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ABSTRACT 

 

GRAPHENE-BASED SEMICONDUCTOR AND METALLIC NANOSTRUCTURED 

MATERIALS 

By Abdallah F. Zedan, Ph.D.  

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor 

of Philosophy at Virginia Commonwealth University.  

Virginia Commonwealth University, 2013 
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Exciting periods of scientific research are often associated with discoveries of novel 

materials. Such a period was brought about by the successful preparation of graphene, which is a 

2D allotrope of carbon with remarkable electronic, optical and mechanical properties. Functional 

graphene-based nanocomposites have great promise for applications in various fields such as 

energy conversion, opteoelectronics, solar cells, sensing, catalysis and biomedicine. Herein, 

microwave and laser-assisted synthetic approaches were developed for decorating graphene with 

various semiconductor, metallic or magnetic nanostructures of controlled size and shape. We 

developed a scalable microwave irradiation method for the synthesis of graphene decorated with 

CdSe nanocrystals of controlled size, shape and crystalline structure. The efficient quenching of 

photoluminescence from the CdSe nanocrystals by graphene has been explored. The results 

provide a new approach for exploring the size-tunable optical properties of CdSe nanocrystals 

supported on graphene, which could have important implications for energy conversion 



 

 

applications. We also extended this approach to the synthesis of Au-ceria-graphene 

nanocomposites. The synthesis is facilely conducted at mild conditions using ethylenediamine as 

a solvent. Results reveal significant conversion percentages up to 60-70% of CO to CO2 at ambient 

temperatures.  Gold nanostructures have received significant attention because of the feasibility to 

tune their optical properties by changing size or shape. The coupling of the photothermal effects 

of these gold nanostructures of controlled size and shape with graphene oxide nanosheets dispersed 

in water is demonstrated. Our results indicate that the enhanced photothermal energy conversion 

of the gold-graphene oxide suspensions could to lead to a remarkable increase in the heating 

efficiency of the laser-induced melting and size reduction of Au nanostructures. The gold-graphene 

nanocomposites could have potential in photothermolysis, thermochemical and thermomechanical 

applications. We developed a facile method for decorating graphene with magnetite nanocrystals 

of various shapes (namely, spheres, cubes and prisms) by the microwave-assisted-reduction of iron 

acetylacetonate in benzyl ether. The shape control was achieved by tuning the molar ratio between 

the oleic acid and the oleyamine. The structural, morphological and physical properties of 

graphene-based nanocomposites described herein were studied using standard characterization 

tools such as TEM, SEM, powder X-ray diffraction, XPS and Raman spectroscopy.  
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CHAPTER 1 INTRODUCTION 

  

1.1 Overview    

The most exciting and fruitful periods of scientific research are often associated with 

discoveries of novel materials that introduce opportunities to revisit and create scientific 

challenges. Such a period was realized by the discovery of free-standing graphene in 2004.1 

Graphene is a two-dimensional (2D) allotrope of crystalline carbon. Its remarkable intrinsic 

features and electronic properties give graphene a great deal of research interest in the present and 

the future. Despite its short history, graphene has already revealed a plethora of new physical and 

chemical properties to explore along with a cornucopia of potential applications in many 

technological fields such as nanocomposites, nanoelectronics, sensors, batteries, supercapacitors 

and hydrogen storage.2 Graphene-related investigations ranging from fundamental studies to 

practical devices utilization have been the focus of many research communities from different 

disciplines. Chemists are busily working on developing new routes to synthesize processable 

graphene. Physicists are trying to understand and implement the new graphene’s properties and 

phenomena. Engineers are designing novel devices to exploit graphene's extraordinary properties 

and biologists are working to introduce graphene into biomedical diagnoses and treatments. The 

existence of such intensive research and wide spread collaborations makes the future of graphene 

extremely bright. 
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1.2 Dissertation Outline 

This dissertation is focused on the synthesis of functional graphene-based nanocomposites 

of great promise for applications in energy conversion and storage, opteoelectronics, catalysis and 

biomedicine. The different chapters in the dissertation are designed in a bottom-up writing 

approach. The next section in this chapter begins with brief background and literature review on 

graphene and different classes of nanostructures that is necessary for understanding subsequent 

sections. Then the statement of research problem is described followed by the objectives of our 

work. Chapter 2 presents a brief description of the physical techniques used for characterization 

and studying the properties of our graphene-based nanostructured materials. In chapter three, we 

describe a microwave irradiation method for decorating graphene with CdSe nanocrystals of 

controlled size, shape, and crystalline structure. Direct evidence for the quenching of 

photoluminescence from the CdSe nanocrystals by graphene and the important implications in 

energy conversion are discussed.  

Research in nanocatalysis aims at designing superior nanostructured catalysts that are 

essential for many technological advances in chemical synthesis and processing, environmental 

detoxification and improving air quality. Chapter 4 details the ethylenediamine-assisted synthesis 

of Au-ceria-graphene nanocomposites and their use as heterogeneous catalysts for the low-

temperature CO catalytic oxidation. Noble metal nanoparticles have received significant attention 

for decades because of the feasibility to tune their electronic and optical properties by changing 

size, shape, composition or dielectric environment. Chapter 5 begins with a section that details the 

seed-mediated method employed here to develop Au nanostructures of various shapes such as rods, 

cubes and bipyramids.  Next, the coupling of the photothermal effects of these Au nanostructures 

of controlled size and shape with GO nanosheets dispersed in water is described. The chapter 
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emphasizes on the enhanced photothermal energy conversion of the Au-GO suspensions and the 

laser-induced melting of Au nanostructures.  

The interest in magnetic nanostructures and their composite materials, with a special 

emphasis on magnetite, has increased over years owing to their potential applications in 

electronics, optoelectronics, data storage industries, catalysis and biomedicine.  Chapter 6 

describes our microwave synthesis of bifunctional magnetite-CdSe nanocomposites. Evidence for 

dual optical-magnetic properties are presented. In chapter 7, a general microwave-based strategy 

for decorating graphene with magnetite nanocrystals of various shapes (namely, spheres, cubes 

and prisms) is outlined. The magnetic properties are compared for different shapes with and 

without graphene and finally the dissertation is ended with bibliography and vita.  

1.3 Background 

Prior to 2004, it was generally accepted that as the thickness of a thin film decreases to 

dozens of atomic layers, the melting temperature rapidly decreases and the thin film becomes 

thermodynamically unstable. The tendency of very thin films to segregate into islands or 

decompose requires that they become integrated as a part of three-dimensional (3D) structure or 

stabilized by a supporting base with matching crystal lattices.3 Accordingly, 2D crystals of a single 

atomic plane were presumed not to exist and their growth was thought to be unfavorable, 

essentially because the growth implies high temperature and therefore thermal fluctuations, which 

are detrimental to 1D and 2D structures. The presumption continued until 2004 when the free-

standing graphene was unexpectedly isolated 1, 4 and confirmed after several follow-up 

experiments.5, 6 Since then, the model came into reality and 2D crystals could be obtained on top 

of non-crystalline substrates, in liquid suspension, and as suspended membranes.3 Before 

discussing the earlier work on graphene, it is useful to review the structure and properties of 
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graphite, the well-known graphene bulk counterpart. Graphite is a naturally occurring, abundant 

and low-cost mineral. It consists of parallel stacked sheets of graphene layers bonded together by 

weak van der Waals forces. The most two common types of graphite are the highly oriented 

pyroelectric graphite (HOPG) and Kish graphite. HOPG is synthetic graphite formed by cracking 

a hydrocarbon at high temperature and subsequent heat treatment that is often combined with high 

pressure. HOPG is highly oriented along the c-axis but less ordered in the in-plane layers. It has 

been used the most as host material for graphite intercalation compounds (GIC). Kish graphite is 

obtained by the crystallization of carbon from molten steel during steel manufacturing process. 

Typical Kish graphite exhibits much higher structural ordering than HOPG, but less ordering and 

chemical purity than natural single crystal flakes. 7 The layered morphology and the weak 

dispersion forces between adjacent sheets allow layers to move easily over one another, making 

graphite ideal for use in dry lubricants. Also its high electrical and thermal conductivity led to the 

use of graphite in electrodes and heating elements for industrial blast furnaces. Moreover, the high 

mechanical strength enabled its use in carbon fiber reinforced composites. Figure 1.1 shows the 

layered structure of graphite, which accounts for many of its physical properties.   

 

Figure 1-1  Lattice structure of graphite showing ABA stacking arrangement (modified from 8). 
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In graphitic layers, each carbon atom adopts three of the four outer energy level electrons 

to form strong covalent 𝜎 bonds to three neighbor carbons in the same basal plane. The resulting 

strong intraplanar interactions give rise to an extended stiff hexagonal lattice structure. The fourth 

valence electron on each carbon atom contributes to a delocalized system of electrons that is also 

a part of the chemical bonding. These delocalized electrons are free to move throughout the plane, 

so graphite conducts charge and thermal carriers to a greater extent along the basal planes of carbon 

atoms. The forces of interactions in graphite crystal are highly anisotropic in such a way that the 

binding forces within the basal planes (intralayer interactions) are much stronger than those at right 

angle to the basal planes (interlayer interactions). Extended planes in graphite are held by relatively 

weak attractive forces leading to weak interplanar interactions. The lack of covalent bonding at 

right angles to the plane and the relatively large interlayer spacing make the propagation of charge 

or thermal carriers along the c-direction extremely weak. Accordingly, the out-of-plane electrical 

and thermal conductivity are more than one-thousand times lower than the corresponding in-plane 

counterparts which makes the resistivity in a direction perpendicular to graphitic sheets much 

greater than parallel to the basal planes. As a result, the electrical conductivity is different where 

it ranges from insulating behavior in the c-axis direction to superconducting in the in-plane 

direction. 7 

As in metals, parallel electrical resistivity increases with the temperature because of the 

decreased electron mean free path and the increased electron-phonon interactions that take over 

the increase in the carrier density. However, the perpendicular electrical resistivity decreases 

slightly with increasing temperature, possibly because electrons can jump or tunnel from one plane 

to another due to increased thermal activation.9  While the inner symmetric 1s orbital in carbon is 

greatly bound with an energy that is far from the Fermi level, the four valence electrons 2s, 2px, 



 

6 

 

2py and 2pz have similar energies making their wavefunctions mix easily and facilitating 

hybridization. This feasibility of hybridization allows carbon to form structures with different 

geometries such as 3D, 2D, 1D and 0D galleries.10 Graphite, for example, exhibits sp2 type 

hybridization, where s, px, and py atomic orbitals on each carbon atoms hybridize to form strong 

sp2 covalent bonds. The remaining pz orbital overlaps with its three neighbors to form a band of 

filled π-orbitals (VB) and a band of empty π*-orbitals (CB).  

The comparable strength of electron affinity and ionization potential of graphite (4.6 eV) 

enable graphite to participate in reactions either as an electron donor or acceptor which enriches 

its chemistry in a great way.  The weak attractive force between successive layers in graphite 

allows the insertion of guest atoms, ions or molecules between the adjacent layers and graphite 

structures with such galleries are known as graphite intercalation compounds (GIC). These GIC 

are prepared by the incorporation of atomic or molecular layers of a different chemical species 

(intercalants) between layers in graphite (host). The strong intraplanar binding along with the weak 

interplanar binding causes the layers of graphite and intercalants to stay separate. Thus graphite 

layers in GIC retain the basic properties of pristine graphite and intercalate layers behave similarly 

to the parent intercalate material. Nevertheless, an expansion along the c-axis is observed due to 

the intercalation.7 Intercalation in this way allows tuning many physical properties of the host 

material over a vast range. For example, the intercalation of different chemical species with 

different densities allows tuning the charge carrier concentration in graphite and thus modulating 

the electrical or thermal conductivities. Since charge carriers have low mobility in intercalate 

layers, but extremely high mobility in graphite layers, increasing the concentration of donor or 

acceptor intercalates leads to a large increase in the in-plane conductivity due to the charge transfer 

from intercalates to π-electron system in graphite.7 Reagents that can be intercalated into graphite 
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include donor or acceptor species. Donor intercalants are typically K, Li, and Cs, whereas acceptor 

compounds are often based on Lewis acids such as Br2 and SO3 or strong Bronsted acids such as 

H2SO4 and HNO3. The probability of a given chemical species to intercalate depends on the 

chemical affinities and geometric constraints such as intercalant size or bonding distances.7 

1.4 Two dimensional graphene: the parent of sp2 carbon materials  

In the past few years, graphene has been profiled as a rapidly rising star on the horizon of 

materials science and condensed matter physics. Graphene is a flat single layer of sp2-hybridized 

carbon atoms tightly packed into a 2D honeycomb lattice. Since its first isolation, the status of 

graphene has changed from being an unexpected newcomer to a rising champion.3 The importance 

of graphene has become evident even though commercial products have not appeared. Graphene 

show electronic properties which are extremely remarkable where charge carriers can travel 

thousands of interatomic distances before they scatter.1, 4-6 In the extended carbon network of 2D 

graphene, adjacent carbon atoms are bonded together with strong covalent interactions and have 

in-plane nearest neighbor (ac-c) distances of 0.142 nm.11 The graphene monolayer can be viewed 

as the basic building block to all other sp2 graphitic materials or carbon allotropes. 3 As shown in 

Fig. 1.2, the 2D monolayer graphene is stacked to form 3D graphite, rolled into 1D buckytube or 

wrapped into 0D buckyball.    
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Figure 1-2 Single-layer graphene shown as a basic building block of 3D graphite, 1D buckytube and 

0D buckyball (modified from 3). 

1.5 Remarkable features of graphene  

The performance of graphene depends on the number of layers and the overall quality of 

the crystal lattice. Although most remarkable features that will be discussed here are inherent to 

monolayer graphene, they also still apply to bilayer and few layer graphene if the quality of the 

crystal structure is maintained. The long-range π conjugation in crystalline graphene allows charge 

carriers to travel thousands of interatomic distances at room temperature before they scatter, and 

such behavior features graphene with charge carrier mobility as high as 200,000 Cm2/V.s,  mainly 

because electron scattering mechanisms which often result from phonon interactions, lattice 

defects, or charge inhomogeneities are less pronounced. 12 Graphene supported on various 

substrates such as Si or SiO2 possesses ballistic transport of charge over submicron scales. On the 
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other hand, freely-suspended graphene shows a lower intrinsic electrical resistivity and presents a 

low density material that is highly conducting at room temperature.12   

Moreover, the charge carrier density in graphene can be tuned from electrons to hole charge 

carriers by electrochemical doping or applying an external voltage. 13 Another interesting feature 

of graphene is its transparency to radiation from UV to IR which makes graphene a potential 

candidate for use in the solar cell industry and for transparent electrodes. Compared to indium-tin-

oxide (ITO), which suffers from degradation and ion-migration, graphene is much more 

transparent for wavelengths larger than 1500 nm, and it possesses higher stability.13 Another 

remarkable feature is that monolayer graphene is a giant flat molecule that has two faces with no 

bulk in between, demonstrating an ultimate surface area that reaches 2630 m2/g.12 Also, graphene 

can adsorb and desorb various atoms, molecules, or ions making it potential candidate for 

application in chemical sensing. Adsorption of donor or acceptor species such as NO2, NH3, K, 

OH changes the charge carrier concentration leaving graphene highly conductive, while adsorption 

of ions such as H+, OH- (like in GO or single-sided graphene) introduces mid-gap or localized 

states that results in poorly conductive graphene.14, 15 Moreover, the robust atomic scaffold 

structure makes graphene intact during chemical reactions which accounts for its chemical 

stability, which enables the reversible chemical dressing up and down of graphene during 

engineered chemical processes. However, retaining these remarkable features of monolayer 

graphene remains a challenge. As a 2D crystal, graphene tends to increase its intrinsic stability by 

gentle crumbling in the third dimension. This behavior causes graphene to gain elastic energy and 

suppresses the thermal vibrations which are originally anomalously large in 2D resulting in total 

free energy minimization.12  
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1.6 Characterization of graphene flakes 

Characterization techniques that are typically used to verify the structure of graphene 

include optical microscopy, Raman spectroscopy, infrared (IR) spectrometry, UV-Vis 

spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and X-

ray photoelectron spectroscopy (XPS). In an ordinary optical microscope, graphene is visualized 

when placed on top of Si wafer with a specific SiO2 thickness, due to the interference-like contrast 

with respect to an empty wafer. Scanning probe microscopy is the most obvious choice for 

studying graphene topography and verification of crystallite thickness. The step height for 

successive layers in graphene (0.34 nm) lies well within the detection limits of modern atomic 

force microscopes (AFMs) making the technique extremely powerful in precise determination of 

crystallite thickness. In visualization of graphene with AFM, a graphene/solvent dispersion is 

deposited onto a substrate using spin-coating or drop-casting. The solvent is then allowed to dry 

very slowly leaving behind graphene layer. However, the existence of a space between the 

substrate and graphene sheet during the drying process makes the measurement of the actual 

thickness of graphene sheet challenging.  Nevertheless, reliable and accurate measurement of the 

thickness can be performed under AFM based on folded edges of graphene. Scanning tunneling 

microscopy (STM) is a second scanning probing technique that has been used to successfully 

compare the electronic topography of graphite and graphene.16  

Experimental Raman studies have played a critical role in studying the structure of all sp2 

carbon allotropes from 3D to 0D (namely graphite, graphene, carbon nanotubes, and fullerenes) 

and understanding the behavior of phonons and electrons in graphene.17 One can draw valuable 

information on vibrational and crystallographic characteristics, physical properties of electrons, 

electronic states and phonons and phonon energy dispersion from Raman spectra. Another 
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advantage is that the electronic structure of graphene is uniquely captured in its Raman spectrum 

and any changes in the electronic bands between single layer, bilayer and few layers graphene are 

reflected as Raman fingerprints allowing nondestructive identification of the number of graphene 

layers in a flake.18 This makes Raman spectroscopy the most powerful tool to probe the thickness 

of graphene crystal. The strength of the technique stems also from the nature of the signal. For 

instance, in resonance Raman spectroscopy the combination of the Raman process with an optical 

absorption from a lower state to a higher state or an emission from a higher state to a lower state 

results in significant enhancement in the Raman signal by factor of 103, which allows the 

observation of weak Raman signals from single layer graphene.17 

1.7 Graphene-based nanocomposite structures 

Recently, the syntheses and utilization of functional graphene-based composite materials 

have been extensively explored for many practical applications in various fields such as energy 

conversion, optical electronics, composites, electrode materials, batteries, transistors, solar cells, 

thin coatings, membranes, sensors and catalysis.19, 20 The extraordinary electron mobility among 

other unique features granted graphene great promise in nanoscale electronics, photonics and 

composite strutcres.21-23 For energy storage applications, graphene can be used as a base for 

supercapacitors, batteries, interconnects, and field emitters.24-26  

Functionalized graphene is also suitable in paper industry as a paper material 27 and as an 

excellent filler for functional nanocomposites.28, 29 Also because of its lightness and stiffness, 

graphene has shown promise in nanoelectrochemical systems.30 The carbon sp2 network in single 

and bilayer graphene exhibits a unique 2D electron transport that gives rise to strong conductivity, 

31, 32 making conductive graphene sheets and graphene-based films ideal for opteoelectronics.33-36  
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As potential transparent electrode materials, graphene films, for example, can by prepared 

by thermal annealing of graphene oxide (GO) deposited by dip-coating and then used as electrodes 

or anodes in dye-sensitized solar cells.  

The versatility of graphene extends to chemical sensing applications, and that is mainly 

due to the large surface-to-volume ratio of the 2D structure, which is essential for high sensitivity. 

Also, the unique electronic structure and the ambipolarity allows adsorption of either electron 

withdrawing or donating groups leading to chemical gating of the material.14, 37 Moreover, 

graphene can become a routine TEM accessory providing good imaging support for atomic-

resolution TEM, because it is a single crystal membrane, one atom-thick, has low atomic mass, is 

cheap and easy to deposit on grids.38  A number of studies showed that the potential of graphene 

in preparing dual or multicomponent functional composite materials. 39-45 Binary or dual functional 

component structures of graphene and a variety of secondary component such as small organic 

compounds, metals, metal compounds, insulating or conducting polymers, carbon nanotubes and 

fullerenes have been explored. These dual composites combine the excellent optical, thermal, 

electrical and mechanical properties of graphene with the abundant tunable functions of the 

secondary components. For example, various composite structures of graphene and polymers such 

as polyvinyl alcohol (PVA), polyacrylamide (PAM), poly(methylmethacrylate (PMMA) and 

polypropylene (PP) or small organic molecules such porphyrins and metalloporphyrins or metal 

nanostructures such as Au, Ag, Pd, Pt, Cu, Sn and Co have been explored.20  

Graphene–based composite materials are often prepared by blending chemically modified 

graphene with secondary components to form targeted composite structures. In most cases the 

main driving force that enables various organic or inorganic nanostructures to adsorb onto 

graphene is the hydrophobic and static interaction. In most of this work, the syntheses of composite 
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structures of graphene and various semiconductor or metallic nanostructures are achieved in 

single-step and one-pot procedures that allow simultaneous reduction of the starting graphene 

oxide (GO) and contemporary synthesis of the secondary nanoparticles. For instance, a facile and 

direct method to anchor CdSe semiconducting nanostructures onto reduced graphene oxide (RGO) 

surface was developed. 46 This is a new synthetic route that could be successfully extended to the 

synthesis of various hybrid architectures based on graphene.  

1.8 Inorganic nanostructures 

When moving from bulk material towards smaller and smaller aggregates reaching 

nanoscale dimensions, one begins to enter a new regime where particles start to exhibit dramatic 

changes in their photochemical, photophysical, photochromic, electronic and optical properties. 

That is, as size becomes smaller and smaller, a higher percentage of surface atoms are introduced 

resulting in many new size-dependent phenomena. In that regime, the finite size of the particle 

confines the spatial distribution of charge carriers into a restricted volume in all three dimensions 

and electrons inside the particle start to feel the volume limitation “walls” of the particles, resulting 

in quantized energy levels. 47 The ability to manipulate the physical and chemical attributes of 

these particles affords researchers the capability to rationally design and make good use of 

nanoparticles in a various fields such as miniaturized devices, light-emitting diodes (LED), 

photovoltaic, lasers, optical memory, drug delivery, biomedical fields, catalysis, energy 

conversion, among others.48   

Semiconductor nanocrystals or quantum dots (QDs) are highly fluorescent zero-

dimensional (0D) particles with radii smaller than the exciton Bohr radius (aB) of the respective 

bulk solid. QDs feature optical properties that can be readily customized by changing the size or 

composition of the particles.49 QDs combine the most ideal characteristics, such as multiple colors 
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and brightness, offered by fluorescent organic dyes or semiconductor LEDs. 50  Interestingly, the 

color of quantum dots - both in absorption and emission - can be modulated to any chosen 

wavelength by tuning the size, essentially due to the rise of the quantum confinement effect. It is 

known from elemental quantum mechanics that when electronic charge carriers (electrons or 

holes) are confined in a volume limited by potential barriers comparable or smaller than the 

deBroglie wavelength of the particle, their allowed energy states become  quantized with an 

increase in the effective band gap of the material.51 Consequently, the onset of the optical 

absorption spectra shift towards the high energy region as the size of the particles is decreased. 

Thus, semiconductor nanostructures of different sizes may offer optical properties that span the 

spectrum from ultraviolet to infrared.52  

Studying metallic nanoparticles attracts great interest because of their unusual chemical 

and physical properties that make them suitable for many technological applications in catalysis, 

electronics, optics, and biotechnology.  The capability of tuning the optical and electronic 

properties gradually by controlling the particle size and shape makes metallic nanostructures 

extremely unique systems. When the size of the metallic nanostructures, particularly the noble 

metals (i.e. Au and Ag nanoparticles) is reduced to less than the mean free path of the electron, 

they begin to exhibit a very strong optical absorption in the visible region (that is not present in 

the spectrum of the bulk metal) due to the collective excitation of the free electrons in the 

conduction band known as the local surface plasmon resonance (SPR).53 The position of the 

surface plasmon absorption peak depends mainly on the shape, size of the particle and the dielectric 

constant of the environment. For instance, the surface plasmon absorption of spherical Au 

nanoparticles feature only one absorption peak centered at ~ 520 nm due to transverse resonance. 

In case of Au nanorods splitting into transverse mode and longitudinal modes is observed. The 
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longitudinal plasmon band depends linearly on the aspect ratio of the nanorods. As a result the 

absorption spectrum of Au nanoparticles is tunable from the visible to mid IR regions depending 

on size and shape of the nanoparticles.  

With increased interests in magnetic nanoparticles and owing to their peculiar properties, 

iron oxide nanostructures of various compositions, sizes and shapes have attracted a considerable 

attention during the last decades and have become an active research field in the area of magnetism.  

The increasing attention in these materials as well as other composites is determined by the novel 

magnetic, electronic, optical and chemical properties, which are different from those of the bulk 

materials because of the extreme small sizes and the large specific surface areas. Magnetic 

materials offer many potential applications in electronics, optoelectronics, data storage industries, 

catalysis and biomedicine. From iron oxide nanostructures, magnetite has received a great deal of 

interest, primarily because of its ease of preparation, strong superparamagnetic behavior, and 

oxidative stability.54-63  

1.9 Statement of the problem  

Since the first isolation of free-standing graphene by micromechanical cleavage of bulk 

graphite in 2004 1, great efforts have been devoted to the development of reliable methods for 

synthesizing large quantities of graphene and graphene-based functional materials. The most 

significant challenge in these syntheses is overcoming the strong exfoliation energy associated 

with the π-stacked layers in graphite.64 Methods adopted to overcome such strong interlayer 

interactions to prepare isolated graphene include mechanical cleavage, substrate-based methods, 

ultrasonication-assisted direct exfoliation, bottom-up syntheses, and solution based synthetic 

approaches. In mechanical cleavage, high-quality graphene crystallites up to 100 µm in size can 

be obtained from bulk graphite by repeated peeling, a piece of graphite is rubbed on a piece of 
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regular Scotch® tape to produce carbon debris. The scotch tape with the debris is then pressed 

against a slab of SiO2 wafer (300 nm width). The debris adheres to the SiO2 wafer, and small 

crystallites of graphene can be identified on the top of the wafer using optical or confocal Raman 

microscope. The cleavage method is extremely laborious, and it yields samples sufficient only for 

laboratory investigations but not for a wide-scale processing or applications. Another difficulty in 

exfoliating a single layer stems from the challenge to overcome the van der Waals forces exactly 

between the first and second layers without disrupting any subsequent sheet.  

The synthesis of graphene with substrate-based methods, such as epitaxial growth or 

chemical vapor deposition, involves the growth of single layer in situ on a substrate that can be 

then located by STM and electron diffraction. In the Epitaxial growth of graphene, the electrically-

insulating SiC is heated-up at very high temperature (1000 oC) and in ultrahigh vacuum causing 

the uppermost Si atoms to flee and leave behind small islands of graphitized carbon atoms which 

rearrange into hexagonal graphene.65 These methods can give large-area graphene films up to 1 

cm2 that are compatible with the current complementary metal-oxide semiconductor (CMOS), but 

samples obtained are usually of non-uniform growth of several or few-layer graphene layers with 

an overall quality that is sensitive to the type of the substrate, and the entire process is somewhat 

complicated.  

Chemical vapor deposition (CVD) involves a transition metal substrate film, typically Cu 

or Ni, that is saturated with carbon by passing a hydrocarbon gas such as methane or ethylene, 

which decomposes at high temperature. When the substrate is cooled, the solubility of carbon 

atoms in metal film decreases, and a thin layer of carbon precipitates from the surface. The primary 

metallic substrate is then removed by chemical means.66 The challenge in preparing graphene by 

CVD is that the conditions after nucleation must be carefully controlled to promote primary crystal 
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growth to ensure a fine control over the thickness and to avoid seeding to prevent formation of 

secondary crystal/layer or grain boundaries.  

Graphene can be also obtained by the direct exfoliation of graphite layers using 

ultrasonication. In doing so, graphite is dispersed directly in an appropriate organic solvent, such 

as DMF, and ultrasonication provides the energy required for exfoliation that is balanced by the 

solvent-graphene interaction. Although stable dispersions of graphene crystallites in selected 

organic solvents can be achieved by repeated ultrasonication and centrifugation, it is still a 

challenge to increase the single-layer yield and the dispersion density.  

Graphene can be grown directly from organic precursors such as polyacyclic hydrocarbons, 

PAHs through bottom-up synthesis. Polyacyclic hydrocarbons (PAHs) are attractive, highly 

versatile, and can be substituted with a range of aliphatic chains to modify solubility, however the 

size limitation since increasing the molecular weight generally decreases the solubility and 

increases the occurrence of side reactions, the low yield and the non-uniform single layers still 

constitute some challenges to this method.  

Wet chemical or solution-based methods for production of graphene rely on generating 

colloidal suspensions of graphite, graphite derivative (mainly oxide), or graphite intercalation 

compounds, then the chemical reduction of these colloids. When considering criteria of a proficient 

synthetic route to graphene, four important factors should be kept in mind to ensure ease of 

integration: 1) the route should be scalable; 2) it should produce 2D crystal lattice of high quality 

to ensure highest charge carriers mobility; 3) it should provide fine control over crystallite 

thickness to ensure uniform device performance and 4) the process should be compatible with 

complementary metal-oxide semiconductor (CMOS) processing. Many of these ideals are met by 

the inexpensive and extensive oxidation of bulk natural graphite into GO and the subsequent 
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reduction back to RGO to restore the electronic conjugation and the conductivity. The chemical 

reduction of GO constitutes a promising alternative for preparation of graphene due to the 

feasibility of the process. Among chemical methods to prepare GO, Brodie, Staudenmaier, and 

Hummers methods are used the most. These methods involve the oxidation of graphite in presence 

of strong acids and oxidants. GO prepared from these methods has different extents of oxidation 

depending on the method, reaction conditions, and the graphite precursor.2 The prepared GO can 

be then easily exfoliated in water or polar organic solvents and reduced back to graphene. This 

GO-based preparation is massively scalable, and large quantities of graphene can be produced. 

The method is versatile and allows the reduction to be performed with strong reducing agents such 

as hydrazine, dimethylhydrazine, hydroquinone, or NaBH4, or thermally or using UV light.  

Moreover, this synthetic approach offers the possibility of obtaining large volume 

production of processable graphene sheets at a much lower cost relative to other methods. Also, 

the suitability for the controlled-density deposition of resulting graphene sheets as thin conductive 

films onto various solid and flexible substrates opens up the wide exploitation of this featured 

material.2, 67 Nevertheless, the wet chemical synthetic approach based on reduction of GO to 

graphene has some disadvantages. Although the sp2-bonded carbon networks are restored upon 

reduction of the oxidized regions in GO, the crystalline nature of these areas are not as perfect as 

that of intact graphene. The introduced disordered areas or defects can induce strain as well as in-

plane and out-of-plane deformation in the surrounding RGO and this in turn can affect the 

properties of the material and degrade the device performance.68 Although the electrical 

performance or conductivity of RGO is four orders of magnitude higher than that of the 

semiconducting GO prior to chemical reduction, 69 it still lag behind that of pristine graphene by a 

factor of 10-100, 70 and this is roughly because of the residual oxygen-containing functional groups 
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that tend to remain even after a strong reduction. As demonstrated by Wallace et al., 2 the reduction 

of carboxylic acid groups with hydrazine is unlikely to occur under the given reaction conditions, 

and these groups are confirmed to remain after reduction of GO. Accordingly, the surface of 

graphene sheets still be negatively charged and an electrostatic repulsion mechanism could be used 

to form well-dispersed graphene colloids under controlled pH and concentrations.2  

Another consequence of the reduction of GO to RGO is that the removal of oxygenated 

groups causes the RGO sheet to become less hydrophilic and quickly aggregate in solution. 

Nevertheless, less hydrophilic RGO can be stabilized in a solution using polymers or surfactants, 

via decoration with small organic molecules or nanoparticles, or  by raising the pH during 

reduction to form charge-stabilized sheets and form colloidal dispersions.11 Also, during reduction 

it might be difficult to remove all oxygen-containing functional groups so one may end up with a 

graphene that is not the same is the pristine and which contains a significant amount of oxygen, 

and possibly, significant amount of defects. These remnant oxygen-containing functional groups 

of RGO can enable the subsequent in situ formation of nanostructures by acting as anchor sites on 

the surface and the edges of the non-fully reduced graphene oxide sheet.71 
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CHAPTER 2 Characterization Techniques 

  

Characterization of nanostructured materials and composites requires studying the size, 

shape, morphology, composition, electronic, magnetic and optical properties, among others. To 

achieve this, standard techniques and characterization tools such as UV-Vis spectrophotometry, 

photoluminescence spectroscopy, transmission and scanning electron microscopy, X-ray 

diffractometry and photoelectron spectroscopy, Raman and IR spectrometry in addition to 

vibrating sample magnetometry are typically used. In this chapter, the experimental methods used 

for characterization of our graphene-based nanostructured materials are described.           

2.1 UV-Vis absorption and photoluminescence spectroscopy  

UV-Vis absorption spectroscopy involves the measurement of the attenuation of 

wavelengths from 200-900 nm of light beam after it passes through an absorbing medium. The 

measurement of absorption spectra of semiconductor and metallic nanostructures can provide 

valuable information about size and shape of the nanocrystals. In case of semiconductor 

nanostructures, electronic absorption is directly related to the band-gab, which is characteristic of 

the materials. Semiconductor nanocrystals of different compositions or sizes absorb radiation at 

different regions in the UV-Vis range. For metallic nanostructures, UV-Vis measurements are 

particularly useful in determining size and shape. Moreover, UV-vis spectroscopy provides a tool 

for tracing growth kinetics of both semiconductor and metallic nanoparticles. It is also an important 

tool for obtaining valuable information about the electronic structure of graphene and GO.  
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Photoluminescence spectroscopy is a powerful technique for studying the electronic 

properties of semiconductor nanocrystals. It provides information about quality, defects, impurity 

concentrations and bandgaps. When semiconductor nanocrystals are excited with light photons of 

energy greater than that of the band gap, an electron is elevated to conduction band leaving behind 

a hole in the valence band. Upon electron-hole recombination, a photon of an energy characteristic 

to the band gap is emitted. Other useful information about the charge or energy transfer between 

semiconductor nanocrystals and graphene, for example, can be also obtained from 

photoluminescence studies.  

In this work, UV-Vis absorbance spectra were recorded using HP-8453 spectrophotometer. 

Diluted suspensions of test samples were placed in 1 cm UV-quartz cuvette and absorption spectra 

were recorded within the appropriate scan range and using the pure respective solvent as a 

reference. Photoluminescence spectra of diluted suspension were measured using Varian (CARY) 

spectrofluorometer equipped with xenon lamp as an exciting source. Both excitation and emission 

slits were set at 5 nm and the excitation wavelength was chosen according to the absorption 

characteristics.  

2.2 Transmission and scanning electron microscopy 

Electron microscopes utilize electrons which have short wavelengths and thus allow 

observation of matters with atomic resolution. The two microscopy techniques adopted here are 

the transmission electron microscopy (TEM) and the scanning electron microscopy (SEM). Both 

techniques provide valuable means to acquire morphological, crystallographic and surface 

topographic information. In TEM, electron shots are sent with high acceleration voltage through 

thin layered-sample and the changes associated with transmitted beam are imaged. Direct 



 

22 

 

information about size, shape and morphology can be obtained from the difference in contrast of 

the sample and the background.  

In SEM the surface of an object is scanned by measuring electrons scattered back from 

scanning electron beam. SEM can produce images of the surface of the sample, yielding 3D 

appearance that helps identifying surface topography. The spatial resolution of a SEM image 

depends on the size of the electron spot, which in turn depends on both the wavelength and the 

magneto-electro-optical system that generates the scanning beam. Unlike TEM, the SEM 

resolution is not high enough to image atomic features since both spot size and interaction volume 

could be larger than the interatomic distances.72 Nevertheless, the ability to image relatively large 

sample areas and bulk solids is an advantage of SEM over TEM.  

Energy dispersive X-ray spectroscopy (EDAX) was used for elemental analysis of some 

composite structures. The technique is based on the fact that every element has a unique atomic 

structure which makes different atomic structures exhibit different X-ray characteristics. In EDAX 

the incident electron beam excite an electron from a low-energy inner shell, resulting in its ejection 

and formation of a hole. An electron from a higher-energy shell then fills the hole and the excess 

energy is emitted as X-rays which are then analyzed by energy-dispersive spectrometer.   

In this work, TEM studies were conducted on Joel JEM-1230 electron microscope operated 

at 120 kV equipped with Gatan UltraScan 4000SP 4K × 4K CCD camera. Samples for TEM were 

prepared by placing a droplet of colloid suspension in respective solvent on a Formvar carbon-

coated, 300-mesh copper grid (Ted Pella) and allowing them to evaporate in air at ambient 

conditions. Size distribution and average size were determined using imageJ analysis software 

package. SEM, STEM and EDAX measurements were carried out using a Quantum DS-130S dual 

stage electron microscope.   
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2.3 Powder X-ray diffraction (XRD) 

X-ray diffractometry (XRD) is the most essential tool to study and evaluate the crystal 

structure of a material. The powder XRD measurements are based on the well-known Bragg’s law 

(𝜆 = 2𝑑 sin 𝜃). it is generally accepted that XRD reflection peaks of nancorystalline solids are 

broader than those of bulk counterpart solids. In our work, the X-ray diffraction (XRD) patterns 

of the powder samples were measured at room temperature with a standard X’Pert Philips 

Materials Research diffractometer with Cu Kα1 radiation. The database used for the identification 

of crystal structures of materials investigated in this work is the Joint Committee on Powder 

Diffraction Standards-International Center for Diffraction Data (JCPDS-ICCDD) system. In some 

instances, the average crystallite size was evaluated from diffraction patterns using Sherrer’s 

formula and was compared to that obtained from TEM analysis. Lattice constants were calculated 

from XRD peaks using typical formulas. 

2.4 X-ray photoelectron spectroscopy (XPS) 

Tailoring the properties of materials requires an effective understanding of how a solid or 

a liquid interacts with its surroundings and how it is perceived by the surrounding environment. 

This in turn is defined by the outer 1-10 nm region of any solid substrate or liquid material. Often 

cases, the surface layer in a given material is different from the underlying bulk both chemically 

(composition or types of atoms) and structurally (bond angles or lengths). Accordingly, the surface 

elemental composition and speciation (chemical environment) need to be defined in an effective 

manner.73 Among the experimental spectroscopic techniques that provide electronic information 

about atoms, molecules, ions, compounds and solid surfaces by measuring the kinetic energy of 

electrons ejected from investigated materials are surface analytical tools such as X-ray 
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photoelectron spectroscopy (XPS, formerly known as electron spectroscopy for chemical analysis, 

ESCA), UV photoelectron spectroscopy (UPS) and Auger electron spectroscopy (AUS).  

In UPS UV radiation is employed to investigate valence/outer-shell levels and thus valence 

bands and changes in Fermi levels of materials can be studied. XPS uses soft X-rays (200-2000 

eV) to examine core/inner-shell levels. XPS in particular is an extremely powerful analytical tool 

that identifies elemental composition, chemical state, empirical formula and electronic states of 

the elements within the outer 1-10 nm region of any solid surface, down to 0.1 atomic %.73 Spectra 

are obtained by bombarding a given sample with a beam of Al or Mg X-rays and simultaneously 

measuring the kinetic energy and the number of electrons that escape from the top surface (1-10 

nm) of the sample.  The technique allows revealing the speciation or the chemical environment 

with minimal sample preparation, easy analysis, surface specificity (<10 nm) and high sensitivity 

(>0.05 atomic %).73  

Photoelectron emission is a one-step process in which an electron initially bound to an 

atom/ion is ejected by a photon. Since a photon is a package of energy, chargeless and massless 

(zero rest mass) and an electron is charged with a rest mass, the photon–electron interaction 

involves an annihilated complete energy transfer from the impacting photon to the electron. When 

initiating photon energy is high enough, this causes ejection of the electron from the atom/ion or 

solid surface. The ejected electron will have a kinetic energy (K.E.XPS) and this kinetic energy is 

the quantity that is measured in XPS. However, when constructing the energy spectrum, derived 

binding energy (B.E.XPS) which is specific to a certain element in a certain environment is used 

instead of the kinetic energy 73. Apparently, the K.E.XPS is dependent on initiating X-ray photon 

energy (𝑬𝑷𝒉), whereas B.E.XPS is not, according to Eq. 2.1, where 𝜙𝑋𝑃𝑆 is the work function of 
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the instrument (the minimum energy required to remove an electron from the instrument in contact 

with a conducting material).    

𝑲. 𝑬.𝑿𝑷𝑺 =  𝑬𝑷𝒉 − 𝝓𝑿𝑷𝑺 −  𝑩. 𝑬.𝑿𝑷𝑺                        Eq. 2.1 

The B.E. of an electron is defined by the attraction between the positively charged protons 

in nucleus and the negatively charged electron. The fact that B.E. is specific to a certain element 

in a certain environment arises because B.E. is function of i) the number of protons in the nucleus; 

ii) the distance between core electrons and their nuclei; iii) the density of electron around the 

respective atom/ion, molecule or solid (bonding type); and iv) the electron-electron interactions 

present. Although X-rays can penetrate micrometers below the surface, an electron has a finite 

flight path (<10 nm) within a solid before it loses some fraction of its energy. Accordingly, for 

almost all photoelectrons ejected from atoms/ions situated deeper than 10 nm below the surface, 

energy is lost and quenched. Consequently, all signals from underlying substrate will disappear 

within the spectral background and only those signals arising from the surface region remain 

resulting in observed spectral peaks. This phenomenon grants XPS higher sensitivity and 

specificity to separate surface signals relative to signals from underlying region (bulk) 73.  

The sensitivity of XPS is greatly affected by the vacuum extent since it controls the density 

of molecules in gas phase, controls flight path of any ejected photoelectron, redistricts passage of 

an electron from sample to detector and decreases contaminant overlays within analysis timescales.  

For the work described herein, XPS measurements were performed on a Thermo Fisher Scientific 

ESCALAB 250 using a monochromatic Al Kα X-ray of ~ 1.4 keV.   
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2.5 Vibrating sample magnetometry (VSM) 

Characterization of magnetic properties of nanostructures is generally carried out by 

measuring the magnetization curves using a vibrating sample magnetometer (VSM). In transverse-

coil configuration VSM, the vibration (z) axis is perpendicular to the field applied by the 

electromagnet, and the pickup coils are arranged to sense the moment along the field direction. 

When a material is placed within a uniform magnetic field and made to undergo sinusoidal motion 

(i.e. mechanically vibrated), there is some magnetic flux change. This induces a voltage in the 

pick-up coils (Hall sensor), which is proportional to the magnetic moment of the sample. With 

VSM one can obtain magnetization versus field or versus temperature data, and from these curves 

information about size and magnetic behavior can be drawn. In studying ferromagnetic materials, 

for example, one observes a decrease in transition temperature with a decrease in particle size and 

when the particle size is very small (<10–15 nm), the particles become superparamagnetic. 

Magnetization curves reported herein were acquired using cryogen-free cryocooler-based 3-tesla 

VSM – VersaLab that has a temperature range of 50 to 400 K.   

2.6 Raman spectroscopy  

In Raman spectroscopy, light scattering is employed to study molecular vibrations. Raman 

spectroscopy complements IR absorption spectroscopy. A molecular vibration is only IR-active if 

there is a change in the dipole moment during the vibration and is Raman active only if there is a 

change in polarizability or distortion of the electron cloud around the vibrating molecule. When a 

bond shortens or lengthens during vibration, the distortion becomes harder or easier, resulting in a 

change in polarizability. Although molecular vibrations in homonuclear diatomic molecules with 

no dipole moment such as Cl2 are IR-inactive, the bond stretch leads to change in polarizability 

and this makes vibrations Raman-active.  
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Raman spectroscopy is based on the inelastic scattering of light by matter. It can probe the 

structure of gases, liquids and amorphous or crystalline solids. When a monochromatic beam of 

radiation is passed from an intense excitation laser source through a sample, most of the radiation 

is scattered by molecules in the sample. If the collision between incident photons and molecules 

is elastic with only slight interaction and no energy loss, the scattered radiation is of the same 

frequency as the source radiation, and is known as Rayleigh scattering. If the collision is inelastic, 

photons are scattered with a slight shift in wavelength, frequency or energy. Scattered photons of 

energy less than the excitation source give rise to Raman Stoke lines and those with more energy 

give rise to Raman Anti-Stoke lines. A sketch of different scattering processes involved in laser-

matter interaction is presented in Fig. 2.1. A typical Raman spectrum is a plot of the intensity of 

the inelastically scattered light as a function of the shift of the radiation energy in wavenumber 

where each peak in the spectrum relates to one or more vibration modes.  

 

Figure 2-1 Laser interactions with matte showing elastic and inelastic scattering processes. 
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Unlike photon energy absorption, the process of Stokes scattering is not quantized and the 

molecule is thought of as existing in an imaginary state of energy between the ground and the first 

electronic excited state, as shown in Fig. 2.2. It should be noted that E corresponds to the 

frequency of IR vibration and if it is active there would be a peak in the IR spectrum at frequency 

equal to E. Also Raman shifts are completely independent of the wavelength of the excitation 

source and normal Raman spectra are obtained when UV, visible or NIR source is used, except for 

shift due to instrumental variation or when resonance condition applies. Because of the low 

intensity of the Anti-Stokes Raman lines, they are less important to analytical chemists except 

when the sample is highly fluorescent, since fluorescence interferes with Anti-Stokes lines to a 

much lesser extent than with Stokes lines. When a scattering system has an absorption band close 

to the excitation frequency, as it is the case in resonance Raman, the signal intensity becomes 

several orders of magnitude higher than that of normal Raman scattering.  
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Figure 2-2 Scheme of Stokes and Anti-Stokes transitions from a virtual state. 

2.6.1 Dispersive and Fourier transform Raman instrumentation  

A typical Raman spectrometer consists of a light source, sample holder, a wavelength 

selector or an interferometer and a detector. Since the Raman signal is directly proportional to the 

power of the light source, laser which is both monochromatic and very intense is an ideal desirable 

light source for Raman spectroscopy. Lasers used for Raman spectroscopy include Nd/YAG laser 

(1064 nm), HeNe laser (633 nm), Ar ion laser (488 or 457.9 nm) and Kr ion laser (531 nm). The 

intensity of the Raman signal is directly proportional to the fourth power of the frequency and 

inversely proportional to the fourth power of the wavelength and this makes green and blue lasers 
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better than red lasers for improved signal, however, they posses higher probabilities of 

fluorescence and photobleaching or photodecomposition. In dispersive Raman spectrometer 

shown in Fig. 2.3, a monochromator device (grating) is used to separate the Raman scattered light 

into its constituent frequencies which are directed onto CCD detector. Dispersive Rama 

spectrometer often employs visible lasers such as 473 nm, 532 nm, 632, and 780 nm as radiation 

sources and sensitive Si devices as detectors.    

 

Figure 2-3 Basic components of a dispersive Raman spectrometer. 

FT Raman spectrometer generally uses a NIR laser source (Nd/YAG, 1064 nm) and a 

Michelson interferometer, as depicted in Fig. 2.4. FT Raman spectrometer has many of the 

advantages of FT-IR such as high light throughout, simultaneous measurement of all wavelengths, 

the increased S/N ratio by averaging and the high precision in wavelength. Also the use of the NIR 

laser causes dramatic reduction in background fluorescence. However, since the 1064 nm laser 

line is very close to the IR absorption band of water, aqueous solutions cannot be studied as easily 

as they can be with visible laser lines. Also since the Raman intensity is inversely proportional to 

the fourth power of the wavelength, Raman signal is weak. Instead of CCD detectors, NIR 
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detectors such as InGaAs are used. A Michelson interferometer, like in IR spectroscopy, converts 

the Raman signal into an interferogram, allowing the acquirement of the entire spectrum 

simultaneously. 

 

Figure 2-4  Typical components of a FT-Raman spectrometer. 

2.6.2 Advantages and applications of Raman spectroscopy  

Raman measurements are advantageous in a number of ways. Because the laser beam can 

be focused into small spot, very small specimens (few µgs or µls) can be analyzed by Raman 

spectroscopy when placed at the focal point of an intense laser beam. Nondestructive analysis of 

liquid and solid samples can be conducted in glass capillary or NMR tubes with minimal or no 

sample preparation. Because water is a very weak Raman scatterer, aqueous solution can be 

analyzed with minimal water interference. Gases do not scatter radiation efficiently and so 

contribution to the Raman signal from atmospheric CO2 or H2O in air in the optical path is 

insignificant compared to IR absorption. Raman spectroscopy is useful for qualitative and 

quantitative analysis of organic and inorganic compounds.  
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In normal Raman spectroscopy, a monochromatic light of a frequency that cannot be 

absorbed by the sample is used. When a laser excitation line that falls within an excited state is 

used, the intensity of some Raman lines increases by great factor (103-106) over the intensity in 

normal Raman spectroscopy, facilitating the analysis of low concentration analytes. This 

resonance effect leads to the powerful resonance Raman spectroscopy (RRS), providing the 

molecule possess a chromophore that can absorb UV or visible radiation. Tunable dye lasers that 

generate wavelengths over the UV-Vis range of 200-800 nm are often used. A schematic of 

processes involved in resonance Raman is shown in Fig. 2.5.  

In this work two different Raman set-ups were used to study Raman features of prepared 

nanocomposites. In some instances, Raman spectra were measured at room temperature using a 

457.9 nm Ar ion laser (Spectra-Physics model 2025). The samples were pressed into a depression 

at the end of a 3 mm diameter stainless steel rod, held at a 30 degree angle in the path of the laser 

beam. The laser beam was focused to a 0.10 mm diameter spot on the sample with a laser power 

of 1 mW. The Raman scattered light was collected by a Canon 50 mm f/0.95 camera lens. The 

detector was a Princeton Instruments 1340 x 400 liquid nitrogen CCD detector, attached to a Spex 

model 1870 0.5 meter single spectrograph with interchangeable 1200 and 600 lines/mm 

holographic gratings (Jobin-Yvon). Though the holographic gratings provided high 

discrimination, Schott and Corning glass cut-off filters were used to provide additional filtering of 

reflected laser light, when necessary.  

In other instances, Raman spectra were recorded using Thermo Scientific DXR SmartRaman 

Spectrometer with 532 nm excitation laser source. The laser power was 5 mW, the spectral 

resolution was ~ 4 cm-1 and the spectrum acquisition consisted of 100 accumulations with a total 

acquisition time of 15 min.  
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Figure 2-5 A schematic of resonance Raman process 

2.6.3 Fourier-Transform IR spectrometry  

Molecules with covalent bonds may absorb IR radiation and the absorption is quantized 

where only certain IR frequencies are absorbed. The energy associated with IR radiation is 

sufficient to cause molecules to rotate and vibrate when possible and the absorbing molecule is 

elevated to a higher energy state. The energy needed to cause an electron transition to rotational 

level is smaller than energy needed to cause transition to vibrational level. When the IR energy is 

between 1-100 µm (high), the molecule will be excited to higher vibrational state and when the 

energy is greater than 100 µm (weaker), the molecule is excited to higher rotational states in the 

gas phase. Since each vibration level has multiple rotational levels associated with it, IR spectrum 

of a liquid or solid sample consists of a broad vibrational absorption bands and not narrow lines.  

When an IR radiation is passed through a sample, some of the radiation is absorbed by the 

sample and some passes through. The resulting spectrum represents the molecular absorption and 

transmission, creating a molecular fingerprint of the sample with absorption peaks that correspond 
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to the frequencies of vibration between the bonds of the atoms making up the material. A simple 

IR spectrometer layout is depicted in Fig. 2.6. A beam of IR energy radiated from the source 

(usually a glowing black-body) is passed through an aperture which controls the amount of energy 

delivered to the sample/detector. When the beam enters the interferometer, spectral encoding takes 

place and the resulting interferogram leaves the interferometer as a signal. In the sample 

compartment, certain IR frequencies which are unique to the test sample are absorbed. Finally the 

transmitted beam passes to the detector where a unique interferogram signal is measured. The 

signal measured is digitized and sent to the computer. After the Fourier transformation process, a 

final IR frequency spectrum is generated.       

 

Figure 2-6 Schematic representation of a typical FT-IR spectrometer layout (adapted from 74). 
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Typical components of a FTIR spectrometer include IR source (usually a glowing black-

body source that emits radiation through an aperture which controls the amount of energy delivered 

to the sample/detector), interferometer (composed of beam splitter, fixed and moving mirror), laser 

for aligning the mirrors and for internal calibration and a detector. When two beams of light of the 

same wavelength are brought together in phase they reinforce each together and continue down 

the light. When the two beams are out of phase destructive interference takes place. FT 

spectrometers are based on Michelson interferometer where passing radiation is separated by a 

beam splitter into two perpendicular beams of approximate intensity. The two beams are then 

reflected by mirror back to the beam splitter when they recombine and are reflected together onto 

the detector one of the mirrors is fixed in position and the other mirror can move toward or way 

from the beam splitter changing the path length of that arm. As the moving mirror is moved the 

signal falling on the detector is a cosine wave with the usual maxima and minima when plotted 

against the travel of the mirror. Since real IR sources are polychromatic, each wavelength will 

generate a unique wave the signal at detector is a result of the summation of the all cosine waves. 

The interferogram holds spectral info from the sample in a time domain (intensity vs time based 

on the speed of the moving mirror). Now the contribution from each wavelength can be obtained 

if the unique cosine waves can be extracted from interferogram when these individual wavelengths 

are reconstructed give spectrum infrequency domain (usual spectrum). To convert the time domain 

spectrum into frequency domain spectrum use Fourier transform. It expresses mathematical 

function of time as function of frequency.  

FTIR measurements are practically advantageous, limitless, extremely more accurate and 

reproducible compared to those measured with dispersive technique. Some major advantages are 

the fast speed, improved sensitivity, mechanical simplicity and internal calibration. i) Speed: since 
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all frequencies are measured simultaneously (sample is exposed to all source wavelengths at once 

and all wavelengths are measured simultaneously in less than a second), FTIR measurements can 

increase scan speed and decrease collection rate from several minutes to few seconds (many 

spectra from sample can be collected in a very short time, averaged added electronically improved 

s/n increased sensitivity); ii) Sensitivity: the fast measurement in FTIR allows the co-addition of 

several scans together which ratio out the random noise and improves sensitivity dramatically. The 

improved sensitivity permits analysis and detection of even the lowest of unknown contaminants; 

iii) Mechanical simplicity: FTIR spectrometer features little possibility of mechanical breakdown 

since only a single optical part (mirror) is moving in the interferometer; iv) Internally calibration: 

modern FTIR spectrometers employ a He-Ne laser as an internal self-calibrating standard, 

eliminating the need to be calibrated by the user.     

The model of the FTIR spectrometer utilized in this work is Nicolet 6700 FTIR. As a first 

step a background IR spectrum due to the absorption by optical elements of the instrument itself 

and the gaseous species (CO2 and/or H2O) in ambient air is measured with no sample in the beam 

and then compared to the measurement with the sample in the beam to determine the percent 

transmittance. Next, an IR spectrum that contains absorption bands from the sample as well as the 

background is collected. Now the ratio between the sample spectrum and the background spectrum 

gives the adjusted spectrum of the sample. In this way, when the background is measured and 

removed, the resulting spectral features in IR spectrum can be ascribed strictly to the test samplle. 

In all IR spectra in this work, the %transmittance is plotted versus wavenumber in cm-1 and 

frequencies were compared to values from literature to determine the possible functional groups 

responsible for absorption.        
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CHAPTER 3 Shape-Controlled CdSe-Graphene Nanocomposites: 

Photoluminescence Quenching by Graphene 

 

3.1 Overview  

We have developed a facile, fast, and scalable microwave irradiation method for the 

synthesis of graphene and CdSe nanocrystals of controlled size, shape, and crystalline structure 

dispersed on graphene sheets. The reduction of GO into graphene takes place in DMSO within two 

minutes of microwave irradiation as opposed to 12 hrs of conventional thermal heating at 180 oC. 

The method allows the simultaneous reduction of GO and the nucleation and growth of CdSe 

nanocrystals using a variety of capping agents. Cubic and hexagonal CdSe nanocrystals with an 

average size of 3-4 and 5-7 nm, respectively have been prepared by the proper choice of the 

capping agent within a few minutes of microwave irradiation. High quality, nearly monodisperse 

CdSe nanocrystals have been supported on graphene with no evidence for aggregation. Direct 

evidence is presented for the efficient quenching of photoluminescence from the CdSe 

nanocrystals by graphene. The results provide a new approach for exploring the size-tunable 

optical properties of CdSe nanocrystals supported on graphene that could have important 

implications for energy conversion applications such as photovoltaic cells where CdSe quantum 

dots, the light-harvesting material, are supported on the highly conducting flexible graphene 

electrodes.  
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3.2 Introduction  

Graphene, a two-dimensional nanometer-thick highly conducting and thermally stable 

material, has sparked great excitement in the fields of chemistry, physics and materials sciences 

and continues to attract extensive interest for fundamental scientific inquiry and for the prospects 

of potential applications and new advanced technologies. 3, 5, 75 This unusual activity is attributed 

to the extraordinary properties of this unique material which include the highest intrinsic carrier 

mobility at room temperature of all known materials and very high mechanical strength and 

thermal stability. 1, 3-6, 12, 23, 76  Graphene promises a diverse range of potential applications in many 

technological fields such as nanocomposite materials, nanoscale electronics, sensors, batteries, 

supercapacitors, hydrogen storage, and quantum dots. 1-3, 35, 77-79 

Although graphite and GO have been known to be in existence since the last century, 80 it 

is only recently that graphene has been prepared and characterized in a systematic way. 1, 4-6 

Mechanical cleavage of ordinary graphite, the process originally led to a discovery of free-standing 

graphene, 1 is the technique currently used in most experimental studies of graphene. However, 

the difficulty of this method to scale-up and produce graphene sheets in large quantities for 

applications has led to the rise of chemical conversion of graphite as an efficient and low cost 

approach for bulk production of graphene and graphene based composite materials. 2  

Several solution-based routes of preparation of graphene has been demonstrated including 

the chemical oxidation of graphite to hydrophilic GO, 80 which can be readily exfoliated as 

individual GO sheets by ultrasonication. As reported by Ruoff and co-workers, 81 the electrically-

insulating GO can be converted back to conducting graphene by chemical reduction with hydrazine 

hydrate for example. However, hydrazine is highly toxic and potentially explosive 12 and its use 



 

39 

 

should be minimized or even eliminated. Because of the fact that most unique properties of 

graphene are associated mainly with individual sheets, prevention of aggregation and keeping 

sheets individually separated is of particular importance. The tendency of graphene sheet to form 

irreversible aggregates or even to restack forming graphite through van der Waals interactions has 

been a major obstacle to exploiting most proposed applications. 2 This challenge has been 

encountered in so many efforts through either attachment of polymers onto the sheets or chemical 

reduction and decoration with small molecules and nanoparticles. 45, 79, 81-86 Initial efforts to support 

metallic and semiconductor nanoparticles on carbon structures and graphene have been already 

reported. 83, 87-91 A one step method to deposit CdS nanocrystals on graphene sheets in dimethyl 

sulfoxide (DMSO) has been demonstrated by Aoneng Cao et al. 91 In our quest to further explore 

the supporting of semiconductor nanocrystals on graphene, we adopted the most readily available 

and least expensive carbon material, ordinary graphite, as a source for the synthesis of graphene 

sheets, and we decorated these graphene sheets with the first QD system to be successfully 

prepared with extremely high quality and also the first system that has been extensively studied 

and understood in much detail, CdSe quantum dots. Controlled syntheses of cubic and hexagonal 

CdSe crystalline phases were successfully achieved. The entire synthesis was conducted in a facile 

way so that CdSe nanocrystals were synthesized and simultaneously deposited on the graphene 

sheets which were obtained by DMSO-reduction of GO upon MWI. 

The chemical reduction of GO is the most widely applied technique used for preparing 

RGO. Various effective organic and inorganic reducing agents such hydrazine monohydrate, 

dimethylhydrazine, phenylhydrazine, strong alkaline solutions such as ammonia and potassium 

hydroxide, sodium borohydride, hydroquinone, high-temperature alcohol vapors, among others 

have been explored for the chemical and solvothermal reduction and removal of oxygen-
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containing functional groups of GO. Upon such treatments, most of the oxygenated groups are 

eliminated from GO and the π-electron conjugation is partially restored within the aromatic system 

of graphite. As a result, the π-stacking interaction and hydrophobic characters are increased 

causing RGO sheets to precipitate from the reaction mixture. 20 The use of hydrazine and its 

derivatives as reducing agents has several disadvantages. They exert potential hazard to the 

environment and personnel and are highly flammable and corrosive. In addition, they are 

expensive and residual traces may alter the performance of RGO in devices. To avoid using 

hydrazine, we developed a solvothermal reduction of GO in polar organic solvent, 

dimethylsulfooxide (DMSO). The resulting RGO can be dispersed in polar organic solvents such 

as DMSO and DMF with a concentration of 0.1 mg/ml and can be filtered into shiny black films. 

The combination of highest carrier mobility, thermal, chemical and mechanical stability of 

graphene with the size-tunable properties of metal and semiconductor nanocrystals offers many 

interesting applications in a wide range of fields including heterogeneous catalysis, 

nanoelectronics and devices. 67, 78, 92, 93  Specifically, semiconductor nanocrystals of controlled size 

and shape assembled on the surface of graphene are expected to play major roles in the 

development of new generation nanostructured solar cells, fuel cells, light emitting diodes, lasers, 

sensors, and novel energy conversion devices. 45, 91, 94-96 

The study of the zero-dimensional CdSe quantum dots deposited on two-dimensional 

graphene is scientifically intriguing for understanding the interaction between excited 

semiconductor nanocrystals and graphene. 45, 91, 94-96 CdSe quantum dots are model systems for 

studying quantum size effects, and they have provided many textbooks with examples of the size- 

and shape-tunable structural, electronic and optical properties of semiconductor nanocrystals. 97-99 

From a practical point of view, the size-tunable optical properties of CdSe nanocrystals coupled 
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with the extremely high carrier mobility of graphene present an ideal system for energy conversion 

applications such as photovoltaic cells where CdSe quantum dots, the light-harvesting material, 

are supported on the highly conducting flexible graphene electrodes. 100, 101 Fast electron transfer 

from the photoexcited CdSe nanocrystals to graphene could result in high carrier transport through 

the nanocrystals and efficient charge collection at the graphene electrodes. However, resonant 

energy transfer can also take place from the excited CdSe quantum dots exciting electron-hole 

pairs in graphene. Brus and co-workers have recently demonstrated efficient energy transfer from 

individual CdSe/ZnS nanocrystals to single- and few-layer graphene films. 96 They suggested that 

resonant energy transfer is much faster than photoexcited electron transfer due to the weak 

electronic coupling between the semiconductor nanocrystals and graphene. Very recently, RGO 

decorated with CdSe nanoparticles have been prepared by a two-step process where RGO 

(prepared separately by the hydrazine/ammonia reduction of GO for 24 hrs) was added into the 

reaction solution during the synthesis of the CdSe nanoparticles. 102 Although CdSe-RGO 

nanocomposites produced by these processes show enhanced photoresponse over pure CdSe 

nanoparticles and bare RGO films, definitive evidence of GO reduction is questionable based on 

the reported XPS spectra which indicate significant presence of the epoxy/ether, C=O and C(O)O 

functional groups in GO. 102  

In this work, 46 we present a facile, fast, and scalable one-step, one-pot microwave 

synthesis of phase-controlled small CdSe nanocrystals supported on highly RGO sheets. The main 

feature of the method reported here is the simultaneous efficient reduction of GO and the controlled 

synthesis of phase-selected CdSe nanocrystals on the RGO sheets within a few minutes of 

microwave irradiation. Through ligand-controlled synthesis, the reported method allows the 

synthesis of cubic or hexagonal CdSe nanocrystals with an average size of 2-3 or 4-7 nm, 
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respectively, well-dispersed on the surface of the chemically converted graphene sheets. We also 

report on the efficient quenching of the CdSe photoluminescence in solution by graphene which 

could have important implications for the separation of the photogenerated electrons and holes in 

the CdSe nanocrystals and the possible transfer of these carriers to the graphene sheets 46.  

3.3 Experimental  

3.3.1 Chemicals and reagents 

Graphite (natural, high purity,-200 mesh, 99.9999%, metal basis, Alfa Aesar), sulfuric acid 

(Fisher Scientific, Certified ACS), potassium permanganate (Analyt Reag., low in mercury, 

Mallinckrodt), hydrogen peroxide (30%, KMG), cadmium oxide (99.99% metal basis, Sigma-

Aldrich), selenium (powder,-100 mesh, 99.99% metal basis, Aldrich), 1-hexadecylamine (tech. 

grade, 90%, Aldrich), trioctylphosphine oxide (tech. grade, 90%, Sigma-Aldrich), oleic acid (tech. 

grade, 90%, Aldrich), tributylphosphine (tech. 90%, Aldrich), and dimethyl sulfoxide (ACS 

99.9%, Alfa Aesar). 

3.3.2 Synthesis of GO  

GO was synthesized from graphite powder by a modified Hummers method as presented 

by Nogueira and co-workers. 80, 103 Micron sized graphite powder (20 g) was put into cold (0 oC) 

sulfuric acid (460 ml). KMnO4 (60 g) was added gradually with stirring and under cooling, so that 

the temperature of the mixture was kept below 20 0C. The mixture was then stirred for 2 h at 35±2 

oC and cold DI-H2O (920 ml) was added. The reaction was terminated by adding excess DI-H2O 

(2.8 L) and 30% H2O2 (50 ml), after which the color of the mixture turned bright yellow. The 

mixture was filtered, washed with large amount of hot DI- H2O, filtered and dried in a 
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hydrothermal oven at 45 0C for 5 h. As-prepared GO was suspended in dimethylsulfoxide (DMSO) 

to give a 0.1 mg/ml yellow-brown dispersion.  

Exfoliation to GO was achieved via ultrasonication (Branson 3510, 40 KHz) for 1 hour. 

Such dispersion of exfoliated GO in DMSO was stable for several months. When GO is exposed 

to sonication waves in an appropriate solvent (in our work DMSO or water), the large particles or 

platelets are reduced in size and thickness into smaller and thinner ones. An illustration of the 

exfoliation process is presented in Fig. 3.1. The compression and agitation caused by the high-

frequency (20-40 kHz) waves causes local bubbles or cavitations that collapse, leaving behind an 

enormous localized temperature and pressure as high as 5,000 K and 500 atm, respectively. Such 

treatment enables an efficient exfoliation of GO platelets into few-layers GO.  

 

Figure 3-1  Schematic illustration of exfoliation of graphite into GO. 

3.3.3 Microwave synthesis of graphene  

In a typical experiment, 30 ml of a clear homogeneous sonicated GO-DMSO solution in a 

50 ml reaction vessel was placed in a conventional microwave oven (Oster, 1200 W, 1.4 cu. ft. 

countertop microwave: Model OGG21401) and microwaved at a full power for 5 s and off with 

stirring for 5 s. Different solutions were irradiated for different times between 40 s and up to 2 

min. The color change from yellow-brown to black indicates the completion of the reduction 
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process and the formation of graphene dispersion. For further characterization, graphene 

dispersion was centrifuged (eppendorf centrifuge 5804) at 5000 rpm for 10 min, then the 

segregated solid was transferred to a 20 ml capacity Al dish and put in a hydrothermal oven at 55 

oC for 8 hours to dry.  

3.3.4 Microwave synthesis of CdSe-graphene nanocomposite  

Synthesis of cubic CdSe nanocrystals supported on graphene involved the addition of 

cadmium oxide powder (120 mg) to an oleic acid solution (5 ml), followed by microwave 

irradiation (MWI) till the complete dissolution of CdO and a colorless solution was obtained. A 

mixture of trioctylphoshpine oxide (1.93 g) and hexadecylamine (1.93 g) was then added to the 

colorless solution, and the reaction mixture was further microwaved allowing the solid TOPO-

HDA mixture to dissolve. A clear homogeneous solution of GO dispersed in DMSO (400 µl) was 

added to the reaction vessel with the subsequent addition of selenium powder (118 mg) that was 

pre-dissolved in tributylphosphine (3 ml), (Se-TOP). To allow nucleation and growth of CdSe 

nanocrystals with the simultaneous reduction of GO to graphene, the reaction vessel was further 

MW irradiated for 2 min; on for 5 sec and off for 10 sec until the growth and reduction processes 

were complete. The synthesis of hexagonal CdSe nanocrystals supported on graphene adopted the 

same method as that of cubic CdSe except that the TOPO-HDA mixture was not added. The as-

prepared composite structures were precipitated with ethanol, centrifuged, and re-dispersed in 

chloroform for further analyses and characterization. 

3.3.5 Characterization  

TEM images were obtained using a Joel JEM-1230 electron microscope operated at 120 

kV equipped with a Gatan UltraScan 4000SP 4K x 4K CCD camera. Samples for TEM were 
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prepared by placing a droplet of a colloid suspension in toluene on a Formvar 300-mesh, carbon-

coated copper grid (Ted Pella) and allowed to dry in air. The small angle X-ray diffraction (SA-

XRD) patterns were measured at room temperature with an X’Pert Philips Materials Research 

Diffractometer using Cu Kα1 radiation. The X-ray photoelectron spectroscopy (XPS) analysis was 

performed on a Thermo Fisher Scientific ESCALAB 250 using a monochromatic Al KR. 

Absorption spectra were recorded using a Hewlett-Packard HP-8453 diode array 

spectrophotometer. Emission spectra were recorded using a Varian, Inc. - Cary Eclipse 

Fluorescence Spectrofluorimeter. The UV-Vis absorption spectra were acquired between 400 and 

750 nm with a slit width of 5 nm. Nanocomposites solutions were placed in a 1 cm thick quartz 

cuvette and the spectra were taken against toluene as respective solvent reference. The 

photoluminescence spectra were collected between 480 and 700 nm using an excitation 

wavelength of 430 nm with a slit width of 5 nm for both excitation and emission. IR spectra were 

collected with a Nicolet 6700 FT-IR system using the transmission mode. Raman spectra were 

measured using an excitation wavelength of 457.9 nm provided by a Spectra-Physics model 2025 

argon ion laser. The laser beam was focused to a 0.10 mm diameter spot on the sample with a laser 

power of 1 mW. The samples were pressed into a depression at the end of a 3 mm diameter stainless 

steel rod, held at a 30 degree angle in the path of the laser beam. The detector was a Princeton 

Instruments 1340 x 400 liquid nitrogen CCD detector, attached to a Spex model 1870 0.5 meter 

single spectrograph with interchangeable 1200 and 600 lines/mm holographic gratings (Jobin-

Yvon). The Raman scattered light was collected by a Canon 50 mm f/0.95 camera lens. Though 

the holographic gratings provided high discrimination, Schott and Corning glass cut-off filters 

were used to provide additional filtering of reflected laser light, when necessary. 87 
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3.3.6 Quenching of CdSe photoluminescence by graphene  

A homogenous graphene-DMSO stock solution, 0.1 mg/ml, was prepared by adding 5 mg 

of the prepared graphene to 50 ml of DMSO, and the suspension was sonicated for 1 h. A stock 

solution of 0.1 mg/ml of cubic CdSe nanocrystals, prepared using a mixture of TOPO and HDA 

in DMSO, was made by weighing out 5 mg of CdSe and dissolving in 50 ml chloroform. Seven 

solutions were made by adding 3 ml of the CdSe-chloroform solution to 0, 0.5, 0.6, 0.7, 0.8, 0.9, 

and 1.0 ml of the graphene-DMSO solutions, and the volume of each mixture was brought to 4 ml 

by adding DMSO, resulting in final graphene concentrations of 0, 12.5, 15, 17.5, 20, 22.5, and 25 

µg/ml, respectively. The CdSe concentration in each solution was thus 75 µg/ml. All solutions 

showed an absorbance value of ~0.41 at the excitation wavelength of 430 nm.  

3.4 Results and Discussion 

3.4.1 Microwave synthesis of graphene using DMSO as a solvent 

Since its isolation in 2004 by Geim and co-workers 1, graphene has attracted an increasing 

interest due to the one-atom thick 2D structure and superior electrical, thermal and mechanical 

properties. Up to date several effective solution-based routes and techniques have been developed 

for the conversion of low cost GO into high quality graphene and graphene based composite 

materials for potential applications in nanoelectronics, among others. 11, 70, 81, 82, 87, 104, 105 We have 

recently developed a facile, convenient, and scalable microwave assisted chemical reduction 

method for the synthesis of graphene as well as metallic and bimetallic nanoparticles supported on 

graphene using a simple household microwave oven. 87 The main advantage of MWI over other 

conventional heating methods is rapid and uniform heating of the reaction mixture. Due to the 

difference in the solvent and reactant dielectric constants, selective dielectric heating can provide 



 

47 

 

a significant enhancement in the transfer of energy directly to the reactants, which causes an 

instantaneous internal temperature rise. 106-108 In the present work, we modified our MWI synthesis 

approach by utilizing the high microwave absorbing solvent dimethyl sulfoxide (DMSO) for the 

MW assisted reduction of GO. Recently, it has been suggested that dimethyl sulfoxide (DMSO) at 

higher temperatures (180 °C for 12 hours) could result in the reduction of GO. 91 By taking 

advantage of the high polarity of DMSO (µ = 3.96 Debye) and its characteristic high efficiency of 

converting electromagnetic radiation into heat, 106 we were able to convert GO into graphene 

within 1-2 minutes of MWI instead of 12 hours by the conventional thermal process. 

GO, the oxidation product of bulk graphite, is a layered material with the same structure of 

natural graphite with the difference being that constituting graphene layers are functionalized with 

oxygen containing groups such the hydroxyl, epoxy, carbonyl and carboxylic groups. As a result 

the sp2-bonded carbon network is strongly disrupted by these functional groups and the interlayer 

separation increases as well. 11 Upon oxidation, the electronic conjugation is lost and graphite loses 

its excellent electrical properties and essentially becomes a semiconductor or an insulator 

according to the oxidation level. In the most popular structural model, 109 GO is portrayed or 

depicted as a combination of randomly distributed non-oxidized regions and oxidized regions. 

Whereas carbon atoms in the non-oxidized regions retain the sp2 hybridization, the oxidized 

regions are bearing oxygen-containing functional groups and thus have sp3 hybridization. In this 

view the sheets of GO have their basal planar planes decorated mostly with major epoxy and 

hydroxyl groups, while minor carbonyl and carboxylic groups are populated at the edges. The 

existence of large regions functionalized with oxygen-containing functional groups attached to the 

edges and basal planes makes GO hydrophilic; therefore, it can be readily exfoliated in water to 

generate stable aqueous colloidal dispersion by simple sonication or stirring for long time enough. 
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The hydrophilic nature of GO allows water to easily intercalate between the layers; accordingly, 

the interlayer distance can increase from 6 to 12 Ao with increasing relative humidity. As revealed 

by the measurement of the surface charges (zeta potential) of graphite or GO sheets in water, the 

ionization of carboxylic acid and phenolic hydroxyl groups existing on surfaces leaves the sheets 

highly negatively charged and apparently the colloidal stability in water is presumed to be a result 

of an electrostatic repulsion rather than the hydrophilicity. 2, 11 The concentration of GO in stable 

aqueous dispersions can be as high as 3 mg/ml.  Also, it can be dispersed in polar organic solvents 

such as DMSO, DMF, THF and NMP at about 0.5 mg/ml.11  

The oxidation process with a mixture of H2SO4/KMnO4 functionalizes the GO with various 

hydroxyl and epoxy groups, in addition to carbonyl and carboxyl groups along the edges and basal 

planes of the sheets. 82, 110 The layering in GO is evident from its XRD pattern. The peak in the 

XRD pattern of a typical GO at 10.7o corresponds to an interlayer distance between sheets (d-

spacing) of about 0.78 nm that agrees with literature 33, 104 compared to 0.34 nm of natural native 

graphite. 12 This increase in the interlayer spacing means a significant reduction in the van der 

Waals forces between adjacent sheets, which indicate that exfoliation can be utilized as a route to 

obtain single layers of graphene. 12 In our synthesis, DMSO acts as a solvent for GO and a capping 

agent for CdSe in case of protocol 2. The possible mechanism of the reduction of GO to graphene 

may be attributed to heating effect upon microwave irradiation. This thermal reduction approach 

in presence of DMSO has been suggested by Aoneng Cao et al. 91 and a similar reduction of GO 

into graphene via thermal treatment has been reported by Mullen and co-workers. 34, 111 

The successful reduction of GO by DMSO under MWI conditions was verified by 

monitoring the X-ray  diffraction (XRD), X-ray photoelectron spectroscopy (XPS), FT-IR, and 

UV absorption spectroscopy. The XRD pattern of the RGO shows the disappearance of the 
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characteristic peak of GO at 2 = 10.9o after 1.5 min of MWI in DMSO, as shown in Fig. 3.2-a, 

indicating that most of the GO has been converted into graphene. 11, 81, 82, 87 On the other hand, 

even after 7 hrs of heating at 180 oC, a significant amount of GO remains unreduced as evident by 

the presence of the XRD peak of GO shown in Fig. 3.2-b. The shift of the XRD peak to lower 2 

values indicate that the separation between the GO layers has increased above the 8 Å distance 

corresponding to the 2 = 10.9o. Only after 12 hrs of heating the DMSO solution at 180 oC, is a 

complete disappearance of the GO peak observed and the color of the solution changes from 

golden yellow to black (Fig. 3.2-d) indicating the conversion of GO into graphene. With the MWI 

method (1200 W power), this process is completed in 2 minutes as shown in Figs. 3.2-a and 3.2-

c. The MWI time required for the deoxygenation of GO varies between a few and several minutes 

depending on the MW power, the concentration of GO and the volume of the solution.  

To further probe the deoxygenation and reduction of GO in DMSO using both the 

conventional thermal heating at 180 oC and MWI, the C1s XPS spectra were measured for samples 

prepared after different reaction times. As shown in Fig. 3.3, the C1s spectrum of GO shows peaks 

corresponding to oxygen-containing groups between 285.5 and 289 eV in addition to the sp2-

bonded carbon C=C at 284.5 eV. Typically, peaks at 285.6, 286.7, 287.7 and 289 are assigned to 

the C1s of the C-OH, C-O, C=O, and HO-C=O groups, respectively 112, 113. As expected, significant 

reduction of the oxygen-containing groups is observed after the thermal heating or the MWI of 

GO in DMSO as shown in Fig. 3.3. It is interesting to note that MWI for 40 s results in a degree 

of deoxygenation of GO similar to that obtained after 2 hrs of heating at 180 oC as shown in Fig. 

3.3. The XPS data clearly indicates that most of the oxygen-containing groups in GO are removed 

after 100-120 s of MWI. This confirms that MWI of GO in DMSO can provide a fast and simple 

route for the production of graphene.  
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Figure 3-2 (a), (b) Changes in the XRD pattern of GO from (a) MW reduction after 1, 1.5 and 2 

min, and (b) thermal reduction after 4, 7 and 12 hrs. (c), (d) Digital images of GO and 

graphene (G) colloidal suspensions in DMSO for (c) MW and (d) thermal syntheses.  
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Figure 3-3 Changes in the C1s XPS spectra of GO after 2 hrs of heating at 180 oC in DMSO, and 

after 40 s, 1 min and 2 min of MWI in DMSO. 

Additional structural and chemical composition information on the sample prepared by the 

MWI of GO in DMSO for 2 min was obtained using FT-IR and UV absorption spectroscopy 

(Supporting Information, SI). The FT-IR spectrum clearly showed the disappearance of the C-O 

peaks at 1400 cm-1 (carboxy) and 1220 cm-1 (epoxy) as well as the C=O stretching vibrations of 

the COOH groups at 1740 cm-1, and the O-H deformations of the C-OH groups at 1350-1390 cm-

1 (Fig. 3.4). 112, 114 The UV absorption spectrum of GO shows the characteristic shoulder at 305 

nm attributed to nπ* transitions of C=O bonds.35 This shoulder disappears after the 2 min MWI 

of GO and a new absorption peak appears at 283 nm attributed to ππ* transitions of extended 

aromatic C-C bonds typical of RGO (Fig. 3.5). 2, 115 Raman spectroscopy is a sufficiently powerful, 
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sensitive, nondestructive and rapid analytical technique that can provide information about the 

structural and electronic properties of carbon nanostructures and graphene. Figure 3.6 compares 

Raman spectra of GO (Fig. 3.6-a) and RGO (Fig. 3.6-b). For GO, two distinct bands are clearly 

observed at 1345 and 1589 cm-1 due to the D and G bands, respectively. In case of RGO, the same 

two distinct bands observed for GO can be seen also in RGO. The band at 1350 cm-1 is the disorder 

mode band that is related to the defects and disorder induced modes in graphene, and the band at 

1599 cm-1 is attributed to the vibration of sp2-bonded carbon atoms in the planar hexagonal 

graphite lattice. The reduced D/G ratio (0.33) between the two bands compared to GO (0.79) is an 

approximate indication of the disorder degree in RGO by the solvothermal treatment. 

Typical TEM images of the synthesized graphene sheets by MWI in the presence of DMSO 

are shown in Fig. 3.7. The TEM images show a few stacked layers and a lateral size up to a few 

micrometers. Also the TEM images show that some of the graphene layers are folded on one edge 

with isolated small fragments on the surfaces. It should be mentioned that the electron beam of the 

TEM induces the folding and entanglement of the graphene sheets due to the intrinsic nature of 

the 2D structure of the sheets where they become thermodynamically more stable via folding. 24 

 

Figure 3-4 IR spectra of GO and graphene prepared by MWI in DMSO. 
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Figure 3-5 UV-Vis spectra of GO (a) and graphene (b) prepared in DMSO. 

 

Figure 3-6 Raman spectra of GO before (a) and after (b) 2 min-MWI in DMSO.  
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Figure 3-7 TEM images of graphene sheets prepared by MWI of GO in DMSO. 

3.4.2 Cubic and hexagonal CdSe nanocrystals by microwave synthesis  

In order to synthesize high quality CdSe nanocrystals supported on graphene using the 

DMSO-MWI approach, we first developed a ligand-controlled method for the synthesis of CdSe 

nanocrystals in DMSO using MWI. In this case, DMSO was used as a solvent for the reaction 

between the Cd and Se precursors (cadmium oleate and TOP-Se, respectively). We investigated 

the effect of adding two different coordination ligands TOPO (trioctylphosphine oxide) and HDA 

(hexadecylamine) on the size and phase of the CdSe nanocrystals formed by the MWI method.  

Figure 3.8 displays the XRD patterns of CdSe nanocrystals formed by MWI using TOPO, 

HDA and TOPO-HDA mixtures as coordination ligands to the CdSe nanocrystals in DMSO. The 

results clearly indicate that CdSe nanocrystals prepared in the presence of HDA or HDA + TOPO 

have a cubic (zinc blende, ZB) structure, as can be seen from the three characteristic ZB peaks of 

the (111), (220), and (311) planes between 2 = 25o and 49o, and the absence of the (102) and 

(103) diffractions characteristic of the hexagonal (wurtizite, WZ) structure at 2 = 35o and 47o, 

respectively (Fig. 3.8-a,b). 116, 117 In the presence of TOPO alone (or DMSO only) the hexagonal 

structure of CdSe is evident (Fig. 3.8-c,d). By increasing the amount of TOPO relative to HDA, 
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the XRD pattern reveals a change in the crystalline structure from a cubic to a hexagonal structure 

as suggested by the multiple structures of the (111) ZB peak and the emergence of the (103) peak 

of the WZ structure. 

 

Figure 3-8 XRD patterns of CdSe nanocrystals prepared by MWI of cadmium oleate and TOP-Se 

in DMSO (d), and with the addition of: (a) TOPO + HDA, (b) HDA only, and (c) TOPO 

only. The crystallite sizes indicated are calculated based on Debye-Scherrer equation. 

The change in the crystalline structure from ZB to WZ is accompanied by a decrease in 

linewidth of the diffraction peaks indicating an increase in the crystallite size of WZ nanocrystals. 

In the cubic CdSe, the crystallite size ranges from 1.8 to 2.3 nm, whereas in hexagonal CdSe it 

varies between 3.5-4.6 nm as calculated from the width of the diffraction peaks using the Debye-

Scherrer equation. 118 This trend is consistent with the correlation between particle size and 

absorption peak for CdSe nanocrystals prepared by the conventional thermal heating route. 119 This 
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trend is also confirmed by the TEM images of the CdSe nanocrystals prepared by the MWI method 

as shown in Fig. 3.9. It is clear that the WZ nanocrystals are faceted and some of the hexagonal 

facets can be clearly seen in the TEM image. The analysis of several TEM images indicates the 

particle size of the nanocrystals prepared in the presence of HDA or HDA-TOPO ranges from ~2 

to 3 nm while those prepared in the presence of TOPO (or DMSO only) range from ~4 to 7 nm. 

 

Figure 3-9 TEM images of CdSe nanocrystals with (a) cubic and (b) hexagonal structures prepared 

by MWI of cadmium oleate and TOP-Se in DMSO (hexagonal), and with the addition of 

TOPO and HDA (cubic). The scale bar is 50 nm. 

The observed effects of the coordination ligands on controlling the size and phase of the 

CdSe nanocrystals prepared by the MWI in DMSO are consistent with previous results on CdSe 

nanocrystals prepared by conventional thermal heating at 275 oC. 120-123  Because of the small  

energy difference between the ZB and WZ structures of CdSe (9 meV/2 atom), the kinetics that 

govern the growth of the nanocrystals can be controlled by using a mixture of coordination lignads 

which can promote the formation of the metastable cubic nuclei. 120-123  In the present case, the 

addition of the less sterically hindered primary amine HDA allows the formation of a denser 

coordination layer on the nanocrystals’ surface than the highly hindered trialkylphosphine 

compounds TOP and TOPO, thus stabilizing the cubic phase relative to the hexagonal phase of 
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CdSe. 120-123 Additionally, the phase change from cubic to hexagonal is probably due to the 

increase in the crystallite size and change in the atomic configuration of CdSe nanocrystals.  

The absorption and emission spectra of the CdSe nanocrystals prepared in DMSO in the 

presence of HDA/TOPO as a function of MWI time are shown in Fig. 3.10. The solution contained 

cadmium oleate (0.2 mM), TOP-Se (0.5 mM), HDA (8 mmol), TOPO (5 mmol) in DMSO and the 

reaction was performed in a 1200 W domestic microwave oven. The systematic red shift in the 

absorption and emission peak is attributed to the growth of the CdSe nanocrystals. The data 

demonstrates the effectiveness of the MWI method in preparing size-selected nanocrystals since 

the reaction time can be controlled within the time scale of the nucleation and growth of 

nanocrystals. 

 

Figure 3-10 (a) UV-Vis absorption and (b) emission spectra of cubic CdSe nanocrystals prepared by 

MWI of cadmium oleate and TOP-Se in DMSO with the addition of TOPO and HDA at 

different microwave irradiation times. 
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3.4.3 Cubic and hexagonal CdSe nanocrystals supported on graphene  

Following the development of the DMSO-MWI approaches for the conversion of GO into 

graphene and the synthesis of ligand-controlled CdSe nanocrystals, a combined synthesis approach 

was developed to prepare cubic or hexagonal CdSe quantum dots supported on graphene. To allow 

nucleation and growth of CdSe nanocrystals along with the simultaneous reduction of GO to 

graphene, the reaction mixture consisting of cadmium oleate, TOP-Se and GO in DMSO was 

microwave irradiated for 2 min which resulted in the formation of hexagonal CdSe on graphene. 

For the formation of cubic CdSe nanocrystals on graphene, a HDA or TOPO-HDA mixture was 

added to the reaction mixture before the MWI.  

The simultaneous reduction of GO to graphene and the formation of CdSe quantum dots 

on graphene is clearly evident from the XRD, XPS, TEM, UV-Vis absorption, and 

photoluminescence data of the CdSe-graphene nanocomposites prepared by the DMSO-MWI 

method as discussed below. The XRD spectra of cubic and hexagonal CdSe nanocrystals supported 

on graphene (Fig. 3.11) match well with the corresponding spectra of the unsupported 

nanocrystals, thus confirming the synthesis of crystalline phase-selected CdSe quantum dots on 

graphene. 
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Figure 3-11  X-ray diffraction patterns of hexagonal and cubic CdSe on graphene.  

The C1s, Cd3d and Se3d XPS spectra of the CdSe supported on graphene are compared to 

the corresponding spectra of pure GO and CdSe nanocrystals as shown in Fig. 3.12. The C1s 

spectra of both the cubic (C-CdSe/G) and hexagonal (H-CdSe/G) graphene nanocomposites shown 

in Fig. 3.12-a are similar to that of the RGO (Fig. 3.3) indicating the conversion of GO into 

graphene during the MWI synthesis of the CdSe nanocrystals. However, the extent of GO 

reduction appears to be more in the C-CdSe/G than in the H-CdSe/G composites as indicated by 

the complete absence of all C1s peaks corresponding to oxygen functional groups in the XPS 

spectrum of C-CdSe/G nanocomposite. This is can be attributed to the enhanced reducing 

environment created by the addition of HDA during the synthesis of C-CdSe/G nanocomposite.     

The binding energies of Cd3d5/2 and Se3d5/2 electrons in the CdSe nanocrystals observed 

at 405.0 eV and 53.8 eV, respectively (Fig. 3.12) correspond to Cd (+II), and Se (-II). 124 

Noticeable shifts of the Cd3d and Se3d binding energies towards lower energies are observed in 



 

60 

 

both the C-CdSe/G and H-CdSe/G nanocomposites as shown in Fig. 3.12. This may suggest a 

change in the oxidation state or chemical environment of the Cd and Se atoms present in the 

graphene matrix. Therefore the XPS data provides evidence for a strong interaction between the 

CdSe nanocrystals and graphene. This is consistent with the robust nature of the CdSe/G 

nanocomposites and their stability against ultrasonication which suggest that the current synthesis 

approach produces CdSe/G nanocomposites with good interfacial properties.  

The decoration of the 2D graphene sheet surface with the CdSe nanocrystals can be easily 

observed by TEM as shown in Fig. 3.13. Both the cubic (Fig. 3.13-a,b) and the hexagonal (Fig. 

3.13-c,d) nanocrystals are well dispersed on the graphene sheet surface. The average sizes of the 

cubic and hexagonal nanocrystals on graphene are 3-4 and 5-7 nm, respectively. No apparent 

aggregation of CdSe nanocrystals can be seen on the graphene sheets, and no significant areas of 

the graphene sheets are lacking the CdSe decoration. The cubic CdSe nanocrystals appear to 

assemble in well organized patterns on the surface of the graphene (Fig. 3.12-b) probably because 

of their small sizes and the high degree of monodispersity. There appear to be some larger particles 

(4-5 nm) which could be a result of additional particles laying on the assembled ones. 
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Figure 3-12 (a) C-1s XPS spectra of GO and graphene decorated with hexagonal (H-CdSe/G) and 

cubic (C-CdSe/G). Cd-3d (b) and Se-3d (c) XPS spectra of H-CdSe/G, C-CdSe/G, and 

unsupported C-CdSe nanocrystals.  
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The small increase in the size of the CdSe nanocrystals in the CdSe/G nanocomposites 

relative to the free CdSe nanocrystals is probably related to the nucleation and growth mechanism 

of CdSe nanocrystals in the presence of GO. One possibility is that the CdSe nanocrystals are 

directly nucleated on the existing GO sheets followed by reduction of GO and the growth of the 

CdSe nanocrystals on the RGO sheets. The presence of the oxygen functional groups in GO may 

actually create attractive heterogeneous nucleation sites for the CdSe nuclei which would decrease 

the barrier for the homogeneous nucleation process 125. However, at present we do not have direct 

evidence for such a mechanism and more efforts are to be made in the future to compare the 

homogeneous and heterogeneous nucleation rates of CdSe nanocrystals in order to elucidate the 

growth mechanism of CdSe nanocrystals in the presence of GO or RGO sheets.      

 

Figure 3-13 TEM images of (a, b) cubic and (c-f) hexagonal CdSe nanocrystals supported on 

graphene.  
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3.4.4 Shape-controlled synthesis of CdSe nanorods supported on graphene 

The optical and electrical properties of semiconductor nanocrystals sensitively depend on 

both the size and the shape. Typical synthesis of CdSe nanorods involves the Cd precursor as CdO 

and ODPA in TOPO, and the Se precursor as elemental Se dissolved in TOP. The Se precursor is 

injected into Cd precursor at 320 °C. UV-Vis and PL spectra for CdSe nanorods obtained from 

this reaction after 2 min following injection in absence and in presence of GO sheets are shown in 

Figs. 3.14. A well-defined exciton peak at 540-553 nm due to the absorption in the visible region 

is evident, along with the corresponding emission peak between 560-600 nm in the PL spectrum. 

CdSe nanocrystals can grow either cubic (zincblende, ZB) or hexagonal (wurtizite, WZ) lattice 

structure where the energy difference between zincblende (ZB) and wurtzite (WZ) structures is 

very small (<9 meV/2 atom).  

 TEM images of CdSe nanorods prepared in absence of GO (Fig. 3.15) and CdSe nanorods 

anchored on graphene sheets (Fig. 3.16) indicate that the final nanocrystals are nonbranched 

nanorods, suggesting the growth is due to wurtzite nuclei because growth from zinc blende nuclei 

would likely result in branched nanoparticles. In principle, the reaction of CdSe monomers to form 

CdSe nanocrystals is very simple; monomers nucleate to form very small clusters which 

subsequently grow into nanocrystals. Nevertheless, the case becomes complicated by the presence 

of two different energetically accessible crystal phases, wurtzite and zinc blende. The crystal phase 

is critical in controlling the shape because different crystal facets of the growing nanoparticles may 

have different reactivities, and this determines the final morphology of the nanocrystals. The 

crystal phase and the reaction kinetics are controlled by thermodynamics of the reaction solution, 

which in turn are determined by temperature and chemical composition of the reaction mixture. 
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High temperatures favor the formation of wurtzite nanocrystals, while zinc blende nanocrystals 

are grown at lower temperatures. 126 

 

Figure 3-14 UV-Vis and normalized PL spectra of CdSe annorods (left) and CdSe nanorods 

anchored on graphene (right). 

 

Figure 3-15 TEM images of CdSe nanorods prepared in DMSO/ ODA mixture.  
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Figure 3-16 TEM images of CdSe nanorods anchored on graphene sheets prepared in DMSO/ODA 

mixture.  

On the basis of the experimental results, a mechanism that interprets the deposition of 

nanocrystals and formation of CdSe nanorods/graphene nanocomposites can be illustrated as in 

Fig.. 3.17. The epoxy and hydroxyl functional groups at the surface of the basal planes and the 

carboxylic or carbonyl functional groups at the edges might be retained during the course of the 

GO reduction. During nucleation and growth these groups can act like anchor sites that enable the 

in situ deposition of nanocrystals attaching on the surface and the edges of the sheets 71. Initially, 

the addition of tetradecylphosphonic acid (TDPA) to CdO leads to formation of metal complex. 

Then Cd2+ ions that are formed by the thermal decomposition and dissolution of CdO-TDPA metal 

complex in TOPO, might favorably bind to the O atoms of the negatively charged oxygen-

containing functional groups on partially RGO sheets by an electrostatic force. With the addition 

of Se-TOP solution at a relatively high temperature (~300 oC), a large number of nuclei are formed 

in a very short time. The further increase in temperature by lengthening the MW irradiation time 
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allows primary crystals to grow while being anchored on the oxygen-containing groups or defect 

sites. In case of the formation of CdSe rods, the ratio of CdO/Se and the TDPA along with the 

injection temperature play an important role in determining the morphology of the deposited 

nanocrystals. As a result, the overall crystal had only single preferable growth direction, yielding 

CdSe rods. Significantly the temperature and the manner of adding Se-TOP exerts an influence on 

the stacking of the nuclei and formation of the rods in the crystal growth mechanism. A 

superheated mixture of CdO-TDPA/TOPO has to be obtained first prior to adding the Se-TOP 

mixture. A rapid addition of Se-TOP to the superheated mixture causes the burst of large amount 

of growing species in a very short time. Further investigations on the effects of other reaction 

parameters such as precursor’s concentration, CdSe/GO ratio and reaction time on the mechanism 

of the simultaneous growth and reduction are still needed. 

 

Figure 3-17 Illustrations CdSe nanorods growth in presence of GO.  
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3.4.5 Quenching of CdSe photoluminescence by graphene  

The absorption and emission spectra of the cubic and hexagonal CdSe nanocrystals 

prepared by MWI in DMSO in the presence of HDA/TOPO and TOPO, respectively with the 

simultaneous reduction of GO are shown in Fig. 3.18. In comparison to the spectra obtained under 

identical preparation conditions except for the presence of GO, noticeable spectral shifts in both 

the absorption and emission peaks are observed. For the hexagonal nanocrystals, the absorption 

and emission peaks shift from 540 and 590 nm, respectively in the absence of graphene to 560 and 

625 nm, respectively when GO is present during the MWI synthesis. For the cubic nanocrystals, 

the magnitude of the spectral shifts due to the presence of graphene was much less (absorption and 

emission bands at 489 and 542 nm, respectively in the absence of graphene and 500 and 555 nm, 

respectively in the presence of graphene). The red spectral shift is attributed to the growth of the 

CdSe nanocrystals where the presence of GO may have altered the nucleation and growth 

mechanisms. Another possibility is the effect of GO on the adsorption of the capping agents on 

the CdSe nuclei. It is interesting that the extent of the red spectral shifts due to the presence of GO 

is much more pronounced for the hexagonal than for the cubic CdSe nanocrystals. This is also 

consistent with the observed larger size of the hexagonal nanocrystals. Although a significant 

quenching of the fluorescence is observed from both the cubic and hexagonal CdSe nanocrystals 

when the particles are prepared in the presence of GO, again the extent of PL quenching is more 

pronounced in the hexagonal crystals. This quenching is attributed to the efficient electron 

accepting ability of graphene which could result in electron transfer from the excited CdSe 

nanocrystals 46.  
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Figure 3-18 Comparison of UV-Vis absorption and photoluminescence spectra for (a) cubic and (b) 

hexagonal CdSe nanocrystals with and without graphene.   

A qualitative trend of decreasing the fluorescence from both the cubic and hexagonal CdSe 

nanocrystals is observed by increasing the starting amount of GO in each synthesis. However, 

comparing the PL behavior of CdSe nanocrystals prepared in the absence and presence of GO 

cannot yield accurate quantitative data due to the possible role of GO in altering the nucleation 

and growth mechanisms of the CdSe nanocrystals and the extent of the adsorption of capping 

agents on the crystal surfaces. In order to assess the quenching effect of graphene on the emission 

from CdSe nanocrystals in a more quantitative manner, the fluorescence spectra of the CdSe 

nanocrystals dispersed in chloroform were measured as a function of the concentration of graphene 

added to the CdSe solution. We chose chloroform because the C-CdSe nanocrystals prepared 

without GO can be easily dispersed in chloroform as shown in solutions photographic images 

shown in Fig. 3.19. The concentration of C-CdSe nanocrystals was kept constant (75 µg/ml) in all 
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the solutions containing variable concentrations of graphene (0, 12.5, 15, 17.5, 20, 22.5, and 25 

µg/ml) using the procedure outlined in the experimental section in order to eliminate any errors 

due to dilution. As shown in Fig. 3.19, all solutions showed an absorbance value of ~0.41 at the 

excitation wavelength of 430 nm and thus the number of the absorbing nanocrystals will be 

comparable and the corresponding fluorescence spectra should show the effect of the graphene 

concentration on the emission intensity. Indeed, the emission spectra displayed in Fig. 3.19 clearly 

show that the addition of graphene quenches the fluorescence from the C-CdSe nanocrystals. 

The quenching mechanism of the PL from the CdSe nanocrystals could be explained by 

either electron or energy transfer from the excited nanocrystals. Efficient energy transfer from 

individual CdSe/ZnS nanocrystals to single- and few-layer graphene films has been recently 

demonstrated by Brus and co-workers 96. They suggested that resonant energy transfer is much 

faster than photoexcited electron transfer due to the weak electronic coupling between the core 

CdSe nanocrystal and graphene due to the presence of the insulating ZnS outer shell. In the present 

work, CdSe nanocrystals can directly interact with the graphene sheets without the presence of an 

isolated shell and this may lead to increasing the rate of electron transfer relative to that of energy 

transfer. It may also be possible to increase the rate of electron transfer by increasing the ordered 

assembly of the nanocrystals and thus the interfacial interaction between the CdSe nanocrystals 

and graphene. Ultrafast pump-probe time-resolved spectroscopy may help to understand the 

quenching mechanism in more detail.  
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Figure 3-19 Absorption (a) and photoluminescence (b) spectra of CdSe-graphene solutions in 

CHCl3-DMSO containing different amounts of graphene suspensions as indicated. 
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3.5 Conclusions 

In summary, we have developed a facile and fast microwave irradiation method for the 

synthesis of graphene and CdSe nanocrystals of controlled size, shape, and crystalline structure 

dispersed on the graphene sheets. The reduction of GO into graphene takes place in DMSO within 

two minutes of microwave irradiation as opposed to 12 hrs of conventional thermal heating at 180 

oC. The method allows the simultaneous reduction of GO and the nucleation and growth of CdSe 

nanocrystals using a variety of capping agents. Cubic and hexagonal CdSe nanocrystals with an 

average size of 3-4 and 5-7 nm, respectively have been prepared by the proper choice of the 

capping agent within a few minutes of microwave irradiation. High quality nearly monodispere 

CdSe nanocrystals have been supported on graphene with no evidence of aggregation. Direct 

evidence is presented for the efficient quenching of photoluminescence from the CdSe 

nanocrystals by graphene. The large surface areas of the graphene sheets and the highly dispersed 

semiconductor nanocrystals such as CdSe raises the potential of these composites as exciting 

material for use in future optoelectronics, and we believe that anchoring CdSe nanocrystals to 

graphene by means of this approach may bring fascinating chemical and physical properties to 

explore. The results of this work provide a new approach for exploring the size-tunable optical 

properties of CdSe nanocrystals supported on graphene, which could have important implications 

for energy conversion applications such as photovoltaic cells where CdSe quantum dots, the light-

harvesting material, are supported on the highly conducting flexible graphene electrodes.  
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CHAPTER 4 Solvothermal Synthesis of Ceria-Graphene Nanocomposites: 

Low-Temperature CO Catalytic Oxidation 

 

4.1 Overview   

Herein, a facile single-step solution-based synthesis of ceria-graphene (CeO2/RGO) 

nanocomposites is reported for the first time. The method is based on ethylenediamine-assisted 

solvothermal treatment of GO, which allows controlled reduction of GO to graphene (RGO) with 

by controlling the reaction temperature. The approach is potential for large scale production and 

low cost processing, The same approach was modified and utilized to synthesize CeO2/RGO 

nanocomposites with different oxygen content in a contemporarily fashion using a mixture of GO 

and cerium nitrate in ethylenediamine (EDA) solution at different temperatures. Through  this 

synthetic approach, an even distribution of 4-5 nm spherical CeO2 nanoparticles of uniform size 

and shape was successfully achieved in situ on the high surface area RGO sheets in one-pot 

reaction and without post-preparation treatments. Different conditions to control the crystallinity 

and morphology of the nanocomposite structures are examined. We also show that the CeO2/RGO 

nanocomposites can be utilized as an active support for noble metals for an efficient low-

temperature CO catalytic oxidation. The results provides a new simple, efficient, scalable, 

environmentally-friendly and economically-favorable approach for large scale production of metal 

oxide nanostructures supported on graphene which could have important implications for 

industrial and environmental remediation.  
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4.2 Introduction  

Graphene, a highly versatile carbon material, has received a great attention in recent years 

because of its extraordinary structural, optical, thermal, mechanical and electrical properties. 3, 75, 

127 Such intriguing and unique features make graphene promising in wide array of potential 

applications such as nanocomposites, sensors, supercapacitors, nanoelectronics, transparent 

conducting films, batteries, paper-like materials and others. 20 The unique two-dimensional nature 

and the extremely high surface area of graphene sheets make this carbon material an ideal support 

for the deposition of various inorganic nanoparticles. 44-46, 71, 87, 90, 95, 128-133 The combination of 

highest carrier mobility, thermal, chemical and mechanical stability of graphene with the size-

tunable properties of metal and semiconductor nanocrystals offers many interesting applications 

in a wide range of fields including heterogeneous catalysis, nanoelectronics and devices. 46, 128, 132 

Fueled with major and exciting advancements in the past few years, the cubic fluorite-structured 

oxide, ceria constitutes the most important class of the rare earth oxide nanostructures. 134 Because 

of the unique redox properties, the high oxygen storage capacity, the high refractive index (1.6 – 

2.5 at 633 nm), the strong absorption in the UV range, the optical transparency in the visible range 

and the interesting catalytic and free radical scavenging properties, 135, 136 cerium oxides structures 

have received a significant attention from the research communities. They have been extensively 

studied for application in fast ion conduction in solid oxide fuel cells, 137 as environmental 

heterogeneous catalysts support, 138 as UV absorbers in UV-blocking, 139 in oxidation-resistance 

coatings, 140 three-way catalysts and diesel fuel, 141 gas sensing, oxygen pumps, amperometric 

oxygen monitors, fine chemical synthesis, mechanical polishing,  and recently in toxicity and 

biomedical applications. 134, 142-144 
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Unsurprisingly such wide applications of ceria have been supported by wide research and 

literature devoted to synthesis, characterization and applications of cerium oxide nanostructures. 

Several solution-based routes have been developed for the conversion of low cost GO into 

graphene and graphene based composite materials. In this regard, there is much need to find a 

solvent which can act as a reducing agent for GO under mild reaction conditions and meanwhile 

can provide an environment for the synthesis of targeted nanostructures. The ability of the 

bidentate ligand ethylenedimaine (EDA, NH2CH2CH2NH2) as a molecular precursor to react with 

various inorganic precursors at mild conditions has been utilized by various groups to develop 

architectures of various metal, metal oxide and semiconductor nanostructures. Doussier-Brochard 

et al. 145 demonstrated a solvothermal route in ethylenediamine for the synthesis of p-type 

transparent conductor LaOCuS nanoparticles. In addition, ZnxCd1-xS alloy nanocrystals have been 

fabricated facilely by Kim and co-workers 146 using ethylenediamine as a solvent-coordinating 

molecular template in water. In a similar study, Biswas et al. 147 reported the synthesis of high-

aspect ratio alloy semiconductor nanowires Cd1-xZnxS using an ethylenedimaine-assisted 

solvothermal approach. Moreover, Kar and co-workers recently utilized the dual role of the 

ethylenediamine as a catalyst and reducing agent in the direct synthesis of ultrsmall water-

dispersible ceria nanoparticles at room temperature. 148 Herein, we further extend the 

ethylenediamine-assisted solvothermal approach to the controlled synthesis of nanocomposite 

structure of CeO2 nanoparticles and chemically synthesized graphene (RGO). The new developed 

synthetic approach described here permits the controlled reduction of GO to RGO with the 

synchronized growth and anchoring of CeO2 nanoparticles evenly on the surfaces of RGO sheets.  
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4.3 Experimental  

4.3.1 Chemicals and reagents  

Graphite (natural, high purity,-200 mesh, 99.9999%, metal basis, Alfa Aesar), sulfuric acid 

(Fisher Scientific, Certified ACS), potassium permanganate (Analyt Reag., low in mercury, 

Mallinckrodt), hydrogen peroxide (30%, KMG), cerium (III) nitrate hexahydrate (99.99% trace 

metal basis, Aldrich), ethylenediamine (ReagentPlus, >99%, Sigma-Aldrich) and Gold(III) 

chloride solution in dil HCl (99.99% trace metals basis, Sigma-Aldrich).  

4.3.2 Characterization  

Samples were characterized by UV-Vis, PL, TEM, SEM, EDX, XRD, XPS and Raman 

spectroscopy. The optical absorption and the photoluminescence spectra were measured using HP-

8453 spectrophotometer and Varian (CARY) spectrofluorometer, respectively. The X-ray 

diffraction (XRD) patterns of the powder samples were measured at room temperature with an 

X’Pert Philips Materials Research diffractometer with Cu Kα1 radiation. Crystallite size was 

calculated from diffraction patterns with Sherrer’s equation and compared to that obtained from 

TEM analysis. Lattice constants were calculated from XRD peaks using formulas reported in the 

literature. To investigate the size, shape and morphologies of CeO2 and CeO2-RGO 

nanocomposites, transmission electron microscopy studies (TEM) were conducted using a Joel 

JEM-1230 electron microscope operated at 120 kV equipped with a Gatan UltraScan 4000SP 4K 

× 4K CCD camera. Samples for TEM were prepared by placing a droplet of colloid suspension in 

respective solvent on a Formvar carbon-coated, 300-mesh copper grid (Ted Pella) and allowing 

them to evaporate in air at ambient conditions. The X-ray photoelectron spectroscopy (XPS) 

analysis was performed on a Thermo Fisher Scientific ESCALAB 250 using a monochromatic Al 
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Kα X-ray. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) 

were carried out using a Quantum DS-130S dual stage electron microscope. Raman spectra were 

recorded on Thermo Scientific DXR SmartRaman Spectrometer with 532 nm excitation laser 

source. The laser power was 5 mW, spectral resolution was ~ 4 cm-1 and the spectrum acquisition 

consisted of 100 accumulations with a total acquisition time of 15 min.  

4.3.3 Graphene synthesis by EDA 

GO was synthesized from graphite powder by a modified Hummers method as presented 

by Nogueira and co-workers 80, 149. The oxidation results in carboxyl and hydroxyl functional 

groups on the ends and surfaces of GO sheets and this made exfoliation to GO easily achieved via 

ultrasonication (Branson 3510, 40 KHz) for 1 hour. Unless otherwise mentioned, a clear 

homogenous bright yellow dispersion of GO in DI-H2O of 0.1 mg/ml was prepared and used for 

all experiments. For the EDA-assisted synthesis of RGO, a mixture of GO-H2O and EDA (1:3 vol. 

ratios) was first sonicated for 15 min, then stirred and refluxed at 110oC for 24 hour under 

atmospheric pressure. Upon completion, the reduction of the GO to RGO was indicated by the 

disappearance of the bright yellow color and formation of black flakes at the bottom of the flask. 

The mixture was cooled to room temperature and the black flakes of RGO were centrifuged, 

separated and repeatedly washed with DI-water (until the pH of the supernatant reached 7) and 

finally with ethanol. The washed flakes were dried in an oven at 60 oC overnight for further 

characterization. A similar synthesis of partially RGO was achieved by running the reaction 

between GO and EDA at room temperatures overnight.     
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4.3.4 Spherical CeO2 nanoparticles synthesis by EDA 

To investigate the effect of the temperature and heating source on the properties of CeO2 

nanostructures, different syntheses were performed using Ce(NO3)3.6H20 as the same precursor 

for the Ce ions but with different conditions. The details of the different methods are outlined in 

the next section. The CeO2 nanoparticles prepared from all protocols were separated by 

centrifugation and repeatedly washed first with DI-water until the pH of the supernatant reached 

7 and finally with ethanol. Nanoparticles were then dried in an oven at 60oC overnight.    

Spherical CeO2 nanoparticles were first prepared at room temperature as described by Kar 

et al. 148 with a little modification. A solution of 1 mmol of Ce(NO3)3.6H20 in 50 ml 

ethylenediamine (EDA) was aged under vigorous stirring for 24 h, sample denoted as CeO2-RT. 

After complete washing and drying, as described above, a portion of the as-prepared powder was 

calcinated by heat treatment in a muffle furnace under air. The furnace temperature was ramped 

to 450 oC at a rate of 25 oC/min. and then held at 450 for 3 hours. The calcinated powder was then 

cooled to ambient temperature and crushed. This calcinated sample is denoted here as CeO2-RTC. 

A typical synthesis similar to that of CeO2-RT was carried out but under reflux for 24 h at relatively 

low temperature of 110oC using a conventional hot plate. Upon completion, the precipitate was 

treated the same way as before without further calcination. This sample is denoted as CeO2-CH. 

For comparison, a solution of 1 mmol of  Ce(NO3)3.6H20 in 50 ml ethylenediamine (EDA) was 

irradiated in a domestic microwave oven for 2 min at 1200 W. The CeO2 nanoparticles from this 

method is denoted as CeO2-MW.      
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4.3.5 CeO2/graphene nanocomposites synthesis by EDA 

In a similar way described above for the synthesis of RGO assisted by EDA, the CeO2/RGO 

nanocomposite was prepared as follow:  a mixture of GO-H2O and EDA (1:3 vol. ratios) was first 

sonicated for 15 min, then a pre-determined amount of Ce(NO3)3.6H20 was added and then the 

whole mixture was vigorously stirred and refluxed at 110 oC for 24 hour under atmospheric 

pressure. The addition of EDA to GO led to an instantaneous color change from yellow-orange to 

grey and finally to black after the reaction is complete. Upon completion and after cooling the 

mixture to ambient temperature, the final product was separated and then washed six times with 

DI water and finally with ethanol and then left in an oven at 60 oC overnight to dry out. The same 

protocol was applied to synthesize CeO2 nanoparticles on partially RGO by conducting the in situ 

reduction and growth at room temperature. To test the effect of the composition ratio between 

CeO2 and RGO, the initial ratio between the Ce precursor and GO was varied. 

4.3.6 Au-CeO2/graphene ternary nanocomposites for CO catalytic oxidation 

The ternary composites of Au loaded onto CeO2/RGO have been assessed in CO 

conversion. General protocols of catalyst preparation, data measurement and analysis are outlined 

in this section. The colloidal deposition of Au nanospheres on the composite support (CeO2, CeO2-

GO, CeO2-partially RGO and CeO2-RGO) or on the individual components was achieved as 

follows: 20 mg of the solid support was suspended in 20 ml DI water and sonicated at room 

temperature for 15 min. A few drops of NaOH aqueous solution were added to the obtained 

suspension to adjust the pH to the isoelectronic point of CeO2 
150 and hence maximize Au loadings. 

A designated amount of HAuCl4 dissolved in water (20 ml, 1 mM) was added to the suspension 

while stirring. The mixture was brought to boiling while stirring and 10 ml of 1% aqueous solution 

of trisodium citrate was added. After the reaction has complete, the mixture was centrifuged and 
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the precipitate was washed three times in boiling DI water to remove excess tetrachloauric acid 

and residual anions and finally was dried in an oven at 80 oC overnight.  

Chloroaurate is commonly employed as a precursor for preparation of Au-based catalysts 

and thus chloride ions are among the residuals that can be retained in the catalysts and reduce their 

activities. It is well established that chloride (Cl-) content even as low as 0.0006 (atom ratio), can 

have a significant detrimental effect on the catalytic activity of Au catalysts in a concentration-

dependent manner. 151 Since halides have a high affinity to Au and can have high mobility on the 

surface of a hydroxylated support, Cl- can cause Au species to agglomerate during the heat 

treatment of a catalytic reaction and thus lowers the catalytic activity. It might also modify the 

active sites on the metal surface either electronically or by physical adsorption onto CO active sites 

of Au nanoparticles (poisoning). Hindering the reducibility of gold may deactivate Au metal. 152-

156 For these reasons, multiple washings were conducted to eliminate or minimize the presence of 

Cl- or other halide species in our prepared catalyst.  

To address the critical role of intensive washing in increasing the chances of CO adsorption 

and improving the catalytic activity of Au-based catalyst, two experiments were done on the same 

catalyst without washing and after an intensive washing of the catalyst with the standard 

procedures. The detrimental effect of residual chloride in Au catalysts was seen. It is generally 

accepted that chloride can affect the activity in two ways. One way is to cause agglomeration of 

nanosized Au particles upon heat treatment or to poison the active sites at the metal surface. 151 

Beside halides, it is know that anions like phosphates and sulfates can suppress the catalytic 

activity of solid-supported Au. No detailed studies exist on whether or how nitrate would 

negatively affect Au catalysis. 157 The nature of the wash solution is critical and can result in an 

active or inactive catalyst. For these reasons, after centrifugation, the solid was repeatedly washed 
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with hot DI water. As determined from ICP measurements for representative catalysts, the Au 

content in Au-CeO2 and Au-CeO2-GO ranges between 4.3 to 5% by weight.  

Experiments for the CO catalytic oxidation were performed using a fixed bed-

programmable flow tube furnace reactor (Thermolyne 2100) 107 as shown in Fig. 4.1. In a typical 

experiment, 20 mg of the test catalyst was dispersed in glasswool and placed inside a pyrex glass 

tube. The sample and furnace temperatures were measured by a thermocouple placed in contact 

with the catalyst bed and in the middle of the tube furnace, respectively. Signals from 

thermocouples were processed using an SC-2345 data acquisition board. To plot temperatures and 

other measurement parameters, a data acquisition software using Labview was utilized.  A gas 

mixture consisting of 4 wt % CO and 20 wt % O2 in balance helium was passed over the sample 

at a flow rate of 100 cm3/min while the temperature was ramped to 400oC at maximum. The flow 

rate was controlled by a set of MKS digital mass flow meters. The conversion of CO to CO2 was 

monitored using an online infrared gas analyzer (ACS, Automated Custom Systems Inc.) to detect 

the exit gas, which is then vented to outlet.  

 

Figure 4-1 Schematic representation of typical set up used in CO catalytic oxidation 



 

81 

 

4.4 Results and Discussion  

4.4.1 Controlled reduction of GO to RGO by EDA 

The successful controlled reduction of GO to RGO with different extents of oxygen 

containing functional groups by EDA under solvothermal conditions of both room temperature 

and 110oC was verified by monitoring the UV absorption spectroscopy, X-ray diffraction (XRD) 

and X-ray photoelectron spectroscopy (XPS). The UV-visible spectrum of GO dispersion in water 

is featured by two absorption bands in the range of 200-400 nm; a little shoulder at the lower 

energy part (~305 nm) due to the n-π* electronic transitions associated with the bonding in oxygen 

containing functional groups and a maximum absorption peak in the higher energy part around 

230 nm due to the π-π* electronic transitions associated with the C-C bonds. 115, 128, 158  Figure 4.2 

(a-c) compares the UV-Vis spectra of GO prior to and post the solvothermal treatment in EDA at 

room temperature and at 110oC for 24 hours. As indicated, the characteristic shoulder of GO at 

305 nm disappears after EDA-assisted reduction, and the absorption peak of GO at 230 nm shifts 

due to the π-π* transitions of extended aromatic C–C bonds as the electronic conjugation within 

graphene that is being restored in the RGO. 115, 128, 132, 158 
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Figure 4-2 UV-vis spectra of a) GO suspension in DI water, b) partially RGO prepared by EDA-

solvothermal reaction at room temperature and c) RGO prepared by reduction of GO in 

EDA at 110oC .  

As a result of the oxidation treatment of graphite, the XRD diffraction pattern of the 

exfoliated GO is featured by a peak at 2 = 10.7o with a d-spacing of 8.14 Å (compared to a typical 

value of 3.34 Å in graphite) resulting from the introduction of carboxyl groups along the lateral 

and terminal sides of the sheets and epoxy and hydroxyl groups between the carbon sheets. 16-18,21 

Figure 4.3 (a-c) compares the XRD diffraction pattern of GO (Fig. 4.3-a) after overnight reflux 

in EDA at room temperature (Fig. 4.3-b) and conventional heating of the GO solution in EDA at 

110 oC overnight (Fig. 4.3-c). Following the EDA-solvothermal treatment for 24 h, the intensity 

of the 2 = 10.7o peak (Fig. 4.3-a) decreased significantly indicating the conversion of GO into 

RGO (Fig. 4.3-c) while the intensity for the sample prepared at room temperature exhibits features 

characteristic to Go and RGO phases (Fig. 4.3-b).  
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Figure 4-3 XRD diffraction patterns of a) GO b) partially RGO by EDA at RT and c)RGO by GO 

treatment in EDA at 110 oC for 24 h.  

To further verify the extent of reduction of GO in EDA after reflux for 24 h at room 

temperature and 110 oC, the XPS spectra of C1s and O1s were measured and compared with that 

of GO prior to the solvothermal treatment. Figure 4.4-a shows the C1s spectrum of GO with the 

characteristic peak to the sp2-bonded carbon C=C at 284.5 eV, in addition to peaks corresponding 

to oxygen-containing functional groups between 285.5 and 289 eV. Typically, peaks at 289, 287.7, 

286.7 and 285.6 are assigned to the C1s of the HO-C=O, C=O, C-O and C-OH groups, 

respectively. 112, 113 As expected, significant decrease of the peaks corresponding to oxygen-

containing functional groups is observed after the solvothermal treatment of GO in EDA at room 

temperature as shown in Fig. 4.4-b. A much higher and more significant reduction deoxygenation 

can be observed by looking at C1s spectrum of RGO synthesized at 110oC in EDA as displayed in 

Fig. 4.4-c.  The UV-Vis, XRD and XPS data clearly indicates that most of the oxygen-containing 

functional groups in GO are removed after solvothermal treatment in EDA at temperature low as 
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110oC.  This confirms that EDA-solvothermal treatment of GO can provide a simple and mild 

route for the production of RGO with controlled level of oxygen extent. Comparisons of high 

resolution XPS spectra of O1s of GO, partially RGO and RGO is shown in Fig. 4.5.    

 

Figure 4-4 High resolution XPS spectra of C1s of a) GO b) partially RGO by RT treatment in EDA 

and c) RGO prepared by EDA at 110 oC for 24 h.   

 

Figure 4-5 High resolution XPS spectra of O1s of a) GO b) partially RGO by RT treatment in EDA 

and c) RGO prepared by EDA at 110 oC for 24 h. 
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Typical TEM images of the synthesized RGO sheets by solvothermal treatment of GO in 

EDA are shown in Fig. 4.6. The TEM images clearly show the 2D nature of graphene sheets with 

the naturally-wrinkled and partially folded layers. These parts that are observed as folded and 

entangled with each other are basically due to the intrinsic nature of 2D structure of graphene 

sheets where they become thermodynamically stable via folding. 159 Also large areas which are 

covered with the sheets can be observed with lateral dimensions up to a few microns in length. 

From these observations, the silk-like nature, the smooth surface and the flexibility of the RGO 

sheets can be inferred.     

 

Figure 4-6 TEM images of RGO prepared by EDA-assisted solvothermal reduction at high 

temperature.  

Raman spectroscopy is a powerful, sensitive, nondestructive and rapid analytical technique 

that can provide information about the structural and electronic properties of carbon nanostructures 

and graphene. Figure 4.7 compares Raman spectra of graphite (Fig. 4.7-a), GO (Fig. 4.7-b) and 

RGO (Fig. 4.7-a). For graphite, the G band can be observed at 1580 cm-1 and no significant defects 

as indicated by the absence of the D band. For GO, two distinct bands are clearly observed at 1345 

and 1589 cm-1 due to the D and G bands, respectively. In case of RGO, same two distinct bands 

observed for GO can be seen also in RGO. The band at 1350 cm-1 is the disorder mode band that 

is related to the defects and disorder induced modes in graphene and the band at 1599 cm-1 is 
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attributed to the vibration of sp2-bonded carbon atoms in the planar hexagonal graphite lattice. The 

increased D/G ratio (~2.54) between the two bands compared to GO (~1.52) is an approximate 

indication of the disorder degree in RGO by the solvothermal treatment.  

 

Figure 4-7 Raman spectra of a) graphite b) GO and c) RGO prepared by EDA-solvothermal 

treatment. G band is positioned at 1580, 1589 and 1599 cm-1 for graphite, GO and RGO, 

respectively. D band is located at 1345 and 1350 cm-1 for GO and RGO, respectively. D/G 

ratio of GO and RGO is 1.52 and 2.54, respectively.     

4.4.2 Controlled synthesis of CeO2 and CeO2-RGO 

X-ray diffraction is very useful in interogating the bulk crystalline structure of solids. The 

analysis of the peak position, broadening, and shape symmetry can provide information about the 

crystal phase, the mean crystallite size and the strain, respectively. 72 In this work, the grain size 

was calculated using Sherrer equation and the microstrain was evaluated using the single line 

method by analyzing the line broadening. The Sherrer equation is given as  

𝑫 =  
𝒌. 𝝀

𝜷. 𝐜𝐨𝐬 𝜽
 



 

87 

 

where D is the mean crystallite grain size, k is the so-called shape factor (usually takes a 

value of 0.9), λ is the wavelength of the X-ray used (1.54056 nm for Cu-Kα1), β is the line 

broadening and θ is the angle of the X-ray reflection. For this purpose we used the broadening 

from the (111) and (220) XRD reflections which are manifested at lower angular values. Since 

strain effects could result in broadening the XRD reflections and this makes Sherrer’s formula 

valid only for unstrained grains, so the lattice constant has to be calculated first before applying 

the Sherrer’s equation in estimating the average crystallite size. For the cubic fluorite-structured 

cerium oxide grains, the lattice constant α can be calculated from the d spacing of the lattice planes 

as described in 135 using the equations  

𝒅𝒉𝒌𝒍 =  
𝜶

√𝒉𝟐+ 𝒌𝟐+ 𝒍𝟐
                          𝜶 =  

𝝀.√𝒉𝟐+ 𝒌𝟐+ 𝒍𝟐

𝟐 𝒔𝒊𝒏𝜽𝒉𝒌𝒍
 

where d is the d-spacing, α is the lattice constant, and h,k,l are the Miller indices.   

The lattice constants for all samples were calculated and compared to that of corresponding 

to bulk ceria (5.410 Ao), as shown in Table 4.1. From the calculated lattice constant, the relative 

strain (s) value can be estimated as 𝒔 =  
𝜶− 𝜶𝒃𝒖𝒍𝒌

𝜶𝒃𝒖𝒍𝒌
 , where 𝛼𝑏𝑢𝑙𝑘 is the lattice constant value of 

unstrained bulk ceria 135. From these calculations, we could see that the relative strain values listed 

in Table 4.1 are relatively small to broaden the widths of XRD peaks and it is reasonable to use 

Sherrer’s formula in determining the average crystallite size.  

The XRD diffraction patterns of nanosized ceria powder prepared by EDA under different 

conditions are shown in Fig. 4.8. All patterns exhibit well-resolved, broad XRD reflections 

characteristic of the single phase fluorite-type structure of cerium oxide (CeO2, ICCD 00-034-

0394) from the database, without any reflections from impurity phases. The characteristic XRD 

peaks, peak positions, and crystallite size of different samples are shown in Table 4.1. As listed in 
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the table, the peaks can be indexed to the (111), (200), (220), (311), (222), (400) and (331) planes 

characteristic to a cubic fluorite-structure CeO2 with space group Fm3m. The mean crystallite size 

of the particles was found to be dependent on the preparation conditions. The mean crystallite size 

of ceria prepared at room temperature is less than 3 nm and the size was found to increase to 5 nm 

upon calcinations. The heat treatment for 3 h at 450 oC likely led to sintering and formation of 

larger particles and as a result of this annealing, the crystal size increases by a factor of ~ 200%. 

The weak reflections in case of as-prepared CeO2-RT sample indicate either amorphous nature of 

the ceria or the ultrafine size of the crystals and from the calculation of average size based on 

Sherrer formula, the size of these CeO2-RT nanoparticles was found to be about 2.5 nm. The 

presence of well-defined peaks in as-prepared samples by MW (CeO2-MW) or with conventional 

heating (CeO2-CH) without calcinations treatments indicates the enhanced crystalline nature of 

samples in these preparations, as well as that with the grapheme (CeO2-RGO). 

Table 4-1 XRD measurements parameters and calculations    

Crystal Plane Peak Position (2θ) Degrees 

 CeO2-RT CeO2-RTC CeO2-CH CeO2-MW CeO2-RGO 

(111) 28.8 28.4 28.9 28.7 28.7 

(200) 32.7 32.9 33.7 33.2 33.3 

(220) 47.4 47.4 47.5 47.6 47.8 

(311) 56.3 56.2 56.5 56.4 57.0 

(222) 58.0 58.9 59.1 59.2 59.1 

(400) 69.8 69.3 69.6 69.4 69.2 

(331) 76.0 76.7 76.2 76.8 76.5 

(420) 79.2 79.0 78.7 78.9 78.4 

(422) 87.4 88.4 88.7 88.4 88.8 

      

Crystallite Size (nm) 2.5 5.7 2.7 5.1 3.3 

Lattice Constant (Ao) 5.37 5.42 5.34 5.38 5.35 

Stress  -0.138 0.044 -0.231 -0.094 -0.188 

Diameter (TEM) 7.2 nm 9.5 nm 7.7 nm 9.6 nm 5 nm 
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Figure 4-8 XRD diffraction patterns of a) CeO2-RT, b) CeO2-RTC, c) CeO2-CH, d) CeO2-MWI and 

e) CeO2-RGO. 

Semiconductor nanoparticles such as cerium oxide and others are widely characterized by 

absorption and fluorescence techniques. Optical systems in such techniques are not expensive and 

data acquisition is relatively fast. In addition, measurements are done while samples are in 

colloidal dispersions, thus retaining the chemistry at the surfaces. As shown in Fig. 4.9, samples 

strongly absorb UV light due to band-gap absorption, while there is much weaker absorption in 

the visible range. The optical absorption spectra dominated by a band at 300 nm confirm the 

presence of the Ce ions in the solution. The contribution of RGO to absorption at around 230 nm 

can be seen in the UV-Vis spectrum shown in Fig. 4.9-e. A typical photoluminescence spectrum 

of CeO2-RTC nanoparticles and the corresponding excitation spectrum are shown in Figs. 4.10-a-

b, respectively. The spectra show the wide band gap of the as-prepared ceria sample.   
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Figure 4-9 UV-Vis spectra of a) CeO2-RT, b) CeO2-RTC, c) CeO2-CH, d) CeO2-MWI and e) CeO2-

RGO. 

 

Figure 4-10 (a) PL spectrum of CeO2-RTC and (b) excitation spectrum  
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Transmission electron microscopy TEM was used to analyze the size, shape and 

microstructure of ceria nanoparticles prepared under different conditions. It is clear from all 

images shown in Fig. 4.11 (A-D) that CeO2 are structured as agglomerates of 20 nm in average 

constituting 3-5 nm individual nanoparticles. Due to the high surface stress, ceria nanoparticles 

exhibit high instabilities and under normal nucleation and growth conditions where capping agents 

are absent, they tend to grow beyond their nanoscale size either by aggregating or undergoing 

Ostwald ripening. 160 For instance, samples prepared at RT (Fig. 4.11-a), with conventional 

heating source at 110oC (Fig. 4.11-c) and with MWI (Fig. 4.11-d) exhibit spherical morphologies 

with some other irregular shapes. The size distribution plots for different ceria samples are 

presented in Fig. 4.12. (A-D).     

 

Figure 4-11 TEM images of a) CeO2-RT, b) CeO2-RTC, c) CeO2-CH and d)) CeO2-MW. Average 

size from analysis for A is 7.2 nm, B is 9.5 nm, C is 7.7 nm and D is 9.6 nm.  
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Figure 4-12 Size distribution analysis of a) CeO2-RT, b) CeO2-RTC, c) CeO2-CH and d)) CeO2-

MW. 

The structure, morphology and surface ornamentation of RGO sheets with CeO2 

nanoparticles are clearly visible in TEM images of CeO2-RGO composite shown in Fig. 4.13-A-

D, the size distribution analysis in Fig. 4.14 and EDX mapping images shown in Fig. 4.15. The 

TEM analysis shown in Fig. 4.14 reveals that the agglomeration tendency decreases significantly 

with the presence of graphene sheets. In this case individual nanoparticles of 3-5 nm can be 

observed. The good contrast between the composite counterparts (decorated graphene sheets and 

CeO2 nanoparticles) allows distinction of the CeO2 nanoparticles (showing up as black fine dots) 

from RGO. Images clearly show that surfaces of RGO sheets are evenly decorated with a 

homogenous distribution of CeO2 nanoparticles of uniform size and spherical shape. The evident 

even and homogenous distribution of the nanoparticles on the surface suggests that the nucleation 

process was even and abrupt and that the growth conditions were uniform in the system. The image 

analysis shows that the average size of CeO2 nanoparticles in this case is ~ 5 nm which is in 

agreement with that calculated from XRD measurements (~ 3-4 nm) using Sherrer equation.   
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Compared to all samples of CeO2 nanoparticles prepared as a comparison without graphene 

and although the corrugated nature of the layers, neither apparent agglomeration nor significant 

CeO2-void areas on the graphene sheets can be seen. The layered sheets possess large surface areas 

and even dispersion of CeO2 nanoparticles anchored on the surface. Such integration of 2D 

graphene with its large surface area and the highly dispersed nanoceria can be an exciting material 

for use in heterogeneous catalytic applications for both industrial and environmental applications. 

Anchoring CeO2 nanoparticles to graphene sheets by means of this approach may bring fascinating 

chemical and physical properties to explore and this can lead to a wide array of potential 

implementations of this composite material. It is worth discussing the role of RGO/GO on the 

growth of CeO2 nanoparticles and show how this influenced the final size and morphology. The 

different morphologies of unsupported CeO2 and that CeO2 anchored on graphene indicate that 

RGO plays a fundamental role in controlling the agglomeration process. The interaction with GO 

sheets initially promotes a covering of the sheets surfaces establishing some nucleation sites due 

to interaction with C-OH, C-O-C, and C-OOH groups exposed on GO surfaces and then during 

the growth processes nanoparticles are anticipated to form on these nucleation sites and remain 

dispersed while anchored to the sheets. Therefore the morphology of ceria nanoparticles on RGO 

is completely different from free-standing ceria that apparently are larger and agglomerated.   
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Figure 4-13 TEM images of CeO2-RGO (a-c) 1% RGO and (d-e) 20% RGO (mass ratio).   
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Figure 4-14 Size distribution analysis for ceria graphene and calculated average size is 5.04 nm.    

 

Figure 4-15 a) SEM image of CeO2-RGO and b-c) EDX mapping of CeO2-RGO showing cerium (b) 

and oxygen (c) mapping.    

X-ray photoelectron spectroscopy is a powerful and sensitive technique in surface analysis. 

In XPS, irradiating the specimen with monochromatic X-rays under ultrahigh vacuum conditions 

(~ 10-9 Torr) results in generation of photoelectrons. The kinetic energies of these ejected 

photoelectrons are then measured. The binding energy of the core level electron (𝐸𝑘) can be 

determined from the incident photon energy (ℎ𝜈) and the binding energy of the electron (𝐸𝐵) using 

the equation (𝐸𝑘 =  ℎ𝜈 − 𝐸𝐵). The binding energy is characterized by the element; however, it can 

be affected by the chemical environment. For example, factors such as oxidation state, particle size 
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and surface adsorbates can shift the binding energy. Therefore, information from XPS about 

chemical shifts should be treated with care.  

To determine the oxidation state of the elements, XPS measurements/analyses was 

performed on a Thermo Fisher Scientific ESCALAB 250 imaging system using an Al Kα 

monochromatic X-ray source. Pass energy of 160 eV was used to conduct a survey on all samples 

and an energy of 23.5 eV with an operating pressure of 5 x 10-8 was used to conduct a high-

resolution scan for analyzing the oxidation state of the elements, Ce3d for example. From XPS 

measurements, the stoichiometry and bonding type in ceria can be determined from the 

characteristic peaks observed for O1s and Ce3d.   

Generally, XPS spectrum of Ce3d in CeO2 is featured by ten peaks constituting two sets; a 

set of 5 peaks of Ce 3d5/2 level with v structure and a set of five peaks of Ce 3d3/2 level with u 

structure. The assignment of these ten peaks is shown in Table 4.2. As described in the literature, 

135, 141, 148, 161, 162 six of those ten peaks are attributed to Ce4+ (𝑣, 𝑣 ′′, 𝑣 ′′′, 𝑢, 𝑢′′, 𝑢′′′) and the remaining 

four are attributed to Ce3+ (𝑣𝑜 , 𝑣 ′, 𝑢𝑜 , 𝑢′). From the corresponding sums of the integrated areas of 

peaks related to the Ce4+  and Ce3+ XPS signals, the relative concentrations or proportions of Ce4+  

and Ce3+ can be calculated  as described in 141 using the following equations: 

[𝑪𝒆𝟑+] =  
𝑪𝒆𝟑+

[𝑪𝒆𝟑+ + 𝑪𝒆𝟒+]
 

[𝑪𝒆𝟒+] =  
𝑪𝒆𝟒+

[𝑪𝒆𝟑+ + 𝑪𝒆𝟒+]
 

𝑪𝒆𝟒+ = 𝒗 +  𝒗′′ + 𝒗′′′ +  𝒖 +  𝒖′′ +  𝒖′′′ 

𝑪𝒆𝟑+ = 𝒗𝒐 +  𝒗′ +  𝒖𝒐 +  𝒖′ 



 

97 

 

From the ratios of integrated peaks areas of Ce3+ to that of total Ce3+ and Ce4+ the atomic 

fraction of Ce3+ was calculated as follow: where Ax integrated area corresponding to peak x  

[𝑪𝒆𝟑+] =  
[𝑨𝒗𝑶

+  𝑨𝒗′ +  𝑨𝒖𝑶
+ 𝑨𝒖′]

[𝑨𝒗𝑶
+  𝑨𝒗 +  𝑨𝒗′ +  𝑨𝒗′′ +  𝑨𝒗′′′ + 𝑨𝒖𝑶

+  𝑨𝒖 +  𝑨𝒖′ +  𝑨𝒖′′ +  𝑨𝒖′′′]
 

 

XPS spectra of all samples reveal the prominent presence of oxygen and mixed valence 

state cerium ions (Ce4+ and Ce3+) species. The comparison of Ce3d spectra of different CeO2 and 

CeO2-RGO samples are presented in Fig. 4.16. In all spectra the observed overlapping peaks are 

attributed to the trivalent Ce3+ and the tetravalent Ce4+ oxidation states. In analyzing the relative 

proportions of Ce3+ and Ce4+ in these CeO2 and CeO2-RGO samples, Ce3d spectra curves were 

fitted with ten peaks using Gaussian functions, as described in the literature. 141, 148, 161 The 

parameters obtained from fitting included the peak position, intensity, area, area ratio and the full 

width at half maximum (FWHM) for each peak and the relative proportions of Ce3+ and Ce4+ 

determined for different samples are shown in Table 4.3. The results of peak fitting of Ce3d spectra 

of ceria samples prepared under different conditions and that in CeO2-RGO nanocomposites along 

with the calculation of the corresponding [Ce3+] and [Ce4+] are summarized in Table 4.4. As can 

be seen in Fig. 4.16 the 3d core level spectra of Ce ions are in the range of 870-925 eV. The fitted 

peaks on the graph labeled (𝑣, 𝑣 ′′, 𝑣 ′′′, 𝑢, 𝑢′′ 𝑎𝑛𝑑 𝑢′′′) are corresponding to Ce4+ and overlapping 

peaks labeled (𝑣𝑜 , 𝑣 ′, 𝑢𝑜 𝑎𝑛𝑑  𝑢′) are corresponding to Ce3+.   

The results of Gaussian fitting reveal that the proportion of Ce3+ is 45.0 % for CeO2 

prepared at room temperature, 50.0 % for sample calcinated at 450 oC for 3 h, 37.0 % for sample 

prepared by MWI for 2 min at 1200 W, while it is only 33 % for the sample prepared by reflux at 

110 oC for 24 h with a conventional hot plate, both run on the CeO2 and CeO2-RGO. The high 
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concentration of Ce3+ in case of CeO2-RT revealed by the quantitative analysis of Ce3d spectra 

reflects that ceria nanoparticles prepared under such conditions are highly defective. However, the 

thermal treatment of these CeO2-RT nanoparticles led to a reduction of the [Ce3+] which infers the 

enhanced crystalline structure upon calcinations. The peaks characteristic to Ce3+ (𝑣 ′ 𝑎𝑛𝑑 𝑢′) were 

reduced when the syntheses were done at higher temperature whether from microwave or 

conventional heating sources. The defects [Ce3+] decreased from 37 % in case of CeO2-MW to 33 

% for CeO2 in CeO2-CH and CeO2-RGO and such decrease in oxygen vacancies or defect 

concentration may indicate larger sizes of CeO2 nanoparticles in such cases 141. Nonetheless, the 

concentration of defects in all CeO2 samples is relatively high and these defects were found to 

activate oxygen 163 which increases the potential of such structures as active supports for Au-based 

catalysts in CO oxidation. A considerable proportion of trivalent Ce3+ ions were detected in XPS 

measurements but no reflections due to the crystalline Ce2O3 were observed in the XRD diffraction 

patterns. This may indicate the Ce2O3 phase is amorphous and that amorphous nature of the Ce2O3 

indicates that this phase is located at the grain boundaries and grain surface 135.  Among challenges 

that some researchers have experienced in investigating ceria and ceria-based structures by XPS 

is the charging problem. Such challenges can lead to different results and hence different 

interpretations 141 and in our case this may account for the small shifts of peaks to relatively lower 

or higher binding energies, which in turn may indicate the relative increase in the content of the 

respective species.  
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The XPS spectra of O1s are shown in Fig. 4.17. All spectra exhibit 2 peaks; a main peak 

at 529.5 eV 135 which is ascribed to O2- ions and a less intense peak shifted to higher energy which 

can be ascribed to OH- ions of surface hydroxyl groups. We notice that this peak is much smaller 

in case of calcinated sample (CeO2-RTC). Upon calcinations and heat treatment, the hydroxyl 

content decrease and thus the corresponding peak intensity also decreases. Comparison of high-

resolution XPS C1s spectra is presented in Fig. 4.18.  

 

Figure 4-16  XPS Ce3d a) CeO2-RT, b) CeO2-RTC, c) CeO2-CH d) CeO2-MW and e) CeO2-RGO. 
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Table 4-2 Gaussian peak parameters of the two series of peaks assigned to Ce3d XPS spectra 

Series  Set  Origin  Shift (eV)      Intensity      Produced by …state  

   RT RTC CH MW RGO RT RTC CH MW RGO  

Ce 3d5/2 𝑣 Ce4+ 883.54 883.47 880.39 881.05 880.44 8358.34 5356.82 14377.99 22167.82 14815.44 𝐶𝑒 3𝑑9 4𝑓2 𝐿𝑛−2 

𝑣 ′′ Ce4+ 887.54 887.11 883.34 883.81 883.43 6120.45 5641.6 4815.02 10347.72 6292.25 𝐶𝑒 3𝑑9 4𝑓1 𝐿𝑛−1 

𝑣 ′′′ Ce4+ 897.1 896.9 885.67 885.89 885.34 20408.17 16931.48 4952.64 7593.85 5205.19 𝐶𝑒 3𝑑9 4𝑓0 𝐿𝑛 

𝑣𝑜 Ce3+ 880.94 880.85 887 887.8 887.67 22361.93 17818.42 3268.65 5038.44 3448.71 𝐶𝑒 3𝑑9 4𝑓2 𝐿𝑛−1 

𝑣 ′ Ce3+ 885.37 885.1 896.48 897.2 896.4 7778.77 4567.73 13141.7 19640.2 13427.09 𝐶𝑒 3𝑑9 4𝑓1 𝐿𝑛 

Ce 3d3/2 𝑢 Ce4+ 901.41 900.7 899.02 899.67 898.9 9448.8 3424.88 11519.2 15259.7 11963.08 𝐶𝑒 3𝑑9 4𝑓2 𝐿𝑛−2 

𝑢′′ Ce4+ 905.9 905.73 901.64 901.28 901.99 8502.59 6056.96 6721.47 7258.33 7854.13 𝐶𝑒 3𝑑9 4𝑓1 𝐿𝑛−1 

𝑢′′′ Ce4+ 915.3 915.2 903.06 903.36 903.49 14386.54 12404.36 3209.44 8663.71 3327.5 𝐶𝑒 3𝑑9 4𝑓0 𝐿𝑛 

𝑢𝑜 Ce3+ 899.7 899.3 905.72 906.35 905.82 15807.74 13251.12 4679.94 7574.56 4671.6 𝐶𝑒 3𝑑9 4𝑓2 𝐿𝑛−1 

𝑢′ Ce3+ 903.4 902.25 914.7 915.5 914.8 6631.87 8198.92 9702.8 13888.83 9668.76 𝐶𝑒 3𝑑9 4𝑓1 𝐿𝑛 

Table 4-3 Fitting parameters of the two series of peaks assigned to Ce3d XPS spectra for different ceria samples 

Series  Set  Origin  Area      Area%      FWHM     

   RT RTC CH MW RGO RT RTC CH MW RGO RT RTC CH MW RGO 

Ce 

3d5/2 
𝑣 Ce4+ 24298.88 14065.97 68915.65 92394.3 67924.94 6.64 5.24 32.18 24.48 29.65 2.68 2.42 4.42 3.85 4.23 

𝑣 ′′ Ce4+ 17793.03 14813.76 9633.01 31483.99 13702.95 4.87 5.53 4.5 8.35 5.99 2.68 2.42 1.85 2.81 2.01 

𝑣 ′′′ Ce4+ 59116.82 44458.8 9908.31 23105.05 11389.85 16.25 16.66 4.64 6.13 4.98 2.67 2.42 1.85 2.81 2.02 

𝑣𝑜 Ce3+ 93203.35 74266.21 6539.32 15329.97 7510.43 25.46 27.65 3.06 4.07 3.29 3.85 3.85 1.85 2.81 2.01 

𝑣 ′ Ce3+ 22614.01 10185.35 26428.41 59757.31 29380.79 6.19 3.8 12.42 15.94 12.91 2.68 2.06 1.86 2.81 2.02 

Ce 

3d3/2 
𝑢 Ce4+ 27961.54 5281.65 28446.77 40069.01 27174.5 7.7 1.98 13.38 10.7 11.95 2.73 1.42 2.28 2.42 2.1 

𝑢′′ Ce4+ 25161.23 17924.01 17439.17 22008.58 21769.17 6.94 6.74 8.21 5.88 9.59 2.73 2.73 2.39 2.8 2.56 

𝑢′′′ Ce4+ 42573.26 36707.52 8327.05 26269.93 9222.78 11.79 13.86 3.92 7.02 4.06 2.73 2.73 2.39 2.8 2.56 

𝑢𝑜 Ce3+ 33931.19 25129.63 12142.34 22967.43 12948.21 9.34 9.43 5.73 6.15 5.71 1.98 1.75 2.39 2.8 2.56 

𝑢′ Ce3+ 17414.01 24262.59 25275.47 41968.72 26798.75 4.8 9.11 11.97 11.28 11.86 2.42 2.73 2.4 2.79 2.56 

 

Table 4-4 comparison of concentrations of Ce III and Ce IV in different ceria samples prepared under different conditions 

 CeO2-RT CeO2-RTC CeO2-CH CeO2-MW CeO2-RGO 

[Ce4+] 54.19 50.01 66.83 62.56 66.22 

[Ce3+] 45.79 49.99 33.18 37.44 33.77 
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Figure 4-17  XPS O1s a) CeO2-RT, b) CeO2-RTC, c) CeO2-CH d) CeO2-MW and e) CeO2-RGO.  

 

 

Figure 4-18 XPS spectra of C1s of a) CeO2-RT, b) CeO2-RTC, c) CeO2-CH d) CeO2-MW and e) 

CeO2-RGO. 
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Raman spectroscopy is a powerful, sensitive, nondestructive and rapid analytical technique 

that can provide accurate information about the structural, symmetrical and electronic properties 

of nanostructures. Owing to the strong sensitivity of the phonon characteristics to the crystalline 

nature of the material, at a local level, the frequency shift and asymmetric broadening of Raman 

bands and can be useful for systematic characterization of nanomaterials.  Therefore, Raman 

studies have been frequently used to investigate the structure and properties of ceria-based 

structures. 164 It is worth mentioning that changes in size of spherical nanoparticles can result in 

different Raman shifts according to the relationship of phonon dispersion for the phonon branch 

characteristics to which the Raman active mode belongs. For example, the frequency/peak position 

of F2g Raman band in CeO2 down-shifts to lower energy, whereas that of Eg band in TiO2 shifts to 

higher energy as the crystallite size decreases. 160 In case of ceria, decreasing the particles size 

causes lattice expansion and changes lattice constants and this in turn leads to a shift in the F2g 

peak position (originally 464 cm-1) to lower energies and broadens the Raman line-width. 165 The 

direct relation between softening and broadening of Raman modes to the nanoparticles size makes 

Raman spectroscopy very useful to estimate the average size as a quick check of the nanocrystals 

size. The data measurement is advantageous in being readily available, non-destructive, no 

requirement special sample preparation applicable to different ceria-based samples. A one 

consequence of phonon confinement in spherical nanocrystals is that the frequency of an acoustic 

Raman mode scales as the inverse of particles dimensions. This observation has been used in 

estimating the average size of nanoparticles, particularly in the low-frequency region. The rare 

earth oxide, CeO2, is a typical example in which the line-width and frequency of Raman active 

modes vary with the size and thus an average size of the particles can be estimated based on the 

Raman spectra. 160, 166, 167  
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Fluorite-structured solids such as CeO2 has six optical-phonon branches, which yield three 

zone center frequencies, 272 cm-1, 545 cm-1 and 465 cm-1 due to the doubly degenerate TO mode, 

the non-degenerate LO mode and the triply degenerate Raman active mode, respectively. The 

triply degenerate active F2g mode at ~ 464 cm-1 is given directly by measuring the Raman spectrum 

of bulk cubic-fluorite phase ceria. 164, 167, 168 As the crystals size decreases the peak of this active 

F2g mode near 464 cm-1 down-shifts to lower energies and the line-shape gets asymmetric and 

broadened due to the inhomogeneous strain broadening introduced by the phonon confinement 

and dispersion in particles sizes. 164, 168 Several Raman studies have shown that the Raman peak 

energy of CeO2 nanocrystals at room temperature decreases and the line-width increases with 

decreasing the particle size and this can serve as a quick check for the size. Mazali et al. 160 showed 

that the frequency of the F2g mode exhibits a quadratic dependence on 1/d, where d is the average 

size of the particles.  

Figure 4.19 shows Raman spectra of ceria nanoparticles prepared under different 

conditions. The Raman shift due to F2g phonon mode (455 cm-1) 169 is presented in all samples. 

The main band at about 460 cm-1 corresponds to the triply-degenerate allowed F2g mode of fluorite 

CeO2. 
170 It can be seen that with decreasing size down to few nanometers (samples a-d), the line-

shape of the Raman allowed mode becomes progressively broader and asymmetric changes in the 

signal profile as well as a decrease in the intensity are observed, compared to bulk CeO2 (sample 

e). 171 As compared with micron-sized CeO2 the frequency shift from 464 cm-1 to 455 cm-1 is a 

size-induced property that has been described in ceria based material based on the phonon 

confinement model. 160 The narrowing of the F2g band after calcinations reflects an increase in the 

size of crystals resulting from sample annealing. The size increased by a factor of two as calculated 

from XRD.       
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Figure 4-19 Raman spectra of a) CeO2-RT, b) CeO2-RTC, c) CeO2-CH d) CeO2-MW and e) 

commercial micro-sized CeO2 nanoparticles using 5 mW 532 nm excitation laser.  

Ceria has fluorite structure belonging to the space group Fm3m and have a simple 

vibrational spectrum with one IR active phonon and one Raman active phonon in the spectral 

region (300-700 cm-1) where graphene shows a very small negligible contribution to the Raman 

spectra in this range (Fig. 4.20). In Raman spectrum of CeO2-graphene, two distinct bands are 

clearly observed: the band at 1313 cm-1 is the disorder mode band that is related to the defects and 

disorder induced mode in graphene and the band at 1598 cm-1 is attributed to the vibration of sp2-

bonded carbon atoms in the planar hexagonal graphite lattice. The increased D/G ratio (~2.64) 

between the two bands compared to GO or RGO might reveal surface reconstruction of RGO 

induced by CeO2 nanoparticles anchored on the surface.  
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Figure 4-20 Raman spectra of CeO2-RGO nanocomposites using 532 nm excitation laser (5 mW) 

showing the F2g mode of CeO2 posiitoned at 453 nm and the D and G bands of graphene at 

1313 and 1598 nm, respectively.  

Our preparation of such CeO2/RGO nanocomposites with a high-degree of crystallinity, 

homogenous composition and controllable morphology with simple solvothermal route is very 

advantageous in a number of ways.  First, the EDA-assisted synthesis of CeO2/RGO 

nanocomposite is facilely conducted in a single-step at mild conditions without post-synthesis 

treatments and at a relatively low temperature of 110oC. Second, the reaction proceeds in EDA, 

which is safer than other toxic or explosive organic reducing agents such as hydrazine and 

hydrazine derivatives, and no additional reagents are added, making it an environmentally-friendly 

and economically-favorable approach. Third, the one-pot synthesis is simple and scalable 

facilitating the potential for large scale production with low cost synthesis and processing. Fourth, 

this EDA-assisted synthetic approach is shown to be compatible for shape controlled-fabrication 

of ceria nanoparticles. The method can serve also as a general strategy for decorating graphene 
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with various kinds of metal oxides, metals and semiconductor nanostructures of controlled size 

and morphology could be demonstrated. Fifth, such nanocomposite structure held the advantage 

of the unique extended microstructure of graphene sheets and the nanosized structure of ceria 

nanoparticles. Compared to traditional un-supported ceria nanoparticles, the overall size of this 

composite is larger, which could facilitate the separation and recycling in homogenous catalysis 

and environmental remediation processes. Sixth, the structure also retains the extremely high 

surface area of graphene sheets with the interconnected ceria nanoparticles uniformly dispersed on 

the surface. Because of the high catalytic activity of the CeO2/RGO nanocomposites in 

simultaneous catalytic CO oxidation, the composite structure may be a promising candidate in 

various potential catalysis applications, environmental remediation as well as other energy 

(promising anode materials for Li-ion batteries) and biomedical systems.  

4.4.3 CO Catalytic Oxidation 

Heterogeneous catalytic oxidation of carbon monoxide (CO) to carbon dioxide (CO2) using 

noble metal-based catalysts has been studied extensively as a model reaction. The popularity of 

CO oxidation as a model system stems from reaction simplicity where only diatomic molecules 

are involved and product formation takes place over few steps. It is also an important practical 

modality for CO removal in many environmental and industrial applications such as air 

purification, closed-cycle CO2 lasers, polymer electrolyte membrane (PEM) fuel cells, 172, 173 

purification of H2 from CO traces in H2 fuel cells, removing toxic CO in effluents and car exhaust. 

174 Oxidation of CO can be catalyzed with highly dispersed noble transition metals, particularly 

Au, Pd and Ru, on various reducible oxides as supports at low temperature. 138, 175, 176 Moreover, 

the sensitivity of CO molecules to the structure of the surface and can be used to probe active sites 

on metal surfaces, which can help understanding the nature and mechanism of active coordination 
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sites. 177 Adsorption of CO on the surfaces can be simply traced by IR spectroscopy, among others. 

Nevertheless, a critical point in CO catalytic oxidation is to develop simple strategies for preparing 

catalysts with higher reactivity and stability by increasing the metal-support interaction. 178  

Different catalyst supports possess different activation energies, so reducible metal oxides 

such as CeO2, TiO2 and Fe2O3 are preferred in catalyzing CO oxidation compared to irreducible 

metal oxides such as Al2O3, SiO2 and ZrO2. Such metal oxide support can directly catalyze 

activation of the molecular oxygen, 179 favor electronic interaction with transition metal catalyst 

180 or impose strains on metal clusters. 181 Metal support structures of nanocrystalline size are more 

active than larger sized crystals. Among reducible metal oxides, CeO2, has gained particular 

interest and is widely used in catalytic industry and as an active and thermally stable support for 

noble and transition metal-based catalysts, such as Au, Pd, and Cu. Ceria nanostructures possess 

high oxygen storage capability under reducing reaction conditions which allow generation of 

oxygen vacancies and lead to enhanced activity. These oxygen vacancies are mobile on the surface, 

can form oxygen vacancy clusters, 182 prevent the sintering of metal clusters 183 and provide 

nucleation sites for metal structure.  184 

 

Although bulk Au  is considered relatively to be inert and catalytically inactive, 177, 185 Au 

in nanosize regime has very rich and varied chemistry 186 and 2-10 nm Au nanospheres for example 

are exceptionally active catalysts. 107, 187 These nanostructures of gold metal of small size, high 

surface area and dense population of unsaturated coordination sites have shown increased activity 

over conventional catalysts in catalyzing number of inorganic and organic reactions. 107 Some 

examples include catalyzed conversions such as hydroamination of alkynes and alkenes and 
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hydrochlorination of acetylene and alkynes over oxide-supported Au nanostructures. 188 Also Au-

based catalysts have been intensively used for oxidation of CO to CO2 at low temperature 107, 188.  

The rationale behind the change in CO catalytic oxidation activity between bulk and 

nanosized Au is the nature of the active sites. The low activity of bulk Au is attributed to the lack 

of defect sites such as steps, edges and corners on the surface. 189 Accordingly, neither molecular 

nor dissociative oxygen is chemisorbed on the surfaces of clean single crystals of Au nor CO is 

only weakly adsorbed non-dissociatively. 190 However, CO and O2 were found to be adsorbed with 

lower adsorption energies on Au atoms with lower coordination numbers, 191 which is the case in 

Au nanoparticles and clusters, and on the rough surfaces of microcrystalline Au or evaporated Au 

films. 192 Thus the activity of Au can be enhanced if the density of surface defects is increased. 

Such abundance of low-coordinated Au atoms at corners and edges can favor adsorption of CO 

and hence increases the catalytic efficiency. 193 In low-temperature CO oxidation, the binding of 

CO and O2 to the solid-supported Au is the key factor that activate the O-O bond to a peroxide-

like (or superoxide-like) adsorbable states. 187 

In addition to size, morphology and local coordination, the ability of gold to catalyze CO 

oxidation depends also on the oxidation state of the Au active species, whether cationic, anionic 

or zerovalent as well as the extent of interaction  between Au and the metal support. 188, 194 For 

instance, Guzman et al. 195 reported that positively charged Au species are more reactive than 

zerovalent species for catalyzing ethylene hydrogenation at 353 K and that the activity declines 

upon He treatment due to the reduction and aggregation of Au. However, preparing cationic Au 

catalysts which can stay stable during the reaction without reduction and formation of zerovalent 

state Au remains a challenge. Indeed the stability of Au in a given oxidation state (Au0, Au1+or 

Au3+) during a reaction is sensitive to reaction conditions  and the nature of the solid support. 188  
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Another important aspect in CO oxidation is the catalyst-support nature and the metal 

support interaction. In supported metal catalysts in general and Au in particular, the reducibility 

and surface area of the support are critical parameters in determining the efficiency of CO 

oxidation. Assuming the same loading percentage, the higher the specific surface area of the 

support, the farther apart the metal particles will be and in such case, they will likely retain their 

small size during the course of the catalytic reaction. A one challenge in CO oxidation studies is 

that comparing results from different groups is difficult even for the same type of catalyst and with 

similar size. The challenge is clear when we look at literature survey listed in Table 4.5 where 

catalysts with same chemical compositions show different trends even under similar experimental 

conditions. The difficulty arises from the differences in the operation conditions, the synthetic 

methods and the catalysts pretreatment protocols. For instance, among the reasons a wide variation 

in the activity of Au catalysts is reported in the literature as can be seen in the survey shown in 

Table 4.5 is the poisoning by the chloride. Also since Au cations are relatively easy to reduce in 

such a way that the details in the preparation procedure can cause variations in the activity. Also 

During the thermal reaction the size and oxidation state of Au can easily change. 157 For example, 

Au cations can be reduced at room temperature by light or air-borne reductants during preparation 

or storage. 196 Another challenge is elucidating the identities of the active species or reaction 

intermediates giving rise to reactivity of a catalyst. In this aspect, only average inference based on 

information such as the products of the catalytic reaction and the nature of the catalyst precursors 

rather than physical characterization can be drawn. 188 In many cases the use of tetrachloroaurate 

can lead to Au particles of relatively different shapes and sizes, among other nonuniform and 

complicated species. Thus the progress in understanding reaction mechanisms and catalysts 

structures is remarkably low since it requires an in-situ characterization of the catalyst under 
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reaction conditions due to the easy change of Au state 157, 188 and the sensitivity to differences in 

preparation procedures, pretreatment protocols and operation conditions 151 which makes 

comparing results from different groups difficult even for the same type of catalyst with similar 

size and compositions.    

   In this study, representative catalysts prepared by colloidal deposition of Au 

nanostructures on CeO2/RGO were characterized by UV-Vis, photoluminescence and TEM 

studies. A UV-Vis spectrum of representative CeO2/RGO catalyst exhibiting absorption features 

of both CeO2 at 305 nm and Au at 521 nm is displayed in Fig. 4.21. Figure 4.22 shows PL 

spectrum of CeO2/RGO (Fig. 4.22-a) and the corresponding excitation spectrum (Fig. 4.22-b). 

Representative TEM images of the catalyst showing the decoration of CeO2/RGO nanocomposites 

with Au nanostructures is shown in Fig. 4.23.    
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Table 4-5 Literature survey of CO oxidation activity of Au-CeO2 nanostructures of various sizes 

and shapes 

 

 Catalyst  Method Au (wt %) 100%  

T (oC) 

Ref  

1 Au/CeO2 

 

Support built around  

preformed Au  

1 % 125 197 

 Support built around 

 preformed Au 

3% 150 197 

Au/CeO2 DPU (urea) 1 % >200 197 

 DPU (urea) 3% ~125 197 

2 Au/CeO2 DP (Deposition Precipitation) 1% 175 198 

Au/CeEu DP 1% 150 198 

3 Au/CeO2 spheres Reduction with NaBH4  165 199 

Au/CeO2 Rods Reduction with NaBH4  220 199 

4 Au/CeO2 Spheres DP (Na2CO3) 3% 295 200 

Au/CeO2 Rods DP (Na2CO3) 3% 295 200 

5 Au/CeO2 DP (Na2CO3) 3% 301 201 

6 Au/CeO2 Bulk DP (Na2CO3) 2.8 ~ 100 202 

Au/CeO2 (flower-like) DP (Na2CO3) 2.7 ~ 100 202 

7 Au/CeO2 Cotemporary  5 327 107 

8 Au/CeO2 Cotemporary  2 245 138 

Au/CeO2 Cotemporary  5 211 138 

Au/CeO2 Cotemporary  10 156 138 

9 Au/CeO2 DP (NaOH) 2.8 20 203 

10 Au/CeO2 DP (KOH)  -50 204 

11 Au/CeO2 (Flower-like) DP 4.7 ~100 161 

12 Au/CeO2 LVCC 5 163 205 

13 Au/CeO2 Hydrothermal DP 

Hydrothermal Precipitation  

 20 

50 

206 

14 Au/CeO2 NaBH4 1 ~ 75 178 

15 Au/CeO2 DP (NaOH) 1.5 200 207 

16 Au/Ceria (Hollow-

spheres) 

DP NaOH  RT 208 

17 Au/CeTi DP (NaOH)  20 209 

18 Au/CeO2 DP, Thermal Treat. 0.09 20 210 

20 Au/Ceo2 Double impregnation 

method (DIM) 

1 150 211 

21 Au/ Ceo2 Double impregnation method 1 75 212 

22 Au/ Ceo2 Rods DP, Heat  150 213 

23 Au/ Ceo2 DP (NaOH)  330 214 

24 Au/ Ceo2 DP urea  150 215 

25 Au/ Ceo2 Direct anionic exchange (DAE) 1.79 75 216  

26 Au/ Ceo2 DP (NaOH)  40 217 
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Figure 4-21 UV-Vis spectrum of Au-CeO2/RGO showing two absorption peaks due to Au and CeO2 

nanoparticles. 

 

Figure 4-22 (a) Photoluminescence spectrum of Au-CeO2/RGO tertiary composite with an emission 

peak at 424 nm due to CeO2 using 370 nm excitation wavelength; b) an excitation spectrum 

with emission filter set at 427 nm.  

 

Figure 4-23 TEM image of Au-CeO2/RGO catalyst prepared by loading Au nanostructures onto the 

CeO2-RGO nanocomposites prepared in EDA at 110oC. 
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It is generally accepted that the catalytic activity strongly depends on the particle size and 

dispersion which in turn is very sensitive to the procedure of preparation and pre-or post-

treatments. 152-157, 218 Plots of CO conversion percentages versus temperature for different 

composites are shown in Figs. 4.24 and 4.25. It can be seen that increasing the reaction 

temperature inside the tune furnace lead to a gradual ramp in percentages of CO conversion. The 

catalytic efficiency of CeO2 is apparently much less than different CeO2-Au nanostructures. For 

instance, the CeO2-RGO composite structure shows higher activity where a 100% CO conversion 

is achieved at 285 oC compared to 340oC of pure CeO2. The even distribution of CeO2 

nanoparticles on the surface of RGO and the strong interaction between the metal oxide and the 

carbon network might have enhanced the metal support-interaction and provided even accessible 

catalytic centers with fewer tendencies to agglomeration.  

 

Figure 4-24 CO conversion percentages as function of temperature for different catalysts: a) Au-

CeO2/RGO with high graphene content, b) CeO2/RGO, c) Au-GO, d) Au-partially RGO, e) 

pure CeO2 and f) Au-RGO. 
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The increased catalytic activity and enhanced performance in case of the binary composite 

of CeO2 and RGO (CeO2/RGO) relative to individual pure CeO2 may be due to uniform and 

efficient dispersion of CeO2 nanoparticles which is the reactive metal oxide phase on the surface 

of RGO sheets as revealed from TEM images in Fig. 4.13 (A-D). The very small particle size of 

CeO2 and the large average dimensional area of graphene along with the interaction between the 

metal oxide and RGO sheets could have led to a more uniform dispersion of the reactive oxide on 

graphene layers. In addition, the fine size of CeO2 nanoparticles led to a higher surface area and 

since the oxygen storage capability of CeO2 is size dependent where presence of oxygen defects 

in ceria nanoparticles smaller than 5 nm leads to much higher activity. The introduction of 

graphene enhanced the dispersion of the metal oxide support and thereby its catalytic activity.  

 

Figure 4-25 CO conversion percentages as function of temperature for different catalysts: a) Au-

CeO2/RGO b) Au-CeO2/GO, c) Au-CeO2/partially RGO and d) Au-CeO2.  
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The activity of metal catalysts prepared by loading Au onto RGO, partially RGO, GO and 

CeO2/RGO with higher graphene content was quite low compared to catalysts prepared by loading 

Au onto pure CeO2, CeO2/GO CeO2/partially RGO and CeO2/RGO with low content graphene, 

that is, there is no strong effect on the catalytic oxidation of CO at low temperature in case of 

carbon structure dominate the support. Figure 4.24 reveals a 100% conversion of CO to CO2 was 

reached at temperatures of 394, 305, 300 and 149oC for Au-RGO, Au-partially RGO, Au-GO and 

Au-CeO2/RGO with high graphene content, respectively, and no significant activity of these 

catalysts was observed at room temperature. On the other hand, it is clear from Fig. 4.25 that binary 

composite of Au-CeO2 and the tertiary composites of Au-CeO2/GO, Au-CeO2/partially RGO and 

Au- CeO2/RGO showed higher catalytic activities and significant conversion percentages between 

65-72% can be clearly observed at ambient temperature. For Au-CeO2, a reaction temperature of 

113 oC was needed to achieve a 100% CO conversion and for Au-CeO2/GO, Au-CeO2/partially 

RGO and Au- CeO2/RGO a 100% oxidation was reached at 80, 94 and 76 oC, respectively. In 

addition, more than 67% conversion was observed at room temperature. Despite the similar trend 

of catalytic performance of CeO2 and CeO2/RGO composite, the later catalyst showed relatively 

little higher catalytic activity and is much easier to be handled and recycled and regenerated in 

practical applications, mainly because of the microscale dimensions of graphene sheets. The 

performance in catalytic oxidation of CO could be improved dramatically by controlled variation 

in the catalyst synthesis method, the dispersion uniformity and the catalyst composition.  
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4.5 Conclusions  

In summary, a facile synthesis of ceria-graphene (CeO2/RGO) nanocomposites is reported 

for the first time. Adopting EDA-assisted solvothermal approach that is potential for large scale 

production and low cost processing, controlled reduction of GO to RGO with controllable different 

extents of reduction were achieved by controlling the reaction temperature. The same approach 

was modified and utilized to synthesize CeO2/RGO nanocomposites with different oxygen 

contents in a contemporarily fashion using a mixture of GO and cerium nitrate in EDA solution at 

different temperatures. An even distribution of 4-5 nm spherical CeO2 nanoparticles of uniform 

size and shape was successfully achieved in situ on the high surface area RGO sheets in one-pot 

reaction and without post-preparation treatments. Different conditions to control the crystallinity 

and morphology of the nanocomposite structures are examined. The CeO2/RGO nanocomposites 

were used as active Au-supports for efficient low-temperature CO catalytic oxidation. The results 

provides a new simple, efficient, scalable, environmentally-friendly and economically-favorable 

approach for large scale production of metal oxide nanostructures supported on graphene which 

could have important implications for industrial and environmental remediation.  



 

117 

 

CHAPTER 5 Laser-Driven Size Reduction and Photothermal Energy 

Conversion by Shape-Controlled Au-GO Nanostructures 

  

5.1 Overview 

Noble metal nanoparticles have received significant attention for decades because of the 

ability to tune their electronic and optical properties by changing size, shape, composition or 

dielectric environment.  In this chapter, the seed-mediated synthesis of different Au nanostructures 

is described. The coupling of the photothermal effects of these Au nanostructures of controlled 

size and shape with GO nanosheets dispersed in water is demonstrated. Our results indicate that 

the enhanced photothermal energy conversion of the Au-GO suspensions could to lead to a 

remarkable increase in the heating efficiency of the laser-induced melting and size reduction of 

Au nanostructures. These resulting ultrasmall Au nanoparticles of 2-4 nm diameters are end up 

anchored to the laser-induced defects of the RGO nanosheets. The ultrasmall Au-graphene 

nanocomposites are potential materials for photothermolysis. In addition they may serve as 

promising photoabsorbers for the efficient conversion of solar energy into usable heat in variety 

of thermal, thermochemical and thermomechanical applications. 

5.2 Introduction  

The type of motion of electrons is what determines the physical and chemical properties of a 

material. 219 The 2D graphene, for example, is a distinct material because of the remarkable 

behavior electrons and the electronic motion. But the motion itself is determined by the space 
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accessible to electrons which in turn depends on the shape and so for quantum confinement size 

matters and so does shape. Unconfined electrons in metals or semiconductors with a very low 

degree of spatial confinement have motion that is not quantized and hence can absorb any amount 

of energy. But once an electron is bound or confined, its motion becomes highly confined and 

quantization sets in. 53 Accordingly,  new chemical, optical or thermal properties that are belonging 

to neither the metal nor the atom can be observed. 53  

A typical example of such phenomena is the local surface plasmon resonance (SPR) in noble 

metals. SPR is an extremely interesting behavior of noble metals when their size is decreased 

below the electron mean free path. In the interaction between metal nanoparticles and incident 

light, the electrons in the conduction band undergo a coherent collective oscillation, with a 

frequency in resonance with that of the incident light. These collective oscillations of electrons 

lead to an induced charge separation between the free electrons and the ionic metal core. The metal 

core then exerts a restoring Coulombic force causing electrons to oscillate back and forth on the 

nanoparticle surface creating a dipole oscillation. The dipole oscillation induces a strong 

absorption of the incident light, as can be seen very clearly in a UV-Vis spectrum of Au or Ag 

nanoparticles. This unique interaction of plasmonic nanoparticles (Au in particular) with the 

incident light gives rise to brilliant, pretty and very intense colors of their colloidal dispersions. 219 

Due to SPR, the radiative properties of noble metal nanoparticles such as light absorption, 

scattering or fluorescence are enhanced by orders of magnitude. They can be tuned to a great extent 

by changing the size, shape, composition, structure, interparticle separation, orientation, 

morphology or the dielectric properties of the metal or the surrounding medium. 53 All these factors 

affect the charge density on the nanoparticle surface that changes the SPR characteristics. 
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Au nanostructures have a remarkable capacity to absorb and scatter light over a broad range 

of the visible and near-infrared regions depending on the particles’ size and shape. 220-223 These 

interactions also trigger photothermal effects where electronic oscillations at the particle surface 

are converted to heat which raises the particles’ temperature as determined by the surface plasmon 

resonance (SPR). 220, 222, 224-226 These phenomena have been extensively investigated for a variety 

of applications in biomedical imaging, 222, 226-228 cancer therapy and diagnosis, 226, 229, 230 catalysis, 

231 sensors, 232 and photonic devices. 233  

As in Au nanoparticles, photothermal energy conversion by carbon nanotubes (CNTs) has 

been also studied for therapeutic applications. 234-237 Most recently, interest has been focused on 

graphene and GO, 238-240 which have emerged as novel nanocarbon materials with potential uses 

in energy applications including photothermal energy conversion in addition to nanoelectronics, 

supercapacitors, batteries, photovoltaics and related devices. 3, 76  The large surface area (2600 m2g-

1) of graphene and the strong optical absorption across the spectrum (2.5 % of the white light) 

coupled with its high thermal and chemical stability can lead to a rapid temperature rise and 

subsequent energy transfer to the host medium, thus offering an efficient way of heating the 

medium 3, 76. This has been recently demonstrated by the development of a facile laser reduction 

method for the synthesis of Laser Converted Graphene (LCG) which provides a solution 

processable synthesis of individual graphene sheets 128, 132. In this process, irradiation of GO 

suspended in water using the second or the third harmonic of a Nd-YAG laser (532 nm or 355 nm, 

respectively) results in significant deoxygenation of GO and the formation of LCG. This 

remarkable photothermal conversion of energy results in a significant temperature rise of water 

from room temperature to 75 °C in a few minutes of laser irradiation (532 nm of nanosecond pulses 

at 30 Hz with an average power of 6 W) 128. 
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The interaction of Au nanoparticles with pulsed laser light tuned to the SPR bands of the 

gold nanostructures can result in a sequence of heating, melting and evaporation processes which 

can lead, in addition to the photothermal energy effects, to significant size reduction of the original 

gold nanoparticles. 241-246 The coupling of the SPR of gold nanostructures with the photothermal 

effects of GO could enhance the melting and evaporation of the Au nanostuctures and the 

formation of ultrasmall Au nanoparticles attached to the large surface area of the laser converted 

graphene sheets. Herein, we report on the enhanced photothermal energy conversion by gold 

nanoparticles of well-defined size and shape dispersed in GO solutions as efficient photothermal 

materials for a variety of applications involving rapid heating of water. Furthermore, we 

demonstrate that the enhanced photothermal energy conversion by the gold-GO aqueous solutions 

can be tuned by controlling the shape of the Au nanostructures from spherical particles to short 

and long nanorods. We also report the synthesis of ultrasmall gold nanoparticles with diameters of 

2-4 nm well-dispersed on the laser converted graphene nanosheets. The coupling of the laser-

induced size reduction of the gold nanoparticles with the laser conversion of GO into graphene 

(LCG) provides a novel method for the synthesis of ultrasmall gold nanoparticles from much larger 

particles with different sizes and shapes. These ultrasmall gold-graphene nanocomposites are 

proposed as novel photothermal energy convertors for a variety of thermochemical and 

thermomechanical applications, in addition to photothermal therapy, such as heating and 

evaporation of liquids by solar energy, ignition of solid fuels, and welding of composite materials.   

5.3 Experimental 

5.3.1 Chemicals and reagents  

Graphite powder (99.9999%, 200 mesh, Alfa Aesar), Sulfuric acid (ACS reagent, Sigma), 

potassium permanganate (ACS reagent, Sigma), hydrogen peroxide (30%, Sigma), gold (III) 
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chloride solution (99.99% trace metals basis, 30 wt. % in dilute HCl, Sigma), 

hexadecyltrimethylammonium bromide (≥98%, Sigma), L-ascorbic acid (99%, Sigma), sodium 

citrate triabsic dihydrate (ACS reagent, ≥99.0%, Sigma-Aldrich) and silver nitrate (ACS reagent, 

≥99.0%, Sigma).   

5.3.2 Preparation of GO and Au nanoparticles  

In these experiments, GO was prepared by the oxidation of high purity graphite powder 

according to the method of Hummers and Offeman 80 and as described earlier. The yellowish-

brown GO was washed repeatedly with hot water, followed by drying overnight at 60 oC. A stock 

solution of GO in water was prepared by dissolving 2 mg of the dried GO in 10 ml of DI water 

followed by sonication until a homogeneous yellow dispersion was obtained.  

Spherical Au nanoparticles were prepared by the standard citrate reduction procedure as 

described in the literature. 247 A 100 ml of 1 mM HAuCl4 aqueous solution was heated until boiling 

and then 10 mL of 38 mM trisodium citrate solution was added under continuous stirring for 15 

min. Au nanoparticles of different shapes were prepared utilizing the seed-mediated method, 248-

250 with little modifications. In this method, a relatively low concentration solution of Au ions is 

first reduced by a strong reducer to yield 3-4 nm Au nanospheres. A growth solution containing 

higher concentration of Au ions, a shape-directing surfactant, a weak reducing agent, and silver 

ions is prepared in a separate flask. The weak reducing agent employed here is ascorbic acid and 

just by itself is not capable of reducing the Au ions all the way to Au atoms. But when both the 

seed and growth solutions are mixed, an autocatalytic reaction (by metal atoms in seeds) is thought 

to take place on the surface of the seed to produce larger anisotropic Au nanoparticles. 250 In typical 

synthesis, the Au-seed solution was prepared by the addition of aqueous NaBH4 (300 µl, 10-2 M) 

to a mixture of HAuCl4 (2.5 ml, 5x10-4 M) and CTAB (2.5 ml, 2x10-1 M) at room temperature 
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under vigorous stirring. For the synthesis of different shapes, an 80 µl of the freshly prepared Au-

seed solution was added to various growth solutions to initiate anisotropic growth of Au 

nanoparticles with different shapes. The different growth solutions contained the same HAuCl4 

and CTAB concentrations but different amounts of AgNO3 were utilized to grow various 

morphologies, namely, spheroids, short rods, long rods, bipyramids, rounded-corner rectangles, 

sharp-corner rectangles, cubes and dog-bones. Each of the growth solutions was prepared by first 

mixing HAuCl4 (25 ml, 10-3 M) and CTAB (25 ml, 2x10-1 M) solutions followed by the addition 

of 70 µl of ascorbic acid (78.8 x10-3 M) which resulted in discoloration of the yellowish Au-CTAB 

mixture due to the partial reduction of Au ions. Then the designated amount of AgNO3 was added 

to the colorless mixture followed by the subsequent addition of the seed to catalyze the growth. 

All growth solutions were kept undisturbed at a temperature of 25-28 oC for two hours. The 

absorption spectra of different Au nanoparticles were recorded for the as-prepared fresh samples 

diluted in DI water. The final concentrations of AgNO3 in the growth solutions required for the 

growth of different shapes are as follows: spheroids (4 x 10-7 M), short rods (8 x 10-7 M), long rods 

(8 x10-6 M), bipyramids (12 x10-6 M), rounded-corner rectangles (13 x10-6 M), sharp-corner 

rectangles (14 x10-6 M), cubes (16 x 10-6 M) and dogbones (32 x10-6 M). All chemicals used were 

99.99 % purity as obtained from Sigma-Aldrich, USA. 

5.3.3 Laser-driven synthesis of Au-graphene nanocomposites 

 For the laser irradiation and photothermal synthesis of ultrasmall Au-graphene 

nanocomposites, an aqueous dispersion of GO and preformed selected-shape Au-nanoparticles 

was prepared by mixing 1 ml of Au-nanoparticles solution with 2 ml GO solution (2 mg/10 ml), 

and the mixture was irradiated in a quartz cuvette with the unfocused beam of the second and third 

harmonics of a Nd:YAG laser (2nd harmonic λ=532 nm, average power 4 W, hν =2.32 eV, or 3rd 
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harmonic  = 355 nm, average power 2 W, h = 3.49 eV, pulse width τ = 7 ns, repetition rate = 30 

Hz, fluence ~ 0.1 J/cm2, Spectra Physics LAB-170-30). The beam diameter was measured to be 7-

9 mm for both the 532 nm and 355 nm. The solutions were magnetically stirred during the 

irradiation. For the Au-size reduction experiments in the absence of GO, 1 ml of the shape-selected 

Au-nanoparticles solution was irradiated under similar laser conditions as described above 

(irradiation for 10 min corresponding to 18,000 laser shots). The temperature of the solution was 

monitored during irradiation using a thermocouple immersed in the solution.  

5.3.4 Morphological, optical and Raman characterization  

TEM images were acquired using a Joel JEM-1230 electron microscope operated at 120 

kV equipped with a Gatan UltraScan 4000SP 4K x 4K CCD camera. Absorption spectra were 

recorded using a Hewlett-Packard HP-8453 diode array spectrophotometer. The Raman spectra 

were measured using an excitation wavelength of 457.9 nm provided by a Spectra-Physics model 

2025 argon ion laser. The laser beam was focused to a 0.10 mm diameter spot on the sample with 

a laser power of 3 mW. The samples were pressed into carbon tape supported on glass cover slip, 

held at a 30 degree angle in the path of the laser beam. The detector was a Princeton Instruments 

1340 x 400 liquid nitrogen CCD detector, attached to a Spex model 1870 0.5 meter single 

spectrograph with interchangeable 1200 and 600 lines/mm holographic gratings (Jobin-Yvon). 

The Raman scattered light was collected by a Canon 50 mm f/0.95 camera lens. Though the 

holographic gratings provided high discrimination, Schott and Corning glass cut-off filters were 

used to provide additional filtering of reflected laser light, when necessary.     
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5.4 Results and Discussion  

Gold nanostructures of anisotropic morphologies can be prepared by a number of approaches 

including seeded and seedless chemical approaches, electrochemical method, UV-assisted 

reduction, solvothermal methods, bioreduction, proton beam irradiation, x-ray irradiation, and 

microwave irradiation, among others. 251, 252 Since its development in 2001, 253 the seed-mediated 

growth has become the most popular and easiest method for growing anisotropic Au 

nanostructures. The popularity of the methods stems from the feasibility of preparing high quality 

products with large yield, high degree of size control and flexible structural modification yet in a 

simple procedure that can executed in water, under air and at room temperature due to. 221, 248, 254-

257 In this method and as described in the experimental section, a low density Au solution is first 

reduced to yield 3-4 nm Au seeds and a predetermined volume of the seed solution is added to the 

growth solution. When both the seed and growth solutions are mixed, a presumed autocatalytic 

reaction driven by Au atoms in seeds takes place on the surface of the seed leading to formation 

of larger anisotropic Au nanoparticles. 250 

Figures 5.1-5.3 display displays TEM images and UV-Vis absorption spectra of the as-

prepared shape-controlled Au nanostructures using the seed-mediated growth method, 248-250 with 

some modifications. These modifications (see experimental section) allow fine tuning and 

morphological control of the Au nanostructures by systematically varying the concentration of the 

silver ions in the growth solution. By increasing the concentration of the Ag ions in the growth 

solution, gold nanostructures with well-defined shapes of spheroids (hexagonal plates), short-rods 

(SR), bipyramids, dog-bones, long-rods (LR), round-corner rectangular plates, sharp-corner 

rectangular plates, and cubes can be prepared as shown in Figs. 5.1-5.3, respectively. The careful 

manipulation of the kinetic and thermodynamic parameters of the experimental system using 
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additives, thermal energies, light or their possible combinations provides means to control the size, 

shape and structure of nanoarchitectures. 258 In seeded growth, fine tuning and morphological 

control of Au nanoparticles is achieved by systematic variation of parameters involved in the 

synthesis, for example the quantity of AgNO3. The factors directing shape control in the synthesis 

of anisotropic Au nanostructures have been explanted with different mechanisms based on the 

selective adsorption of surfactant and accordingly blocking the growth at specific crystallographic 

faces. 248-250, 259, 260 The most common of these mechanisms to explain the growth of Au nanorods, 

for instance, relies on the preferential adsorption of the cationic surfactant (CTAB) molecules on 

the surface. 248 According to that hypothesis, which is based on high resolution TEM studies, 

faceted seeds with pentatetrahedral structure have been shown to exist. When the headgroups of 

the positively charged CTAB micelles bind to these primary seeds, they can bind preferentially 

onto the side surfaces. The selective binding can be understood on steric hindrance basis, that is, 

the spacing on the side surfaces which are fcc faces is more comparable to the headgroups of 

CTAB+ than the hexagonal close packed faces at the tips of the rods. As a result the side faces will 

be covered with much of the CTAB micelles and will be protected and stabilized more than the 

ends. Accordingly, Au atoms can add only along the common axis 111 faces at the exposed ends. 
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Figure 5-1 TEM images and UV-Vis absorption spectra of Au nanostructures with different shapes: 

(A,B) spheroids, hexagonal plates, (C,D) short-rods, SR, (E,F) bipyramids and (G,H) dog-

bones. 
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Figure 5-2 TEM images and UV-Vis absorption spectra of Au nanostructures with different shapes: 

(A,B) long rods and (C,D) round-corner rectangles. 
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Figure 5-3 TEM images and UV-Vis absorption spectra of Au nanostructures with different shapes: 

(A,B) sharp-cornerrectangles and (C,D) cubes. 
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The evolution of the SPR bands of the Au nanostructures with the shape changes is clearly 

evident in the UV-Vis absorption spectra shown in Figs. 5.1-5.3 (B,D,F,H). The results show the 

same trends reported in the literature where no SPR is observed for ultrasmall Au nanoparticles 

with 2-4 nm diameters 261 as can be seen in case of the seed particles shown in Fig. 5.4,  and a 

single band around 520-530 nm, weakly dependent on the particle size, is observed for spherical 

particles of an average size of 15 nm (Fig. 5.5) as shown in the UV-vis spectrum shown in Figs. 

5.6. 248-250, 259, 260 Gold long-rods (Fig. 5.2-B) exhibit two SPR bands, near 528 nm and 772 nm, 

due to the transverse and the longitudinal electronic oscillations, respectively 224, 249, 250, 259. In such 

case the polarization of light or the coherent collective oscillation is induced in the two directions 

along the short and the long axes of the rod. The excitation and oscillation along the short axis 

give rise to an absorption band in the higher energy region (528 nm), similar to that of Au 

nanospheres which is called the transverse band. The excitation and plasmon oscillation along the 

long axis give rise to a relatively much stronger absorption band in the lower energy region (772) 

which is called the longitudinal band. While the absorption maximum of the transverse band is 

insensitive to the width of the rod, that of the longitudinal band is largely red-shifted from the 

visible to the near-IR region as the length increases. 53, 250, 262 The axial ratio between the length 

and the width represents the size of a nanorod and the linear proportionality between the axial 

ratio, and the longitudinal band makes it possible to tune the optical properties of Au nanorods by 

changing the axial ratio or changing the length. Gold nanoparticles with prism or quasi prism 

shapes have three SPR bands due to the in-plane dipole plasmon resonance, the in-plane 

quadrupole resonance, and the out-of plane quadrupole resonance (Figs. 5.1-F and 5.1-H). 224, 249, 

250, 259, 260 The out-of plane dipole resonance is sufficiently weak and broad that it is barely 

discernible as a shoulder on the in-plane resonance (Fig. 5.1-F). The in plane dipole plasmon 
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resonance is very sensitive to the sharpness of the tips on the triangles. 224, 249, 250, 259, 260 These 

unique optical properties of anisotropic gold nanocrystals enable the tuning of SPR to any 

wavelength specific to a particular application from the visible to the NIR spectral regions. 221, 223, 

226 

 

Figure 5-4 UV-Vis absorption spectrum and TEM image of the Au seed nanoparticles. 

 

Figure 5-5 TEM images of the Au nanospheres (average diameter ~ 15 nm). 
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Figure 5-6 UV-Vis absorption spectrum of 15 nm Au nanospheres prepared by citrate reduction. 

We selected five distinct shapes of the gold nanostructures shown in Figs. 5.1-5.3 namely, 

spheroids (Fig. 5.1-A), short-rods (SR, Fig. 5.1-C), bipyramids (Fig. 5.1-E), long rods (LR, Fig. 

5.2-A), and cubes (Fig. 5.3-C) in addition to the small spheres prepared by citrate reduction 

method37 (Fig. 5.5) to investigate the photothermal energy effects and laser-induced size reduction 

of these Au nanostructures in the absence and presence of GO. For each selected shape, two 

solutions containing similar concentrations of Au nanoparticles of the same shape with and without 

GO were laser irradiated under identical conditions. Absorption spectra and TEM images were 

recorded for each solution before and after the laser irradiation. The temperature rise in each 

solution was also monitored during the laser irradiation. The results are presented in Figs. 5.7-5.12 

and are discussed below.  

Figures 5.7-A and 5.7-B display TEM images of the spherical Au nanoparticles after the 

532 nm laser irradiation in the absence and presence of GO (TEM images of the as prepared 

spherical particles are shown in Fig. S2, SI). The TEM images shown in Fig. 5.7-A indicate a 

slight decrease in the average size of the spherical particles from 13 ± 2 to 10 ± 2 nm following 

the laser irradiation in water. The corresponding SPR band exhibits a small blue shift from 532 nm 
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to 512 nm as shown in Fig. 5.7-C, consistent with the weak dependence of the SPR of spherical 

Au nanoparticles on particle size 224, 260. In presence of GO, the 532 nm laser irradiation resulted 

in almost the disappearance of the SPR band as shown in Fig. 5.7-C suggesting more effective 

melting and evaporation of the Au nanoparticles during the laser irradiation of Au-GO suspension. 

This, indeed, is confirmed by the TEM images shown in Fig. 5.7-B which indicate that the 

diameters of the Au-nanoparticles significantly decreased from 13 ± 2 nm to 5.4 nm upon laser 

irradiation in the presence of GO. Thus, both the absorption spectra and the TEM micrographs 

clearly show that after the 532 nm laser irradiation in the presence of GO, the Au nanoparticle 

sizes become profoundly smaller than in the absence of GO under identical laser irradiation 

conditions. This result implies that the temperature of gold nanoparticles during the irradiation is 

much higher in presence of GO than in pure water. This is consistent with the measured 

temperature changes caused by laser irradiation of the three solutions of spherical Au nanoparticles 

in water; GO in water and spherical Au-nanoparticles dispersed in a GO-water mixture under 

identical experimental conditions as shown in Fig. 5.7-D.  

The temperature of the GO solution containing spherical Au-nanoparticles reaches 69.3 °C 

after 10 minutes of laser irradiation (532 nm, 4 W, 30 Hz) in comparison with the same 

concentration of spherical Au nanoparticles in water, and the GO solution without Au 

nanoparticles which reach 47.5 °C and 56 °C, respectively under identical experimental 

conditions. The higher temperature rise observed for the Au nanoparticles dispersed in the GO 

solution demonstrates that the coupling of the photothermal effects of Au nanoparticles and GO 

can result in highly efficient photothermal energy convertors. The temperature rise during the 

irradiation of the Au nanoparticles-GO solution assists in anchoring the nanoparticles to the defect 
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sites created by the laser reduction of GO thus resulting in uniform dispersion of the small Au 

particles among the RGO nanosheets as shown by the TEM image of Fig. 5.7-B.  

 

Figure 5-7 TEM images of Au nanospheres after the 532 nm laser irradiation in absence (A) and 

presence of GO (B); UV-Vis absorption spectra after laser irradiation in water and in GO 

(C); temperatures profiles showing the increase of the solutions temperatures (D).  
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Figure 5-8 TEM images of Au bipyramids after the 532 nm laser irradiation in absence (A) and 

presence of GO (B); UV-Vis absorption spectra after laser irradiation in water and in GO 

(C); temperatures profiles showing the increase of the solutions temperatures (D). 

Figures 5.8-A and 5.8-B display TEM images and UV-Vis absorption spectra of the as-

prepared bipyramidal Au nanoparticles after the 532 nm laser irradiation in the absence and 

presence of GO. The absorption spectra of the as-prepared bipyramidal nanoparticles (Fig. 5.8-C) 

show two absorption bands at 567 and 712 nm corresponding to the transverse and the longitudinal 

SPR bands. Both bands disappear following the laser irradiation in water, as shown in Fig. 5.8-C, 

with the appearance of one SPR band at 523 nm indicating the melting of the Au-bipyramidal 

nanoparticles and the reforming of Au- nanospheres during the laser irradiation process. This is 

confirmed by the TEM image displayed in Fig. 5.8-A which shows spherical particles with an 

average size of 4.31.5 nm as compared to the dimensions of the original bipyramidal particles of 
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140 x 50 nm (shown in Fig. 5.1-E). Interestingly, the same laser irradiation in the presence of GO 

converts the bipyramidal particles into ultrasmall spherical particles with an average diameter of 

1.60.6 nm as shown in Fig. 5.8-B. This size reduction is accompanied by rapid increase in 

solution temperature reaching about 74.3 oC in 10 min of laser irradiation, compared to 47.9  oC 

without GO, as shown in Fig. 3-H. This increase in temperature reflects the net heat transfer to 

water resulting from the coupled photothermal effects of the Au bipyramidal nanoparticles and 

GO.  

Figures 5.9-A, and 5.9-B display TEM images and UV-Vis absorption spectra of the as-

prepared Au SR after the 532 nm laser irradiation in the absence and presence of GO. The as-

prepared Au short rods, shown in Fig. 5.1-C, are characterized by average dimensions of 50±5 x 

15±2 nm (aspect ratio ~ 3.3) and exhibit two SPR bands at 534 nm and 726 nm as shown in Fig. 

5.1-D. Following the laser irradiation in the absence of GO, only the transverse band around 520 

nm is observed in the absorption spectrum as shown in Fig. 5.9-C consistent with the formation 

of small spherical nanoparticles with average diameters of 5.31.9 nm as evident from the TEM 

image in Fig. 5.9-A. However, the Au nanoparticles formed following the laser irradiation of the 

particles dispersed in the GO solution have an average diameter of 2.40.55 nm as shown in Fig. 

5.9-B, consistent with the near disappearance of the SPR band except for a small shoulder at 517 

nm as shown in Fig. 5.9-C. The formation of these ultrasmall Au nanoparticles is accompanied by 

a strong enhancement in the photothermal energy conversion of the Au SRs dispersed in the GO 

solution where the solution temperature reaches 70.5 °C after 10 minutes of laser irradiation (532 

nm, 4 W, 30 Hz) as compared to 47.2 °C and 56 °C for the Au SRs in water and the GO solution, 

respectively under identical experimental conditions as shown in Fig. 5.9-D. 
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Figure 5-9 TEM images of Au short rods after the 532 nm laser irradiation in absence (A) and 

presence of GO (B); UV-Vis absorption spectra after laser irradiation in water and in GO 

(C); temperatures profiles showing the increase of the solutions temperatures (D). 

The as-prepared Au LRs, , shown in Fig. 5.2-A,  have average length and width of 180±20 

nm and 20±5 nm, respectively (aspect ratio ~ 9), and exhibit two SPR bands, the transverse near 

528 nm and the longitudinal near 772 nm (Fig. 5.2-B). Following the 532 nm laser irradiation, the 

longitudinal band disappears and the transverse band shifts to 523 nm indicating the transformation 

of the Au LRs into smaller spherical particles. This is clear in the TEM image shown in Fig. 5.10-

A where spherical particles with an average diameter of 5.51.9 nm are observed. Again, laser 

irradiation of the Au LRs in the presence of GO results in well-dispersed ultrasmall Au 

nanoparticles with an average diameter of 2.91.7 nm as shown in Fig. 5.10-B. Accordingly, the 

transverse SPR band almost disappears following the laser irradiation of the Au LRs in GO as 
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shown in Fig. 5.10-C. The measured temperature change caused by laser irradiation of the Au LRs 

in the GO solution indicates that the solution temperature reaches 70.2 °C after 10 minutes of laser 

irradiation (532 nm, 4 W, 30 Hz) as compared to 55.1 °C and 56 °C for the Au LRs in water and 

the GO solution, respectively under identical experimental conditions as shown in Fig. 5.10-D. 

Again, similar to the Au spherical and SR particles, the presence of GO results in a significant 

enhancement in the observed photothermal effects.  

 

 

Figure 5-10 TEM images of Au long rods after the 532 nm laser irradiation in absence (A) and 

presence of GO (B); UV-Vis absorption spectra after laser irradiation in water and in GO 

(C); temperatures profiles showing the increase of the solutions temperatures (D). 
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The results for the Au spheroids (shown in Figs. 5.11-A to 5.11-D) and Au cubes (shown 

in Figs. 5.12-E to 5.12-H) follow the same general trends observed for the other Au shapes thus 

leading to generalized findings. Typically, laser irradiation in the presence of GO results in smaller 

spherical Au nanoparticles well-dispersed on the RGO nanosheets accompanied by a strong 

enhancement in the photothermal effect as evident by the significant increase of the temperature 

of the Au-GO solution as compared to the individual Au and GO solutions. However, the size 

reduction of the Au spheroids and cubes (Figs. 5.11-5.12; B) is not as much as with the other 

shapes (spherical, bipyramids, short-rods and long-rods) where ultrasmall Au nanoparticles with 

no SPR peaks 261 were observed following the laser irradiation of the Au particles in the presence 

of GO (Figs. 5.7-5.10; B), as compared in Fig. 5.13. This appears to be related to the volume of 

the particles where the large volumes of the spheroids and cubes may require longer irradiation 

times and higher laser powers in order to effectively melt and vaporize the large Au nanoparticles 

241. The melting of the nanoparticles leads to the shape change from nonspherical to spherical 

particles and the size reduction is due to the vaporization of the particles. According to the 

theoretical estimation and experimental results of Pyatenko et al. 245, under low laser energy flow 

density (less than 1012 W/m2 similar to the conditions of the current experiments), the particle-

heating-melting-evaporation mechanism is solely responsible for the size reduction of the 

nanoparticles. 
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Figure 5-11 TEM images of Au spheroids after the 532 nm laser irradiation in absence (A) and 

presence of GO (B); UV-Vis absorption spectra after laser irradiation in water and in GO 

(C); temperatures profiles showing the increase of the solutions temperatures (D). 



 

140 

 

 

Figure 5-12 TEM images of Au cubes after the 532 nm laser irradiation in absence (A) and presence 

of GO (B); UV-Vis absorption spectra after laser irradiation in water and in GO (C); 

temperatures profiles showing the increase of the solutions temperatures (D). 
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Figure 5-13 Comparison between the absorption spectra and TEM images of laser irradiated Au-

nanoparticles of different shapes in GO solutions (A: seed for comparison; B: Au 

nanospheres; C: Au-bipyramids, D: Au-LRs; E: Au-spheroids; F: Au-cubes). 
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The observed temperature rise reflects the steady state net heat transfer from Au 

nanoparticles and RGO nanosheets to the solution. Fig. 5.14 compares the extent of temperature 

rise for different shapes of Au nanostructures in the absence and presence of GO during 532 nm 

laser irradiation. Table 5.1 lists the maximum temperature rise observed for different shapes of 

Au nanoparticles following the 532 nm laser irradiation in the presence and absence of GO under 

identical experimental conditions. Temperature rise profiles obtained under irradiation from 355 

nm Nd-YAG laser are presented in Fig. 5.15 for.  The results reveal that the spheroid particles 

display the highest temperature rise (82°C) followed by the various cubes (72.3-77.5 °C), then the 

bipyramids and dog-bones (74.3-75 °C), then the long and short rods (70.2-70.5 °C), and finally 

the small spheres (69.3 °C). The observed trend appears to be related again to the volume of the 

particles and the melting temperatures of different shape nanostructures. For example, the larger 

volume of the hexagonal plates (spheroids) and probably their lower melting temperature result in 

more heat being transferred to water and thus elevating the temperature of the solution to 82 °C. 

Similarly, the large volumes of the rounded-corner nanocubes result in a significant temperature 

rise of water (77.5 °C). For comparison, the smaller volumes of the small spherical Au particles 

(Fig. 3-A), lead to less photothermal effect and consequently less temperature rise of water (69 

°C). For the Au nanorods both the small volumes and probably the higher melting temperatures 

result in less heat transferred to the solution which increases the temperature to only ~70 °C as 

compared to 82°C for the hexagonal plates.    
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Figure 5-14 Temperature rise during 4 W, 532 nm laser irradiation of different shapes Au 

nanoparticles without (dashed lines) and with (solid lines) GO; (Top) spheres, bipyramids, 

short rods and long rods; (Bottom) spheroids, round-corner rectangles, cubes and 

dogbones. 
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Figure 5-15 Temperature rise during 4 W, 355 nm laser irradiation of selected Au nanoparticles 

without (top) and with (bottom) GO dispersed in water. 
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The results clearly indicate that the presence of GO enhances the heating efficiency of the 

Au nanostructures following the absorption of the 532 nm photons which leads to the subsequent 

melting and evaporation processes resulting in the formation of monodisperse ultrasmall Au 

nanoparticles supported on the LCG nanosheets. Previous work has demonstrated that the 532 nm 

laser irradiation of the Au nanoparticles resulted in a significant size reduction from an initial 

diameter of 54±7 nm to an average diameter of 6 nm but with a bimodal size distribution 246. The 

bimodal size distribution is attributed to Ostwald ripening process where the initially formed small 

particles with higher surface energies are consumed in the growth of the large particles with lower 

surface energies at longer irradiation times 246. The absence of bimodal size distributions in the Au 

nanoparticles formed by laser irradiation in the presence of GO in the present work suggests that 

the mobility of the particles is significantly reduced to a degree that does not allow for the dynamic 

Ostwald ripening process. This can be explained if the small Au particles are anchored to defect 

sites on the RGO nanosheets which can restrict their mobility.  

It is well established that that both the chemical and laser reduction of GO result in the 

formation of graphene nanosheets with a significant number of defect sites including vacancies, 

disorder, defective edges, and many others 68, 263-268. In the laser converted graphene, the nature of 

these defects depend on the oxygen functional groups interacting with the photogenerated 

electrons and holes within GO 68, 267, 268. Figure 5.16 compares the extent of temperature rise 4 W, 

532 nm laser irradiation of Au binary mixtures each composed of nanoparticles of two different 

shapes in absence and in presence of GO. A similar trend in temperature rise was observed for Au 

binary mixtures with GO under irradiation of 532 nm laser of 4 W and 5 W. Generally Au binary 

mixtures with GO exhibited higher temperature rises compared to those mixtures without GO after 

10 min of laser irradiation from 4 and 5 W (532 nm) Nd-YAG laser, as shown in Figs. 5.16 and 
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5.17, respectively. A comparison between temperature rise profile of Au binary mixtures with GO 

obtained under 4 and 5 W laser irradiation (532 nm) is presented in Fig. 5.18.  

 

Table 5-1 Maximum solution temperature rise after 10 min of laser irradiation of the Au 

nanoparticles with different shapes with and without GO using the 532 and 355 nm 

wavelengths. 

Solution 

Temperature (oC) after 10 min. 

4 W, 532 nm 5 W, 532 nm 4 W, 355 nm 

 +GO  +GO  

GO  58 NA NA 37 

Nanospheres  47.5 69.3 NA NA 32 

Bipyarmids 47.9 74.3 NA NA 33 

Short rods 47.2 70.5 NA NA 34 

Long rods 55.1 70.2 NA NA 34 

Spheroids 51 82 NA NA 43 

Cubes  46.9 72.3 NA NA 47 

Round-Corner Rectangles  44.5 77.5 NA NA 48 

Sharp-Corner Rectangles 48.5 75.5 NA NA 42 

Dogbones 50 75 NA NA NA 

Long Rods + Short Rods 50 72.5 66 87.9 NA 

Long Rods+ Cubes  51 71.5 67.8 85.8 NA 

Spheroids + Cubes 59 77 82 94.5 NA 

  



 

147 

 

 

 

Figure 5-16 Temperature rise during 4 W, 532 nm laser irradiation of Au binary mixtures each of 

two different shapes without (top) and with (bottom) GO and compared to individual 

shapes. 
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Figure 5-17 Temperature profile during 532 nm laser irradiation at 5 W of Au binary mixtures 

without and with GO. 

 

Figure 5-18 Comparison between temperature rise profiles of selected Au binary mixtures with GO 

irradiated with 532 nm laser at 4 and 5 W laser power for 10 min. 
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Raman spectroscopy is one of the most useful techniques that can identify the nature of 

defects and disorder in the graphene and Au-graphene nanosheets 269-272. To gain information on 

the extent of defects in the Au-graphene nanosheets, we have applied Raman spectroscopy to 

compare the LCG with the graphene-containing Au nanoparticles both formed by laser irradiation 

of GO. Figure 5.19-A compares the Raman spectra of GO before and after the 532 nm laser 

irradiation (10 min, 4 W, 30 Hz). The spectrum of the exfoliated GO exhibits the characteristic G-

band (1594 cm-1) and the D-band (1354 cm-1) with a D to G intensity ratio of about 0.70. The G-

band arises from the vibration of the sp2 bonded carbon atoms and the D-band is attributed to 

structural disorder at defect sites with the D/G ratio usually taken as a measure of the quality of 

the graphitic structures since for highly ordered pyrolitic graphite, this ratio approaches zero 269-

271.  

Following the 532 nm laser irradiation of GO, the D/G ratio decreases to 0.40 indicating a 

significant reduction of the degree of disorder and defect sites in the LCG. However, no decrease 

in the intensity of the D band relative to the G-band is observed following the laser irradiation of 

the GO-Au nanoparticle solutions as shown in Figs. 5.19-B and 5.19-C for the Au long rods and 

cubes, respectively. In fact, the D/G ratio increases to 0.8 (higher than the D/G ratio of GO) after 

the laser irradiation of the GO solutions containing either the Au nanorods or the nanocubes. 

Furthermore, a significant shift of the G-band to higher frequency is observed following the laser 

irradiation of the GO solutions containing the Au nanorods or the nanocubes (1603 cm-1 and 1601 

cm-1, respectively compared to1594 cm-1 in the absence of Au nanoparticles). This shift is 

consistent with doping graphene with electron acceptors thus, the Au nanoparticles are acting as 

week electron acceptors that induce a charge transfer from graphene to the Au nanoparticles 272. 

The increase in the D/G intensity ratio compared to the LCG (Fig. 5.19-A) and the blue shift of 
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the G-band are taken as evidence for the presence of more structural defects in the graphene lattice 

induced by laser irradiation of GO in the presence of Au nanoparticles. These defect sites in the 

RGO nanosheets act as favorable nucleation sites for the ultrasmall Au nanoparticles which by 

occupying these vacancies are no longer mobile for Ostwald ripening process to take place and 

thus the formation of large Au nanoparticles and aggregates is significantly decreased.  

 

              

Figure 5-19 Raman spectra of GO (A), GO + Au nanorods (B) and GO + Au nanocubes (C) before 

(red) and after (black) laser irradiation for 10 min (532 nm, 4W, 30 Hz) in solution. 
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The advantage of our Au-GO nanocomposites over Au nanostructures used in 

photothermal therapy stems from the enhanced phothermal energy conversion of the Au-GO 

compared over individual Au or GO. The strong light absorbing capabilities of Au nanostructures 

in the NIR region is clearly demonstrated in this work. This optical absorbance in NIR region is 

expected to dramatically increase if our Au-GO nanocomposites are properly functionalized. As 

evident in this work, when exposed to a 532 nm laser of 4 W, the temperature rise in Au-GO 

mixtures is higher than in case of corresponding Au or GO alone. Although the dependence of 

absorption wavelength on the size is limited in Au nanospheres which limits their use in biomedical 

applications, in composites of GO with ultrasmall Au assemblies, the optical absorption can be 

readily tuned by the proper functionalization of GO sheets while taking the advantage of the 

enhanced optical properties of Au when integrated with GO. In one study, the integration of GO 

with Au nanostructures have been shown to significantly enhance the two-photon excitation 

processes and 4-fold an enhancement factor was observed for Au-GO composites compared to 

pure Au 273.  

Since small to intermediate-size Au nanostructures are expected to exhibit higher 

photoabsorption compared to larger ones and thus are more suitable for photothermal treatment 

274, this infers the promise of ultrsmall Au nanoparticles assembled on GO reported herein, 

provided the proper coating of GO. The decrease in the size results in a decrease in the extinction 

and accordingly the relative contribution of scattering due to the decreased radiative damping in 

small nanoparticles compared to larger ones 274, 275. Also ultrasmall Au-GO composites may serve 

to overcome the decrease in the absorbance of Au nanostructures under laser irradiation which is 

a challenge in Au-based photothermal therapeutic modality 276 and they are expected to have higher 

photostability compared to larger ones of other shapes which melt under laser irradiation. A 
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number of very recent studies have shown the promise of using GO-based composites in various 

areas of biomedicine such as cancer therapy and imaging, drug delivery and biomodulation 239, 240, 

277-287. In most of these studies, the optimization of the surface chemistry (PEGylation for example) 

on GO is shown to be critical for potential in vivo or in vitro biomedical applications 240, 277-280, 282, 

283, 286, 287. Moreover, the internalization of GO into cells has been shown to depend on both GO 

lateral dimensions, size distribution and cell type 283, 284. For instance, macrophage cells possessed 

equal tendency to internalize GO with two different dimensions of 2  and 0.35 µm 284. It has been 

found that properly-functionalized RGO sheets are potentially stable in physiological 

environments and are non-toxic to cells in mice in vivo 239. This study showed that functionalized 

GO tended to accumulate selectively in tumor cells with lower tendency for passage through 

reticuloendothelial pathways.  

The Au-based photothermal therapy demonstrated in earlier literature work 226, 233, 288-293, 

if combined with efficient photothermal energy conversion reported herein, may bring great 

opportunities for cancer treatment. However, substantial work remains in fine tuning of the surface 

chemistry of Au/GO nanocomposites and the lateral dimensions to optimize their uptake and non-

toxicity behaviors for in vitro or in vivo biomedical applications. Currently, experiments to 

investigate the effect of polymer coating on the in vitro behaviors of Au/GO composites and their 

physiological stability and cellular uptake are underway. It is worth mentioning that a very recent 

study showed that functionalized GO could be delivered into mammalian cells and used as 

sensitive SERS probes after in-situ intracellular formation of Au nanoparticles  279. A similar study 

of using PEGylated GO as a nanovector for delivery proteins into cells is also another evident for 

the ability of GO to permeate cells after proper coating  282.  
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5.5 Conclusions  

In summary, various shaped-Au nanoparticles nanorods of controlled axial ratio, 

bipyarmids, spheroids and cubes of controlled edges and edge lengths have been synthesized 

adopting slightly-modified seed-mediated approach. The coupling of the surface plasmon 

resonance of these Au nanoparticles with the laser reduction of GO leads to significant 

enhancement of the efficiency of photothermal energy conversion by the gold nanoparticles-GO 

mixtures. The enhanced photothermal effects can be tuned by controlling the shape and size of the 

gold nanostructures, which result in a remarkable increase in the heating efficiency of the laser-

induced melting and size reduction of gold nanostructures. The large surface areas of the laser 

RGO nanosheets with multiple defect sites and vacancies provide efficient nucleation sites for the 

ultrasmall gold nanoparticles to be anchored to the graphene surface. This defect filling mechanism 

decreases the mobility of the ultrasmall gold nanoparticles and thus stabilizes the particles against 

the Ostwald ripening process which leads to a broad size distribution of the laser-size reduced gold 

nanoparticles. The ultrasmall gold-graphene nanocomposites are proposed as novel photothermal 

energy convertors for a variety of thermochemical and thermomechanical applications, in addition 

to photothermal therapy, such as heating and evaporation of liquids by solar energy, ignition of 

solid fuels, and welding of composite materials. 
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CHAPTER 6 Microwave Synthesis of Bifunctional Magnetic-Luminescent 

(Fe3O4/CdSe) Nanocomposites 

  

6.1 Overview 

In this chapter a rapid microwave-assisted synthesis and detailed characterization of a 

bifunctional nanocomposite, composed of a magnetic core, Fe3O4, and a semiconductor shell, 

CdSe is described. Magnetite Fe3O4 nanoparticles are synthesized and used as seeds for the 

heterogeneous nucleation and growth of the CdSe nanoshells. The optical properties of the 

nanocomposites are assessed by UV-Vis and photoluminescence measurements. Additionally, the 

crystalline phase and size distribution of the nanocrystals are determined by XRD and TEM, 

respectively. The results indicate that the as prepared nanocomposites are nearly monodisperse 

with an average size of 10 nm and a quantum yield of 13%. The synthesized nanocomposites 

clearly provide both magnetic and luminescent properties which could be useful for simultaneous 

detection and separation possibly in biomedical applications. 

6.2 Introduction  

In the past few years, the colloidal synthesis of inorganic nanostructures has been directed 

in part towards integrating different functional components (e.g. metal, magnetic and 

semiconductor) in a hybrid single structure that possesses dual-or multifunctionality.294-317 The 

controlled synthesis of such multicomponent nanostructures has been one of the important goals 

of nanoparticles’ research due to their novel properties and many advantages over the more-limited 
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single component counterparts. For example, Kim et al. reported the synthesis of Co/CdSe 

nanocrystals which display both magnetic and photoluminescence properties.317 Jinhao et al. 

demonstrated the use of external magnetic field in the intracellular manipulation of 

fluorescent/magnetic nanocrystals.298, 299 Deka et al. developed a colloidal two-step seeded-growth 

approach to synthesize a multicomponent magnetic/semiconductor structure.304 Water-soluble 

Fe3O4/CdTe magnetic/fluorescent nanocrystals were reported by Sun et al.312 Similarly, Xu et al. 

have synthesized biocompatible luminescent superparamagnetic nanostructures for guided 

fluorescence imaging.313 Liu et al. reported a sonochemical generalized aqueous route for the 

synthesis of nanocomposites of magnetic and different semiconductor structures.301 Also 

bifunctional Fe3O4/Se bundles have been synthesized by Lu et al.311 Other magnetic/semiconductor 

hybrid structures such as Fe2O3-CdS 296, 308 and FePt/In2O3,
316 FePt-CdS dumbbells,303 FePt-ZnO 

core-shell,314 FePt-PbS and FePt-PbSe 310 have been also synthesized using magnetic nanocrystals 

as seeds.  

The importance of such highly functional materials stems from the tailored and enhanced 

novel proprieties, such as increased stability, surface area, magnetic, optical and catalytic 

properties which are different from that of the individual single-component counterpart.318 

Because of the integrated magnetic and fluorescent properties, they can be applied in a variety of 

fields such as the simultaneous detection and separation in biological analyses and immunoassays 

as well as the fluorescence-based imaging for detection and diagnosis.312, 319, 320 However, 

synthesis of hybrid nanostructures is a big challenge and needs a great control over the reaction 

parameters to generate functional materials with tunable properties. In this regard, variant synthetic 

approaches have been devoted to the synthesis of different kinds of hybrid structures.294, 295, 302, 306, 

321, 322  
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Microwave irradiation (MWI) has been used successfully as a simple and fast route for the 

large-scale synthesis of high crystalline nanostructures that minimizes the thermal gradient 

effects.46, 87, 107, 260, 323, 324 Heating of a substance by microwave irradiation is based on dipole 

rotation and ionic conduction, that is, by reversal of solvent dipoles and the resulting replacement 

of charged ions of a solute. Due to the difference in the solvent and reactant dielectric constants, 

selective dielectric heating can provide significant enhancement in reaction rates. The rapid 

transfer of energy directly to the reactants causes an instantaneous internal temperature rise. Thus, 

the activation energy is essentially decreased as compared with conductive heating and the reaction 

rate increases accordingly. This also allows the rapid decomposition of the precursors thus creating 

highly supersaturated solutions where nucleation and growth can take place to produce the desired 

nanocrystalline products.46, 107, 260, 324 

In this work, we demonstrate the application of MWI for the synthesis of Fe3O4/CdSe 

magnetic/luminescent nanocomposites where luminescent CdSe nanoshells are grown around 

magnetic Fe3O4 nanocrystalline seeds. Our choice of the Fe3O4 and CdSe components was 

motivated by their excellent magnetic and optical properties, respectively, and the great attention 

paid to these systems over the past two decades.  

6.3 Experimental 

6.3.1 Chemicals and reagents 

Iron III acetylacetonate (Aldrich, 99.95%), oleic acid (Aldrich, tech 90%), oleylamine 

(Aldrich, tech), cadmium oxide (Aldrich, 99.99%), selenium powder (Aldrich, 100 mesh, 99.99%), 

trioctylphosphine oxide (Sigma, 90%), hexadecylamine (Aldrich, 90%), and trioctylphosphine 

(Sigma, 90%).  
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6.3.2 Microwave synthesis of Fe3O4 seeds  

In a typical synthesis of spherical Fe3O4 nanocrystals, 200 mg iron acetylacetonate was 

dissolved in 1 ml dimethylformamide (DMF) and stirred vigorously until complete dissolution and 

then a mixture of 1 ml oleic acid and 2 ml oleylamine was added to the solution under stirring. The 

resulting mixture was then placed in a domestic microwave oven and irradiated for 5 min for 6 nm 

seeds and 25 min for 10 nm particles (1 min cycles , on for 50 s and off for 10 s) at 33% of 650 

W. after the reaction. Upon microwave irradiation, the reaction mixture turned rapidly into dark 

red and finally to black when temperature was about 280 oC. After cooling down to room 

temperature, the formed magnetite particles were separated with ethanol and centrifuge and 

washed with hexane/ethanol cycles. Although the prepared nanocrystals respond to external filed 

from a small magnet and can be collected using a permanent magnet, separation was conducted 

using centrifugation.  

6.3.3 Synthesis of CdSe nanocrystals by microwave irradiation  

In a typical synthesis of CdSe nanocrystals, cadmium oxide powder (100 mg) was added 

to an oleic acid solution (5 ml), followed by microwave irradiation until the complete dissolution 

of CdO which resulted in a colorless solution. A mixture of trioctylphoshpine oxide (2.0 g) and 

hexadecylamine (2.0 g) was then added to the colorless solution, and the reaction mixture was 

further microwaved allowing the solid TOPO-HDA mixture to dissolve. The subsequent addition 

of selenium powder (100 mg) that was pre-dissolved in trioctylphosphine (3 ml), (Se-TOP) 

allowed nucleation and growth of CdSe nanocrystals within few seconds of microwave exposure. 

The as-prepared particles were precipitated with ethanol, centrifuged, and re-dispersed in toluene 

for further analyses and characterizations. 
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6.3.4 Microwave synthesis of Fe3O4/CdSe nanocomposites  

For the synthesis of Fe3O4/CdSe core shell nanocomposites, a seed-mediated approach was 

adopted using Fe3O4 nanocrystals as seeds. First, cadmium oxide powder (100 mg) was added to 

an oleic acid solution (5 ml) and the mixture was microwaved for 10 min until the complete 

dissolution of CdO and a colorless solution of cadmium oleate was obtained. A mixture of 

trioctylphoshpine oxide (2.0 g) and hexadecylamine (2.0 g) was then added to the colorless 

solution, and the reaction mixture was further microwaved to dissolve the solid TOPO-HDA 

mixture. An appropriate amount of seed solution (400 µl of 36 mg/ml) was added under vigorous 

stirring followed by the subsequent addition of Se-TOP (100 mg/3 ml) solution. The microwave 

irradiation of the whole mixture allowed the growth of the CdSe on the surface of the existing 

seeds to give core/shell structure. The reaction mixture was held under MWI for 3 min with 10 s 

off per min for stirring. The color change of the solution from the black to red indicated the 

formation of CdSe shell on the Fe3O4 core. After the completeness of the reaction, the prepared 

nanocomposites were separated and washed with ethanol/toluene cycles using centrifuge.  

6.3.5 Characterization  

TEM images were recorded using a Joel JEM-1230 electron microscope operated at 120 

kV equipped with a Gatan UltraScan 4000SP 4K x 4K CCD camera. The X-ray diffraction (XRD) 

patterns were obtained with an X’Pert Philips Materials Research Diffractometer at room 

temperature using Cu Kα1 radiation. Absorption spectra were recorded using a Hewlett-Packard 

HP-8453 diode array spectrophotometer. Emission spectra were recorded using a Varian, Inc. - 

Cary Eclipse Fluorescence Spectrofluorimeter.      
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6.4 Results and Discussion  

Microwave irradiation (MWI) constitutes a powerful approach for the synthesis of plethora 

of nanocrystals of controlled structure and morphology, yet in a simple and rapid fashion. The 

rapid, uniform and selective heating causes an instantaneous temperature rise and direct transfer 

of heat energy to the reactants, allowing achieving very high effective reaction temperature for the 

rapid decomposition of the precursors.108 Magnetic iron oxide nanocrystals (e.g. magnetite Fe3O4) 

are particularly promising in many applications such as soft magnetic materials, electromagnetic 

shielding, drug delivery, color imaging and others.325 They have been brought into sharp focus 

mainly due to their superior magnetic properties, low toxicity and biocompatibility.326 The 

microwave-driven decomposition of iron III acetylacetonate in the presence of oleic acid and 

oleylamine led to formation of nearly monodisperse Fe3O4 spherical nanocrystals. The crystal 

phases of prepared nanocrystals were confirmed by XRD. As shown in Fig. 6.1 (a-b), the Fe3O4 

nanocrystals possess the spinnel lattice and all diffraction peaks can be indexed to cubic structure 

which is in a good agreement to the literature.327  
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Figure 6-1. XRD patterns of a) 6 nm Fe3O4 nanocrystals, b) 10 nm Fe3O4 nanocrystals, c) CdSe 

nanocrytslas and d) Fe3O4/CdSe core-shell nanocomposites prepared by MWI. 

The size of prepared particles can be easily tuned by controlling the microwave irradiation 

time. For the synthesis of 6 nm spherical Fe3O4 nanocrystals, the reaction was held for 5 min while 

it was held for 25 min in case of the 10 nm nanocrystals. Figiure 6.2 (a-f) shows typical TEM 

images for representative as-prepared Fe3O4 nanocrystals. It is clear that the Fe3O4 nanocrystals 

are spherical, uniform and monodispersed with a mean size of ~6 nm in diameter for those 

microwaved for 5 min and 10 nm in diameter for those microwaved for 25 min. A representative 

TEM image of CdSe nanocrystals prepared by MWI is displayed in Fig. 6.3 (a-b). It is observed 

that CdSe nanocrystals have a relatively narrow size distribution and the mean size is about 3-4 

nm. The crystal phase of these nanocrystals was evidenced from XRD pattern displayed in Fig. 

6.1-c showing that CdSe nanocrystals possess cubic structure.  
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Figure 6-2. TEM images of a-c) 6 nm and d-e) 10 nm Fe3O4 nanocrystals prepared by MWI. 

 

Figure 6-3. TEM images of CdSe nanocrystals prepared by MWI. 

For the microwave-assisted synthesis of Fe3O4/CdSe nanocomposites, a Se-TOP solution 

was injected into a reaction mixture of monodispersed Fe3O4 nanocrystals (originally stabilized 

with oleic acid and oleylamine), Cd-oleate complex dissolved in a TOPO-HDA mixture. Fe3O4 

nanocrystals played the role of seeds for the heterogeneous nucleation of CdSe phase whose 

morphology and size were controlled by the microwave irradiation time and the ligands present in 

the reaction mixture. The microwave irradiation of the reaction mixture after the Se-TOP injection 
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led the CdSe domains to nucleate, grow and eventually form nanoshells onto the Fe3O4 nanocrystal 

surfaces, due to the incompatibility of the lattices of Fe3O4 and CdSe and the effect of surface 

tension.296, 298 Figure  6.1 (a-d)  compares the powder X-ray diffraction patterns of (a-b) Fe3O4 

cores, (c) CdSe and (d) Fe3O4/CdSe nanocomposites. The differences in the crystal lattice 

structures between the single components and the hybrid nanocomposite structure are clearly 

evident. All patterns reflect the good crystallinity of the as-prepared pure nanocrystals and hybrid 

nanocomposites. Compared to the XRD patterns of pure Fe3O4 (Fig. 6.1  (a-b) and CdSe (Fig. 6.1-

c), the diffraction peaks in Fig. 6.1-d can be indexed to the spinnel structure which reveals the 

presence of Fe3O4 phase in the as-synthesized Fe3O4/CdSe nanocomposites as well as the cubic 

CdSe phase. Both CdSe prepared alone and CdSe shells deposited on the surface of the Fe3O4 

nanocrystals crystallizes in the wurtzite structure as indicated by the characteristic peaks in the 2θ 

range of 25-45o.46 The diffraction peaks from CdSe component in the Fe3O4/CdSe nanocomposites 

matched the reflections of reported in the literature, showing that no lattice strain is encountered 

in the CdSe shell in the Fe3O4/CdSe nanocomposites structures. TEM images of the Fe3O4/CdSe 

nanocomposites shown in Fig. 6.4 (a-b) confirmed the core shell morphology. Compared to Fe3O4 

and CdSe nanocrystals, the Fe3O4/CdSe nanocomposites retain the same spherical shape and 

uniformity but they are about 3-5 nm larger in diameter, so final core-shell nanocomposites are 

about 10-15 nm in diameter. The shell thickness could be controlled by MWI time and the amounts 

of cadmium and injected sulfur precursors. The monodispersity of the prepared nanocomposites 

reflects the well control over the growth of the CdSe shell on the magnetic core. 
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Figure 6-4 TEM images of Fe3O4/CdSe nanocomposites prepared by MWI a) Low magnification 

image with a scale bar of 50 nm, inset in (a) and image b) are higher magnification images 

with 20 nm scale bar showing the contrast between the core and the shell. 

The successful synthesis of Fe3O4/CdSe nanocomposites was evidenced also by the optical 

measurements of the absorption and fluorescence spectra using UV-Vis and photoluminescence 

spectroscopy. As displayed in Figs 6.5 and 6.6, the UV-Vis spectra are featured by a distinct 

absorption due to the CdSe nanocrystals and narrow emission bands are demonstrated with 

emission maxima between 540 and 602 nm depending on the microwave time. Compared to the 

individual CdSe nanocrystals, the integration of Fe3O4 cores into CdSe nanocrystals fades out the 

sharp excitonic features inherited to monodispersed CdSe samples and this effect might be due to 

inhomogenous and homogenous broadening. However, the photoluminescence properties of 

Fe3O4/CdSe were retained, emission peaks are nearly symmetric like pure CdSe and the 

fluorescence intensity of as-synthesized Fe3O4/CdSe nanocomposites was comparable to that of 

the pure CdSe prepared under similar conditions. A typical sample of as-prepared Fe3O4/CdSe 

nanocomposites possessed a quantum yield of 0.13 vs. R-6G.  

Figure 6.6-b shows the extent of Stoke’s shift in the as-prepared Fe3O4/CdSe 

nanocomposites after 240 s of MWI. Moreover, the excellent magnetic property of the 

nanocomposites was evident. They could be easily separated under an external magnetic field from 
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a small magnet. A color change from the orange to transparent is observed when an external 

magnetic field is applied showing the enriching process, as displayed in Fig. 6.7. When the 

magnetic field is removed, the aggregation can be readily dispersed by stirring. From the optical 

measurements, it can be concluded that Fe3O4/CdSe nanocomposites show undisrupted and strong 

emission and the desired magnetic properties as well. These magnetic and luminescent properties 

of Fe3O4/CdSe derived from Fe3O4 counterpart make the nanocomposites ideal to be used in the 

areas of biolabelling, bioseparation, immunoassays and other diagnostic applications.299 

 

Figure 6-5 UV-Vis spectra of Fe3O4/CdSe nanocomposites prepared under different MWI times. 
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Figure 6-6 Photoluminescence spectra of Fe3O4/CdSe nanocomposites prepared under different 

MWI times (a) and a comparison to UV-vis spectrum of sample prepared at 240 s to show 

the extent of Stokes shift. 

 

 

Figure 6-7 A digital image of Fe3O4/CdSe nanostructures showing the rapid magnetic separation in 

an external field in 20 s. In images (a-c) the magnet is in contact with the glass vial and then 

was taken away from the vial in image (d) to better show magnetic decantation.  
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6.5 Conclusions  

In summary, we presented a facile and rapid microwave-based procedure for the synthesis 

of Fe3O4-CdSe core-shell nanocomposites with tunable optical emission features in an organic 

environment. The absorption and emission properties of the nanocomposite structures could be 

easily tuned by changing the microwave irradiation time which also can be used to control the 

luminescent shell thickness. It would be interesting to extend the experimental approach based on 

the direct formation of CdSe quantum dots and their simultaneous deposition on the magnetite 

core to the fabrication of other hybrid nanostructures of semiconductor and magnetic nanocrystals. 
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CHAPTER 7 Microwave Synthesis of Fe3O4/Graphene Architectures: 

Surfactant-assisted Control of Morphology and Magnetic Properties 

  

7.1 Overview 

Herein, a rapid general one-step microwave irradiation method for growing magnetite 

nanocrystals on reduced graphene oxide sheets is described. The strategy developed allows 

decorating graphene sheets with magnetite nanocrystals of various well-defined morphologies 

(spheres, cubes and triangles by microwave-driven reduction of Fe(acac)3 in benzyl ether using 

oleylamine and oleic acid as surfactants. The size and shape control was achieved by tuning the 

mole ratio of two surfactants while keeping the amount of Fe(acac)3 fixed. The results demonstrate 

the feasibility of our microwave synthetic approach to control the morphology of the magnetite 

nanocrystals anchored on conducting graphene sheets. The morphology of the magnetite 

nanocrystals grown on graphene can be tailored by tuning the molar ratio of the two surfactants 

and the iron precursor. Moreover, the introduction of graphene sheets which contribute to the 

nucleation and growth provided a mean to control the morphology of the magnetite nanoplates 

anchored on graphene. Our microwave synthetic strategy can be extended to synthesize a wide 

variety of metal and metal oxide architectures on graphene.   
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7.2 Introduction  

Graphene, a highly versatile carbon material, has received a great attention in recent years 

because of its extraordinary structural, optical, thermal, mechanical and electrical properties.3, 75, 

127 Such intriguing and unique features make graphene promising in wide array of potential 

applications such as nanocomposites, sensors, supercapacitors, nanoelectronics, transparent 

conducting films, batteries, paper-like materials and others.20 The unique two-dimensional nature 

and the extremely high surface area of graphene sheets make this carbon material an ideal support 

for the deposition of various inorganic nanoparticles.45, 46, 87, 90, 95, 105, 129-131, 328-330 For example, 

Zedan et al.46 deposited CdSe quantum dots on chemically synthesized graphene sheets which 

served as an electron acceptor matrix for CdSe fluorescence quenching. Siamaki et al. 330 loaded 

Pd nanoparticles on graphene sheets and applied them as catalysts to the carbon–carbon cross-

coupling reactions.  

In this regard, anchoring superparamagnetic iron oxide nanostructures on chemically 

synthesized graphene will impart the desirable superparamagnetic features into graphene, making 

such graphene-based composite material promising for a wide range of fields such as magnetic 

energy storage, magnetic fluids, catalysis, electromagnetic materials and coatings, environmental 

remediation, aligned substrates for nanodevices, magnetic separation and biological imaging.43, 

331-339 The control of the morphology, size and magnetic features of magnetic nanoparticles has 

gained considerable attention in the past few years due to the significance in fundamental 

understanding and wide technological applications in catalysis, high density magnetic and energy 

storage media, drug delivery, color imaging, electromagnetic shielding, spintronics, ferrofluids 

and biological separations.340-342  
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The size and morphological changes in magnetite nanostructures, in particular, have been 

shown to significantly affect the magnetic features such as coercivity and saturation 

magnetization.343-346 In addition, Fe3O4 have been brought into sharp focus due to their superior 

magnetic properties, low toxicity and biocompatibility. To control the size and shape of magnetic 

nanocrystals, various synthetic methods adopting hydro- or solvothermal treatment, wet chemical 

etching, reverse-micelles or polyol molecules have been introduced to prepare a variety of 

structures such as magnetite nanospheres,54 nanopyarmids,342 1D nanowires,311, 347 nanocubes,345, 

348 nanooctahedra,341, 349 and nanorods.350 Chemical synthetic routes offer large scale production 

of graphene-based composite materials with potentially low cost. Recently, composite structures 

of graphene or graphene oxide and magnetic nanostructures prepared by the wet chemical methods 

have been synthesized and applied to arsenic removal, catalysis, magnetic-controlled switches, 

magnetic resonance imaging (MRI), and targeted drug carriers.331-338, 351 Cong et al. 333 decorated 

graphene oxide sheets with Fe3O4 nanoparticles and used them as contrast agents for magnetic 

resonance imaging (MRI). Chandra et al. 334 synthesized magnetite-graphene hybrid structures as 

efficient absorber for As(III) and As (IV). Chen et al. 336 anchored Fe3O4 on graphene oxide sheets 

for a controlled targeted anticancer drug delivery. Fu et al.331 reported the use of a magnetically 

separable ZnFe2O4-graphene nanocomposites as photocatalysts for the degradation of methylene 

blue. Liang and co-workers 337 fabricated graphene/Fe3O4 films and proposed their use in 

magnetic-controlled switches. Su et al. 338 reported one-pot hydrothermal synthesis of Fe3O4-

graphene nanocomposites for improved lithium storage. Lin et al. 332 adopted solvent-free 

microwave heating for instantaneous formation of magnetic metal and metal oxide nanoparticles 

on graphene. Shen and others 351 deposited both Fe3O4 and γ-Fe2O3 on graphene sheets using high 

temperature reaction of Fe (acac)3 in 1-methyl 2-pyrrolidone (NMP). Wang et al. 352 utilized 
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graphene oxide sheets with different degrees of oxidation to grow Fe2O3 hexagonal nanoplates on 

graphene in a two-step solvothermal method.  

Despite these significant efforts, the shape-controlled synthesis of iron oxide magnetic 

nanoparticles supported on graphene sheets still lacking and to the best of our knowledge such 

shape-controlled synthesis has not been yet reported. Microwave irradiation (MWI) constitutes a 

powerful approach for the synthesis of plethora of nanoparticles of controlled structure and 

morphology, yet in a simple and rapid fashion. The rapid, uniform and selective heating causes an 

instantaneous temperature rise and direct transfer of heat energy to the reactants, allowing 

achieving very high effective reaction temperature for the rapid decomposition of the precursors.46 

Herein, a facile strategy to control the shape of magnetite nanocrystals, both free standing and 

those attached to graphene sheets is explored, integrating in such way the superparamagnetic 

properties of magnetite nanoparticles of different morphologies and the superior conductivity of 

graphene in a single compartment composite structure. Compared with the previous reports, the 

work reported here holds various advantages. First, the preparation method is simple, rapid and 

single-step with the contemporaneous reduction of graphene oxide to graphene and the in situ 

formation of Fe3O4 on the surface of graphene sheets. Second, the shape of the anchored magnetite 

nanocrystals can be readily tuned from spheres, cubes to prisms by tuning the molar ratio of the 

surfactants used (oleylamine and oleic acid). Third, the syntheses show even deposition of Fe3O4 

on the surfaces of graphene sheets with dense coverage. Fourth, the Fe3O4/CSG nanocomposites 

are readily dispersible in nonpolar solvents and feasible for separation with external field from a 

permanent magnet. 
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7.3 Experimental  

7.3.1 Chemicals and reagents  

Iron III acetylacetonate (Aldrich, 99.95%), oleic acid (Aldrich, tech 90%), oleylamine 

(Aldrich, tech), benzyl ether (ACS 99.9%, Aldrich), dimethyl sulfoxide (ACS 99.9%, Alfa Aesar), 

Graphite (natural, high purity,-200 mesh, 99.9999%, metal basis, Alfa Aesar), sulfuric acid (Fisher 

Scientific, Certified ACS), potassium permanganate (Analyt Reag., low in mercury, Mallinckrodt), 

hydrogen peroxide (30%, KMG), and ethanol.  

7.3.2 General synthetic method 

In a typical synthesis of magnetite nanocrystals, a pre-determined amount of iron 

acetylacetonate, ([Fe (acac)3]), was mixed with 105 mmol benzyl ether and stirred vigorously until 

complete dissolution. Oleylamine and/or oleic acid were/were then added to the solution under 

stirring and the reaction vessel was transferred to a domestic microwave oven. The whole mixture 

was microwave irradiated for 20 minutes (15 sec on cycles). After cooling down to room 

temperature, the formed magnetite particles were separated with ethanol and centrifuge and then 

washed with hexane/ethanol cycles. Although separation was conducted using centrifugation the 

prepared nanocrystals respond to external field from a small magnet and can be collected using a 

permanent magnet. 

7.3.3 Synthesis of Fe3O4 nanospheres  

For the synthesis of Fe3O4 nanospheres, 280 µmol of Fe (acac)3  was dissolved in 105 mmol  

benzyl ether and then a mixture of 4.2 mmol of oleylamine and 11.2 mmol oeic acid was added to 

the solution under vigorous stirring. The mixture was microwave irradiated for 20 min at 1000 W. 

Upon microwave irradiation, the reaction mixture turned rapidly into dark red and finally to black 
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when temperature was about 280 oC. The final product was collected and washed as described 

earlier.      

7.3.4 Synthesis of Fe3O4 nanocubes  

The mixture for the synthesis of Fe3O4 nanocubes contained 280 µmol of Fe(acac)3, 4.2 

mmol of oleylamine and 2.8 mmol of oleic acid in 105 mmol benzyl ether. The reaction mixture 

was microwave irradiated for 20 min at the same power. Separation and washing steps are the 

same of the spheres.   

7.3.5 Synthesis of Fe3O4 triangles 

The typical synthetic mixture of Fe3O4 triangles included 280 µmol of Fe(acac)3, 2.1 mmol 

of oleylamine and 2.8 of oleic acid in 105 mmol benzyl ether. The rest of reactions steps, separation 

and washing are the same as the spheres.      

7.3.6 Synthesis of shape-controlled Fe3O4-decorated graphene   

The different syntheses of shaped-controlled Fe3O4 nanostructures on RGO adopted same 

respective molar ratios between the precursors and surfactants mixtures for different shapes. A 

summary of different experimental conditions and resulting morphologies of Fe3O4 and 

Fe3O4/RGO is outlined in Table 7.1. The synthesis of Fe3O4 nanoplates/RGO involved the 

dissolution of 280 µmol of Fe (acac)3 in 105 mmol  benzyl ether followed by the addition of a 

mixture of 4.2 mmol of oleylamine and 5.6 mmol oeic acid under vigorous stirring. Prior to MWI, 

a GO/DMSO suspension was added to the reaction mixture and finally the reaction vessel was 

microwaved micorwaved for 20 min at 1000 W. Upon completion, the final product was collected 

and washed as described before.    
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7.4 Results and Discussion  

Magnetic iron oxide nanocrystals (e.g. magnetite Fe3O4) are particularly promising in many 

applications such as soft magnetic materials, electromagnetic shielding, drug delivery, color 

imaging and others.325 They have been brought into sharp focus mainly due to their superior 

magnetic properties, low toxicity and biocompatibility.326 As a simple and fast route, microwave 

irradiation (MWI) has been used extensively for the large scale synthesis of high crystalline 

nanostructures that minimizes the thermal gradient effects.107, 125 Heating of a substance by 

microwave irradiation is based on dipole rotation and ionic conduction, that is, by reversal of 

solvent dipoles and the resulting replacement of charged ions of a solute.107, 125 Due to the 

difference in the solvent and reactant dielectric constants, selective dielectric heating can provide 

significant enhancement in reaction rates. The rapid transfer of energy directly to the reactants 

causes an instantaneous internal temperature rise. Thus, the activation energy is essentially 

decreased as compared with conventional heating methods and the reaction rate increases 

accordingly. This also allows the rapid decomposition of the precursors thus creating highly 

supersaturated solutions where nucleation and growth can take place to produce the desired 

nanocrystals.  

The potential of oleic acid (OAc) and oleylamine (OAm) mixture in a molecular solvent 

has been explored over the past several years as an effective approach for the fabrication of various 

metallic nanostructures of various morphologies, including cubes, prisms, hexagons, rods and 

nanowires.353-355 The cooperative interaction  between OAc and OAm in presence of metal ions to 

form diolamide upon MWI has been shown by our group to be a rational behind formation of 

various Au anisotropic shapes.260 The same approach is extended herein to decorate graphene 
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nanosheets with Fe3O4 architectures of various sizes and shapes in a controllable fashion adopting 

MWI.   

In our controlled synthesis of Fe3O4/RGO nanocomposites, natural graphite and iron 

acetylacetonate were used as molecular precursors to graphene and magnetite, respectively. 

Through a slightly modified Hummer’s method and as described in the experimental section, 

graphite was treated with strong oxidizing agent in presence of H2SO4 to yield graphene oxide 

(GO). Unlike graphene, the lots of oxygen-containing functional groups possessed on GO enable 

its dispersion and formation of homogenous colloidal solutions in polar organic solvents and water. 

Although being a suitable substitute for graphene, the thermal instability and poor electrical 

conductivity of GO handicap its applications in functional composite materials. Therefore, various 

chemical, electrochemical and thermal methods have been introduced to convert GO into 

graphene. Recently, we have reported a microwave-assisted method for the efficient reduction of 

GO in very short time using dimethylsulfoxide (DMSO) as a solvent.46  

Generally, there are three strategies to prepare graphene-based functional nanocomposites 

starting from GO. In one strategy, the targeted nanoparticles are first loaded on GO sheets followed 

by its reduction after achieving the desired composite structure.45, 356 However, in such strategy 

some alterations to the nanoparticles counterpart in the prepared composite structure are likely to 

take place upon the complete reduction of GO all the way to reduced graphene oxide (RGO). For 

instance, anchored nanoparticles may detach from the surface during the reduction process. In a 

second strategy, GO is separately converted to RGO first and targeted nanoparticles are then 

loaded on existing RGO sheets.102 However, RGO sheets possess rare functional moieties on the 

surface and consequently poor dispersibility in most solvents, which leads to serious aggregation 

of RGO sheets. In a third strategy, the desired nanoparticles are synthesized on the existing GO 
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sheets with the contemporary reduction to RGO in a one-pot and single-step fashion.46, 87, 330, 331 

The feasibility of the one-pot reduction of GO sheets with the simultaneous nucleation and growth 

of nanoparticles counterparts on RGO surface makes the third strategy superior to fabricate diverse 

graphene-based functional nanocomposites. In this work, the Fe3O4/RGO nanocomposites were 

fabricated in a single-step directly from GO and Fe(acac)3 through a facile one-pot microwave-

assisted reduction.    

7.4.1 Morphological characterization and shape transformation  

Various shaped- and sized- Fe3O4 nanocrystals were prepared individually and anchored 

to graphene by MWI of Fe(acac)3 precursors in benzyl ether and a mixture of oleylamine and oleic 

acid. The MWI delivers a great amount of heat that accelerate the decomposition of Fe(acac)3 

precursors leading to the burst of nucleation and further growth. When supersaturation is reached 

in reaction medium, the Fe-O species start to cluster in the reaction medium of benzyl ether to give 

numerous nuclei. The aggregation of these numerous nuclei above the saturation threshold leads 

to sintering resulting in formation of primary Fe3O4 nanocrystals. The primary formed Fe3O4 

nanocrystals are then further grown by diffusion and stacking the respective atomic species derived 

from the partial reduction and decomposition of Fe(oleate)3 in presence of oleylamine-oleic acid 

mixture onto the primary nanocrystals.  

To better understand the effect of different experimental parameters on the growth process, 

the synthesis of magnetite nanoparticles was first conducted in presence of the single components 

of the surfactant mixture, i.e oleylamine or oleic acid. The various morohologies with their 

corresponding synthetic experimental conditions and parameters are summarized in Table 7.1. As 

shown in Fig. 7.1, Fe3O4 nanoparticles prepared by MWI of Fe(acac)3 in benzylether and using 

3.2 mmol or 4.2 mmol of oleylamine or oleic acid, respectively, are spherical in shape. The very 
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small size of nanoparticles prepared under these conditions, relative to those prepared in the 

mixture implies the efficient passivation of growing nanoparticles by the self-assembly of fatty 

chains from OAm or OAc into a micellar structure within which the Fe3O4 nuclei form and grow.355 

Moreover, the dilution of OAm or OAc by the benzyl ether could have result in smaller micelles 

or inefficient decomposition and/or reduction process leading to formation of tiny spheres. A fine 

control of the shape and the size of Fe3O4 growing under MWI were achieved using a mixture of 

OAc and OAm. Our findings show that tuning the molar ratio between OAm and OAc provides a 

feasible mean to control both shape and size of Fe3O4 nanostructures.  

 

Table 7-1 Fe3O4 different morphologies with corresponding experimental parameters  

Fe3O4 Shape  OAm 

(mmol) 

OAc 

(mmol) 

Fe(acac)3 

(mmol) 

Size Figure  

Tiny spheres 3.2 0 0.28 4-5 nm Fig 1  A-D 

Tiny spheres  0 4.2 0.28 3-4 nm Fig 1  E-F 

Spheres (small) 4.2 5.6 0.28 10±2 nm Fig 2  A,B 

Spheres (large)  4.2 11.2 0.28 13±2 nm Fig 2  C,D 

Cubes 4.2 2.8 0.28 Edge 15±1 nm Fig 3 A,B 

Triangles  2.1 2.8 0.28 Edge 28±2 nm Fig 3 C,D 

Spheres/RGO  4.2 5.6 0.28 13-15 nm Fig 4 A-C 

Spheres/RGO 4.2 5.6 0.28 13-15 nm Fig 4 D-F 

Cubes/RGO 4.2 2.8 0.28 Edge 11-17 nm  Fig 5 A,B 

Triangles/RGO 2.1 2.8 0.28 Edge 30-35 nm  Fig 5 C,D 

Hexgonal Plates 4.2 5.6 0.28 G,K edge 0.9 µm  Fig 6 A-L 

Hexgons/Graphene 4.2 5.6 0.28 STEM, SEM Fig 7 A-F 
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Figure 7-1 TEM images of Fe3O4 nanocrystals prepared by MWI of Fe(acac)3 in benzyl ether for 20 

min using 3.2 mmol OAm (A-D, average size ~ 4-5 nm) or 4.2 mmol OAc (E-F, average size 

~ 3-4 nm).    
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Figure 7.2 shows TEM images of Fe3O4 prepared by MWI in OAm-OAc mixture with 

different ratios. When 4.2 mmol of OAm was mixed with 5.6 mmol spherical Fe3O4 of uniform 

shape and size and an average diameter of 10±2 nm were obtained. The Fe3O4 nanospheres are 

arranged in a closed pack array which reveals the uniformity of size and shape of as-prepared 

particles. When OAc fraction was increased to 11.2 mmol the Fe3O4 retained the spherical shape 

but the size of the nanoparticles increased slightly to 13±2 nm. Interestingly, well-defined Fe3O4 

cubes of monodisperse size and uniform shape with average edge length of 15±1 nm were 

successfully prepared by changing the molar ratio between OAM and OAc, where OAc fraction 

was decreased to 2.8 mmol while keeping OAm at 4.2 mmol. Figure 7.3 shows typical TEM 

images of Fe3O4 cubes and triangle structures. TEM images of Fe3O4 nanocubes displayed in  

Figure 7.3-A,B, suggests a very narrow size distribution and shape uniformity of as-

synthesized cubes which spontaneously self-assemble in two-dimensions on the copper TEM grids 

after the evaporation of the solvent. When OAc was kept at 2.8 mmol and OAm fraction was 

decreased to 2.1 mmol the shape of the resulting Fe3O4 nanocrystals transforms into triangular 

ones as can be seen in TEM images (Figure 7.3-C,D) that show mostly triangular nanoparticles 

and a few polyhedral nanostructures. All triangles possess flat facets and regular edge sides with 

an average edge length of 28±2 nm. The results deduced from TEM clearly indicate that the size 

and morphology of the Fe3O4 nanostructures can be controlled by altering the fractions of 

surfactants. The 2D self-assemblies observed to greater extent in spherical and cubic nanoparticles 

suggest the promise of the as-prepared structures in high-density data storage applications.      
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Figure 7-2 TEM images of spherical Fe3O4 nanocrystals prepared by MWI of Fe(acac)3 in benzyl 

ether for 20 min using 4.2 mmol OAm and 5.6 mmol (A,B) or 11.2  mmol (C,D) OAc. 

Average size of A,B and C,D is ~10 nm and ~13 nm, respectively.    
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Figure 7-3 TEM images of cubic (A,B) and triangular (C,D) Fe3O4 nanocrystals prepared by MWI 

of Fe(acac)3 in benzyl ether for 20 min using 4.2 mmol OAm and 5.6 mmol or 11.2  mmol 

OAc, respectively. Edge length of cubes in A,B is ~ 15 nm and edge length in triangles ~28 

nm.    
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The abundant oxygen-containing functional groups on the surface cause graphene oxide to 

readily disperse in DMSO by ultrasonication to form a stable colloidal solution.46 The addition of 

this solution to the iron precursor Fe(acac)3 in presence of OAm/OA mixture likely leads to 

coordination of the Fe3+ ions to the COOH groups of GO. Upon microwaving the reaction mixture, 

the original light brown color of the mixture turns into dark brown and finally into black when 

reaction is complete, which indicates both the formation of Fe3O4 nanocrystals and conversion of 

GO to RGO. The microwave-assisted solvothermal reduction of GO in DMSO have been 

demonstrated earlier by our group.46 The high reaction temperature provided by MWI greatly 

accelerate the decomposition of Fe(acac)3 precursors and  the consequent Fe3O4 nucleation 

process, leading to the burst of nucleation within several seconds and this fast nucleation helps 

formation of small nuclei of narrow size distribution. In the next stage, the nuclei formed in the 

early stage rapidly grow larger through a slow process (20 min MWI). The MWI time along with 

the selective adsorption of OAm/OA co-surfactants provide means for the size control of growing 

particles. Finally a stable homogenous black dispersion of Fe3O4/RGO nanocomposites could be 

readily prepared by the contemporaneous microwave-assisted chemical reduction of Fe (acac)3 

and starting GO in benzylether.  

The anchoring of Fe3O4 on the RGO sheets in the composite matrix is clear as can be seen 

in the transmission electron microscopy studies and wells as structural characterization. 

Representative TEM images of RGO sheets nicely decorated with Fe3O4 nanospheres are displayed 

in Figs. 7.4-A-C. The nice distribution of mostly 13-15 nm Fe3O4 spheres on the surface of RGO 

sheets is clear in low-resolution STEM (Fig. 7.4-D) and SEM (Fig. 7.4-E-F) images recorded for 

the spherical Fe3O4/RGO nanocomposite structures, as shown in Fig. 7.4-D-F. All TEM, STEM 

and SEM images reveal that the surfaces of RGO sheets are densely covered by Fe3O4 nanocrystals 
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of different uniform size and shape. The distribution of the nanocrystals on the sheets is even 

without large conglomeration of nanocrystals or large uncovered areas of RGO sheets. In a similar 

way to that adopted to control the shape of individual Fe3O4 nanocrystals, RGO sheets supporting 

Fe3O4 nanostructures of cubic and triangular morphologies were successfully prepared by altering 

the ratio between OAm and OAc (4.2 mmol OAm/2.8 mmol OAc and 2.1 mmol OAm/2.8 mmol 

OAc, respectively). Figure 7.5-A,B shows low resolution TEM images of Fe3O4 cubes supported 

on RGO sheets. TEM images of Fe3O4/RGO nanocomposites showing mostly prismatic 

nanocrystals are shown in Fig. 7.5-C,D. In both cases, the two-dimensional RGO sheets are well 

decorated by a significant quantity of cubic or prismatic Fe3O4 nanostructures and the outlines of 

both RGO and Fe3O4 can be observed; however, some other shapes such spheres or irregular 

morphologies also are formed (Figure 7.5).       
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Figure 7-4 TEM (A-C), STEM (D) and low-reoslution SEM (E-F) images of spherical Fe3O4/RGO 

nanocomposite structures prepared by MWI of Fe(acac)3 in benzyl ether for 20 min using 

4.2 mmol OAm and 5.6 mmol OAc and in presence of GO/DMSO.  Average size range is 13-

15 nm.  
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Figure 7-5 Low-resolution TEM images of cubic (A,B) and triangular (C,D) Fe3O4 nanocrystals 

supported on RGO sheets and prepared by MWI of Fe(acac)3 in benzyl ether for 20 min 

using 4.2 mmol OAm and 2.8 mm OAc or 2.1 mmol of OAm and 2.8 mmol of OAc, 

respectively. For A,B edge length is 11-17 nm and for C,D edge is 30-35 nm.      

 

Of particular interest, large single crystal of Fe3O4 hexagonal nanoplates were successfully 

prepared when the growth conditions of growing spherical Fe3O4 (4.2 mmol OAm/5.6 mmol OAc) 

were altered by introducing GO suspension in DMSO. Some of these hexagonal nanoplates formed 

along with the spherical Fe3O4 in presence of RGO are shown in TEM images displayed in Fig. 

7.6-A-L. Low-resolution STEM and SEM images of Fe3O4 hexagonal nanoplates are shown in 
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Fig. 7.7-A-C and Figs.  7.7-D-F and 7.8-A-F, respectively. Presumably, the microwave irradiation 

during the first 10 min. led to formation of reduced graphene oxide (RGO) with fewer oxygen 

moieties and defects followed by the deposition of primary magnetite nanocrystals nucleated onto 

RGO sheets. Upon completion of the reaction course these primary nanocrystals  anchored on 

RGO sheets are transformed into single crystal hexagonal nanoplates by recrystallization due to 

the elevated reaction temperature from the continuing microwave irradiation.352 Finally, large and 

uniform magnetite hexagonal nanoplates with an average edge length of 0.9 µm nm were grown 

on RGO sheets, as can be seen in TEM and SEM images in Figs. 7.6-7.7 .     

It can be hypothesized that the prolonged microwave irradiation of reaction mixture leads 

first to thermal decomposition of iron precursors in benzyl ether that serve as a high-boiling point 

solvent. When the supersatuartion is reached this triggers the formation of Fe3O4 nuclei followed 

by the subsequent growth of these nuclei to primary nanoparticles. On the basis of the TEM results 

combined with the experimental conditions, thermodynamic and kinetic factors could lead to shape 

evolution at different stages of the microwave irradiation process. The adsorption of surfactants to 

different extents under different conditions combined with altering the molar ratio between the 

two surfactants could play a crucial role in selective passivation of different crystal planes and 

hence different growth rates at those faces.357 This could stabilize the {100} facets of growing 

Fe3O4 nanocrystals and thus led to termination or slower relative growth rate. For instance, the 

shape transformation of the isotropically growing nuclei from spheres to cubic or prismatic 

nanostructures could result from the favored growth along the {111} crystal facet in particles with 

terminated {100} planes. 346 The relative fractions of oleic acid and oleyamine play a crucial role 

in the anisotropic shape growth process which strongly influences the formed morphology. The 

higher oxophilicity of oleic acid compared to oleylamine may cause oleic acid to from a stronger 
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bond to surface atoms of primary growing particles.358  However, further studies are necessary to 

explore the exact mechanism of binding of the organic surfactants onto the surface of the growing 

crystals.  

 

Figure 7-6 TEM images of single-crystalline Fe3O4 hexagonal nanoplates prepared with spherical 

Fe3O4 in presence of RGO sheets. Edge length in image G and K is ~0.9 µm.    
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Figure 7-7 Low-resolution STEM (A-C) and SEM (D-F) images of Fe3O4 hexagonal nanoplates.   

 

  



 

188 

 

 

Figure 7-8 Low-resolution SEM images of Fe3O4 hexagonal nanoplates wrapped in RGO sheets.   
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7.4.2 Structural Characterization:  

Figure 7.9 shows the powder X-ray diffraction patterns of different Fe3O4 and Fe3O4/RGO 

nanostructures of various shapes, namely, spheres, cubes and triangles. The XRD peaks can be 

indexed to the standard spinnel Fe3O4 structure, in a good agreement to the literature.327 The 

diffraction patterns of all nanostructures both free-standing and anchored on RGO sheets feature 

strong reflections indicating all prepared nanostructures are well-crystalline. The spectra are 

characterized by seven peaks at 18.34o, 30.18o, 35.54o, 43.24o, 53.66o, 57.14o and 62.78o, 

corresponding to the (111), (220), (311), (400), (422), (511), and (440) planes. 359 

X-ray photoelectron spectroscopy (XPS) measurements were conducted to further reveal 

structural characteristics of prepared nanostructures and probe the extent of reduction of GO. 

Figure 7.10 shows the C1s high-resolution spectra of GO before and after the microwave 

irradiation. Spectrum of GO before the microwave irradiation reveals five different convoluted 

peaks at 284.5, 286.1, 286.5, 287.9 and 288.4 eV which are corresponding to sp2 carbon, sp3 

carbon, hydroxyl/epoxy groups (C-O), carbonyl groups (C=O) and carboxyl groups (O-C=O), 

respectively.112, 113 After the microwave irradiation of GO dispersed in DMSO, the fraction related 

to the oxygen content between 286.1-288.4 eV obviously decreased with a relative increase in the 

fraction of the C-C bonding indicating the efficient microwave-assisted deoxygentaion of GO 

sheets.  The sensitivity of XPS to difference between Fe2+ and Fe3+ cations allows distinguishing 

the Fe3O4 and γ-Fe2O3 phases. Figure 7.11 shows comparisons of XPS high-resolution Fe3d 

spectra of various-shaped Fe3O4 and Fe3O4/RGO nanocomposites. The presence of the two main 

peaks at around 710-711 and 724-725 eV which are characteristic binding energies of Fe2p3/2 and 

Fe2p1/2, respectively, and the absence of significant peaks in the 718-720 eV range, characteristics 

to γ-Fe2O3, reveal the formation of crystalline Fe3O4 phase in different nanocomposites, as 
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compared to values reported in the literature.343  The studies from XRD and XPS show that the 

crystalline phase of free-standing and anchored iron oxide nanostructures is magnetite. Further 

structural details of Fe3O4 nanopsheres and hexagonal nanoplates were obtained from the selected 

area diffraction (SAED) patterns. Figure 7.12 compares SAED pattern obtained from spherical 

Fe3O4 and a single Fe3O4 hexagonal nanoplate with the electron beam perpendicular to the basal 

facet. The SAED pattern shown in Figure 7.12-a can be indexed to the [111] zone axis of FCC 

Fe3O4 which reveals the characteristic spinel crystal structure of magnetite. 348  

 

Figure 7-9 X-ray diffraction patterns of various shaped-Fe3O4 and Fe3O4/RGO nanostructures 

prepared by MWI of molecular precursors in OA-OAm mixture.  
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Figure 7-10 XPS high-resolution C1s spectra of GO (a) and RGO (b) prepared by MWI.   

 

Figure 7-11 XPS high resolution spectrum of Fe2p of various-shaped Fe3O4 (left) and Fe3O4/RGO 

nanocomposites (right)   
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Figure 7-12 SAED diffraction patterns of Fe3O4 nanospheres (a) and hexagonal nanoplates (b) 

prepared by MWI. 

7.4.3 Magnetic characterization 

The effect of the structure and morphology on the magnetite properties was studied by 

measuring magnetic behaviors of various samples adopting a vibrating sample magnetometer 

(VSM). The magnetization curves of as-prepared Fe3O4 and Fe3O4/RGO nanostructures were 

recorded at room temperature by measuring the saturation magnetization as a function of the 

external applied magnetic field. Fig. 7.13 shows the hysteresis curves obtained for different 

morphologies with an applied field sweeping from -30 to 30 kOe. The hysteresis loops of all 

prepared samples reveal superparamagnetic behavior at room temperature with nearly zero 

coercivity and extremely low remnant magnetization values, as listed in Table 7.2. The lack of 

remaining magnetization when the external magnetic field is removed is in agreement with a 

superparamagnetic behavior observed in graphene nanosheets coated with Fe3O4 nanoparticles.360 

The size reduction of our prepared nanostructures to less than the critical size of single domain 

particles, which is 54 nm for magnetite,60 led to a significant change in magnetic properties from 
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bulk counterpart and superparamgnetic behavior is observed in different synthesized 

morphologies.  The shrinkage in size makes the magnetic anisotropic energy, KV, where K is the 

magnetic anisotropy constant and V is the volume of the particle, comparable to the thermal 

energy, kT, and this causes randomization in moment and superparamgentic behavior.  

 

Figure 7-13 Hysteresis curves of various-shaped Fe3O4 and Fe3O4/RGO nanostructures measured at 

300 K. a) Fe3O4 Triangles/RGO, b) Triangles, c) Cubes, d) Spheres/RGO, e) Spheres (large, 

~13 nm), f) Cubes/RGO, g) Dots by OAm (~5 nm) and h) Spheres (small, ~10 nm).    
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In addition, It is generally accepted that the degree of saturation magnetization increases 

with increasing size or crystallinity.60 Table 7.2 compares the different values of saturation 

magnetization of our prepared magnetite nanostructures. The Ms values of different magnetite 

samples are smaller than those reported for 2-5 mm bulk magnetite grains (93 emu/g),344 probably 

due to the decrease of the particle size, the increase in surface defects or the adsorption of 

surfactants on the surface. Such structural disorders may lead to noncollinear spin structure which 

results in spin canting and magnetic moment reduction. 348, 361 

Table 7-2 Comparison of values of Ms, Mr and Hc of prepared Fe3O4 samples of various shapes  

Shape/Composition T (K) Ms (emu/g) Mr (emu/g) Hc (kOe) 

Fe3O4 Triangles/RGO 300 62.67 6.72 0.058 

Fe3O4 Triangles  300 51.11 4.18 0.041 

 Fe3O4 Cubes  300 48.95 5.82 0.094 

Fe3O4 Large spheres/RGO 300 36.16 2.60 0.035 

Fe3O4 Large Spheres (~13 nm) 300 29.00 1.78 0.085 

Fe3O4 Cubes/RGO 300 23.15 0.20 0.019 

Fe3O4 Dots by OAm (~5 nm) 300 16.32 0.11 0.072 

Fe3O4 Small Spheres  (~10 nm) 300 14.72 0.08 0.017 

 

It can be seen that generally with shape transformation from isotropic to anisotropic 

morphology, the magnitude of saturation magnetization becomes larger, probably due to the 

increase in shape and magnetiocrytsalline anisotropy.342 The saturation magnetization of the Fe3O4 

triangles anchored on RGO sheets is a little higher than non-anchored ones possibly due to the 

different surface conditions. The transformation of the shape from spheres to triangles or cubes 

results in a remarkable increase in the saturation magnetization to 62 emu/g for triangles and 51 

emu/g for cubes, compared to 36 emu/g in case of spherical samples, which is a good agreement 

with similar studies of hollow spheres,344 cubes,348 octahedrons, 342 and hexapods 342 of saturation 

magnetization as 56-65, 60.3, 72.5 and 96.2 emu/g, respectively. Although saturation 
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magnetization of Fe3O4 spheres and spherical Fe3O4 anchored on RGO is less than other 

anisotropic shapes, still higher than those reported for spherical magnetite (17.96 emu/g) and 

spherical magnetite supported on graphene (10.23 emu/g).43 The magnetic measurements clearly 

show the effects of shape and size control on the magnetic properties of prepared Fe3O4 and 

Fe3O4/RGO nanostructures.  

7.5 Conclusions  

In conclusion, a single-step and rapid, yet facile, microwave-assisted synthesis of 

magnetite nanospheres, nanocubes, and triangles on graphene sheets using iron acetylacetnate is 

developed. The morphology of the magnetite nanocrystals grown on graphene can be tailored by 

tuning the molar ratio of oleic acid and oleylamine. The strategy developed provide a mean to 

control the shape of magnetite nanocrystals, both free standing and those attached to graphene 

sheets, integrating in such way the superparamagnetic properties of magnetite nanoparticles of 

different morphologies and the superior conductivity of graphene in a single compartment 

composite structure. On the basis of the TEM results combined with the experimental conditions, 

thermodynamic and kinetic factors could lead to shape evolution at different stages of the 

microwave irradiation process. The magnetic measurements clearly show the effects of shape and 

size control on the magnetic properties of prepared Fe3O4 and Fe3O4/RGO nanostructures.  
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