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The purpose of this work was to develop an automated method of measuring fiber 

diameters of electrospun scaffolds from scanning electron microscopy images of these 

scaffolds. Several automated methods were developed and evaluated by comparison to 

known values and data obtained via the standard manual method. Simulated images with 

known diameters were used as test images to evaluate the accuracy of each measurement 

technique. Eight scanning electron microscopy images were also used for the evaluation of 

the automated methods compared to the standard manual method. All diameter 

measurements were made in pixels. Five new automated methods coded in MATLAB were 

developed. The five methods varied the approach of identifying edges of fibers as well as 

assigning edges to single fibers and calculating the distance between edges assigned to the 



   

 xix

same fiber. One-way analysis of variance and the Tukey-Kramer tests were performed for 

comparison of all methods per image. The Custom Canny Slopes automated method was 

shown to accurately approximate the mean diameters in ten simulated images as well as 

microscopy image of real scaffolds (p<0.05)
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Introduction 
 

Tissue engineering is a rapidly evolving field with the main goal of constructing 

living tissues in vitro for in vivo applications. One area of research towards this goal is the 

development of scaffolds for mimicking micro-cellular environments for cell proliferation 

outside of the body. Such scaffolds are carefully characterized based on cell-scaffold 

interactions, mechanical strength of the scaffolds, topography, immune-compatibility, 

diffusion permeability, etc. Depending on the manufacturing techniques, the 

characterization parameters can vary. One popular manufacturing technique of scaffolds is 

electrospinning. Electrospinning is a technique for creating non-woven mats of fibers on a 

nano to micro-scale in terms of fiber diameters. This technique closely simulates the 

natural fibrous three-dimensional morphology of the extra-cellular matrix, which normally 

supports cells within various tissues. This technique can be applied to a large variety of 

natural and synthetic polymers in order to create a favorable scaffold. The versatility in 

terms of materials and morphological similarity to natural extra-cellular matrices makes 

electrospinning a highly promising area of research. A very fundamental characteristic of 

electrospun scaffolds is the mean fiber diameter. It has influence over many other 

properties the scaffold may exhibit, such as allowing cell adhesion, cell migration and 

diffusion of nutrients. Therefore, average fiber diameter is always measured and reported 

for electrospun scaffolds. Various parameters for a given polymer or even blends of 
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polymers can be altered in order to produce favorable fiber dimensions for cellular 

proliferation (1-3). 

Fiber diameter measurement is usually performed manually by measuring the 

diameters of multiple fibers within one microscopy image. This is a laborious process 

which requires the operator to draw a segment orthogonal to the direction of each fiber 

approximating its borders. Specialized software calculates the distance between the 

endpoints of the segment, the operator then draws the next segment and the process is 

repeated 20-100 times.  An automated, operator independent method can significantly 

reduce the time and effort spent on characterization of electrospun scaffolds especially for 

processing multiple scaffolds as well as reducing variability in results.  
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Project Synopsis 
 

The focus of this study is to develop an automated method for measuring the fiber 

diameters of electrospun scaffolds. This work employs image processing techniques to 

extract diameter information from the Scanning Electron Microscopy (SEM) images of the 

scaffolds. The goal is to develop an operator independent method which can process the 

images and accurately measure fiber diameters. Two different implementations of Canny 

edge detection method were used to determine the location of the fiber borders. The Canny 

method was chosen for its superior accuracy compared to other edge detection methods 

(4,5). Once the edges were found, three different approaches were used to assign two edges 

to single fibers. The distance between the selected edges was then computed for each 

recognized fiber.  

The author has found no literature regarding validation studies of a standard 

method compared to known values; therefore test images were created to simulate 

scanning electron microscopy images of electrospun scaffolds. The diameter of each fiber 

within these images was predetermined and known. Images with a narrow distribution of 

fiber diameters, and a wide distribution of fiber diameters with approximately 100 fibers 

per image were created.  

Data was collected from five volunteers processing each image using the 

conventional manual method. Each image was displayed in image processing software 

such as ImageJ or UTHSCSA ImageTool, and the distance measurement tool of the 
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software was used to measure one hundred diameters.  Every image was also processed 

with each of the five developed automated techniques.  
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Background Information 
 

 

Fibrous ECM Analogues in Tissue Engineering 
 

Tissue engineering is a growing field involving a diverse set of disciplines ranging 

from biological sciences, to engineering and physical sciences. Engineering tissues in vitro 

can have either therapeutic applications for in vivo implantation or treatment development 

applications for in vitro disease models. Developing tissues in vitro entails mimicking the 

micro and macro-scale cellular environment to allow for native cells of the tissues to 

perform their usual functions. There are various factors to be considered for manipulating 

cellular environment. Soluble cell-cell signals, nutrients, oxygen and carbon dioxide 

exchange, temperature, salinity and pH balance are all vital aspects of tissue culturing. 

Another critical aspect to closely mimicking the micro-environment of tissues is 

mimicking the extra-cellular matrix (ECM). The ECM not only functions to physically 

support the cells via cell adhesion, but it also regulates their proliferation and migration 

rates as well as other vital metabolic functions. The cell-matrix interactions occur in all 

three dimensions, which is difficult to replicate outside of the body. An ideal ECM 

analogue would provide cells of a particular tissue with the same cues that they would 

receive from their native ECM in vivo, but would do so in vitro.  
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The natural ECM of various tissues is often fibrous in nature with nano-scale 

diameters. Although this fibrous structure is very complex and is composed of numerous 

types of macromolecules and varies in structure and composition from tissue to tissue, the 

idea of creating fibrous scaffolds for the ECM analogues has gained tremendous 

momentum. The morphology of native ECM is primarily a network of long protein nano-

fibers linked together with various glycoproteins. This fibrous morphology is the driving 

factor for creating fibrous scaffolds for ECM analogues (6-8). It has been experimentally 

determined that compared to two-dimensional smooth surfaces and three-dimensional 

porous films, fibrous networks of the same material provide better support for adhesion 

and migration of various cells (9).  

Common methods for creating small fiber diameter webs include self-assembly, 

phase separation and electrospinning. Amphiphilic peptides with a hydrophobic and 

hydrophilic regions are known to self assemble into structures such as vesicles, micelles 

and tubules when dissolved in an aqueous solution. The structure of these peptides dictates 

the shape of the three-dimensional network formed in solution depending on temperature, 

pH and salinity of the aqueous solution. Various peptides have been fabricated to exploit 

their properties for self-assembling into three-dimensional nanofibrous networks with 

usage in tissue engineering and drug delivery applications. The fiber diameters for 

scaffolds created with this method are on the order of 30-50 nm (7,10,11). 

Phase separation can either be non-solvent induced separation or thermally induced 

separation. Non-solvent induced separation can be accomplished by dissolving the polymer 

in a solvent and then introducing a non-solvent to the surface of the solution. The non-
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solvent displaces the solvent in the solution making the solution unstable and causing the 

polymer to precipitate out of solution and therefore forming a porous scaffold (7,12). 

Thermally induced phase separation is more common and involves dissolving the polymer 

in a solvent at high temperatures, and then quickly lowering the temperature to cause rapid 

precipitation, at which point the scaffold forms and the solvent is removed via sublimation 

or extraction (7,12,13). The fiber diameters fall into the range of 50-500 nm, when this 

method is implemented (7). 

The most well studied method for preparation of fibrous scaffolds is 

electrospinning. This is a fairly simple process of utilizing electrostatic forces to produce 

non-woven fibrous mats. As one example, a polymer solution is drawn up into a syringe 

with a blunt needle. The needle is positively charged and a negatively charged collecting 

plate is placed at a predetermined distance from the needle. The resulting electrostatic field 

between the needle and the collecting plate causes a force to act on the polymer solution in 

the direction of the collecting plate. If the force is sufficiently high, the surface tension of 

the solution breaks and a jet of polymer solution moves from the tip of the needle to the 

collecting plate. While the jet travels to the collecting plate, the solvent evaporates leaving 

only the polymer fibers in the newly generated scaffold. This method can be use for a large 

range of natural and synthetic polymers and a large range of solvents. The fiber diameters 

for this method fall into the range of 200nm-10μm, depending on the polymer and solvent 

chosen as well as parameters such as concentration, air gap distance, and electric field 

strength (2,3,6,7,11). 
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It has been experimentally determined that scaffold diameters of the same material 

have a great impact on cell migration and proliferation. Smaller fiber diameter scaffolds 

have been shown to promote better cellular adhesion and migration than larger diameter 

scaffolds (1). It is therefore important to be able to measure the fiber diameter in an 

efficient accurate way. This measurement would become even more important if any of 

these scaffolds reach clinical applications and mass production. It is unlikely that a manual 

measurement can be performed efficiently on a large scale. The author is therefore 

proposing automated methods for performing fiber diameter measurements from SEM 

images of fibrous scaffolds.  

 

Manual Method for Fiber Diameter Measurement 
 

Although there is no validated standard manual method for measurement of fiber 

diameters from SEM images of scaffolds, there is a generally excepted manual method, 

which is frequently used to quantify fiber diameters. The image of the scaffold is opened in 

image processing software such as ImageJ (NIH) or UTHSCSA ImageTool. The scale is 

set based on the pixel/scale bar ratio, which is obtained by measuring the scale bar in 

pixels and providing length of the scale bar in metric units. The distance tool of the 

software is then used to acquire 20-100 measurements of fiber widths. In each 

measurement, an orthogonal segment is drawn beginning and ending on the edges of the 

fiber. The angle of the segment is determined qualitatively by visual inspection. The 

placement of the end points on the edges of the fibers is also determined by visual 
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inspection. The software then calculates the distance between the endpoints in pixels and 

converts it to metric units previously specified. The average diameter and the standard 

deviation from that average are reported for each scaffold (2,14-16). 

 

Automated Method for Fiber Diameter Measurement 
 

There is one published, image processing based method for fiber diameter 

measurement of electrospun scaffolds by Ziabari and coworkers. The grey scale images are 

converted to black and white images via local thresholding. A distance transform image is 

constructed from the black and white image with intensity values indicating the distance 

each white pixel is from the nearest edge. The distance transform image is then thinned and 

pruned to produce a skeleton of the fiber network with white lines corresponding to the 

location of the center of each fiber. The intersections of these skeletons are then removed. 

The four images can be seen consecutively in Figure 1. The new skeleton is used with 

correlation to the distance transform image to choose only the diameters from the distance 

transform matrix that do not correspond to intersections. This method was tested on a 

simulated image with known fiber distribution and an image of a micrograph of the real 

electrospun web (17).  
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Figure 1 Sequence of image processing steps of the Ziabari method. a) black and white simulated 
image, b) distance transform image, c) skeleton, d) skeleton with intersections removed (17) 

The main drawback of this method is the difficulty of obtaining a black and white 

image that accurately represents the boundaries of the fibers when the background in not 

very well defined or cluttered with more fibers, which is often the case for real fibrous 

scaffolds. This method works well for networks that do not have many overlapping fibers. 

The black and white conversion, even with local thresholding, does not work accurately for 

densely sited fibers in scaffolds. The black and white image ends up with some fibers 

fused together into one wide fiber, or the border region is placed well outside of the actual 

edge of the fiber. Therefore the remaining manipulations introduced with this method 

result in inaccurate measurements of the fiber size from the original grey scale image.  
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Edge Detection Methods in Image Processing 
 

Edge detection can be accomplished by first or second order derivatives in order to 

extract meaningful information from changes in intensity values in images. The first order 

gradient equation is most commonly used for convenience. 
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Since images are discrete sets of values, the derivatives must be approximated by 

numerical solution. There are many different approaches to finding a numerical solution in 

order to identify a meaningful discontinuity in an image, which can be labeled as an edge. 

The most commonly used methods are methods developed by Sobel, Prewitt, Roberts and 

Canny (4,5). For an image neighborhood in Figure 2, the Sobel approximation is 

 

)2()2( 321987 aaaaaaGx ++−++=  

)2()2( 741963 aaaaaaGy ++−++=  

 

 

a1 a2 a3 

a4 a5 a6 

a7 a8 a9 

Figure 2 Image neighborhood representation (4) 
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 The Prewitt approximation of the gradient is: 

)2()( 321987 aaaaaaGx ++−++=  

)2()( 741963 aaaaaaGy ++−++=  

The Roberts approximation is simply: 

59 aaGx −=  

68 aaGy −=  

The Canny method is more complex than taking a maximum gradient as a meaningful 

edge. A Gaussian filter is employed in order to make method less sensitive to noise. Once 

the noise is minimized, a derivative in the form of a numerical approximation of the 

gradient is generated with the local maxima taken as the possible edges. A high and low 

threshold value is used to determine the strong and weak discontinuities which can be 

edges. The weak edges are only used if they are connected to a strong edge. Of the above 

methods, the Canny method is considered to be the most accurate and is often used for 

various image processing applications (4,5).  

 

Hough Transform 
 

It is often desired not only to identify edges, but also to detect line segments within 

the image. This can be accomplished by first detecting edges with the methods above and 

then using the Hough transform to identify lines. The Hough transform can be used to link 

a set of points to a meaningful segment. A straight line is the simplest of the possible 
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equations that can be represented using the Hough transform. The familiar equation of a 

line bmxy ii +=  can be represented parametrically in the form of ii ymxb +−= , where in 

the parameter space (m-b space), there is only one line that corresponds to the specific pair 

(xi, yi). Therefore, intersections of lines in the m-b space signify that pairs (xi, yi ) and (xj, yj) 

are on the same line in the x-y plane. Parametric representation in the m-b space can be 

useful in counting the number of intersections in the m-b plane to represent lines in the 

original image, however it becomes computationally difficult, when m approaches infinity 

with vertically sloped lines (4,5). 

 The linear Hough transform allows for a finite representation of lines in the 

parametric space. The following equation can be used   

ρθθ =+ sincos yx  

where θ is the angle between the x-axis and a normal segment to the line in x-y space 

passing through the origin, ρ is the length of that segment, or the distance the line is away 

from the origin in the x-y space. In the θ-ρ space each (θi , ρi) pair corresponds to a single 

line the x-y space. The intensity value in the θ-ρ space corresponds to how many points fall 

on that line from the x-y space. The local maxima in the θ-ρ space can then be used to 

identify meaningful lines in the original image by setting a reasonable threshold for how 

many points should be on a line in order to detect a line (4,5). 
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Materials and Methods 
 

Test Images 
 

 

There were multiple types of test images generated for evaluating the accuracy of 

various methods of fiber diameter measurements. All test images were created via code 

written in MATLAB. The images have randomly oriented fibers with 10% white noise 

incorporated into the fiber intensities and into the background intensities. The orientation 

of the fiber is also random. Each fiber has intensity values increasing towards the central 

axis of the fiber and decreasing intensity towards the edges. The peak intensity varies 

randomly from fiber to fiber within a specified range. The flowchart in Figure 3 illustrates 

the algorithm used to create the test images. The algorithm was implemented in MATLAB. 

There were two possible fiber diameter distributions. Narrow distribution restricted 

the fiber diameters from 0.85-1% of the maximum fiber diameter for that image. Wide 

distribution restricted the fiber diameters from 2 pixels to the maximum fiber diameter for 

that image. The maximum diameters ranged from 10-35 pixels. For each fiber the width 

was calculated randomly within the specified range. There were six images generated with 

a narrow distribution of fiber diameters and six images with a wide distribution of fiber 

diameters. The diameters of each fiber in every image were recorded. 
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Figure 4 shows the wide fiber diameter distribution test images used for testing 

with maximum fiber diameters ranging from 10-35 pixels. Figure 5 shows the narrow fiber 

diameter distribution test images, with maximum fiber diameters ranging from 10-35 

pixels. The size of each image was set to 1020×650 pixels which is the typical image size 

used for creating real SEM images of electrospun scaffolds. Magnification and pixel 

resolution is usually adjusted so the fiber diameter is within the range chosen for test 

images in this study.  

The real SEM images were generously donated by Koyal Garg and Scott Sell from 

their own research on electrospun scaffolds. Figure 6 shows the eight SEM images used for 

this study. 

 

Human Data 
 

 

Five volunteers measured each test image using the conventional manual technique. 

One hundred diameters were measured per image. Each volunteer was provided with all 

electronic test images and was directed to use either ImageJ or ImageTool software to view 

the images and employ the provided distance tool to measure diameters. The data was then 

collected from each volunteer and used for comparison with other measurement methods. 

No personal information about the volunteers was collected or recorded.  
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Overview of Automated Fiber Diameter Measurements 
 

 

The main challenges in utilizing automated methods for fiber diameter 

measurement are identifying the boundaries or edges of individual fibers and correctly 

pairing two edges from the same fiber. Alternate solutions to the identification and pairing 

problems are presented in each of the five automated methods.  

There are two methods that were explored for identifying edges. Both methods are 

implementations of the Canny edge detection method. The default MATLAB Canny edges 

detection was used initially, but was then replaced by a custom Canny implementation for 

improved accuracy of edge detection. 

There are three methods that were explored for pairing edges. The first method 

creates a skeleton of the electrospun web in the image. This skeleton is compared with the 

edges that were found independently using the edge detection method to identify 

individual fiber segments. The fiber segments are considered valid if the skeleton and two 

edges around the skeleton have the exact same slope. The second method uses the sign of 

gradient to the original picture to assign left or right edges from independently found 

edges. The left and right edges are then paired if their slope is identical. The final method 

for pairing valid edges uses the sign of the gradient to assign left and right edges as in the 

previous method. However, in order to address the existence of numerous discontinuities 

in fiber edges due to intersections, the Hough transform is used. The descriptions of each 

complete measurement algorithm are presented in the following sections. 
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Skeleton Slopes Fiber Diameter Measurement 
 

 

The first method developed by the author uses elements from the previously 

described Ziabari method, but varies in the determination of valid fiber edges portion of 

the method. In order to identify fibers from the background, a black and white image is 

created via a local threshold algorithm. A skeleton of the black and white image is created 

by thinning the white/fiber areas of the images and removing the intersections. The 

skeleton is used to define fibers, but the black and white image is not used to calculate the 

actual diameters. The binary image does not accurately represent the location of the edges 

of the fibers; therefore a distance transform would only perpetuate the error. Therefore a 

standard MATLAB Canny edge detection function was used to determine the location of 

the edges. Once a fiber is defined with a skeleton and two edges with identical slopes the 

distance between the two edges is recorded taking into account the inclination of the fiber. 

Figure 7 illustrates the algorithm developed for this portion of the experiments. The 

algorithm was implemented in MATLAB. All test images were processed with this 

method, and the collected data was compared to data from the manual measurements, as 

well as known diameters for the synthesized images. A simple sample image has been 

processed with this method to demonstrate the various steps involved. Figure 8 illustrates 

the various stages of processing this image. 
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Canny Slopes Fiber Diameter Measurement 

 

 
This method uses a different principle to define valid left and right edges than the 

previous method, but uses a similar idea of slope determination to define valid pairs of 

edges to determine diameters of fibers. The original image is first filtered with a Gaussian 

filter to minimize noise. A numerical gradient is then taken of the filtered image and used 

to determine the approximate left and right borders of the fibers in the image, while the 

MATLAB Canny edge function was used to determine the edges. Positive gradient 

signifies a left border, while a negative gradient signifies a right border. This combined 

information is used to define single pixel wide left and right edges of fibers inside the 

images. Slopes of the left and right edges and their proximity were used to determine 

corresponding left and right edges of single fibers. The distance between them was 

calculated using their calculated inclination. Figure 9 illustrates the different stages of this 

algorithm. The sample image was processed with this method, and the various stages of 

processing this image with this method are shown in Figure 10. All test images were 

processed with this method and the resulting data was compared to the know diameters 

(when possible) and to the data collected from manual measurements as well as the other 

developed methods. The algorithm was implemented in MATLAB. 

. 
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Canny Hough Fiber Diameter Measurement 
 

 

This method uses the same strategy as the previous method to determine where the 

left and right edges are located, but uses the linear Hough transform to identify individual 

fibers to calculate their diameters. The left and right edge matrices are created as in the 

previous method. The Hough transform is applied to each edge matrix. The left edges are 

not necessarily visible in the same part of the fiber as are the corresponding right edges. 

Performing the Hough transform allows to choose left and right pairs of edges from the 

same fiber, without having the pairs to be in the exact same horizontal position as is 

required by the Slopes method. This method assumes that the fibers are linear and that 

edges found along the same line in left edges matrix belong to the same edge of the same 

fiber. Lines with identical inclination from the left and right edges matrices with no lines 

between them are assumed to belong to the two edges of the same fiber. The diameters are 

then measured once for each fiber found. Intersections of fibers do not introduce 

limitations to fiber diameter measurement when this method is applied. 

The algorithm for this method, illustrated in Figure 11, was implemented in 

MATLAB. All test images were processed with this method. The collected data was 

compared to data from the manual measurements, as well as known diameters for the 

synthesized images. The sample image was processed with this method. Figure 12 shows 

the different image processing stages. The gradient images were omitted in this figure 

since they already appear in Figure 10 (c-d).  
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Custom Canny Slopes Fiber Diameter Measurement 
 
 

Determining the location for the edges of each fiber is the most critical element in 

accurately measuring the fiber diameters. A custom edge function based on the Canny 

method was written in MATLAB for the purpose of accurate fiber diameter determination. 

A Gaussian filter is applied to the original image. The gradient is taken of the filtered 

image. The magnitude of the gradient is thinned to only contain one local maximum, 

effectively making the edges one pixel wide. The left and right edges are defined by 

existence of an edge and positive x-direction gradient or existence of an edge and negative 

x-direction gradient respectively. The pairs of edge segments from the same fiber are then 

determined. The following steps are the same as in the Canny Slopes fiber diameter 

measurement algorithm. Moving along each row of the left edges matrix, an edge is paired 

with a corresponding right edge. The slopes of both are calculated and if identical, a 

diameter measurement is taken from that segment of the fiber. Figure 13 illustrates the 

various stages of this algorithm.  

This algorithm was implemented in MATLAB and all test images were processed 

with this method. Recorded data for each image was compared to the known diameters for 

the simulated images and to human data when known diameters were not available. A 

sample image was also processed to demonstrate the various stages of this method. Figure 

14 shows the resulting stages of processing the sample image with this method. 
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Custom Canny Hough Fiber Diameter Measurement 
 

 

This method combines the custom edge detection of the previous method with 

Hough transform for defining valid fibers and their diameters. The original image is 

filtered with a Gaussian filter. The numerical gradient approximation is taken of the 

filtered image. The magnitude of the gradient matrix is thinned to one pixel width by 

suppressing all non-maxima points. The left and right edges are determined by using the 

thinned matrix of edges and the x-direction gradient matrix. Every edge corresponding to a 

positive gradient defines the left edge, while every edge corresponding to a negative 

gradient defines the right edge.  

The linear Hough transform is taken of each edge image. The local peaks within the 

Hough transform space are taken to define edge lines within the original image. 

Corresponding line pairs from left and right edges with the same slope are taken to define a 

fiber if there are no other lines of the same inclination in between the lines of the selected 

pair. The diameters are calculated between the selected edges. 

The algorithm for this method is shown in Figure 15.  The method was 

implemented in MATLAB. All test images were processed with this method and resulting 

fiber diameters were compared to known and manually measured diameters. Figure 16 

shows the various outputs of this method on the sample image, the gradient pictures are not 

included in this figure since they already appear in Figure 14 (c-d). 
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Statistical Analysis 
 

 

Data sets from different methods for each image were compared to determine if 

differences existed between the different methods and if so which methods were 

statistically different. One-way analysis of variance (ANOVA) was performed on all data 

sets from each image to determine whether there were differences. If statistically 

significant differences existed, the Tukey-Kramer test was performed on data from images 

with statistical differences between data sets (α = 0.05). The MATLAB statistical package 

was used to perform the statistical analysis. Statistical analysis results such as ANOVA 

tables and multiple comparison figures can be found in Appendix A.  
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Figure 3 Algorithm used for generating test images 
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Figure 4 Test images with wide distribution of fiber diameters. The maximum diameter is a) 10, b) 15, 
c) 20, d) 25, e) 30, f) 35 pixels 
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Figure 5 Test images with narrow distribution of fiber diameters. The maximum diameter is a) 10, b) 
15, c) 20, d) 25, e) 30, f) 35 pixels 
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Figure 6 SEM images of real electrospun webs used in this study 
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Figure 7 Skeleton Slopes Fiber Diameter Measurement Algorithm 
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Figure 8 Image processing steps of the Skeleton Slopes fiber diameter measurement method. a) 
Original simulated image, b) original image converted to black and white, c) Skeleton without 

intersections, d) Edges from MATLAB Canny edge function, e) selected edges 
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Figure 9 Canny Slopes Fiber Diameter Measurement Algorithm 
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Figure 10 Image processing steps of the Canny Slopes fiber diameter measurement method. a) Original 
simulated image, b) Edges from MATLAB Canny edge function, c) gradient in x-direction, d), gradient 

in y-direction, e) left edges, f) right edges, g) selected edge 
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Figure 11 Canny Hough Fiber Diameter Measurement Algorithm 
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Figure 12 Image processing steps of the Canny Hough fiber diameter measurement method. a) 
Original simulated image, b) Edges from MATLAB Canny edge function, c) left edges, d), right edges, 
e) Hough transform of (c), f) Hough transform of (d), g) selected edges superimposed over the original 

image, h) high magnification of (g) 
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Figure 13 Custom Canny Slopes Fiber Diameter Measurement Algorithm 
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Figure 14 Image processing steps of the Custom Canny Slopes fiber diameter measurement method. a) 
Original simulated image, b) Filtered image c) gradient in x-direction, d), gradient in y-direction, e) 

left edges, f) right edges, g) selected edges superimposed over the original image, h) high magnification 
of (g) 
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Figure 15 Custom Canny Hough Fiber Diameter Measurement Algorithm 
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Figure 16 Image processing steps of the Custom Canny Hough fiber diameter measurement method. a) 
Original simulated image, b) filtered image, c) left edges, d), right edges, e) Hough transform of (c), f) 
Hough transform of (d), g) selected edges superimposed over the original image, h) high magnification 

of (g) 
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Results and Discussion 
 
 

Overview 
 

 

The graphs in Figures 17-36 demonstrate the resulting average fiber diameters ± 

standard deviation for all data sets per each image. Figures 37-55 show the histograms for 

each data set per test image. One-way ANOVA and Tukey-Kramer multiple comparison 

test results are summarized in Table 1, Table 2 and Table 3 for narrow fiber diameter 

distribution, wide fiber diameter distribution and real SEM images respectively. The names 

of images indicate a statistically significant difference for the pair of data acquisition 

methods when both methods were applied to that test image.  

 

Manual Method Results 
 
  

 

The accuracy of the manual method was quantitatively evaluated by manually 

measuring fiber diameters of simulated SEM images with known fiber diameters. As can 

be seen in Table 1, data sets acquired by person 1, 3, 4 and 5 were not statistically different 

from the known fiber diameters for any of the narrow fiber diameter distribution images. 

Person 2 collected data sets that were statistically different from the known fiber diameters 
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for images narrow10 and narrow30. For wide fiber diameter distribution, variation from 

the known fiber diameters was more notable, since only person 1 and person 5 collected 

data sets with no statistically significant differences from the known mean diameters. 

Persons 2 and 4 collected data sets that varied from the known for images wide15 and 

wide30 respectively, while person 3 collected data varying from the known for images 

wide10, wide25, and wide20. The variation between the accuracy of the manual method 

for narrow distribution fibers as opposed to wide distribution fibers can be related to the 

larger variation in available fiber dimensions to measure. Personal preference plays a role 

in which fibers are chosen for measurement, and it is possible that different people choose 

different fibers for measurement, resulting in differences in mean fiber diameter. This 

difference is not observed while processing the narrow distribution fibers due to a relative 

lack of choice in fiber diameters. Other sources of error include qualitatively assessing the 

angle of the fiber and the edges of the fiber via visual inspection instead of quantitative 

measures. 

Tables 1, 2 and 3 also demonstrate that there are considerable statistically 

significant differences between measurements made by different people of the same test 

images. Tables 1 and 2 show that although data collected by different people may be 

statistically accurate compared to the known diameters, it does not mean that there is no 

significant difference between measurements by different people. For example person 3 

and person 4 have both accurately measured the mean fiber diameters from all narrow 

distribution test images, but their data sets have a statistically different means for 

narrow15, narrow20 and narrow25.  
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Skeleton Slopes Fiber Diameter Measurement Results 
 

 

This method showed consistent underestimation of the fiber diameters for the 

narrow distribution images as can be seen in Figures 17-22. It is also considerably 

inconsistent with the known diameters for those images as can be seen in Table 1. This 

method was more successful at processing the wide distribution test images than the 

narrow distribution images as can be seen in Table 2. Only images wide10 and wide30 

were not accurately measured with this method. The sources of error for this method 

include the creation of the skeleton to identify the relative position of the fibers, and the 

accuracy of the location of the edges found for each fiber. Due to the conversion to a 

binary image, some fibers fuse into one, and the skeleton only reflects the position of one 

of the fibers, therefore some fibers are not measured even if their edges were found during 

edge detection. This method is very sensitive to accurate conversion to a binary image, 

which cannot be accurately standardized for all images. The binary conversion parameters 

can vary from image to image increasing the need for user input and rendering this method 

impractical. 

When compared to the manually obtained data for real SEM images, this method 

yielded some statistically significant differences. It is difficult to asses the validity of such 

comparison, since there are no known fiber diameters for these images, and inconsistencies 

with some of the people data does not necessarily translate to inaccurate measurements. 
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Canny Slopes Fiber Diameter Measurement Results 
 

 

This method was shown to process a larger number of fibers compared to the 

previous method. However the accuracy of this measurement does not appear to surpass 

the accuracy of the previous method as can be seen in Table 1 and Table 2, when 

comparing this method (DCS) with the known (act) diameters. Table 2 does show a 

considerable reduction in error, since there was a significant error in processing only two 

images. The major source of error is therefore the detection of the location of the edges of 

the fibers as opposed to fiber selection bias. As can be seen in Table 3, this method found 

statistically different mean fiber diameters from all manually acquired measurements of 

almost all real SEM images. This result in combination with the inaccurate measurements 

of known fiber diameter data, indicates that this method is not ideal for fiber diameter 

measurement of electrospun scaffolds. 

 

Canny Hough Fiber Diameter Measurement Results 
 
 

The results of this method also show significant inaccuracies based on comparison 

to known fiber diameters with narrow distribution, which is illustrated in Table 1 while 

comparing this method (DCH) with known (act) diameters. This measurement method 

applied to wide fiber diameter distribution test images yielded only two statistically 
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different results for wide10 and wide15. The differences between this method and 

manually acquired data for real SEM images can be seen in Table 3. It is highly likely that 

this method produced an inaccurate measurement for SEM5, SEM6 and SEM7 since it did 

not agree with any of the manually acquired data sets for these images. It is unlikely that 

all manually acquired data sets for these images are inaccurate. Since the previous two 

methods and this method differ in the way they find pairs of valid edges, but are the same 

in the way they determine the edge locations, the major source of error for this method is 

the same as the previous two methods. The edge location it appears to be inaccurate, 

rendering any methods using this edge location technique, impractical. An added source of 

error for this method is the requirement that the fibers a linear, since a straight line 

equation is fitted to the points on edges found. The real SEM images that had many curved 

fibers yielded fewer measurements with this method, since fewer long straight segments 

existed in the image. 

 

Custom Canny Slopes Fiber Diameter Measurement Results 
 
 

The accuracy of the Custom Canny Slopes (CCS) method has been validated by 

comparison to the known mean diameters, which can be seen in Table 1 and Table 2. The 

mean diameters acquired with this method were not statistically different from any of 

known diameters for the narrow and wide distribution test images. As can be observed in 

Table 3, when this method was applied to real SEM images of electrospun scaffolds, the 
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mean diameters measured with this method were consistent with at least one or more 

manually obtained fiber diameter means for the corresponding images. This method is 

therefore considered to be an equivalent alternative to the manual measurement of fiber 

diameters form processing of SEM images.  

 

Custom Canny Hough Fiber Diameter Measurement Results 
 
 

This method performed in a similar way to the Custom Canny Slopes Method, as 

can be see in Table 1 and Table 2 when comparing this method (CCH) to the know fiber 

diameters (act). There was a considerable drawback to this method, when it was applied to 

real SEM images. It performed reasonably well, when processing images with straight 

fibers, however due to its inherent feature of linear fit to edges for the selection of valid 

edge pairs; it was not able to process SEM images with a large proportion of curved fibers 

as can be seen in Table 3 for SEM5 and SEM7. The SEM images that had relatively 

straight fibers were processed with statistically equivalent results to three or more 

manually obtained fiber diameter means for corresponding images. This method is 

therefore considered to be equivalent to the manual measurement of fiber diameters of 

electrospun scaffolds with straight fibers. 
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Figure 17 Average fiber diameters for narrow10 

 

Figure 18 Average fiber diameters for narrow15 
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Figure 19 Average fiber diameters for narrow20 

 

Figure 20 Average fiber diameters for narrow25 
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Figure 21 Average fiber diameters for narrow30 

 

Figure 22 Average fiber diameters for narrow35 
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Figure 23 Average fiber diameters for wide10 

 

Figure 24 Average fiber diameters for wide15 
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Figure 25 Average fiber diameters for wide20 

 

Figure 26 Average fiber diameters for wide25 
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Figure 27 Average fiber diameters for wide30 

 

Figure 28 Average fiber diameters for wide35 
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Figure 29 Average fiber diameters for SEM1 

 

Figure 30 Average fiber diameters for SEM2 
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Figure 31 Average fiber diameters for SEM3 

 

Figure 32 Average fiber diameters for SEM4 
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Figure 33 Average fiber diameters for SEM5 

 

Figure 34 Average fiber diameters for SEM6 
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Figure 35 Average fiber diameters for SEM7 

 

Figure 36 Average fiber diameters for SEM8 
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Figure 37 Histograms for all fiber diameter measurements of image narrow10. a) Custom Canny 
Hough measurement, b) Custom Canny Slopes measurement, c) Skeleton Slopes measurement, d) 
Canny Hough measurement, e) Canny Slopes Measurement, f) known fiber diameters, g) Person 1 

measurement, h) Person 2 measurement, i) Person 3 measurement, j) Person 4 measurement, k) 
Person 5 measurement 
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Figure 38 Histograms for all fiber diameter measurements of image narrow15.  a) Custom Canny 
Hough measurement, b) Custom Canny Slopes measurement, c) Skeleton Slopes measurement, d) 
Canny Hough measurement, e) Canny Slopes Measurement, f) known fiber diameters, g) Person 1 
measurement,  h) Person 2 measurement,  i) Person 3 measurement,  j) Person 4 measurement,  k) 

Person 5 measurement 
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Figure 39 Histograms for all fiber diameter measurements of image narrow20.  a) Custom Canny 
Hough measurement, b) Custom Canny Slopes measurement, c) Skeleton Slopes measurement, d) 
Canny Hough measurement, e) Canny Slopes Measurement, f) known fiber diameters, g) Person 1 
measurement,  h) Person 2 measurement,  i) Person 3 measurement,  j) Person 4 measurement,  k) 

Person 5 measurement 
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Figure 40 Histograms for all fiber diameter measurements of image narrow25.  a) Custom Canny 
Hough measurement, b) Custom Canny Slopes measurement, c) Skeleton Slopes measurement, d) 
Canny Hough measurement, e) Canny Slopes Measurement, f) known fiber diameters, g) Person 1 
measurement,  h) Person 2 measurement,  i) Person 3 measurement,  j) Person 4 measurement,  k) 

Person 5 measurement 
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Figure 41 Histograms for all fiber diameter measurements of image narrow30.  a) Custom Canny 
Hough measurement, b) Custom Canny Slopes measurement, c) Skeleton Slopes measurement, d) 
Canny Hough measurement, e) Canny Slopes Measurement, f) known fiber diameters, g) Person 1 
measurement,  h) Person 2 measurement,  i) Person 3 measurement,  j) Person 4 measurement,  k) 

Person 5 measurement 
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Figure 42 Histograms for all fiber diameter measurements of image narro35.  a) Custom Canny Hough 

measurement, b) Custom Canny Slopes measurement, c) Skeleton Slopes measurement, d) Canny 
Hough measurement, e) Canny Slopes Measurement, f) known fiber diameters, g) Person 1 

measurement,  h) Person 2 measurement,  i) Person 3 measurement,  j) Person 4 measurement,  k) 
Person 5 measurement 
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Figure 43 Histograms for all fiber diameter measurements of image wide10.  a) Custom Canny Hough 

measurement, b) Custom Canny Slopes measurement, c) Skeleton Slopes measurement, d) Canny 
Hough measurement, e) Canny Slopes Measurement, f) known fiber diameters, g) Person 1 

measurement,  h) Person 2 measurement,  i) Person 3 measurement,  j) Person 4 measurement,  k) 
Person 5 measurement 
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Figure 44 Histograms for all fiber diameter measurements of image wide15.  a) Custom Canny Hough 

measurement, b) Custom Canny Slopes measurement, c) Skeleton Slopes measurement, d) Canny 
Hough measurement, e) Canny Slopes Measurement, f) known fiber diameters, g) Person 1 

measurement,  h) Person 2 measurement,  i) Person 3 measurement,  j) Person 4 measurement,  k) 
Person 5 measurement 
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Figure 45 Histograms for all fiber diameter measurements of image wide20.  a) Custom Canny Hough 

measurement, b) Custom Canny Slopes measurement, c) Skeleton Slopes measurement, d) Canny 
Hough measurement, e) Canny Slopes Measurement, f) known fiber diameters, g) Person 1 

measurement,  h) Person 2 measurement,  i) Person 3 measurement,  j) Person 4 measurement,  k) 
Person 5 measurement 
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Figure 46 Histograms for all fiber diameter measurements of image wide25.  a) Custom Canny Hough 

measurement, b) Custom Canny Slopes measurement, c) Skeleton Slopes measurement, d) Canny 
Hough measurement, e) Canny Slopes Measurement, f) known fiber diameters, g) Person 1 

measurement,  h) Person 2 measurement,  i) Person 3 measurement,  j) Person 4 measurement,  k) 
Person 5 measurement 
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Figure 47 Histograms for all fiber diameter measurements of image wide30.  a) Custom Canny Hough 

measurement, b) Custom Canny Slopes measurement, c) Skeleton Slopes measurement, d) Canny 
Hough measurement, e) Canny Slopes Measurement, f) known fiber diameters, g) Person 1 

measurement,  h) Person 2 measurement,  i) Person 3 measurement,  j) Person 4 measurement,  k) 
Person 5 measurement 
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Figure 48 Histograms for all fiber diameter measurements of image wide35.  a) Custom Canny Hough 

measurement, b) Custom Canny Slopes measurement, c) Skeleton Slopes measurement, d) Canny 
Hough measurement, e) Canny Slopes Measurement, f) known fiber diameters, g) Person 1 

measurement,  h) Person 2 measurement,  i) Person 3 measurement,  j) Person 4 measurement,  k) 
Person 5 measurement 
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Figure 49 Histograms for all fiber diameter measurements of image SEM1.  a) Custom Canny Hough 

measurement, b) Custom Canny Slopes measurement, c) Skeleton Slopes measurement, d) Canny 
Hough measurement, e) Canny Slopes Measurement, f) Person 1 measurement,  g) Person 2 

measurement,  h) Person 3 measurement,  i) Person 4 measurement,  j) Person 5 measurement 
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Figure 50 Histograms for all fiber diameter measurements of image SEM2.  a) Custom Canny Hough 

measurement, b) Custom Canny Slopes measurement, c) Skeleton Slopes measurement, d) Canny 
Hough measurement, e) Canny Slopes Measurement, f) Person 1 measurement,  g) Person 2 

measurement,  h) Person 3 measurement,  i) Person 4 measurement,  j) Person 5 measurement 



   

 67

 
Figure 51 Histograms for all fiber diameter measurements of image SEM3.  a) Custom Canny Hough 

measurement, b) Custom Canny Slopes measurement, c) Skeleton Slopes measurement, d) Canny 
Hough measurement, e) Canny Slopes Measurement, f) Person 1 measurement,  g) Person 2 

measurement,  h) Person 3 measurement,  i) Person 4 measurement,  j) Person 5 measurement 
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Figure 52 Histograms for all fiber diameter measurements of image SEM4.  a) Custom Canny Hough 

measurement, b) Custom Canny Slopes measurement, c) Skeleton Slopes measurement, d) Canny 
Hough measurement, e) Canny Slopes Measurement, f) Person 1 measurement,  g) Person 2 

measurement,  h) Person 3 measurement,  i) Person 4 measurement,  j) Person 5 measurement 



   

 69

 
Figure 53 Histograms for all fiber diameter measurements of image SEM5.  a) Custom Canny Hough 

measurement, b) Custom Canny Slopes measurement, c) Skeleton Slopes measurement, d) Canny 
Hough measurement, e) Canny Slopes Measurement, f) Person 1 measurement,  g) Person 2 

measurement,  h) Person 3 measurement,  i) Person 4 measurement,  j) Person 5 measurement 
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Figure 54 Histograms for all fiber diameter measurements of image SEM6.  a) Custom Canny Hough 

measurement, b) Custom Canny Slopes measurement, c) Skeleton Slopes measurement, d) Canny 
Hough measurement, e) Canny Slopes Measurement, f) Person 1 measurement,  g) Person 2 

measurement,  h) Person 3 measurement,  i) Person 4 measurement,  j) Person 5 measurement 
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Figure 55 Histograms for all fiber diameter measurements of image SEM7.  a) Custom Canny Slopes 

measurement, b) Skeleton Slopes measurement, c) Canny Hough measurement, d) Canny Slopes 
Measurement, e) Person 1 measurement,  f) Person 2 measurement,  g) Person 3 measurement,  h) 

Person 4 measurement,  i) Person 5 measurement 
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Figure 56 Histograms for all fiber diameter measurements of image SEM8.  a) Custom Canny Hough 

measurement, b) Custom Canny Slopes measurement, c) Skeleton Slopes measurement, d) Canny 
Hough measurement, e) Canny Slopes Measurement, f) Person 1 measurement,  g) Person 2 

measurement,  h) Person 3 measurement,  i) Person 4 measurement,  j) Person 5 measurement 
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 Data Sets 
CCH CCH CCS CSkS DCH DCS act P1 P2 P3 P4 P5 

CCS   

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow20 
narrow25 
narrow30 
narrow35 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

  narrow10 
narrow30    

CSkS   

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow10 
narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

 narrow20 narrow10 
narrow30 

narrow20 
narrow25   

DCH 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

  

narrow10 
narrow20 
narrow25 
narrow30 
narrow35 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow10 
narrow15 
narrow20 
narrow25 
narrow35 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

DCS 
narrow20 
narrow25 
narrow30 
narrow35 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

  

narrow20 
narrow25 
narrow30 
narrow35 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow10 
narrow20 
narrow25 
narrow35 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow20 
narrow25 
narrow30 
narrow35 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

act 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow10 
narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow10 
narrow20 
narrow25 
narrow30 
narrow35 

narrow20 
narrow25 
narrow30 
narrow35 

 

narrow10 
narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow10 
narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow10 
narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

P1   

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow10 
narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

  narrow10 
narrow30    

P2  narrow20 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

  narrow10 
narrow30  narrow10  

P3 narrow10 
narrow30 

narrow10 
narrow30 

narrow10 
narrow15 
narrow20 
narrow25 
narrow35 

narrow10 
narrow20 
narrow25 
narrow35 

narrow10 
narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow10 
narrow30 

narrow10 
narrow30  

narrow10 
narrow15 
narrow20 
narrow25 
narrow30 

 narrow10 
narrow30 

P4  narrow20 
narrow25 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

  

narrow10 
narrow15 
narrow20 
narrow25 
narrow30 

 
narrow15 
narrow20 
narrow25 

narrow25 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data 
Sets 

P5   

narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

narrow20 
narrow25 
narrow30 
narrow35 

narrow10 
narrow15 
narrow20 
narrow25 
narrow30 
narrow35 

 narrow10  
narrow15 
narrow20 
narrow25 

  

Table 1 Multiple comparison of means for narrow distribution test images (α=0.05) 
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 Data Sets 
 CCH CCS CSkS DCH DCS act P1 P2 P3 P4 P5 

CCH   wide25 wide10 wide10 
wide15    wide10 

wide20 wide30 wide25 

CCS   wide10 wide10 
wide10 
wide15 
wide20 

 wide30 
wide10 
wide15 
 

wide10 
wide15 
wide20 
wide25 
wide35 

wide10 
wide15 wide35 

CSkS wide25 wide10  wide10 
wide10 
wide15 
wide20 

wide10 
wide30 wide30 wide10 

wide10 
wide20 
wide25 
wide35 

wide10 
wide15 wide35 

DCH wide10 wide10 wide10  wide10 wide10 
wide15  wide10 wide20 

wide10 
wide15 
wide30 

 

DCS wide10 
wide15 

wide10 
wide15 
wide20 

wide10 
wide15 
wide20 

wide10 
wide15  wide10 

wide15 

wide10 
wide15 
wide30 

wide10 
wide20 
wide25 
wide35 

wide10 
wide15 
wide30 

wide10 
wide15 
wide35 

act   wide10 
wide30 

wide10 
wide15 

wide10 
wide15   wide15 

wide10 
wide15 
wide20 

wide30  

P1  wide30 wide30  wide10 
wide15   wide10 

wide15 
wide15 
wide20 

wide10 
wide30  

P2  wide10 
wide15 wide10 wide10 wide10 wide15 wide10 

wide15  
wide10 
wide20 
wide35 

wide15 
wide30 

wide10 
wide25 
wide35 

P3 wide10 
wide20 

wide10 
wide15 
wide20 
wide25 
wide35 

wide10 
wide20 
wide25 
wide35 

wide20 
wide20 
wide25 
wide35 

wide10 
wide15 
wide20 

wide15 
wide20 

wide10 
wide20 
wide35 

 

wide10 
wide15 
wide20 
wide35 

wide20 
wide25 

P4 wide30 wide10 
wide15 

wide10 
wide15 

wide10 
wide15 
wide30 

wide10 
wide15 
wide30 

wide30 wide10 
wide30 

wide15 
wide30 

wide10 
wide15 
wide20 
wide35 

 
wide10 
wide15 
wide35 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data 
Sets 

P5 wide25 wide35 wide35  
wide10 
wide15 
wide35 

  
wide10 
wide25 
wide35 

wide20 
wide25 

wide10 
wide15 
wide35 

 

Table 2 Multiple comparison of mean for wide distribution test images (α=0.05) 
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 Data Sets 
 CCH CCS CSkS DCH DCS P1 P2 P3 P4 P5 

CCH  SEM5 
SEM7 

SEM2 
SEM5 
SEM7 

SEM2 
SEM5 
SEM6 
SEM7 

SEM2 
SEM3 
SEM7 

SEM5 
SEM7 

SEM5 
SEM7 

SEM2 
SEM5 
SEM7 

SEM5 
SEM6 
SEM7 

SEM2 
SEM3 
SEM5 
SEM7 
SEM8 

CCS SEM5 
SEM7  SEM8 

 

SEM5 
SEM6 
SEM7 

SEM2 
SEM3 
SEM6 
SEM7 
SEM8 

SEM3 
SEM6 
SEM8 

SEM5 SEM5 
SEM8 

SEM3 
SEM4 
SEM5 
SEM6 
SEM8 

SEM1 
SEM3 
SEM5 
SEM8 

CSkS 
SEM2 
SEM5 
SEM7 

SEM8  
SEM5 
SEM6 
SEM7 

SEM2 
SEM5 
SEM6 
SEM7 

SEM3 
SEM7 SEM7  

SEM2 
SEM3 
SEM4 
SEM5 
SEM6 
SEM7 

SEM1 
SEM3 
SEM7 
SEM8 

DCH 
SEM2 
SEM5 
SEM6 
SEM7 

SEM5 
SEM6 
SEM7 

SEM5 
SEM6 
SEM7 

 SEM5 
SEM5 
SEM6 
SEM7 

SEM5 
SEM6 
SEM7 

SEM5 
SEM6 
SEM7 

SEM4 
SEM5 
SEM6 
SEM7 

SEM3 
SEM5 
SEM6 
SEM7 
SEM8 

DCS 
SEM2 
SEM3 
SEM7 

SEM2 
SEM3 
SEM6 
SEM7 
SEM8 

SEM2 
SEM5 
SEM6 
SEM7 

SEM5  

SEM2 
SEM3 
SEM4 
SEM5 
SEM6 
SEM7 

SEM2 
SEM3 
SEM4 
SEM5 
SEM6 
SEM7 

SEM2 
SEM3 
SEM4 
SEM5 
SEM6 
SEM7 

SEM2 
SEM3 
SEM4 
SEM5 
SEM6 
SEM7 

SEM2 
SEM3 
SEM4 
SEM5 
SEM6 
SEM7 
SEM8 

P1 SEM5 
SEM7 

SEM3 
SEM6 
SEM8 

SEM3 
SEM7 

SEM5 
SEM6 
SEM7 

SEM2 
SEM3 
SEM4 
SEM5 
SEM6 
SEM7 

  SEM7  
SEM3 
SEM7 
SEM8 

P2 SEM5 
SEM7 SEM5 SEM7 

SEM5 
SEM6 
SEM7 

SEM2 
SEM3 
SEM4 
SEM5 
SEM6 
SEM7 

   SEM6 SEM3 
SEM8 

P3 
SEM2 
SEM5 
SEM7 

SEM5 
SEM8  

SEM5 
SEM6 
SEM7 

SEM2 
SEM3 
SEM4 
SEM5 
SEM6 
SEM7 

SEM7   

SEM2 
SEM3 
SEM6 
SEM7 

SEM3 
SEM8 

P4 
SEM5 
SEM6 
SEM7 

SEM3 
SEM4 
SEM5 
SEM6 
SEM8 

SEM2 
SEM3 
SEM4 
SEM5 
SEM6 
SEM7 

SEM4 
SEM5 
SEM6 
SEM7 

SEM2 
SEM3 
SEM4 
SEM5 
SEM6 
SEM7 

 SEM6 

SEM2 
SEM3 
SEM6 
SEM7 

 SEM3 
SEM8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data 
Sets 

P5 

SEM2 
SEM3 
SEM5 
SEM7 
SEM8 

SEM1 
SEM3 
SEM5 
SEM8 

SEM1 
SEM3 
SEM7 
SEM8 

SEM3 
SEM5 
SEM6 
SEM7 
SEM8 

SEM2 
SEM3 
SEM4 
SEM5 
SEM6 
SEM7 
SEM8 

SEM3 
SEM7 
SEM8 

SEM3 
SEM8 

SEM3 
SEM8 

SEM3 
SEM8  

Table 3 Multiple comparison of the means for real SEMs (α=0.05) 
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Conclusion 
 
 Five automated methods and the manual method for measuring fiber diameters of 

electrospun scaffolds were evaluated for accuracy by processing simulated images with 

known fiber diameters via all methods. It was determined that the manual method does 

provide accurate measurements of the mean fiber diameter with p<0.05. The Skeleton 

Canny Slopes, Default Canny Slopes, and Default Canny Hough methods were shown to 

provide inaccurate measurements. The primary reason for these inaccuracies was 

determined to be the inaccurate determination of fiber edge locations. All three methods 

use the default Canny function to determine the fiber edge location. The methods vary in 

terms of identifying valid pairs of edges, however there did not appear to be an appreciable 

instance of wrong pairs of left and right edges, therefore the only appreciable source of 

error is the edge detection. 

 The Custom Canny methods did not show the same inaccuracies. The Custom 

Canny Slopes method was found to be accurate when applied to the simulated images 

(p<0.05), and it was also determined to be equivalent to the manual method when applied 

to real SEM images of electrospun webs. The Custom Canny Hough method produced 

statistically equivalent mean fiber diameters to known values when applied to the 

simulated images. It also provided statistically equivalent mean fiber diameters to the 

manual method values for real SEM images of scaffolds with straight fibers. This method 

is not applicable for scaffolds with curved fibers. The optimal method is the Custom Canny 
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method, since it produced statistically accurate measurements, which are equivalent to the 

manual method  

 Future work will focus on improvements in the implementation of the Custom 

Canny Slopes method, potentially using C or C++ for coding the program, since MATLAB 

is not ideal for speedy computational tasks. Another direction that can be pursued is 

developing a non-linear generalized Hough transform to choose individual fibers. Fitting a 

curve to a fiber edge would eliminate the problem of the Custom Canny Hough method, 

since non-linear stretches of fibers could be identified. It would also eliminate the problem 

of counting the same fiber multiple times as is done in the Custom Canny Slopes method. 

Parametrically expressing a non-linear curve equation is a very difficult computational 

problem. Each additional parameter to the Hough transform, adds another dimension to the 

parametric representation of Hough space. For example the equation of the circle would 

have three parameters (center coordinates and radius) and therefore three-dimensional 

Hough Space. Ideally a generalized Hough transform would be used with different 

parameters, but even with just four parameters (for example a parabola) the computational 

problem becomes overwhelming for practical applications at this time.  
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APPENDIX A: Statistical Analysis 
 

ANOVA Tables for all data sets per image for all test images 
 

 
Table 4 ANOVA Table for narrow10 

 

 
Table 5 ANOVA Table for narrow15 

 

 
Table 6 ANOVA Table for narrow20 

 

 
Table 7 ANOVA Table for narrow25 

 

         Source                  SS                 df               MS                 F           Prob>F 
        Groups          7564.51            10.00         756.45          84.24                0.00 
           Error        11143.86        1241.00             8.98 
           Total        18708.37        1251.00 

         Source                  SS                 df               MS                 F           Prob>F 
        Groups          6251.70            10.00         625.17          83.11                0.00 
           Error        12674.53        1685.00             7.52 
           Total        18926.23        1695.00 

         Source                  SS                 df               MS                 F           Prob>F 
        Groups          1536.79            10.00         153.68          27.32                0.00 
           Error          8522.49        1515.00             5.63 
           Total        10059.28        1525.00 

         Source                 SS                 df              MS                 F           Prob>F 
        Groups           604.51            10.00          60.45          14.71                0.00 
           Error         7780.04        1893.00            4.11 
           Total         8384.55        1903.00 
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Table 8 ANOVA Table for narrow30 

 

 
Table 9 ANOVA Table for narrow35 

 

 
Table 10 ANOVA Table for wide10 

 

 
Table 11 ANOVA Table for wide15 

 

 
Table 12 ANOVA Table for wide20 

 

         Source                 SS                  df             MS                 F           Prob>F 
        Groups         2006.09            10.00         200.61           8.56                0.00 
           Error       45441.44        1939.00           23.44 
           Total       47447.53        1949.00 

         Source                  SS                 df               MS                 F           Prob>F 
        Groups          1572.39            10.00         157.24          12.12                0.00 
           Error        24265.16        1871.00           12.97 
           Total        25837.55        1881.00 

         Source                  SS                 df               MS                 F           Prob>F 
        Groups          2460.51            10.00         246.05          56.98                0.00 
           Error          9012.69        2087.00             4.32 
           Total        11473.20        2097.00 

         Source                 SS                df               MS                 F           Prob>F 
        Groups         7143.55           10.00         714.36          63.14                0.00 
           Error       10861.56         960.00           11.31 
           Total       18005.11         970.00 

         Source                  SS                df               MS                 F           Prob>F 
        Groups          8962.79           10.00         896.28          55.65                0.00 
           Error        13818.78         858.00           16.11 
           Total        22781.58         868.00 
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Table 13 ANOVA Table for wide25 

 

 
Table 14 ANOVA Table for wide30 

 

 
Table 15 ANOVA Table for wide35 

 

 
Table 16 ANOVA Table for SEM1 

 

 
Table 17 ANOVA Table for SEM2 

         Source                  SS                df               MS                 F           Prob>F 
        Groups          2378.31             9.00         264.26          18.57                0.00 
           Error        13800.03         970.00           14.23 
           Total        16178.34         979.00 

         Source                   SS                df               MS                F           Prob>F 
        Groups           1565.08             9.00         173.90           3.61                0.00 
           Error         47305.91         983.00           48.12 
           Total         48870.99         992.00 

         Source                  SS                 df               MS                F           Prob>F 
        Groups          3302.61            10.00         330.26           4.35                0.00 
           Error      109153.47        1437.00           75.96 
           Total      112456.07        1447.00 

         Source                  SS                 df               MS                F           Prob>F 
        Groups          2574.84            10.00         257.48           5.32                0.00 
           Error        57094.47        1179.00           48.43 
           Total        59669.31        1189.00 

         Source                 SS                 df               MS                F           Prob>F 
        Groups         1682.98            10.00         168.30           4.47                0.00 
           Error       57167.90        1517.00           37.68 
           Total       58850.88        1527.00 
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Table 18 ANOVA Table for SEM3 

 

 
Table 19 ANOVA Table for SEM4 

 

 
Table 20 ANOVA Table for SEM5 

 

 
Table 21 ANOVA Table for SEM6 

 

 
Table 22 ANOVA Table for SEM7 

 

         Source                SS                 df                MS                 F           Prob>F 
        Groups        2711.61              8.00          338.95          45.72                0.00 
           Error        8361.86        1128.00              7.41 
           Total      11073.47        1136.00 

         Source                  SS                df               MS                 F           Prob>F 
        Groups          1809.60             9.00         201.07          16.71                0.00 
           Error        10683.36         888.00           12.03 
           Total        12492.96         897.00 

         Source                 SS                df               MS                 F           Prob>F 
         Groups        3554.55             9.00         394.95          31.05           0.00 
          Error        10646.25         837.00          12.72 
          Total        14200.79         846.00 

         Source                  SS                 df               MS                F            Prob>F 
        Groups          2427.57              9.00         269.73           7.87                 0.00 
           Error        36205.59        1057.00          3 4.25 
           Total        38633.16        1066.00 

         Source                  SS                 df               MS                 F           Prob>F 
        Groups          4612.40              9.00         512.49          36.07                0.00 
           Error        17788.48        1252.00           14.21 
           Total        22400.88        1261.00 
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Table 23 ANOVA Table for SEM8 

 
 

Tukey-Kramer Multiple comparison of Means for all ANOVA tables 
 
 

 
Figure 57 Tukey-Kramer Multiple Comparison of Means for narrow10 (α=0.05) 

 

         Source                   SS                 df               MS                F          Prob>F 
        Groups         16282.23              9.00       1809.14         23.77               0.00 
           Error       126343.14        1660.00           76.11 
           Total       142625.36        1669.00 
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Figure 58 Tukey-Kramer Multiple Comparison of Means for narrow15 (α=0.05) 

 

 
Figure 59 Tukey-Kramer Multiple Comparison of Means for narrow20 (α=0.05) 
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Figure 60 Tukey-Kramer Multiple Comparison of Means for narrow25 (α=0.05) 

 
 

 
Figure 61 Tukey-Kramer Multiple Comparison of Means for narrow30 (α=0.05) 
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Figure 62 Tukey-Kramer Multiple Comparison of Means for narrow35 (α=0.05) 

 

 
Figure 63 Tukey-Kramer Multiple Comparison of Means for wide10 (α=0.05) 
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Figure 64 Tukey-Kramer Multiple Comparison of Means for wide15 (α=0.05) 

 

 
Figure 65 Tukey-Kramer Multiple Comparison of Means for wide20 (α=0.05) 
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Figure 66 Tukey-Kramer Multiple Comparison of Means for wide25 (α=0.05) 

 

 
Figure 67 Tukey-Kramer Multiple Comparison of Means for wide30 (α=0.05)  
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Figure 68 Tukey-Kramer Multiple Comparison of Means for wide35 (α=0.05) 

 

 
Figure 69 Tukey-Kramer Multiple Comparison of Means for SEM1 (α=0.05) 
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Figure 70 Tukey-Kramer Multiple Comparison of Means for SEM2 (α=0.05) 

 
Figure 71 Tukey-Kramer Multiple Comparison of Means for SEM3 (α=0.05) 
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Figure 72 Tukey-Kramer Multiple Comparison of Means for SEM4 (α=0.05) 

 

 
Figure 73 Tukey-Kramer Multiple Comparison of Means for SEM5 (α=0.05) 
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Figure 74 Tukey-Kramer Multiple Comparison of Means for SEM6 (α=0.05) 

 
Figure 75 Tukey-Kramer Multiple Comparison of Means for SEM7 (α=0.05) 
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Figure 76 Tukey-Kramer Multiple Comparison of Means for SEM8 (α=0.05) 
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APPENDIX B: Resulting Images for Skeleton Slopes Method 
 

 

The following images were processed with the Skeleton Slopes fiber diameter 

measurement method. The fiber diameters per image can be found in the results section. 

The following figures, the determined valid edges per image were superimposed over the 

corresponding original image. Red and blue segments respectively represent the left and 

right edges of the valid edge pairs found with this method. 

CSkS edges superimposed over the narrow distribution simulated images 
 
 

 
Figure 77 Image narrow10 with CSkS valid edges 



   

 96

 
Figure 78 Image narrow15 with CSkS valid edges 

 
Figure 79 Image narrow20 with CSkS valid edges 
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Figure 80 Image narrow25 with CSkS valid edges 

 
Figure 81 Image narrow30 with CSkS valid edges 
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Figure 82 Image narrow35 with CSkS valid edges 
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CSkS edges superimposed over the wide distribution simulated images 
 
 
 
 

 
Figure 83 Image wide10 with CSkS valid edges 



   

 100

 
Figure 84 Image wide15 with CSkS valid edges 

 
Figure 85 Image wide20 with CSkS valid edges 
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Figure 86 Image wide25 with CSkS valid edges 

 
Figure 87 Image wide30 with CSkS valid edges 
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Figure 88 Image wide35 with CSkS valid edges 
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CSkS edges superimposed over real SEM images 
 
 
 
 

 
Figure 89 Image SEM1 with CSkS valid edges 
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Figure 90 Image SEM2 with CSkS valid edges 

 
Figure 91 Image SEM3 with CSkS valid edges 
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Figure 92 Image SEM4 with CSkS valid edges 

 
Figure 93 Image SEM5 with CSkS valid edges 
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Figure 94 Image SEM6 with CSkS valid edges 

 
Figure 95 SEM7 with CSkS valid edges 
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Figure 96 Image SEM8 with CSkS valid edges 
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APPENDIX C: Resulting Images for Canny Slopes Method 
 

 

The following images were processed with the Default Canny Slopes fiber diameter 

measurement method. The fiber diameters per image can be found in the results section. In 

the following figures, the determined valid edges per image were superimposed over the 

corresponding original image. Red and blue segments respectively represent the left and 

right edges of the valid edge pairs found with this method. 

 

DCS edges superimposed over the narrow distribution simulated images 
 
 

 
Figure 97 Image narrow10 with DCS valid edges 
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Figure 98 Image narrow15 with DCS valid edges 

 
Figure 99 Image narrow20 with DCS valid edges 
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Figure 100 Image narrow25 with DCS valid edges 

 
Figure 101 Image narrow30 with DCS valid edges 
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Figure 102 Image narrow35 with DCS valid edges 
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DCS edges superimposed over the wide distribution simulated images 
 
 
 
 

 
Figure 103 Image wide10 with DCS valid edges 
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Figure 104 Image wide15 with DCS valid edges 
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Figure 105 Image wide20 with DCS valid edges 

 
Figure 106 Image wide25 with DCS valid edges 
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Figure 107 Image wide30 with DCS valid edges 

 
Figure 108 Image wide35 with DCS valid edges 
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DCS edges superimposed over real SEM images 
 
 
 
 

 
Figure 109 Image SEM1 with DCS valid edges 
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Figure 110 Image SEM2 with DCS valid edges 

 
Figure 111 Image SEM3 with DCS valid edges 
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Figure 112 Image SEM4 with DCS valid edges 

 
Figure 113 Image SEM5 with DCS valid edges 
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Figure 114 Image SEM6 with DCS valid edges 

 
Figure 115 Image SEM7 with DCS valid edges 
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Figure 116 Image SEM8 with DCS valid edges 
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APPENDIX D: Resulting Images for Canny Hough Method 
 

 

The following images were processed with the Default Canny Hough fiber 

diameter measurement method. The fiber diameters per image can be found in the results 

section. In the following figures, the determined valid edges per image were superimposed 

over the corresponding original image. Red and blue segments respectively represent the 

left and right edges of the valid edge pairs found with this method. 

DCH edges superimposed over the narrow distribution simulated images 
 
 

 
Figure 117 Image narrow10 with DCH valid edges 
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Figure 118 Image narrow15 with DCH valid edges 

 
Figure 119 Image narrow20 with DCH valid edges 



   

 123

 
Figure 120 Image narrow25 with DCH valid edges 

 
Figure 121 Image narrow30 with DCH valid edges 
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Figure 122 Image narrow35 with DCH valid edges 
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DCH edges superimposed over the wide distribution simulated images 
 
 
 
 

 
Figure 123 Image wide10 with DCH valid edges 
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Figure 124 Image wide15 with DCH valid edges 

 
Figure 125 Image wide20 with DCH valid edges 
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Figure 126 Image wide25 with DCH valid edges 

 
Figure 127 Image wide30 with DCH valid edges 
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Figure 128 Image wide35 with DCH valid edges 
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DCH edges superimposed over real SEM images 
 
 
 
 

 
Figure 129 Image SEM1 with DCH valid edges 
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Figure 130 Image SEM2 with DCH valid edges 

 
Figure 131 Image SEM3 with DCH valid edges 
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Figure 132 Image SEM4 with DCH valid edges 

 
Figure 133 Image SEM5 with DCH valid edges 
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Figure 134 Image SEM6 with DCH valid edges 

 
Figure 135 Image SEM7 with DCH valid edges 
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Figure 136 Image SEM8 with DCH valid edges 
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APPENDIX E: Resulting Images for Custom Canny Slopes Method 
 

 

The following images were processed with the Custom Canny Slopes fiber 

diameter measurement method. The fiber diameters per image can be found in the results 

section. In the following figures, the determined valid edges per image were superimposed 

over the corresponding original image. Red and blue segments respectively represent the 

left and right edges of the valid edge pairs found with this method. 

 

CCS edges superimposed over the narrow distribution simulated images 
 
 

 
Figure 137 Image narrow10 with CCS valid edges 
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Figure 138 Image narrow15 with CCS valid edges 

 
Figure 139 Image narrow20 with CCS valid edges 
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Figure 140 Image narrow25 with CCS valid edges 

 
Figure 141 Image narrow30 with CCS valid edges 
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Figure 142 Image narrow35 with CCS valid edges 
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CCS edges superimposed over the wide distribution simulated images 
 
 
 
 

 
Figure 143 Image wide10 with CCS valid edges 
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Figure 144 Image wide15 with CCS valid edges 

 
Figure 145 Image wide20 with CCS valid edges 



   

 140

 
Figure 146 Image wide25 with CCS valid edges 

 
Figure 147 Image wide30 with CCS valid edges 
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Figure 148 Image wide35 with CCS valid edges 
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CCS edges superimposed over real SEM images 
 
 
 

 
Figure 149 Image SEM1 with CCS valid edges 
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Figure 150 Image SEM2 with CCS valid edges 

 
Figure 151 Image SEM3 with CCS valid edges 
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Figure 152 Image SEM4 with CCS valid edges 

 
Figure 153 Image SEM5 with CCS valid edges 
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Figure 154 Image SEM6 with CCS valid edges 

 
Figure 155 Image SEM7 with CCS valid edges 
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Figure 156 Image SEM8 with CCS valid edges 
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APPENDIX F: Resulting Images for Custom Canny Hough Method 
 

 

The following images were processed with the Custom Canny Hough fiber 

diameter measurement method. The fiber diameters per image can be found in the results 

section. In the following figures, the determined valid edges per image were superimposed 

over the corresponding original image. Red and blue segments respectively represent the 

left and right edges of the valid edge pairs found with this method. 

 

CCH edges superimposed over the narrow distribution simulated images 
 
 

 
Figure 157 Image narrow10 with CCH valid edges 
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Figure 158 Image narrow15 with CCH valid edges 
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Figure 159 Image narrow20 with CCH valid edges 

 
Figure 160 Image narrow25 with CCH valid edges 
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Figure 161 Image narrow30 with CCH valid edges 
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Figure 162 Image narrow35 with CCH valid edges 
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CCH edges superimposed over the wide distribution simulated images 
 
 
 
 

 
Figure 163 Image wide10 with CCH valid edges 
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Figure 164 Image wide15 with CCH valid edges 

 
Figure 165 Image wide20 with CCH valid edges 
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Figure 166 Image wide25 with CCH valid edges 

 
Figure 167 Image wide30 with CCH valid edges 
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Figure 168 Image wide35 with CCH valid edges 
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CCH edges superimposed over real SEM images 
 
 
 
 

 
Figure 169 Image SEM1 with CCH valid edges 
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Figure 170 Image SEM2 with CCH valid edges 

 
Figure 171 Image SEM3 with CCH valid edges 
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Figure 172 Image SEM4 with CCH valid edges 

 
Figure 173 Image SEM5 with CCH valid edges 
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Figure 174 Image SEM6 with CCH valid edges 

 
Figure 175 Image SEM8 with CCH valid edges 
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