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Abstract 

 

META-ANALYSIS OF OPEN VERSUS CLOSED TREATMENT OF MANDIBULAR 
CONDYLE FRACTURES 
 
By Marcy L. Nussbaum, M.S. 
 
A thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science at Virginia Commonwealth University. 
 
Virginia Commonwealth University, 2006 
 
Major Director: Dr. Al M. Best, Professor of Biostatistics 
 
 A review of the literature reveals a difference of opinion regarding whether open 

or closed reduction of condylar fractures produces the best results.  It would be beneficial 

to critically analyze past studies that have directly compared the two methods in an 

attempt to answer this question.  A Medline search for articles using the key words 

‘mandibular condyle fractures’ and ‘mandibular condyle fractures surgery’ was 

performed.  The articles chosen for the meta-analysis contained data on at least one of the 

following:  postoperative maximum mouth opening, lateral excursion, protrusion, 

deviation on opening, asymmetry, and joint pain or muscle pain.   

 Several common statistical methods were used to test for differences between 

open and closed surgery, including the weighted average method for fixed and random 

effects as well as the Mantel-Haenszel method for fixed effects.  Some of the outcome 

variables were found to be statistically significant but were interpreted with caution 

  



     

because of the poor quality of the studies assessed.  There is a need for more standardized 

data collection as well as patient randomization to treatment groups. 



   

1 Introduction 

A systematic review refers to a summary of the medical literature for a particular topic of 

interest.  A meta-analysis is the statistical aspect of such a review that assesses 

heterogeneity between studies and estimates overall measures of association.  The 

objectives of a meta-analysis include increasing power to detect an overall treatment 

effect, estimation of the degree of benefit associated with a particular study treatment, 

assessment of the variability between studies, and identification of study characteristics 

associated with particularly effective treatments.1  The concept of combining results from 

multiple studies dates back a century to Karl Pearson and the effectiveness of inoculation 

against typhoid fever.2  Meta-analyses began to enter the social sciences and healthcare 

fields around 30 years ago, but did not gain popularity until the early 1990s after Yusuf et 

al3 published a meta-analysis on beta blockers in myocardial infarction.  

 A meta-analysis, when feasible, is considered superior to a non data-based 

systematic review.  In an article in Science, Mann4 compared the conclusions drawn from 

meta-analyses versus literature reviews in five subject areas:  psychotherapy, delinquency 

prevention, school funding, job training, and reducing anxiety in surgical patients.  The 

findings revealed that there is a tendency for literature reviews to underestimate the 

presence and strength of treatment effects.   

 However, Egger et al5 argue that the optimal situation would be to conduct a 

meta-analysis within the framework of a systematic review.  Such a review would include 

only those studies that meet specific criteria, which should minimize bias.  Additionally, 

studies should meet a minimum level of quality to be included.  If the meta-analysis is 

 1  
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comprised of poor quality studies, then it will be of poor quality as well.  Maintaining 

quality is typically done by, among other things, clearly stating the inclusion and 

exclusion criteria before searching for articles, and by critically evaluating the studies 

found.  

 A meta-analysis can potentially resolve conflicting conclusions from multiple 

studies that address the same research question by increasing statistical power.  That is, it 

may be more difficult to find statistically significant results in smaller individual studies 

but may become apparent when the effect is pooled across many studies.  For example, 

upon reviewing 1,941 trials of schizophrenia treatment, Thronley and Adams6 concluded 

that only 58 (3%) had a large enough sample size to detect a difference.  Many clinical 

questions also cannot be addressed at a single location.  In this situation the meta-analysis 

can become a very useful tool as it combines information across multiple study sites. 

 Since the meta-analysis includes several studies with different subjects, 

investigators and locations, the results are more generalizable to the population at large.  

Bangert-Drowns7 makes the following claims: 

“Meta-analysis is not a fad.  It is rooted in the fundamental values of the 

scientific enterprise:  replicability, quantification, causal and 

correlational analysis.  Valuable information is needlessly scattered in 

individual studies.  The ability of social scientists to deliver generalizable 

answers to basic questions of policy is too serious a concern to allow us to 

treat research integration lightly.  The potential benefits of meta-analysis 

method seem enormous.”
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 The purpose of this study is to compare open versus closed surgery of mandibular 

condyle fractures. There is currently a debate in the field of oral and maxillofacial 

surgery as to which procedure produces the best results in patients.  Closed treatment has 

been used as the standard and involves some form of wiring the jaws shut.  Open 

treatment has not been in practice for as long as closed, and involves surgically exposing 

the temporomandibular joint to invasively fix the fracture.  Many studies have compared 

these two procedures in terms of patient recovery by looking at the motion of the 

mandible after surgery.  They often measure things like mouth opening, movement of the 

mandible forward, backward, and side to side, whether the jaw is properly aligned, and 

presence of joint pain.  This study will assess a selection of outcome variables from 

various studies comparing open and closed treatment. 

 Section 2 provides the statistical theory and framework behind some available 

methods for meta-analyses.  Procedures for both binary outcomes and continuous 

outcomes are outlined.  This is by no means an exhaustive compilation of all methods 

available for meta-analyses.  However, they have been chosen for this research as the 

most commonly recurring and popular methods in the medical literature.  

 Section 3 is comprised of the results discovered from the meta-analyses that were 

performed.  The process by which the studies were chosen is explained.  Several outcome 

variables were assessed, including postoperative maximum mouth opening, lateral 

excursion, protrusion, deviation on opening, asymmetry, and joint pain.   
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 Section 4 covers the implications and clinical aspects of the results from section 3.  

Shortcomings of the current research are discussed and suggestions for future research 

are given. 

  

 



   

2 Statistical Methods 

This section presents the statistical methods commonly used in meta-analyses within the 

field of medicine.  From the assessment of open and closed jaw surgery from the dental 

literature it was determined that the reported study outcomes were binary or continuous.  

Thus, the methods presented in this thesis pertain solely to binary or continuous 

outcomes.  The purpose of this study is to test for the differential effects of open versus 

closed surgery.   

 Some methods propose models that use fixed effects, while others are categorized 

as using random effects.  The choice of which model to use depends on how variable the 

outcome measures are between studies.  If the chosen effect size estimates to be included 

in a meta-analysis are relatively consistent and have similar standard deviations, then 

they are deemed as homogeneous and a fixed effects model is used.  If there is substantial 

heterogeneity between the effects from the various studies, then that variability must be 

accounted for in the meta-analysis by using a random effects model.  Typically a 

statistical test for heterogeneity is used to determine which method to choose.   

2.1. Categorical Methods 

2.1.1 Binary Outcomes 

Binary data have two possible outcomes for a particular dependent variable, e.g. died or 

survived, increased blood pressure or did not increase blood pressure.  Binary data are 

typically summarized as counts for each of the two outcome categories in order to 

calculate proportions.  A common approach for quantifying risk with binary data is to use 

the relative risk or the odds ratio.  However, when considering how to implement these 

 5  
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outcomes in a meta-analysis, the risk difference may also be assessed.  Odds ratios are 

appropriate for randomized clinical trials and case-control studies, while relative risks are 

appropriate for cohort studies.  In the sections below the calculations for the odds ratios 

only will be explained.   

 Odds ratios can be calculated from contingency tables.  The two dichotomous 

variables (group and outcome) combine to form four cells of possible outcomes in a 

contingency table.  Let rcπ  be the probability that (X,Y) falls into row  (the groups) 

and column c  (the outcomes).   

r

rcπ  can be thought of as the joint probability 

distribution.  We represent the marginal distributions with { }rπ +  and { }cπ+ , where 

 r
c

rcπ π=+ ∑  (2.1) 

and 

 c
r

rcπ π=+ ∑ . (2.2) 

These proportions are shown in Table 1 where group and outcome each have two levels. 

Table 1. THE JOINT AND MARGINAL PROBABILITIES OF A 2x2 TABLE 

 Outcome  

Group Success Failure Total 

Treatment 11π  12π  1π +  

Control 21π  22π  2π +  

Total 1π+  2π+  1.0 
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The odds that there is a success in the treatment group is  

 1 11 1/ 2π πΩ = , (2.3) 

and the odds that there is a success in the control group is 

 2 21 2/ 2π πΩ = . (2.4) 

The odds ratio of  to  is 1Ω 2Ω

 1 11 12 11 2

2 21 22 12 2

/
/

2

1

π π π πω
π π π π

Ω
= = =
Ω

. (2.5)  

An odds ratio of 1 implies that there is no association between the two variables.  An 

odds ratio greater than 1 implies that the treatment was more effective than the control.  

We can express the 2x2 contingency table in terms of frequencies or number of 

observations in each cell as shown in Table 2. 

Table 2. FREQUENCY COUNTS IN A 2x2 TABLE  

 Outcome  

Group Success Failure Total 

Treatment 11n  12n  1n +  

Control 21n  22n  2n +  

Total 1n+  2n+  n  

 

Here, the sample odds ratio is 

 � 11 22

12 21

n n
n n

ω = . (2.6)  
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Often the odds ratios will be positively skewed, indicating that a logarithmic 

transformation is necessary to normalize the data.  It is common to use the natural log of 

the odds ratio.  The estimated variance of �ln( )ω  is  

 �

11 12 21 22

1 1 1 1Var{ln( )}
n n n n

ω
⎛ ⎞

= + + +⎜
⎝ ⎠

⎟ . (2.7)  

The 100(1 α− )% confidence interval around �ln( )ω  can be shown as 

 �( ) �( ){ }/ 2ln Var lnZαω ω±  (2.8) 

where  is the two-sided critical value from the standard normal distribution at a 

specified 

/ 2Zα

α .  These values are then exponentiated to get the confidence interval for the 

odds ratio in its original units.   

2.1.2 Methods for Binary Data 

The following sections describe three commonly used types of meta-analysis performed 

on binary data.  It should be noted that the first two methods can be used for many types 

of effect size estimates including odds ratios, relative risks, risk differences, and even 

estimates from continuous data.  The third method covered is used specifically for odds 

ratios. 

2.1.2.1 Weighted Average Method for Fixed Effects 

The weighted average method was first described by Birge8 and Cochran9 in the 1930s 

and is conceptually straightforward.  Each study effect size estimate is given a weight 

that is inversely proportional to its variance.  This method can be used for many types of 

estimators.  The number of studies included in the meta-analysis is represented by the 
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variable .  Assuming that the  studies are homogeneous (similar with respect to 

estimated effect), the weighted average estimator of the population effect size is 

calculated as follows 

k k

 1

1

k
i

i
k

i

w Ti
T

wi

=+

=

=
∑

∑
, (2.9) 

where the weights are defined to be 1/ { }w Var Ti i= .  Defining the weights in this manner 

ensures that the studies with large variability are weighted less overall, while the studies 

with small variability are weighted more overall.  From this point forward, the term 
1

k

i=
∑  

will be abbreviated by ∑ .   

 The variance for the estimator T+  can be estimated as 

 { } ( )
( ) ( ) ( )

12
2 1Var 2 2 2

wiw Var T wwi i iiT
wiw w wi i i

⎛ ⎞
⎜ ⎟
⎝ ⎠= = = =+

∑∑ ∑
∑∑ ∑ ∑

. (2.10)  

The corresponding 100 ( )1 α− % confidence interval for T+  is 

 / 2 Var{ }T Z Tα+ +±  (2.11)  

where  is the two-sided critical value from the standard normal distribution at a 

specified 

/ 2Zα

α .  When working with categorical outcomes, �ln( )ω+  can be used in place of 

T + .   
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2.1.2.2 Weighted Average Method for Random Effects 

If the studies are found to be heterogeneous (dissimilar with respect to effects) then a 

random effects model would be more appropriate than a fixed effects model.  The 

Weighted Average Method for Random Effects is actually just a modification of the 

Weighted Average Method for Fixed Effects.  Here, we wish to estimate an extra 

variance term known as the between study variance.  The same weights are used 

 as well as the same effect size estimate ( 1/ Var{ }wi = )Ti (T )+ .  The mean and variance 

of the weights from the studies are defined as 

 /iw w= k∑  (2.12) 

and 

 ( )2 21 ( )
1w is w k

k
= − 2w

− ∑  (2.13) 

The random effects model assumes that the study specific effect sizes come from a 

random distribution of effect sizes with a fixed mean and variance.10   If  is an estimate 

of effect size and 

iT

iθ  is the true effect size in the ith study, then 

 i iT ieθ= +  (2.14) 

where e  is the error associated with .  The variance of  is i iT iT

 ( ) 2Var iT τ iv= + , (2.15) 

where 2τ  is the random effects variance and  is the variance due to sampling error in 

the ith study.

iv

10  The estimated between study variation in effect size, 
2

τ$ , is calculated as 
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2

0τ =$  if 1Q k≤ −  (2.16) 

or 

  if  (2.17) ( )( )2
1 /Q k Uτ = − −$ 1Q k> −

where 

 ( )
2

1 wsU k w
kw

⎛ ⎞
= − −⎜⎜

⎝ ⎠
⎟⎟ . (2.18) 

Then the adjusted weights  are calculated as *wi

 
( ) 2

1*
1/

i
i

w
w τ

=
⎡ ⎤+⎢ ⎥⎣ ⎦

$
. (2.19) 

If the between study variance 
2

τ$  is zero then the weights are unaffected and the random 

effects model reduces to the fixed effects model.  The treatment effect is estimated as 

 
*
*

i i
RND

i

w T
T

w
= ∑
∑

 (2.20) 

and its variance10 is expressed as 

 1var( )
*

RND
i

T
w

=
∑

. (2.21) 

The 100(1 )%α−  confidence interval under normality is 

 / 2
*

RND
i

ZT
w

α±
∑

. (2.22) 
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2.1.2.3 Mantel-Haenszel Method for Fixed Effects for Odds Ratios 

In certain instances there may be small cell counts or even empty cells.  Note that in these 

situations the odds ratios and their variance estimates are undefined.  A good remedy for 

this problem is to use the Mantel-Haenszel estimator.  The common odds ratio11 is 

calculated as follows 

 � 11 22
MH

12 21

/

/
ii i

ii i

n n n

n n n
ω =

∑
∑

. (2.23) 

The following equation is a large sample approximation12, 13 of the variance  

 �( ){ }
( )

( )
( )( ) ( )2 2Var ln

22 2
i i i i i i i i

MH
i ii i

A C A D B C B
C DC D

ω
+

= + +
D∑ ∑ ∑

∑ ∑∑ ∑
 (2.24) 

where 

 11 22 12 21 11 22 12 21, , ,i i i i i i i
i i i i

i i i

n n n n n n n n
A B C D

n n n

+ +
= = = = i

in

)

.  (2.25) 

The corresponding 100 (1 α− % confidence interval for is �ln( )MHω

 �( ) �( ){ }/ 2ln Var lnMH MHZαω ± ω . (2.26)  

 Since there are several methods for combining odds ratios, it would be helpful to 

know when to use which method.  In general, if the number of studies is small, but the 

within-study sample sizes are large, the Weighted Average method should be used.14  If 

there are many studies but the within-study sample sizes are small, then the Mantel-

Haenzel method is preferred.  Peto’s method is a third technique used for combining odds 

ratios.  It has the advantage of effectively dealing with zero cell counts from individual 
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studies and it is easy to calculate.  However, it may produce seriously biased odds ratios 

and standard errors when there is severe imbalance in sample size between the two 

groups being compared.15  

2.1.3 Continuity Corrections 

In some instances the outcome of interest for a meta-analysis may be a rare event.  For 

example, in a meta-analysis evaluating a drug intervention, adverse side effects may be 

rare but serious and therefore important.16  Thus, there may be zero events in one or both 

arms of a study.  This can become a problem when trying to estimate an effect size such 

as an odds ratio.  A typical method of resolving this situation is to add some constant  

to each cell so that no cell is equal to zero.  In a standard 2x2 table it has been argued that 

 is a good amount to add to each cell.  Research in this area has shown that this 

continuity correction might not be the optimal choice.  Sweeting et al

m

1/ 2m =

17 propose several 

alternatives to use within the context of a meta-analysis. 

 When only a few studies included in a meta-analysis suffer from zero cell counts, 

the overall impact in the conclusions will be slight.  However, with sparse data 

throughout a majority of the studies, the impact could be more substantial.  Choice of 

continuity correction then may be an influential factor.  It is common practice to remove 

studies in which there are no events in both treatment arms from a meta-analysis.17  These 

studies may be referred to as zero total events.  Whitehead and Whitehead18 believe that 

these studies should be excluded since they provide no information on the magnitude of 

the treatment effect.  However, others believe such studies should be included in a meta-

analysis19 in order to take into account the sample sizes of these studies.20  Sweeting et 
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al17 outline three different approaches to implementing continuity corrections in a meta-

analysis:  adding a constant m  to each cell in the 2x2 contingency table, using the 

reciprocal of the opposite treatment arm size, and using an empirical continuity 

correction. 

2.1.3.1 Adding a Constant m 

It is most common to use a constant correction factor when faced with zero cell counts in 

a meta-analysis.  The most widespread correction used is 1/ 2m = . The reason for 

choosing this particular value has arisen from an analysis by Cox21 on the odds of a single 

study group.  Cox’s analysis suggests that when using odds as an effect measure, 

choosing a correction factor of 1/  gives the least biased estimator of the true log odds 

for a single treatment group.  However, other choices of correction factor may be less 

biased and have better coverage when looking at the odds ratio between two groups.  For 

example, consider the following contingency table (see Table 3). 

2

Table 3. EXAMPLE COUNT DATA

Group Event No Event 

Treatment 0 100 

Control 1 400 

 

With a correction factor of 1/  the odds ratio for the data in Table 3 is given by 2

 � 0.5*400.5 1.33
100.5*1.5

ω = = . (2.27) 
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This suggests that there is an increased risk in the treatment group, yet there were zero 

events in the treatment group.  This paradoxical conclusion prompts the consideration of 

other types of continuity corrections. 

2.1.3.2 The Reciprocal of the Opposite Treatment Arm Size 

Choices other than  might be more appealing when the groups are unbalanced 

with respect to sample size.  Using a constant correction factor might yield an odds ratios 

that simply reflects the sample size disparity between the two groups and not the 

underlying effect size.  

1/ 2m =

Table 4. 1:4 UNBALANCED GROUPS COUNT DATA

Group Event No Event 

Treatment 0 100 

Control 0 400 

 

For example in Table 4, when 1/ 2k = , the odds ratio is approximately 4 (note the ratio 

of the two sample sizes).   

 � 0.5*400.5 4
100.5*0.5

ω = ≈  (2.28) 

If a smaller correction factor that accounts for sample size is used, different results are 

produced.  If  for the treatment group and 1/ 400m = 1/100m =  for the control group, the 

odds ratio is 1. 

 � 0.0025*400.01 1
100.0025*0.01

ω = =  (2.29) 



  16   

By controlling for the disparity in sample size in the two groups, a more intuitive result is 

found.  As shown above, the reciprocal of the sample size can act as a helpful continuity 

correction.   

2.1.3.3 An Empirical Continuity Correction 

The ‘treatment’ arm continuity correction has the effect of ‘pulling’ the estimated odds 

ratio arbitrarily toward no effect, i.e. odds ratio of 1.  Perhaps it is more desirable to ‘pull’ 

the estimate in the direction of the pooled effect size estimate obtained in the analysis.  

An empirical approach can be adopted where all of the studies in the meta-analysis 

without a zero event are used to calculate a pooled odds ratio.  Using this estimate, a 

continuity correction can be calculated which will produce odds ratio estimates close to 

the pooled odds ratio in the studies with zero events in both arms.17  We can think of this 

continuity correction factor as a ‘prior’ (empirically derived from other studies) added to 

the observed events. 

 Suppose that an estimated pooled odds ratio, �Ω , was obtained using the non-zero 

studies.  Let  be the treatment group sample size,  be the control group sample size, 

and 

tn cn

R  be the group ratio imbalance, where /c tR n n=  (note that c tn n R= ).  Then a total 

zero event study with continuity corrections  and , for the treatment and control 

groups respectively, is shown in Table 5. 

tk ck
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Table 5. TOTAL ZERO EVENT STUDY

Group Event No Event 

Treatment 0 tk+  t tn k+  

Control 0 ck+  c cn k+  

 

 In order for  and  to be empirical continuity corrections, it is required thattk ck 17 

 ( )
( )

�t t c

c t t

k n R k
k n k

+
= Ω

+
. (2.30) 

The left-hand side of the equation can be approximated by /t cRk k  when the group 

sample sizes are relatively large.  If the restriction 1t ck k+ =  is imposed, as it is when we 

use , then the following equations1/ 2m = 17 are obtained: 

 ( ) �1 c

c

R k
k
−

≈ Ω  (2.31) 

 
�c

Rk
R

⇒ ≈
+Ω

 (2.32) 

and 

 
�

�tk
R
Ω

⇒ ≈
+Ω

. (2.33) 

 After using equations (2.32) and (2.33) to calculate the appropriate empirical 

continuity corrections, k  and  are added to the control and treatment groups, 

respectively.  The pooled odds ratio 

c kt

�Ω  can be estimated from all of the non-zero studies 

in a meta-analysis or even from some known estimate in the literature.  This information 
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along with the sample sizes for both groups will be enough to arrive at empirical 

continuity corrections.  Agresti22 and others suggest that adding smaller continuity 

corrections might provide better estimates for the true odds ratio.  If we wish to allow 

, the equations (2.32) and (2.33) become 0.01t ck k+ =

 
�100( )c

Rk
R

≈
+Ω

 (2.34) 

and 

 
�

�100( )tk
R
Ω

≈
+Ω

. (2.35) 

 Continuity corrections can be very useful in situations where cell counts are small 

or zero.  It may be beneficial to use the methods proposed by Sweeting et al17 in addition 

to the traditional correction of 1/ 2m =  to see how the different methods impact the effect 

size estimate.  Then the preferred method can be chosen for the final analysis.  

2.2. Continuous Methods 

The following sections describe methods for using continuous data in a meta-analysis.  

The two meta-analytic methods presented can be seen to be simply variations of two of 

the methods covered in sections  2.1.2.1 and  2.1.2.2 on categorical data. 

2.2.1 Continuous Outcomes 

Continuous data are quantitative in nature and are measured on a continuous, numerical 

scale.  Continuous data collected in health studies are usually measured on a positive 

scale.  It is typically of interest to identify some type of difference in average effect 

between the treatment and control groups in a clinical trial.  If studies in a meta-analysis 
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report an outcome on different scales, they cannot be combined together without some 

type of transformation to a standardized scale.   

 If means are given with a range instead of a standard deviation the following 

transformation is applied.23  The standard error of the mean is estimated as 

 � ( ) ( )upper lower
se

N
µ

−
= , (2.36) 

where µ  is the sample mean, upper is the upper range value, lower is the lower range 

value, and  is the sample size.  These standard errors can then be converted to standard 

deviations with the following formula 

N

 � � ( )*SD se Nµ= . (2.37) 

 One measure of a continuous treatment effect is the standardized mean difference. 

We define the population standardized mean difference as 

 t cµ µ
δ

σ
−

=  (2.38) 

where tµ  and cµ  are the population means for the treatment and control groups and σ  is 

the population standard deviation for the mean difference.  There are several proposed 

methods of estimating δ . 

2.2.1.1 Standardized Mean Difference Estimates 

Glass’s :  Glass’∆ 24 estimate for δ  takes on the following form 

 � t

c

Y Y
s
−

∆ = c  (2.39) 
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with tY  and cY  as the treatment and control group sample means and as the control 

group sample standard deviation.  The estimated variance of 

sc

�∆  is 

 �( )
�

( )

2

2 1
t c

t c c

n nVar
n n n
+ ∆

∆ = +
−

 (2.40) 

where  and  are the respective sample sizes for the treatment and control groups.  

Glass’ estimator is appropriate if more than one treatment group is being compared to a 

single control group or if the treatment and control group population standard deviations 

are highly likely to differ.

tn cn

25  However, it is often reasonable to assume the population 

variances do not differ even if the sample variances do (especially when only comparing 

two groups).26  

 Cohen’s d :  Under the assumption of equal variances, we can pool the variances 

from the two groups.  This should produce more precise estimation than using the control 

group sample standard deviation alone.  Cohen27 proposed estimating δ  with  where d

 t cY Yd
σ
−

= . (2.41) 

The maximum likelihood estimator26 Cohen chose for estimating σ  is given by  

 
( )( ) ( )( )2 21 1t t c c

m
t c

n s n s
s

n n
− + −

=
+

 (2.42) 

where (  and  are the respective sample variances for the treatment and control 

groups.  When both the treatment and control group sample sizes are large, the variance 

of  can be estimated as  

)2ts ( )2cs

d
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 ( ) ( )
2

2 2
t c

t c t c

n n dVar d
n n n n

⎛ ⎞+
= +⎜⎜ + −⎝ ⎠

⎟⎟ . (2.43) 

 Hedges’ g :  Hedges uses a pooled sample standard deviation given by 

 
( )( ) ( )( )2 21 1

2
t t c c

pooled
t c

n s n s
S

n n
− + −

=
+ −

 (2.44) 

to estimate δ .28  The standardized mean difference can be represented as  

 t c

pooled

Y Yg
S

−
= . (2.45) 

When both treatment and control groups have large sample sizes, the estimated variance28 

of  is  g

 ( ) ( )
2

2 2
t c

t c t c

n n gVar g
n n n n
+

= +
+ −

. (2.46) 

 All three estimators of δ  are biased.25  The bias may become a serious problem if 

the group sample sizes are small.  As long as the equal variance assumption holds, it 

would be unwise to choose Glass’s ∆  because it only uses the variance estimate from the 

control group.  Hedges’ g  has smaller sample variance than Cohen’s .d 25  Hedges gives 

an exact correction factor for the sample bias 

 ( ) 2
1

2 2

C

υ

υ
υ υ

⎛ ⎞Γ⎜ ⎟
⎝ ⎠=

−⎛ ⎞Γ⎜ ⎟
⎝ ⎠

 (2.47) 

where 2t cn nυ = + −  are the degrees of freedom and ( ).Γ  is the gamma function.29  This 

gives an unbiased estimate of δ  stated as 
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 ( )*ug C gυ=  (2.48) 

When the sample sizes in the treatment and control groups are equal,  is the unique 

minimum variance unbiased estimator of 

ug

δ .28 

 When the treatment and control group sample sizes are large, the estimated 

variance26 of  is  ug

 
( )

2
( )

2
t c u

u
t c t c

n n gVar g
n n n n
+

= +
+

 (2.49) 

It appears that  proposed by Hedgesug 28 is the preferential estimator of δ  due to its 

favorable statistical properties.25  Once a particular estimator has been chosen, the meta-

analysis can be performed. 

2.2.2 Methods for Standardized Mean Differences   

The following sections discuss two types of meta-analytic methods for a continuous 

outcome measure in terms of a standardized mean difference. 

2.2.2.1 Weighted Average Method for Fixed Effects 

This method of combining effect sizes for continuous data is the same as the method for 

categorical data for fixed effects with the only differences being the actual effect size and 

its variance.  It is essentially a modification of section  2.1.2.1.  Let iδ  and ( )iVar δ  

represent the effect size and its corresponding large sample variance estimator in the ith 

study.  We may choose to use any of the previously mentioned estimators of the 

standardized mean difference:   , , , or .  Assuming that the studies are � i∆ di gi igu
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homogeneous, the weighted average estimator of the population standardized mean 

difference is calculated as follows 

 

$iwi

wi

δ
δ+

∑
=

∑

 (2.50) 

where the weights are defined as $1/ { }iiw Var δ= .30   

 The variance for the estimator $δ +  is 

 ${ } 1Var
iw

δ + =
∑

 (2.51)  

and the corresponding 100 (1 )α− % confidence interval for δ  is 

 $ $
/ 2 Var{ }Zαδ δ+ +± . (2.52)    

2.2.2.2 Weighted Average Method for Random Effects 

This method for random effects for continuous data is also the same as the method for 

categorical data that was previously presented.  It is essentially a modification of section 

 2.1.2.2.  The calculations are done in the same way with the standardized mean difference 

and its variance.  The same weights are used where $1/ Var{ }iiw δ= .   

2.2.3 Converting Continuous Data 

There may be instances where different studies report outcomes in different formats.  

Often in medical research data collected on a continuous scale is reported as categorical.  

It will be categorized at some chosen point or points along a continuum.  It is desirable to 

choose a cutoff point that has been established as clinically meaningful in the literature.  
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For instance, one might classify those with low diastolic blood pressure as <=90 mm Hg 

and those with high blood pressure (hypertension) as >90 mm Hg.  This is an easy way to 

make categories within a population in order to diagnose and establish a standard of care.  

When conducting a meta-analysis we usually have to use the outcomes in the metric in 

which they are reported.  Thus, we may end up with some continuous measures and some 

categorical measures for the same variable.  In an effort to use all possible data available 

for analysis the continuous data is converted to categorical equivalents.  By choosing a 

method of treatment difference such as the log-odds ratio, which can be estimated from 

both binary and continuous data, the number of trials included in the meta-analysis is 

increased and better representation is ensured.18 

 The classical method of estimating the risk or prevalence of the continuous data is 

to dichotomize the outcome variable at the cutoff value.  Then the statistical analysis uses 

methods developed specifically for binary data, usually based on the binomial 

distribution.31  Suissa proposes a method that is based on the assumption of a Gaussian 

(normal) distribution which does not resort to dichotomization.  He found that the 

binomial approach was less efficient than his method by up to 67%.  His method was also 

very accurate for small sample sizes.   

 Let Y  be a continuous outcome variable normally distributed with mean µ  and 

standard deviation σ .  The conventional approach to estimating the probability of an 

event of interest is to choose a cutoff value C such that the probability of the event of 

interest is { }R pr Y C= > .  The approach used to estimate this probability from a random 

sample of  observations of Y  is to count the number of observation, say a , that are n
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larger than the cutoff .  It is assumed these data follow a binomial distribution with 

parameters  and 

C

n R .  The probability of the event of interest ( )R  is estimated by 

maximum likelihood estimation as /r a n=  and its variance as .  

 Suissa’s method

�var( ) (1 ) /r r r= − n

31 can be described as follows.  Using the continuous data values 

and their assumed normal distribution, the maximum likelihood estimator of R  is  

 { } ( )* 1 *r pr Z c c= > = −Φ  (2.53) 

where  

 
( )

*
C y

c
s

−
= . (2.54) 

 The terms y  and  are the sample mean and standard deviation and s Z  follows a 

standard normal distribution with cumulative distribution function Φ .  The MLE of the 

variance of  is given by r

 � ( ) ( ) 22var( ) 1 * / 2 *r c f c⎡ ⎤= + n⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦
, (2.55) 

where  is the standard Gaussian density function, i.e. f

 
( )2exp / 2

( )
2

x
f x

π

−
= . (2.56) 

  In the case of two independent samples, tR  and cR  are estimated separately by  

and .  The estimated odds ratio, 

tr

cr (1 ) /[ (1 )]c t t cOR R R R R= − −  may be calculated.  The 

variance is simply a function of the one-sample estimate of the risk and its variance.  It is 

is approximated by31 
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 . (2.57) � �2var(log ) [ (1 )] var( ) [ (1 )] var( )c c c t t tOR r r r r r r= − + − �2

 Suissa31 showed that his method of risk estimation from the normal distribution is 

more efficient than the method based on binary data under a binomial distribution.  At 

equal sample size, the variance from the normal model is roughly two-thirds of that from 

the binomial model when the risk is between 10%-90%.  The normal model performs 

even better when the risk is less than 10% or greater than 90% (the variances decrease 

rapidly to nearly zero).  Also, the binomial model encounters problems when zero events 

are observed in the sample while the normal model does not.   

 Finally, dichotomization carries with it subjectivity with respect to classification.  

A slight difference in cutoff could cause a large difference in results when many points 

are at or near the cutoff.  The method based on the continuous model is not as sensitive to 

minute shifts in cutoff.  It must be noted, however, that the continuous model is 

completely reliant on the underlying normal distributional assumption for the data.   

 Before conducting any of the previously mentioned analyses in this chapter it is 

necessary first to test for heterogeneity among the studies.  How different the studies are 

from one another will determine what type of model will be used for a particular outcome 

measure.   

2.3. Heterogeneity 

Heterogeneity refers to a state of dissimilarity among outcome measures from a group of 

studies.  In this situation it is assumed that there are other sources of variability present 

among outcome measures than just sampling error.  Additional sources of variability 

could arise when the studies are not conducted in the same way.  For example, the 
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variability could be caused by things like differences in intervention methods, study 

design, measurement, or subject profile (age, race, etc.).  This extra variation needs to be 

accounted for when performing a meta-analysis.  A random effects model is used when 

the outcomes are considered to be heterogeneous, while a fixed effects model is used 

when they are considered to be homogeneous.  Random effects models have greater 

generalizability but less statistical power.25 

 Thus, it is essential to test for heterogeneity before conducting the meta-analysis.  

The  statistic of heterogeneity is commonly used and is presented next.  First, the 

outcome measures from the various studies (odds ratios, standardized mean differences, 

etc.) are weighted and summed to yield 

Q

wy , a weighted estimator of the treatment effect.  

This is calculated as 

 i i
w

i

w y
y

w
= ∑
∑

, (2.58) 

where  is the treatment effect estimate for the ith study and  is the inverse of the ith 

sampling variance.

iy iw

32  Next, the difference between this average and each outcome is 

calculated, weighted, and summed as follows 

 2(i i wQ w y y= −∑ ) . (2.59) 

These calculations yield Q , a sum of squares that indicates how spread out the outcome 

measures are from the weighted average estimator.  It follows a chi-square distribution 

with  degrees of freedom.   is known as the commonly used large sample test 

statistic for heterogeneity. 

1k − Q
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 Heterogeneity has both advantages and disadvantages: exploring reasons for its 

presence can lead to useful insights, accounting for it can make modeling problematic 

and failure to allow for it may lead to inappropriate results. Whether or not a group of 

studies is identified as heterogeneous can greatly determine the overall effect size 

estimate and subsequent conclusions. 

 The concepts covered in this section provide the theoretical background for the 

analyses used in this study.  Both categorical and continuous data were assessed using the 

previously discussed methods for meta-analysis.  Section 3 explains the steps by which 

the analysis was done and the subsequent findings.  Several different approaches were 

taken in order to present a broad prospective on the studies of interest.  



   

3 Results 

3.1. Overview 

The initial literature search was conducted in PubMed.  Two searches were run with the 

following keyword phrases, ‘mandibular condyle fractures’ and ‘mandibular condyle 

fractures surgery.’  The searches were restricted to the English language only.  These 

articles were reviewed first from their abstracts and those that were identified as off-

subject or without data were excluded.  The remaining articles were collected and 

assessed for certain outcome variables.  Articles that did not contain any of the variables 

of interest were discarded.  Any article that appeared to have duplicate data was also 

excluded.  However, those with duplicate subjects were not excluded.  Ellis and 

Throckmorton, for example, might have used the same patients for multiple studies but 

each study measured a different outcome variable. 33, 34  Additional studies were added 

after reviewing reference sections of the articles initially chosen.   

The outcome variables included in this study were chosen on the basis of the 

following criteria.  The statistical summary of results had to be available from both open 

and closed treatment groups.  For example, scarring and facial paralysis were not 

included because they only occurred in the open group.  Outcome measures that were 

objective were given preference.  Subjective responses from the patients and subjective 

judgments from physicians were kept to a minimum.  Outcomes that occurred in at least 

several of the selected papers were considered for inclusion in this study.  Each outcome 

variable in the meta-analysis was analyzed independently.  

 29  
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3.2. Studies 

Of the 32 articles identified, 13 met the final selection criteria (see Table 6).  These 

contained data on at least one of the following postoperative measures:  maximum mouth 

opening, deviation on opening, lateral excursion, protrusion, facial asymmetry, or joint or 

muscle pain.  It was decided to use measurements that were taken at least 6 months after 

treatment, with preference to those obtained 1 year after treatment.  It was the interest of 

this study to look at the outcome measures after the patients have healed from the 

procedures, not at time points during the healing process.  The long-term effects are most 

important in the recovery of the patients.  Note that only one35 of the 13 studies 

randomized subjects to a treatment group.  In the next sections, results for the following 

outcome measures will be given: maximum mouth opening (section  3.3), deviation 

(section  3.4), lateral excursion (section  3.5), protrusion (section  3.6), facial asymmetry 

(section  3.7), and joint or muscle pain (section  3.8).



   

   

2 Yang et al41 1we, 2we, 1mo, 
2mo, 3mo, 4mo, 
6mo, 1yr

36 30 mean=41.
57, 

range=29-
44

mean=46, 
range=31-

53

count=8 count=12 count
=0

count
=0

count
=2

count
=5

3 Santler et al42 mean=2.5yr, 
minimum 6mo

37 113 mean=45.
5, SD=7.3, 
range=34-

67

mean=47, 
SD=6.8, 

range=26-
70

mean=8.5, 
SD=3.3, 
range=3-

17

mean=8.7, 
SD=3.4, 
range=0-

15

mean=5.9, 
SD=2.3, 
range=0-

10

mean=6.2, 
SD=2.7, 
range=0-

13

count
=1

count
=1

count
~1

count
~4

4 Konstantinovic 
and 
Dimitrijevic43

mean=2.5yr 26 54 mean=39
mm, 

range=23-
50

mean=39
mm,range

=10-60

count=2 count=3

5 Takenoshita et 
al36

2yr 
(mean=11.6mo)

16 20 mean=39 mean=50 mean=8.7, 
SD=3

mean=7.9, 
SD=2.1

mean=6, 
SD=3.8

mean=6, 
SD=3.8

9.5mm 
(SD=2.1)

6 Hidding et al38 1yr - 5yr 20 14 count=0 
(<30mm)

count=0 
(<30mm)

count=2 
(>3mm)

count=9 
(>3mm)

count=0 
(<5mm)

count=0 
(<5mm)

count=1 
(<5mm)

count=1 
(<5mm)

7 Oezman et al39 6mo - 24mo 20 10 count=0 
(<40mm)

count=0 
(<40mm)

count=0 
(>2mm)

count=0 
(>2mm)

count=0 
(<6mm)

count=0 
(<6mm)

count=0 
(<6mm)

count=0 
(<6mm)

8 Throckmorton 
and Ellis33

6we, 6mo, 1yr, 2yr, 
3yr

62 74 mean=45.
7, SD=9.4

mean=46, 
SD=12.9

mean=0.4, 
SD=6.8

mean=4.2, 
SD=6.6

mean=10.9
, SD=2.5

mean=10.1
, SD=2.8

mean=1
0.3, 

SD=3.6

mean=9.4, 
SD=3.5

mean=8.3, 
SD=2.8

mean=7.2, 
SD=2.8

9 Widmark et al40 1yr 19 13 count=0 
(<40mm)

count=0 
(<30mm), 
count=3 
(30-40)

count=6 
(>2mm)

count=2 
(<4mm), 

count=6 (4-
6mm)

count
=3

count
=5

10 Villarreal et al44 mean=8.45mo, 
range=0mo - 33mo

10 74 mean=38.
8, 

SD=5.71

mean=40.
95, 

SD=4.13

count=8 count=15 count
=3

count
=2

11 Haug and 
Assael45

minimum 6mo, 
range for 
Open=3.4mo - 
52.4mo, range for 
Closed=34.8mo - 
70.2mo

10 10 mean=46.
9, SD=9.7

mean=42.
5, 

SD=9.92

mean=.5, 
SD=1.08

mean=0.8, 
SD=0.92 

mean=6.4, 
SD=3.31

mean=5.1, 
SD=2.42

12 De Riu et al46 range for 
Open=5yr - 6yr, 
range for 
Closed=8yr - 12yr

20 19 mean=43.
7, SD=5.9

mean=46, 
SD=7

count=6 
(<3mm), 
count=2 
(>3mm)

4 (<3mm), 
2 (>3mm)

mean=8.6, 
SD=2.2

mean=8.6, 
SD=1.8

mean=8.
5, 

SD=3.5

mean=7.5, 
SD=2.9

mean=7.4, 
SD=2.2

mean=6.3, 
SD=2.5

count
=0

count
=0

13 Joos and 
Kleinheinz37

10d, 6we, 3mo, 
6mo, 12mo

25 26 mean=45 mean=41 0.2mm 1.2mm mean=3.1 mean=5.1

Abbreviations: O = open, C = closed, d = day, we = week, mo = month, yr = year, SD = standard deviation, frac = fractured, non = nonfractured

reported left and right 

reported left and right

count=0 (<6mm)

count=1 (<5mm)

Table 6. RAW DATA FROM 13 STUDIES (FINAL SELECTION) 
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3.3. Maximum Mouth Opening (MMO) 

MMO can be defined as a measurement between the upper and lower central incisor teeth 

when the patient opens the mouth as wide as possible.  The raw data from each study are 

displayed in Table 7.  Of the 13 studies considered, two contained only means of MMO 

but no measure of deviation so they could not be used in the meta-analysis.36, 37  Three 

studies reported MMO as counts.38-40  These studies used cutoffs of 30mm, 40mm, or 

both.  Hidding and Wolf38 reported that no patients had a MMO of less than 30mm, while 

Oezman and Mischkowski39 reported that no patients had a MMO of less than 40mm.  

Widmark and Bagenholm40 indicated that none were less than 40mm in the open group 

and none were less than 30mm in the closed group, but 3 patients were between 30mm 

and 40mm in the closed group.  Thus, all three of these studies had no patients with a 

MMO less than 30mm in either group.  The remaining 8 studies all reported continuous 

means with either a standard deviation, a range, or both.34, 35, 41-46  Note that the study 

numbers in Table 7 correspond to the first column of study numbers in Table 6.  In an 

effort to use the most data possible in the meta-analysis, studies that reported a range 

were given an estimated standard deviation (see equations (2.36) and (2.37)).   
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Table 7. MAXIMUM MOUTH OPENING RAW DATA (means) 

Maximum Mouth Opening  

Study Open Closed 

1 46mm (range = 34-61) 50mm (range = 34-65) 

2 41.57mm (range = 29-44) 46mm (range = 31-53) 

3 45.5mm (SD = 7.3) 47mm (SD = 6.8) 

4 39mm (range = 23-50) 39mm (range = 10-60) 

5 39mm 50mm 

6 count = 0 (<30mm) count =  0 (<30mm) 

7 count =  0 (<40mm) count =  0 (<40mm) 

8 45.7mm (SD = 9.4) 46mm (SD = 12.9) 

9 count =  0 (<40mm) count =  0 (<30mm), 3 (30mm-40mm) 

10 38.8mm (SD = 5.71) 40.95mm (SD = 4.13) 

11 46.9mm (SD = 9.7) 42.5mm (SD = 9.92) 

12 43.7mm (SD = 5.9) 46mm (SD = 7) 

13 45mm 41mm 

 

 Heterogeneity can be visually assessed by looking at the various effect size 

estimates with respect to the study sample size.  It is expected that larger studies will tend 

toward the mean, while smaller studies may be more to the left or more to the right of the 

mean if the effect size is plotted on the horizontal axis.  Figure 1 shows the effect sizes of 

the eight studies used in the analysis of mean MMO.  The effect sizes are Hedges’ g 
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standardized mean differences with the correction factor (see equation (2.48)).  Figure 1 

is referred to as a funnel plot; if the studies are relatively homogeneous it is expected that 

the smaller studies will be more spread out along the bottom of the plot and the larger 

studies will be close to the mean toward the top of the plot.  If the studies are 

homogeneous this plot produces a funnel-like shape.  If all the studies come from a single 

population then it makes sense to average the sample effect sizes to estimate the true 

population effect size. 
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Figure 1. FUNNEL PLOT FOR MMO 

 The results shown in Figure 1 do not clearly indicate whether these effect sizes 

are homogeneous or not.  With so few studies, it is difficult to get a true funnel shape.  

Plots can be very useful as exploratory tools, but a formal test of heterogeneity is 

necessary.  The test for the Hedges’ g estimators with the correction factor yields 

.  Thus, we reject the null hypothesis of homogeneity, and 

proceed with the meta-analysis using random effects that adjusts for heterogeneity. 

23.511 (p < 0.0014)Q =
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 The weighted average method for random effects from section  2.2.2.2 was used to 

combine the Hedges’ g estimates from each study.  The overall treatment effect is 

0.349T RND =  with a variance of var( ) 0.029T RND = .  A 95% confidence interval 

around T RND  is (0.015, 0.684).  This interval does not contain zero, suggesting that the 

effect size is statistically significant.  Cohen47 has offered conventional values for 

“small”, “medium”, and “large” effects.  For the standardized mean difference, these 

values are 0.2, 0.5, and 0.8, respectively.  Thus, patients that underwent closed treatment 

had a moderately greater MMO on average than patients that underwent open surgery.  

These results can be seen in Figure 2.  This plot shows the Hedges’ g estimators for the 

individual studies as well as the overall weighted average with their 95% confidence 

intervals. 
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Figure 2. CONTINUOUS STANDARDIZED MEAN DIFFERENCES (HEDGES’ g) 

FOR MMO 

 Because standardized mean differences are somewhat difficult to interpret, a 

separate figure was produced for mean differences.  The mean differences along with 

their 95% confidence intervals are given in Table 8 and graphically displayed in Figure 3.  

The mean differences can be directly interpreted by the mm scale on the x-axis.  For 

example, study 2 has a mean difference of 4.43 mm.  This can be seen in Figure 3 and 
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interpreted as ‘closed treatment produced a MMO 4.43 mm greater on average than open 

treatment in study 2.’ 

Table 8. MEAN DIFFERENCES FOR MMO (in mm) 

Study Mean Difference 

(Closed – Open) 

95% Confidence 

Interval 

Hedges’ g 

(Standardized)

95% Confidence 

Interval 

1 4.00 (2.698, 5.302) 0.69 (0.130, 1.252) 

2 4.43 (3.553, 5.307) 1.34 (0.801, 1.872) 

3 1.50 (0.523, 2.477) 0.22 (-0.157, 0.588) 

4 0 (-1.180, 1.180) 0 (-0.468, 0.468) 

8 0.30 (-0.841, 1.441) 0.03 (-0.311, 0.364) 

10 2.15 (0.776, 3.524) 0.49 (-0.173, 1.156) 

11 -4.40 (-7.146, -1.655) -0.43 (-1.316, 0.457) 

12 2.30 (0.704, 3.896) 0.35 (-0.284, 0.982) 

Overall 1.48 (-0.018, 2.972) 0.35 (0.015, 0.684) 

 

 The pooled estimate for the mean differences suggests that, on average, closed 

treatment produces a MMO of about 1.48mm greater than open treatment.   
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Figure 3. MEAN DIFFERENCES WITH 95% CONFIDENCE INTERVALS FOR 

MMO  

 Note that only 8 of the 13 studies were used in the continuous analyses.  Three 

more studies could be added if frequency counts were included.  There are methods 

available for converting continuous data into proportions or counts.  Since the number of 

studies at hand is relatively small, it was decided to convert the continuous outcomes in 

an effort to use all of the data available.  The eight studies that reported continuous 
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outcomes were converted into dichotomous variables using Suissa’s method31 described 

in section ( 2.2.3).  The three studies that reported counts for both open and closed groups 

used a cutoff of 30mm.  Thus, the cutoff value  was chosen to be 30.  This value along 

with the means and standard deviations of the continuous outcomes were used in 

equations (2.53) and (2.54) to approximate proportions of patients in both groups that had 

a MMO greater than and less than 30mm.  These proportions were multiplied by their 

respective sample sizes to give the cell counts.  The cell counts and the resulting odds 

ratios are displayed in Table 9.   

C

Table 9. CONVERTED AND UNCONVERTED COUNT DATA FOR MMO 

 
 

Count <30mm   Count 30mm≥  

Study Open Closed  Open Closed 

 
 

Odds Ratio 

1 0.0443 0.0090  23.9557 27.991 5.778 

2 0.0001 0.0010  35.9999 29.999 0.054 

3 0.6240 0.7017  36.3760 112.298 2.745 

4 1.1595 5.0200  24.8405 48.980 0.455 

8 2.9412 7.9499  59.0588 66.050 0.414 

10 0.6164 0.2967  9.3836 73.703 16.321 

11 0.4073 1.0382  9.5927 8.962 0.367 

12 0.2023 0.2116  19.7977 18.788 0.908 

6 0 0  20 14 NA 

7 0 0  20 10 NA 

9 0 0  19 13 NA 
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 The last three rows of Table 9 are the studies that were originally given as counts, 

and thus were not converted.  The odds ratios for these three groups are undefined 

because there are zero cell counts.  In addition, the studies with converted data have some 

cell counts that are close to zero.  This is an obvious problem for the undefined odds 

ratios but also a problem for some of the others.  For example, study 10 gives an odds 

ratio of 16.321.  The counts for patients with an MMO less than 30mm are almost the 

same in both groups (and less than 1), but the counts for those greater than 30mm vary a 

great deal between the open and closed groups simply because the groups have 

unbalanced sample sizes.  Thus, the odds ratio would be expected to be close to 1, but 

instead it is an inflated estimate due to the sample size disparity among the groups.   

 A solution to undefined and markedly inflated odds ratios is to add a continuity 

correction to boost zero and close to zero cell counts.  All three of the suggested types of 

continuity corrections discussed in section  2.1.3 were imposed on the data for MMO (see 

Table 10).  For each method, the total amount added to each treatment group typically 

sums to 1, such that .  But more recently Agresti1k ko c+ = 22 and others suggest that 

adding smaller continuity corrections might provide better estimates for the true odds 

ratio.  They suggest adding 0.01 to each treatment group instead of 1.  Thus, each type of 

continuity correction was imposed under both of these conditions, where the amount 

added to each treatment group was 1 or 0.01.  The six sets of odds ratios are displayed in 

Table 10. 
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Table 10. ODDS RATIOS FOR ALL 3 METHODS AFTER CONTINUITY 

CORRECTIONS FOR MMO 

 1k ko c+ =   0.01k ko c+ =  

Study Constant Treatment Empirical  Constant Treatment Empirical 

1 1.246 1.080 1.080 4.128 3.986 3.986 

2 0.834 0.998 0.998 0.702 0.827 0.827 

3 2.861 1.847 1.847 2.748 2.727 2.727 

4 0.587 0.514 0.514 0.457 0.456 0.456 

6 0.707 1.000 1.000 0.700 1.000 1.000 

7 0.512 1.000 1.000 0.500 1.000 1.000 

8 0.455 0.448 0.448 0.414 0.414 0.414 

9 0.692 1.000 1.000 0.684 1.000 1.000 

10 10.521 4.902 4.902 16.173 15.880 15.880 

11 0.553 0.553 0.553 0.369 0.369 0.369 

12 0.938 0.971 0.971 0.908 0.910 0.910 

 

 The treatment method and empirical method odds ratios are identical.  This is due 

to the use of the prior as 1 for the empirical distribution.  Typically the prior is a pooled 

odds ratio of all of the studies without zero cell counts, but because most of the cells for 

counts less than 30mm were zero or very close to zero, the prior was set as 1.  The 

treatment method continuity correction under the constraint 1k ko c+ =  was used in the 

final analysis.  Considering how small the cell counts were for the cells less than 30mm, 
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it appeared that the odds ratios from this method would be the best fit.  Using a constant 

correction factor may produce an odds ratio that is simply a reflection of the sample size 

difference among groups, as shown in section  2.1.3.2.  Since the treatment and empirical 

methods were identical for these data, the treatment method was chosen for simplicity.   

 The odds ratios were log transformed to approximate a normal distribution.  The 

 statistic for testing heterogeneity was calculated from the log-odds ratios from the 

treatment method corrected values, such that 

Q

2.886 (p = 0.984)Q = .  The null hypothesis 

of homogeneity is therefore not rejected.  A Mantel-Haenszel test for fixed effects was 

used to test the cumulative effect size estimate.  The common log-odds ratio is 

 with a variance of .  The corresponding 95% 

confidence interval is (-1.107, 0.418).  Figure 4 shows the individual study results as well 

as the overall estimator.  The interval around the common log-odds ratio contains zero, 

indicating that the effect size estimate is not different from zero, and a log-odds ratio of 

zero implies no difference among treatment groups.  There is no statistically significant 

difference between the open and closed treatment groups from looking at the variable 

MMO dichotomized at 30mm.   

�ln( ) 0.345MHω = − �{ln ( )} 0.151MHVar ω =
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Figure 4. LOG-ODDS RATIOS WITH 95% CONFIDENCE INTERVALS FOR 

MMO 

 Since odds ratios are easier to interpret than log-odds ratios, the odds ratios with 

95% confidence intervals were calculated for each study included in the MMO 

categorical meta-analysis (see Table 11).  They are further displayed in Figure 5.  The x-

axis is on a log-scale since some of the upper confidence limits were extremely large.  
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Every interval contains the value 1, suggesting that there is no difference between open 

and closed treatment for the individual studies. 

Table 11. ODDS RATIOS AND LOG-ODDS RATIOS WITH 95% CONFIDENCE 

INTERVALS FOR MMO 

 Odds Ratio Log-Odds Ratio 

Study Estimate 95% CI Estimate 95% CI 

1 1.080 (0.023, 51.275)  0.077 (-3.784, 3.937)  

2 0.998 (0.019, 52.506)  -0.002 (-3.965, 3.961) 

3 1.847 (0.0126, 26.986)  0.614 (-2.068, 3.295) 

4 0.514 (0.079, 3.333)  -0.665 (-2.534, 1.204) 

6 1 (0.018, 56.769)  0 (-4.039, 4.039) 

7 1 (0.015, 68.328)  0 (-4.224, 4.224) 

8 0.448 (0.121, 1.652)  -0.804 (-2.110, 0.502) 

9 1 (0.017, 57.443)  0 (-4.051, 4.051) 

10 4.902 (0.246, 97.499)  1.590 (-1.401, 4.580) 

11 0.553 (0.036, 8.581)  -0.592 (-3.334, 2.150) 

12 0.971 (0.034, 27.832)  -0.029 (-3.384, 3.326) 

overall 0.709 (0.331, 1.519)  -0.345 (-1.107, 0.418) 
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Figure 5. ODDS RATIOS WITH 95% CONFIDENCE INTERVALS FOR MMO 

 It should be noted that substantial manipulation was performed on the data for the 

categorical analyses.  Eight of the studies were converted to counts and continuity 

corrections were added to all of the studies to avoid zero cell counts.  Because of all the 

alterations to the data, the differences between the treatment groups that were detected in 

the continuous analysis were minimized.   
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3.4. Deviation 

Deviation can be defined as a shift of the lower jaw to one side as the mouth is opened.  It 

is measured as the maximum distance that the jaw shifts away from the middle during 

opening.  The studies did not indicate if deviation was observed on the fractured or non-

fractured side of the face.  It was assumed that deviation was on the fractured side.  The 

raw data for the outcome variable deviation are displayed in Table 12.  A total of eight 

studies contained measures for both groups, but the means given by Joos and 

Kleinheinz37 could not be used because they didn’t give standard deviations.  Two of the 

studies gave means with standard deviations and the other 5 contained counts.  It was 

decided to use a cutoff of 0mm for the studies that gave counts greater than a certain 

amount, since some studies gave no cutoff at all.  Therefore, the proportions used in the 

meta-analysis were defined as those with any amount of deviation. 
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Table 12. DEVIATION RAW DATA (means) 

Deviation  

Study Open Closed 

2 count =  8 count =  12 

6 count =  2 (>3mm) count =  9 (>3mm) 

7 count =  0 (>2mm) count =  0 (>2mm) 

8 0.4mm (SD = 6.8) 4.2mm (SD = 6.6) 

9 count =  6 (>2mm)  

10 count =  8 count =  15 

11 0.5mm (SD = 1.08) 0.8mm (SD = 0.92) 

12 count =  6 (<3mm), 2 (>3mm) count =  4 (<3mm), 2 (>3mm) 

13 0.2mm 1.2mm 

 

 Since only two studies reported continuous data, a meta-analysis for continuous 

data was not performed.  A meta-analysis was done on the log-odds ratios of the data for 

this outcome variable.  The two studies that reported continuous outcomes were 

converted into dichotomous variables using Suissa’s method.31  The cutoff value  was 

chosen to be 0.  This value along with the means and standard deviations of the 

continuous outcomes were used in equations (2.53) and (2.54) to approximate 

proportions of patients in both groups that had a deviation greater than and less than 

0mm.  These proportions were multiplied by their respective sample sizes to give the cell 

counts.  The cell counts and the resulting odds ratios are displayed in Table 13.  The first 

C
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4 studies are the original count data, while the last 2 studies are the converted count data.  

The study that contained two zero cells counts was first excluded from the analysis since 

it showed no difference between treatment groups.  If the following meta-analysis shows 

a treatment difference, study 7 could be included in a sensitivity analysis.  However, if 

the meta-analysis excluding study 7 shows no difference, then it will be unnecessary to 

go to the trouble of continuity corrections to further prove the same result.   

Table 13. CONVERTED AND UNCONVERTED COUNT DATA FOR 

DEVIATION 

Count > 0mm  

(had deviation) 

 Count = 0mm 

(had no deviation) 

 

 

Study Open Closed  Open Closed 

 

 

Odds Ratio 

 

Log-Odds 

Ratios 

2 8 12  28 18 2.333 0.847 

6 2 9  18 5 16.200 2.785 

10 8 15  2 59 0.064 -2.756 

12 8 6  12 13 0.692 -0.368 

8 32.451 54.592  29.546 19.408 2.561 0.940 

11 6.783 8.077  3.217 1.923 1.992 0.689 

 

 The odds ratios were log transformed to approximate a normal distribution.  Next, 

the  statistic for testing heterogeneity was calculated from the log-odds ratios such that 

.  The null hypothesis of homogeneity was therefore rejected.  

The funnel plot is displayed in Figure 6.     

Q

24.494 (p < 0.0002)Q =
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Figure 6. FUNNEL PLOT FOR DEVIATION 

 The weighted average method for random effects was used to test the cumulative 

effect size estimate.  The estimated log-odds ratio is 0.357T RND =  with a 95% 

confidence interval of (-0.826, 1.540).  This interval contains zero, indicating that the 

effect size estimate is not statistically significant.  The odds that a patient who had closed 

treatment will have deviation are the same as the odds that a patient who had open 

treatment will have deviation.  Although study 7 was not included in this analysis, it 

further supports the conclusion of no difference between groups and it would not have 

changed the results if it had been included in the analysis.  Figure 7 shows the individual 

log-odds ratios and the common log-odds ratio with their corresponding 95% confidence 

intervals.   
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Figure 7. LOG-ODDS RATIOS WITH 95% CONFIDENCE INTERVALS FOR 

DEVIATION  

 The odds ratios were also calculated for each study and they are given along with 

the log-odds ratios in Table 14.  The odds ratios and their 95% confidence intervals are 

displayed in Figure 8. 
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Table 14. ODDS RATIOS AND LOG-ODDS RATIOS WITH 95% CONFIDENCE 

INTERVALS FOR DEVIATION 

Odds Ratio Log-Odds Ratio  

Study Estimate 95% CI 

 

Estimate 95% CI 

2 2.333 (0.798,  6.822)  0.847 (-0.226, 1.920)  

6 16.200 (2.613, 100.451)  2.785 (0.960, 4.610) 

8 2.561 (1.248, 5.255)  0.940 (0.222, 1.659) 

10 0.064 (0.012, 0.331)  -2.756 (-4.406, -1.106) 

11 1.992 (0.255, 15.597)    0.689 (-1.368, 2.747) 

12 0.692 (0.185,  2.585)  -0.369 (-1.685, 0.950) 

Overall 1.429 (0.438, 4.665)  0.357 (-0.826, 1.540) 
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Figure 8. ODDS RATIOS WITH 95% CONFIDENCE INTERVALS FOR 

DEVIATION 

3.5. Lateral Excursion 

Lateral excursion refers to movement of the lower jaw in a lateral direction.  The raw 

data for the outcome variable excursion are given in Table 15.  Most studies reported 

excursion to the fractured side of the face and to the non-fractured side of the face for 

each patient.  However, two of the studies37, 45 reported excursion as measurements taken 

from the left and right side of the face instead.  These studies cannot be used in the meta-
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analysis because it is unclear which side (left or right) was the fractured side.  It is 

clinically meaningful to compare excursion to the fractured side among patients in the 

open and closed groups, as well as excursion to the non-fractured side.  It is not helpful 

for a meta-analysis to have excursion recorded as “right side” and “left side”.   

 Study 3 only gave measurements to the non-fractured side. Thus, it was only 

included in the meta-analysis for the non-fractured side data.  Studies 6 and 7 gave 

combined fractured and non-fractured side counts for the closed treatment group.  In 

study 7, since the count was zero for the combined groups, it will also be zero for the 

individual groups.  However, in study 6, the count is 1 and it is unknown if that one 

measurement of less than 5mm was taken toward the fractured or non-fractured side of 

the patient’s face.  Therefore, study 6 had to be excluded from the analysis.   

 After the previously mentioned exclusions, the following studies could be used in 

a meta-analysis.  Studies 1, 8, and 12 contained continuous means and standard 

deviations or ranges of excursion to both fractured and non-fractured sides.  Study 3 

contained means and standard deviations for excursion to the non-fractured side only.  

Study 7 contained counts for excursion to both sides, but they were all zero, which 

doesn’t lend much information.  Two meta-analyses were performed on the continuous 

outcomes.  The first analysis was for excursion to the fractured side data (including 

studies 1, 8, and 12) and the second was for excursion to the non-fractured side data 

(including studies 1, 3, 8, 12).   
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Table 15. LATERAL EXCURSION RAW DATA (in mm) 

Lateral Excursion 

Open Closed 

 

 

Study Fractured Non-fractured Fractured Non-fractured 

1 mean = 10 

range = 5-15 

mean = 9 

range = 4-18 

mean = 9 

 range = 4-14 

mean = 7 

range = 3-12 

3  mean = 8.5 

sd = 3.3 

 mean = 8.7  

sd = 3.4 

6 count = 0 (<5mm) count = 0 (<5mm) count = 1 (<5mm) 

7 count = 0 (<6mm) count = 0 (<6mm) count = 0 (<6mm) 

8 mean = 10.9  

sd= 2.5 

mean = 10.1  

sd = 2.8 

mean = 10.3  

sd = 3.6 

mean = 9.4  

sd = 3.5 

9  count = 2 (<4mm), 

count = 6 (4-6mm) 

  

11 Reported as left side and right side. 

12 mean = 8.6  

sd = 2.2 

mean = 8.6 

sd= 1.8 

mean = 8.5 

sd= 3.5 

mean = 7.5 

sd= 2.9 

13 Reported as left side and right side. 

 

 Before conducting the meta-analysis for excursion to the fractured side data, the 

range values for study 1 were converted to approximate standard deviations.  Hedges’ g 

estimators were calculated for the three studies.  They were found to be homogeneous 
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( 1.359, 0.715)Q p= = .  The weighted average method for fixed effects was used to test 

the overall effect size.  The treatment effect was 0.349T =+  with a variance of 

var( ) 0.018T =+ .  The 95% confidence interval around T +  is (-0.030, 0.495).  This 

interval contains zero, suggesting that the effect size is not statistically significant.  There 

is no difference between the open and closed treatment with respect to excursion to the 

fractured side.  The individual Hedges’ g estimators as well as the overall estimator and 

their 95% confidence intervals can be seen in Figure 9. 
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Figure 9. HEDGES’ g WITH 95% CONFIDENCE INTERVALS FOR 

FRACTURED SIDE EXCURSION 

 Because standardized mean differences are somewhat difficult to interpret, a 

separate display was produced for mean differences.  The mean differences along with 

their variances and 95% confidence intervals are given in Table 16 and graphically 

displayed in Figure 10.  The mean differences can be interpreted directly on the mm 

scale. 
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Table 16. MEAN DIFFERENCES FOR FRACTURED SIDE EXCURSION (in mm) 

Study Mean Difference*  95% CI Hedges’ g 95% CI 

1 1.0 (0.237, 1.764) 0.50 (0.051, 1.056) 

8 0.6 (0.001, 1.199) 0.19 (-0.149, 0.528) 

12 0.1 (-0.970, 1.170) 0.03 (-0.594, 0.662) 

overall 0.65 (0.215, 1.078) 0.23 (-0.03, 0.50) 

* Open - Closed 

 The individual and pooled mean differences with the corresponding confidence 

bounds are shown in Figure 10.  On average, patients who receive open treatment had 

excursion to the fractured side of about 0.65mm greater than patients who receive closed 

treatment.  This is not a large difference from a clinical point of view. 
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Figure 10. MEAN DIFFERENCES WITH 95% CONFIDENCE INTERVALS FOR 

FRACTURED SIDE EXCURSION 

 All data points for the non-fractured side were converted to Hedges’ g 

standardized mean differences.  They were found to be homogeneous 

 although  was close to the critical value .  The 

weighted average meta-analysis for fixed effects yielded a statistically significant effect.  

The treatment effect is 

( 7.391, 0.06)Q p= = Q 7.815QCV =

0.242T =+  with a variance of var( ) 0.012T =+ .  The 

corresponding 95% confidence interval is (0.027, 0.458).  This interval does not contain 
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zero implying a statistically significant result.  However, 0.242T =+  suggests a 

relatively small effect size for a standardized mean difference, as indicated by Cohen.47  

Thus, patients that underwent open treatment had a slightly greater lateral excursion to 

the non-fractured side on average than patients that underwent closed surgery.  The 

individual Hedges’ g estimators as well as the overall estimator and their 95% confidence 

intervals can be seen in Figure 11. 
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Figure 11. HEDGES’ g WITH 95% CONFIDENCE INTERVALS FOR NON-

FRACTURED SIDE EXCURSION 

 Because standardized mean differences are somewhat difficult to interpret, a 

separate analysis was done for mean differences.  The mean differences along with their 

variances and 95% confidence intervals are given in Table 17 and graphically displayed 

in Figure 12.  The mean differences can be directly interpreted on the mm scale.  For 

example, a difference of 2 mm for study 1 indicates that open treatment produced an 

excursion 2 mm greater on average than closed treatment. 
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Table 17. MEAN DIFFERENCES FOR NON-FRACTURED SIDE EXCURSION 

(in mm) 

Study Mean Difference* 95% CI Hedges’ g 95% CI 

1 2.0 (1.172, 2.828) 11.04 (8.848, 13.228) 

3 -0.2 (-0.882, 0.482) -1.64 (-2.058, -1.227) 

8 0.7 (0.096, 1.304) 7.34 (6.402, 8.272) 

12 1.1   (0.128, 2.073) 4.38 (3.220, 5.533) 

overall 0.88 (-0.196, 1.957) 0.24 (0.027, 0.458) 

 * Open - Closed 
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Figure 12. MEAN DIFFERENCES WITH 95% CONFIDENCE INTERVALS FOR 

NON-FRACTURED SIDE EXCURSION 

3.6. Protrusion 

Protrusion refers to movement of the lower jaw in a forward motion.  This variable is 

measured as the maximum distance that the patient can move the jaw forward.  The 

original data for this outcome variable are displayed in Table 18.  Study 5 only gave data 
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for the open group and study 13 only gave means without standard deviations.36, 37  These 

two studies were not included in the analysis.   

Table 18. PROTRUSION RAW DATA (means) 

Protrusion  

Study Open Closed 

1 7mm (range = 4-13) 7mm (range = 3-12) 

3 5.9mm (SD = 2.3) 6.2mm (SD = 2.7) 

4 count =  2 count =  3 

5 9.5mm (SD = 2.1)  

6 count =  1 (<5mm) count =  1  (<5mm) 

7 count =  0 (<6mm) count =  0  (<6mm) 

8 8.3mm (SD = 2.8) 7.2mm (SD = 2.8) 

11 6.4mm (SD = 3.31) 5.1mm (SD = 2.42) 

12 7.4mm (SD = 2.2) 6.3mm (SD = 2.5) 

13 3.1mm 5.1mm 

 

 The range values for study 1 were converted to approximate standard deviations.  

The five continuous means were evaluated first using Hedges’ g estimators.  They were 

found to be homogeneous ( .  The weighted average method for fixed 

effects did not yield a statistically significant result.  The treatment effect is 

5.340,p=0.254)Q =

0.184T =+  

with a variance of var( ) 0.011T =+ .  The 95% confidence interval around T +  is (-0.025, 

0.392).  This interval contains zero, suggesting that the effect size is not statistically 
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significant.  There was no difference in protrusion between the open and closed treatment 

groups (see Figure 13). 

 

Figure 13. HEDGES’ g WITH 95% CONFIDENCE INTERVALS FOR 

PROTRUSION 

 Because standardized mean differences are somewhat difficult to interpret, a 

separate analysis was done for mean differences.  The mean differences along with their 
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variances and 95% confidence intervals are given in Table 19 and graphically displayed 

in Figure 14. 

Table 19. MEAN DIFFERENCES FOR PROTRUSION (in mm) 

Study Mean Difference* 95% CI Hedges’ g 95% CI 

1 0 (-0.724, 0.724) 0 (-0.545, 0.545) 

3 -0.3 (-0.900, 0.300) -3.19 (-3.707, -2.672) 

8 1.1 (0.535, 1.665) 13.18 (11.577, 14.781) 

11 1.3 (-0.193, 2.793) 2.15 (1.047, 3.247) 

12 1.1 (0.137, 2.063)   4.47 (3.293, 5.640) 

overall 0.58 (-0.289, 1.449) 0.18 (-0.025, 0.392) 

* Open - Closed 
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Figure 14. MEAN DIFFERENCES WITH 95% CONFIDENCE INTERVALS FOR 

PROTRUSION 

 Next, the continuous data was converted to cell counts using Suissa’s method.  

Study 4 did not indicate a cutoff for protrusion so it could not be used in this analysis.  

Study 6 used a cutoff of 5mm and study 7 used a cutoff of 6mm.  For study 7, if no 

patients had protrusion less than 6mm, then no patients had protrusion less than 5mm.  

Therefore, the cutoff was set to 5mm.  The log-odds ratios were found to be 
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homogeneous .  The weighted average method for fixed effects did 

not yield a statistically significant result.  The common log-odds ratio is 

( 2.811,p=0.729)Q =

0.307T =+  with 

a 95% confidence interval of (-0.197, 0.810).  This interval contains zero, suggesting that 

the log-odds ratio is not statistically significant.  There is no difference in protrusion 

between the open and closed treatment groups.  These findings are shown in Figure 15.  

As was done with deviation, study 7 was excluded from the analysis at first to avoid 

continuity corrections to the entire dataset.  Since the results showed no difference 

between open and closed groups, study 7 further supports this result and would not have 

made an impact if it had been included in the analysis. 
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Figure 15. LOG-ODDS RATIOS WITH 95% CONFIDENCE INTERVALS FOR 

PROTRUSION 

 The odds ratios were also calculated for each study and they are given along with 

the log-odds ratios in Table 14.  The odds ratios with 95% confidence intervals are 

displayed in Figure 16.  The odds ratios can be more easily interpreted than the log-odds 

ratios.  For example, study 8 has an odds ratios of 2.034.  This means that the odds of a 
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patient who had open surgery having protrusion greater than 5 mm are about twice the 

odds of a patient who had closed surgery having protrusion greater than 5mm. 

Table 20. ODDS RATIOS AND LOG-ODDS RATIOS WITH 95% CONFIDENCE 

INTERVALS FOR PROTRUSION 

 

Study 

 

Odds Ratio 

Odds Confidence 

Interval 

 

Log-Odds Ratio 

Log-Odds Confidence 

Interval 

1 0.849 (0.167, 4.319) -0.163 (-1.790, 1.463) 

3 0.917 (0.419, 2.005) -0.087 (-0.869, 0.695) 

6 1.462 (0.084, 25.527) 0.380 (-2.481, 3.240) 

8   2.034 (0.789, 5.243) 0.710 (-0.237, 1.657) 

11 1.849 (0.304, 11.246)   0.615 (-1.191, 2.420) 

12 2.704 (0.543, 13.471)   0.995 (-0.611, 2.601) 

Overall 1.359 (0.821, 2.248) 0.307 (-0.197, 0.810) 

 



  70   

 

Figure 16. ODDS RATIOS WITH 95% CONFIDENCE INTERVALS FOR 

PROTRUSION 

3.7. Facial Asymmetry 

Facial asymmetry is a difference in the shape of the face on the two sides.  In this study it 

refers to the lower jaw not being centered beneath the upper jaw. 
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Table 21. ASYMMETRY RAW DATA 

Asymmetry  

Study Open Closed 

1 count = 0 count = 3 

2 count = 0 count = 0 

3 count = 1 count = 1 

10 count = 3 count = 2 

 

All of the data available for asymmetry were given as counts.  This variable is subjective 

because it wasn’t quantitatively measured.  Log-odds ratios were calculated for each 

study.  Three out of the eight cells are zero, so two of the four studies had odds ratios that 

were undefined.  Thus, continuity corrections were applied to the data.   

Table 22. ODDS RATIOS FOR ALL 3 METHODS AFTER CONTINUITY 

CORRECTIONS FOR ASYMMETRY 

 1k ko c+ =   0.01k ko c+ =  

Study Constant Treatment Empirical  Constant Treatment Empirical 

1 6.726 6.196 6.196 576.965 535.701 535.701

2 1.197 1.432 1.432 1.200 1.440 1.440

3 0.324 0.233 0.233 0.321 0.320 0.320

10 0.074 0.060 0.060 0.065 0.065 0.065
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 Table 22 shows highly inflated estimates for study 1 when the amount of 

correction per row was set to 0.01.  As seen with MMO, the treatment and empirical 

values are identical because the priors were set to 1.  The actual odds ratios before 

continuity corrections for the studies without zero cell counts (studies 3 and 10) were 

0.321 and 0.065, respectively.  These values most closely match the values from using 

the constant correction when 1k ko c+ = .  Thus, this continuity correction was used for 

the meta-analysis. 

  The log-odds ratio estimates were found to be heterogeneous 

.  The weighted average method for random effects produced a 

common log-odds ratio of 

( 9.707, 0.021)Q p= =

0.743T = −+  with a 95% confidence interval of (-2.559, 

1.072).  This interval contains zero, indicating that there is no difference in asymmetry 

between open and close treatment groups.  Again, there were only four studies in this 

analysis giving it low power.  The individual log-odds ratios and the overall common log-

odds ratio are displayed in Figure 17. 
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Figure 17. LOG-ODDS RATIOS AND 95% CONFIDENCE INTERVALS FOR 

ASYMMETRY 

The odds ratios were also calculated for each study and they are given along with the log-

odds ratios in Table 23.  The odds ratios and 95% confidence intervals are displayed in 

Figure 18. 
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Table 23. ODDS RATIOS AND LOG-ODDS RATIOS WITH 95% CONFIDENCE 

INTERVALS FOR ASYMMETRY 

Odds Ratios Log-Odds Ratios  

Study Estimate 95% CI Estimate 95% CI 

1 6.73 (0.388, 116.653) 1.91   (0.947, 4.759) 

2 1.20 (0.070, 20.392) 0.18 (-2.656, 3.015) 

3 0.32 (0.062, 1.696) -1.13 (-2.779, 0.528) 

10 0.07 (0.020, 0.274) -2.61 (-3.915, -1.295) 

overall 0.48 (0.077, 2.903) -0.74 (-2.559, 1.072) 
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Figure 18. ODDS RATIOS WITH 95% CONFIDENCE INTERVALS FOR 

ASYMMETRY 

3.8. Joint or Muscle Pain 

Temporomandibular joint pain is pain in the jaw joint that generally increases with jaw 

function.  In some studies, joint or muscle pain was verified by reaction on palpation of 

the masticatory muscles.  In others, the patients verbally expressed as whether or not they 

had joint pain since their surgery.  Joint or muscle pain data was given in counts (see 
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Table 24).  In study 3, counts were determined from given percentages.  For the open 

group, Santler et al42 reported that 2.7% of the patients had muscle pain.  The total 

number of patients in the open group was 37, implying that 0.999 patients had pain.  It 

assumed that this figure should be one and that this small difference is due to rounding.  

However, it was reported that 3.3% of patients in the closed group had muscle pain.  The 

total number of patients in this group is 113, implying that 3.729 patients had pain.  For 

this analysis, this figure was assumed to be 4.  However, it is not entirely clear that this is 

a correct assumption.   

Table 24. JOINT OR MUSCLE PAIN RAW DATA 

Joint or Muscle Pain  

Study Open Closed 

1 count = 1 count = 6 

2 count = 2 count = 5 

3 count = 1 count ~ 4 

9 count = 3 count = 5 

 

 Log-odds ratios were calculated for each study.  The study estimates were found 

to be homogeneous ( .  The weighted average method for fixed 

effects produced a common log-odds ratio of 1.16 with a 95% confidence interval of 

(0.210, 2.109).  This interval does not contain zero, indicating that there is a difference in 

joint pain between open and closed treatment.  The common odds ratio is 3.19 with a 

95% confidence interval of (1.234, 8.240).  Specifically, the odds of patients in the closed 

0.976, 0.807)Q p= =
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group having joint or muscle pain are over 3 times as great as the odds of patients in the 

open group having joint or muscle pain.  The individual and common log-odds ratios are 

displayed in Figure 19. 

 

Figure 19. LOG-ODDS RATIOS WITH 95% CONFIDENCE INTERVALS FOR 

JOINT OR MUSCLE PAIN 

 The odds ratios were also calculated for each study and they are given along with 

the log-odds ratios in Table 25.  The odds ratios and 95% confidence intervals are 

displayed in Figure 20. 
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Table 25. ODDS RATIOS AND LOG-ODDS RATIOS WITH 95% CONFIDENCE 

INTERVALS FOR JOINT OR MUSCLE PAIN 

Study Odds Ratio 95% CI Log-Odds Ratio 95% CI 

1 6.27 (2.046, 19.235) 1.836 (0.716,  2.957) 

2 3.40 (1.414, 8.174) 1.224 (0.347, 2.101) 

3 1.32 (0.425, 4.108) 0.279 (-0.856, 1.413) 

9 3.33 (1.426, 7.791) 1.204 (0.355, 2.053) 

Overall 3.19 (1.234, 8.240) 1.159 (0.210, 2.109) 
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Figure 20. ODDS RATIOS AND 95% CONFIDENCE INTERVALS FOR JOINT 

OR MUSCLE PAIN 

3.9. Summary of Results  

In summary, the majority of the variables did not show differences among patients treated 

with open surgery versus patients treated with closed surgery.  Table 26 gives the overall 

results from all of the meta-analyses performed.  Three of the analyses yielded a 
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statistically significant result.  Two of the three favored open treatment and one favored 

closed treatment.  The rest of the results were inconclusive.   

Table 26. SUMMARY OF RESULTS FROM META-ANALYSES 

Outcome Measure Method Summary Statistic Result 

WA random Hedges’ g = 0.349 Favor Closed  

MMO M-H fixed 0.709ORMH = Neither 

Deviation WA random log OR = 0.357 Neither 

Fractured WA fixed Hedges’ g = 0.349 Neither  

Excursion Non-

fractured 

WA fixed Hedges’ g = 0.242 Favor Open 

WA fixed Hedges’ g = 0.011 Neither  

Protrusion WA fixed log OR = 0.307 Neither 

Asymmetry WA random log OR = -0.743 Neither 

Joint or Muscle Pain WA fixed log OR = 1.159 Favor Open 

Abbreviations: WA = weighted average, OR = odds ratios, and M-H = Mantel-Haenszel 

  

  



  81 

4 Discussion 

4.1. Conclusions 

It is increasingly popular to use meta-analyses in all aspects of medical literature.  The 

benefits from conducting a meta-analysis are potentially large.  Individual studies may 

present conflicting views on a specific medical treatment and a meta-analysis can serve to 

combine the information from pertinent studies to form an overall conclusion.  Therefore, 

meta-analysis techniques appear to be especially useful in a clinical setting where there is 

no clear evidence-based treatment.  By including a group of studies into a meta-analysis, 

power for detecting an overall treatment effect is increased, making it easier to detect a 

difference that may exist in the population. 

 The available statistical methods tend to be somewhat rigid and underdeveloped.  

A great deal of manipulation was performed on the data for this series of meta-analyses.  

From converting continuous outcomes to continuity corrections, it is quite possible that 

some information was lost in this lengthy process.  The actual results from the analyses 

are perhaps a good indicator for the existing population effects, but certainly not 

conclusive or well substantiated.  The analyses were performed on all variables in an 

attempt to show how a meta-analysis could be applied for this research question.  The 

findings are merely to give direction for future research and not to be taken as validated 

findings because the number of limitations is large.  However, the results will be explored 

in a general sense. 

  It was discovered that the closed treatment group had a higher MMO than the 

open treatment group when the outcome measure was evaluated continuously as a 
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standardized mean difference (Hedges’ g).  However, it appeared that the effect size was 

not large and there were only 8 studies included in the analysis.  When looking at 

excursion to the non-fractured side of the face, it was discovered that patients who had 

open treatment performed slightly better than patients who had closed treatment.  These 

results should be interpreted with caution, as there were only 4 studies in this analysis.  

The same caution should be noted for the results from the analysis of joint or muscle 

pain.  While the effect size seems substantial in favor of open treatment, the number of 

studies was only 4 as well.  

 A meta-analysis is only as good as the studies that comprise it.  If the individual 

studies are flawed, the findings from a review of these studies will also be flawed.  The 

trials included in a meta-analysis should ideally be of high methodological quality and 

free from bias, such that the differences in outcomes observed between groups of patients 

can be confidently attributed to the intervention under investigation.5  There are several 

types of potential biases including:  systematic differences in the patients’ characteristics 

as baseline (selection bias), unequal provision of care apart from the treatment under 

evaluation (performance bias), biased assessment of outcomes (detection bias), and bias 

due to exclusion of patients after they have been allocated to treatment groups (attrition 

bias).5 

4.2. Limitations 

The single most important limitation with the data for this research was that only one 

study actually randomized patients to treatment groups.  This introduces selection bias 

since the manner in which patients are assigned to a treatment group is not random.  



  83   

Ideally, randomization would tend to make the two treatment groups relatively equal with 

respect to all baseline characteristics.  Since only one of the studies used random 

assignment, the generalizability of these individual observational studies is, at best, 

suspect.  Thus, a meta-analysis of suspect studies should be interpreted with caution.  

That is, these results should not be taken as definitive. 

 Some studies indicated that they classified type of fracture before treatment, but 

not all of the studies did.  Thus, this information could not be included.  If all future 

studies would include the type of fracture in a systematic classification scheme, then this 

information could be included (accounted for) in a meta-analysis.  In addition, many pre-

operative variables could be included in an analysis if researchers gathered this 

information in their studies.  For example, it would be helpful to know if a patient with 

asymmetry after treatment may have had asymmetry before treatment as well.  It is 

important to know the state of the patient before treatment in order to determine if the 

outcomes were due to treatment. 

 With regard to performance bias, several studies reported different ways of 

conducting open and closed surgery.  There were differences in type of materials used as 

well as surgical protocols.  Not all of the studies even gave a detailed description of what 

the surgical protocol was.  There was variation in whether or not studies used elastics to 

fix the jaws postoperatively and whether surgeons had their patients perform jaw 

exercises after surgery and for how long.  The length of time for closed treatment, known 

as maxillomandibular fixation (MMF), was also variable (ranging from 0 to 6 weeks). 
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 Detection bias (bias in outcome assessment) was almost certainly present in 

several studies.  For the most part, outcome measures were given in millimeters, but 

asymmetry and joint pain data were collected subjectively.  Perhaps the amount of 

asymmetry could be measured.  It also may be informative to assess these outcomes on 

an ordinal scale.   

 Attrition bias was also present in nearly all of the studies included in the meta-

analyses.  Many patients were lost to follow-up.  Getting patients to come back for 

subsequent visits after surgery can be difficult, especially since the time between surgery 

and follow-up can be lengthy in order to see long-term results. 

 Publication bias is always a limitation when conducting a systematic review.  

Interesting or favorable results are more likely to be submitted and published.  The funnel 

plot can be a useful tool to detect publication bias.  If publication bias is present there will 

be a lack of small studies with negative results.  The funnel plots for the previous 

analyses did not appear to have publication bias, but because there were so few studies, it 

was difficult to tell.  It is not entirely clear how to best proceed when publication bias is 

present.  Rosenthal presented a method of estimating how many ‘typical’ unpublished 

non-significant studies would have to exist to overturn the current pooled results.48   

4.3. Future Suggestions 

Future studies need to randomize patients to treatment groups and report results measured 

by examiners blind to treatment group.  These two aspects of a clinical trial are 

fundamental to ever being able to conduct a reliable meta-analysis.  Certain surgeons 

likely favor either open or closed treatment and so they may (even unintentionally) give 



  85   

good ratings to a patient who had their treatment of preference.  It is necessary that the 

person who measures the outcome variables on the patients at follow-up does not know 

which patients are in which treatment group. 

 Data reporting was rather varied among studies.  Some studies reported an 

outcome as continuous while others reported it as a count or proportion.  In many 

situations it is straightforward to report certain measures as proportions or counts, such as 

number of deaths out of total number treated.  But often the outcome variable is measured 

on a continuous scale.  When dichotomizing data, a cutoff point is chosen and the data 

are then reported as being either below or above the cutoff.  Perhaps it is only of interest 

to divide the data into these two groups because they diverge so greatly at the cutoff 

point.  The argument here is that the risk of a defined event is a clinically more 

meaningful measure of the extent of disease than the mean of the continuous outcome 

variable from which the disease is defined.31   

 However, there is a cost associated with this process.  First, there is a loss of 

information when data is collapsed over a continuous scale.  Dichotomizing over a 

continuous scale is essentially lumping together data into a group that has variation.  Data 

that are not really the same are treated to be the same and the chance of finding factors to 

be significant is lessened.  Second, the misclassification related to measurement error is 

increased.  Lastly, the choice of the cutoff point can greatly influence the results if many 

points lie near the cutoff or if the selection of the cutoff is made after the data is 

collected.   
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 Many of the studies in this research dichotomized MMO at 30mm.  That is, they 

had counts or proportions of patients with a MMO great than 30mm and less than 30mm.  

Nearly every patient in every study had an MMO greater than 30mm.  When a variable is 

dichotomized so that nearly all of the observations fall into one category, i.e. MMO 

greater than 30 mm, there is no way to identify which treatment group is better.  

Although a MMO greater than 30 mm may be considered minimally acceptable, by 

setting a higher cutoff (in the middle of the data), it may be possible to show if one 

treatment is outperforming the other.  Better yet, reporting the data with means and 

standard deviations provides the most information and allows for the most accurate 

comparison of groups.  It is strongly recommended that all studies in this field of 

literature report the sample size of each treatment group along with the means and 

standard deviations for each group or the proportions, including the numerator and 

denominator.  If possible, it is also helpful to include means and standard deviations 

along with proportions if the data are available. 
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