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Abstract 
 
 
 

SYNTHESIS AND BIOLOGICAL SCREENING OF A SERIES OF NOVEL CHEMOKINE 

RECEPTOR CCR5 ANTAGONISTS 

By Soundarya Vaithianathan, MS 

A Dissertation submitted in partial fulfillment of the requirements for the degree of Master of 

Science at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2011 

Major Director:  Dr. Yan Zhang 

Associate Professor, Department of Medicinal Chemistry 

 

The chemokine receptor CCR5 has been implicated in the pathogenesis of cancers and 

AIDS. A series of novel piperidine derivatives were designed, synthesized, and evaluated as 

CCR5 antagonists. The ability of the new ligands to inhibit the increment of intracellular calcium 

level stimulated by endogenous ligand CCL5 was measured in the calcium mobilization assay as 

an indication of its CCR5 receptor antagonism. The anti-proliferation assay was performed to 

measure the ability of these new compounds to inhibit the proliferation of prostate cancer cell 

lines, PC-3 and M12. A new lead compound has been identified which showed micromolar level 

of inhibition to PC-3 cell line proliferation as well as calcium mobilization. These studies are the 
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beginning of a thorough analysis of the CCR5 receptor antagonist binding pocket in the CCR5 

receptor. Further examination may help identify next generation lead to develop highly selective 

CCR5 receptor antagonists and anti prostate cancer agents. 
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1. General Introduction 

1.1 Inflammation and cancer: 

       Inflammation is a fundamental physiologic process that is necessary for wound 

repair and recovery from infection.1 This process acts as a defense mechanism helping the 

host fight against infections. However, inflammation is a self-limiting process.2 

Uncontrolled or abnormal regulation of this process can lead to carcinogenesis.1 As early 

as the 19th century, Rudolf Virchow noticed leucocytes in neoplastic tissue and made a 

connection between inflammation and cancer.3 Currently it has been reported that 25% of 

the cancers worldwide are caused due to infectious agents or an inflammatory condition.2 

For example; papillomavirus serves as the inflammatory stimuli in cervical cancer. A 

similar analogy can be drawn between hepatocellular carcinoma and hepatitis virus (B and 

C), gastric cancer and H. pylori, and colorectal cancer and inflammatory bowel disease.3 

The main purpose of an inflammatory response is to create a tissue 

microenvironment. The microenvironment recognizes foreign particles and repairs cellular 

damage thus, leading to eradication of the foreign particles and infected cells.6 The 

environment is rich in inflammatory cells which is an integral part of the neoplastic 

process, leading to proliferation, migration, and survival of cells.5 

Under homeostatic conditions, when tissues are either exposed to some chemical 

irritant or wounded, inflammatory cells remove these wounded and damaged cells. This is 

done by induction of cell death or phagocytosis. The inflammatory cells also promote cell 

growth and proliferation to facilitate tissue regeneration and wound healing. The process 
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of proliferation and inflammation subsides once the chemical irritant or inflammatory 

stimulus is removed, and the wound is repaired. Chronic inflammation brings about 

alterations in the normally growing cells by affecting oncogenes leading to continued and 

sustained proliferation of the cells. This causes the uncontrolled growth of cells which 

eventually leads to neoplasm.5 

1.2 Tumor Microenvironment:  

In 1889, Stephen Paget emphasized the importance of the tumor microenvironment 

in tumor growth and progression. The “seed and soil” hypothesis was postulated by him. 

This hypothesis stated that factors in the tumor microenvironment constitute the fertile soil 

which promotes the growth and metastasis of cancer. This hypothesis has been validated 

and continues to hold true in associating the ability of the tumor cell (seed) to metastasize 

successfully to the microenvironment (soil).7  

The tumor microenvironment comprises of two major components. These include 

the cellular and the humoral components. The cellular components include macrophages, 

dendritic cells, lymphocytes and leucocytes. The humoral components include cytokines 

and chemokines.6 Tumors, their stromal areas, and precancerous tissues have a large and 

diverse population of the cellular and humoral components thus, contributing in cancer 

initiation, promotion and metastasis.5 

1.2.1 Cellular components: 

  Macrophages are the major component of the tumor microenvironment.3 They are 

also known as tumor-associated macrophages (TAM).4 They are differentiated monocytes 
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that mainly originate from the bone marrow. Macrophages in the body are in continuous 

search of foreign antigens which are phagocytosed and processed.8 Due to this function, 

TAMs are recruited to sites of tissue injury and inflammation.4 Under homeostatic 

conditions, macrophages are appropriately activated. Upon activation, TAMs have the 

ability to kill tumor cells and cause tissue destruction. However, TAMs can also produce 

angiogenic and growth factors which stimulates tumor-cell proliferation and angiogenesis. 

They also produce protease enzymes which can degrade the extracellular matrix and 

hence, favor invasion and metastasis.3 The major pro-tumoral function of TAM is the 

suppression of anti-tumor immune response.9  

There are two types of macrophages: M1 and M2 macrophages. M1 macrophages 

are anti-tumor in function. They perform tumor surveillance functions. TAMs are M2 type 

of macrophages which contributes to the immuno suppressive tumor microenvironment. 

These macrophages show several pro-tumoral functions such as angiogenesis, matrix 

remodeling and suppression of adaptive immunity. When the macrophages are recruited 

into the tumor microenvironment, they are exposed to very high levels of inflammatory 

cytokines. This selectively leads to activation of the M2 subtype of macrophages which 

are pro-tumor in function.8  

Dendritic cells, also known as tumor-associated dendritic cells (TADC) are another 

important component of the tumor microenvironment. They maintain both innate and 

adaptive immunity by activating antigen specific immunity and maintaining tolerance.9 

Dendritic cells are the first cells to migrate to the tumor site for recognizing the tumor 
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cells and inducing anti-tumor immunity. There are two forms of dendritic cells present in 

humans which are dendritic cells 1 and dendritic cells 2. They are myeloid and lymphoid 

lineage pathways respectively, which differentiate from hematopoietic progenitor cells 

under the control of complex network of cytokines and chemokines. Dendritic cells 1 

originates in the bone marrow as immature dendritic cells.8 TADC with an immature 

phenotype are defective in stimulating T cells. The immature TADC are usually present in 

the tumor mass.9 They mature once they process foreign antigens which are brought about 

by inflammatory signals.8 Mature TADC are present in the peri tumoral area.9 Cancer cells 

are active in attracting immature dendritic cells which are accumulated with in the tumor. 

As a result of this, tumor cells contain an abundant amount of immature dendritic cells, 

which are unable to exert their function of antigen presenting although they can take up 

antigens.8                                    

1.2.2 Humoral components: 

The humoral components of the tumor microenvironment include cytokines and 

chemokines predominantly. Cytokines are a large group of polypeptides which are 

secreted by living cells. They regulate cellular functions such as immune cell activity, and 

proliferation and differentiation of a wide variety of cell types. Interleukins (IL), tumor 

necrosis factor (TNF) and chemokines are the cytokines which are an integral part of the 

inflammatory process.10 

Cytokines produced by leucocytes which affect other leucocytes are termed as 

interleukins. Interleukins stimulate the proliferation and differentiation of T and B 
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lymphocytes as well as other cells involved in the immune response.10 Malignant cells 

secrete cytokines like interleukin-1 (IL-1) and interleukin-6 (IL-6) which promotes tumor 

cell growth and resistance to therapy.3 

One of the major mediators of inflammation is tumor necrosis factor. They 

perform actions which mediate both tissue destruction as well as recovery. It stimulates 

fibroblast growth at the site of inflammation and thus, induces cell death of mutated and 

diseased cells. Anti-tumor activities like destruction of tumor associated blood vessels are 

performed by TNF at malignant sites. However, when they are chronically produced, they 

perform pro-tumor functions. This contributes in tissue remodeling and stromal 

development which is necessary for tumor growth and metastasis. TNF is often detected in 

breast, ovarian, prostate, colorectal, and bladder cancer.3 

Besides the cellular and humoral components, a number of other factors are 

present in the tumor microenvironment with potentiates cancer progression. Reactive 

oxygen species (ROS) and reactive nitrogen species (RNS) are produced in inflamed 

tissues. They attack the invading infectious agents and other foreign bodies by oxidation, 

nitration, and other reactions. Excessive production of these reactive species can cause 

DNA damage and mutations, and injure the host cells leading to neoplasm.5 The tumor 

microenvironment is also made up of extracellular matrix and stromal cells. The stromal 

cells include fibroblasts and vascular cells. There is a specific stromal fibroblast fraction 

known as carcinoma-associated fibroblasts (CAFs). CAF has striking tumor-promoting 

properties. CAFs were found to exhibit increased levels of chemokines which recruits 
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endothelial progenitor cells (EPCs) into the tumor mass, thus favoring and supporting 

tumor angiogenesis. In vivo, the CAF’s can promote tumor progression.8  

The various components in the tumor microenvironment are recruited to the sites 

of inflammation by a process known as chemotaxis. Chemotaxis is a phenomenon in 

which the migrating cell’s direction is determined by the concentration gradient of 

extracellular chemicals. Chemotaxis plays an important role in many diverse physiological 

processes like recruitment of leucocytes to the sites of infection and trafficking of 

lymphocytes. A number of molecular components are involved in chemotaxis. For 

example, leucocyte migration is guided by a set of short peptides known as chemokines.11 

1.3 Chemokines: 

Chemokines are chemo attractant cytokines. They were initially characterized 

because of their association with inflammatory responses by stimulation of leucocyte 

chemotaxis during inflammation. These small proteins activate G-protein-coupled 

receptors (GPCRs) and thereby induce cells to migrate in a concentration gradient. They 

are a family of small proteins typically defined by four cysteine residues. The first 

cysteine forms a disulfide bond with the third cysteine residue and the second cysteine 

residue in the sequence forms a disulfide bond with the fourth cysteine residue. The family 

of chemokines comprises over 40 members.12, 13 Typical chemokines can be found easily 

in genome sequences owing to their relatively small size. Each of them is made up of 70-

90 amino acids.11  
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Chemokines are sub-classified into four classes based on the location of the first 

two cysteine residues in the molecule. Those chemokine which have an intervening amino 

acid between the first two cysteine residues are termed as CXC or α-chemokines.13 There 

are 17 members in this family of chemokines.14 The CC chemokines or the β-chemokines 

are those which have no intervening amino acid. In other words, the first two cysteine 

residues are adjacent to each other. A few chemokines from this family have six cysteine 

residues instead of four. All of them are disulfide bonded to each other.13 28 members so 

far have been identified in this family.14 The third sub-family is the CX3C or the γ-

chemokine family. There are three intervening amino acids between the first two cysteine 

residues. Presently, only one protein has been identified in this family. The CX3C 

chemokine is unusual because it is a part of a cell surface receptor. The last sub class is the 

C or γ-chemokine. This class is an exception to the four-cysteine paradigm and has only 

two cysteine residues.13 XCL1 and XCL2 are examples of chemokines belonging to this 

class which lack two out of the four cysteine residues.14
 

Chemokines can also be classified according to their functional properties. 

Inducible (inflammatory) and constitutive (homeostatic) chemokines are the two classes. 

Inducible chemokines are induced by inflammatory stimuli. Thus, they control the 

recruitment of leucocytes into inflamed and injured tissue. Constitutively expressed 

chemokines perform various housekeeping functions.8 

The CXC family of chemokines can be further classified based on the existence of 

glutamate-leucine-arginine (E-L-R) motif which is located upstream from the CXC 
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sequence. They are classified into ELR+ and ELR- chemokines which stand for ELR 

positive and ELR negative respectively. This motif is important as the NH2 terminal of the 

chemokines is responsible for attracting inflammatory cells. This motif is also necessary 

for eliciting the angiogenic properties of the chemokines. CXCL1, CXCL2, CXCL3, 

CXCL5, CXCL6, CXCL7 and CXCL8 are examples for ELR+ chemokines. ELR- 

chemokines usually have angiostatic and anti-invasive properties. Examples of such 

chemokines are CXCL4, CXCL4L1, CXCL9, CXCL10, CXCL11 and CXCL14. There is 

an exception to the class of ELR- chemokines. CXCL12 is an ELR- chemokine which 

possesses angiogenic properties.14
 

Chemokines can form dimers or other high order structures at chemokine rich sites 

like the sites of inflammation. Such chemokines have synergism, thus, strongly enhancing 

leucocyte migration and activation.8 Due to the similarity between the processes of cancer 

invasion and metastasis, and entry of leucocytes into inflamed tissue, cancer biologists 

postulated that tumor cells may use chemokine mediated mechanisms during the process 

of metastasis.8 Chemokines exert their functions by interacting with cell surface receptors 

known as chemokine receptors. 

1.4 Chemokine Receptors:  

Chemokine receptors are members of a large super family of cell membrane 

receptors called G protein coupled receptors. They have seven trans-membrane spanning 

helices. Chemokines function by activating the chemokine receptors.15 Twenty chemokine 

receptors have been identified to date.12 These receptors are embedded in the cell surface 
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lipid bilayer. The chemokine receptors have been designated as CXCR1 through 6, CCR1 

through 11, XCR1 and CX3CR1. This nomenclature is given to them based on the type of 

chemokines they bind. CXCR1 through 6, CCR1 through 11, XCR1 and CX3CR1 bind to 

CXC, CC, C and CX3C chemokines sub family respectively.13  

All these receptors contain around 350 amino acids each and have a molecular 

weight of about 40 kDa. Most of the chemokine receptors initiate ligand induced signaling 

cascades by receptor dimerization.8 They form homo dimers and occasionally hetero 

dimers.12 Unlike other GPCRs, chemokines and their receptors have over lapping 

specificities for each other.11 There are multiple ligands for a single receptor and vice-

versa. For example, the CXCR2 has 8 different CXC chemokines which can bind to it. In 

a case where CXCR2 is defective, CXCL8 and CXCL5 still exert their actions via another 

CXCR receptor, CXCR1.8 However; receptors interacting with multiple chemokines are 

capable of doing so with chemokines belonging to the same sub family. Binding of 

chemokines across sub families is rare.13 

Infiltrating leucocytes are not the only cells that respond to chemokine gradients. 

Cancer cells themselves express chemokine receptors and respond to chemokine 

gradient.16 Around 23 different types of human cancers express the chemokine receptor 

CXCR4. However not all cancer cells in the primary tumor express CXCR4. For instance, 

in ovarian and lung cancer only a small population of cells expresses the CXCR4 receptor. 

The expression of CXCR4 is low or absent in normal breast and lung cancer cells. 

Therefore, its expression is characteristic of malignancy.16   
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Organ specific metastasis is governed by interaction between chemokine receptors 

and chemokine gradients in target organs.16 This can be explained with an example of a 

comprehensive survey of chemokines and their receptors in breast cancer patients 

performed by Muller and co-workers. It was found that the chemokine receptor CXCR4 

was expressed more in breast cancer tissue than normal breast tissue. The endogenous 

ligand CXCL12 was expressed in many organs such as lymph nodes, bone marrow and 

lungs. These were the organs where breast cancer metastasized.8  

Over expression of CXCR4 on neoplastic cells assists the cancer cells in adhering 

to the vascular endothelium in distant tissues. This is one of the first steps in establishing a 

metastatic niche. Various growth factors such as vascular endothelial growth factor 

(VEGF), epidermal growth factor (EGF) and inflammatory cytokines such as tumor 

necrosis factor-α (TNF-α), interferon-γ have also been found to correlate to chemokine 

receptor expression in cancer.8  

Chemokine receptors function as allosteric molecular relays. When chemokine 

binds to the receptor, the tertiary structure of the receptor is modified.14 This activates the 

hetero trimeric G proteins. This activation causes activation of a signaling network leading 

to chemotaxis.11 It was initially assumed that chemokine receptor function is governed 

entirely by Gi –mediated processes. This was further confirmed as it was found that the 

chemokine functions are blocked in cells pre-treated with pertussis toxin.17 However, 

recent evidence suggests that chemokines function through other G protein subtypes as 

well as non-G-protein mediated pathways.18  
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When the chemokine binds to the extracellular part of the receptor; the receptor is 

stabilized in a conformation such that the hetero trimeric G-protein is activated (Figure 1). 

G-protein is present in the intracellular part. The G protein has three subunits: α, β, γ. The 

Gα subunit is tightly associated with the β subunit, which in turn is in tight association 

with the γ subunit. The Gα subunit interacts with the intracellular loops two and three, as 

well as the C terminal domain. Intracellular loop two has the important DRY motif which 

is essential for interaction with the Gα subunit. GDP is bound to Gα in the inactive state of 

the receptor. When an agonist binds, GDP is replaced by GTP. The Gα-GTP subunit and 

the Gβγ subunit dissociate from each other as well as the receptor, and subsequently 

activate a number of signaling pathways downstream.18 Adenylyl cyclase is the only 

effector known to be regulated directly by Gα subunit.19 The βγ subunit causes transient 

accumulation of phosphatidylinositol-3,4,5-triphosphate (PIP3). This is coupled to the 

activation of proteins containing PIP3 binding motifs.12  

If there is continued stimulation of the receptor by the chemokine, receptor 

desensitization and internalization occurs. This process occurs by phosphorylation of 

certain residues in the C-terminal domain of the receptor by G-protein receptor kinases 

(GRK). Receptor phosphorylation stimulates the binding of arrestins which acts as a steric 

block thus, preventing the further interaction of the receptor. This eventually leads to 

receptor desensitization and internalization (Figure 1).18, 20 
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Figure 1: Signaling of chemokine receptors upon chemokine binding.16 
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Decoy receptors are types of chemokine receptors that negatively regulate the 

immune and inflammatory response.12 DARC, D6 and CCX-CKR are three decoy 

receptors that have been identified. DARC is expressed by erythrocytes and vascular 

endothelial cells. This receptor is up regulated during inflammation. It binds pro 

inflammatory chemokines belonging to the CC and CXC sub class. This receptor lacks the 

intracellular signaling motifs, and hence, it does not support ligand induced signaling and 

migration. It neutralizes chemokines at extracellular barriers. Humans who lack the 

erythroid DARC may contribute to the increased progression and mortality of prostate 

cancer. Almost all inflammatory CC chemokines binds to the D6 receptor. This receptor 

undergoes rapid internalization. This leads to degradation of the ligand, however the 

receptor recycles back. Similar to DARC and D6 receptors, the CCX-CKR receptor lacks 

signaling motifs.14 

 A chemokine receptor of considerable interest to researchers is the CC chemokine 

receptor CCR5. CCR5 has been widely studied owing to its implication in various disease 

states. It has been found that prostate and breast cancer tissues express the CCR5 receptor. 

CCR5 is also expressed on human CD4+ T cells and hence, is a critical mediator in the 

human immune deficiency virus (HIV) entry into the host cell. Thus, due to its diversity, 

the CCR5 receptor serves as an important therapeutic target.  

1.5 CCR5: 

The CC chemokine receptor 5 (CCR5) was first identified in 1996.21 It is a seven 

trans-membrane, G-protein-coupled receptor. CCR5 has 352 amino acids with a mass of 
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about 40.6 kDa. It shares 71% sequence identity with CCR2. Most of the differences are 

located in the extracellular and cytoplasmic domains. It has four cysteine residues in the 

extracellular domains as well as a conserved DRYLAVHA sequence which is important 

for interaction with the G protein (Figure 2).22-24 Macrophage inflammatory protein 1α 

(MIP-1α, CCL3), MIP-1β (CCL4) and regulated on activation, normal T cell expressed 

and secreted (RANTES, CCL5) are the endogenous chemokine agonists that bind to 

CCR5.21 Also, monocyte chemo attractant protein 2 (MCP-2, CCL8) and MCP-4 (CCL13) 

show reasonable activity at CCR5.25 

CCR5 receptor activation involves two steps. This includes an initial interaction 

between the chemokine and amino terminal domain of the receptor as well as the 

adjoining extra cellular loops. This is followed by interaction of the amino terminal with 

the trans-membrane domain which leads to receptor activation.22 Like other chemokine 

receptors, CCR5 binds to inhibitory Gi/o guanine nucleotide binding protein thus inhibiting 

3’-5’-cyclic adenosine monophosphate production (cAMP) by inhibiting adenylyl cyclase. 

They also stimulate the release of intracellular Ca2+. Effects on adenylyl cyclase are 

mediated via G protein α subunits whereas effects on Ca2+ mobilization occur due to 

signaling mediated by the βγ subunit. Treatment with pertusis toxin inhibits [35S]GTPγS 

binding which is stimulated by CCL3, CCL4, CCL5 and CCL8. It can also partially 

inhibit internalization of the receptor which is induced by the chemokines. These two 

features indicate that CCR5 function through Gi/o proteins.26 
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Figure 2: Schematic diagram of CCR5 G-protein-coupled receptor.27 
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Phospholipase C (PLC) is activated via CCR5 which results in the production of 

diacyl glycerol (DAG). This subsequently leads to the activation of protein kinase C 

(PKC). It mediates receptor regulation by receptor phosphorylation which is carried out by 

a class of serine threonine protein kinases know as G protein receptor kinases (GRK). This 

leads to receptor desensitization. The CCR5 ligands mainly activate three main members 

of the MAP (mitogen activated protein) kinase family. These include ERK1/2 

(extracellular signal-regulated kinase), p38 and SAPK/JNK which are critical for T cell 

proliferation and transcriptional activation of cytokine genes.27 

The chemokine receptor CCR5 serves as a portal of cellular entry for the human 

immunodeficiency viruses (HIV-1 and HIV-2). CCR5 and CXCR4 act as co receptors 

along with CD4 in vivo for the attachment and entry of HIV into the host cell.26, 27 Also, 

studies have shown that the chemokine CCL5 which is a potent chemotactic factor for 

inflammatory cells is important in the progression of breast cancer. The chemokine CCL5 

and its receptor CCR5 are over expressed in human prostate cancer cell lines.28 This 

makes the chemokine receptor CCR5 attractive as a therapeutic target.
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2.  Disease Involvement of CCR5 

The chemokine receptor CCR5 is implicated in various disease conditions. Some 

of these include Alzheimer’s disease, atherosclerosis, and cardiovascular diseases. 

However, its implication in cancer and acquired immune deficiency syndrome (AIDS) has 

been extensively studied by researchers. CCR5 receptor and its endogenous ligand CCL5 

(RANTES) are over expressed in cancer, specifically prostate and breast cancer. This 

receptor also serves as the co-receptor for the entry of Human immune deficiency virus 

(HIV) along with CD4 receptor and hence is involved in the pathogenesis of AIDS. The 

role and involvement of CCR5 in prostate cancer, breast cancer and AIDS are discussed 

below.  

2.1 Prostate Cancer: 

Prostate cancer is an extremely common malignancy of the male genitourinary 

tract.15 It is the most frequently diagnosed cancer and the second leading cause of cancer 

death among the men in the United States and Western Europe. The American Cancer 

Society estimates 240,890 new cases of prostate cancer and 33,720 deaths due to prostate 

cancer in 2011.29 North American men are at a higher risk of acquiring prostate cancer as 

compared to Asian men. This is due to a typical Western diet rich in saturated fats and 

little or devoid of fruits and vegetables which is most likely the culprit in the promotion of 

prostate cancer. Thus, diet and lifestyle are the important risk factors associated with 

prostate cancer. 30, 31 
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It has been widely known and accepted that there is a functional relationship 

between inflammation and cancer.3 Prostate cancer precursor lesions often show 

inflammatory infiltrates in close proximity. This has led scientists to consider 

inflammation in the etiology of prostate cancer.32 Several case studies have shown an 

association between prostate cancer and prostatitis, which is inflammation of the prostate 

gland.6 The anatomic position of the prostate gland is such that easy exposure to various 

infectious agents present in urine and sexual activity can lead to inflammation.33, 34  

Prostate specific antigen (PSA) is a membrane protein that is found predominantly 

in the epithelial cells of the prostate gland.35 This antigen is expressed in low levels in 

epithelial cells of the normal prostate gland in contrast to its high expression in metastatic, 

and androgen-insensitive prostate cancer. Thus, PSA is one of the most commonly used 

biomarker in the diagnosis and treatment of prostate cancer.36 However, biopsy of the 

prostate tissue is the only confirmatory diagnostic test for prostate cancer.15   

Many types of cancer cells including prostate cancer cells express chemokines and 

their receptors. It has been stated that chemokines and their receptors are involved in the 

growth and metastasis of prostate cancer.34 Vaday and co-workers performed a series of 

experiments to characterize the expression of CCL5 (RANTES) and its receptor CCR5 in 

prostate cancer cell lines. Four cell lines were used which were PC-3, LNCaP, DU145, 

and human prostatic adenocarcinoma cells (E-CA-65). MCF-7, which is human breast 

carcinoma cell line, was used as the positive control. It was seen that CCL5 was expressed 
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in all these cell lines with DU145 and LNCaP expressing the highest levels (Figure 3). 

PC-3 and E-CA-65 secreted low levels of CCL5.28  

CCL5 was capable of binding to three receptors; CCR1, CCR3 and CCR5 to exert 

its action. Anti-bodies were used against each of these three receptors to measure their cell 

surface expression in prostate cancer cell lines. The receptor CCR5 was expressed on the 

cell surface of all three prostate cancer cell lines PC-3, DU145 and LNCaP. Also, large 

amounts of intracellular CCR5 were seen in PC-3 cell lines. On examining the expression 

of receptors CCR1 and CCR3 in the three prostate cancer cell lines, it was found that large 

amounts were expressed in the intracellular pools. However, their cell surface expression 

was lower than the levels of CCR5 (Table 1). Thus, it could be concluded that the cell 

surface expression of CCR5 was greater than that of CCR1 and CCR3 in prostate cancer 

cell lines.28 

 The effect of CCL5 on the invasion and proliferation of cancer cells was studied. 

It was seen that CCL5 causes the migration of PC-3 and LNCaP cell lines. TAK-779 

which is an antagonist of the receptor CCR5 was used to assess CCL5 induced cell 

invasion and proliferation. It was noted that TAK-779 was capable of inhibiting CCL5 

induced invasion as well as proliferation of PC-3 and LNCaP cells (Figure 4).28 Thus, 

CCR5 antagonists can be used to prevent the cell proliferation, invasion and metastasis 

that occurs in prostate cancer.      

 



    20 

 

 

Figure 3: Expression of CCL5 mRNA in prostate cancer cell lines 

 CCL5 (RANTES) expression was analyzed in prostate cancer cell lines PC-3, DU145, 

LNCaP and primary cultures of prostate adenocarcinoma. The positive control used was 

MCF-7 breast carcinoma cell line. Serum free conditioned media was collected after 24 

hour incubation for CCL5 ELISA experiment.28  
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Table 1: Total cell surface and intracellular expression of CCR1, CCR3 and CCR5 in PC-

3, LNCaP and DU145 cell lines. 

 

The data represents the percentage of positive cells in the total cell population. Cells were 

stained with anti-CCR1, anti-CCR3, and anti-CCR5 antibodies. Their fluorescence was 

compared with the fluorescence of mouse isotype control cells stained with antibody.28  

 

 

 

 

 

 PC-3 L)CaP  DU 145 

CCR1 surface 0 22.6 16.6 

CCR1 total cellular 35.2 52.4 50.2 

CCR3 surface 6.1 29.5 8.0 

CCR3 surface 95.0 88.6 77.8 

CCR5 surface 28.8 48.3 38.8 

CCR5 total cellular 88.3 89.5 98.6 
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Figure 4: Inhibition of CCL5 (RANTES) mediated cell proliferation in DU 145 prostate 

cancer cell line by CCR5 antagonist TAK-779. 

DU 145 cells were exposed to either CCL5 alone in a concentration of 10 ng/ml or both 

CCL5 (ng/ml) and TAK-779 (10-500 nM). This was incubated for 24 hours followed by 

the addition of colorimetric reagent WST-1. Absorbance was measured at 450 nM.28 
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2.1.1 CCR5+32:  

CCR5∆32 is a non-functional allele resulting from 32-bp deletion in CCR5 gene. 

This results in non-functional receptor. CCR5∆32 encodes a truncated protein that is not 

detected or present on the surface of the cell. This is due to 32 base pair deletion which 

causes a shift in the reading frame. There is creation of an early stop codon thus leading to 

the production of a truncated protein. This truncated protein is retained in the endoplasmic 

reticulum.37 CCR5∆32 is common among Centenarians. 

Ballitreri.C et al performed a study to evaluate whether CCR5∆32 deletion of the 

CCR5 gene may be associated with susceptibility to prostate cancer. This study consisted 

of 50 human prostate cancer tissues which were obtained from patients affected by 

prostate cancer. The DNA samples were genotyped for CCR5∆32 deletion. The control 

group consisted of Centenarians. Centenarians have no history of cancer or any other age 

related disease. This control group had previously been genotyped for CCR5∆32 deletion. 

On analyzing the data, it was found that the anti-inflammatory CCR5∆32 allele was under 

expressed in prostate cancer patients while CCR5∆32 deletion was over-expressed in 

Centenarians. This suggested that CCR5∆32 deletion is a resistance factor in the 

development of prostate cancer.38 

2.2 Breast Cancer: 
 

Carcinoma of the breast is the second leading cause of cancer related death among 

women in the United States.39 The American Cancer Society estimates about 232,620 new 

cases and 39,970 deaths due to breast cancer in 2011.29 Only modest improvements in 
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survival rates have been achieved despite advances in the diagnosis and treatment of 

breast cancer. Thus, there is a continuous search for new insights into the role of various 

cellular effectors in the progression of this disease.40  

The tumor microenvironment in breast cancer consists of various inflammatory 

mediators such as inflammatory cells, cytokines and chemokines.41 The chemokines are 

capable of promoting tumor growth.  They also play a prominent role in tumor cell 

migration which could lead to increased invasive and metastatic propensity.39 However; 

several chemokines are expressed by normal breast tissue even though they are expressed 

at low levels. For example, the chemokines CXCL1, 2, 3, 4, 5, 6, 7 and 8 have been 

detected in human milk. The normal breast tissue also secretes other cytokines like IL-6 

and TNF-α.14  

In breast cancer tissue, the chemokines CXCL12, CCL2, and CCL5 have been 

detected at high levels. These chemokines are expressed minimally by normal breast 

epithelial cells. This indicates that these chemokines are acquired in the course of 

transformation to malignancy. They are critical mediators and play an important role in 

the progression of the tumor.42 Along with chemokines; their receptors are also over 

expressed. The receptor CXCR4 is up regulated in breast cancer compared to normal 

breast tissue. Also, its ligand CXCL12 shows peak mRNA level expression in the 

metastatic sites of breast cancer. 14        

Youngs et al. performed a study to monitor the chemotactic response of MCF-7 

breast cancer cell lines to α and β chemokines. The MCF-7 cell line was obtained from a 
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pleural effusion of a 69 year old female with metastatic mammary carcinoma. It was noted 

that MCF-7 cells migrated in the presence of both α and β chemokines. However, the β 

chemokines elicited a greater chemotactic response. MIP-1α induced significant migration 

of MCF-7 cells in 5 out of 6 experiments. Similarly MIP-1β and RANTES (CCL5) 

induced migration in 5 out of 6 and 6 out of 6 experiments respectively.39       

RANTES (CCL5) expression is rarely observed in those patients with benign 

breast disorders. Advanced breast carcinoma patients over-express RANTES. In such 

patients, only the malignant epithelial cells expressed RANTES. Non-malignant benign 

lumps and mammary ducts that were in close proximity to the malignant epithelial cells 

rarely expressed RANTES. On evaluation of the RANTES expression in different 

pathological stages of breast cancer, it was found that higher expression was seen in 

patients with disease in stages II and III. About 83% patients in stage II and 83.3% 

patients in stage III expressed RANTES. On the other hand, only 55% patients who were 

in stage I of the disease were positive for RANTES expression.43 This indicated that 

RANTES was expressed more in the advanced and later stages of  breast cancer than the 

initial stages.  

Robinson et al. performed a study to obtain evidence if the action of an antagonist 

for the CCR5 receptor would inhibit the tumor promoting role of the chemokine CCL5 

(RANTES). Met-CCL5 was used as the antagonist.44 
Escherichia Coli expressed 

RANTES in which the protein retains the initiating methionine residue. This was known 

as Met-CCL5. The retention of the initiating methionine residue renders it inactive as an 
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agonist despite being correctly folded. However, it shows antagonistic activity. It is 

capable of antagonizing the effects induced both by RANTES and MIP-1α.45  

The activity of Met-CCL5 was tested against 410.4 tumor cells. The mice were 

injected with an intra-peritoneal injection of Met-CCL5 daily. The volume of the tumor 

was measured at regular intervals. The tumors were excised and weighed after five weeks 

of growth. The tumor weights were significantly lower which showed that Met-CCL5 did 

slow down tumor growth. There was also a substantial decrease in the proportion of 

macrophages in those tumors which were treated with Met-CCL5.44 Thus, CCR5 

antagonists can be used to decrease the progression of breast cancer as well as 

significantly lower the leukocyte population within the tumor. 

2.3 HIV/AIDS:  

The retro virus, human immune deficiency virus-1 (HIV-1), causes the disease 

acquired immuno deficiency syndrome (AIDS). Almost 30 years ago, in 1981, AIDS was 

first identified in the United States of America. About 2.7 million people are infected with 

HIV each year and around 33 million people are living with AIDS. Women comprise 

about 50% of the population living with AIDS. This is mainly because women have 

limited or no freedom to insist condom use, or choose sexual situations in developing 

countries.34 

 A number of anti-retroviral agents are available. Highly active anti-retroviral 

therapy (HAART) is an extremely powerful treatment for AIDS which was introduced in 

the early 90s. This is defined as three or more drugs concomitantly administered to 
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achieve suppression of the virus.46, 47 Recent studies have shown that 90% of the patients 

respond well to HAART and survive for at least five years if the treatment is initiated 

early. The different classes of anti-retroviral agents which are used in HAART include the 

reverse transcriptase inhibitors, the protease inhibitors and the integrase inhibitors which 

target the viral proteins.48   

The chemokine receptor CCR5 was identified about a decade ago as one of the 

major co- receptor that was used by HIV to gain entry into cells.49 The viral envelope 

contains two glycoproteins, gp120 and gp41. The main receptor protein is CD4 and a co 

receptor which is a chemokine receptor. This co receptor is typically either CCR5 or 

CXCR4. The HIV-1 strains are classified into three major groups based on the co-receptor 

which they use for entering into the host cell. They could either be R5 (CCR5-tropic), X4 

(CXCR4-tropic) and R5/X4 (they are able to use either CCR5 or CXCR4).50 

A number of steps are involved in the entry of HIV into the host cell which is 

shown in Figure 5. Complex interaction between the glycoproteins present in the viral 

envelope and the host cell surface receptors (CD4 and CCR5 or CXCR4) is the initial step. 

This involves binding of the glycoprotein gp120 to the host cell surface receptor CD4. 

This brings about a conformational change in the viral gp120 thus creating or exposing a 

binding site for the chemokine receptor. Once gp120 binds to the chemo kine receptor, 

another conformational change is induced which allows the viral glycoprotein gp41 to 

initiate fusion. The gp41 glycoprotein contains two alpha-helices that form a hairpin 

configuration. A hydrophobic fusion peptide is inserted into the cell membrane of the host. 
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This leads to spanning of gp41 between the virus and host cell membrane. The helices of 

gp120 then folds into a six helix bundle. This brings the N terminal and the C terminal 

close eventually bringing the viral and cell membranes close. This proximity leads to 

contact between them thus allowing mixing.50, 51 
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Figure 5: Steps involved in the entry of HIV into the host cell via the CD4 and 

CCR5/CXCR4 receptors. 
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The CC chemokines RANTES, MIP-1α, and MIP-1β suppress infection caused by 

R5 tropic HIV. It was demonstrated that these chemokines sterically block the site where 

the viral envelope interacts with the receptor. This is the proposed mechanism of 

inhibition which leads to receptor down modulation. SDF-1, which is the endogenous 

ligand for the receptor CXCR4, leads to down regulation of CXCR4 thereby blocking 

infection caused by X4 tropic HIV. This ability of chemokines to inhibit HIV-1 infection 

made these molecules attractive targets for the development of anti-HIV therapeutic 

agents.46, 52  

CCR5 antagonists can thus be successfully used as anti-retroviral drugs in 

therapeutics. Maraviroc was the first and only CCR5 antagonist approved for use in both 

treatment-experienced and treatment naïve patients.37 CCR5 antagonists are allosteric and 

non-competitive inhibitors of the receptor. They bind to the receptor thus inhibiting the 

interaction between gp120 and the co-receptor.53 However, there is a limitation in treating 

AIDS patients with CCR5 antagonists. It would be ineffective in patients where HIV uses 

CXCR4 as the co- receptor.37 On the other hand, only advanced stages of the disease use 

CXCR4 as the co-receptor. HIV-1 strains use CCR5 as the co-receptor in the early stages 

of the disease. Thus, CCR5 antagonists can prevent the progression of AIDS.37 

A naturally occurring 32-bp deletion in the human CCR5 gene is known as 

CCR5∆32. Individuals who carry two alleles of this CCR5∆32 mutation (CCR5-/-) are 

those who are highly protected against infection by HIV-1. Those who are heterozygous 

for this mutant allele (CCR5+/-) are not protected against infection. However, such 
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individuals have a delayed progression of the disease. This indicates that a partial 

resistance can occur if there is a single copy of CCR5∆32. In very rare cases, people 

homozygous for CCR5∆32 allele showed HIV infection. The mechanism of infection in 

such cases has not been identified. Exclusive use of CXCR4 by the virus could probably 

be the reason.50, 54 

Thus, the CC chemokine receptor CCR5 has been implicated in the progression of 

various human cancers like the prostate and breast cancer. It is also an important co-

receptor which mediates the entry of the HIV virus into the host cell. Therefore, CCR5 

antagonists could prevent the entry of the HIV into the host cell by blocking the receptor. 

These antagonists can also be used as anti-proliferative agents in prostate and breast 

cancer. Detailed study of the CCR5 antagonists previously synthesized will help in better 

understanding of the CCR5 as a therapeutic target. 
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3. CCR5 Antagonists 

Highly active anti-retroviral therapy (HAART) has significantly affected the 

treatment and epidemiology of HIV-1 infection. Since 1989, HAART has successfully 

contributed in saving around 3 million years of life in the United States. However, the rate 

of resistance in patients infected with HIV-1 has drastically increased.69 A new and 

attractive strategy for treating HIV-1 infection is inhibition of viral entry into the host cell. 

Since the chemokine receptor CCR5 serves as a co-receptor for the entry of the virus into 

the host cell, targeting this receptor could serve as a new therapeutic approach in treating 

AIDS. Thus, identifying CCR5 receptor antagonists, which inhibits the binding and entry 

of HIV-1 into the host cell, would serve as a novel approach in the treatment of AIDS.70  

The CCR5 receptor is also implicated in cancer, specifically prostate and breast 

cancer with an inflammation etiology. The endogenous ligand CCL5 (RANTES) and 

CCR5 are over expressed in prostate and breast cancer. This may lead to proliferation, 

invasion and metastasis of tumor cells.43, 71 CCR5 receptor antagonists which can inhibit 

the binding of the endogenous ligand to the receptor may inhibit the proliferation and 

growth of tumor cells. Thus, the chemokine receptor CCR5 has been of interest to 

researchers due to its implication in various disease states. CCR5 antagonists would thus 

serve as a novel therapeutic approach in the treatment of several disease conditions.43   

A number of pharmaceutical companies conducted high throughput screenings of 

their in-house compounds in search of small molecule CCR5 antagonists. Compound 1 

was obtained as the initial lead from high throughput screening. This quaternary 

ammonium salt was optimized chemically which led to the discovery of TAK-779 (2).56 
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TAK-779 (2) was the first small molecule CCR5 antagonist that was reported in 1999 by 

Takeda chemicals, Japan (Figure 6).55 
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Figure 6: Initial lead (1) and TAK-779 (2) 

Radiolabelled ligand, [125I]-RANTES, binds to CHO-CCR5 cell (Chinese hamster 

ovary cell expressing CCR5) with a high affinity (Kd = 0.45 nM).  TAK-779 was able to 

inhibit the binding of [125I]-RANTES to CCR5 expressing CHO cells with an IC50 of 1.4 

nM. TAK-779 was a selective antagonist for the CCR5 receptor as it did not inhibit the 

binding of ligand to other chemokines receptors expressed by CHO cells namely, CCR1, 

CCR3, and CCR4. However, this potent and selective CCR5 antagonist was not developed 

further due to poor oral bioavailability and toxicity at the site of injection.56, 58 

Due to its drawbacks, the structure of TAK-779 was further modified. This 

included replacement of the quaternary ammonium moiety with a sulfoxide group, ring 

expansion to (6,8) fused nuclei, and replacement of the methyl group with 4-(2-

butoxyethoxy) group. This resulted in TAK-652 (3) which had increased potency and 

bioavailability (Figure 7).59 It inhibited the binding of [125I]-RANTES to CCR5 

expressing CHO cells with an IC50 of 3.1 nM. TAK-652 was also active against R5 HIV-1 

strains with an EC50 of 0.061 nM and EC90 of 0.25 nM. A single dose Phase I study for 
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TAK-652 has been completed.57 Administration of this drug up to 100 mg once a day was 

safe and well tolerated in humans. However, the clinical efficacy of TAK-652 in HIV-1 

infected individuals and further clinical data are awaited. It is currently being studied in 

Phase II clinical trials.72 

 

Figure 7: TAK-652 

Ono pharmaceuticals in collaboration with GlaxoSmithKline developed 

spirodiketopiperazine derivatives as CCR5 antagonists. ONO-4128/Aplaviroc (4), a highly 

potent CCR5 antagonist was developed by Ono pharmaceuticals (Figure 8).  This 

antagonist inhibited the replication of R5 viruses with an IC50 of 30-60 nM. Aplaviroc was 

selective for R5 tropic strains of HIV-1; it did not inhibit the X4 tropic strains of HIV-1.73 

 

4 
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Figure 8: Aplaviroc/ONO-4128 

In early clinical studies, a dose of 600 mg of Aplaviroc twice a day for ten days 

was well tolerated and demonstrated reduction in viral load. However, three subjects 

developed hepatotoxicity in Phase II-b clinical trial. Also, in phase III clinical trial, one 

patient in a group of 44 patients developed idiosyncratic hepatotoxicity. Thus, the clinical 

studies of Aplaviroc were discontinued.72 

Schering-Plough developed two series of CCR5 antagonists: piperidino–piperidine 

and piperazino-piperidine. The initial lead (4) for the piperidino-piperidine series had 

moderate affinity for both the CCR5 (Ki = 64 nM) and M2 muscarinic receptor (Ki = 230 

nM). Medicinal chemistry optimization of compound 4 afforded compound 5; which had a 

Ki of 66 nM for the CCR5 receptor and Ki of 1323 nM for the M2 muscarinic receptor 

(Figure 9).58, 61, 62  
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Figure 9: Initial leads developed by Schering-Plough. 

SCH-C/SCH351125 (6) was Schering-Plough’s first clinical candidate (Figure 

10). This antagonist was developed by making certain structural changes to compound 5. 
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These included addition of an oxime at the benzylic position and replacement of 2,6-

dimethylbenzamide with 2,6-dimethylnicotinamide �-oxide. SCH-C demonstrated 

excellent anti-viral properties with an IC50 of 3 to 78 nM against R5 tropic HIV-1 

isolates.61, 62 In clinical efficacy studies, a dose of 25 mg twice daily demonstrated a 

significant drop in viral load in ten out of twelve subjects. However, at the highest dose 

tested (400 mg), cardiac side effects were noted. Thus, further clinical efficacy studies of 

SCH-C were not conducted.60, 74 
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Figure 10: SCH-C / SCH351125 

Compound 7 (Figure 11), a potent antagonist for the M2 muscarinic receptor (Ki = 

0.8 nM), was the initial lead obtained in the piperazino-piperidine series of Schering-

Plough CCR5 antagonists. This compound had only moderate affinity for the CCR5 

receptor with a Ki of 440 nM. In an effort to improve affinity for the CCR5 receptor and 

reduce the affinity for the M2 muscarinic receptor, structural modifications were made to 

compound 7. Truncation of the left side and leaving a small para substituent on the phenyl 

ring afforded compound 8, which had high affinity for the CCR5 receptor (Ki = 20 nM) 

6 
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and reduced affinity for M2 muscarinic receptor. However, the major drawback of 8 was 

poor oral bioavailability in rat and hence, could not be developed further (Figure 11).58, 74 
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Figure 11: Initial leads in piperazino-piperidine series of Schering-Plough CCR5 

antagonists. 

SCH-D/Vicriviroc/SCH-417690 (9) developed later by Schering-Plough, was a 

potent CCR5 antagonist (Ki = 1.6 nM) (Figure 12). This compound was 2 to 40 times 

more potent than SCH-C against R5 HIV-1 isolates. Vicriviroc also demonstrated good 

oral bioavailibity in preclinical studies. In clinical studies, vicriviroc was well tolerated at 

a dose of 50 mg twice daily.59, 60 However, the Phase II clinical studies of vicriviroc were 

discontinued because there was a viral breakthrough in the group receiving this drug 

compared to the control group. This indicated that vicriviroc was not effective for use in 

treatment naïve patients. Phase II studies were then carried out in treatment-experienced 

patients. The results of this showed that vicriviroc exhibited strong antiviral activity, 

however five participants had an incidence of malignancy. Despite this, the study was 

continued as there was no causal association of the malignancy and vicriviroc. Phase III 

clinical trials were initiated in treatment experienced patients in late 2009.61, 62, 72 In 2010 
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Merck halted the phase III clinical studies of Vicriviroc in treatment-experienced patients 

due to no significant superior efficacy.84 

 

Figure 12: SCH-D/ Vicriviroc/ SCH-417690 

Acyclic and cyclic scaffold based CCR5 antagonists were developed by 

researchers at Merck. The initial lead (10) had an �-methylbutane amine core with a 

spirocyclic piperidine moiety at the 4th position and a (S)-phenyl moiety at the second 

position. This compound had moderate affinity for the CCR5 receptor (IC50 = 40 nM). 

However, it demostrated very weak anti-viral activity and hence, compound 10 was 

further modified to afford compound 11 (Figure 13).58, 75, 76 
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Figure 13: Initial leads for Merck CCR5 antagonists. 

Compound 11 was an extremely potent CCR5 antagonist with an IC50 of 0.1 nM 

with good oral bioavailability in rats. The active conformation of this compound was 

locked in place with a 1,3,4-trisubstituted pyrrolidine to create a cyclic scaffold leading to 

compoud 12 which was an even more potent CCR5 antagonist with an  IC50 of 0.8 nM. 

The pyrrolidine scaffold in compound 12 gave rise to the cyclopentane template in 

compound 13, which was a potent CCR5 antagonist (IC50 = 1.1 nM). It demonstrated good 

anti-viral activity with an IC95 less than 8 nM (Figure 14). However, these CCR5 

antagonists were not pursued further and did not enter clinical efficacy studies.58, 75, 76, 77  
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Figure 14: Cyclic CCR5 antagonists developed by Merck. 

Researchers at Pfizer developed piperidine-based CCR5 antagonists. The initial hit 

(14) identified from high throughput screening had good affinity for the CCR5 receptor 

(IC50 = 4 nM) despite the lack of anti-viral activity. Thus, the structure of 14 was modified 
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in an effort to improve the anti-viral activity. This led to tropane derived amide analogue 

(15) which showed excellent anti-viral activity (IC90 = 0.6 nM). However, due to 

unfavorable pharmacokinetic properties, 15  was subjected to further structural 

modifications (Figure 15).58, 59  
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Figure 15: Initial leads for CCR5 antagonists developed by Pfizer. 

Structural modifications of 15 were made to afford compound 16. This compound 

demonstarted good anti-viral potency with an IC90 of 8 nM. A major drawback associated 

with this compound was cardiovascular side effects. It did not provide the desirable safety 

window and hence, could not be developed further. The cyclobutane moiety of compound 

16 was placed with a 4-substituted cyclohexane moiety. The compound 17 exhibited 

excellent anti-viral properties with an IC90 of 1 nM (Figure 16).57, 58
 

The CCR5 antagonist (17) known as Maraviroc or UK-427,857, was capable of 

producing a reduction in the viral load on administering a dose of 25 mg once a day. This 

CCR5 antagonist was very well tolerated. The US Food and Drug administration advisory 
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panel approved the new drug on 24th April, 2007. On August 6, 2007 maraviroc received 

full FDA approval for use in treatment experienced patients.84  
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                 Figure 16: Pfizer CCR5 antagonists 
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4. Project Objectives and Design 

The chemokine receptor CCR5 in involved in the progression and development of 

a number of disease states like cancer and AIDS. Thus, targeting this receptor serves as a 

therapeutic approach. Since both CCL5 and CCR5 are over-expressed in cancer cells and 

tissues specifically prostate and breast cancer, CCR5 antagonists may prevent cancer 

progression and metastasis.  Also, due to the involvement of CCR5 as a co-receptor in the 

entry of HIV into the host cell, blocking this receptor with CCR5 antagonists may block 

the entry of the virus into host cell, thus preventing infection. 

 A number of pharmaceutical companies have developed CCR5 antagonists by 

conducting high throughput screenings. Barring Maraviroc, the remaining antagonists 

could not pass the clinical trial studies. Long-term toxicity and adverse events were the 

short comings of the CCR5 antagonists reported so far which necessitates the need for 

new drugs. Also, most of these antagonists interact with the transmembrane (TM) domains 

of the receptor. However, the extracellular loop 2 (EL-2) part of CCR5 interacts with 

gp120 for the virus to enter into the host cell.  

Based on these observations, the primary objective of this project was to 

synthesize small molecule CCR5 antagonists with structural features to interact with EL2 

of CCR5. A novel approach, molecular based drug design, was used by our lab to design 

and develop CCR5 antagonists. These CCR5 antagonists would serve as novel anti-cancer 

agents and entry inhibitors in HIV therapeutics.  

The background work, including molecular modeling studies, and the project 

design are discussed herein.  
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4.1 Background Work:  

Like most of the GPCRs, the crystal structure of CCR5 receptor has not been 

resolved. Thus, a homology model of the receptor was built based on the X-ray crystal 

structure of bovine rhodopsin.77 In order to characterize the binding site of the CCR5 

antagonists, the lowest energy conformation of known CCR5 antagonists e.g. SCH-C, 

SCH-D, and TAK-779 (Figure 17) were superimposed. When this background work was 

done, Maraviroc, Aplaviroc, and other CCR5 antagonists had not been reported then. 

Therefore, they were not analyzed along with SCH-C, Vicriviroc, and TAK-779. 

Br

N
O

N

N

O

N

CH3

H3C

O

                       

                       SCH-C                                                                         SCH-D (Vicriviroc) 

                          

                                                        TAK-779 

Figure 17: CCR5 antagonists 
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By superimposing their lowest energy conformations, a molecular scaffold (Figure 

18) was built. According to the molecular scaffold that was constructed, a secondary or 

tertiary amine moiety was present at a distance of 5-7 Å from an amide group. The 

secondary or tertiary amine was linked to a hydrophobic moiety (with or without a polar 

group attached) at a distance of 4.5-6 Å. An aromatic moiety was attached to the amide 

group at a distance of 3.5-5.5 Å. This entire molecular scaffold was in a bent form. 
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Hydrophobic
moiety with 
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                                                 Figure 18: Molecular scaffold. 

To determine the interactions of this scaffold with the key amino acid residues of 

the receptor, the CCR5 antagonist SCH-D was docked into the receptor (Figure 19) with 

emphasis on evaluating the binding pocket interactions. The central amino group of the 

molecule formed a putative salt bridge with Glu283 on TM7. A lipophilic pocket which 

was formed by Ile 110, Leu107 which were a part of TM3, Tyr251 (TM6), and His289 

(TM7) served as the binding site for the hydrophobic moiety in the scaffold. The aromatic 

moiety in the molecular scaffold was located in an aromatic binding cavity formed by 

Phe112 (TM3), and Tyr244 and Trp248 which were a part of TM6.    
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                                   Figure 19: SCH-D docked into CCR5 receptor. 
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Through the study of the binding interface of CCR5 receptor and SCH-D, it was 

observed that the interface between extracellular loop 2 (EL2) and spacer of the ligand 

which includes the hydrophobic moiety (Phe182) and a hydrophilic area (Ser179, Ser180) 

was not fully satisfied by SCH-D, nor by other known CCR5 ligands reported by that 

point of time.  Since extracellular loop 2 is very important for the binding of gp120 of 

HIV-1, novel ligands with a potential to interact with extracellular loop 2 were designed. 

The molecular scaffold was further elaborated to afford a novel skeleton (Figure 

20) based on the interaction of the important structural features of SCH-D with the amino 

acid residues in the binding pocket of the receptor. This new skeleton satisfied all the 

structural aspects necessary for interaction with the receptor.  

                                                                      

Figure 20: Novel skeleton 

The amino and amide moieties were connected by means of a trisubstituted phenyl 

ring. A hydrogen bond accepting group was introduced at R2 position. An aromatic moiety 

was introduced at R3. These structural features would satisfy the binding pocket 

requirements of extracellular loop 2. To verify the molecular design, a model compound 

(Figure 21) was formulated and docked into the binding cavity of the receptor (Figure 

22). 
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                                          Figure 21: Model Compound 

 

 

        Figure 22: Model compound docked into binding pocket of CCR5. 

As shown in the above Figure 22, the model compound satisfies the requirements of the 

binding pocket of CCR5. Table 2 summarizes the possible substituents that could be 
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introduced at R1, R2 and R3. The first round of chemical synthesis included the syntheses 

of 24 compounds. 

                                Table 2: Possible substituents at R1, R2, and R3 

Position           Substitution in the ligands 

R1 -)(CH2CH3)2, -)H2, -)COCH3, -)O2 

-CH3, -CH2CH3, -CH(CH3)2 

                   

R2 

R3 

                                          

These first 24 compounds were then tested for their anti-HIV activity. These 

compounds were tested in CEM-SS cells with laboratory derived strains (RF). In this 

assay, the virus, cells and drugs were incubated for six days. The cytopathic effect of HIV-

1 to cells with or without the compound was measured. A lead compound was obtained 

(Figure 23) which had an EC50 of 2.64 µM to inhibit HIV invasion. Based on this result, 

further molecular modeling studies were performed. 
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                                                       Figure 23: Lead compound. 

4.2 Molecular Modeling based drug design:  

Further molecular modeling studies were done based on the results obtained from 

the first round of chemical synthesis. More recently reported two CCR5 antagonists, 

Maraviroc and Aplaviroc, were docked into the homology model of CCR5 to study their 

binding mode.  

Maraviroc, developed by Pfizer, was docked into the homology model of CCR5 

receptor to study the binding interactions of its structural features with the binding pocket 

of the receptor. It was observed that Glu283, Tyr108, and Ile198 were important amino 

acid residues in the binding pocket of Maraviroc (Figure 24). This was supported by site-

directed mutagenesis study. Glu283 forms a putative salt bridge with the charged amino 

acid residue. E283A mutant showed 2000-fold loss of the binding ability of Maraviroc. 

Also, the binding of Maraviroc to CCR5 reduced markedly in I198A mutant. This may be 

due to a hydrophobic interaction between Maraviroc and Ile198. Tyr251, which is a part 

of the binding pocket, is believed to be flexible enough to move in and out depending on 

the size and electrostatic nature of the compound.77, 43 
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        Figure 24: Binding mode of Maraviroc (purple) in the homology model of CCR5.77 
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Aplaviroc, developed by Ono pharmaceuticals, was also docked into the CCR5 

receptor. It was observed that Aplaviroc had similar interactions with the binding pocket 

in the homology model of CCR5 (Figure 25). Ser180 may form hydrogen bond 

interaction with the molecule. The other key residues in the binding pocket of Aplaviroc 

were Tyr108, Phe112, Tyr251, and Glu283. Y108A drastically reduced the binding of 

Aplaviroc to the CCR5 mutant. An exclusive ionic or hydrogen bond interaction was 

observed between the carboxylic acid moiety and Lys197.77, 43, 78 

 Based on these docking studies of CCR5 antagonists into the homology model of 

the receptor, it was observed that there was a large hydrophobic binding pocket. This 

binding pocket was primarily constituted by Ile198 and Tyr 108. Mutation of these 

residues by alanine drastically reduced the binding affinity of Maraviroc and Aplaviroc. 

This hydrophobic binding pocket was able to accommodate bulky hydrophobic groups 

with or without polar substituents. 

 Further molecular modeling studies were carried wherein three CCR5 antagonists 

were aligned together in their lowest energy conformation. These included Maraviroc, 

Aplaviroc, and a compound designed and synthesized by our lab. This compound was 

similar to the lead compound (Figure 23) which only lacked the para nitro group. These 

three compounds are shown in Figure 26 and their alignment is shown in Figure 27.  
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                                                                      Aplaviroc 

 

      Figure 25: Binding mode of Aplaviroc (yellow) in the homology model of CCR5.77 
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Compound designed and synthesized by our lab which is similar to the lead compound 

(Figure 23). 

Figure 26: The three compounds that were aligned together. 
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Figure 27: Maraviroc (purple), Aplaviroc (orange) and compound from our lab (cyan) 

aligned together.  
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On further analyzing, it was observed that the compound designed in our lab was 

in good alignment with the other two compounds. However; it lacked a longer arm at the 

end of the hydrophobic portion of the moiety. This additional hydrophobic arm probably 

fits into a hydrophobic binding pocket in the receptor. The need for this additional 

hydrophobic arm was consistent with molecular modeling and site-directed mutagenesis 

studies. Therefore, the molecular scaffold initially designed was further modified to 

accommodate additional bulky hydrophobic groups that would satisfy the hydrophobic 

binding pocket requirements of the receptor. 

4.3 Project Design:  

In order to satisfy the binding pocket requirements, bulky, and hydrophobic groups 

were introduced as R1 (Figure 28). 

                                                              

                       Figure 28: Molecular skeleton with new substituents as R1. 

To probe the electronic characteristics of the binding pocket, the molecular skeleton was 

modified such that various substituents could be incorporated as R1 (Table 3). Electron 

donating groups (-CH3 and -OCH3), electron releasing groups (-NO2, -CF3, -Cl), and –H 

R
1
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would be substituted at R and phenyl and pyrazinyl groups would be substituted at R3. By 

doing so, twelve different final compounds would be obtained.  

                                      Table 3: Possible substituent at R1 and R3. 

R -H -CH3 -OCH3 -)O2 -CF3 -Cl 

R3 

                                                                

 

However, due to synthetic difficulties, only the - CF3 substituted compounds were 

synthesized. The synthesis of the remaining compounds was unsuccessful. The precursors 

that had to be prepared with the rest of the five different R1 substituents were either 

unstable or difficult to prepare. This observation was consistent with the commercial 

sources as it was noticed that none of them were available. Thus, some other 

commercially available similar precursors carrying bulky hydrophobic groups were 

incorporated. Figure 29 lists these commercially available precursors. 
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        Figure 29: The different commercially available hydrophobic substituents. 

4.4 Project Objectives: 

The primary objective of this project was to test our hypothesis that a bulky, 

hydrophobic group is necessary to satisfy the binding pocket requirements of the receptor. 

Fourteen CCR5 antagonists with varied substituents at R1 and R3 were synthesized to test 

this hypothesis. The synthetic route used for the synthesis of the previous batch of 

compounds was modified to introduce bulky, hydrophobic substituents at R1. Two 

aromatic groups, phenyl and pyrazinyl, were tested at R3.  

These CCR5 antagonists were then evaluated for their biological activity. Two 

assays, the calcium mobilization assay and anti-proliferation assay, were performed. The 

R R 

R = 
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calcium mobilization assay is a functional assay. The ability of CCR5 antagonists in 

inhibiting the intracellular calcium release stimulated by endogenous ligand, RANTES 

was evaluated. CCR5 antagonists that have a high affinity for the receptor will be capable 

of inhibiting the binding of RANTES to the receptor. The second assay was the anti-

proliferation assay which was tested in two different prostate cancer cell lines, PC-3, and 

M12. These prostate cancer cell lines express CCR5 on their cell surface. The goal of this 

assay was to test the anti-proliferative activity of the antagonists by binding to the CCR5 

receptor. The colorimetric reagent WST-1 was used in the anti-proliferation assays. 

The data obtained from these assays would help in testing our hypothesis as well 

as establishing a structure-activity relationship to facilitate the design of the next 

generation of compounds.  
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5. Results and Discussion 

5.1 Chemical Synthesis of CCR5 Antagonists: 

 The synthetic route used to prepare the previous batch of compounds was adopted 

to prepare the new series of CCR5 antagonists. Two series of compounds were prepared 

which differed in the substitution at R3 position. The first series consisted of phenyl 

substituted compounds and the second series consisted of pyrazinyl substituted 

compounds. The first two reactions of the synthetic route are outlined in Figure 30. 

 

 

                          Figure 30: Substitution and Grignard reactions. 

 

The first reaction in the synthetic route was a substitution reaction where the 

hydroxyl group of 4-bromophenol (1) reacted with isopropyl bromide to form an 

isopropoxyl moiety. This reaction was performed with dimethyl formamide (DMF) as the 

solvent. The reaction mixture was refluxed overnight at 90ºC. The work up involved 

washing the reaction mixture with brine (50 mL) followed by washing with water (25 

mL). Compound 2 was obtained in 86% yields. 

2 1 3 

K2CO3, DMF, reflux, 

100ᴼC 

Mg, I2, THF, NH4Cl, HCl, reflux 
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The Grignard reaction was then conducted for conversion of 1-bromo-4-

isopropoxybenzene (2) to 1-benzyl-4-(4-isopropoxyphenyl)-1,2,3,6-tetrahydropyridine 

(3). The experimental set-up of the Grignard reaction is shown in Figure 31. This was a 

challenging reaction as the reaction atmosphere had to be anhydrous and devoid of 

oxygen. This is because Mg, which was used in the reaction to form the Grignard reagent, 

decomposes in the presence of oxygen. All the glassware needed for this reaction was 

dried and placed in an oven overnight. Small pieces of Mg were cut just before the 

reaction was performed. Vacuum was introduced in the entire experimental set up to 

remove any trace moisture. This was followed by flushing the experimental setup with 

nitrogen gas.  

The alkyl bromide, (2) prepared from the previous reaction, was added drop-wise 

over a period of 30 minutes to a mixture of Mg pieces and iodine in tetrahydrofuran 

(THF), which was the solvent of this reaction. This led to the formation of the Grignard 

reagent. This was followed by addition of the ketone, 1-benzyl-4-piperidone, to form the 

product (3). The resulting mixture was refluxed for about 3 hours with ammonium 

chloride and 6N hydrochloric acid. This was done to consume any remaining unreacted 

Grignard reagent. This reaction had a yield of 65%. The yield did not improve even if the 

reaction was allowed to run for a longer time.  
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                           Figure 31: Experimental set-up for Grignard reaction.76 

 

Figure 32: Hydrogenation and protection reactions. 
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Debenzylation and double bond reduction was the next step in the synthetic route 

(Figure 32). This reaction was carried out using a Parr-hydrogenator in an atmosphere of 

hydrogen. The catalyst used was Pd/C (10%). This reaction was tried out many times but 

the reaction did not proceed to completion. Literature reported such a reaction to be 

extremely slow which would take some days or weeks to go to completion. Despite 

running the reaction for 5-7 days, thin layer chromatography (TLC) showed that the 

starting material (3) was not consumed, thus, indicating that the reaction had not taken 

place.  

Therefore, the starting material used in the reaction was analyzed. Earlier, the 

starting material had been purified by column chromatography. To further purify the 

starting material, it was re-crystallized from hot ethanol. Despite carrying out the reaction 

with the re-crystallized starting material, the reaction did not proceed to completion. The 

starting material (3), a tertiary amine, was then converted to the corresponding 

hydrochloride salt by adding 1.3 equivalents of 1M HCl. The resulting salt was then used 

in the reaction instead of the free base. The reaction was allowed to run for seven days at 

an elevated temperature of about 500C by using a heating pad. 10% of the catalyst was 

used. At the end of seven days, TLC showed that the starting material was totally 

consumed. The consumption of the starting material was accompanied by the appearance 

of a new spot on TLC. Separation was done by column chromatography using a 20:1 

dichloromethane methanol solvent system with 10% ammonium hydroxide. 

Characterization by NMR confirmed the new spot to be the product, compound 4. This 
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reaction had a yield of 84%. Therefore, the key factors for this reaction to proceed to 

completion were purification of the starting material and using the tertiary amine starting 

material as the hydrochloride salt. 

Debenzylation of the tertiary amine (3) leads to a secondary amine (4) which was 

not very stable. Thus, protection of the secondary amine was the next step in the overall 

synthetic route (Figure 33). Trifloro acetic anhydride was used as the protecting agent. 

The reaction was carried out in an ice-water bath with dichloromethane as the solvent. 

Molecular sieves were added to the reaction mixture to remove any residual of water. The 

reaction proceeded from 0oC to room temperature. It was allowed to react for about 12 

hours. The product of this reaction (5) was obtained in yields of 90%. 

 

 

Figure 34: Nitration and reduction reactions  

Introduction of a single nitro group on the benzene ring ortho to the isopropxyl 

moiety was the next reaction in the synthetic route (Figure 34). The reaction was carried 

out at a temperature of about -350C in the presence of nitric acid. This temperature was 

maintained in an acetone-dry ice bath. Initially the temperature was allowed to go as low 

7 6 5 
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as -700C. At this temperature, nitric acid was added. The temperature was then raised to -

350C by removing pieces of dry ice from the acetone-dry ice bath. The temperature was 

maintained constant for six hours for the reaction to proceed to completion. The reaction 

was quenched by pouring the contents into ice. The organic phase was extracted with 

dichloromethane. Product 6 was obtained in 80% yields.  

  The nitro group in compound 6 had to be reduced to form the corresponding 

primary amine in the next reaction (Figure 34). This was done in an atmosphere of 

hydrogen using the Parr hydrogenator with methanol as the solvent. Pd/C (10%) was used 

as the catalyst. The reaction was carried out for about 5 hours. The work up included 

filtering the reaction mixture through celite to afford removal of the catalyst. The product 

7 was obtained in a yield of 50%.  

The primary amine in 7 was then coupled with an acid to form the amide bond. 

The acid used was either benzoic acid or pyrazine-2-carboxylic acid (Figure 35). There 

were two factors which were important to this reaction. The first factor was absence of 

water and hence molecular sieves were used. The second factor was the sequence in which 

the reactants had to be added. The acid (either benzoic acid or pyrazine-2-carboxylic acid) 

was stirred with EDCI (�-(3-dimethylaminopropyl)-�’-ethylcarbodiimide hydrochloride), 

HOBT (1-hydroxybenzotriazole hydrate), TEA (triethylamine), DMF and molecular 

sieves in an ice-water bath for about 15 minutes initially. This was followed by the 

addition of the primary amine (6) to the activated carboxylic acid. The reaction was 

allowed to proceed to room temperature overnight. Compounds 8 or 9 were obtained when 
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benzoic acid or pyrazine-2-carboxylic acid was used respectively. The benzoic acid 

coupled product (8) was obtained in 87.3% yield whereas the pyrazine-2-carboxylic acid 

coupled product (9) was obtained in yields of 84.6%. 

 

 

                   

                 Figure 35: Amide formation and base catalyzed de-protection reactions. 
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 De-protection of the piperidine amine to form a secondary amine was the next 

step. This was done using methanol and water mixture as the solvent system. Potassium 

carbonate was used as the base. The reaction mixture was refluxed at about 1000C for 3 

hours. The reaction mixture was then evaporated to remove methanol and water. This was 

followed by dissolving the contents in dichloromethane followed by extraction with a 

saturated solution of sodium bicarbonate. On evaporating the organic phase, the product 

precipitated. The product, compounds 10 or 11, was obtained in yield of around 98.8%.  

The last step in the synthetic route was coupling of diaryl ether moieties which had 

different substituents at R1 to the secondary amines 10 and 11 (Figure 36).  

                         

Figure 36: Diaryl ethers with six different substituents at R1. 

These diaryl ether side chains had to be prepared in two steps. The first step was an 

Ullmann coupling reaction. This involved the coupling between p-cresol and 

bromobenzenes with different substituents at R1. Figure 37 shows the different 

bromobenzenes that were to be coupled to p-cresol. 

R
1 

= -H, -CH3, -OCH3, -)O2, -CF3, -Cl 
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Figure 37: Bromobenzenes to be coupled with p-cresol. 

The Ullmann coupling reaction was used to couple the bromobenzenes with an 

electron donating group at R1 to p-cresol.  In this reaction, cesium carbonate was the base, 

copper bromide was used as the catalyst and N-methylpyrrolidone (NMP) was the solvent. 

The reaction mixture was refluxed for 16 hours at 1600C under nitrogen protection. The 

resulting diaryl ether product was purified by column chromatography. Bromobenzenes 

with –H, -OCH3, and –CH3 were coupled to p-cresol by the Ullmann coupling reaction 

(Figure 38).81 

 

Figure 38: Ullman coupling reaction for electron donating groups.81 

The Ullmann coupling reaction for electron withdrawing groups was done in a 

microwave at 1250C for 25 minutes (Figure 39). The microwave reaction was reported in 

literature due to the reduced reactivity of those bromobenzenes with an electron 

withdrawing group at R1. The base used in the reaction was potassium tert-butoxide, the 

160ºC, 16 hours, N2 
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catalyst was copper iodide and tetramethyl ethylenediamine (TMEDA) was the ligand 

used.  However, only the –CF3 substituted bromobenzene coupled to p-cresol. The 

remaining substituted bromobenzenes did not react under microwave conditions 

successfully.  Thus, refluxing the reaction mixture overnight at 125ᴼC was tried. Under 

these conditions, the starting material was consumed and the reaction proceeded to 

completion.82  

                 

Figure 39: Ullmann Coupling reaction for electron withdrawing groups.82 

The methyl group in the diaryl ether had to be brominated to afford a benzyl 

bromide which could be coupled to the secondary amine. In the presence of NBS (N-

bromosuccinimide) and azobisisobutyronitrile (AIBN) with CCl4 as the solvent, the 

methyl group would be brominated to form –CH2Br.83 However, only the reaction with the 

–CF3 substituted starting material proceeded to completion. The remaining diaryl ethers 

that were prepared either did not proceed to completion or were unstable and hence could 

not be purified. The reason for this may be the fact that the free radical intermediate 

formed in this reaction is either destabilized or consumed prior to reaction with NBS. 

Thus, bromination of these side chains was discontinued and other commercially available 

benzyl bromides or benzyl chlorides were applied to prepare the final compounds. Six 

DMF, 125ºC 
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different commercially available benzyl bromides or benzyl chlorides (b through g) were 

coupled to compounds 10 and 11. 

 

 

                          

Figure 40: Different substituents that were attached to 10 and 11 
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                                                         Figure 41: Final compounds. 
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Fourteen final compounds were prepared (Figure 41). Two methods were used for 

the preparation of the final compounds. The first method utilized potassium carbonate as 

the base for abstraction of the proton from the secondary amine, compounds 10 and 11 

(Figure 42). DMF was used as the solvent. The reaction was allowed to run overnight. It 

proceeded from 00C to room temperature. Those reactions which had a substituent at the 

para position at R proceeded to completion. 

 

Figure 42: Reaction for para substituents at R. 

However, the synthesis of compounds 14, 15, 20, 21, 22 and 23 failed when this 

method was used. TLC showed that the starting material had not reacted at all even after 

two days. Steric hindrance was thought to be the reason due to which compounds 20 and 

21 could not be prepared using this method. The bulky phenyl group ortho to –CH2Br- 

would hinder the secondary amine (compound 10 and 11) from reacting with it. Literature 

search did not provide any help as no such reaction was reported. It was postulated that 

refluxing the reaction mixture may overcome the steric hindrance. Methanol, with a 

boiling point of just 650C as compared to DMF with a boiling point of 1530C, was chosen 
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as the solvent. Also, methanol is not as sticky as DMF. The latter is quite difficult to 

remove form the reaction mixture. Since potassium carbonate, an inorganic base, is not 

very soluble in methanol an organic base, such as pyridine, which is soluble in methanol, 

was chosen. On carrying out this reaction at a temperature of 700C overnight resulted in 

completion of the reaction. The excess of pyridine left unreacted in the reaction mixture 

was removed by washing with 1N HCl. On purifying by column chromatography, 

compounds 20 and 21 were obtained (Figure 43).  

              Compounds 14, 15 and 22, 23 could not be prepared using the first method with 

potassium carbonate as the base and DMF as the solvent. Both of these compounds have 

an electron donating group at the meta position. This would deactivate the entire moiety 

and render it un-reactive towards the reaction. Once again, no such reaction was reported 

in literature. The method used to prepare compounds 20 and 21 was tried for the 

preparation of 14, 15, 22 and 23 as well. On refluxing over night with pyridine as the base 

in methanol, the compounds 14, 15 and 22, 23 were obtained (Figure 43).  

 

Figure 43: Reaction for ortho and meta substituted R. 

Methanol, 

reflux 
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            Compounds 12 and 13 were prepared in two additional steps. The first step was an 

Ullmann coupling reaction (Figure 44). This gave compound 26, which is diaryl ether. 

The methyl group of 26 had to be brominated in the next step. The resulting benzyl 

bromide (compound 27) was used for coupling to the secondary amine to obtain 

compounds11 and 12 (Figure 44). 

 

             

                             Figure 44: Ullmann coupling and bromination reactions. 

All the final compounds (compounds 12 through 25) were obtained in their free 

base form. They were then converted to the corresponding hydrochloride salts by using 

1.3 equivalents of 1M HCl in ether solution. The final compounds were characterized by 

proton and carbon nuclear magnetic resonance spectroscopy (NMR), infrared (IR) 

spectroscopy, mass spectroscopy, and high performance liquid chromatography (HPLC). 

Also, their melting points were recorded. The hydrochloride salts of all the fourteen final 

compounds were used to perform biological screenings.  

5.2 Biological Screening: 

26 

27 
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The fourteen CCR5 antagonists that were synthesized were evaluated for their 

biological activity. Two assays were performed: the calcium mobilization assay and the 

anti-proliferation assay.  

5.2.1 Calcium Mobilization Assay: 

The calcium mobilization assay, a functional assay, was conducted to evaluate the 

ability of the compounds to inhibit the RANTES induced intracellular calcium release. 

The cell line used was MOLT-4 which expresses the chemokine receptor CCR5 on its 

membrane. The dye used in this assay was Fluo-4, a fluorescent dye, which has high 

affinity for calcium ions. This dye has a very low emission at rest; however there is a large 

increase in the emission intensity when it binds calcium. On stimulation of the cells with 

the agonist RANTES, it increases the intracellular levels of calcium. The changes in 

calcium concentrations can be detected by the Fluo-4 dye.81 CCR5 antagonists bind to the 

receptor thus, preventing RANTES from interacting with the receptor. As a result, the 

increase in intracellular calcium levels is inhibited leading to lower emission intensity of 

the Fluo-4 dye. The fourteen final compounds that were tested are shown in Figure 41.  
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The IC50 values obtained for the antagonists are summarized in the following Table 4. 

                         Table 4: IC50 values from the calcium mobilization assay 

Compound IC50 (µM) 

12 57.17± 12.81 

13 189.87± 139.15 

14 46.49± 28.75 

15 28.60± 14.33 

16 51.74± 17.04 

17 54.87± 18.93 

18 61.44± 53.16 

19 15.41± 6.45 

20 169.47± 112.15 

21 36.91± 8.85 

22 >200 

23 190.81± 152.80 
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24 26.75± 12.40 

25 59.00± 41.40 

Maraviroc 4.13± 0.02 

  

Discussion:  

Based on the IC50 values from the calcium mobilization assay, compound 19 was 

the most potent CCR5 antagonist in inhibiting the intracellular calcium release stimulated 

by RANTES with an IC50 of 15.41 µM. This can be interpreted that compound 19 was 

able to inhibit the binding of 50% RANTES to the CCR5 receptor at a concentration of 

15.41 µM. 

         

                         Initial lead                                                             19 

Figure 45: Our initial lead and compound 19. 

The IC50 of the initial lead in the calcium mobilization assay was 65.7 µM. Thus, 

compound 19 has a greater ability to bind to CCR5 and inhibit the calcium release 

stimulated by RANTES. On comparing the structure of the two antagonists, we can infer 
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that introduction of a hydrophobic group at R1 has increaed the compound’s affinity for 

the CCR5 receptor. Besides compound 19, most of the other compounds 12, 14, 15, 16, 

17, 18, 21, 24 and 25 have an IC50 value lower than the initial lead. This further 

strengthens our hypothesis that a large, hydrophobic binding pocket is present in the 

CCR5 receptor which is capable of accomodating bulky substituents. However, a clear 

structure-activity relationship can not be established. This is due to the small number of 

ligands (fourteen) that were synthesized and tested.  

5.2.2 Anti-proliferation Assay: 

The anti-proliferation assay was performed to determine the anti-prostate cancer 

activity of the CCR5 antagonists synthesized. Two different prostate cancer cell lines 

which express the CCR5 receptor were used. These were PC-3 and M12. The two cell 

lines had a similar assay protocol that had to be followed.  

WST-1 reagent has a tetrazolium salt in its structure which is cleaved by 

mitochondrial dehydrogenase which leads to the formation of formazan dye (Figure 46). 

The formazan dye is soluble in water and has a characteristic dark red color to it. Only 

those cells which are viable contain the mitochondrial dehydrogenase. Hence, only those 

wells with viable cells can facilitate the formation of the dark red colored formazan dye.80 
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 The fourteen compounds that were tested are shown in Figure 41, and the IC50 

values obtained for each compound in each cell line is represented in the Table 5. The 

concentration range that was tested for both PC-3 and M12 were 3 µM, 10 µM, 30 µM 

and 100 µM.                          

                             

 

 

 

 

 

 

Figure 46: Role of WST-1 in the Anti-proliferation Assay.80  



    80 

 

Table 5: The IC50 values for PC-3 and M12 cell lines.  

Compound PC-3 IC50 (µM)  M12IC50 (µM) 

12 66.10 ± 9.03  37.52± 2.73 

13 68.80 ± 7.13  62.57± 2.62 

14 97.50 ± 1.14  20.04± 0.42 

15 >100  49.13± 2.58 

16 78.90 ± 25.30  >200 

17 88.10 ± 15.90  >200 

18 77.80 ± 18.70  >200 

19 35.80 ± 7.14  56.33± 11.01 

20 89.00 ± 15.0  152.97± 10.07 

21 >100  68.63± 1.84 

22 >100  72.86± 1.82 

23 >100  85.12± 1.66 

24 >100  25.58± 0.29 
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25 >100  >200 

Anibamine 1.13± 0.01  3.26 ±0.35 

                              

Discussion: 

Based on the IC50 values obtained from the calcium mobilization assay, compound 

19 was the most potent CCR5 antagonist in inhibiting the intracellular calcium release 

stimulated by RANTES with an IC50 of 15.41 µM. This was consistent with the IC50 value 

obtained from the anti-proliferation assay in the PC-3 cell line where compound 19showed 

an IC50 of 35.80 µM, as the most active one among others on its anti-proliferative activity 

in PC-3 cell line. To be noticed, our initial lead compound had an IC50 of greater than 100 

µM in the anti-proliferation assay in the PC-3 cell line. Thus, our hypothesis regarding the 

presence of a hydrophobic binding pocket in the receptor is partially supported by the data 

obtained. Besides compound 19, other ligands 12, 13, 14, 16, 17, 18, and 20 also showed 

higher anti proliferation activity than our initial lead compound in the PC-3 cell line.  

In the M12 cell line, the anti-proliferative activity of compound 19 was much 

lower with an IC50 of 56.33 µM. However, the proliferation of M12 cells were greatly 

inhibited by compounds 14and 24 with IC50 values of 20.04 µM and 25.58 µM 

respectively (Figure 47). Our initial lead compound had an IC50 of 32.66 µM in the anti-

proliferation assay in M12 cell lines. Thus, two compounds (14, 24) were more potent 

than the lead as of prostate cancer cell proliferation agents.  
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A structure-activity relationship that could be established from the calcium 

mobilization assay as well as the anti-proliferation assay was the observation that in 

general pyrazinyl substituted ligands showed better activity than the phenyl substituted 

compounds. For example, compounds 18 and 19 (Figure 41) shared the same bulky 

hydrophobic para biphenyl moiety present in their structure. The only difference in their 

structures was the present of a phenyl or a pyrazinyl group at R3 position. However, 

compound 19 has an IC50 value of 15.41 µM and compound 18 has an IC50 value of 61.44 

µM in the calcium mobilization assay (Table 4). This observation is also consistent with 

our initial lead compound which has a pyrazinyl group present in its structure.  

                                         

 

                                           Figure 47: Compounds 19, 14, and 24. 

19 14 

24 
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It can be clearly seen that the activity of the same compound showed different 

trend regarding different cell lines. Compound 19 was the most potent CCR5 antagonist in 

the calcium mobilization assay and had the best anti-proliferative activity in the PC-3 

prostate cancer cell line among others. However, when tested in the M12 prostate cancer 

cell line, antagonist 19 showed lower anti-proliferative activity compared with other 

ligands. Similarly, compounds 4 and 14 were not the most potent antagonists in the 

calcium mobilization assay while they showed the highest anti-proliferative activity in the 

M12 prostate cancer cell line. 

This difference in activity of the same compound in different cell lines can be 

affected by various factors. One reason for the difference in activity could be the varied 

expression of CCR5 in each cell line. This difference amongst cell lines in the expression 

level of CCR5 could affect the function of our compounds. For example, PC-3 cell 

expresses lower level of CCR5 than M12 one28 while most of the compounds showed 

better anti-proliferative activity in M12 cells than in PC-3 cells. Also, the downstream 

signaling pathways may compensate differently to the antagonism of CCR5 among 

different cancer cell lines. 

Second, CCR5 antagonism may not necessarily correlate with inhibition of 

proliferation of prostate cancer cell lines. Some potent CCR5 antagonists, e.g. Maraviroc, 

did not show significant anti-prostate cancer proliferation activity under our experimental 

conditions. The G-protein-coupled receptors are capable of adopting multiple active states. 

They can be stabilized differently by the ligands which are specific so that only a subset of 
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the entire signaling pathway can be selectively activated. This concept is known as 

“functional selectivity”.85 Each individual ligand leads to differential and independent 

coupling of the GPCR to different intracellular effectors.86 In the case of the ligands 

synthesized in our lab, an explanation for the differential inhibition in calcium 

mobilization activity and anti-proliferative activity could be functional selectivity of 

ligands. Despite binding to the same receptor, they cause distinct functional changes. One 

of the mechanisms could be atypical conformational changes induced by ligand binding.87 

This may result in conformational change that may differentially affect the anti-

proliferation activity and calcium mobilization activity. 

A comprehensive structure-activity relationship could not be established due to a 

limited number of ligands synthesized in this series. This limits the number of factors that 

can be accounted for to establish the quantitative structure activity relationship though 

some qualitative conclusion can be drawn. However, these studies are the beginning of a 

thorough analysis of the CCR5 antagonist binding pocket in the CCR5 receptor. Further 

examination may result in identification of a new lead compound to develop our next 

generation of CCR5 antagonists. 
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6. Experimental Section 

6.1 Chemical Synthesis: 

Melting points were determined on a Fisher-Scientific melting point apparatus. 

1H-NMR and 13CNMR spectra were obtained on a Brucker 400 MHz spectrometer and 

tetramethylsilane was used as an internal standard. Infrared spectra were obtained on a 

Smart iTR diamond ATR spectrometer. Column chromatography was performed on silica 

gel (grade 60 mesh; Bodman Industries, Aston, PA). Routine thin-layer chromatography 

(TLC) was performed on silica gel GHIF plates (250 µm, 2.5 x 10 cm; Analtech Inc., 

Newark, DE). Preparative HPLC was performed on a Varian Microsorb 100-5 C18 

column (250 x 4.6mm), using Prostar 325 UV-Vis (254 nm) as the detector.  

 

6.1.1 Synthesis of Intermediates: 

1-bromo-4-isopropoxybenzene (5).  

 

To a solution of 1 equivalent of 4-bromophenol (10.0 g, 57.803 mmol) in 15 mL 

dimethylformamide (DMF), 1.2 equivalents of potassium carbonate (9.58 g, 69.38 mmol) 

and 1.5 equivalents of 2-bromopropane (10.66 g, 8.1312 mL, d. 1.311 g/mL, 86.66 mmol) 

were added while stirring. The suspension was refluxed for 24 hours at 1000C on a pre-
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heated mantel. The resulting suspension was filtered; the filtrate was concentrated under 

vacuum to remove DMF. The residue was partitioned between water (40 mL) and 

dichloromethane (80 mL). The organic layer was washed with brine, dried over sodium 

sulfate and concentrated to give 1-bromo-4-isopropoxybenzene (9.29 g, 86% yield) as 

colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.36 (m, 2H), 6.77 (m, 2H), 4.49 (m, J= 6.05 

Hz, 1H), 1.33 (d, J= 6.08, 6H). 

1-benzyl-4-(4-isopropoxyphenyl)-1,2,3,6-tetrahydropyridine (7). 

A solution of 1.1 equivalents of 1-bromo-4-isopropoxybenzene (7.5 g, 40.1 mmol) 

in 5 mL tetrahydrofuran (THF) was added dropwise over a period of 30 minutes to a 

stirred mixture  

                                                                       

 of magnesium (0.88 g, 36.4 mmol) and iodine (catalytic amount) in a 500 mL flask. The 

resulting suspension was refluxed at 900 C for 30 minutes on a pre-heated mantel. A 

solution of 0.9 equivalents of 1-benzyl-4-piperidone (6.2 g, 32.8 mmol) was then added to 

the suspension drop wise over a period of 30 minutes. The suspension was refluxed at 900 



    87 

 

C for 40 minutes. After cooling down, ammonium chloride (60 mL) and water (30 mL) 

were added. The mixture was allowed to stand for some time followed by the addition of 

60 mL of 6N HCl. This suspension was refluxed at 1000 C for 3 hours. The suspension 

was concentrated in vacuum to remove THF. The product precipitated from the water 

layer. On filtration, the crude product was obtained. This was purified by column 

chromatography on silica gel with a hexane: ethyl acetate (20: 1) solvent system to obtain 

pure 1-benzyl-4-(4-isopropoxyphenyl)-1,2,3,6-tetrahydopyridine (6.6 g, 65.4% yield) as a 

pale yellow solid. 1H NMR (400 MHz, CDCl3) δ 7.72 (m, 2H), 7.46 (m, 3H), 7.29 (m, 

2H), 6.85 (m, 2H), 5.87 (s, 1H), 4.55 (m, J= 6.08 Hz, 1H), 4.23 (m, 2H), 3.97 (m, 1H), 

3.62 (m, 1H), 3.50 (m, 1H), 3.15 (m, 2H), 2.68 (m, 1H), 1.33 (d, J=6.04 Hz, 6H).  

4-(4-isopropoxyphenyl)piperidine (11). 

 

A solution of 1 equivalent of 1-benzyl-4-(4-isopropoxyphenyl)-1,2,3,6-

tetrahydropyridine (6 g, 19.51 mmol) in methanol was hydrogenated in a 500 mL 

hydrogenation flask at 500C-600C in the presence of 10% w/w Pd/C (10%), HCl (0.372 

mmol/mL) and HBr (0.2546 mmol/mL) under hydrogen atmosphere at 57 psi for 5 days. 
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The resulting suspension was filtered over celite to remove catalyst. The filtrate was 

neutralized with sodium carbonate and concentrated to give 4-(4-

isopropoxyphenyl)piperidine (4.19 g, 84% yield) as a pale yellow solid. 1H NMR 

(400MHz, CDCl3): δ 7.11 (m, 2H), 6.8 (m, 2H), 4.4 (m, J= 6.08 Hz, 1H), 3.18 (m, 2H), 

2.73(m, 2H), 2.55 (m, 1H), 1.82 (m, 2H), 1.61 (m, 2H), 1.31 (d, J= 6.04 Hz, 6H). 

2,2,2-trifluoro-1-(4-(4-isopropoxyphenyl)piperidine-1-yl)ethanone (14). 

O

CH3

CH3

)

O CF3  

 A solution of 1 equivalent of 4-(4-isopropoxyphenyl)piperidine (4 g, 15.63 mmol) and 

2.2 equivalents of pyridine (2.71 g, 34.399 mmol) in dichloromethane in a 200 mL flask 

were stirred on an ice-bath for ten minutes with molecular sieves. To this solution, 1.1 

equivalents of trifluoroacetic anhydride (3.61 g, 17.19 mmol) were added dropwise over a 

period of ten minutes. After stirring at room temperature overnight, the solution was 

filtered, the filtrate was washed with 1N HCl twice, brine and dried over sodium sulfate. 

The resulting dichloromethane solution was concentrated to give 2,2,2-trifluoro-1-(4-(4-

isopropoxyphenyl)piperidine-1-yl)ethanone (4.43 g, 90% yield) as a reddish-brown oil. 1H 

NMR (400MHz, CDCl3): δ 7.08 (m,  2H), 6.83 (m, 2H), 4.66 (m, 1H), 4.5 (m, J= 6.08 Hz, 
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1H), 4.11 (m, 1H), 3.22 (m, 1H), 2.79 (m, 2H), 1.95 (m, 2H), 1.67 (m, 2H), 1.32 (d,  J= 

6.08 Hz, 6H). 

2,2,2-trifluoro-1-(4-(4-isopropoxy-3-nitrophenyl)piperidine-1-yl)-ethanone (16).  

 

A solution of 1 equivalent of 2,2,2-trifluoro-1-(4-(4-isopropoxyphenyl)piperidine-1-

yl)ethanone (4 g, 12.68 mmol) in 20 mL acetic anhydride in a 100 mL flask was stirred in 

a dry-ice acetone bath at -700C for fifteen minutes. To this solution, 10 equivalents of 

concentrated nitric acid (7.99 g, 5.28 mL, d. 1.512 g/mL, and 126.8 mmol) were added 

drop wise over a period of thirty minutes. The reaction mixture was stirred at -300 C for 6 

hours. The mixture was then poured into ice (50 mL). The water phase was extracted with 

100 mL dichloromethane three times, washed with brine and dried over sodium sulfate. 

On concentration, 2,2,2-trifluoro-1-(4-(4-isopropoxy-3-nitrophenyl)piperidine-1-yl)-

ethanone (3.65 g, 80% yield) was obtained as a pale yellow oil. 1H NMR (400MHz, 

CDCl3): δ 7.60 (d, J=2.32, 1H), 7.31 (dd, J= 2.36, J= 8.68 Hz, 1H), 7.03 (d, J= 8.72 Hz, 

1H), 4.70 (m, 1H), 4.64 (m, J=6.04 Hz, 1H), 4.14 (m, 1H), 3.23 (m, 1H), 2.82 (m, 2H), 

1.95 (m, 2H), 1.67 (m, 2H), 1.37 (d, J=6.04, 6H). 
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1-(4-(3-amino-4-isopropoxyphenyl)piperidin-1-yl)-2,2,2-trifluoroethanone (33).  

 

A solution of 1 equivalent of 2,2,2-trifluoro-1-(4-(4-isopropoxy-3-

nitrophenyl)piperidine-1-yl)-ethanone (3.5 g, 9.71 mmol) and 1.2 equivalents of HCl 

(0.425 g, 0.4051 mL, d. 1.049 g/mL, 11.65 mmol) in methanol was hydrogenated in a 500 

mL hydrogenation flask at room temperature. The reaction was carried out in the presence 

of 10% Pd/C (10%) under an atmosphere of hydrogen for 10 hours. The resulting 

suspension was filtered over celite to remove catalyst. The filtrate was neutralized with 

sodium carbonate and concentrated to give 1-(4-(3-amino-4-isopropoxyphenyl)piperidin-

1-yl)-2,2,2-trifluoroethanone (1.76 g, 55% yield) as a pale yellow oil. . 1H NMR 

(400MHz, CDCl3): δ 7.53 (d, J= 1.96 Hz, 1H), 7.12 (dd, J= 1.96 Hz, J= 8.6 Hz, 1H), 6.92 

(d, J= 8.64 Hz, 1H), 4.65 (m, 1H), 4.48 (m, J= 6.04 Hz, 1H), 4.11 (m, 1H), 3.19 (m, 1H), 

2.79 (m, 2H), 1.95 (m, 2H), 1.65 (m, 2H), 1.39 (d, J= 6.04 Hz, 6H).  

)-(2-isopropoxy-5-(1-(2,2,2,-trifluoroacetyl)piperidine-4-yl)phenyl)benzamide(34):  
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O

CH3

CH3

)

O CF3

H
)

O

 

On an ice-water bath, to a solution of 2 equivalents of benzoic acid (638.62  mg, 

5.598 mmol) in DMF (2 mL), 1.5 equivalents of N-(3-dimethylaminopropyl)-N’-

ethylcarbodiimide hydrochloride (EDCI) (804.79 mg, 4.198 mmol), 1.5 equivalents of 1-

hydroxybenzotriazole hydrate (HOBT) (567.27 mg, 4.198 mmol), 3 equivalents of 

triethylamine (TEA) (849.69 mg, 1.16 mL, d. 0.726 g/mL, 8.397 mmol) and molecular 

sieves (4Å) were added. This mixture was stirred under N2 protection for 15 minutes. A 

solution of 1 equivalent of 1-(4-(3-amino-4-isopropoxyphenyl)piperidin-1-yl)-2,2,2-

trifluoroethanone (927 mg, 2.799 mmol) in DMF (2 mL) was added to the above reaction 

mixture. This was allowed to react overnight and proceed from 00C to room temperature. 

The resulting mixture was filtered through celite and DMF was evaporated. This was 

dissolved in dichloromethane, washed with brine, dried over sodium sulfate and 

concentrated. The residue was purified by column chromatography on silica gel with a 

hexane: ethyl acetate (5:1) solvent system to obtain pure N-(2-isopropoxy-5-(1-(2,2,2,-

trifluoroacetyl)piperidine-4-yl)phenyl)benzamide (1.1 g, 87.3% yield) as a pale yellow 

powder. 1H NMR (400MHz, CDCl3): δ 8.67 (br, 1H), 8.49 (s, 1H), 7.87 (m, 2H), 7.52 (m, 
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3H), 6.87 (s, 2H), 4.69 (m, 1H), 4.63 (m, J= 6.08 Hz, 1H), 4.13 (m, 1H), 3.22 (m, 1H), 

2.82 (m, 2H), 2.01 (m, 2H), 1.73 (m, 2H), 1.40 (d, J= 6.04 Hz, 6H).  

)-(2-isopropoxy-5-(1-(2,2,2,-trifluoroacetyl)piperidine-4-yl)phenyl)pyrazine-2-

carboxamide (61):  

 

On an ice-water bath, to a solution of 2 equivalents of pyrazine-2-carboxylic acid 

(755.53 mg, 6.039 mmol) in DMF (2 mL), 1.5 equivalents of N-(3-dimethylaminopropyl)-

N’-ethylcarbodiimide hydrochloride (EDCI) (868.06 mg, 4.528 mmol), 1.5 equivalents of 

1-hydroxybenzotriazole hydrate (HOBT) (611.86 mg, 4.528 mmol), 3 equivalents of 

triethylamine (TEA) (916.47 mg, 1.26 mL, d. 0.726 g/mL, 9.057 mmol) and molecular 

sieves (4Å) were added. This mixture was stirred under N2 protection for 15 minutes. A 

solution of 1 equivalent of 1-(4-(3-amino-4-isopropoxyphenyl)piperidin-1-yl)-2,2,2-

trifluoroethanone (1 g, 3.019 mmol) in DMF (2 mL) was added to the above reaction 

mixture. This was allowed to react overnight and proceed from 00C to room temperature. 

The resulting mixture was filtered through celite and DMF was evaporated. This was 

dissolved in dichloromethane, washed with brine, dried over sodium sulfate and 
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concentrated. The residue was purified by column chromatography on silica gel with a 

hexane: ethyl acetate (5:1) solvent system to obtain pure N-(2-isopropoxy-5-(1-(2,2,2,-

trifluoroacetyl)piperidine-4-yl)phenyl)pyrazine-2-carboxamide (1.1 g, 84.6% yield) as a 

pale yellow powder. 1H NMR (400MHz, CDCl3): δ 10.40 (br, 1H), 9.49 (d, J= 1.4Hz, 

1H), 8.79 (d, J= 2.4 Hz, 1H), 8.62 (d,d J=1.52 Hz, J=2.4 Hz, 1H), 8.51 (s, 1H), 6.90 (s, 

2H), 4.68 (m, 1H), 4.62 (m, J= 6.04 Hz, 1H), 4.13 (d, 1H), 3.24 (t, 1H), 2.85 (m, 2H), 2.01 

(m, 2H), 1.73 (m, 2H), 1.42 (d, J= 6.08 Hz, 6H). 

)-(2-isopropoxy-5-(piperidinn-4-yl)phenyl)benzamide (36) : 

O

CH3

CH3

)
H

H
)

O

 

To a solution of 1 equivalent (200 mg, 0.5822 mmol) N-(2-isopropoxy-5-(1-

(2,2,2,-trifluoroacetyl)piperidine-4-yl)phenyl)benzamide in methanol (20 mL) and water 

(5 mL), 5.2 equivalents of potassium carbonate (417.81 mg, 3.027 mmol) was added. The 

reaction mixture was refluxed at 1000C for 2 hours. Methanol and water were evaporated 

off followed by dissolving the contents in dichloromethane. This solution was then 

washed with saturated sodium bicarbonate solution, brine, dried over sodium sulfate and 

concentrated to obtain pure N-(2-isopropoxy-5-(piperidinn-4-yl)phenyl)benzamide (152 
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mg, 98.9% yield) as a pale yellow solid. 1H NMR (400MHz, CDCl3): δ 8.66 (br, 1H), 8.48 

(d, J=1.84 Hz, 1H), 7.88 (m, 2H), 7.51 (m, 3H), 6.91 (d,d, J= 1.96 Hz, J= 8.4 Hz, 1H), 

8.86 (d, J= 8.4 Hz, 1H), 4.61 (m, J= 6.08 Hz, 1H), 3.20 (m, 2H), 2.74 (t, 2H), 6.64 (m, 

1H), 1.87 (m, 2H), 1.67 (m, 2H), 1.39 (d, J= 6.04 Hz, 6H). 

)-(2-isopropoxy-5-(piperidinn-4-yl)phenyl)pyrazine-2-carboxamide (63) :  

 

To a solution of 1 equivalent (200 mg, 0.4582 mmol) N-(2-isopropoxy-5-(1-

(2,2,2,-trifluoroacetyl)piperidine-4-yl)phenyl)pyrazine-2-carboxamide in methanol (20 

mL) and water (5 mL), 5.2 equivalents of potassium carbonate (328 mg, 2.382 mmol) was 

added. The reaction mixture was refluxed at 1000C for 2 hours. Methanol and water were 

evaporated off followed by dissolving the contents in dichloromethane. This solution was 

then washed with saturated sodium bicarbonate solution, brine, dried over sodium sulfate 

and concentrated to obtain pure N-(2-isopropoxy-5-(piperidinn-4-yl)phenyl)pyrazine-2-

carboxamide (152.5 mg, 97.75% yield) as a pale yellow solid. 1H NMR (400MHz, 

CDCl3): δ 10.37 (br, 1H), 9.49 (d, J= 1.44 Hz, 1H), 8.78 (d, J= 2.44 Hz, 1H),  8.61 (d,d, 

J= 1.52 Hz, J= 2.44 Hz, 1H), 8.51 (d, J= 2.08 Hz, 1H), 6.94 (d,d, J= 2.08 Hz, J= 8.44 Hz, 
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1H), 6.89 (d, J= 8.44 Hz, 1H), 4.57 (m, J= 6.08 Hz, 1H), 3.19 (m, 2H), 2.74 (t, 2H), 2.64 

(m, 1H), 1.86 (m, 2H), 1.64 (m, 2H), 1.41 (d, J= 6.04 Hz, 6H). 

1-Methyl-4-(4’-trifluoromethylphenoxy)benzene (28).  

 

In a 10 mL glass tube, 1 equivalent of p-cresol (480.57 mg, 4.444 mmol), 0.5 

equivalent of 4-trifluorobromobenzene (500 mg, 2.222 mmol), 0.1 equivalent of 

tetramethyl ethylene diamine (TMEDA) (51.59 mg, 0.444 mmol), 1 equivalent of 

potassium tert-butoxide (498.68 mg, 4.444 mmol) and 0.05 equivalent of copper iodide 

(70.45 mg, 0.222 mmol) were added with 1.5 mL DMF as the solvent. The glass tube was 

tightly closed with a cork and placed in the microwave. The temperature and time were set 

to 1250C and 25 minutes respectively. After 25 minutes, the contents were filtered through 

celite to remove the catalyst. The crude compound was purified by column 

chromatography on silica gel with hexane: ethyl acetate (40:1) as the solvent system. 1-

Methyl-4-(4’-trifluoromethylphenoxy)benzene was obtained as white shining crystals (522 

mg, 93.13% yield). 1H NMR (400MHz, CDCl3): δ 7.54 (m, 2H), 7.18 (m, 2H), 7 (m, 2H), 

6.94 (m, 2H), 2.35 (s, 1H). 

1-(bromomethyl)-4-(4’-(trifluoromethyl)phenoxy)benzene (40). 
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In a 50 mL three-necked round bottom flask, 0.8 equivalent of 1-Methyl-4-(4’-

trifluoromethylphenoxy)benzene (200 mg, 1.085 mmol) was dissolved in 4 mL carbon 

tetra chloride which was used as the solvent of this reaction. To this suspension, 1 

equivalent of N-bromosuccinimide (NBS) (242 mg, 1.3597 mmol) and 0.02 equivalent of 

azobisisobutyronitrile (AIBN) (6 mg, 0.03656 mmol) were added. This reaction mixture 

was refluxed for 2 hours under N2 protection on a pre-heated mantel at 810C – 820C. The 

solvent was evaporated and the crude compound was purified by column chromatography 

on silica gel using hexane: ethyl acetate (40:1) as the solvent system. 1-(bromomethyl)-4-

(4’-(trifluoromethyl)phenoxy)benzene was obtained as a pale yellow oil (150 mg, 51.16% 

yield). 1H NMR (400MHz, CDCl3): δ 7.57 (d, 2H), 7.39 (d, 2H), 7.05 (d, 2H), 6.95 (d, 

2H), 4.49 (s, 1H).  

1-methoxy-4-(p-tolyloxy)benzene (18): 

 

In a 50 mL three necked round bottom flask, 1 equivalent of p-cresol (1 g, 9.24 

mmol), 0.769 equivalents of 4-bromoanisole (1.328 g, 7.105 mmol), 0.846 equivalents of 

cesium carbonate (2.5 g, 7.817 mmol), and 0.0038 equivalents of copper bromide (7.8 mg, 

0.0351 mmol) were added. 1 mL of N-methylpyrolidone (NMP) was added to the above 

mixture. The reaction mixture was refluxed for 16 hours on a pre-heated mantel at 1600C. 

The reaction was quenched with acetonitrile (5 mL). The resulting suspension was filtered 
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through celite to remove the catalyst. The product was purified by column 

chromatography on silica gel with a hexyl: ethyl acetate (40:1) solvent system. Pure 1-

methoxy-4-(p-tolyloxy)benzene was obtained (1.65 g, 83.4% yield) as a pale yellow solid. 

1H NMR (400MHz, CDCl3): δ 7.10 (m, 2H), 6.96 (m, 2H), 6.86 (m, 4H), 6.94 (m, 2H), 

3.80 (s, 3H), 2.32 (s, 3H). 

1-methyl-4-phenoxybenzene (19): 

 

In a 50 mL three necked round bottom flask, 1 equivalent of p-cresol (1 g, 9.24 

mmol), 0.769 equivalents of 4-bromobenzene (1.115 g, 7.105 mmol), 0.846 equivalents of 

cesium carbonate (2.5 g, 7.817 mmol), and 0.0038 equivalents of copper bromide (7.8 mg, 

0.0351 mmol) were added. 1 mL of N-methylpyrolidone (NMP) was added to the above 

mixture. The reaction mixture was refluxed for 16 hours on a pre-heated mantel at 1600C. 

The reaction was quenched with acetonitrile (5 mL). The resulting suspension was filtered 

through celite to remove the catalyst. The product was purified by column 

chromatography on silica gel with a hexyl: ethyl acetate (40:1) solvent system. Pure 1-

methyl-4-phenoxybenzene was obtained (1.30 g, 76.8% yield) as a pale yellow solid. 1H 

NMR (400MHz, CDCl3): δ 7.29 (m, 2H), 7.12 (m, 2H), 7.04 (m, 1H), 6.97 (m, 2H), 6.90 

(m, 2H), 2.32 (s, 3H). 

4,4'-oxybis(methylbenzene) (25): 
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O

CH3H3C  

In a 50 mL three necked round bottom flask, 1 equivalent of p-cresol (1 g, 9.24 

mmol), 0.769 equivalents of 4-bromotoluene (1.215 g, 7.105 mmol), 0.846 equivalents of 

cesium carbonate (2.5 g, 7.817 mmol), and 0.0038 equivalents of copper bromide (7.8 mg, 

0.0351 mmol) were added. 1 mL of N-methylpyrolidone (NMP) was added to the above 

mixture. The reaction mixture was refluxed for 16 hours on a pre-heated mantel at 1600C. 

The reaction was quenched with acetonitrile (5 mL). The resulting suspension was filtered 

through celite to remove the catalyst. The product was purified by column 

chromatography on silica gel with a hexyl: ethyl acetate (40:1) solvent system. Pure 4,4'-

oxybis(methylbenzene)  was obtained (1.01 g, 72% yield) as a pale yellow solid. 1H NMR 

(400MHz, CDCl3): δ 7.12 (d, J= 8.16 Hz, 4H), 6.82 (d, J= 8.52 Hz, 4H), 2.29 (s, 6H). 

1-chloro-4-(p-tolyloxy)benzene (24): 

 

In a 50 mL three necked round bottom flask, 1 equivalent of p-cresol (500 mg, 

4.62 mmol), 0.769 equivalents of 4-chlorobromobenzene (777.4 mg, 3.55 mmol), 0.846 

equivalents of cesium carbonate (1.2 g, 3.91 mmol), and 0.0038 equivalents of copper 

bromide (3.9 mg, 0.0175 mmol) were added. 1 mL of N-methylpyrolidone (NMP) was 

added to the above mixture. The reaction mixture was refluxed for 16 hours on a pre-
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heated mantel at 1600C. The reaction was quenched with acetonitrile (5 mL). The resulting 

suspension was filtered through celite to remove the catalyst. The product was purified by 

column chromatography on silica gel with a hexyl: ethyl acetate (40:1) solvent system. 

Pure 1-chloro-4-(p-tolyloxy)benzene  was obtained (551 mg, 62.05% yield) as a pale 

yellow solid. 1H NMR (400MHz, CDCl3): δ 7.29 (m, 2H), 7.17 (m, 2H), 6.89 (m, 4H), 

2.31 (s, 3H). 

1-methyl-4-(4-nitrophenoxy)benzene (31): 

 

In a 50 mL three necked round bottom flask, 1 equivalent of p-cresol (535.3 mg, 

4.95 mmol), 0.5 equivalents of 1-bromo-4-nitrobenzene (500 mg, 2.47 mmol), 0.1 

equivalents of TMEDA (57.5 mg, 0.495 mmol), 1 equivalent of potassium tertbutoxide 

(555.43 mg, 4.95 mmol), and 0.05 equivalents of copper iodide (78.54 mg, 0.247 mmol) 

were added. 3 mL of DMF was added to the above mixture. The reaction mixture was 

refluxed for 16 hours on a pre-heated mantel at 1250C. The resulting suspension was 

filtered through celite to remove the catalyst. The product was purified by column 

chromatography on silica gel with a hexyl: ethyl acetate (40:1) solvent system. Pure 1-

methyl-4-(4-nitrophenoxy)benzene was obtained (517 mg, 91.12% yield) as a yellow 

solid. 1H NMR (400MHz, CDCl3): δ 8.18 (m, 2H), 7.22 (m, 2H), 6.98 (m, 4H), 2.38 (s, 

3H). 
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6.1.2 Synthesis of Final Compounds: 

A. Phenyl substituted compounds: 

)-(2-Isopropoxy-5-(1-(4-(4-(trifluoromethyl)phenoxy)benzyl)piperidin-4-

yl)phenyl)benzamide (41). 

                                      

O

H3C

CH3

H)

)

O CF3

O

 

To a solution of 1 equivalent of N-(2-isopropoxy-5-(piperidinn-4-

yl)phenyl)benzamide (94 mg, 0.277 mmol)  in 5 mL DMF, 1.5 equivalents of potassium 

carbonate (57.57 mg, 0.4166 mmol) and catalytic amount of potassium iodide were added. 

This mixture was stirred at 00C on an ice-water bath for 15 minutes. This was followed by 

the addition of 1.2 equivalents of 1-(bromomethyl)-4-(4-

(trifluoromethyl)phenoxy)benzene (110.33 mg, 0.3332 mmol) dropwise over a period of 

five minutes. This reaction mixture was allowed to run over night from 00C to room 

temperature. DMF was evaporated and the contents were dissolved in dichloromethane. 

The crude compound was purified by column chromatography on silica gel with 

dichloromethane: methanol (100:1) as the solvent system with 1% NH4OH. The pure 

compound was obtained as pale yellow oil (85 mg, 52% yield). 1H NMR (400MHz, 
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CDCl3): δ 8.6 (br, 1H), 8.50 (d, J= 1.88 Hz, 1H), 7.88 (m, 2H), 7.49 (m, 5H), 7.39 (m, 

2H), 7.03 (m, 4H), 6.92 (d,d, J= 2.04 Hz, J= 8.40 Hz, 1H), 6.86 (d, J= 8.48 Hz, 1H), 4.59 

(m, J= 6.04 Hz, 1H), 3.56 (s, 2H), 3.04 (m, 2H), 2.54 (m, 1H), 2.11 (s, 2H), 1.86 (s, 4H), 

1.39 (d, J= 6.04 Hz, 6H). 13C NMR (400MHz, CDCl3): δ 164.93, 144.74, 135.39, 131.68, 

130.94, 128.84, 128.69, 127.81, 127.15, 127.11, 127.08, 127.04, 126.91, 121.43, 119.71, 

118.72, 117.79, 112.65, 71.62, 62.56, 54.23, 42.07, 33.36, 22.36. IR (Smart iTR diamond 

ATR, cm-1) 3421, 1672, 1325, 1246, 1105, 1064. MS m/z: 589. This compound was 

converted to the corresponding hydrochloride salt and a white powder was collected 

which had a melting point of 1590C - 1600C. 

)-(5-(1-(4-benzoylbenzyl)piperidin-4-yl)-2-isopropoxyphenyl)benzamide (67). 

                                              

To a solution of 1 equivalent of N-(2-isopropoxy-5-(piperidinn-4-

yl)phenyl)benzamide (70 mg, 0.2068 mmol)  in 5 mL DMF, 1.5 equivalents of potassium 

carbonate (42.81 mg, 0.3102 mmol) and catalytic amount of potassium iodide were added. 

This mixture was stirred at 00C on an ice-water bath for 15 minutes. This was followed by 

the addition of 1.2 equivalents of (4-(bromomethyl)phenyl)(phenyl)methanone (68.26 mg, 
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0.2481 mmol) drop wise over a period of five minutes. This reaction mixture was allowed 

to run over night from 00C to room temperature. DMF was evaporated and the contents 

were dissolved in dichloromethane. The crude compound was purified by column 

chromatography on silica gel with dichloromethane: methanol (100:1) as the solvent 

system with 1% NH4OH. The pure compound was obtained as pale yellow oil (71 mg, 

64.44% yield). 1H NMR (400MHz, CDCl3): δ 8.6 (br, 1H), 8.51 (d, J= 2.0 Hz, 1H), 7.90 

(m, 2H), 7.81 (m, 4H), 7.57 (m, 2H), 7.49 (m, 6H), 6.93 (d,d, J= 2.12 Hz, J= 8.40 Hz, 1H), 

6.86 (d, J= 8.48 Hz, 1H), 4.59 (m, J= 6.08 Hz, 1H), 3.63 (s, 2H), 3.03 (m, 2H), 2.54 (m, 

1H), 2.14 (s, 2H), 1.86 (s, 4H), 1.39 (d, J= 6.04 Hz, 6H). 13C NMR (400MHz, CDCl3): δ 

196.53, 164.91, 144.71, 137.84, 136.36, 135.40, 132.26, 131.66, 130.18, 130.03, 128.90, 

128.83, 128.70, 128.24, 126.91, 121.46, 118.67, 112.62, 71.61, 63.03, 54.46, 42.12, 33.55, 

22.37. IR (Smart iTR diamond ATR, cm-1) 3410, 1656, 1531, 1276. MS m/z: 533. This 

compound was converted to the corresponding hydrochloride salt and a white powder was 

collected which had a melting point of 1160C - 1170C. 

)-(5-(1-((2'-cyano-[1,1'-biphenyl]-4-yl)methyl)piperidin-4-yl)-2-

isopropoxyphenyl)benzamide (68). 
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To a solution of 1 equivalent of N-(2-isopropoxy-5-(piperidinn-4-

yl)phenyl)benzamide (70 mg, 0.2068 mmol)  in 5 mL DMF, 1.5 equivalents of potassium 

carbonate (42.81 mg, 0.3102 mmol) and catalytic amount of potassium iodide were added. 

This mixture was stirred at 00C on an ice-water bath for 15 minutes. This was followed by 

the addition of 1.2 equivalents of 4'-(bromomethyl)-[1,1'-biphenyl]-2-carbonitrile (67.51 

mg, 0.2481 mmol) dropwise over a period of five minutes. This reaction mixture was 

allowed to run over night from 00C to room temperature. DMF was evaporated and the 

contents were dissolved in dichloromethane. The crude compound was purified by column 

chromatography on silica gel with dichloromethane: methanol (100:1) as the solvent 

system with 1% NH4OH. The pure compound was obtained as pale yellow oil (52 mg, 

47.46% yield). 1H NMR (400MHz, CDCl3): δ 8.6 (br, 1H), 8.50 (d, J= 1.96 Hz, 1H), 7.88 

(m, 2H), 7.76 (m, 1H), 7.64 (t, J= 7.76 Hz, 1H), 7.52 (m, 8H), 7.42 (t, J= 7.64 Hz, 1H), 

6.93 (d,d, J= 2.08 Hz, J= 8.40 Hz, 1H), 6.86 (d, J= 8.48 Hz, 1H), 4.58 (m, J= 6.0 Hz, 1H), 

3.64 (s, 2H), 3.07 (m, 2H), 2.55 (m, 1H), 2.16 (s, 2H), 1.87 (s, 4H), 1.40 (d, J= 6.04 Hz, 

6H). 13C NMR (400MHz, CDCl3): δ 164.90, 145.38, 144.71, 135.42, 133.77, 132.78, 
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131.64, 130.10, 129.55, 129.43, 128.82, 128.66, 125.54, 127.40, 126.91, 121.43, 118.81, 

118.76, 112.64, 111.21, 71.55, 62.94, 54.40, 42.11, 33.48, 22.37. IR (Smart iTR diamond 

ATR, cm-1) 3412, 2224, 1668, 1325, 1249. MS m/z: 530. This compound was converted to 

the corresponding hydrochloride salt and a white powder was collected which had a 

melting point of 1280C - 1290C. 

)-(5-(1-([1,1'-biphenyl]-4-ylmethyl)piperidin-4-yl)-2-isopropoxyphenyl)benzamide 

(73).  

                                              

To a solution of 1 equivalent of N-(2-isopropoxy-5-(piperidinn-4-

yl)phenyl)benzamide (80 mg, 0.236 mmol)  in 5 mL DMF, 1.5 equivalents of potassium 

carbonate (44.4 mg, 0.322 mmol) and catalytic amount of potassium iodide were added. 

This mixture was stirred at 00C on an ice-water bath for 15 minutes. This was followed by 

the addition of 1.2 equivalents of 4-(chloromethyl)-1,1'-biphenyl (52.08 mg, 0.257 mmol) 

dropwise over a period of five minutes. This reaction mixture was allowed to run over 

night from 00C to room temperature. DMF was evaporated and the contents were 
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dissolved in dichloromethane. The crude compound was purified by column 

chromatography on silica gel with dichloromethane: methanol (100:1) as the solvent 

system with 1% NH4OH. The pure compound was obtained as pale yellow oil (52 mg, 

47.46% yield).1H NMR (400MHz, CDCl3): δ 8.65 (br, 1H), 8.50 (d, J= 2.0 Hz, 1H), 7.88 

(m, 2H), 7.55 (m, 7H), 7.43 (m, 4H), 7.33 (m, 1H), 6.92 (d,d, J= 2.08 Hz, J= 8.40 Hz, 1H), 

6.85 (d, J= 8.48 Hz, 1H), 4.58 (m, J= 6.04 Hz, 1H), 3.61 (s, 2H), 3.07 (m, 2H), 2.53 (m, 

1H), 2.14 (s, 2H), 1.86 (s, 4H), 1.39 (d, J= 6.04 Hz, 6H). 13C NMR (400MHz, CDCl3): δ 

164.90, 144.71, 135.43, 129.70, 128.82, 128.72, 128.68, 127.09, 126.99, 126.92, 121.41, 

118.77, 112.65, 71.61, 54.35, 42.19, 33.52, 22.37. IR (Smart iTR diamond ATR, cm-1) 

3412, 1666, 1248, 1074. MS m/z: 505. This compound was converted to the 

corresponding hydrochloride salt and a white powder was collected which had a melting 

point of 1890C - 1900C. 

)-(5-(1-([1,1'-biphenyl]-2-ylmethyl)piperidin-4-yl)-2-isopropoxyphenyl)benzamide 

(72). 
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To a solution of 1 equivalent of N-(2-isopropoxy-5-(piperidinn-4-

yl)phenyl)benzamide (80 mg, 0.236 mmol)  in 5 mL methanol, 1.5 equivalents of pyridine 

(25.44 mg, d. 0.9819 g/mL, 0.025 mL, 0.322 mmol) was added. This mixture was stirred 

at 600C on a pre-heated mantel for 15 minutes. This was followed by the addition of 1.2 

equivalents of 2-(bromomethyl)-1,1'-biphenyl (63.5 mg, 0.257 mmol) drop wise over a 

period of five minutes. The reaction mixture was refluxed overnight at 700C. Methanol 

was evaporated and the contents were dissolved in dichloromethane. Pyridine was 

removed by washing with 20 mL 1N HCl twice followed by extraction of the organic 

layer with dichloromethane. The crude compound was purified by column 

chromatography on silica gel with dichloromethane: methanol (100:1) as the solvent 

system with 1% NH4OH. The pure compound was obtained as pale yellow oil (56 mg, 

46.97%). 1H NMR (400MHz, CDCl3): δ 8.65 (br, 1H), 8.46 (d, J= 1.92 Hz, 1H), 7.88 (m, 

2H), 7.53 (m, 4H), 7.35 (m, 8H), 6.89 (d,d, J= 1.84 Hz, J= 8.40 Hz, 1H), 6.84 (d, J= 8.44 

Hz, 1H), 4.57 (m, J= 6.04 Hz, 1H), 3.42 (s, 2H), 2.92 (m, 2H), 2.44 (m, 1H), 1.95 (m, 2H), 

1.77 (s, 4H), 1.38 (d, J= 6.08 Hz, 6H). 13C NMR (400MHz, CDCl3): δ 164.90, 144.65, 

142.54, 141.62, 139.67, 136.35, 135.44, 131.63, 129.96, 129.86, 129.59, 128.82, 128.67, 

127.85, 127.13, 127.09, 126.91, 126.78, 126.55, 121.48, 118.66, 114.76, 112.61, 71.62, 

60.11, 54.10, 42.21, 33.73, 22.38. IR (Smart iTR diamond ATR, cm-1) 3415, 1668, 1247, 

1073. MS m/z: 505. This compound was converted to the corresponding hydrochloride 

salt and a white powder was collected which had a melting point of 1040C - 1050C. 

)-(2-isopropoxy-5-(1-(3-phenoxybenzyl)piperidin-4-yl)phenyl)benzamide (74). 
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To a solution of 1 equivalent of N-(2-isopropoxy-5-(piperidinn-4-

yl)phenyl)benzamide (80 mg, 0.236 mmol)  in 5 mL methanol, 1.5 equivalents of pyridine 

(25.44 mg, d. 0.9819 g/mL, 0.025 mL, 0.322 mmol) was added. This mixture was stirred 

at 600C on a pre-heated mantel for 15 minutes. This was followed by the addition of 1.2 

equivalents of 1-(chloromethyl)-3-phenoxybenzene (56.2 mg, 0.257 mmol) drop wise over 

a period of five minutes. This reaction mixture was refluxed overnight at 700C. Methanol 

was evaporated and the contents were dissolved in dichloromethane. Pyridine was 

removed by washing with 20 mL 1N HCl twice followed by extraction of the organic 

layer with dichloromethane. The crude compound was purified by column 

chromatography on silica gel with dichloromethane: methanol (100:1) as the solvent 

system with 1% NH4OH. The pure compound was obtained as pale yellow oil (51 mg, 

42.7%). 1H NMR (400MHz, CDCl3): δ 8.65 (br, 1H), 8.48 (d, J= 1.86 Hz, 1H), 7.86 (m, 

2H), 7.55 (m, 3H), 7.31 (m, 3H), 7.03 (m, 4H), 6.90 (d,d, J= 2.04 Hz, J= 8.40 Hz, 1H), 

6.85 (d, J= 8.44 Hz, 1H), 4.58 (m, J= 6.04 Hz, 1H), 3.54 (s, 2H), 3.01 (m, 2H), 2.51 (m, 

1H), 2.10 (m, 2H), 1.83 (s, 4H), 1.85 (d, J= 6.08 Hz, 6H). 13C NMR (400MHz, CDCl3): δ 

164.90, 157.15, 135.43, 131.64, 129.71, 128.82, 128.13, 126.92, 123.09, 121.37, 119.74, 



   108 

 

119.08, 118.84, 118.78, 112.65, 71.61, 63.02, 54.29, 42.12, 33.05, 22.38. IR (Smart iTR 

diamond ATR, cm-1) 3416, 1667, 1253, 1072. MS m/z:  521. This compound was 

converted to the corresponding hydrochloride salt and a white powder was collected 

which had a melting point of 940C - 950C. 

)-(5-(1-([1,1'-biphenyl]-3-ylmethyl)piperidin-4-yl)-2-isopropoxyphenyl)benzamide 

(71). 

                                        

O

H3C

CH3

H)

)

O

 

To a solution of 1 equivalent of N-(2-isopropoxy-5-(piperidinn-4-

yl)phenyl)benzamide (50 mg, 0.1477 mmol)  in 5 mL methanol, 1.5 equivalents of 

pyridine (17.50 mg, d. 0.9819 g/mL, 0.017 mL, 0.2216 mmol) was added. This mixture 

was stirred at 600C on a pre-heated mantel for 15 minutes. This was followed by the 

addition of 1.2 equivalents of 3-(bromomethyl)-1,1'-biphenyl (43.79, 0.1772 mmol) 

dropwise over a period of five minutes. This reaction mixture was refluxed overnight at 

700C. Methanol was evaporated and the contents were dissolved in dichloromethane. 

Pyridine was removed by washing with 20 mL 1N HCl twice followed by extraction of the 

organic layer with dichloromethane. The crude compound was purified by column 

chromatography on silica gel with dichloromethane: methanol (100:1) as the solvent 
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system with 1% NH4OH. The pure compound was obtained as pale yellow oil (37 mg, 

49.63% yield). 1H NMR (400MHz, CDCl3): δ 8.6 (br, 1H), 8.49 (d, J= 1.96 Hz, 1H), 7.87 

(m, 2H), 7.61 (m, 3H), 7.53 (m, 4H), 7.42 (m, 3H), 7.34 (m, 2H), 6.92 (d,d, J= 2.12 Hz, J= 

8.44 Hz, 1H), 6.85 (d, J= 8.44 Hz, 1H), 4.60 (m, J= 6.0 Hz, 1H), 3.63 (s, 2H), 3.06 (m, 

2H), 2.51 (m, 1H), 2.13 (s, 2H), 1.83 (s, 4H), 1.38 (d, J= 6.04 Hz, 6H). ). 13C NMR 

(400MHz, CDCl3): δ 164.87, 144.68, 141.20, 141.14, 139.41, 138.86, 135.41, 131.63, 

128.81, 128.70, 128.66, 128.63, 128.22, 128.02, 127.79, 127.23, 127.18, 126.89, 125.86, 

121.43, 118.74, 112.64, 71.59, 63.43, 54.35, 42.17, 33.50, 22.67. IR (Smart iTR diamond 

ATR, cm-1) 3416, 1667, 1249, 1074. MS m/z: 505. This compound was converted to the 

corresponding hydrochloride salt and a white powder was collected which had a melting 

point of 1110C - 1120C. 

B. Pyrazine substituted compounds: 

)-(2-isopropoxy-5-(1-(4-(4-(trifluoromethyl)phenoxy)benzyl)piperidin-4-

yl)phenyl)pyrazine-2-carboxamide (II-17). 
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To a solution of 1 equivalent of N-(2-isopropoxy-5-(piperidinn-4-

yl)phenyl)pyrazine-2-carboxamide (70 mg, 0.2056 mmol)  in 5 mL methanol, 1.5 

equivalents of pyridine (24.37 mg, d. 0.9819 g/mL, 0.024 mL, 0.3084 mmol) was added. 

This mixture was stirred at 600C on a pre-heated mantel for 15 minutes. This was followed 

by the addition of 1.2 equivalents of 1-(bromomethyl)-4-(4-

(trifluoromethyl)phenoxy)benzene (81.68 mg, 0.2467 mmol) dropwise over a period of 

five minutes. This reaction mixture was refluxed overnight at 700C. Methanol was 

evaporated and the contents were dissolved in dichloromethane. Pyridine was removed by 

washing with 20 mL 1N HCl twice followed by extraction of the organic layer with 

dichloromethane. The crude compound was purified by column chromatography on silica 

gel with dichloromethane: methanol (100:1) as the solvent system with 1% NH4OH. The 

pure compound was obtained as pale yellow oil (43 mg, 35.42%). 1H NMR (400MHz, 

CDCl3): δ 10.37 (br, 1H), 9.50 (d, J= 1.44 Hz, 1H), 8.78 (d, J= 2.44 Hz, 1H), 8.60 (d,d, J= 

1.52 Hz, J= 2.4 Hz, 1H), 8.53 (d, J= 2.04 Hz, 1H), 7.57 (d, J= 8.6 Hz, 2H), 7.39 (d, J= 

8.24 Hz) 2H), 7.03 (m, 4H), 6.95 (d,d, J= 2.08 Hz, J= 8.40 Hz, 1H), 6.89 (d, J= 8.44 Hz, 

1H), 4.56 (m, J= 6.04 Hz, 1H), 3.56 (s, 2H), 3.04 (m, 2H), 2.54 (m, 1H), 2.12 (s, 2H), 1.86 

(s, 4H), 1.39 (d, J= 6.04 Hz, 6H). 13C NMR (400MHz, CDCl3): δ 160.51, 147.81, 145.42, 

145.18, 144.58, 142.64, 130.84, 128.29, 127.12, 127.08, 122.18, 119.71, 118.76, 117.76, 

113.58, 72.14, 63.03, 54.31, 42.12, 33.55, 22.37. IR (Smart iTR diamond ATR, cm-1) 

3343, 1691, 1228, 1050. MS m/z: 591. This compound was converted to the 
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corresponding hydrochloride salt and a white powder was collected which had a melting 

point of 2100C - 2120C 

)-(5-(1-(4-benzoylbenzyl)piperidin-4-yl)-2-isopropoxyphenyl)pyrazine-2-

carboxamide (64). 

                                            

To a solution of 1 equivalent of N-(2-isopropoxy-5-(piperidinn-4-

yl)phenyl)pyrazine-2-carboxamide (55 mg, 0.1615 mmol)  in 5 mL DMF, 1.5 equivalents 

of potassium carbonate (33.43mg, 0.2422 mmol) was added. This mixture was stirred at 

00C on an ice-water bath for 15 minutes. This was followed by the addition of 1.2 

equivalents of (4-(bromomethyl)phenyl)(phenyl)methanone (53.32 mg, 0.1938 mmol) 

drop wise over a period of five minutes. This reaction mixture was allowed to run over 

night from 00C to room temperature. DMF was evaporated and the contents were 

dissolved in dichloromethane. The crude compound was purified by column 

chromatography on silica gel with dichloromethane: methanol (100:1) as the solvent 

system with 1% NH4OH. The pure compound was obtained as pale yellow oil (58 mg, 

67.14%). 1H NMR (400MHz, CDCl3): δ 10.38 (br, 1H), 9.49 (d, J= 1.44 Hz, 1H), 8.78 (d, 
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J= 2.44 Hz, 1H), 8.61 (d,d, J= 1.48 Hz, J= 2.4 Hz, 1H), 8.53 (d, J= 2.08 Hz, 1H), 7.81 (m, 

5H), 7.56 (m, 1H), 7.49 (m, 4H), 6.95 (d,d, J= 2.08 Hz, J= 8.40 Hz, 1H), 6.89 (d, J= 8.44 

Hz, 1H), 4.57 (m, J= 6.08 Hz, 1H), 3.62 (s, 2H), 3.02 (m, 2H), 2.53 (m, 1H), 2.14 (s, 2H), 

1.85 (s, 4H), 1.41 (d, J= 6.04 Hz, 6H). 13C NMR (400MHz, CDCl3): δ 160.47, 144.71, 

137.84, 136.36, 135.40, 132.26, 131.66, 130.18, 130.03, 128.90, 128.83, 128.70, 128.24, 

126.91, 121.46, 118.67, 112.62, 71.61, 63.03, 54.46, 42.12, 33.55, 22.37. IR(Smart iTR 

diamond ATR, cm-1) 3368, 1681, 1635, 1223, 1051. MS m/z: 535. This compound was 

converted to the corresponding hydrochloride salt and a white powder was collected 

which had a melting point of 1300C - 1310C. 

 )-(5-(1-((2'-cyano-[1,1'-biphenyl]-4-yl)methyl)piperidin-4-yl)-2-

isopropoxyphenyl)pyrazine-2-carboxamide (II-3). 

                                         

To a solution of 1 equivalent of N-(2-isopropoxy-5-(piperidinn-4-

yl)phenyl)pyrazine-2-carboxamide (73 mg, 0.2144 mmol)  in 5 mL methanol, 1.5 

equivalents of pyridine (44.38 mg, d. 0.9819 g/mL, 0.044 mL, 0.3216 mmol) was added. 
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This mixture was stirred at 600C on a pre-heated mantel for 15 minutes. This was followed 

by the addition of 1.2 equivalents of 4'-(bromomethyl)-[1,1'-biphenyl]-2-carbonitrile 

(70.05 mg, 0.2573 mmol) dropwise over a period of five minutes. This reaction mixture 

was refluxed overnight at 700C. Methanol was evaporated and the contents were dissolved 

in dichloromethane. Pyridine was removed by washing with 20 mL 1N HCl twice 

followed by extraction of the organic layer with dichloromethane. The crude compound 

was purified by column chromatography on silica gel with dichloromethane: methanol 

(100:1) as the solvent system with 1% NH4OH. The pure compound was obtained as a 

pale yellow oil (40 mg, 35.08%). 1H NMR (400MHz, CDCl3): δ 10.37 (br, 1H), 9.50 (d, 

J= 1.44 Hz, 1H), 8.77 (d, J= 2.40 Hz, 1H), 8.61 (d,d, J= 1.56 Hz, J= 2.36 Hz, 1H), 8.53 (d, 

J= 2.04 Hz, 1H), 7.76 (m, 1H), 7.64 (t, J= 7.68 Hz, 1H), 7.50 (m, 5H), 7.42 (t, J= 7.64 Hz, 

1H), 6.96 (d,d, J= 2.04 Hz, J= 8.40 Hz, 1H), 6.89 (d, J= 8.44 Hz, 1H), 4.56 (m, J= 6.08 

Hz, 1H), 3.61 (s, 2H), 3.06 (m, 2H), 2.55 (m, 1H), 2.13 (s, 2H), 1.86 (s, 4H), 1.42 (d, J= 

6.04 Hz, 6H). 13C NMR (400MHz, CDCl3): δ 160.47, 147.16, 145.39, 145.20, 144.59, 

142.63, 133.78, 132.77, 130.11, 129.46, 128.63, 128.26, 127.38, 122.19, 118.79, 113.58, 

111.25, 72.12, 54.46, 33.61, 22.31. IR(Smart iTR diamond ATR, cm-1) 3350, 1681, 1250, 

1047. MS m/z: 532. This compound was converted to the corresponding hydrochloride 

salt and a while powder was collected which had a melting point of 1520C - 1530C. 

)-(5-(1-([1,1'-biphenyl]-4-ylmethyl)piperidin-4-yl)-2-isopropoxyphenyl)pyrazine-2-

carboxamide (II-14). 
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To a solution of 1 equivalent of N-(2-isopropoxy-5-(piperidinn-4-

yl)phenyl)pyrazine-2-carboxamide (70 mg, 0.2056 mmol)  in 5 mL methanol, 1.5 

equivalents of pyridine (24.36 mg, d. 0.9819 g/mL, 0.024 mL, 0.3084 mmol) was added. 

This mixture was stirred at 600C on a pre-heated mantel for 15 minutes. This was followed 

by the addition of 1.2 equivalents of 4-(chloromethyl)-1,1'-biphenyl (50 mg, 0.2467 

mmol) dropwise over a period of five minutes. This reaction mixture was refluxed 

overnight at 700C. Methanol was evaporated and the contents were dissolved in 

dichloromethane. Pyridine was removed by washing with 20 mL 1N HCl twice followed 

by extraction of the organic layer with dichloromethane. The crude compound was 

purified by column chromatography on silica gel with dichloromethane: methanol (100:1) 

as the solvent system with 1% NH4OH. The pure compound was obtained as a pale yellow 

oil (49 mg, 47.11%). 1H NMR (400MHz, CDCl3): δ 10.37 (br, 1H), 9.50 (d, J= 1.44 Hz, 

1H), 8.77 (d, J= 2.44 Hz, 1H), 8.60 (d,d, J= 1.52 Hz, J= 2.36 Hz, 1H), 8.52 (d, J= 2.08 Hz, 

1H), 7.59 (m, 4H), 7.44 (m, 4H), 7.32 (m, 1H), 6.96 (d,d, J= 2.08 Hz, J= 8.40 Hz, 1H), 

6.88 (d, J= 8.44 Hz, 1H), 4.55 (m, J= 6.0 Hz, 1H), 3.61 (s, 2H), 3.05 (m, 2H), 2.54 (m, 
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1H), 2.13 (s, 2H), 1.86 (s, 4H), 1.41 (d, J= 6.04 Hz, 6H). 13C NMR (400MHz, CDCl3): δ 

160.47, 147.15, 145.38, 145.18, 144.58, 142.62, 141.06, 139.94, 129.65, 128.71, 128.25, 

127.11, 127.08, 126.96, 122.15, 118.79, 113.57, 72.11, 63.07, 54.36, 42.20, 33.55, 22.30. 

IR(Smart iTR diamond ATR, cm-1) 3357, 1683, 1255, 1047. MS m/z: 507. This 

compound was converted to the corresponding hydrochloride salt and a white powder was 

collected which had a melting point of 2090C - 2100C. 

)-(5-(1-([1,1'-biphenyl]-2-ylmethyl)piperidin-4-yl)-2-isopropoxyphenyl)pyrazine-2-

carboxamide (II-10). 

                                              

To a solution of 1 equivalent of N-(2-isopropoxy-5-(piperidinn-4-

yl)phenyl)pyrazine-2-carboxamide (70 mg, 0.2056 mmol)  in 5 mL methanol, 1.5 

equivalents of pyridine (24.36 mg, d. 0.9819 g/mL, 0.024 mL, 0.3084 mmol) was added. 

This mixture was stirred at 600C on a pre-heated mantel for 15 minutes. This was followed 

by the addition of 1.2 equivalents of 2-(bromomethyl)-1,1'-biphenyl (60.96 mg, 0.2467 

mmol) dropwise over a period of five minutes. This reaction mixture was refluxed 

overnight at 700C. Methanol was evaporated and the contents were dissolved in 
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dichloromethane. Pyridine was removed by washing with 20 mL 1N HCl twice followed 

by extraction of the organic layer with dichloromethane. The crude compound was 

purified by column chromatography on silica gel with dichloromethane: methanol (100:1) 

as the solvent system with 1% NH4OH. The pure compound was obtained as a pale yellow 

oil (65 mg, 62.39%). 1H NMR (400MHz, CDCl3): δ 10.37 (br, 1H), 9.50 (d, J= 1.44 Hz, 

1H), 8.78 (d, J= 2.44 Hz, 1H), 8.60 (d,d, J= 1.52 Hz, J= 2.44 Hz, 1H), 8.50 (d, J= 1.96 Hz, 

1H), 7.63 (m, 1H), 7.36 (m, 8H), 6.93 (d,d, J= 2.0 Hz, J= 8.40 Hz, 1H), 6.88 (d, J= 8.48 

Hz, 1H), 4.57 (m, J= 6.04 Hz, 1H), 3.47 (s, 2H), 2.94 (m, 2H), 2.54 (m, 1H), 1.98 (m, 2H), 

1.78 (s, 4H), 1.41 (d, J= 6.04 Hz, 6H). 13C NMR (400MHz, CDCl3): δ 160.47, 147.15, 

145.34, 145.17, 144.56, 142.63, 142.56, 141.57, 139.72, 129.99, 129.90, 129.58, 128.22, 

127.88, 127.18, 126.82, 126.65, 122.18, 118.69, 113.54, 72.10, 60.03, 54.06, 42.12, 33.63, 

22.30. IR(Smart iTR diamond ATR, cm-1) 3350, 1683, 1256, 1074. MS m/z: 507. This 

compound was converted to the corresponding hydrochloride salt and a white powder was 

collected which had a melting point of 1710C - 1720C. 

)-(2-isopropoxy-5-(1-(3-phenoxybenzyl)piperidin-4-yl)phenyl)pyrazine-2-

carboxamide (II-11). 
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To a solution of 1 equivalent of N-(2-isopropoxy-5-(piperidinn-4-

yl)phenyl)pyrazine-2-carboxamide (70 mg, 0.2056 mmol)  in 5 mL methanol, 1.5 

equivalents of pyridine (24.36 mg, d. 0.9819 g/mL, 0.024 mL, 0.3084 mmol) was added. 

This mixture was stirred at 600C on a pre-heated mantel for 15 minutes. This was followed 

by the addition of 1.2 equivalents of 1-(chloromethyl)-3-phenoxybenzene (53.95 mg, 

0.2467 mmol) dropwise over a period of five minutes. This reaction mixture was refluxed 

overnight at 700C. Methanol was evaporated and the contents were dissolved in 

dichloromethane. Pyridine was removed by washing with 20 mL 1N HCl twice followed 

by extraction of the organic layer with dichloromethane. The crude compound was 

purified by column chromatography on silica gel with dichloromethane: methanol (100:1) 

as the solvent system with 1% NH4OH. The pure compound was obtained as a pale yellow 

oil (74 mg, 68.86%). 1H NMR (400MHz, CDCl3): δ 10.37 (br, 1H), 9.49 (d, J= 1.24 Hz, 

1H), 8.77 (d, J= 2.40 Hz, 1H), 8.60 (d,d, J= 1.52 Hz, J= 2.32 Hz, 1H), 8.50 (d, J= 2.04 Hz, 

1H), 7.31 (m, 3H), 7.09 (m, 5H), 7.00 (d,d, J= 2.00 Hz, J= 8.36 Hz, 1H), 6.94 (d, J= 8.44 

Hz, 1H), 4.58 (m, J= 6.04 Hz, 1H), 3.57 (s, 2H), 3.04 (m, 2H), 2.53 (m, 1H), 2.13 (s, 2H), 

1.85 (s, 4H), 1.41 (d, J= 6.08 Hz, 6H). 13C NMR (400MHz, CDCl3): δ 160.47, 147.15, 

145.41, 145.18, 144.57, 142.63, 141.15, 129.71, 129.53, 128.23, 128.14, 126.82, 123.13, 

122.08, 119.80, 118.84, 118.80, 113.59, 72.11, 63.44, 54.19, 42.20, 33.51, 22.29. 

IR(Smart iTR diamond ATR, cm-1) 3357, 1683, 1255, 1047. MS m/z: 523. This 

compound was converted to the corresponding hydrochloride salt and a white powder was 

collected which had a melting point of 1240C - 1250C. 
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)-(5-(1-([1,1'-biphenyl]-3-ylmethyl)piperidin-4-yl)-2-isopropoxyphenyl)pyrazine-2-

carboxamide (II-15).  

                                           

To a solution of 1 equivalent of N-(2-isopropoxy-5-(piperidinn-4-

yl)phenyl)pyrazine-2-carboxamide (70 mg, 0.2056 mmol)  in 5 mL methanol, 1.5 

equivalents of pyridine (24.36 mg, d. 0.9819 g/mL, 0.024 mL, 0.3084 mmol) was added. 

This mixture was stirred at 600C on a pre-heated mantel for 15 minutes. This was followed 

by the addition of 1.2 equivalents of 3-(bromomethyl)-1,1'-biphenyl (60.98 mg, 0.2467 

mmol) dropwise over a period of five minutes. This reaction mixture was refluxed 

overnight at 700C. Methanol was evaporated and the contents were dissolved in 

dichloromethane. Pyridine was removed by washing with 20 mL 1N HCl twice followed 

by extraction of the organic layer with dichloromethane. The crude compound was 

purified by column chromatography on silica gel with dichloromethane: methanol (100:1) 

as the solvent system with 1% NH4OH. The pure compound was obtained as a pale yellow 

oil (45 mg, 44% yield). 1H NMR (400MHz, CDCl3): δ 10.36 (br, 1H), 9.49 (d, J= 1.44 

Hz, 1H), 8.77 (d, J= 2.44 Hz, 1H), 8.60 (d,d, J= 1.52 Hz, J= 2.36 Hz, 1H), 8.51 (d, J= 2.08 

Hz, 1H), 7.62 (m, 3H), 7.35 (m, 6H), 6.96 (d,d, J= 2.12 Hz, J= 8.44 Hz, 1H), 6.88 (d, J= 
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8.48 Hz, 1H), 4.54 (m, J= 6.04 Hz, 1H), 3.63 (s, 2H), 3.07 (m, 2H), 2.54 (m, 1H), 2.13 (s, 

2H), 1.85 (s, 4H), 1.41 (d, J= 6.08 Hz, 6H). 13C NMR (400MHz, CDCl3): δ 160.47, 

147.15, 145.38, 145.18, 144.57, 142.63, 141.23, 141.17, 139.59, 128.71, 128.65, 128.24, 

128.04, 127.25, 127.21, 122.16, 118.80, 113.57, 72.11, 63.46, 54.35, 42.19, 33.53, 22.30. 

IR (Smart iTR diamond ATR, cm-1) 3350, 1680, 1250, 1047. MS m/z: 507. This 

compound was converted to hydrochloride salt and a white powder was collected which 

had a melting point of 1220C to 1230C. 

6.2 Biological Screening:  

6.2.1Calcium Mobilization Assay: 

The cell line used for this assay was MOLT-4. The drug solutions were prepared in 

varying concentrations. The assay buffer which comprised of 25 mL HBBS and 0.5 mL 

HEPES was used to prepare the drug dilutions. 50 µL of drug solutions was added to each 

well. This was followed by the addition of MOLT-4 cells which were plated in a 

concentration of 80 µL per well. The cells along with the drug were incubated for 60 

minutes at 370C. The reaction buffer which comprised of 5 mL of assay buffer, 100 µL 

probenecid, and 40 µL Fluo-4 dye was prepared. 50 µL of the reaction buffer was added 

to the wells followed by incubation for 60 minutes at 370C. 

The stock solution of the agonist RANTES was prepared by adding 25 µL of the 

RANTES stock solution and 2.475 mL assay buffer. The RANTES solution was added to 

all wells except the blank cells, to which only assay buffer was added. The Flex station 
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was used to add RANTES and assay buffer to the wells. The fluorescence emission signal 

was recorded by the Flex station. The software Prism was used to obtain the IC50 values of 

the antagonists.  

6.2.2 Anti-proliferation Assay: 

A. Preparation of cells: 

The CCR5 antagonists were tested on two cell lines. These were PC-3 and M12 

cell lines which are prostate cancer cell lines. The cells were incubated at 370C and 5% 

CO2. The media which was used to grow the cells contained RPMI1640 (500 mL), 1% L-

glutamine, 0.1% ITS (5 µg/mL insulin, 5 µg/mL transferin, 5 µg/mL selenium), 0.1% 

gentamycin and 10% fetal bovine serum (FBS). The media used for M12 cell lines 

contained only 5% FBS and not 10% FBS. After 24 hours of incubation of the M12 cells, 

the media was replaced with serum free media containing 0.1% epidermal growth factor 

(EGF).  

B. Anti-Proliferation Assay protocol:  

On day 1, both cell lines were plated in 96 well plates. The cells were plated such 

that 1000 cells would be present in each well. For each cell line, their respective media 

was used to plate them in concentrations of 100 µL per well. This was followed by 

incubation of the cells along with their media for 24 hours. On day 2, after 24 hours, the 

drug solutions were added to each well. The drug solutions were prepared in phosphate 

buffer solution (PBS). The negative/solvent control included cells with only PBS and 
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DMSO. The percentage of DMSO used was the amount that was present in the highest 

concentration of drug tested. 50 µL of drug solution was added to each well. The cells 

were incubated with the drug solution for 72 hours. On day 5, the media, PBS and drug 

solutions were removed from the plate. This was followed by the addition of 100 µL of 

serum free media with 10% of anti-proliferative reagent WST-1. This was incubated for 3 

hours. The absorbance was then measured at 450 nM on Flex station 3.The software Prism 

was used to obtain the IC50 values of the drugs.                                                                                                       
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7. Conclusion: 

The constant increase in the number of prostate cancer cases in men as well as rise 

in mortality due to prostate cancer metastasis necessitates the development of new 

approaches in the treatment of prostate cancer. Inflammation has been closely associated 

in the etiology of prostate cancer. Analysis of the inflammatory network in prostate cancer 

emphasized the role of chemokines and chemokine receptors in the progression of cancer. 

The chemokine receptor CCR5 and its endogenous ligand CCL5 (RANTES) was found to 

be overexpressed in prostate cancer cells. This was followed by the discovery that CCR5 

antagonists were capable of inhibiting proliferation of prostate cancer cell lines.28 

The chemokine receptor CCR5 was subsequently identified to play a critical role 

in the entry process of HIV in to the host cell. CCR5 served as a co-receptor along with 

the cell surface CD4 receptor for the entry of HIV. It was observed that the gp120 of the 

viral envelope interacted with the extracellular loop 2 of the CCR5 receptor. With the 

constantly increasing number of cases of AIDS worldwide, there is a need for novel 

therapeutic approaches. This led to the discovery of CCR5 antagonists that were capable 

of blocking the receptor and preventing the interaction between the virus and CCR5.  

Due to the implication of CCR5 in various diseases, it served as a novel 

therapeutic target. Fourteen novel CCR5 antagonists were synthesized and their anti-

proliferative activity was explored against prostate cancer cell lines PC-3 and M12. 

Another assay that was performed to evaluate the CCR5 antagonists was the calcium 

mobilization assay. The synthesis of the CCR5 antagonists followed the synthetic route 
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used to synthesize the previous batch of compounds by our lab. Fourteen such compounds 

were synthesized and their biological screening was carried out. 

The anti-proliferative data for PC-3 and M12 showed different results. Compound 

19 showed the greatest anti-proliferative activity in the PC-3 cell line. However, it showed 

only moderate activity in the M12 cell line. Compounds 14 and 24 could strongly inhibit 

the proliferation of M12 cells. Majority of the compounds had a strong anti-proliferative 

activity in the M12 cell line, thus making it hard to distinguish a clear structure-activity 

relationship. There are several possible reasons for compounds showing different activity 

in different cell lines. Difference in the level of expression of CCR5 by each cell line 

could be an important factor. Also, different downstream signaling pathways could affect 

the activity of the antagonist. Compound 19 showed the best activity in the calcium 

mobilization assay. From the data, it could be inferred that this compound had the greatest 

ability in inhibiting the RANTES stimulated increase in intracellular calcium.   

In summary, a clear structure-activity relationship could not be established due to 

the limited number of compounds synthesized in this series. However, these studies are a 

beginning of a thorough analysis of the CCR5 antagonist binding pocket in the CCR5 

receptor. Further optimization of the structure could lead to development of the next 

generation of CCR5 antagonists. 
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