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 Medulloblastoma is the most common brain tumor in children, accounting 

for 10-20% of primary central nervous system (CNS) neoplasms and 

approximately 40% of all posterior fossa tumors.  It is a highly invasive 

embryonal neuroepithelial tumor that typically arises in the cerebellar vermis and 

has a tendency to disseminate throughout the CNS early in its course. The 

molecular mechanisms of the disease largely remain uncharacterized, as the 

clinical treatment is still associated with mortality and severe side effects.   The 
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development of a clinically relevant in vivo model is important not only to further 

understand the disease but also to provide a method with which to test novel 

therapeutics.   This study quantified the volumetric growth of a human 

medulloblastoma (VC312) in the athymic nude mouse cerebellum using Gd-

enhanced T1-weighed MRI scans.  Additionally, a medulloblastoma flank tumor 

model was used to explore the in vivo effect of the oral anti-cancer agent that 

inhibits Akt activation in the phosphoinositide 3-kinase (PI3K) pathway.  In the 

orthotopic intracerebellar tumor model, perifosine significantly increased the 

survival of treated mice while qualitatively reducing leptomeningeal 

dissemination.  In the flank model, perifosine effectively suppressed the 

volumetric growth, decreased activation of the AKT pathway and reduced cellular 

proliferation in treated mice.  

  
 



Chapter 1 

Introduction 

 

Brain Tumors 

The brain tumor is for both patients and physicians one of the most 

dramatic forms of human disease.  While primary brain tumors only account for 

2% of cancer deaths, their occurrence is responsible for 7% of years of life lost 

before the age of 70 (Kaye and Laws 1995). An estimated 22,070 new cases of 

primary malignant brain and central nervous system tumors were diagnosed in 

the United States in 2009 (12,010 in males and 10,060 in females). This 

represents approximately 1.5% of all primary malignant cancers diagnosed in the 

United States in 2009 (CBTRUS, 2009). 

A primary brain tumor is an accumulation of abnormal cells that starts 

within the cranial vault.   A brain tumor can arise from the tissue of the brain, 

around the brain, nerves, or glands.   Tumors can destroy normal brain cells via 

inflammatory response, causing increased intracranial pressure, or by direct cell-

to-cell contact (Buckner et al., 2007).   Brain tumors are classified by where they 

appear in the Central Nervous System (CNS), which includes the brain and spinal 

cord, the kind of tissue that is involved, the cellular aggressiveness or grade, and 

malignancy (Buckner at el 2007).   The WHO classification is a common 
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neoplasm scaling system that was ratified in 1993 to classify each tumor based 

on its cell of origin (Kleihues et al 1993). 

The difference between normal and neoplastic growth occurs with the 

disruption of several crucial elements of central nervous system (CNS) 

development.  First, normal cell processes such as modulation of cell 

proliferation, differentiation and cell death are altered.  Second, the alteration of 

the microenvironment in and around the cell changes important regulatory cues. 

Thirdly, the combination of these alterations generates a new combination of 

signals that have an effect on the cells intrinsic biologic activity, leading to the 

abnormal growth (Kaye and Laws 1995). 

The most common malignant brain tumor in children is the 

medulloblastoma (MB) (CBTRUS, 2009), a highly invasive embryonal 

neuroepithelial tumor that arises in the cerebellum and tends to disseminate 

throughout the CNS early in its course (MacDonald, 2010). Unfortunately, one-

third of MB tumors remain incurable - while multimodality treatment has 

improved survival, these interventions nevertheless have several damaging 

effects in the long run.  Novel therapies include small molecule inhibitors such as 

perifosine, which has proven effective in peripheral cancers.  Improved tumor 

classification will help improve directed treatment.   An improved model of the 

tumor will include assessment of molecular profiles of the MB and estimated 

growth rates (Gilbertson et al., 2008). 
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Medulloblastoma 

 

Epidemiology: Infratentorial Primitive Neuroectodermal Tumor 

The classification of Primitive Neuroectodermal Tumor or PNET was 

proposed in 1973 by Hart and Earle.  While this distinction was useful in 

developing clinical protocols to treat a range of CNS embryonal tumors, 

especially in children, medulloblastomas demonstrate a confounding diversity, 

unlike other PNETs.  For example, the architectural and cytological features of 

the nodular versus desmoplastic medulloblastoma histologic subtypes are unique. 

The MB’s separation from other PNETs has evolved across editions of the WHO 

(World Health Organization) classification of CNS tumors (1993, 2000, 2007) and 

reflects the MB origin and nature.  The MB is now recognized as a distinctive 

tumor defined by its morphologic and genetic attributes (Gilbertson et al, 2008).   

Recent genetic data out of the Arthur and Sonia Labatt Brain Tumour Research 

Centre, Toronto, Ontario, Canada further enforces this idea by dividing the tumor 

into four distinct molecular subtypes (Northcott et al., 2010). 
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By definition the MB arises in the posterior fossa, specifically in the 

cerebellum (Rorke et al., 1983).  It develops in the vermis and often invades and 

occupies the fourth ventricle; further invasion can involve the brain stem 

(Halperin et al., 2005).   MB accounts for 13% of childhood primary brain and 

CNS tumors (CBTRUS 2010), accounting for approximately 540 diagnosed cases 

a year in the US.  The peak age of incidence is 7 years and the tumor is more 

often seen in boys than girls.   The WHO classifies the medulloblastoma as one 

of five embryonal tumors due to its primitive cellular structure, and grade IV 

because of its aggressive tendency to metastasize (Kleihues et al., 1993).  

Approximately 30% of pediatric patients present with cerebrospinal fluid (CSF) 

metastasis (Fouladi et al., 1999). 

 

Clinical and Laboratory Findings 

Symptoms 

Medulloblastoma patients most commonly present with a three-month 

history of headaches, morning vomiting and lethargy.  Due to the tumor’s classic 

location in the fourth ventricle, patients may experience clumsiness and problems 

with simple tasks.   These initial symptoms are secondary to increased 

Intracranial Pressure (ICP).  Initial signs of ICP are subtle and difficult to 

diagnose.  School age children often show decreased academic performance and 

personality changes. 
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As the tumor increases in size and begins invading the surrounding 

cerebellum, the characteristic symptoms appear.  A particularly common 

symptom is progressively worsening ataxia mainly in the lower extremities (T. 

MacDonald et al., 2009).  For infants, the symptoms are more difficult to 

diagnose.   Mainly, infants demonstrate  difficulty  in  gazing upward and appear 

to have a forced downward eye deviation, the “setting-sun sign” (R.J. Packer et 

al., 1999).   

While MB typically disseminates early in the course of the disease, symptoms of 

the metastases are not characteristic to patient presentation!(Halperin EC et al., 

(2005).   

Diagnosis 

Most  patients with medulloblastoma are diagnosed with a CT scan or 

MRI.  The tumor will appear as a “solid, homogeneous, isodense to hyperdense, 

contrast-enhancing, midline cerebellar mass” (Zimmerman et al., 1978).   The 

MRI is useful for determining the anatomic origin, extent of the disease and 

ruling out cerebellar astrocytoma and ependymoma, which appear similar on the 

CT scan (MacDonald et al., 2009).   
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Figure 1-1. T1-weighted, Contrast-enhanced MRI of a 4-year-old with 

medulloblastoma.  Note the enhanced mass within the fourth ventricle. Image 
taken from Polkinghorn, Figure 1 (2007). 
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Pathology 

Found in the cerebellum, the MB is typically a highly cellular, soft, friable 

tumor composed of cells with deeply basophilic nuclei of variable size and shape, 

sparsely discernible cytoplasm, and abundant mitoses. With the desmoplastic 

subtype, the tumors appear lobulated, sharply demarcated and firm, due to 

reticulin and collagen deposition, when excised surgically (Rosai et al. 2004). 

MBs show a strong tendency to disseminate through the cerebrospinal pathways 

and form tumors of variable size along ventricular surfaces, in the subarachnoid 

space, or along nerve roots.   They have been found to grow “en plaque” 

adjacent to brain or spinal cord (R. Packer et al. 1999).   In various cases, 

Homer-Wright Rosettes, which are ring-like accumulations of tumor cell nuclei 

around a neuropil-containing or fibrillary core, are present.   Varying levels of 

neuronal and glial differentiation are present, suggesting the cell of origin has 

the potential for multiple states of differentiation (T. MacDonald et al. 2009). 

 

Molecular biology/ Pathogenesis of Medulloblastomas 

Medulloblastoma typically arises in the vermis of the cerebellum during 

stages of cerebellar development. The cerebellum is the site of a greater density 

of neurons than the cortex and involves complex signaling pathways during 

development. A common source of medulloblastoma development is an aberrant 

signal from the Sonic Hedgehog (Shh) or Wingless (Wnt) pathway.  These 
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signaling molecules are glycoproteins that are secreted from the Purkinje cell 

layer (PCL) of the cerebellum during cerebellar evolution.  In normal 

development, the Shh or Wnt signal from the Purkinje cells communicates with 

the granule cells in the external granular layer (EGL) to differentiate and migrate 

through the PCL to the internal granular layer (IGL) where they form neurons.  It 

has been proposed that medulloblastoma develops when there is an aberrant 

Shh or Wnt signal from the Purkinie cells, causing the granule cells to divide 

uncontrollably without proper differentiation and migration.    Medulloblastoma is 

interesting because the mutations cause variable tumor histology with tumor 

cells that range from completely undifferentiated to extensively nodulated and 

advanced neuronal differentiation (Fan et al., 2008).  

 

Histology 

The medulloblastoma can divided into four different subtypes based on it’s 

histology; Classic, Desmoplastic, Anaplastic and Extensive Nodularity.  The classic 

MB is believed to be Wnt pathway derived and comprises 65% of all diagnoses.   

The classic histology shows densely packed cells with hyperchromatic nuclei and 

the cells appear to be mostly undifferentiated (Polkinghorn et al. 2007).   

Apoptosis is frequent, whereas areas of necrosis are less common (Kleihues et 

al. 1997). 



! "#!

The desmoplastic subtype is associated with a mutated patched-1 

(PTCH1) gene and overactive Shh, making up 25% of all MBs (Polkinghorn et al. 

2007).  The histology shows characteristic pale islands with abundant reticulin 

and collagen, reduced cellularity, rarefied fibrillar matrix and increased apoptosis 

(Rosai et al. 2004). 

The anaplastic or large cell MB shows large, round nuclei with prominent 

nucleoli and large areas of necrosis.  This subtype shows considerable cytologic 

overlap and appears to constitute a unified entity.   Usually high mitotic rates, 

typically abundant apoptotic cellular remains may form “confluent lakes and 

serpiginous seams” (Rosai et al. 2004).   It has been shown that the anaplastic 

subtype incorporates multiple or an accumulation of mutations, with an 

association with decreased survival; it makes up only 5% of MBs (Brown HG et 

al. 2000). 

The extensive nodularity subtype (MBEN) appears to be a variation of the 

desmoplastic subtype with extensive nodularity and advanced neuronal 

differentiation. This subtype is typified by the linear streaming of rounded, 

neuron cell bodies, and tumor cell nuclei within amassed cytoplasmic processes 

(Rosai et al 2004). Defined by the WHO as MB with “intranodular nuclear 

uniformity on a desmoplastic background” (Giangaspero et al., 2007)., this  

subtype is found mostly in infants, is associated with a good prognosis and 

makes up 5% of all MBs (Giangaspero F et al., 1999). 
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Figure 1-2. Histologic Subtypes of Medulloblastoma. Classic MB with densely 
packed, hyperchromatic nuclei.  Cells appear to be undifferentiated (A), 

Desmoplastic MB with abundant reticulin and collagen (B), Anaplastic / Large Cell 
(LCA) MB with large, round nuclei, prominent nucleoli and large areas of 
necrosis(C), and Extensive Nodularity MB with extensive nodules and advanced 

neuronal differentiation (D).  Images taken from Rosai: Surgical Pathology 9th 
Edition (2004). 
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Molecular Subtypes 

 

Recent studies performed by Paul Northcott and colleagues at the 

University of Toronto Hospital for Sick Children indicate that medulloblastoma 

has four distinct molecular subtypes.   Using Affymetrix and SNP genotyping 

arrays they identified the following subtypes: WNT, SHH, Group C and Group D.   

Each subgroup had a ‘signature’ gene that was over-expressed that was 

identified by commercial antibodies.  The genes and their associated subgroup 

are: DKK1 (WNT), SFRP1 (SHH), NPR3 (Group C) and KCNA1 (Group D) 

(Northcott et al. 2010). 

Treatment  

The current treatment regimen includes surgery, aggressive 

chemotherapy, and relatively high doses of craniospinal radiation therapy. 

Despite these therapies, 5-year survival is at best 60% to 80%, and moreover, 

these therapies affect the developing central nervous system causing memory-, 

attention-, motor function-, language-, and visuospatial deficits (Ribi et al. 2005).    
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Models of Medulloblastoma 

Clinically relevant animal models are needed for the understanding of 

tumor biology and testing novel therapies in medulloblastoma.  The literature 

documents many experimental models of MBs, as described below.  

In vitro 

 In vitro studies are commonplace in research laboratories and allow for 

exploration of tumor cell invasiveness and its causative mechanisms.   Ranger et 

al, used five distinct MB cell lines in 3-D collagen gel assay to assess tumor 

aggressiveness in vitro.   While the three dimensional analysis of the MB cell lines 

effectively maintains the complex relationships between tumor cells in a 3-D 

environment, the model lacks the unique in vivo interactions of the CNS.   

Transgenic Mice 

 Current models of MB transgenic mice have problems with failure to 

generate high tumor incidence and variable latency.   A current model developed 

by Hatton, Villavicencio, Tsuchiya et al.(2008), involves the production of a 

Smo/Smo homozygous mouse, in which a constitutively active form of the 

Smoothened gene is expressed under a granule neuron precursor (GNP)-specific 

promoter.  This medulloblastoma model shows increased tumor incidence, 

predictable tumor latency and displayed a leptomeningeal dissemination of MB 

cells to the brain and spine.  The model appears to recreate the highly 

aggressive and invasive nature of the human disease.   GNPs normally undergo 
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massive expansion during CNS development and their proliferation is regulated 

by the Shh and Notch signaling pathways. The Shh binds to the PTCH receptor 

on GNPs and derepresses the Smoothened receptor, which activates the Shh 

target transcription.  The results of this mouse model producing tumors with 

multiple features of clinically encountered medulloblastoma suggests that 

mutations of this pathway are implicated in the formation of medulloblastoma 

(Hatton, Villavicencio, Tsuchiya et al. 2008).   While the transgenic model is a 

valuable tool for research, it does not incorporate the various types of mutations 

found in human MB tumors.  Further, creating transgenic mice is expensive, is 

not easily reproducible and does not use human tumor-derived cultured cells.  

Therefore, the study of human tumors is impossible with this model. 

Knock Out Mice 

 In knock out mice, an endogenous gene is replaced with a gene that does 

not function correctly.  The mouse is said to be homozygous or heterozygous 

defective depending on whether both or one, respectively, of the homolog genes 

are defective.  This method of engineering mice can be faulty if the target gene 

plays a role in development.  This causes the mice to die before birth or shortly 

thereafter, which is ineffective for research.   A technique for generating 

conditional knockouts has been created to alleviate this problem by turning off a 

particular gene after it has played its role in embryogenesis.   The use of 

genetically engineered mice are valuable to researchers because they allow the 

discovery of which cell signaling pathways play a role in the formation of MB.   
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While the signaling pathways activated in a mouse tumor can be similar to those 

activated in the human disease, there will be distinct differences between the 

human and mouse MB.  Therefore, a mouse model of human tumor-derived cells 

is still necessary.    

Flank Tumor Model 

While the cerebellum is the “true” environment of the MB, a flank tumor 

model has a faster course, is more easily observable, and more tightly controlled 

regarding tumorigenicity and growth parameters.  Subcutaneous flank 

inoculation of athymic nude mice was chosen for this study in addition to 

orthotopic implantation in the cerebellum (see below), because it models a non 

permissive growth environment in which tumor cells must appropriately sense 

and respond to their surroundings to maintain viability, and provides an efficient 

manner of direct tumor growth observation (Pullen, 2010).   Therefore, the effect 

of therapeutic treatment could be compared against it’s effect in mice following 

intra-cerebellar  implantation of tumor cells. 

Orthotopic Model of Medulloblastoma in Mouse Cerebellum 

The orthotopic tumor models present an amount of complexity superior to 

classical pathological models. The implantation of tumor cells in their original 

tissue allows development of tumor comparable to human tumor with production 

of metastasis and interaction of tumor cells with surrounding tissue.   This in situ 

model can provide a reproducible, reliable and objective method of studying the 
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effects of therapeutics.   Xiumei Zhao recently established that orthotopic 

xenograft mouse models of MB replicated the key histopathological phenotypes 

and invasive growth characteristics of the original patient tumors.   This group 

showed that serially passed MB cell lines maintain molecular characteristics for at 

least three generations, thereby proving that xenograft tumors are molecularly 

accurate (Zhao et al. 2010). This further demonstrates the necessity of 

developing a clinically relevant model of the medulloblastoma to examine new 

therapies that can decrease debilitating therapeutic side effects and treatment 

failures that plague patients of MB.   

We designed experiments using this information with the intent of 

creating a molecularly accurate, human tumor-derived medulloblastoma model, 

studying the growth of the disease in the cerebellum, and defining a growth 

curve for MB to enable evaluation of potential new therapeutics for treatment of 

the disease.    

Therapeutics 

Perifosine 

 AKT, also known as Protein Kinase B, is a regulator of cellular survival 

pathways aberrantly active in many human cancers including MB, contributing to 

cellular growth, proliferation and survival (Gills and Dennis, 2009).  These 

characteristics also make AKT an attractive target in cancer therapy and many 

inhibitors of AKT are being developed. Perifosine is an oral AKT inhibitor 
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currently being tested in phase 2 clinical trials in peripheral cancers. It is an 

alkyl-phospholipid, small molecule inhibitor that acts as a competitive inhibitor of 

AKT-kinases. The in vitro effects of the drug have been studied extensively in our 

lab by Anil Kumar (Kumar et al., 2009).  It was found that Perifosine treatment in 

vitro led to the rapid induction of cell death in MB cell lines, with marked 

suppression of phosphorylated AKT in time- and concentration-dependent 

manners (Kumar et al. 2009).  The in vitro studies performed in our lab in 

combination with the proven effectiveness of perifosine in peripheral cancers 

made it an ideal candidate for this study. 
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Chapter 2 

 

Hypothesis and Specific Aims 

Rationale: Thorough examination of many models of medulloblastoma has not 

shown that an existing model can easily reproduce a human tumor-derived 

othrotopic model of the disease.  Tumor volumes provide an objective method of 

studying the tumor growth and effects of therapeutic agents.  The debilitating 

side effects and treatment failures demand new/improved therapies.   We 

attempted to create a medulloblastoma model in the nude mouse cerebellum 

that mimics the molecular fidelity, subtype and histology of the human derived 

tumor.  Further, we compared this model to Perifosine-treated mice. 

 

Hypothesis I: Human cultured medulloblastoma tumor cells can be induced to 

grow in the cerebellum of athymic nude mice to create an orthotopic model. 

 Specific Aims:  

1. Establish effective delivery and placement of tumor inoculum 

into the cerebellum. 

2. Establish a xenograft tumor line with a highly reproducible 

growth pattern in vivo. 

3. Determine the histologic and molecular subtype of 

medulloblastoma grown in the cerebellum. 
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Hypothesis II: Tumor volume can be measured accurately using MRI to 

determine the volumetric growth of the medulloblastoma. 

 Specific Aims: 

1. Objectively determine the volume of the tumor from MRI scan 

data. 

2. Determination of in vivo growth pattern of primary 

medulloblastoma in mouse cerebellum. 

Hypothesis III: Orthotopic model can be used to demonstrate the effectiveness 

of therapeutics in an in situ model. 

 Specific Aim: 

1. Validate the effective suppression of target signaling molecules 

and volumetric growth in vivo after Perifosine treatment. 

!
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Chapter 3 

Methods 

  

All animal experiments were approved by the Committee for the Care and 

Use of Laboratory Animals at Virginia Commonwealth University.  Female 

athymic nude Fox n1 mice (Harlan, Indianapolis, Indiana) with an average 

weight of 18 to 22 grams were used for all infusions of medulloblastoma cells.  

Stereotactic Infusion 

Female athymic nude mice were anesthetized by inhalation administration of 0.3 

µL/min isoflurane and maintained in an anesthetized state with 0.2 µL/min 

isoflurane during the surgery.   Lubricating veterinary ointment was applied to 

the eyes and the animal was placed on a heating pad in a stereotactic frame.  A 

1 cm midline incision was made at the scalp, centered approximately at lambda.   

An infusion burr hole was stereotactically created 1.5 mm posterior, 3.0 mm 

lateral to lambda using a fine drill bit for all infusions.   A 22s-gauge neede 

attached to a 25 µL Hamilton syringe driven by a syringe pump (Bioanalytical 

Systems, West Lafayette, Indiana) was lowered 3.5 mm below the surface of the 

skull for cerebellar infusions and remained in the cerebellum parenchyma for 5 

minutes before the infusion.   Five minutes after the infusion, the infusion needle 

was slowly raised 1 mm every minute until out of the cerebellum.  The burr holes 
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were sealed with sterile bone wax.   The incision was then closed with Surgi-lock 

2oc (Meridian Animal Health, Omaha, Nebraska), averaging 2 drops along the 

length of the incision and held together for 20 seconds.  The mouse was placed 

under a heat source and monitored until alert and mobile.    Mice had access to 

water containing acetaminophen (1.6mg/mL) (McNeill-PPC, Inc, Fort 

Washington, PA) for three days following initial dose of buprenorphine (0.05-

.1mg/kg, S.C.) immediately following tumor cell infusions for pain alleviation 

during anesthetic recovery.   The recovery method is important due to the 

severely impaired immune systems of these mice. 

 Six µL of 60,000-cells/ µL in plain DMEM (Invitrogen, Carlsbad, CA) was 

infused into the right cerebellum at a flow rate of 0.25 µL/min for 24 minutes.  

Cell implants were permitted to grow for 1 week before MRI scanning to confirm 

tumor formation.  Tumor growth was assessed again at 14 and 21 days via MRI 

T1-weighted imaging, DWI and water mapping techniques.  Twenty-one days 

post-implantation was chosen as a humane endpoint to reduce prolongation of 

potential distress in the animals, since it is a time-point prior to when subject 

mortality would be expected (28-30 days).  Animals were monitored daily for 

signs of pain and distress and if discovered, the animals were euthanized.   

Cerebella were collected and sent to the Department of Anatomic Pathology at 

Virginia Commonwealth University, Richmond, Virginia.  Cerebellum gross 

sections containing intact tumor were then sectioned and subjected to 
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neuropathological analysis to determine volume of tumor and extent of tumor 

cell infiltration of normal cerebellar tissue. 

Subcutaneous Flank Tumor Inoculation 

Animals receiving flank inoculations were not anesthetized.  Cell suspensions 

were prepared in culture medium free of additives.  Target area for inoculation 

was the back, midline, with needle angled in the posterior direction of the 

mouse.   The target area was prepared with an isopropyl swab.   A maximum of 

200 µL total suspension (1,000,000 to 4,000,000 cells) were injected via a 28ga 

needle after tenting the cutaneous layer.   The needle was allowed to remain in 

place for several seconds after injection to reduce inoculate backflow.  A sterile 

cotton swab was applied in the target area to reduce potential bleeding.   Flank 

inoculation with medulloblastoma cells is expected to produce palpable tumors 

within 6-8 days.  Tumor volume was assessed at least twice a week afterward.  

Tumor volume was not allowed to exceed 2.5cm^3 or 10% of subject body 

mass. Mice bearing flank tumors were observed daily for ulceration and necrosis.  

If noted, the mice were euthanized.    

Magnetic Resonance Imaging 

 Each mouse to be scanned was anesthetized by intraperitoneal 

administration of 100mg/kg Ketamine + 10mg/kg Xylazine (1 : 4).   Lubricating 

veterinary ointment was applied to the eyes and the animal was placed under a 

heating source.    Gd-DTPa was injected I.V. via tail vein for MRI to monitor 
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tumor growth.   Each mouse was placed in an acrylic imaging tube, secured via 

plastic ear bars, and fitted with a surface coil.  Images were acquired with a 2.4 

T, 40-cm bore magnet (Bruker Medical, Inc., Billerica, MA) equipped with a 12 

cm inner-diameter, actively shielded gradient insert  (maximum gradient 

strength: 25 G/cm).   An actively decoupled RF coil set was used for RF 

excitation/reception and was comprised of a 7 cm inner-diameter “birdcage” 

design resonator and a 2 cm diameter circular surface coil.    

T1 images 

 A two-dimensional T1 imaging series was generated with a spin echo, 

echo-planar imaging sequence preceded by an inversion recovery preparation 

period using a hyperbolic secant inversion pulse.  Data was obtained on 3 

coronal sections are 20 mm square and at a thickness of 2.5 mm.  Inversion 

recovery times were: 30, 60, 150, 300, 700, 1300, and 2500 msec. 

Derivation of Human Derived Tumor Cells 

 Human Medulloblastoma xenograft derived from a tumor of a 4-year old 

male patient.   Established under approved research protocols, and characterized 

in our laboratory  (Pediatric Neuro-Oncology Laboratory, Virginia Commonwealth 

University).  Samples of tumor were first obtained to allow full neuropathologic 

evaluation and diagnosis, as required for clinical management of the patient’s 

disease.  The site of origin of all tumor samples was cerebellum.  Cells were 

grown in DMEM supplemented with 10% heat-inactivated fetal bovine serum, 
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glutamine, and 1% penicillin-streptomycin solution at 37*C temperature with 5% 

CO2 in a humidified incubator.   All tissue culture reagents and supplements 

were obtained from Gibco BRL (Grand Island, NY) unless otherwise noted.   

Monolayers of tumor cells were typsinized, counted on a hemacytometer and 

viability was assessed by trypan blue exclusion.   Cells were washed twice in 

phosphate buffered saline (PBS) and concentration was adjusted appropriately 

(Graf et al. 2005). 

Determination of Tumor Volume from MRI 

 The three-dimensional volume of a tumor determined from a two-

dimensional MRI scan uses the equation for the volume of a spheroid.  In this 

equation, the volume is equal to four times the radius cubed, all divided by 

three.  Replacing the radius with the diameter divided by two, and making the 

diameter cubed equal to the width of the tumor times the height of the tumor 

times the width of the MRI slice, gives a simplified equation for volume.  The 

volume of a spheroid can be estimated as the width of the tumor times the 

height of the tumor times the slice width, all divided by two (!/6 being 

approximately !).   
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Quantification of VC312 mRNA levels  

 Total RNA was isolated from VC312 tumor tissue using TRIzol reagent, 

using the manufacturer’s protocol (Invitrogen, CA) and standard extraction 

protocol (Sambrook and Russell, 2001).  To prepare tissue extracts for RNA 

isolation, flash frozen pieces were ground to a fine powder with a frozen mortar 

and pestle prior to being added to TRIzol reagent. RNA was quantified using 

spectrophotometry to assess concentration of the RNA in the extracts and 

treated with RQ1 DNase (Promega, Madison, WI) using the manufacturer’s 

protocol.   

Western blot analysis for phosphorylated and total AKT 

 Cultured adherent cells in T-75 flasks were washed with PBS and 

incubated with 1 ml of ice-cold RIPA lysis buffer (50 mM Tris-HCl, 150 NaCl, 

0.5% SDS, 1% sodium deoxycholate, 1% Nonidet p-40) for 5 minutes on ice 

with gentle agitation.  Cells were scraped from flasks, sheared with 26.5 gauge 

needle and centrifuged at 16000 rpm for 30 minutes at 4°C.   Supernatant was 

collected and stored at -80°C until use.  Alternatively, frozen tumor tissue 

samples from primary medulloblastoma samples were thawed and suspended in 

800 !L ice-cold RIPA buffer containing protease inhibitor cocktail (Calbiochem, 

San Diego, CA) and mechanically homogenized.  The homogenized tissue was 

incubated at 4°C for 15 minutes and centrifuged at 16000 rpm for 30 minutes at 
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4°C.   Protein supernatants were aliquoted and stored at -80°C until use.  

Proteins were quantified using the Lowry method and BioRad DC reagent 

(BioRad, Hercules, CA) using the manufacturer’s protocol.  A BSA (Pierce, 

Rockland, IL) standard curve was used (25!g/ml to 2000!g/ml range).   Equal 

amounts of protein were loaded onto Bis-Tris 4-12% density gradient gels 

(Invitrogen, Carlsbad, CA) for SDS-PAGE at 120 V using the manufacturer’s 

power source and protocol (Novex).   Proteins were transferred (1 hour at 30V) 

onto nitrocellulose (Invitrogen) and incubated with 15 ml blocking buffer [5% 

bovine milk in Tris-buffered saline (50 mM Tris, pH 7.6, 150 NaCl) plus 0.05% 

Tween-20] for 1 hour at room temperature with gentle agitation.  Primary 

antibody [anti-Phospho-AKT (1:2000), Pan-AKT (1:2000) and anti-beta-actin 

(1:2000)] were added to 10 ml blocking buffer and incubated overnight at 4°C 

with gentle agitation.  Membranes were washed with rinse buffer [Tris buffered 

saline (50 mM Tris, pH 7.6, 150 NaCl) plus 0.05% Tween-20] for 6 x 5 minutes 

with vigorous agitation.   HRR-conjugated secondary antibody was added to 10 

ml blocking buffer (1:3000, ) and incubated for 1 hour at room temperature with 

gentle agitation.   Membranes were washed as before and developed using 

enhanced chemiluminescence (ECL) reagents (Amersham Biosciences, 

Piscataway, NJ) and the manufacturer’s protocol.   Immunoreactivity was 

visualized by exposure to autoradiography film (Marsh) and was developed using 

an X-OMAT developer (Kodak, Rochester, NY).  For quantitative analysis, optical 
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densities of autoradiographic bands were measured using ImageQuantTM 

software (Amersham Biosciences, Piscataway, NJ).   

Determination of Tumor Volume from Caliper measurements 

 The volume of subcutaneous tumor volumes is an important tool in 

assessing disease growth and effectiveness of therapeutics.  Manual calipers are 

used as a noninvasive technique for measuring tumor volume.   The 2 longest 

perpendicular axes of each xenograft tumor were measured to the nearest 0.1 

mm by an investigator familiar with collecting caliper measurements of xenograft 

tumors in mice. The depth was assumed to be equivalent to the shortest of the 

perpendicular axes, defined as y (Tomayko et al, 1989; Euhus et al, 1986).  

 Xenograft Tumor Volume = xy2 / 2. 

In Vivo Analysis of Effects of Perifosine on VC312 Tumor Growth 

 Groups of mice were inoculated with VC312 tumor cells as described 

previously.  When the mice reached post-inoculation day 15 with measurable 

tumors, perifosine-containing (36 mg/kg/d) or placebo drinking water was 

refreshed every 48 hours for up to 20 days by (n = 4 mice per group).  An 

amount of 15 mg of Perifosine was weighed and dissolved in 100 mL of sterile 

water.  Average daily water consumption was 5 ml per day, resulting in an 

average daily dose of 36 mg/kg/d or 252 mg/kg/wk.   The dimensions of the 

resulting tumors were determined at least three times per week using a digital 

caliper, and the tumor volume (cubic millimeter) was calculated as described 
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above.  The mice were sacrificed by asphyxiation with regulated CO2, and the 

tumors were excised, snap frozen in liquid nitrogen then transferred to a freezer 

at –80°C, until use. Protein extracts from the tumors were used to assess the 

phosphorylation status of AKT. To determine the effect of perifosine on survival, 

we counted the days from the date the treatment (perifosine or control) was 

begun to the time the control cohort of mice were sacrificed or to the end of the 

perifosine treatment or until euthanasia, as described previously (Zhijie et al, 

2010).  
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Chapter 4 

 

Results 

 

 

Creation of Intracerebellar Medulloblastoma Murine Model 

 

 The Medulloblastoma cell line VC312 was derived from a tumor of a 4-

year-old male patient. The primary culture (VC312) of MB was derived from a 

tumor of a 2-year old male patient treated at the Virginia Commonwealth 

University Health System’s Medical College of Virginia Hospital under an IRB 

approved protocol. Briefly, samples of the tumor were first obtained to allow full 

neuropathologic evaluation and diagnosis, as required for the clinical 

management of the patient’s disease. The sterile dissection of tumor biopsy was 

dissociated and plated in 6-well tissue culture plates and expanded in DMEM/F12 

medium supplemented with 1% N-2 supplement (Invitrogen), 5% FBS, 20 ng/ml 

recombinant human EGF and 10 ng/ml recombinant human bFGF (Beckton 

Dickenson). VC312 cells were subsequently maintained in DMEM (with L-

glutamine) supplemented with 10% FBS. 

 

Volume of Tumor Injection 
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 The proper volume of inoculum had to be determined in order to induce 

reliable tumor formation within a relatively brief time course, but without 

undesirable adverse effects on the recipient animals.  It was decided that roughly 

10% of the total cerebellar volume would be an acceptable maximum initial 

tumor cell infusion, so as to avoid adverse effects of the relatively rapid infusion 

process.  Thus, based upon the average athymic nude female mouse cerebellum 

volume being approximately 60 $L (Airey et al. 2001), we concluded that 6 $L 

would be the volume of the tumor inoculum.   The tumor cell concentration for 

the inoculum was determined from previous experiments performed in our lab as 

being a maximum concentration without blocking the fine needle of the Hamilton 

syringe (Nottingham 2008).  This concentration is equal to 50,000 cells per $L, 

which amounts to 300,000 VC312 cells per injection.    

Establishment of tumor inoculum into cerebellum 

 Our lab has completed orthotopic cancer experiments in the past but 

never in the cerebellum.   Therefore, proper stereotactic coordinates using the 

athymic mouse skull sutures had to be established.  Using the Mouse Brain Atlas 

(mbl.org)(Figure 4-1) it was determined that 1.5 mm posterior from Lambda, 

3.0mm lateral and 3.0 mm deep would place the inoculum in the right 

hemisphere of the posterior lobe of the cerebellum.  

The growth of VC312 xenograft tumor in the cerebellum was confirmed 

with MRI (Figure 4-2) and dissection of the mouse brain.  Once the growth of 
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the human tumor-derived cell line was confirmed, the development of an in vivo 

growth pattern for a primary medulloblastoma in the mouse cerebellum could 

begin.  

Hematoxylin and Eosin Staining 

 Hematoxylin and Eosin (H&E) stains were performed on representative 

formalin-fixed, paraffin embedded tissue sections from representative animals 

from all stereotactic infusion parameters by the VCU Anatomic Pathology 

Research Services.   

Tumor Bearing Mice 

 Consistent results were observed among all tumor-bearing mice, and as 

with the stereotactic infusions, the region of interest was the right cerebellum.   

 On MRI (Figure 4-2), Gd-enhanced T1-weighted imaging qualitatively 

showed tumor enhancement in the cerebellum and around the brain stem.    
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Figure 4-1.  Scaled Image from Mouse Brain Atlas.  Image illustrates the location 
of Lambda (lj) as the intersection of the sagittal and lambdoid sutures.  The burr 

hole was positioned: 1.5 mm anterior, 2.5 mm lateral to lambda, and the 
inoculum was positioned 3.0 mm ventral to the burr hole placement. placing the 
VC312 cells in the lateral portion of the cerebellum. 
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Figure 4-2. Gd-enhanced T1-weighted MRI of an animal on Day 17 Post 

Implantation. The image demonstrates a coronal slice from the mouse 
cerebellum.  The tumor boundary is visible as hyper-intensity seen in the lateral 
aspect of the cerebellum. 
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 The tumor growth in the intracerebellar model was measured using a 

formula for the volume of a spheroid (described in the Methods section) at 7 

days, 14 days, 21 days and 28 days post-implantation.   The average growth of 

the MB in the nude mouse cerebellum can be seen in Figure 4-3.    

 Consistent results were observed in the flank tumor bearing mice, the 

region of interest was the flank region and the subcutaneous growth of the 

tumor (Figure 4-4).  The dimensions of the tumors were measured using a 

caliper every third day.  

Histology of Tumor 

 The representative histological images of the in vivo tumors can be seen 

in figure 4-5.  The tumor is very cellular, with many mitoses and little 

cytoplasm.  The cells appear to form clusters and rosettes. 
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Figure 4-3. Volumetric Growth of Murine Intracerebellar MB. 
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Figure 4-4.  Image of a subcutaneous VC312 flank tumor.  
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Figure 4-5. Histology of Intracerebellar and Flank VC312 Tumors. 
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The Effect of Perifosine on Medulloblastoma cells in vitro 

  

Previous work by Dr. Anil Kumar in this laboratory studied the effect of the 

therapeutic agent Perifosone on different MB cell lines in vitro (Kumar et al., 

2009).   His data showed that endogenous active AKT is present at high levels 

compared with normal brain samples in MB and derivative cell lines.  Treatment 

of the MB with perifosine decreases the active AKT levels in a dose-dependent 

and time-dependent manner.  He also showed that perifosine treatment led to 

rapid decreases in cell survival in tumor cells.  Dr. Kumar also reported that 

exposure to etoposide and radiation followed with perifosine resulted in greater 

thant additive effect on cell death. These results indicate that perifosine, either 

alone or in combination with other drugs, might be an effective therapeutic 

agent for the treatment of MB.  These results highlight the potential value of 

studying of the effects of Perifosine in an in vivo model.  

The Effect of Perifosine on Medulloblastoma in vivo 

 Treatment of tumor bearing mice resulted in a decrease of overall tumor 

volume in both intracerebellar and flank models.  The intracerebellar-implanted 

mice were given perifosine treatment beginning sixteen days post-implantation.   

The volumetric growth of the intracerebellar implanted MB appears sporadic 

initially (Figure 4-6A).  However, the effect of perifosine begins to appear when 

the tumor volumes are separated into treated and untreated groups and their  
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volumes are averaged (Figure 4-6B).  Finally, when the tumor volumes are 

normalized to the size of the tumor upon initial inspection with MRI (day 7), the 

effect of perifosine within the treatment group was significant (figure 4-7).    

 The effect of perifosine on the growth of the flank tumor model is 

illustrated in Figure 4-8.  The tumor sizes were normalized to the size of the 

tumor at the beginning of treatment and averaged.  The effect of perifosine is 

significant from eight days post-treatment until the end of the study.    

 The intracerebellar-implanted mice were given perifosine treatment 

following the MRI at day 14.   At day 35 post implantation only the four mice 

treated with perifosine remained alive.  Using a Fisher’s exact test to evaluate 

the significance, the effect of perifosine on the survival of intracerebellar-

implanted mice is significant (Table 4-1).       

 The effect of perifosine on the signaling pathways of MB is illustrated in 

figure 4-9 by the suppression of active AKT in treated versus untreated MB flank 

tumors.   Qualitative effects of perifosine on the histology of the tumor are 

illustrated in the decreased density of stained cells.  Further, when the tumors 

were stained with Ki-67, a cellular marker for proliferation, the Ki-67 sections 

showed qualitative differences between the treated and untreated tumors.  The 

treated tumor sections displayed a lower density of Ki—67 positive cells than the 

untreated tumor sections.  Therefore, perifosine effectively suppressed the 

proliferation of MB cells in the treated animal model.  



! "#!



! "#!

Figure 4-6. Effect of Perifosine on Growth of Murine Intracerebellar 
Medulloblastoma. A. The volumetric growth data for each intracerebellar-

implanted mouse are plotted individually. B. The average volumetric growth rates 
for perifosine-treated vs untreated mice are demonstrated. 
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Figure 4-7. The Effect of Perifosine on the growth of murine intracerebellar 
medulloblastoma.  Treatment with perifosine began on day 17 post-implantation.   

Tumor volumes have been normalized to the volume of the tumor at initial MRI 
inspection on day 7 post implantation. 
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Figure 4-8. Effect of Perifosine Treatment on Growth of Medulloblastoma Flank 
Tumors.  Tumor volumes have been normalized to the volume of the tumor at 

the beginning of treatment. 



! "#!

 

!



! "#!

 

Table 4-1.  Effect of Perifosine on Survival of Mice with intracerebellar 
implantation of Medulloblastoma. 
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Figure 4-9. Suppression of active AKT by perifosine in VC312 flank tumors. Flank 
tumor-bearing mice were treated with perifosine for 20 days and the cell lysates 

were then subjected to Western blot analysis.  



! "#!



! "#!

 

Figure 4-10. The effect of perifosine on the histology of medulloblastoma in a 
flank tumor model.  A. Hematoxylin and eosin staining of treated and untreated 

tumor sections.  B. Flank tumor sections stained for Ki-67, a marker for cellular 
proliferation. 



! "#!

 

 



! "#!

Chapter  5 

Discussion 

  

 

The medulloblastoma is the most common malignant pediatric brain 

tumor, and is still associated with mortality and severe side effects from clinical 

treatment (Packer et al., 2003).  The development of a clinically relevant in vivo 

model is important not only to further understand the disease but also to provide 

a new and improved means with which to test novel therapeutics.   The standard 

in vitro experimental models of human cancer cell lines do not accurately 

replicate the conditions, three-dimensional interaction or microenvironment that 

a tumor experiences in vivo and orthotopically.    

Current models of replicating MB include genetically engineered animal 

models (Hatton et al., 2008) and orthotopic xenograft models (Kessler et al., 

2009).  These models fail to use a human tumor cell line, which reduces their 

usefulness for studying therapies designed for humans.  Further, the clinical 

effectiveness of novel therapeutic strategies can more accurately be predicted 

when human tumor-derived cell lines are used in an orthotopic xenograft model 

(Hoffman et al., 1999). 
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Previous intracerebellar xenograft models have been established in SCID 

mice, systematically developed and broadly characterized for multiple established 

MB cell lines (Qin et al., 2006) excluding VC312.  However, these models have 

the serious limitation of using established cell lines that have a homogeneous cell 

population, uniform growth rate and hypersensitivity to therapy (Qin et al., 

2008).  The development and volumetric characterization using MRI of an 

orthotopically implanted primary human MB tumor has not been reported.    

In this study, we described the establishment of an intracerebellar model 

in athymic nude mice with cells cultured from a primary human tumor.   Utilizing 

MRI and a flank tumor model to establish the volumetric growth of the tumor in 

vivo we evaluated the preclinical effectiveness of the anti-AKT activities of 

perifosine, an established anti-cancer drug that has been taken to phase II 

clinical trials for peripheral cancers (Gills and Dennis, 2009).   Our lab had 

previously studied the in vitro effects of perifosine and showed that it possessed 

potent suppression of AKT signaling activity by decreasing cancer cell survival 

and growth (Kumar, et al., 2009). The literature documents that the 

phosphatidylinositol 3!-kinase (PI3K)–mediated AKT signaling pathway has been 

found to have a role in tumor proliferation and survival (Vivanco et al., 2002), 

making the AKT signaling pathway a valuable target for anti-tumor therapeutics.  

Further, elevated activation of PI3K/AKT signaling pathways has been found in 

MB (Hartmann et al., 2006).   
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Repeated MRI scans illustrated volumetric growth and histopathological 

features similar to the primary tumor which confirmed successful establishment 

of an intracerebellar MB model in nude mice.  Using this model, we showed the 

effect of perifosine on suppressing tumor growth both in the orthotopic 

intracerebellar model and in the flank model.  Perifosine also effectively 

increased survival of mice bearing intracerebellar tumors.   Further, perifosine 

effectively suppressed active AKT signaling and reduced the density of 

proliferating cells in vivo. 

An advantage of xenograft models is that the relative tumor growth 

dynamics can roughly be predicted by the concentration of tumor cells implanted 

(Lampson et al., 2001).  Therefore, identical cell concentrations implanted in the 

same stereotactic position in the cerebellum would theoretically grow at the 

same rate. A further advantage of such a xenograft model would be to allow 

objective measurement of the effectiveness of chemotherapy or other 

therapeutic strategies.  Unfortunately, we found there to be a large variation in 

the volumetric growth rates at days 14 and 21 post implantation.   However, by 

the end of the study, the sizes of the tumors measured from the MRI scans were 

approximately similar, while the overall rates of growth of individual tumors 

showed variability. 

While faithful reproduction of intracerebellar MB tumors was not 

confirmed with histology, leptomeningeal dissemination was evident in both the 

MRI scans and the prepared histology.   It should be noted that this corresponds 
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to a troubling clinical characteristic of MB in humans, with dissemination early in 

its course.  The murine model of intracerebellar MB established in this study thus 

appears to replicate dissemination in the CNS, especially around the brainstem. 

This may be a valuable model for novel therapeutic strategies targeting 

leptomeningeal dissemination of MB.   It is notable in this regard that despite 

prominent leptomeningeal dissemination in these animals, the group receiving 

perifosine had a significantly longer survival.  This provides significant hope that 

this therapeutic strategy could be effective against MB even in patients who have 

developed leptomeningeal spread of their tumor. 

Limitations of our model included the culturing of the primary tumor prior 

to implantation.  While the cell cultures of the MB used in the study were limited 

to less than five passages, the in vitro culturing could have had an effect on the 

heterogeneity of the cell population.   The homogeneous cell population would 

make for uniform growth and the possibility of sensitivity to therapy (Kamb et 

al., 2005).   A solution to this problem would be the implantation of freshly 

resected tumor pieces intracerebellarly, however due to the availability of the 

resected samples, cultured primary tumor cells were the best option.  Another 

issue that should be addressed is the location of the tumor implantation.   The 

majority of MBs grow from the vermis of the cerebellum, the site of massive 

cellular differentiation during development.   The implantation was positioned in 

the right hemisphere of the lateral lobe of the cerebellum because it was the 

only feasible target in the cerebellum.  Due to the size of the cerebellum in these 
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animals, it was far too difficult to position the implantation in the vermis.  

Further, the mice used in the study were young adults (4-6 weeks) whose 

cerebellar development was mostly complete, potentially reducing the 

microenvironment difference between vermis and lateral hemisphere.   

Future studies with this model approach would be appropriate to address 

a number of issues highlighted by this work, to improve and extend the 

important findings here.  In particular the stereotactic refinement, tumor 

reproducibility and perifosine dose optimization.  Refining the stereotactic 

coordinates would improve the reproducibility of the model in the cerebellum. 

Proper tumor implantation is the keystone of this model, continuing to optimize 

the surgical protocol will allow extension of this model to explore signaling, 

angiogenesis and dissemination of the disease.  Further, faithful orthotopic 

implantation and growth of the primary human MB in the cerebellum allows the 

further characterizing of the complexities of this tumor; it will also permit 

refinement of the perifosine growth suppression mechanism in vivo.  

In order to improve reproducibility; the size and age of mice used in the 

model need to be standardized.  The volume of the cerebellum varies with each 

subject and therefore proper implantation location can fluctuate.  Correlating the 

stereotactic coordinates to the size and age of the animal should improve the 

accuracy of the implantation and the model’s orthotopic fidelity.   
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Maximum anti-tumor effect while maintaining increased survival benefits is 

the goal of perifosine dose optimization.   Exploring the time dependence of 

perifosine effectiveness is a logical extension of the therapeutic enhancement. 

Further, characterizing the suppression of subarachnoid growth will improve the 

understanding of the survival benefits of perifosine. 

Finally, optimization of the intracerebellar MB model will allow utilization of the 

approaches learned in this work to be applied to newly obtained primary tumor 

samples of MB.       
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