the identity of the protein component of non-collagenous bone 

matrix that has the described characteristics that Urist assigned had yet to be identified.  

BMPs are members of the TGF-β family of cytokines. The TGF-β family is 

comprised of over forty known members linked structurally by the presence of a cysteine 

knot found on one side of the protein (McDonald and Hendrickson 1993; Murray-Rust, 

McDonald et al. 1993; Kingsley 1994; Griffith, Keck et al. 1996); among the known 

family members are TGF-βs, BMPs, activins, nodal, and mullerian inhibiting substances. 

BMPs, though named for their remarkable effects on bone generation, have been found to 
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be important signaling molecules with multiple signaling funtions throughout the body. 

BMPs play a particularly important role in spatial patterning of the developing embryo.  

Based on their osteogenic properties, BMPs have been explored as potential 

therapies for treating bone injuries and defects that require significant healing and 

regeneration (Chen, Zhao et al. 2004). Currently two BMPs, BMP-2 and -7, are approved 

for clinical use (De Biase and Capanna 2005), and multiple delivery mechanisms are being 

studied. Gels, cements, and organic polymer matrices are all being studied to determine the 

best mode of delivery for BMPs to induce bone regeneration (Geiger, Li et al. 2003; Hu, 

Zhang et al. 2003; Seeherman and Wozney 2005). The retention of BMPs is a critical 

aspect of their clinical efficacy (Uludag, Gao et al. 2001). There are several areas that have 

been seen as problematic in utilizing BMPs for treating bone defects. First, the cost to use 

a clinically effective dose is extremely high (Carlisle and Fischgrund 2005), and secondly, 

diffusion away from the site of administration lowers the efficacy of the BMP treatment. 

Additionally, there is some worry that BMP activity in tissue neighboring the application 

site could induce calcification in unwanted areas (Carlisle and Fischgrund 2005). New 

delivery devices for the use of BMPs in orthopaedic injuries will have to achieve the 

necessary retention to be clinically effective.   
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Table 1: Members of the BMP Family 
 
The table provides the different members of the BMP family, the subfamilies they are 
classified into, and some of their alternative names (Termaat, Den Boer et al. 2005). 
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BMP Subfamily BMP Molecules Synonym 

BMP-2/4 BMP-2 
BMP-4 

BMP-2A 
BMP-2B 

BMP-3 BMP-3 
BMP-3B 

Osteogenin 
GDF-10 

BMP-7 

BMP-5 
BMP-6 
BMP-7 
BMP-8 

BMP-8B 

 
Vgr-1 
OP-1 
OP-2 
OP-3 

CDMP/GDF 
BMP-12 
BMP-13 
BMP-14 

CDMP-3 or GDF-7 
CDMP-2 or GDF-6 
CDMP-1 or GDF-5 

Miscellaneous 

BMP-9 
BMP-10 
BMP-11 
BMP-15 
BMP-16 

GDF-2 
 

GDF-11 
 
 

 
GDF = growth differentiation factor; Vgr = vegetal-related; OP = osteogenic 
protein; and CDMP = cartilage-derived morphogenetic protein. 
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BMP Signaling  

BMPs signal through type I and II serine-threonine kinase receptors spanning the 

membrane of target cells. Signal transduction in these receptors has been most widely 

studied for TGF-β receptors however it is thought to be very similar to BMP receptor 

activity (Yamashita, Ten Dijke et al. 1996). BMP binding to the receptors leads to their 

activation. Activated receptors are capable of turning on intracellular signaling cascades 

involving Smad  proteins; Smad proteins are named for their homology to the drosophila 

family of proteins Mothers against decapentaplegic (Mad) and the C. elegans gene Sma. 

Following translocation to the nucleus, Smads alter transcriptional activity of target genes. 

There exist a number of regulatory checkpoints for BMP signaling with both extracellular 

inhibitors of BMP signaling and intracellular modulators of BMP signal transduction 

playing important roles in the process.  

BMPs, a sub-family of TGF-β family cytokines, can be subdivided into several 

distinct classes based upon their amino acid sequences and homology. BMP-2 and -4 are 

members of one group; BMP-5 through -8 form a second group; also a group of BMP-3 

and BMP-3b, also known as growth and differentiation factor-10 (GDF10) (Cunningham, 

Jenkins et al. 1995). BMP-5, BMP-6, BMP-7 (OP-1) and BMP-8 (OP-2) are classified as 

the A60 group because of their similarity to the Drosophila A60 protein (Kingsley 1994). 

As referenced above, several BMPs have multiple names due to particular properties or 

aspects of their discovery; a number of BMPs are alternately known as osteogenic proteins 

(OP), cartilage derived morphogenetic proteins (CDMP), and growth and differentiation 

factors (GDF). The synonyms of a number of known BMPs are listed in Table 1 BMP 
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ligands activate their receptors as dimers (Kirsch, Sebald et al. 2000); crystallographic 

studies have shown that BMP-2 homodimers are held together by a single intermolecular 

disulfide bond and other non-covalent interactions (Scheufler, Sebald et al. 1999). 

Dimerization is crucial to the formation of a ligand complex capable of eliciting signaling 

from its cognate receptors. Formation of specific heterodimers, namely BMP-2/4 and 

BMP-2/7, have been shown to be more efficacious in generating BMP signaling than 

corresponding homodimers (Israel, Nove et al. 1996). 

BMP ligands bind to type-I and type-II BMP receptors. There exist three type-I 

BMP receptors: type-IA (BMPR-IA) also known as activin-like kinase receptor-3 [ALK-

3]); BMP receptor type-IB (BMPR-IB) or activin like kinase-6 (ALK-6); and binding has 

also been shown to activin type-I receptors (ActR-I or ALK-2). Three type-II receptors that 

bind BMPs have also been characterized: BMP receptor type-II (BMPR-II) and activin 

type-II and -IIB receptors (ActR-II and ActR-IIB, respectively). Studies have shown the 

binding of type I receptors to BMPs in the absence of type-II receptors shows significantly 

lower affinity than when paired with type-II receptors (Koenig, Cook et al. 1994; ten 

Dijke, Yamashita et al. 1994); likewise, the same was shown of BMP binding to type-II 

receptors (Kawabata, Chytil et al. 1995; Nohno, Ishikawa et al. 1995; Rosenzweig, 

Imamura et al. 1995). Each BMP ligand binds to one type-I and one type-II receptor, as a 

result the dimeric ligand will bind to two of each of the receptors forming a 

heterotetrameric receptor complex (Wrana, Attisano et al. 1992; Mathews and Vale 1993; 

Yamashita, ten Dijke et al. 1994; Luo and Lodish 1996; Weis-Garcia and Massague 1996). 

Multiple permutations of heteromeric receptor complexes can be formed from the various 
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type-I and type-II receptors, each with varying affinities for the different BMP ligands 

(Yamashita, Ten Dijke et al. 1996).     

The binding of a BMP ligand to the heteromeric receptor complex is the initial step 

in the activation of BMP signaling. The binding of the ligand brings the type-I receptor in 

such proximity to the type-II receptor that the constitutively active, intracellular kinase 

domain of the type-II receptor can phosphorylate the type-I receptor (Wrana, Attisano et al. 

1994; Attisano, Wrana et al. 1996). Phosphorylation of the type-I receptor activates its own 

kinase domain which is responsible for the initiation of intracellular BMP signaling 

(Wrana, Carcamo et al. 1992; Wieser, Attisano et al. 1993; Wrana, Attisano et al. 1994). 

The type-I receptor’s kinase domain phosphorylates and activates Smad proteins that are 

the effectors of BMP signaling inside the cell. There are three subsets of Smad proteins: 

receptor regulated Smads (R-Smads), common mediator Smads (Co-Smads), and 

inhibitory Smads (I-Smads). Smad1, Smad5, and Smad8 are R-Smads that are 

phosphorylated by BMP type I receptors (Kretzschmar, Liu et al. 1997; Nishimura, Kato et 

al. 1998; Kawai, Faucheu et al. 2000). Smad2 and Smad3 are also R-Smads, but they are 

phosphorylated by TGF-β type-I receptors, not BMP receptors (Ferguson, Schwarz et al. 

2000). The phosphorylated R-Smads then bind to Smad4, a Co-Smad (Kretzschmar, Liu et 

al. 1997; Nishimura, Kato et al. 1998; Kawai, Faucheu et al. 2000). The Co-Smad/R-Smad 

will migrate to the nucleus where they regulate transcriptional activity of target genes. I-

Smads, Smad6 and Smad7, disrupt this signaling in three ways: they can compete with R-

Smads for binding to activated type-I receptors (Hata, Lagna et al. 1998; Zhang, Fei et al. 

2007), they can target type-I receptors for proteasomal degradation by the recruitment of 
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ubiquitin ligases (Moren, Hellman et al. 2003; Moren, Imamura et al. 2005), and they can 

act in the nucleus to inhibit transcription either as co-repressors (Bai, Shi et al. 2000) or via 

the modification of histone acetylation states (Bai and Cao 2002).  

In addition to I-Smads there are other intracellular modulators of BMP signaling 

that act upon the Smad signaling cascade. Smad ubiquitin regulatory factors (Smurfs) are 

E3 ubiquitin ligases that regulate the activity of numerous Smads. Smurfs, in their role as 

HECT (homology to E6Ap carboxyl terminus) E3 ubiquitin ligases, can accept an 

ubiquitin from an E2 conjugating enzyme and transfer it to a Smad protein (Ogunjimi, 

Briant et al. 2005). The ubiquitination of the Smads can either target the Smad for 

proteolytic degradation by the proteasome or in certain cases cytoplasmic retention 

(preventing the nuclear translocation necessary for activated Smads to affect their signaling 

function).  

A recent report has delineated a novel mechanism regulating BMP signaling via 

protein interaction with the cytoplasmic “tail” domain of the BMPRII; Tribbles-like 

protein 3 (Trb3) is a BMPRII “tail” domain-interacting protein that dissociates upon BMP 

ligand binding (Chan, Nguyen et al. 2007). The release of Trb3 causes the degradation of 

Smurf1, resulting in increased stability of R-Smads and increased BMP signal transduction 

through Smads. Conversely, downregulation of Trb3 leads to increased Smurf1 levels and 

greater repression of BMP signaling.   

In addition to the intracellular regulation, a number of other molecules act to 

modulate BMP signaling extracellularly. Several proteins are found in the extracellular 

space that inhibit BMP signaling by binding to BMP ligands preventing their interaction 
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with receptors found on the cell surface. Follistatin, follistatin-related protein (FSRP), 

noggin, chordin, DAN/Cerberus family proteins, Decorin, Gremlin, Lefty, LTBP1, 

THBS1, and sclerostin (SOST) are all among the proteins currently identified to inhibit 

BMP binding in this manner. Bone morphogenetic protein-binding endothelial cell 

precursor-derived regulator (BMPER) also plays a key role in patterning through the 

regulation of BMP-4 signaling in embryonic patterning (Moser, Binder et al. 2003), likely 

through the presence of cysteine-rich (CR) von Willebrand C-like domains as has been 

shown for Chordin (Larrain, Bachiller et al. 2000). This protein is also a secreted BMP 

antagonist shown to bind BMP-2, -4, and -6, affecting the BMP-4 driven differentiation of 

endothelial cells in the embryo. These proteins play many roles in regulating BMP 

signaling, but principal among those may be the ability to inhibit BMP signaling and create 

gradients of BMP action which are crucial in establishing the patterning of the developing 

embryo. The differing affinities and focalized expression allows the generation of gradients 

for different BMPs in numerous spatial regions. The crucial role for these proteins in 

embryonic development is seen in both the abnormally patterned and deformed animals 

and the numerous inviable embryos when knockout animals for these BMP antagonists are 

created, as reviewed by Balemans and van Hul (Balemans and Van Hul 2002). 

A fairly recent addition to the known regulators of TGF-β cytokine signaling is the 

pseudoreceptor BMP and activin membrane bound inhibitor (BAMBI) identified in 

Xenopus and its mammalian homologue Nma. BAMBI is highly similar to the type-I serine 

threonine kinase receptors except it lacks the intracellular signaling domain (Onichtchouk, 

Chen et al. 1999; Grotewold, Plum et al. 2001).  The stable association of BAMBI with 
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other serine threonine receptors prevents the initiation of signaling once ligand binding 

occurs (Onichtchouk, Chen et al. 1999). In Xenopus, frogs, and mice BAMBI was 

expressed with BMP-4 during embryonic development, but despite the findings in these 

model organisms the role of this antagonist of TGF-β signaling is not fully understood 

(Onichtchouk, Chen et al. 1999; Grotewold, Plum et al. 2001; Knight, Simmons et al. 

2001).  

Another family of proteins that regulates the intracellular signaling of TGF-β 

family cytokines by affecting the cellular localization of R-Smads has been identified. Zinc 

finger FYVE domain-containing protein-9, also known as Smad anchor for receptor 

activation (SARA), is a membrane bound anchor that binds to R-Smads (Smads 2 and 3) as 

well as TGF-β receptor type I (Tsukazaki, Chiang et al. 1998). SARA also is suggested to 

play an additional role in enhancing multiple phosphorylation of Smads by binding to 

monophosphorylated Smads and retaining them to increase the likelihood of multiple 

phosphorylation (Ottesen, Huse et al. 2004). An analogous protein to zinc finger FYVE 

domain-containing protein-9 for TGF-β signaling, called endorphin for its endosomal 

localization, has been identified for BMP signaling that acts on Smad-4 (Seet and Hong 

2001; Chen, Wang et al. 2007; Shi, Chang et al. 2007). These families of proteins appear to 

play important roles in the facilitation of R-Smad phosphorylation however the ultimate 

purpose of the regulation is not fully established. 

While the other aforementioned regulators of BMP and TGF-β signaling are 

antagonists there are reports in the literature of potentiators of BMP signaling. DRAGON, 

a glycosylphosphatydilinositol (GPI)-anchored membrane bound protein, has been shown 
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to specifically enhance the signaling of certain BMPs while not showing the same effect 

for TGF-β ligands. DRAGON (RGMb) is a member of the repulsive guidance molecule 

(RGM) family.  DRAGON binds to BMP-2 and -4 but not BMP-7. It also binds to type-I 

and type-II BMP receptors and enhances BMP signaling. Recently, hemojuvelin, another 

repulsive guidance molecule (RGM) family member was also found to mediate BMP 

signaling as a co-receptor (Babitt, Huang et al. 2006). Hemojuvelin plays a specialized role 

in regulating cellular uptake of iron in the liver (Papanikolaou, Samuels et al. 2004; 

Niederkofler, Salie et al. 2005).  

Interestingly, another GPI-anchored protein, Cripto, enhances TGF-β ligand 

binding to activin receptors while blocking activin binding (Yan, Liu et al. 2002; Gray, 

Shani et al. 2006). Cripto can act either as a soluble or membrane bound receptor/co-

receptor depending upon the species examined (Rosa 2002). Cripto binds to nodal (another 

class of TGF-β ligand) and to activin-like kinase-4 (ALK4) which is a TGF-β type I 

receptor (Yeo and Whitman 2001). Cripto can also potentiate the signaling of nodal 

through ALK7 (Reissmann, Jornvall et al. 2001). Cripto appears to possess an ability to 

modulate the differential use of these receptors as their native affinities vary greatly; in the 

absence of cripto ALK4 has a high affinity for and robust activation by nodal whereas 

ALK7 is only weakly activated (Rosa 2002). Cripto also binds to activins in concert with 

Activin type II receptors to block signaling (Gray, Harrison et al. 2003), an opposing 

function to that seen in the binding of cripto to nodal ligands.  
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Figure 5. TGF-β Family Cytokine Signaling 
 
TGF-β family signaling can be grouped by the three types of ligands: activins/nodal, TGF-
β, and BMPs. The figure depicts these signaling ligands and their cognate receptors and 
their Smad signaling partners.
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Figure 6.  The BMP Signaling Pathway. 
 
Figure 6 shows the BMP signaling pathway, from the cell membrane to the nucleus.  In 
mammals, the R-Smads are Smads-1, -5, and -8, and the lone Co-Smad is Smad-4.  
Though they are not shown in figure 6, there are two inhibitory Smads (I-Smads), also 
called Smads-6 and -7. Source: (Balemans and Van Hul 2002)) 
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Secreted Phosphoprotein-24 

Secreted Phosphoprotein-24 (Spp24) was initially isolated as a non-collagenous 

bovine bone matrix protein (Hu, Coulson et al. 1995) in an attempt to isolate and 

characterize potentially novel, bioactive bone matrix proteins. Although this was the first 

characterization to purity there are reports in the literature of isolations of bone matrix 

proteins with strikingly similar characteristics to those described for Spp24. Sen, et al. 

described their “primary osteogenic factor” as a 23 kDa protein isolated from bovine bone 

(Sen, Walker et al. 1987). Their intent was to isolate large amounts of homogenous bone 

matrix proteins. They looked within the range of 10 to 30 kDa as Urist’s (Urist 1965; Urist, 

Huo et al. 1984; Urist, Chang et al. 1987; Urist, Huo et al. 1987) and Reddi’s (Sampath, 

DeSimone et al. 1982) groups had noted the presence of an osteogenic molecule in this 

range. Reddi and collaborators also showed the presence of a 22 kDa protein that they 

believed possessed the ability to induce mitogenic activity in mesenchymal cells similar to 

that observed in the early stages of ossification-inducing experiments that implant 

demineralized bone matrix (Sampath, DeSimone et al. 1982). Reddi’s report suggests there 

may be a closely associated factor in bone matrix that controls mesenchymal cell 

proliferation and differentiation but it is limited in providing identifiable characteristics of 

the factor. Sen, et al., in seeking to establish a protocol that would provide adequate 

amounts of bone matrix isolated BMPs, found their “primary osteogenic protein” (Sen, 

Walker et al. 1987). The sequencing of a small portion of this protein is nearly identical to 

the N-terminal sequence of bovine Spp24 (Figure 7) while the overall amino acid 

composition was highly similar to the composition of Spp24, suggesting that the primary 
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osteogenic factor and Spp24 are one and the same. Their isolation of Spp24 yielded a 23 

kDa protein that they found, upon implantation into animals to induce bone formation. 

Despite these early works that appear to have found Spp24 is a bioactive molecule, little 

research was performed subsequently to elaborate on these discoveries and until quite 

recently there was still little known about Spp24.  
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Figure 7: Sequence Comparison of Sen, et al.’s Primary Osteogenic Factor with the 
Bovine Spp24 Sequence 
 

The N-terminal sequence (upper sequence) reported by Sen et al in 19?? of their 
“primary osteogenic factor” isolated via a protocol that was based on the work of Urist and 
modified slightly. They reported significant osteogenic properties of this protein. Sen et al 
also report the primary osteogenic factor as a 23kDa protein. The sequence of the N-
terminal portion of Spp24 is shown (lower sequence) for comparison to illustrate that Sen’s 
primary osteogenic factor was most likely Spp24.
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Hu, et al. found that Spp24 was a 24 kDa protein that was phosphorylated on 

multiple serines that conformed to the recognition motif for secretory pathway protein 

kinase (Meggio, Boulton et al. 1988). Additionally, Hu, et al. showed Spp24 contains a 

cystatin homology domain near its N-terminus. Spp24 was seen in a Northern blot of a 

variety of bovine tissues to be expressed in the bone periosteum and to a greater extent in 

the liver (Hu, Coulson et al. 1995). Expression of Spp24 in the liver was also seen in 

microarray of hepatocarcinoma cells (Tackels-Horne, Goodman et al. 2001). While Hu, et 

al. did not see expression in the kidney in their bovine tissues, microarray of genes 

regulated in response to salt-sensitive hypertension did show expression of an expressed 

sequence tag (EST) similar to Spp24 in the renal medulla of the kidney (Liang, Yuan et al. 

2002).  

Isolation and analysis of the fetuin mineral complex (FMC) in Etidronate treated 

rats showed that Spp24 was a minor fraction of the complex (Price, Nguyen et al. 2003). 

The FMC is a serum protein-mineral complex that acts to prevent the precipitation and 

growth of mineral in bone (Price, Caputo et al. 2002; Price and Lim 2003). The FMC was 

shown to be primarily composed of fetuin and minor amounts of matrix Gla protein, 

Spp24, serum amyloid P component, and prothrombin (Price, Nguyen et al. 2003). The 

complex is thought to form as local concentrations of calcium rise and  

nucleation of mineral crystals occurs; soluble fetuin then forms the complex with these 

mineral crystals arresting their growth (Price, Nguyen et al. 2003).  

A detailed analysis of the sequence of Spp24 in nine species showed the presence 

of several critical conserved features that added to the understanding of Spp24’s function 
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(Bennett, Khorram Khorshid et al. 2004). The gene encoding Spp24 (SPP2) is comprised 

of eight exons with the first seven containing the coding sequence for the peptide and the 

final exon containing the 3’ untranslated region of the messenger RNA (Bennett, Khorram 

Khorshid et al. 2004). The organization of the gene, with the stop codon present in the 

penultimate exon, is rare and highly indicative of secreted proteins (Nagy and Maquat 

1998; Bennett, Khorram Khorshid et al. 2004). The human sequence of Spp24 contains a 

29 amino acid signal peptide allowing secretion of the mature peptide to the extracellular 

space. The N-terminal portion of the mature peptide was shown to have a cystatin 

homology domain. Two such regions can be found in the protein fetuin (Demetriou, 

Binkert et al. 1996). Cystatins are a family of cysteine protease inhibitors (Brzin, Popovic 

et al. 1984; Goto, Yamaza et al. 2003). Proteins with cystatin homology have been shown 

to possess the ability to inhibit cysteine protease activity (Lerner, Johansson et al. 1997). 

This can greatly affect bone degradation by limiting cathepsins, cysteine proteases 

involved in proteolytic break down of bone. At the C-terminal end of the cystatin domains 

lies a TGF-β-receptor II homology domain. As mentioned previously the C-terminal 

portion of the mature peptide contains a number of phosphorylated serines.  

Spp24 was localized to the 2q37 chromosome by in situ hybridization (Swallow, 

Merrison et al. 1997). Interestingly, some deletions in this region have been shown to be 

related to the Albright hereditary osteodystrophy-like (AHO-like) syndrome. AHO-like 

syndrome symptoms include brachydactyly and craniofacial defects (Chassaing, De Mas et 

al. 2004; Shrimpton, Braddock et al. 2004; Chaabouni, Le Merrer et al. 2006). While most 

cases are related to lowered levels of Gs alpha protein signaling, there are reports of cases 
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with cryptic deletions where normal activity of the Gs alpha persists (Chassaing, De Mas et 

al. 2004). If this deletion is related to Spp24, it would suggest the importance of Spp24 in 

bone development and morphology. 

The early work on Spp24 has shown a striking similarity of several aspects of 

Spp24 biology with the protein fetuin. Fetuin and its human homolog, α2-HS glycoprotein, 

are serum glycoproteins that, like Spp24, accumulate in bone (Yang, Chen et al. 1992; 

Demetriou, Binkert et al. 1996; Binkert, Demetriou et al. 1999; Price and Lim 2003; Price, 

Nguyen et al. 2003). Fetuin has been shown to have two cystatin domains similar to the 

one present in Spp24, and like Spp24 there is a TGF-β receptor homology domain in the 

second cystatin domain of fetuin (Demetriou, Binkert et al. 1996). In vitro assays have 

shown the ability of the full length fetuin to bind to TGF-β family members including 

BMPs (Demetriou, Binkert et al. 1996). Fetuin is the primary component of the fetuin 

mineral complex, described earlier to play a role in preventing mineral deposition by 

binding calcium (Schinke, Amendt et al. 1996; Schafer, Heiss et al. 2003).  
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Figure 8: Schematic Depiction of the Domains Found in Spp24 

The signal peptide at the N-terminal end of the peptide is essential for the proper secretion 
of the protein product and is cleaved upon secretion. The mature peptide, after signal 
peptide cleavage, has a cystatin homology domain at its N-terminus. Contained with in the 
cystatin domain is the TGFβ receptor type II homology domain. The C-terminal portion of 
the protein is a Spp24 signature domain conserved in Spp24 across numerous species, 
mostly vertebrates. Within the Spp24 signature domain are numerous phosphorylated 
residues; Hu, et al. (Hu, Coulson et al. 1995) found that numerous serines were 
phosphorylated and were found in sequences conforming to the secretory pathway protein 
kinase. Additionally there serines in a SSEE sequence that is a recognition sequence for 
casein kinase II and in SIBLING family proteins is important in hydroxyapatite binding 
(Veis, Sfeir et al. 1997; Huq, Cross et al. 2005).  
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Additionally, a blast search using the amino acid sequence of Spp24 revealed that 

there is also homology to cathelicidin. Cathelicidins are members of a group of anti-

microbial peptides expressed in a large number of tissues such as skin, vaginal mucosa, 

airway, bone marrow and the digestive tract. Additionally, cathelicidins have been shown 

to play a role in the response to viral infection and to modulate immune and inflammatory 

responses (Bals and Wilson 2003; Braff, Hawkins et al. 2005; Gordon, Huang et al. 2005; 

Durr, Sudheendra et al. 2006). At present the relation of Spp24, a bone matrix protein also 

found at low levels circulating in serum as part of the FMC, to an antimicrobial peptide is 

unclear. Homology between antimicrobial peptides, namely bactenectin and cathelicidin, 

and cystatins and cystatin homologous proteins has been documented previously. 

Cathelicidins conatin two domains: the N-terminal prosequence (sometimes called 

“cathelin-like”) and the C-terminal antimicrobial domain (in the lone human cathelicidin, 

hCAP18/LL-37, this domain is called LL-37). The N-terminal cathelin-like fragment that 

is proteolytically cleaved to liberate the LL-37 domain has been shown to have anti-

microbial activity (Zaiou, Nizet et al. 2003). This domain also is similar to cystatins and 

can inhibit cysteine proteases (Zaiou, Nizet et al. 2003). Spp24 is more closely related to 

cystatin and kininogen (which also contains a cystatin homology domain) than to 

antimicrobial peptides. Due to its relation to both cystatins and antimicrobial peptides Hu, 

et al. have suggested that Spp24 may be an evolutionary bridge between these cystatins 

and antimicrobial peptides (Hu, Coulson et al. 1995). It is unclear what effect this may 
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have in bone biology and whether there is a functional antimicrobial effect seen with 

Spp24 that matches with the sequence homology observed.  
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Figure 9. Structural Similarity of Spp24 and Cathelicidin-like Peptide 
 
Ribbon structures show the similarities between Spp24 and Cathelicidin-like peptide. The 
anti-paralell β-sheets and the α-helix are positioned similarly in both molecules as are the 
loop connecting the two (green).
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In 2005, Behnam, et al., based on Urist’s original isolation procedure, were able to 

isolate an 18.5 kDa protein that upon analysis was revealed to be a fragment of Spp24 

(Behnam, Phillips et al. 2005). This fragment was similar to the protein fetuin, containing a 

cystatin homology domain. In addition, the 18.5 kDa peptide had a TGF-β-receptor II 

homology region. Behnam, et al. then made a synthetic peptide containing the region 

suspected of being responsible for the BMP-like properties, a 19 amino acid region 

containing the TGF-β-receptor homology domain. The synthetic peptide, which they called 

BMP binding peptide (BBP), contained cysteines at either end that, based on comparison 

with fetuin, were likely responsible for a disulfide bond and were used to create a cyclic 

BBP. Implantation of BBP into muscle pouches of mice induced ectopic calcification. 

When BMP-2 was implanted alone or with the BBP there was greater calcification seen 

with the combination of BBP and BMP-2 showing the ability of BBP to enhance BMP 

activity. Based on the activity of the BBP, Spp24 appears to enhance BMP signaling 

through its TGF-β-receptor homology domain.  

Spp24 has also been identified as a shown to be highly up-regulated in articular 

cartilage in a model of osteoarthritis. This limited study did not elaborate on any role of 

Spp24 either as causative or counteractive to the progression of the osteoarthritis. The 

proposed biology of Spp24 to act to modulate BMP signaling through binding of TGF-β 

ligands to the TGF-β receptor II homology domain could be an important factor as TGF-βs 

play an important role in chondrocyte biology in addition to BMPs. 

 Recent work by Dalgleish and his collaborators (personal communication) has 

found the sequence of the Spp24 gene in 22 vertebrate species including the cartilaginous 
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dogfish. A number of aspects of the sequence were found to be conserved throughout all 

species implying that these conserved amino acids may be critical to the native function of 

Spp24. Two pairs of cysteines were found to be conserved throughout all species and these 

were shown by Bennett, et al. to be involved in disulfide bridges, with the second pair 

involved in the formation of the disulfide bridge flanking the TGF-β receptor II homology 

domain structure (Demetriou, Binkert et al. 1996; Bennett, Khorram Khorshid et al. 2004). 

A number of serines were additionally shown to be highly conserved. Some of the 

conserved serines were shown by Hu, et al. to be phosphorylated and correspond to the 

recognition motif of SXE/S(P)-specific secretory pathway kinase (Hu, Coulson et al. 

1995). While Hu, et al. have shown that a number of serines were phosphorylated, it is 

unclear whether all of the conserved serines and threonines are modified in this manner 

(Hu, Coulson et al. 1995). Also unknown is the function of an Asparagine conserved 

through all 21 species examined (N52 in the human sequence).  

Another conserved aspect of the sequences was the presence of a four amino acid 

stretch of SSEE. This sequence is recognized by the casein kinase-II and highly indicative 

of a class of proteins called the SIBLING family of proteins. SIBLING proteins are a 

family of ECM proteins found to associate with hydroxyapatite crystals. These proteins are 

primarily found in bone and dentine ECM. SIBLING family proteins often contain a 

consensus sequence (SSEE) for phosphorylation by casein kinase II (Veis, Sfeir et al. 

1997; Huq, Cross et al. 2005). The presence of Spp24 within the bone matrix and the 

association of Spp24 with mineral crystals as a portion of the fetuin mineral complex may 

suggest that in bone Spp24 acts similar to SIBLING proteins as a stabilizer of 
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hydroxyapatite interaction with the bone matrix (Huq, Cross et al. 2005). SIBLING 

proteins undergo numerous post-translational modifications. Though made as a full-length 

proteins they are often found in the extracellular space as proteolytically cleaved forms 

(Qin, Baba et al. 2004). The enzyme PHEX (Qin, Baba et al. 2004) and several MMPs 

(Ogbureke and Fisher 2004; Ogbureke and Fisher 2005) have been shown to be co-

expressed with SIBLINGS. As Behnam, et al. have identified a bioactive fragment of 

Spp24 that is ~18.5 kDa (Behnam, Phillips et al. 2005) the relation to SIBLING proteins 

and their proteolytic activation may be noteworthy similarity that could provide clues to 

how Spp24 is cleaved to generate the bioactive form Interestingly, in the sequence 

comparison performed by collaborators (Dalgleish and co-workers) the SSEE sequence 

was conserved even in the cartilaginous dogfish (figure 10). The presence of this feature in 

a cartilaginous fish would seem to belay the role of the SSEE consensus sequence in 

calcification, but upon closer examination it may still play the same vital role in the 

dogfish. The dogfish, though called a cartilaginous fish, still contains mineralized skeletal 

features. The dogfish contains a cartilaginous skeleton that is produced by chondrocytes, 

however a portion of the skeleton is mineralized with three distinct types of mineral 

formed depending on the matrix features (Dean and Summers 2006). Also there exist, in 

the vertebrae, areas that contain a mineralized “bone” that contains osteoblasts, osteocytes 

as well as a matrix comprised primarily of type-I collagen (Peignoux-Deville, Lallier et al. 

1982). The presence of mineralized cartilage and bone suggests that the SSEE domain 

could be an important feature of Spp24 that enhances calcification in the extracellular 

matrix even in the primitive skeleton of the dogfish.  
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Figure 10. Alignment of Spp24 sequences from 22 Species 
 
Alignment of Spp24 amino acid sequences from 22 species of vertebrates including the 
cartilaginous dogfish. The degree to which residues are conserved across species is 
indicated by the bar graph below each position. Residues conserved throughout are 
denoted with an asterisk (*). Residues with similar amino acids are noted by one (·) 
(moderately conserved) or two dots (:)(highly conserved)  and  Source: Dalgleish 
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CHAPTER 2 

Characterization of Secreted Phosphoprotein-24 Expression: Relation to 

Kidney and Bone Cell Models 

 

 

 

Abstract 

 Secreted phosphoprotein-24 (Spp24) is a non-collagenous bone extracellular matrix 

molecule comprised of a cystatin-like domain at its N-terminal end and a signature Spp24 

homology domain found only in vertebrate species. Spp24 has previously been 

demonstrated to associate with the serum fetuin mineral complex and localize to bone as a 

24 kDa protein. It also has been demonstrated to play a role in facilitating the ectopic bone 

forming action of bone morphogenetic protein-2. The purpose of this study was to examine 

Spp24 gene expression and protein localization in multiple tissues, particularly in the rat. 

Assessment of the tissue distribution of Spp24 gene expression in rat showed transcript 

detection in only the liver and kidney tissues. Spp24 was found to be expressed in kidney 

tissue of rats at a level of one third the expression in liver. The protein form of Spp24 also 

was studied in multiple human tissues and human/mouse kidney and bone cells and 
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discovered to be ubiquitous and migrate at multiple molecular weight sizes, indicating 

extensive potential for post-translational processing. Applying the techniques of 

differential display RT-PCR and GeneChip microarray to rat kidney cortical RNA samples 

from in vivo models of hypo- and hypercalcemia, we identified the differential up-

regulation of Spp24 in the hypocalcemic model. Renal Spp24 mRNA up-regulation in the 

low calcium condition was confirmed by Real-Time Q-PCR as being 2.5 fold up-regulated 

in hypocalcemic kidneys compared to its gene expression in kidneys obtained from normal 

diet fed control rats. Detailed analysis of Spp24 mRNA and protein in histological sections 

of rat kidney revealed that Spp24 is expressed in the epithelial cell layer of convoluted 

tubules in kidney cortex. In conclusion, Spp24 predominantly originates from source tissue 

outside of bone including kidney. Also the tissue distribution is more widely spread than 

previously appreciated, indicating that Spp24 could regulate renal and extrarenal functions 

as well as those presently assigned to bone. 

 

Introduction 

Skeletal development is characterized by a continuous turnover of the bone 

extracellular matrix (ECM) and mineral components. In this process there is first an 

increase in resorption by osteoclasts followed by reactive bone formation mediated by the 

recruitment of osteoblasts derived from mesenchymal stem cell progenitors. In the adult 

skeleton the bone remodeling process occurs simultaneously at millions of discrete foci 

called bone remodeling units. The process ensures the mechanical integrity of the skeleton 

throughout life and plays an important role in calcium homeostasis. Factors that disrupt the 
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intimate balance between bone resorption and bone formation result in offsetting metabolic 

pathologies such as osteoporosis.  

Secreted phosphoprotein 24 (Spp24), so named for its 24 kDa size in bovine 

cortical bone, was isolated from partially purified bovine cortical bone. The sequence of 

the isolated Spp24 was 200 residues; the first 20 residues contained the signal peptide with 

the remaining 180-residues being translated into the mature Spp24 protein (Hu, Coulson et 

al. 1995). The gene encoding Spp24 was later assigned to the human chromosome band 

2q37 by fluorescence in situ hybridization (Swallow, Merrison et al. 1997). The 24 kDa 

protein resulting from the Spp24 gene contains an N-terminal sequence of 107 amino acid 

residues similar in sequence to cystatin; this similarity gives Spp24 structural and possibly 

functional similarity to bone related cystatins (Brage, Lie et al. 2004; Brage, Abrahamson 

et al. 2005; Danjo, Yamaza et al. 2007). Sequences related to cystatin are thiol protease 

inhibitors. Given that Spp24 is found in bone, it could function to modulate the thiol 

protease activities known to be involved in bone turnover. The cystatin homology region in 

Spp24 overlaps a transforming growth factor-β-receptor II (TβRII) homology domain that 

was suggested by Benham, et al. to affect BMP signaling in bone based on its ability to 

bind bone morphogenetic proteins (BMPs) and other transforming growth factor-β (TGF-

β) superfamily cytokines (Behnam, Phillips et al. 2005). The C-terminal half of the protein 

also contains several phosphorylated serines (Hu, Coulson et al. 1995). Within Spp24 there 

is a region of approximately 140 amino acid residues that represents the Spp24 homology 

domain that is conserved in vertebrates. 
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Spp24 was also found to be a minor fraction of the fetuin-mineral complex, a serum 

complex important in inhibiting mineralization and comprised primarily of fetuin, 46% by 

mass (Price, Nguyen et al. 2003). The fetuin-mineral complex has been shown to 

participate in resisting bone mineral crystallization and may be important in maintaining 

homeostasis with respect to mineralization (Price, Caputo et al. 2002; Price and Lim 2003). 

Other proteins such as matrix Gla protein (MGP) were found in smaller proportions (Price, 

Nguyen et al. 2003), and the remainder of the complex is composed of calcium-phosphate 

minerals. The fetuin-mineral complex is proposed to bind calcium via acidic residues of its 

constituent proteins, preventing the precipitation of calcium-phosphate ions liberated by 

osteoclasts during bone resorption. Disruption of normal fetuin mineral complex function, 

either by blocking acidic residues or by targeted mutations of individual components of the 

complex such as MGP or fetuin, result in decreased management of extraskeletal 

calcification (Schinke, Amendt et al. 1996; Jahnen-Dechent, Schinke et al. 1997; Munroe, 

Olgunturk et al. 1999).  

Like Spp24, both Fetuin and MGP accumulate in bone and contain several 

phosphoserine residues potentially important to their function in bone (Price, Nguyen et al. 

2003). Spp24 and fetuin also share cystatin homology domains in their N-terminal protein 

sequences (Hu, Coulson et al. 1995) categorizing them both among the cystatin super-

family of cysteine protease inhibitors. The phosphorylation sites of MGP and fetuin are 

present near their respective C-termini. Similarly, the bovine Spp24 was also found to be 

multiply phosphorylated at serine residues that conform to the Ser-X-Glu/Ser(P) sequence, 

a recognition motif for phosphorylation by the secretory pathway protein kinase (Meggio, 
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Boulton et al. 1988). Spp24 also contains the conserved sequence for casein kinase II 

phosphorylation (SSEE) (Veis, Sfeir et al. 1997; Huq, Cross et al. 2005) across multiple 

species. This consensus sequence is found to be phosphorylated in small integrin-binding 

ligand N-linked glycoprotein (SIBLING) family proteins such as bone sialoprotein, dentin 

and osteopontin. The phosphorylated serines in these bone and dentine extracellular matrix 

(ECM) proteins have been hypothesized to play an important part in the controlling 

interaction of the ECM with hydroxyapatite and mediating mineralization of these tissues 

(Narayanan, Ramachandran et al. 2003; Qin, Baba et al. 2004; Toyosawa, Kanatani et al. 

2004; Gordon, Tye et al. 2007).  Osteopontin (OPN) is another secreted phosphoprotein 

found in bone. Phosphorylated residues of osteopontin have also been shown to play a role 

in binding calcium mineral (Gericke, Qin et al. 2005). 

The work of Behnam, et al. has shown that Spp24 possesses osteoinductive 

qualities based on the ability of the TβRII homology domain to interact with BMPs 

(Behnam, Phillips et al. 2005). The ability of Spp24’s TβRII domain to enhance the effects 

of BMPs in addition to the putative ability of the phosphoserine residues to modulate 

mineralization suggest that Spp24 may be an important bone matrix protein in regulating 

bone mineralization.  

This study details our finding of the up-regulation of Spp24 in the kidney under 

low calcium conditions in the rat. Serum and extracellular calcium is an important 

regulator of neuromuscular function and skeletal mineralization. The increased synthesis of 

renal Spp24 during hypocalcemic conditions may relate to a regulatory mechanism for 

controlling extracellular calcium. The absolutely conserved SSEE region within the Spp24 
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homology domain of multiple vertebrate species predicts that Spp24 can adhere to 

hydroxyapatite and affect an aspect of mineralization. 

 

Materials and Methods 

Animals 

 Hypocalcemic (LC), hypercalcemic (HC), and normal calcium (NC) groups of rats 

were generated by following the diet regime of Beckman and DeLuca (Beckman and 

DeLuca 2002). Briefly, rats were fed either low calcium or normal calcium diets. To 

generate the LC group, animals on the low calcium diet were supplemented with vitamin 

D. The HC group was created by feeding animals the normal calcium diet and 

administering two injections of 1,25-dihydroxyvitamin D3 [1,25-(OH2)D3] at 16 hrs and at 

4 hrs prior to sacrifice. The NC group was fed the normal calcium diet without additional 

supplements.  

Cell Culture 

 All cells were kept at 37˚C in a humidified atmosphere of 5% CO2. MG-63 and 

SAOS-2 cells were maintained in DMEM:F12 with 10% and 15% FBS, respectively. 

Kidney Cells, mouse proximal (MPCT) and distal (DKC-8) tubule epithelial cells were 

maintained in DMEM with 10% FBS and 1% penicillin/streptomycin.  

Isolation of RNA 

Total RNA was isolated from tissues and cells using the Trizol reagent (Invitrogen, 

Carlsbad, CA) as described in our previous work (Bajwa, Horst et al. 2005). The resulting 
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RNA pellet was re-dissolved in RNase-free water. DNA was removed using a 

MessageClean Kit (GenHunter Inc., Nashville, TN) as per the manufacturer’s instructions.  

Quantitative RT-PCR 

Speific TaqMan® probes were generated to the rat Spp24 and 18s rRNA genes. 

Real-time RT-PCR (TaqMan) was performed in a PE Biosystems Model 7700 instrument 

at the VCU Nucleic Acids Research Core facility (NARF). Primers were designed using 

Primer Express software (PE Biosystems, Foster City, CA) from gene sequences obtained 

through GenBank. Gene transcript levels were normalized to 18s rRNA.  

Cell and Tissue Distribution Western Blots 

 For the determination of Spp24 protein regulation, monolayers of cells were grown 

in 60mm culture dishes up to 80-90% confluent. Cells were washed with ice cold PBS and 

then lysed in MPER lysis buffer (Pierce, Rockford, IL) containing 10 μl/ml of Protease 

Inhibitor Cocktail (Pierce). Cell lysates were centrifuged at 14,000g to separate cell protein 

from cell debris. The soluble protein content was measured by a Bradford assay (Bio-Rad 

Inc, Hercules, CA) and frozen at -70°C. After thawing, the cell lysates were combined with 

an equal volume of Laemmli sample buffer (Bio-Rad) heated at 95°C, and separated using 

a 10% SDS-polyacrylamide gel electrophoresis. The separated proteins were transferred 

electrophoretically to nitrocellulose membranes (Bio-Rad). After transfer, the membranes 

were blocked with 5% instant nonfat milk in TBST (20 mM Tris-HCl, 137 mM NaCl, and 

0.05% Tween 20) pH 8.0 for 1 hr at room temperature.  

Spp24 was detected in mouse and human cell extracts by immunoblotting using an 

overnight incubation with 1:1,000 dilution of rabbit polyclonal antiserum specific for 
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bovine Spp24 (provided by Dr. Samuel Murray). The blots were incubated in Odyssey 

blocking buffer (LI-COR Biosciences, Lincoln, NE) overnight at 4ºC. Blots were washed 

4x for 10 minutes each in TBST. Blots were then incubated in solution containing Odyssey 

anti-mouse IgG secondary antibody Alexa Fluor-IR800 nm (LI-COR) diluted 1:5000 in 

Odyssey blocking buffer for 1 hr and 30 minutes. Blots were finally washed 4x in TBST 

and read by the Odyssey Infrared Imaging System (LI-COR).  

A membrane representing a human multiple tissue protein blot was obtained from 

EMD Biosciences (Calbiochem, San Diego, CA). According to the manufacturer, the 

proteins on this blot were isolated from various tissues by preparing tissue homogenates in 

the presence of protease inhibitors. Proteins samples (75 μg) from each tissue were 

solubilized in SDS-lysis buffer and electrophoresed in a 4-20% SDS-polyacrylamide 

gradient gel, followed by electroblotting on PVDF membrane. This membrane was 

washed, blocked and then hybridized with a rabbit anti-human Spp24 polyclonal antibody 

at a dilution of 1:500. The membrane was washed with TBS containing 0.05% Tween-20 

(TBST) and then a fluorescent-conjugated (800nm) secondary antibody was added to the 

membrane at a dilution of 1:10,000. Following wash steps, the blot was visualized using an 

Odyssey Infrared imaging system (LI-COR). Alpha-tubulin was used as a housekeeping 

protein control.  

Differential Display RT-PCR 

Differential Display RT-PCR (DD) was performed using the RNAspectra kit 

(GenHunter), containing three one-base-anchored oligo-dT primers to subdivide the 

mRNA population, except they were labeled with 5‘-fluorescein. The use of three one-
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base-anchored primers reduced the redundancy and potential under-representation of the 

sub-population of mRNAs encountered by using either eight arbitrary 13mers or three 

degenerate two-base-anchored oligo-dT primers. With built-in restriction sites at the 5' 

ends of both anchored and arbitrary primers, the longer primer pairs produce highly 

selective and reproducible cDNA patterns. To promote high-efficiency reactions, 

amplicons were selected in the 50-150 base pair range.   

Briefly, samples were run in duplicate to reduce the number of false positives as a 

result of high signal to noise ratio often associated with the DD technique. An aliquot of 

200ng of total RNA was mixed with an anchor primer (anchor primers: 5’-

AAGCTTTTTTTTTTTG, 5’-AAGCTTTTTTTTTTTA, 5’-AAGCTTTTTTTTTTTC) and 

heated to 65°C for 5 minutes. The sample was transferred to a thermocycler and 

maintained at 37°C. Reverse transcriptase was added after 10 minutes and the reactions 

were incubated at 37°C for an hour. The generated cDNAs were then used in PCR 

reactions. The eight arbitrary primers (arbitrary primers: 5’-AAGCTTGATTGCC, 

AAGCTTCGACTGT, AAGCTTTGGTCAG, AAGCTTCTCAACG, 

AAGCTTAGTAGGC, AAGCTTGCACCAT, AAGCTTAACGAGG, 

AAGCTTTTACCGC) were used in combination with each of the anchor primers. PCR 

cycling was performed and the cycle conditions were: 40 cycles of 94°C for 30 seconds, 

40°C for 2 minutes, and 72°C for 1 minute.  

A 6% Accugel polyaccrylamide gel (National Diagnostics USA, Atlanta, GA) was 

loaded and run for approximately 45 minutes at 60 watts. Banding patterns were analyzed 

using a Typhoon AutoImager (Molecular Dynamics Inc., Sunnyvale, CA). Differentially 
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regulated bands were isolated from the gel and reamplified using the same combination of 

initial primers. The PCR fragments were T-A cloned into pGEM T-easy vector (Promega 

Corp., Madison, WI), isolated and sequenced. NCBI blast searches were used to analyze 

the obtained sequences. 

Histology 

 Rat kidneys were frozen in OCT embedding medium and sectioned. Confocal 

immunofluorescence was performed as previously described (Ramage, Urban et al. 2007) 

using the anti-Spp24 antibody and corresponding fluorescent-conjugated secondary 

antibody. H&E staining was performed on rat kidneys embedded in paraffin at the VCU 

Medical Center Pathology lab. 

Oligonucleotide Microarray 

Microarray was performed on the same RNA samples as were used in the DD 

experiment. LC and HC RNA samples were exposed to the Affymetrix Inc. (Santa Clara, 

CA), Rat Genome U34A GeneChip® Set, which probed for 7,000 known rat gene 

sequences plus 1,000 EST gene cluster sequences. The U34A GeneChips were hybridized 

in the presence of fluorescently labeled RNA from each treatment. The GeneChips were 

read and analyzed using an Affymetrix GeneChip Reader at the VCU Nucleic Acids 

Research facility. 

Hydroxyapatite Binding 

Media from cells transduced with a CMV promoter controlled Spp24 viral 

construct was collected after 6 days. 10 mls of media was placed onto a hydroxyapatite 

column and allowed to enter the column by gravity flow using a modified version of the 



    75 

 

protocol of Wecksler and Norman (Wecksler and Norman 1979). The media flowed 

through the column and was collected. The column was washed until the A280 of the wash 

coming off the column dropped to zero. The bound protein was eluted and collected by 

running 6M urea through the column. 10ul aliquots of the media, flow through, and eluate 

fractions were saved for Western blotting using an anti-Spp24 antibody as described 

above.  

Statistical Analysis 

Where it applies, results are expressed as the mean ± SE.  Significance was 

determined by analysis with an unpaired student’s t-test for two-group comparison; p<0.05 

were considered significant. 

 

Results 

Expression of Spp24 in Tissues and Cell Models 

 Spp24 gene expression had previously been demonstrated in bovine cortical bone 

and liver tissues, but no expression studies of Spp24 have been done in smaller lab 

animals. Using the annotated rat Spp24 cDNA sequence, we designed a TaqMan probe 

with the Applied Biosystems Primer Express v2.0 software package. Multiple tissues were 

harvested from three individual rats, which included; heart, kidney, spleen, stomach, bone 

smooth muscle, lung, thymus, small intestine, liver testes and the thyroparathyroid unit. In 

the case of bone tissue, we used whole femur, and we followed up this work by also 

analyzing epiphyseal ends of the bone and the central diaphyses of each bone. In the 

multiple tissue analysis, Spp24 gene expression was only detected in the liver, and 
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surprisingly, the kidney (figure 11A). No gene expression of Spp24 was detected in whole 

bone (figure 11A), femur ends or midshafts (data not shown). The relative gene expression 

of Spp24 from kidney was 1/3 the amount compared to liver (figure 11B). The lower limit 

of detection was 80 pg of RNA. It is possible that a low Spp24 gene expression level in 

bone tissue was undetectable by this measurement technique. 

 Given the small number of tissues that express Spp24 mRNA and the fact that 

Spp24 is a secreted protein, it is reasonable to predict that the protein localization is more 

widespread than its gene expression. This was tested with a multi-tissue blot of human 

protein source using a polyclonal anti-bovine Spp24 antibody that can cross-react with 

human Spp24 (figure 11C). Detection of Spp24 was nearly ubiquitous in all tissues and 

was observed as multiple size bands that were predominantly 55 kDa for most tissues. 

Brain tissue had a predominant protein band at approximately 45 kDa, while kidney had 

weak detection of a band at 55 kDa and a band strongly detected at 90 kDa. Various kidney 

and bone cell models also were utilized for Western blot analysis of Spp24 (figure 11D). 

Cellular protein was extracted in two ways. First, lysis buffer was added directly to the 

culture well following removal of the medium. This procedure allows for the inclusion of 

adhered extracellular matrix proteins with cellular protein content. In the second 

procedure, cells were lifted from the well by trypsin, washed with PBS and pelleted to 

remove the medium. Then the pellets were lysed for protein extraction. This second 

procedure was done to enrich the protein fraction with cellular protein content as opposed 

to extracellular protein content. Protein from both procedures was used in Western blots. 

Use of 30μg protein from the whole well lysis (first panel of figure 11D) resulted in 
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detection of 45 kDa sized bands in murine kidney epithelial cell models, MPCT and DKC-

8. A similar size band was also detected in human MG-63 osteoblast-like cells whereas in 

human SaOS2 osteosarcoma cells the detected band size was 55 kDa. No band was 

observed in the lane representing the pluripotent murine C2C12 myoblast cells. These 

myoblast cells can convert to osteoblasts under the correct conditions (Katagiri, 

Yamaguchi et al. 1994). In contrast, Western blot detection of Spp24 in MG-63 and C2C12 

revealed a 24 kDa protein band when the trypsin lysis procedure was used instead of whole 

well lysis (second panel of figure 11D). This demonstrates that MG-63 and C2C12 cells 

make at least a small amount of unprocessed Spp24. Presumably, secretion results in 

higher molecular weight moieties of Spp24. 

Regulation of Spp24 in the Rat Kidney  

Figure 12A depicts the three main protein components of the fetuin mineral 

complex, which include fetuin, matrix-gla-protein and Spp24 (Price, Caputo et al. 2002). 

Similar to fetuin, Spp24 contains a cystatin homology domain at its N-terminal side. Fetuin 

contains two such domains. Q-PCR of RNA isolated from rat kidneys under normal 

calcium (NC) and low calcium (LC) showed the up-regulation of Spp24 transcripts under 

LC (figure 12B). The RNA isolated from the kidney cortex of LC (hypocalcemic) and HC 

(hypercalcemic) rats was tested for differentially expressed genes involved in the 

regulation of calcium homeostasis by differential display (DD) RT-PCR (figure 12C). The 

DNA fragments correlating to several negatively and positively regulated mRNA 

transcripts were recovered, amplified, and sequenced. The band differentially up-regulated 

under LC conditions denoted by the arrow in figure 12C corresponds to Spp24. This 
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fragment yielded a partial sequence of Spp24 exactly matching 167 bases at the C-terminus 

when compared to the annotated rat Spp24 sequence previously published in GenBank.  

RNA from rat kidneys was also subjected to cDNA oligonucleotide microarray to 

identify differentially regulated genes in the LC versus the HC. Microarray showed a 5.6-

fold increase in Spp24 gene expression in the LC group (figure 12D) as compared to the 

HC group. In contrast to Spp24, OPN was down-regulated by hypocalcemia in the rat 

kidney (figure 12D). In our model several other 1,25(OH)2D3 dependent genes were also 

repressed as expected by the hypocalcemic condition in the LC group such as 24-

hydroxylase, Vitamin D receptor, calbindin, and Ca-ATPase. Therefore, an increase of 

Spp24 in the LC condition indicates a lack of regulation by 1,25(OH)2D3 on Spp24 gene 

expression in the kidney. 

cDNA Sequencing and Protein Structure of the Rat for Spp24 

 Using RNA isolated from rat liver we cloned out the rat cDNA for Spp24 using 

primers to the annotated sequence. The cDNA was sequenced revealing three additional 

nucleotides (figure 13A & C) not in the published sequence in GenBank. The additional 

nucleotides corresponded to an Arginine in the c-terminal portion of the protein (figure 

13B).  

Interspecies Post-Translational Modification Mapping of Spp24 

 Figure 14 depicts rat and mouse species of Spp24 both contain consensus sites for 

N-glycosylation just proximal to their SSEE domains. Most phosphorylation domains 

among all species analyzed (rat, bovine, human and mouse) appear to be via casein kinase 

II, followed by protein kinase C. Human and bovine Spp24 additionally have consensus 
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sites for phosphorylation by protein kinase A. Finally, the bovine Spp24 contains one site 

for possible tyrosine kinase phosphorylation, and both bovine and mouse forms of Spp24 

have consensus myristylation sites in their C-terminal domains.    

Localization of Spp24 in the Kidney 

 Transverse sections of the rat kidney illustrates cortex and medulla areas (figure 15 

A and D). Spp24 was detected only in the epithelial cells of the convoluted tubules of the 

cortex layer (figure 15 D). Staining was also absent in the collecting ducts (figure 15 E) 

and in the glomeruli of cortex sections (figure 15 F). 

Hydroxyapatite Binding 

 Western blot of conditioned media (lane 2), column flow through (lane 3), and 

eluate fractions (lanes 3-5) is shown in figure 16. The large amount of Spp24 seen in the 

blot entered the column and a majority bound though some is seen in the flow through 

(perhaps exceeding the binding capacity of the column). In the eluted material a band 

recognized by the anti-Spp24 antibody is seen in early fractions. The large volume of 

elution fractions accounts for the considerably smaller band in the elution than that seen in 

the conditioned media (lane 2). 

 

Discussion 

To date, as few as five papers directly relate to Spp24 and provide only minimal 

information about its functional purpose. From these studies Spp24 is described as a thiol 

protease inhibitor that affects an aspect of bone remodeling. In the present study, we make 

use of the first available antibody raised against bovine Spp24 to examine the tissue 
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distribution and protein regulation of Spp24 in several species. The antibody cross-reacts 

well with human, rat and mouse forms of Spp24. We also document that renal tissue along 

with liver are the predominant sites of Spp24 gene expression, but low amounts of protein 

were detected in renal and bone cell models. Intact 24kDa protein can be detected in 

myoblast precursors (C2C12 cells) and osteoblasts (MG-63 cells) if the cells are harvested 

free of the extracellular matrix component. Secreted Spp24 undergoes post-translational 

processing and is detected as higher molecular weight products in bone and kidney cell 

models and in a host of tissues. The predominant sizes of Spp24 protein, examined in 

mouse and human sample were 45-55kDa. One exception was forms of 55 and 90kDa in 

human kidney. The stage of differentiation may also be a factor since we observed a 45kDa 

protein in terminally differentiated MG-63 osteoblast like cells and a 55kDa protein in less 

differentiated SaOS-2 osteosarcoma cells.  

There is extensive tissue distribution of Spp24 in most if not all peripheral tissues. 

Based on this finding, we speculate that Spp24 has a broader role in vivo than previously 

understood. Spp24 associates with fetuin, matrix Gla protein (MGP) and osteopontin 

(OPN) in serum and is thought to participate in regulation of calcium homeostasis along 

with these proteins. Targeted mutation of either fetuin, MGP or OPN leads to 

complications involving heterotopic calcification of soft tissue organs (Jono, Ikari et al. 

2002; Schafer, Heiss et al. 2003; Jono, Ikari et al. 2004; Speer, Chien et al. 2005; 

Westenfeld, Schafer et al. 2007). However, Spp24 appears to be involved in processes that 

positively regulate bone ossification by cooperating with BMPs. We tested this concept by 

examining the regulation of Spp24 in kidney tissue exposed to extremes in blood calcium 
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concentration. Since OPN is vitamin D dependent for its expression and undergoes down-

regulation during hypocalcemic conditions we reasoned that Spp24 would follow a similar 

pattern of expression. In contrast, gene expression of the two related phosphoproteins were 

oppositely regulated with Spp24 being markedly increased in hypocalcemia. We 

additionally found Spp24 expression to be localized to the tubules of the kidney cortex and 

not in the medulla. 

Isolation of RNA from several rat tissues showed Spp24 expression mainly in the 

liver and kidney. The metabolic tissues are important producers of proteins that are 

released into the serum. Spp24 was not seen in bone however expression in bone has been 

previously reported in bovine tissue studies (Hu, Coulson et al. 1995). Although we did not 

see it in the rat, we saw human osteoblast cells in culture showed expression via Western 

blot. Accumulation of Spp24 protein in bone (Hu, Coulson et al. 1995), regardless of 

expression levels, is an important factor in bone development as reported by others 

(Behnam, Phillips et al. 2005). Western blot of human tissue using an anti-human Spp24 

antibody shows Spp24 is present in a myriad of tissues with a variety of molecular 

weights. It seems clear that there are numerous post-translational modifications that result 

in the variable sizes detected in the immunoblot.  

We have established that there is an additional previously unreported amino acid 

present in the rat Spp24 sequence. The importance of the additional arginine, if any, is 

unknown at this time. It is worth noting that the difference in published sequence may be 

due to the use of Sprague-Dawley rats whereas the GenBank sequence is published from 

Norway rats. 
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 Post-translational modifications of extracellular matrix proteins can play important 

roles in the proteins’ function. We suspect the multiple sizes of Spp24 seen in our Western 

blots results from post-translational modification. SIBLING family proteins, known to 

bind mineral in calcified tissue, are notably post-translationally modified and are related to 

Spp24 by the presence of a SSEE consensus sequence. Similar to SIBLING proteins’ 

interactions with mineral we found that Spp24 bound to hydroxyapatite. Binding is often 

associated with anionic residues perhaps relating a modification such as phosphorylation to 

the mineral binding abilites of Spp24 and suggesting a role of Spp24 in matrix calcification 

(Veis, Sfeir et al. 1997; Huq, Cross et al. 2005).   

This study provides evidence for multiple molecular weight forms of Spp24 

(principally 45-55kDa) that were detected in all tissues examined including liver, brain, 

lung, kidney, spleen, reproductive organs, heart and pancreas. The source gene expression 

of Spp24 was confirmed to be predominantly from the liver, but at least in rats, kidney is 

also a major organ for Spp24 expression and the level of expression increases in during 

hypocalcemia. The relationship of extracellular Spp24 to bone was reemphasized by the 

minimal detection of Spp24 protein in several bone, as well as kidney, cell models and the 

ability of Spp24 to bind hydroxyapatite. In conclusion, Spp24 is a multiply phosphorylated 

circulating molecule with potentially wide ranging effects on calcium homeostasis. 
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Figure 11. Tissue Distribution of Spp24  
 
Q-PCR of rat liver RNA shows the tissues expression Spp24 (A). Greater expression levels 
were seen in the liver (B). A Western blot of human tissue protein showed Spp24 was 
present in numerous tissues and migrated to several different sizes (C). Western blots of 
immortalized cell lines protein extracts showed the presence of Spp24 in kidney epithelial 
cells, bone cells and myoblasts (D). The protein extracted from immortalized cells resulted 
in different size Spp24 bands based on extraction method; lysis after trypsin treatment of 
cells resulted in a sample enriched in intracellular, not extracellular, protein and the 
subsequent protein was 24 kDa.  rSpp24 in figure D is a recombinant Spp24 protein used 
as a positive control. 
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Figure 12. Regulation of Spp24 Expression by Serum Calcium Levels 
 
(A) Homology of Spp24 to other bone-related secreted phosphoproteins is depicted 
showing the presence of cystatin domains in Spp24 and osteopontin (OPN). Phosphoserine 
residues in Spp24 may interact with calcium while MGP interacts with calcium via Gla 
domains. (B) Q-PCR of RNA from rat cortical kidney shows Spp24 is up-regulated by low 
serum calcium (LC) conditions compared to normal serum calcium (NC) levels. (C) A gel 
of differential display PCR from cortical kidney shows the differentially regulated band 
(arrow) corresponding to Spp24 under low calcium conditions (LC) as compared to high 
serum calcium (HC).  (D) An inverse regulation of Spp24 and OPN under low calcium 
conditions was found in microarray studies. 
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Figure 13. Sequence of Rat Spp24  
 
A cDNA from Rat liver RNA was generated by reverse transcription PCR and sequenced. 
The sequence showed the presence of an additional amino acid in the sequence that was 
not seen in the annotated sequence available from GenBank. Fig A is our complete cDNA 
sequence with the nucleotides encoding the additional amino acid in the box. Fig B shows 
the corresponding amino acid sequence with the additional amino acid indicated by an 
arrow. Fig C shows the DNA sequence chromatograph with the additional nucleotides 
underlined. 
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Figure 14. Post-Translational Modification Sites of Spp24 
 
Post-translational modification sites of the rat, bovine, human and mouse Spp24 were 
determined using FindMod and GlycoMod software available on ExPASy.com. 
Glycosylation, PKC-dependetn phosphorylation, PKA-dependent phosphorylation, casein 
kinase-II phosphorylation, and myristylation sites are all shown with the corresponding 
amino acid numbers of the computed sites.
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Figure 15. Localization of Spp24 in the Kidney 
 
Panels A, B and C show H&E staining of rat kidneys. Panels C, D and E show confocal 
imaging of sections stained with an anti-Spp24 antibody and an alexaFluor-488 secondary 
antibody taken at 10x zoom. Spp24 is present in the tubules of the kidney cortex though 
clearly absent from glomeruli (F). Spp24 was not seen in the medulla (lower unstained area 
of D)



    92 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



    93 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16. Hydroxyapatite Binding of Spp24 
 
Media from Spp24 transduced cells was placed onto a hydroxyapatite column. Aliquots of 
media, flow-through and eluted fractions were tested by immunoblot. The eluted fractions 
showed the presence of Spp24 as detected by the anti-Spp24 antibody. Molecular weight 
standards and corresponding weights are shown on the left.
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CHAPTER 3  

Secreted Phosphoprotein-24 (Spp24) Promotes Osteoblastogenesis but 

Requires BMP Ligand to Activate Runx2 and Osterix Transcription  

 

 

 

Abstract 

Spp24 is a secreted phosphoprotein shown to accumulate in bone that displays 

homology to both cystatin C and TGF-β receptor type-II. Spp24, based on several physical 

properties and on in vivo implantation studies, has been suggested to be the original bone 

morphogenetic protein which Urist described but never fully isolated. We undertook a 

study to examine the role Spp24 plays in the differentiation and function of osteoblasts by 

transducing primary human mesenchymal stem cells with adenovirus constructs expressing 

Spp24 and LacZ. The results showed 1835 of the 20,000 genes tested were regulated 

greater than two-fold. The expression of Spp24, though not resulting in expression of key 

osteoblast genes such as Runx2 or OSX did favor an osteoblast phenotype as did notable 

morphological changes and the presence of nodule formation. Spp24 appears to alter 

mesenchymal character by preventing numerous differentiation paths while it alters 

signaling pathways in a manner that primes the cells to react to stimuli that drive 
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differentiation. We examined how Spp24 affects BMP signaling by running parallel 

experiments that were supplemented by treatment with BMPs over the course of the 15 

days. This allowed examination of how Spp24 effects are altered by osteoinductive signals 

but also how BMP changes cells over longer periods than typically examined in the 

literature.  

 

Introduction 

Microarray has proven to be an invaluable tool in the study of osteoblast 

differentiation and the accompanying cellular changes of gene expression. Typically most 

studies utilize a relatively undifferentiated population of cells and provide the activating 

stimulus to initiate an osteoblast differentiation program with the recovered data 

illuminating the mechanism by which the stimulus acts (Huang, Yang et al. 2007). The 

studies have not only provided insightful information about how various stimuli act but 

also the behavior of mesenchymal stem cells (MSCs) (Marie and Fromigue 2006). MSCs 

have generated a lot of interest as they are easily isolated through bone marrow aspirates 

and have great potential with studies showing differentiation of MSCs into osteoblasts 

(Haynesworth, Goshima et al. 1992; Bruder, Jaiswal et al. 1997), adipocytes (Pittenger and 

Martin 2004), myocytes (Xu, Zhang et al. 2004), neurons and astrocytes (Sanchez-Ramos, 

Song et al. 2000; Hofstetter, Schwarz et al. 2002). Most of these studies in focus on early 

changes in MSC character as these are the initial steps in the determination of an 

osteoblastic fate.  
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Studies of osteoblast differentiation have implicated a large number of genes 

involved in the transition of cells to osteoblasts. Many studies have examined the changes 

that occur during bone morphogenetic protein (BMPs) induced differentiation 

(Korchynskyi, Dechering et al. 2003). Studies examining osteoblast differentiation in 

undifferentiated cells have shown multiple signaling pathways are involved in this 

complex process, indicating a complex signaling network with signaling crosstalk between 

Notch, Wnt and BMP pathways likely playing an important role (Canalis, Deregowski et 

al. 2005). Similarly, a large number of transcription factors have been shown to play 

important roles in altering the transcriptional activity of differentiating cells. Of principal 

importance are the transcription factors RUNX2 and OSX that are known to be essential to 

osteoblastogenesis (Komori, Yagi et al. 1997; Nakashima, Zhou et al. 2002).   

 Many signaling pathways have been implicated as regulators of osteoblast 

differentiation including Wnt signaling, hepatocyte growth factor (HGF), fibroblast growth 

factors (FGFs), and Notch. Wnt’s are critical to bone development as illustrated by the 

absence of bone in wnt conditional knockout mice; instead the animals developed only 

cartilaginous skeletons with osteoblasts that were not fully differentiated (Hu, Hilton et al. 

2005). Canonical Wnt signaling is activated by the binding of Wnts to a heterodimeric 

receptor complex composed of a G-protein coupled receptor, Frizzled, and low-density 

lipoprotein receptor related protein-5 or -6 (LRP5 or LRP6). Conflicting reports on the role 

of HGF have recently appeared in the literature. HGF has been shown to enhance 

osteoblastogenesis when adsorbed to hydroxyapatite surfaces (Zambonin, Camerino et al. 

2000; Hossain, Irwin et al. 2005). Recently, HGF has also been shown to negatively affect 
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BMP signaling in osteoblast differentiation possibly through the inhibition of receptor-

activated SMAD nuclear translocation (Standal, Abildgaard et al. 2007). The discrepancy 

between these reports is not fully understood however some of the difference is suggested 

to relate to the enhanced self renewal of MSC under transient treatment in some studies 

while longer studies with prolonged exposure are more affected by the inhibition of BMP 

signaling. Fibroblast growth factor 18 (FGF18) is an important factor in bone development 

as it enhances osteoblast differentiation and animals lacking FGF18 experience delayed 

bone development (Liu, Xu et al. 2002; Ohbayashi, Shibayama et al. 2002; Liu, Lavine et 

al. 2007). Notch signaling is another important pathway involved in osteoblast 

development that plays  

 Secreted phosphoprotein-2 (Spp24) is a secreted protein produced primarily in the 

liver and kidney that accumulates in the bone matrix (Sen, Walker et al. 1987; Hu, Coulson 

et al. 1995). The sequence of Spp24 reveals a cystatin homology domain in the N-terminal 

portion of the molecule that overlaps with a TGF-β receptor II homology (TβRII) domain 

(Hu, Coulson et al. 1995; Bennett, Khorram Khorshid et al. 2004). The C-terminal half 

contains a Spp24 signature domain conserved in over 20 species of vertebrates and the 

cartilaginous dogfish. Within the Spp24 domain is a SSEE sequence that is a conserved 

casein kinase recognition motif (Veis, Sfeir et al. 1997) and is also seen in SIBLING 

family proteins that play important roles in promoting matrix mineralization in the 

calcification of osseous tissues like bone and teeth (Wu and Veis 1990; Qin, Baba et al. 

2004; Huq, Cross et al. 2005). Previous work in this lab has shown up-regulation of Spp24 

in a study of the regulation of genes in the kidney under hypocalcemic conditions (Bajwa, 
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Horst et al. 2005). Recently, Benham, et al. showed that the TβRII domain of Spp24 

(called BMP binding peptide or BBP) when recombinantly produced in bacteria and placed 

in animal muscle pouches induced ectopic calcification and bone formation alone and co-

implantation of BMP-2 with BBP enhanced the native osteoinductive of BMP-2 (Behnam, 

Phillips et al. 2005). They contend (Behnam, Phillips et al. 2005; Dalgleish, Francis et al. 

2006) that Spp24 is Marshall Urist’s original bone morphogenetic protein/non-collagenous 

protein (BMP/NCP) (Urist 1965). The TβRII domain of Spp24 has been implicated in the 

regulation of TGFβ family cytokines such as BMPs while the effect of the Spp24 is unclear 

but homology suggests it may be important in matrix calcification in vivo. 

This study employed adenoviral over-expression of Spp24 as a means to investigate 

the long term effects of Spp24 on MSC differentiation to osteoblasts and on BMP-2/7 

heterodimer driven differentiation. After transduction we used microarray analysis at 15 

days to examine how the Spp24 over-expression changed the expression profile of these 

cells. Results showed changes in expression patterns that created a pre-osteoblastic 

condition in cells that while not fully committed to osteoblast differentiation had increased 

levels of genes associated with osteoblast differentiation and genes that prevented alternate 

pathways of mesenchymal cell differentiation.  

 

Materials and Methods 

MSC Isolation and Culture 

 Bone marrow aspirates were obtained from the femur of primary hip revision 

patients at the Virginia Commonwealth University/Medical College of Virginia Medical 
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Center via an IRB approved protocol. Bone marrow was transported to the VCU 

Orthopaedic Research Laboratory and combined with 2x volume of sterile saline and 

mixed by pipette. The bone marrow was layered over a Histopaque 1077 (Sigma) and 

centrifuged at 513g for 30 min at 4°C in a swinging bucket rotor with no brake. The layer 

in the gradient containing the mononuclear cells was collected by pipette and plated in 

plastic flasks for 48 hrs in DMEM Hi-glucose media containing 10% FBS and 1% 

penicillin/streptomycin. After 48 hrs the media was changed to remove non-adherent cells 

and fresh media with the addition of basic FGF at 2ng/ml (expansion media) was added. 

Cells were passaged three times before use in the following experiments.  

 For the generation of osteoblasts MSCs were cultured either in expansion media (as 

described above) or media containing 10 mM β-glycerol phosphate, 0.2 mM Ascorbic acid, 

and 10-8 M Dexamethasone (osteogenic media) for 14 days. Additional experiments were 

performed where Dexamethasone was replaced with 10ng/ml of BMP-2/7 heterodimer. 

Adenoviral Transduction 

 Mouse Spp24 cDNA and LacZ cDNA were cloned into CMV promoter controlled 

adenoviral constructs. The adenoviral constructs were used to transduce MSCs to a 

multiplicity of infection (MOI) of 100 viral particles per cell. Experimental groups 

examined Spp24 versus LacZ transduction as well as groups where both Spp24 and LacZ 

transduction was supplemented with 10ng/ml of BMP 2/7 heterodimer added with each 

change of media every 3 days.  

RNA Isolation 
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 RNA from virally transduced MSCs was collected using the TriZOL (invitrogen). 

After isolation contaminating DNA was removed from RNA samples using a 30 minute 

treatment with DNAse I at 37°C. RNA was stored in RNAse free DEPC-treated water. 

Microarray 

 RNA was hybridized to Affymetrix human U133A GeneChips for microarray 

analysis at the VCU Nucleic Acid Core Facility. Gene profiles were further analyzed using 

the Affymetrix GCOS v1.4 software to identify biological processes, molecular function 

and cellular component effects of treatments. 

 

Results 

Spp24 in Osteoblasts 

 MSCs were cultured 14 days supplemented with β-glycerol phosphate, ascorbic 

acid, and either BMP-2/7 or Dexamethasone to induce osteoblast differentiation (as seen 

by alizarin red staining in figure 17 A). These cells showed the presence of a smaller ~18 

kDa size band, as detected by Western blot (figure 17 B) with an anti-Spp24 antibody, in 

the osteogenic media cultured cells while control cells treated with expansion media for the 

14 days did not show a 18 kDa size band corresponding to Spp24 . 

Morphology and Histology 

 Alizarin Red staining was used to examine the presence of calcium deposits as a 

measure of matrix mineralization (figure 18 A). The Spp24-transduced group showed weak 

Alizarin red staining that was more than that seen with the LacZ control transduced group. 

Both of the virally transduced groups that were treated with BMP 2/7 heterodmer 
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displayed strong alizarin red staining after 15 days however there was no distinguishable 

differences between the two.  Alkaline phosphatase staining (figure 18 A), a marker of 

bone cell activity, was more intense when cells were transduced with an adenovirus 

containing Spp24 instead of LacZ, both between cells treated and untreated with BMP. In 

both alizarin red staining and alkaline phosphatase staining it appeared that Spp2 

transduction without BMP treatment and LacZ transduction with BMP treatment showed 

comparable staining and Spp24 adenovirus combined with BMP treatment showed a 

greater intensity of staining.Cells transduced with control LacZ virus displayed no distinct 

morphological changes over the course of the experiments. They remained in a long 

tubular shape and grew to confluence in evenly distributed and parallel aligned mats of 

cells. Spp24 transduced cells exhibited distinguishable changes in cell morphology. Cells 

were observed to undergo significant rounding over the approximately two week time 

course (figure 18 B). 

Cells coalesced and nodule formation was observed within the population of cells 

(figure 18 B&C). In cells treated with viral transduction and supplemented with BMP 2/7 

heterodimer the cells, both Spp24 and LacZ transduced, showed the presence of osteoblast 

characteristics with nodule formation and osteoblast morphology. Nodule formation was 

comparable between BMP and Spp24 however when there BMP-2/7 was added to Spp24 

there were more nodules seen than any other treatment. 

Microarray 

 In the experiment examining gene profile expression between Spp24 and LacZ 

transduced MSCs 57.2% of the 22,000 genes on the chip were present at detectable levels. 
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Of the detected genes 884 were up-regulated by at least 2-fold while 995 were 2-fold or 

greater down-regulated. Table 2 and 3 detail the most up- and down-regulated genes in 

these experiments. In addition to these there were also patterns of regulation as suggesting 

ectopic expression of Spp24 alters multiple aspects of MSC biology. Gene cluster analysis 

shows that among the genes classified in molecular functions, Spp24 affected MAP kinase 

activity, metal ion binding, cysteine-type endopeptidases, and protein serine/threonine 

kinase activity. Interestingly, among the genes clustered as biological properties there were 

numerous categories linked to osteoblast activity: osteoblast differentiation (up-regulation 

of TAZ; down-regulation of Msx, Runx2, and Osx), positive regulation of BMP signaling 

(up-regulation of BMPRII, Tribbles, Id2, and Id3), negative regulation of TGFβ signaling 

(down-regulation of Smad2, Smad3, TIEG, and Cerberus), and negative regulation of Wnt 

signaling pathway (downregulation of FGF18, Wnt5a, Axin, and APC). Interestingly there 

was also some negative regulation of BMP signaling with follistatin and chordin down-

regulated while HGF antagonist was up-regulated. The Notch signaling pathway also 

displayed positive regulation as Notch, Jagged, and Hey2 were up-regulated. Groups of 

genes associated with alternate differentiation pathways of MSCs were regulated; genes for 

chondrocyte (Sox9, COMP), adipocyte (PPARδ, C/EBPβ, adipsin), and myocyte (myosin, 

desmin) differentiation were all down-regulated.  

Tables 4 and 5 detail the most highly regulated genes from microarrays that looked 

at Spp24 transduction compared to LacZ transduction when both were supplemented with 

BMP-2/7 heterodimer. Collagen expression patterns changed as was seen by two highly 

regulated genes, COL5a3 and COL4a3, being up- and down-regulated, repectively. 
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HOXA11 is another up-regulated gene important in skeletal patterning and mesenchymal 

cell differentiation.   

  

Discussion 

 Spp24 was shown to enhance BMP signaling and had an intrinsic osteogenic 

activity in in vivo implantation experiments conducted by Behnam, et al. (Behnam, Phillips 

et al. 2005). They found an 18.5 kDa fragment of Spp24 in their isolation of bone proteins 

similar to the ~18 kDa size fragment of Spp24 that was seen as the MSCs were exposed to 

conditions leading to osteoblast generation. To understand this activity we employed viral 

transduction as a method of over-expressing Spp24 in undifferentiated MSCs. Examination 

of morphological changes showed that the expression of Spp24 led to the limited formation 

of nodules characteristic of in vitro osteoblast cultures (Nefussi, Boy-Lefevre et al. 1985; 

Bhargava, Bar-Lev et al. 1988). Similarly cells transduced with Spp24 showed weak 

Alizarin red staining compared to the control transduced cells. These preliminary 

indications suggest that the over-expression of Spp24 may be pushing the cells to a more 

osteogenic phenotype; however it is worth noting that the typical experiments driving 

undifferentiated cells towards osteoblasts using BMPs, dexamethasone, or other known 

osteogenic molecules result in these changes in a shorter amount of time and this may 

indicate Spp24 is not as potent an osteogenic factor as some of the classical inducers of 

osteoblastogenesis.  

 To analyze exactly how Spp24 affects these changes in the MSCs we utilized 

microarrays. While the hallmarks of osteoblast differentiation, up-regulation of the 
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transcription factor Runx2 and its accompanying downstream transcription factor Osx 

were not seen there were significant changes that activate or potentiate pathways that will 

do affect osteoblast activity. The down-regulation of Runx2 and Osx shows the cells were 

not differentiated to osteoblasts, the down-regulation of significant effectors of alternate 

differentiation pathways, notably myocyte, adipocyte and chondrocyte, suggest that Spp24 

may prevent these differentiation outcomes. An increase in TAZ demonstrates that Spp24 

regulates a key step in initial osteoblast differentiation. TAZ is considered a critical 

rheostat that inhibits adipogenesis in MSCs while preserving the self-renewal aspect of the 

early osteoblast. 

Numerous signaling pathways that have been implicated in osteoblast 

differentiation were seen to be regulated by Spp24 over-expression. Noteworthy among the 

regulated genes by Spp24 was the increase in Tribbles, a protein that affects cell cycle and 

migration control through its ability to target protein for proteasomal degradation. A 

Tribbles family member protein, Tribbles-3, was recently shown to interact with BMP 

receptor type II’s cytoplasmic tail domain, and upon ligand binding Trb3 is released and 

targets Smurfs for proteasomal degradation. The degradation of Smurfs enhances the 

stability of Smads and their BMP signaling activity. The up-regulation of Tribbles may 

provide a mechanism for the osteoblast-like character of MSCs transduced with Spp24. 

The overall picture of Spp24’s effects on MSC suggests a molecule that primes cells for an 

osteoblast phenotype despite not leading to fully committed differentiation while at the 

same time blocking alternate differentiation schemes.   
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 Overexpression of Spp24 with BMPs showed a number of similar genes, however 

there was a significant change that seemed to result in a more fully committed osteoblast 

cell. As seen in the table of highly regulated genes collagen expression patterns changed 

with COL1a1 also being up-regulated 2-fold. Additionally several MMPs were up-

regulated. TGFβ expression decreased 2.4 fold when BMP treatment was combined with 

Spp24 transduction.  

Spp24 is a secreted molecule that accumulates in the bone matrix and its function 

in bone is just beginning to be understood. It is predicted that Spp24 functions both 

independently of BMP ligands and in combination with BMPs once converted to a shorter 

active peptide. This study presents evidence for an important role of Spp24 in steering 

mesenchymal cell differentiation towards an osteoblast lineage. Additionally the 

interaction of Spp24 with TGFβ family ligands is an important function of Spp24, 

particularly relevant to bone mineralization is the interaction with BMPs. In conclusion, 

Spp24 appears to regulate early osteoblast differentiation by up-regulating the 

Notch/Jagged signaling pathway and by stimulating the rheostat gene TAZ. The combined 

effect of treatment of Spp24 with BMP accelerates BMP-mediated osteoblastogenesis and 

matrix mineralization.  
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Figure 17. Osteoblast Differentiation is Accompanied by a Conversion of Spp24 to 
Spp18 
 
Osteoinductive properties of Spp24 induced by Dex and BMP. MSCs were cultured in 
DMEM with 10% FBS, beta glycerophosphate, ascorbic acid and dex (10 -8 M) and 
BMP2/7 (10ng/ml) for 15 days. Treatments  were renewed every 3 days. Total cell extracts 
were used to analyze Spp24 expression. A) Osteoblast phenotype was examined  by  
alizarin Red staining that showed the mineralization of extracellular matrix B) Western 
Blot results revealed that a smaller form of Spp24 was upregulated by both dex and 
BMP2/7 treatments. Cells also showed morphological changes during these time period. 



    108 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    109 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 18. Effect of Spp24 Overexpression on Mineralization and Nodule Formation 
 
Effect of over expression of full length mouse Spp24 in MSC  following 15 days 
adenoviral transduction. A) MSC cells after third passage were transduced with lacZ and 
spp24 adenoviral contrruct. Adenoviral LacZ used as a control transduction to adenoviral 
spp24. After transduction MSCs were cultured in DMEM with 10% FBS, beta 
glycerophosphate, ascorbic acid and with or without BMP2/7(10ng/ml) for 15 days. 
Renewal of media was done  every 3 days interval. Results revealed that at day 14 mspp24 
expression induced significant osteoblastogenesis assessed by alkaline phosphatase and 
alizarin Red staining. B-C) Morphological changes during osteogenesis and average counts 
of bone forming nodules  per 10X power field. Adenoviral transduction was done either 
with LacZ control or Spp24 and both were treated vehicle and 10ng/ml BMP2/7 for 14 
days. Medium was changed every 3 days interval. Seven independent fields were selected 
to get an average. 
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Table 2. Genes Increased by Spp24 Transduction 

Genes highly up-regulated by Spp24 transduction compared to LacZ transduction of MSCs 
after 15 days. 



    112 

 

 
 
 
 
 
 
 

Accession No. Gene Symbol Fold Change 

NM_007345 Zinc finger protein 236 ZNF236 15.8 
NM_005768 Putative protein similar to Drosophila nessy  C3F 10.4 
NM_002021 Flavin containing monooxygenase 1  FMO1 10.2 
NM_080657 Radical S-adenosyl methionine domain containing 2  RSAD2 9 
NM_006887 zinc finger protein 36, C3H type-like 2 ZFP36L2 9 
NM_002317 Lysyl oxidase  LOX 8.8 
NM_003242 Transforming growth factor, beta receptor II TGFBR2 8.8 
NM_001007097 Neurotrophic tyrosine kinase, receptor, type 2 NTRK2 8.4 
NM_001850 Collagen, type VIII, alpha 1 COL8A1 8.2 
NM_001033026 Chromosome 19 open reading frame 6 C19orf6 8 
D38081 Thromboxane A2 receptor - 8 
NM_007368 RAS p21 protein activator 3 RASA3 8 
NM_002872 Ras-related C3 botulinum toxin substrate 2  RAC2 7.8 

NM_004587 Ribosome binding protein 1 RRBP1 7.6 
AF091627 p73-like tumor protein CUSP 7.6 
NM_016593 Oxysterol 7alpha-hydroxylase  CYP39A1 7.6 
U77949 Cdc6-related protein  HsCDC6 7.4 
AF074480 CMP-N-acetylneuraminic acid hydroxylase  - 7.4 
AF028333 Growth/differentiation factor-11   GDF11 7.2 
NM_002983 Small inducible cytokine A3  SCYA3 7 
NM_003999 Oncostatin M receptor  OSMR 6.8 
NM_002028 Farnesyltransferase, CAAX box, beta  FNTB 6.8 
NM_000201 Intercellular adhesion molecule 1 ICAM1 6.8 
D84140 Immunoglobulin light chain V region   maB56 6.8 
NM_001508 G protein-coupled receptor 39  GPR39 6.6 
NM_182487 Olfactomedin-like 2A  OLFML2A 6.4 
NM_003728 unc5 C  UNC5C 6.4 
AF044286 Histone macroH2A1.1 - 6.4 
NM_005623 Chemokine (C-C motif) ligand 8  CCL8 6.2 
NM_024609 Nestin  NES 6.2 
NM_002318 Lysyl oxidase-like 2  LOXL2 6.2 
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Table 3. Genes Decreased by Spp24 Transduction 
 
Genes highly down-regulated by Spp24 transduction compared to LacZ transduction of 
MSCs after 15 days. 
 

 



    114 

 

 

 

 

 

Accession No. Gene Symbol Fold Change 

NM_002825 Pleiotrophin PTN -11.8 
NM_018518 Minichromosome maintenance complex component 10 MCM10 -10.8 
NM_014246 Cadherin, EGF LAG seven-pass G-type receptor 1 CELSR1 -10.2 

NM_006515 SET domain and mariner transposase fusion gene SETMAR -9.6 
NM_001063 Transferrin  TF -9.2 
NM_004049 BCL2-related protein A1  BCL2A1 -9 
NM_002888 Retinoic acid receptor responder 1 (tazarotene induced) RARRES1 -8.8 
AK021983 cDNA FLJ11921 fis, clone HEMBB1000318 - -8.8 
NM_001147 Angiopoietin 2  ANGPT2 -8.8 
NM_003862 Fibroblast growth factor 18  FGF18 -7.4 
BC000527 Ewing sarcoma breakpoint region 1 - -7.4 
NM_018700 Zinc-binding protein Rbcc728  Rbcc728 -7.2 
NM_004543 Nebulin  NEB -7.2 
NM_001861 Cytochrome c oxidase subunit IV COX4I1 -7 
NM_022780 Required for meiotic nuclear division 5 homolog A RMND5A -7 
NM_004876 Zinc finger protein 254  ZNF254 -6.6 
NM_024115 Hypothetical protein MGC4309  - -6.6 
NM_021647 Microfibrillar-associated protein 3-like MFAP3L -6.6 
X58987  D-1 dopamine receptor.  - -6.6 
NM_016619 Placenta-specific 8  PLAC8 -6.2 
NM_025054 Valosin-containing protein (p97)/p47complex-interacting 

protein p135  
VCIP135 -6 

NM_015094 Hypermethylated in cancer 2  HIC2 -6 
M27830 28S ribosomal RNA gene - -5.8 
NM_004364 CCAATenhancer binding protein alpha  CEBPA -5.8 
NM_025154 unc-84 homolog A   UNC84A -5.8 
NM_014950 Zinc finger and BTB domain containing 1  ZBTB1 -5.8 
xu43g07.x1 cDNA FLJ12327 fis, clone MAMMA1002140 - -5.4 
 X80821 Ribosomal protein L18a homologue. - -5.4 
NM_014645 Centrosomal protein 135kDa  CEP135 -5.2 
 U26662 Neuronal pentraxin II  NPTX2 -5.2 
NM_002090 GRO3 oncogene  GRO3 -5.2 
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Figure 19. Regulation of Genes by Spp24 Transduction 
 
Shown is the regulation of specific genes as found in our microarray study. Genes are 
grouped by similarity of function. TGF-β signaling pathways were decreased; Notch and 
Jagged genes regulating differentiation were decreased; Wnt signaling was decreased; 
HGF signaling was increased; FGF-18 signaling was decreased; Osteoblast progression 
was halted; markers of myeloid fate were decreased; bone remodeling was increased; Early 
osteoblast development was seen with Groβ increasing to delay mineralization; and finally 
matrix development was increased. These gene regulation patterns show how Spp24 alters 
MSC differentiation holding cells in a pre-osteoblast state 
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Table 4. Genes Increased by Spp24 + BMP Treatment  
 
Highly up-regulated genes in cells transduced with Spp24 and treated with BMP-2/7 
compared to cells transduced with LacZ and treated with BMP-2/7.
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Accession No. Gene Symbol Fold Change 

NM_002155 Heat shock 70kD protein 6  HSPA6 19.8 

NM_007345 Zinc finger protein 236 ZFP236 12.8 

NM_0022144 Myodulin protein  LOC64102 11 

M27830 28S ribosomal RNA gene - 10.6 

U88968 Alpha enolase like 1  ENO1L1 10.6 

NM_005733 RAB6 interacting, kinesin-like  RAB6KIFL 10.6 

NM_005523 Homeo box A11  HOXA11 10.2 

NM_018492 PDZ-binding kinase PBK 10 

NM_001034 Ribonucleotide reductase M2 polypeptide RRM2 10 

NM_014750 discs, large homolog 7  DLG7 9.8 

X51757 Heat-shock protein HSP70B HSP70B' 9.8 

NM_002421 Matrix metalloproteinase 1 MMP1 9.6 

NM_018136 Abnormal spindle homolog microcephaly associated ASPM 9 

NM_000361 Thrombomodulin  THBD 9 

NM_004887 chemokine (C-X-C motif) ligand 14  CXCL14 8.6 

BC003186 GINS complex subunit 2  - 8.6 

NM_001927 Desmin DES 8.6 

NM_003318 TTK protein kinase TTK 8.2 

NM_015719 Collagen, type V, alpha 3 COL5A3 8.2 

NM_005397 Podocalyxin-like  PODXL 8.2 

AF274954 PNAS-29 - 8.2 

D88357 CDC2 delta T - 7.8 

NM_004417 Dual specificity phosphatase 1 DUSP1 7.8 

NM_006240 Protein phosphatase, EF hand calcium-binding domain 1  PPEF1 7.8 

AL117508 Epidermal Langerhans cell protein LCP1 - 7.6 

NM_030945 Complement-c1q tumor necrosis factor-related protein CTRP3 7.4 

M10098 18S rRNA gene - 7.2 

U36189 p311 protein hP311 7.2 
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Table 5. Genes Decreased by Spp24 + BMP Treatment  
 
Genes down-regulated in cells transduced with Spp24 and treated with BMP-2/7 compared 
to cells transduced with LacZ and treated with BMP-2/7.
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Accession No. Gene  Symbol Fold Change 

NM_002825 Peiotrophin PTN -13 

NM_138618 Rhesus blood group, CcEe antigens RHCE -12 

NM_005000 NADH dehydrogenase 1 alpha subcomplex, 5 NDUFA5 -10.4 

NM_031366 Collagen, type IV, alpha 3 COL4A3 -10 

AK022215 cDNA FLJ12153 fis, clone MAMMA1000458 - -9.6 

NM_001508 G-Protein Coupled Receptor 39 GPR39 -9.4 

NM_0022049 G-Protein Coupled Receptor 88 GPR88 -8.6 

NM_003236 Transforming growth factor, alpha  TGFA -8.6 

NT_005612 Chromosome 3 genomic contig, reference assembly - -8 

M60333 Human MHC class II HLA-DRA - -8 

NM_080740 Suppressor of hairy wing homolog 1 SUHW1 -8 

NM_002276 Keratin 19 KRT19 -7.8 

U47054 Mono-ADP-ribosyltransferase  htMART  -7.6 

NM_003810 Tumor necrosis factor superfamily, member 10  TNFSF10 -7.6 

NM_004967 Integrin-binding sialoprotein IBSP -7.4 

NM_007360 killer cell lectin-like receptor subfamily K, member 1  KLRK1 -7.4 

NM_004139 Lipopolysaccharide-binding protein  LBP -7.4 

U32500 Type 2 neuropeptide Y receptor - -7.2 

NM_021778 A disintegrin and metalloproteinase domain 28 ADAM28 -7.2 

NM_013314 B cell linker protein  SLP65 -7 

NW_922162 Chromosome 4 genomic contig - -7 

NM_020904 Pleckstrin homology domain-containing, family A member 4 PLEKHA4 -7 

NM_003566 Early endosome antigen 1 EEA1 -6.8 

NM_003619 Protease, serine, 12 (neurotrypsin, motopsin) PRSS12 -6.8 

U57059 Apo-2 ligand - -6.8 

AL133386 Bone morphogenetic protein 5 BMP5 -6.6 

NM_002125 Major histocompatibility complex, class II, DR beta 5 HLA-DRB5 -6.6 

NM_000882 Interleukin 12A  IL12A -6.6 

NM_016619 Placenta-specific 8 PLAC8 -6.6 
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Figure 20. Spp24 Effects on MSCs 
 
Spp24 transduction of MSCs elicited responses that blocked activation of critical 
osteoblast transcription factors RUNX2/CBFA1 and OSX. The effect of Spp24 on several 
important pathways in MSC differentiation are shown 
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CHAPTER 4 

Conclusion and Future Directions 
 

 

 

 Studies in the literature have shown that Spp24 is both a protein that accumulates in 

bone and has a major effect on bone formation. We have examined the novel discovery of 

Spp24 in the kidney and described its expression in numerous tissues and cell lines. 

Additionally, we have investigated the effect of Spp24 on mesenchymal stem cells (MSCs) 

and how Spp24 alters BMP signaling on MSCs. These studies have provided great insight 

into the role or roles of Spp24 in vivo. 

 Investigations into the role of low calcium regulating genes in the kidney cortex led 

to the discovery that Spp24 is highly up-regulated under low serum calcium conditions. 

The previously unreported expression in the kidney cortex was strengthened by evidence 

of Spp24 seen in Western blots of kidney epithelial cells as well as in confocal microscopy 

showing expression in the kidney tubules. An interesting finding in Western blots of 

different cell models of both kidney and bone cells was the presence of higher size forms 

of Spp24. Sequence analysis showed there is a likelihood of multiple post-translational 

modifications including glycosylation, phosphorylation, and myristylation. There was also 

significant amount of protein seen in numerous tissues when a blot of multiple human 
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tissues was probed with the anti-Spp24 antibody. The presence in multiple tissues is not 

entirely surprising considering Spp24 is a secreted molecule that is part of a serum protein 

complex, but it does raise the question of what purpose that complex and Spp24 might 

serve in some of the distant tissues.   

 Sequencing of the rat Spp24 from liver RNA showed an additional base not present 

in the sequence published in GenBank. Clearly we will need to examine this further and 

report the results. The published sequence is for Rattus Norvegicus while we used 

Sprague-Dawley rats which could be a reason for the difference and it would be useful too 

compare sequences of RNA isolated from both animals. Also it would be necessary to 

sequence RNA from more animals to confirm our results. As a final step we need to 

express our cDNA in cells in culture before a sequence can be reported.  

 Spp24 has been found by both Senn, et al. and Behnam, et al. to be osteogenic and 

we investigated how Spp24 causes bone formation using microarray. Increased 

mineralization of cells cultured in vitro and distinct morphological changes accompanied 

the over-expression of Spp24 in MSCs. The unusual finding was the lacking of 

commitment of MSCs treated with Spp24 to an osteoblast lineage (no up-regulation of 

Runx2 or Osx) but instead there was a general trend to prevent full commitment to any 

lineage while instead activating other osteoblast related genes. The findings suggest Spp24 

may be a molecule that causes cells to be primed to receive osteogenic signals. Our current 

understanding of Spp24’s role in osteoblast differentiation is depicted in Figure 22. This 

activity of Spp24 is particularly interesting in a matrix protein that has also been shown to 

interact with BMPs. The method(s) of how Spp24 causes these cellular changes is still a 
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critical step that must be elucidated. Analysis of the sequence of Spp24 suggests many 

possible domains may play a role in this activity. Additional work in our lab has shown a 

dual effect of Spp24 on BMP activity; early activity represses BMP signaling while late 

potentiates BMP signaling. Accompanying the enhancing activity is the transition from 

larger molecular weight forms to a smaller ~18 kDa form.  
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Figure 21. The Role of Spp24 in Osteoblast Development  
 
We believe Spp24 may act to in subtly different ways to promote the transformation of 
undifferentiated MSCs to osteoblast precursors where Spp24 holds these non-terminally 
differentiated cells. The combination of additional growth factors and the proteolytically 
digested 18 kDa form of Spp24 (Spp18) could then promote complete commitment to 
terminal osteoblastogenesis. 
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 Investigating how Spp24 acts seems an area full of potentially exciting future 

directions for study. Clearly important are how Spp24 acts differently in its larger or 

smaller forms. Similarly, how the conversion to a smaller form occurs is important as well 

and may be related to the proteolytic cleavage necessary for the activation of SIBLING 

proteins (Qin, Baba et al. 2004). Based on the formation of an ~18.5 kDa form of Spp24 

during osteoblast differentiation it seems likely that a protease produced during the 

commitment program of MSCs to osteoblasts may be involved in this mechanism. 

Numerous MMPs and other proteases are produced that may occupy this role.  

 We have generated numerous site-directed mutants based on an analysis of a 

sequence comparison of Spp24 from numerous species of vertebrates. These mutants will 

provide a mechanism to investigate a number of aspects of Spp24 biology. Mutants that 

block hypothesized cleavage sites that might be involved in the generation of a smaller, 

more osteogenic 18 kDa form could be vital to understanding how the conversion of forms 

alters Spp24’s effect on differentiation and signaling. Additionally, mutants were 

generated to address how possible phosphorylation sites may alter how Spp24 affects 

mineralization in culture. We looked at both sites shown to be possible phosphorylation 

sites and the conserved SSEE domain related to SIBLING proteins’ functions. Also, we 

will look at how mutating the TGFβ receptor domain and disrupting the structure will 

affect Spp24 activity.  

 One additional avenue for future directions is to employ transgenic animals to 

investigate the role of Spp24 in vivo. We are beginning to look at the generation of 
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transgenic and knockout animals. The generation of full length and ~18 kDa form 

transgenic animals with the genes expressed in bone via a collagen promoter could 

demonstrate the differences between the forms and how they affect bone. Knockout 

animals will likely exhibit decreased bone formation or mineralization. There may also be 

distant effects such as soft tissue calcification based on the function of Spp24 in the fetuin 

mineral complex.  
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APPENDIX A 
 

 

Bacterial Protein Expression 

 A cDNA sequence of human Spp24 was placed in the pQE-60 vector (Qiagen) for 

bacterial expression. To incorporate the Spp24 cDNA into the vector an Nco I restriction 

site was engineered at the 5’ end of the mature Spp24 (without the native start codon and 

the signal peptide) and a BamH I site was engineered just at the 3’ end of the sequence 

(except for the stop codon so that the bacterial protein product would contain the 6x His 

tag from the vector sequence). The engineered sites allowed incorporation of the cDNA 

into the vectors’ existing restriction sites as well as eliminating the signal peptide and 

termination codon from the sequence so that the protein would not contain the signal 

peptide just like the mature protein following secretion from eukaryotic cells. The removal 

of the termination codon allowed the incorporation of a 6x His tag.  

 To express the protein the M-15[pREP4] strain of E. coli were transformed with the 

pQE-60/hSpp24 plasmid. M-15[pREP4] cells contain the pREP4 plasmid which confers 

kanamycin resistance as well as containing the Lac repressor (alternatively, another E. coli 

strain, SG13009[pREP4], also contains the pREP4 plasmid and can be used as a suitable 

expression host). IPTG is used to turn off the lac repressor and allow expression. A single 

colony was chosen and grown overnight in LB media containing ampicillin (50 µg/ml). 
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The followin day LB media was inoculated with portions of the previous night’s cultures. 

The cultures were then grown at 37º C with shaking until they reached an OD600 = 0.6 

absorbance units. Once they reached OD600 = 0.6, IPTG was added to turn off the 

repressive function of the lac repressor and allow expression of the protein. The bacteria 

were then allowed to express the protein for 3 hrs. 

Cultures were then pelleted by centrifugation. The pellets were resuspended in 

20mM phosphate buffer. Bacteria were lysed in a cell breaker. The lysate was centrifuged 

to pellet cell debris and insoluble material. The soluble fraction was saved to be run on a 

gel. The pelleted insoluble material was resuspended in 6M urea and the insoluble material 

was again pelleted by centrifugation. The proteins remaining in the 6M urea were placed 

on a Ni-sepharose column to be separated by affinity chromatography based on the 

interaction of the 6x His tag with the Nickel. After the protein had entered the column by 

gravity flow, 6M urea was used to wash the column. Washing was performed with 

sufficient volume to remove unbound additional protein as seen by a drop in the 

absorbance (A280) of column effluent to approximately the same absorbance as for 6M 

urea. At this point the protein was removed from the column by putting 6M urea 

containing EDTA. Fractions of the eluate were collected and also ran on a gel. The 

fractions containing the large bands of protein as evidenced on SDS-PAGE gels were 

pooled and dialyzed.  

 During expression of human recombinant Spp24 we found that the protein was 

largely insoluble and this fact often made isolation and utilization of Spp24 difficult. To 

demonstrate the protein was expressed and present in the insoluble material bacteria were 
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transformed, grown and induced. At the indicated time points a portion was taken, spun 

down, the supernatant decanted and the pellet was frozen. When samples had been 

collected over the whole time course the pellets were thawed and a sufficient volume of 

BugBuster (Novagen) reagent was added to solubilize most proteins. Following addition of 

BugBuster the insoluble material was pelletted by centrifugation. No Spp24 was found in 

the soluble portion (not shown). To look at the insoluble material laemelli buffer was 

added to the pelletted material and samples were boiled for 10 min prior to electrophoresis. 

The samples were run, along with a sample from uninduced bacteria as a negative control. 

The gel was run and transferred to a nitrocellulose membrane. The membrane was 

incubated with an antibody raised against bovine Spp24 protein. An infra-red fluorescent 

secondary antibody was used to detect the protein. The blot was scanned using the Li-Cor 

Odyssey Imaging System. We found that following induction with IPTG expression of the 

protein was only seen in the insoluble portion.  

We isolated the protein in large quantities and set about finding a suitable method 

to isolate a protein that could be soluble and properly folded. Initially we tried several 

buffers but none we able to resolubilize the protein. Based on the acidic isolation of Spp24 

from tissues, specifically bone, we tried a citrate buffer at a pH of 2.5 but were still unable 

to solubilize Spp24. The proteins were solubilized in the buffer at a pH of 2.5 but the pH 

was raised to greater than 6 so that the necessary interactions between the 6xHis tag and 

the column could occur and allow binding of the protein to the column. Citrate did not 

work as a resolubilization buffer. As urea appeared the only suitable way to achieve 

binding of our protein to the column we sought ways to dialyze the eluted protein into 
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other solutions and maintain solubility after isolation. Dialysis against phosphate buffer 

and water both resulted in protein precipitation. We tried to slowly change the surrounding 

solution from 6M urea to a buffered solution by adding dropwise a phosphate buffer 

solution (we alternatively added the citrate buffer as well) in sufficient volume to remove 

the urea and leave the protein in dialysis in the buffer solution. This did not achieve our 

goal either resulting in protein precipitation after the buffer was slowly changed overnight 

at 4°C.  

While we were able to achieve expression of the human Spp24 protein in bacteria 

we were not able to successfully solubilize the protein in any solution other than 6M urea. 

As other aspects of this project, namely adenoviral expression began to gain traction we 

shifted our focus from recombinant expression in bacteria due to the lack of a suitable 

solution to resuspend Spp24. This avenue may be an important method to consider at a 

later juncture as colleagues have reported implanting the insoluble material in animals and 

achieving ectopic bone formation, however with the systems now in place we are currently 

looking to investigate how this molecule acts before continuing with bacterial expression.   
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Figure 22. Expression of Spp24 as an Insoluble Protein 
 
Western blot of insoluble material from bacterial expression cultures of Spp24 after isolation 
using BugBuster reagent. Notice the lack of a 24 kDa band in the uninduced lane as well as the 
recombinant Spp24 provided from a collaborator.  
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Figure 23. Expression and Isolation of Recombinant Human Spp24  
 
Spp24 was not soluble in phosphate buffer (lane 4).  Spp24, after solubilization in 6M urea and 
being loaded onto the column, was seen in eluate fractions #2 -5. Attempts to solubilize the 
protein in citric acid were unsuccessful.  
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1. Ladder 
2. 10 ul of uninduced cultures 
3. 1 ul of uninduced cultures 
4. soluble protein from isolation 
5. column input 
6. pellet not solubilized in 6M urea 
7. column flow through 
8. fraction #2 
9. fraction #3 
10. fraction #4 
11. fraction #5 
12. solubilized protein (citric acid) 
13. flow through from column (citric acid) 

 
Spp24 was not soluble in phosphate buffer (lane 4).  Spp24, after solubilization in 6M urea and 
being loaded onto the column, was seen in eluate fractions #2 -5. Attempts to solubilize the 
protein in citric acid were unsuccessful.  
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APPENDIX B 
 

 

Site Directed Mutagenesis 
 

A pCDNA3 construct containing mouse Spp24 with a 3x HA C-terminal tag was 

used as a template for site-directed mutagenesis reactions. Site-directed mutagenesis was 

performed using the Stratagene Quik-change II Site-Directed Mutagenesis kit (Stratagene) 

and protocol with minor modificatitons. Briefly, PCR reactions were set up with 125ng 

each of forward and reverse mutagenesis primers. 50ng of the pCDNA3 construct was 

used as template in a reaction with 2.5 U of PfuUltra HF DNA polymerase. The reaction 

conditions were as follows: an initial step of 30 secs at 95° C, followed by repeated cycles 

of 95° C for 30 sec, 55° C for 1 min, and 68° for 12 min. The cycles were performed 20 

times for single amio acid mutations and 22 for multiple amino acid mutations. A final step 

at 68° C was performed for 10 min then Dpn I restriction enzyme (10U) was added to the 

reactions and incubated at 37° C for 1 hr to digest the methylated template DNA. The 

reactions were transformed into competent bacteria and plated overnight on LB/ampicillin 

plates at 37° C. Colonies were selected and plasmid preps made for sequencing using 

primers to the CMV promoter and the BGH poly-A sequences of the pCDNA3 construct. 

Primers were generated with a Tm ≥ 78°C using the Stratagene QuikChange® Primer Tm 

Calculator available online at www.stratagene.com/QPCR/ 
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tmCalc.aspx. Primers are listed in the accompanying table.  

 Mutations were chosen based on the material provided by a colleague showing the 

presence of highly conserved residues throughout Spp24 in over 20 species.  

Particularly we focused on residues known or likely to be phosphorylated including sites 

around the casein kinase II phosphorylation recognition motif and residues that may affect 

Spp24 structure including the TGFβ receptor type II homology domain. The mutation of 

N46 to W based on the discovery of an active, ~18 kDa form. An 18kDa form would likely 

be cleaved, from the N-terminus at somewhere around N46 and because N46 is conserved 

in all 22 species we chose this residue. We mutated it to a tryptophan in an effort to 

prevent any proteolysis at this side by hindering possible proteases’ interaction through the 

incorporation of such a bulky residue. We also mutated L54 to alanine in an effort to 

completely change the character of this highly conserved amino acid. In examining 

possible phosphorylation we mutated S137 and T84. as a control for mutagenesis 

experiments we took a serine, S80, not shown to be phosphorylated and mutated it as well. 

We mutated two cysteines shown to be involved in two distinct disulfide bond interactions, 

C96 and C127. C127 is of particular interest based on Behnam et al.’s results that 

linearized BBP did not induce bone formation when implanted in vivo. We last examined 

the function of the SSEE domain by mutation S137, S137 and S138 together, S138 and 

E139 together, and finally E140.  
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Figure 24. Site Directed Mutagenesis 
 
Part A illustrates the sites mutated (denoted with asterisks) on the mouse Spp24. Part B 
shows the primers used to generate the site-directed mutated pcDNA clones are listed in 
the table. The codons corresponding to the mutated amino acid(s) are highlighted in red.  
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