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Investigations of host-associated differentiation of parasitoids have largely focused on the 

degree of molecular genetic differentiation, but a true test of species status must examine 

the mating patterns of differentiated populations to determine if they can interbreed in the 

wild and produce viable offspring. We examined possible mechanisms of isolation 

between two genetically distinct host-plant complex races of the braconid, Cotesia 

congregata, originating from hosts on tobacco and catalpa. We compared male responses 
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to female pheromones, elements of male acoustic courtship signals, and breeding success 

between the two races. Males responded to pheromones from both sources and male 

courtship signals showed only subtle differences, suggesting that factors other than 

courtship behavior may be involved in isolation of the two races. However, nearly 90% 

of females from one hybrid cross failed to produce offspring, leading to post-zygotic 

isolation. Development time, emerged brood size, and sex ratios between the races also 

differed. 
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INTRODUCTION 

 Sympatric speciation, the division of one species into two within the same geographic 

area, has remained a problem in evolutionary biology. There have been natural examples, 

theoretical models, and experimental studies, which are often difficult to replicate (Henriksson et 

al. 2010). One model in which sympatric speciation may occur consists of populations that 

diverge when they adapt to different prey items or hosts with different requirements; however, 

continued mating between populations will prevent any divergence unless there is also 

reproductive divergence, such as assortment based on courtship signals (Bolnick & Fitzpatrick 

2007). This form of speciation may lead to cryptic species complexes within the same 

geographic region in which species appear morphologically identical, but differ in genetics, 

behavior, or ecology. Parasitic insects in particular display rapid speciation and high biodiversity 

associated with their wide variety of hosts. 

 The genetic radiation of parasitic wasps is possibly linked to the large number of 

potential host species and the chemical diversity of the plants on which their hosts feed. As their 

host species diverge to feed on different plants, parasitoids adapt to potentially different plant 

chemicals and in so doing may undergo sequential radiation (Stireman et al. 2006). Over time, 

parasitic wasp populations may develop an innate preference for a specific host even in the 

presence of another host species. Premating isolation such as this facilitates separation of races 

through the rapid evolution of differentiated courtship behavior (Arbuthnott 2009). Previous 

studies have found that parasitic wasps show fidelity not to the hosts themselves, but to the 

plants on which the hosts feed. Thus it is the tritrophic interaction among the plants, the insects 

that feed on them, and the parasitoid that can lead to parasitoid diversification (Stireman et al. 
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2006). For example, Stelinski and Liburd (2005) and Forbes et al. (2009) found that the 

Rhagoletis parasitoid, Diachasma alloeum (Muesebeck), is preferentially attracted to the plants 

which are fed upon by the same host species from which they emerged. Further, at least some 

parasitoid species are able to learn plant cues at emergence and are more strongly attracted to the 

plant on which their host developed than to alternative host food plants (Kester and Barbosa 

1991a, 1992). Postemergence learning also influences sex allocation by females, thereby altering 

population growth and reproductive potential (Lentz and Kester 2008). Beltman and Metz (2005) 

argue that learned rather than genetic habitat preference is more likely to lead to disruptive 

selection. The association with specific plants by parasitoids can further reinforce isolation. 

 Reinforcement of host or host-plant selection may eventually lead to genetic 

differentiation. Forbes et al. (2009) report incipient speciation of D. alloeum associated with its 

host Rhagoletis pomonella (Walsh) shifting from hawthorn to apple based on differentiation of 

microsatellite allele frequencies, mitochondrial DNA, and eclosion time. Likewise, Kankare et 

al. (2005a) found that Cotesia melitaearum (Wilkinson) consists of several cryptic species that 

parasitize different caterpillar species with no gene flow among host-associated groups. When 

those wasps were offered caterpillars of unfamiliar species, the wasps either did not parasitize 

the caterpillars or no progeny developed from them even though those same caterpillars are 

parasitized by other populations of the same wasp species. Cotesia acuminata (Reinhard) in 

Spain was also found to consist of numerous host-specific cryptic species (Kankare et al. 2005b). 

Furthermore, genetic barcoding of tropical braconids revealed 142 provisional species in addition 

to the 171 identified by traditional morphology, thereby turning many assumed generalists into 

specialists (Smith et al. 2008).   
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 Previous studies on parasitoid biodiversity have focused on the genetic differentiation of 

populations associated with different hosts, often assuming that sufficient genetic distance 

indicates that the populations are different species. However, isolation mechanisms must exist to 

prevent gene flow among host-associated populations and to maintain genetic differentiation. A 

true test of speciation must begin with examining the mating patterns of the populations to 

determine if they are capable of interbreeding and producing viable offspring in the wild. One 

approach is to test the response to courtship cues, such as female pheromones and male acoustic 

signals, which can be used to determine the degree which two host-associated populations are 

likely to interbreed and provide a sense of their level of speciation. 

 Courtship signals are used for species recognition and initiate a response in the opposite 

sex. Like many insects, males of Cotesia find mates by the detection of female pheromones. 

Males display searching behavior in response to female pheromones by moving across the 

substrate and using antennal palpitations to key in on the source. They then perform rapid wing 

fanning that likely draws the pheromones over the scent glands and allows the wasp to orient 

toward the female (Vinson 1972). This behavior has been observed in males only when females 

are or were recently in proximity. Following wing fanning, male parasitoids produce acoustic 

signals in the form of wing vibrations and pulses transmitted through the substrate (Sivinski and 

Webb 1989, Field and Keller 1993). Transmission of acoustic courtship vibrations across the 

substrate has an effect on the mating success of Cotesia marginiventris (Cresson) (Joyce et al 

2008). Recently, Joyce et al. (2010) reported that male acoustic signals vary among allopatric 

populations of the Cotesia flavipes/sesamiae (Cameron) complex and suggested that these 

differences play a role in reproductive isolation. However, it is possible that wasps will mate 

despite slight differences in acoustic signals and genetics. 
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 Ultimately, the final test of separate species status is whether different populations mate 

and produce viable offspring. Gounou et al. (2008) found that reciprocal crosses between 

populations of C. sesamiae have a slight reduction in mating although crosses still produced 

offspring. In comparison, Rincon et al. (2006) found mating incompatibility, along with genetic 

and morphological differences, among some geographically isolated populations of Cotesia 

plutellae (Kurdjumov), but no evidence of a post-zygotic isolation barrier. Similarly, Desneux et 

al. (2009) reported complete reproductive isolation in mating crosses between two 

geographically isolated populations of the aphid parasitoid, Binodoxys communis (Gahan), 

demonstrating that they are distinct cryptic species. We tested species recognition and mating 

success in populations of a parasitic wasp that are separated by host-plant complex usage rather 

than major geographic barriers. 

The gregarious endoparasitoid, Cotesia congregata (Say) (Hymenoptera: Braconidae) 

serves as a model system for tri-trophic interactions and biological control. In addition, it is also 

an important model system for host-parasitoid interactions and insect immunology (Beckage 

2008). This species is reported to attack multiple species of sphingid caterpillars, most of which 

are plant family specialists (Tietz 1972; Krombein et al. 1979). Laboratory and field evidence 

demonstrate that populations of C. congregata are adapted to locally abundant host foodplants 

(Kester & Barbosa 1991b, 1994). Microsatellite allele frequencies from two host-plant 

complexes with overlapping geographic ranges, Manduca sexta L. (“tobacco hornworm”) on 

tobacco (“MsT”) and Ceratomia catalpae Boisduval (“catalpa sphinx”) on catalpa (“CcC”), 

differ significantly (Jensen et al. 2002); similarly, a 214 bp fragment from the mtDNA COI 

region shows a 2% sequence divergence (Karns 2009). Females from these two host-plant 

complexes also differ in behavioral responses to tobacco and developmental success on nicotine 
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diets (Crocker 2008). These two distinct genetic lineages may represent incipient or sibling 

species that do not regularly interbreed in the wild. 

Although MsT and CcC host-plant complexes may differ in some aspects, their basic life 

history is similar. Once an appropriate host is located, an adult female oviposits multiple eggs 

inside the caterpillar along with segments of polydnavirus (PDV) that disables the host immune 

system and prevents encapsulation of wasp eggs (Beckage 1998). The wasp larvae grow inside 

the host until they egress and spin cocoons on the caterpillar. After 6-8 days (temperature 

dependent) adult wasps emerge from their cocoons. Typically, newly emerged wasps mate with 

the cohort on the same plant species from which they emerged before females seek out hosts for 

oviposition (Kester and Barbosa 1991a). Because C. congregata is haplodiploid, fertilized eggs 

normally develop into females, and unfertilized eggs develop into males. Only females are 

genetic hybrids in the F1 generation whereas haploid males receive only maternal chromosomes. 

 The objective of this study was to elucidate the species status of C. congregata by 

determining the degree of pre- and post-zygotic isolation between genetically differentiated MsT 

and CcC host-plant complex “races” and to provide insight into the role of behavioral isolation 

mechanisms in the speciation of hymenopteran parasitoids. We assayed male response to female 

pheromones to determine if males recognize females of the reciprocal race, compared male 

acoustic courtship signals, and determined whether wasps of the different races could mate and 

produce viable offspring. Development time, brood size, and sex ratios among the crosses were 

also compared to provide information on the heritability of these characteristics. 
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MATERIALS AND METHODS 

 

Parasitoid Collection 

 

Caterpillars were collected from catalpa (Catalpa speciosa Warder) and tobacco 

(Nicotiana tabaccum  L.) at three sites in Virginia from July to October 2010. Larvae of C. 

catalpae were collected at two private properties with mature catalpa trees in Cumberland 

County: “Tyson” Site (37.712726, -78.163884) and “Newton” Site (37.672979, -78.219928). 

Larvae of M. sexta from several varieties of tobacco were collected from the Southern Piedmont 

Agricultural Research and Experimental Station near Blackstone, Nottoway County (37.081707, 

-77.975566). Caterpillars were stored in plastic containers (28 x 16 x 11 cm; 10-15 larvae in 

each) with leaves from their respective host-plant and then isolated into cups upon egression of 

parasitoids. Wasp cocoons were placed into individual clear gel capsules (size 00) 3-4 days after 

egression and emergent adults were sexed under a dissecting microscope. MsT wasps from a 

laboratory colony originating from Blackstone in 2005 were used in genetic crosses early in the 

year due to lack of an adequate number of tobacco hornworms at the field site. 

 

Pheromone Assay 

 Male responses to female pheromone from the two sources were compared to evaluate 

species recognition. Live females were chilled and placed in a 1.25 mL vial. Hexane was placed 

over the females (1 mL per 50 females) and slightly stirred for 10 s. This pheromone-hexane 

solution was pipetted into a second vial to separate the solution from the wasps and used within 

24 hours. For each assay, 70 μL of solution was pipetted onto a quarter piece of Whatman #1 (55 

mm) filter paper concentrated at the point creating directionality of the signal. 
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Males were released individually within 2 hours of emergence onto a leaf of their 

respective host-plant in an open air arena (27 ± 1°C; 30% RH) and the corner of the filter paper 

held with fine-point forceps was wafted in front of each individual male to induce a fanning 

response. Wasps were considered non-responsive if they did not fan within 3 minutes. The test 

arena was cleaned with 70% EtOH between assays of replicate males. Differences in male 

response rates between groups were compared using Fisher’s chi-square test with R (R 

Development Group). 

 

Male Acoustic Courtship Signals 

Male acoustic courtship signals were recorded to compare elements of signals between 

wild MsT and CcC wasps. Individual males from multiple cohorts were exposed to an 

immobilized female of the same host-plant complex source on a piece of leaf from the male’s 

respective host-plant (tobacco or catalpa) in an open plastic dish to induce fanning. Recordings 

were made in a sound isolation booth (Industrial Acoustics) at 23 ± 1.5°C and 40-55% RH using 

miniature omnidirectional microphones (DPA 4060; 20-20,000 Hz) held 2-3 mm away from the 

male and a 702 High Resolution Digital Audio Recorder (Sound Devices, LLC; 48 kHz sampling 

rate, 24 bit resolution). Duration of signal components, fundamental frequency, and root-mean-

square (RMS) amplitude was analyzed using Raven Pro v1.3 (Cornell Lab of Ornithology). All 

waveforms were high-passed filtered at 100 Hz and frequency spectra were created for each 

signal component (Hann window, 3000 samples, 1.46 Hz grid spacing). The first five distinct 

sounds, termed “boings,” were analyzed for each wasp and component data were averaged and 

treated as an N of 1. Over 500 recordings were made of 250 individuals from 126 different 
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cohorts. Only recordings made during the same time span and from different cohorts were used 

for comparison between wild MsT (n = 21) and CcC (n = 24) males.  

To determine the amplitude of the sounds (absolute pressure in Pascals), the RMS 

amplitude measured by Raven was multiplied by a calibration constant. The calibration constant 

is equal to the known amplitude of a test tone (90 dB re: 20 μPa, 500 Hz; produced by a 

Tektronix CFG250 Function Generator through a Grass AM7 Audio Monitor) divided by the 

RMS amplitude of the tone as measured by Raven. The sound pressure was converted to decibels 

by the formula: = 20 log (P/P0), where P = sample pressure (Pa) and P0 = reference pressure in 

air, 20 μPa. Differences in fundamental frequency and amplitude between boing and buzz 

elements were determined using paired t-tests with R (R Development Group). Significance of 

differences of male acoustic courtship signal elements of both types was assessed using two 

sample t-tests with R. 

 

Mating Crosses 

 Wasps from the two host-plant complex sources were crossed to compare mating success 

and viability of hybrid offspring, as well as possible differences in larval development time, 

brood size, and sex ratio of resulting cohorts. Reciprocal crosses (MsT♂ x CcC♀; CcC♂ x 

MsT♀) between the two host-plant complex sources were compared to control crosses made 

within host-plant complexes (CcC♂ x CcC♀; MsT♂ x MsT♀) used to assess mating success 

under laboratory conditions. Two males from the same brood and one female from a different 

brood were placed into a clear glass tube (2 cm diam. x 7 cm) with a 1 cm
2
 section of the 

female’s respective host-plant wrapped around a damp piece of cotton ball. The vial was then 

closed using a cotton ball with honey on the side as a food source. Mating groups were kept 
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under ambient laboratory conditions (22 ± 1°C; 30-50% RH) for 4 days. On days 2, 3, and 4 after 

set-up, a second or third instar larva of M. sexta was presented to wasps and removed after 

parasitism was observed. All caterpillars used for parasitism across treatments were healthy and 

similar in size (0.13 ± 0.02 g). After parasitism, caterpillars were placed in individual plastic 

cups (7 cm diam. x 4 cm) and fed a semi-synthetic laboratory diet modified from Yamamoto 

(1969) until egression of wasp larvae. Mating success was determined by the presence of female 

offspring.  

Resulting F1 progeny from cohorts with females were re-crossed with siblings as 

described above except that hybrid crosses were given pieces of both host-plants. Caterpillars 

were frozen either after wasp cocoon removal or in their wandering stage near pupation and later 

dissected to determine parasitization status, encapsulation of eggs, and number of unemerged 

larvae. All progeny were counted and sexed to determine brood size (number of larvae that 

egressesd and spun cocoons) and sex ratio (proportion of females per brood). Broods observed to 

be 100% male were not included in sex ratio analysis. Development time was calculated as the 

difference between the day of parasitism and the day of wasp emergence. Mating and breeding 

success were compared among cross types with Pearsons’s chi-square test using JMP v8 (SAS 

Institute, Inc). Brood size, sex ratio, and development time were transformed to meet normality 

assumptions and compared with ANOVA using JMP v8 with the multiple parasitizations nested 

within mating pairs (random factor) and these replicates within cross type (fixed effect). Tukey’s 

test (α = 0.05) was used for pairwise comparisons of least square means. 
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RESULTS 

Pheromone Assay 

In tests for species recognition where male wasps were exposed to female pheromone 

from each host-complex source control pairings had the highest response rates (MsT = 73%; CcC 

= 60%). However, many males also responded to the female pheromone originating from 

reciprocal host-complex sources (MsT♂ x CcC♀ = 53%; CcC♂ x MsT♀ = 33%; n = 15 for each 

group). The greatest difference indicated a trend for reduction in response rate when CcC males 

were exposed to MsT pheromone compared to the MsT control pairing (X
2 

= 0.0281, p = 0.0656) 

(Figure 1).  

 

Male Acoustic Courtship Signals 

Male courtship signals of both host-plant complexes were characterized by rapid wing 

fanning followed by higher amplitude boings. During each boing the abdomen raises and then 

drops while the wings move downward, presumably striking the abdomen, thereby creating the 

boing. Each boing was followed by a lower amplitude buzz component which consisted of 

continued fanning of the wings and separated from the next boing by a short gap with no sound 

produced (Figure 2A). Males continued to produce boings until they attempted mating or the 

female moved away. Although these three components (boing, buzz, and gap) were apparent in 

most of the individual signals recorded, details in structure varied among individuals. For most 

males, there was a clear reduction in amplitude (mean ± SE: -8.6 ± 0.4 dB) between the first and 

second parts (t = 23.18, d.f.= 44, p < 0.0001) whereas in a few instances there was a more 

gradual transition between the two components. Boing and buzz duration varied independently 

(r
2
 = 0.0089, p = 0.5369) (Figure 3). Increasing signal length was more closely correlated with 
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increasing buzz duration (r
2
 = 0.7103, p < 0.0001) than to boing duration (r

2
 = 0.1822, p = 

0.0035), thus boing duration was less dependent on overall signal length. Frequency spectra 

(Figure 2B-D) of both boings and buzzes consist of a clear harmonic series that decreases in 

amplitude from a peak of 120 relative dB (uncalibrated) to the background noise level of 70 dB. 

Energy above background was present to about 7 kHz for boings and 3 kHz for buzzes. The 

fundamental frequency likely corresponds to individual wing cycles (~ 240 beats per second). 

Boing fundamental frequency was lower than the following buzz frequency (t = 5.33, d.f.= 44, p 

< 0.0001), suggesting that wing cycle time slows during boing production.  

 Elements of the male acoustic courtship signal differed between the two host-complex 

sources (Table 1). The time from the start of one boing to the start of another was significantly 

shorter in duration in MsT than CcC males (t = 2.38, d.f.= 43, p = 0.0220). Likewise, boing 

duration (part 1) was shorter in MsT (t = 3.07, d.f.= 43, p = 0.0037); however, gap time was 

longer in MsT (t = 2.75, d.f.= 42, p = 0.0088; one MsT outlier removed, 43.4 ms). Buzz (part 2) 

duration did not differ between the two groups of males (p = 0.1960). Fundamental frequency of 

the overall signal was lower in MsT males (t = 2.33, d.f.= 43, p = 0.0245). However, the 

fundamental frequency of separate boing (p = 0.0845) and buzz (p = 0.1191) elements did not 

differ significantly. Amplitude (re: 20 μPa at 2-3 mm) of both boing and buzz elements were 

lower in MsT (t = 2.08, d.f.= 43, p = 0.0436 and t = 2.71, d.f.= 43, p = 0.0096) (Table 1). 

Acoustic elements did not differ (p > 0.1) between CcC wasps used for comparisons (October, n 

= 24) and CcC wasps recorded the previous month (September, n = 26).  
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Mating Crosses 

 Viability of the F1 hybrid offspring resulting from the two reciprocal crosses differed 

from the control crosses, as did mean larval development time, brood size, and sex ratio. Mating 

success, determined by the presence of female progeny, did not differ between the parental cross 

types (X
2
 = 3.29, p = 0.3494). However, mating success differed among F1 crosses (X

2
 = 7.98, p 

= 0.0185; CcC♂ x MsT♀ crosses not included due to small sample size) with MsT♂ x CcC♀ F1 

hybrids having reduced mating success compared to the control MsT lines (X
2
 = 8.13, p = 

0.0044) (Table 2).  

Breeding success, the proportion of crosses that produced at least one emerged adult 

wasp from surviving parasitized caterpillars, differed among F1 crosses (X
2
 = 95.62, p < 0.0001). 

Female hybrids from the CcC♂ x MsT♀ crosses produced adult offspring in only 6 of 56 crosses 

(3 of 15 genetic lines originating from a single parental generation pairing), whereas hybrids 

from the MsT♂ x CcC♀ crosses produced offspring in 39 of 43 crosses (19 out of 20 genetic 

lines) (Table 2). CcC♂ x MsT♀ hybrid crosses varied in their ability to produce progeny even 

within genetic lines, i.e. some hybrids always produced offspring whereas their sisters did not. 

Among the three genetic lines that produced larvae, two lines had one female breeding 

successfully out of three (n = 9 and 6, respectively) and one had two females successful out of 

three (n = 3). Unmated F2 female wasps resulting from sibling matings from MsT♂ x CcC♀ 

lines continued to produce offspring (3 of 3 females). Dissections of caterpillars with no emerged 

larvae from both hybrid cross types revealed encapsulation of wasp eggs with melanization, 

indicating an active immune response to the eggs. Parasitized caterpillars allowed to pupate 

developed into apparently normal adult moths. Control lines continued to produce offspring in all 

matings without observable egg encapsulation (Table 2). 
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 Larval development time varied among wasp types (reciprocal transformed; ANOVA: F3, 

136.6 = 8.70, p < 0.001; Figure 4A). Progeny from MsT females developed a day faster than those 

from CcC females. Likewise, larval development time of the F2 progeny also differed among 

crosses (reciprocal transformed; ANOVA: F3, 75.43 = 2.98, p = 0.0366), however Tukey’s post-hoc 

test (α = 0.05) revealed no significant pairwise comparisons (Figure 4B).  

Mean brood size was larger in MsT females than CcC females (square root transformed; 

ANOVA: F3, 132.2 = 5.15, p = 0.002; Figure 5A). F1 hybrid females from MsT♂ x CcC♀ matings 

produced broods similar in size to the MsT control lines whereas the reciprocal CcC♂ x MsT♀ 

hybrids (17.8 ± 6.6 larvae; most parasitizations lead to egg encapsulation) had significantly 

smaller brood sizes (square root transformed; ANOVA: F3, 79.13 = 20.08, p < 0.0001; Figure 5B). 

F1 control crosses produced broods not significantly different in size to the previous generation 

(MsT controls: F1, 26.45 = 1.08, p = 0.3086 and CcC controls: F1, 52.26 = 0.05, p = 0.8290). Note 

that only egressed parasitoid larvae were counted for analysis; dissections revealed larvae that 

failed to egress from most hosts across all cross types (Table 3). 

Mean sex ratio (proportion of females produced in each brood) of F1 broods varied 

among crosses (arcsine transformed; ANOVA: F3, 63.31 = 3.60, p = 0.0181). Broods produced by 

MsT females had more balanced sex ratios whereas CcC females produced female-biased broods 

(Figure 6). Sex ratios of F2 broods were not compared due to low sample sizes. Day of parasitism 

had no effect on any of these factors (p > 0.05). 
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DISCUSSION 

Pre-zygotic isolation is often assumed to be a precursor to genetic differentiation and 

post-zygotic isolation (Mayr 1963). As a measure of pre-zygotic isolation, we tested for the 

presence of courtship isolation mechanisms between two genetically differentiated host-plant 

complexes of the parasitic wasp C. congregata and established reciprocal crosses to determine 

mating success and hybrid viability. Although elements of the male acoustic courtship signal 

differed and CcC males may have a reduced response rate to MsT female pheromones, the two 

host-complexes mated and produced offspring in no-choice crosses. However, eggs from CcC♂ 

x MsT♀ hybrids, the same cross type that had a somewhat reduced response in the pheromone 

assay, were encapsulated within hosts, possibly due to inhibition of the polydnavirus (PDV) that 

disables the host immune response (Beckage 1998). The presence of this post-zygotic isolation 

mechanism suggests that a pre-zygotic barrier other than the ones we tested may exist. 

Additionally, specific differences that were observed between the two host-plant complexes in 

larval development time, brood size, and sex ratio suggest a high degree of adaption to their 

respective hosts.  

Despite detectable differences in courtship behavior, wasps from the two taxa mated and 

in most cases produced offspring. CcC males showed a tendency to respond less frequently to 

MsT female pheromone than MsT males (p = 0.0656; Figure 1). Several elements of the male 

acoustic signal differed significantly (p < 0.05; Table 1) but did not prevent mating under 

confined laboratory conditions (Table 2). Joyce et al. (2010) suggest that courtship acoustics 

create pre-zygotic isolation within the C. flavipes species complex. We found similar differences 

in acoustic elements; however, our results suggest that these differences do not prevent mating. 

Further testing is necessary to determine if wasps preferentially mate with the same host-plant 
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complex under less restrictive conditions or if given a choice, and whether these differences are 

consistent among geographically distant populations within the same host-plant complex.  

Hybrid crosses between CcC males and MsT females established over two field 

generations had reduced fitness, which indicates a developing post-zygotic isolation mechanism 

between the two host-plant complex taxa. Eggs from 50 of 56 CcC♂ x MsT♀ hybrid females 

failed to develop due to encapsulation and melanization within hosts, and those females that did 

produce offspring had reduced brood sizes (Figure 5B). This finding may be due to either genetic 

differences in polydnavirus (PDV) variants or differential expression of hybrid PDV with respect 

to host. Expression of these virus particles is known to inhibit immune defenses in the host, 

preventing encapsulation of wasp eggs (Beckage 1998, Shelby and Webb 1999). The 

polydnavirus has coevolved with braconids against host resistance (Dupas et al. 2008) and its 

genetic components are integrated into the wasp genome (Stoltz 1990, Belle et al. 2002). Le et al. 

(2003) found that C. congregata originating from laboratory M. sexta has at least two PDV genes 

with different mechanisms regulating their expression. Differences in PDV expression exists 

among populations within some parasitic wasp species. In C. sesamiae, eggs from some 

populations are encapsulated within the normal hosts of other populations (Ngi-Song et al. 

1998). Gitau et al. (2007) found differential expression of the PDV CrV1 gene between separate 

populations of C. sesamiae leading to the egg encapsulation within one host and Branca et al. 

(2011) revealed PDV genotype differences associated with specialization to specific hosts. 

Unlike the geographically separated populations of C. sesamiae, differences in PDVs of C. 

congregata are apparent only in the hybrids and pure lines of CcC females are able to parasitize 

both C. catalpae and M. sexta. Ongoing work will determine how the PDVs from the hybrid 

females are expressed in the host. Alternatively, derived cellular proteins in parasitic wasps may 
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serve as virulence factors that are species specific (Wetterwald et al. 2010) and some venom 

peptides are necessary for PDV expression in the host (Zhang et al. 2004). Presenting hybrids 

with the alternate host (C. catalpae) to test for egg encapsulation will elucidate whether hybrid 

PDVs or other virulence factors are host specific. 

 Theoretically, post-zygotic reproductive barriers are not under direct selection but are 

rather byproducts of divergence (Mayr 1963). For example, Coyne and Orr (1989, 1997) 

demonstrated that pre-zygotic isolation evolves faster than post-zygotic isolation in sympatric 

populations of Drosphilia. Likewise, there must be an isolation mechanism associated with the 

divergence of MsT and CcC host-plant complexes, which can occur in sympatry (Karns 2009). 

The existence of inviable hybrids should lead to the reinforcement of pre-zygotic differences to 

prevent a loss in fitness to the wasps. We are currently investigating the role of assortative 

mating on the host-plant as a pre-zygotic barrier between MST and CcC wasps.  

 Selection of mating habitat based on learned plant chemical preferences has been 

proposed as the initial mechanism for sympatric speciation (Bush 1969). Parasitoids display both 

innate and learned responses to plant chemicals, and associating specific plants with specific 

hosts or mates may be the first step in restriction of gene flow.  For example, C. congregata 

shows innate recognition of tobacco and tomato and searching responses for these plants are 

enhanced through post-emergence learning (Lentz and Kester 2008; Kester and Barbosa 1991a, 

1992). Sibling mating on the natal host plant, typical in C. congregata, likely reinforces genetic 

isolation. Similarly, Forbes et al. (2009) suggest that plant selection based on fruit odor may act 

as an ecological barrier in D. alloeum in the same way as their host fruit fly. Also, Villagra et al. 

(2008) demonstrate that males of the parasitoid Aphidius ervi (Haliday) associate their first 

copulation with host-plant odors and will continue to search the initial learned plant species for 
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mates. If individuals seek out and mate on their natal plants, then specific host-plant complexes 

may evolve (Beltman and Haccou 2005). Additionally, developmental intolerance to plant 

chemicals within the hosts, such as nicotine in tobacco (Crocker 2008), may prevent females 

from easily switching over to other host-plants, thereby limiting gene flow. 

 Further differences in larval development and reproductive parameters between wasp 

sources are likely to be genetically regulated by multiple loci but also influenced by 

environmental factors, such as host size and condition. Exactly how such genes may be regulated 

currently remains unknown. Development time, brood size, and sex ratio in the F1 generation 

were determined by the female parent irrespective of cross type (Figures 4A, 5A, 6). This pattern 

in the F1 generation was expected since the males, which typically emerge first in broods, have 

only maternal genes, whereas the female parent determines the number of eggs to be fertilized 

and oviposited. Development time of the F2 hybrid larvae followed a different pattern (Figure 

4B), possibly due to recombinant chromosomes. In contrast, the emerged brood sizes produced 

by F1 hybrid females appear to be similar to those of the parental generation male in MsT♂ x 

CcC♀ hybrid crosses but highly reduced in the hybrids from CcC♂ x MsT♀ crosses (Figure 5B), 

those that mostly lead to egg encapsulation. Although we measured brood size of larvae that 

formed cocoons and can only infer the actual number of eggs oviposited, differences exist in 

brood size regardless of whether it is predominantly determined by the number of eggs 

oviposited or the proportion of parasitoid larvae that egressed and survived to spin cocoons. 

Differences between the hybrids may be due to dominance of MsT alleles with other factors 

overriding high brood size in CcC♂ x MsT♀ hybrids. The severe reduction in brood size from 

hybrid CcC♂ x MsT♀ may be associated with weakened expression of the polydnavirus. These 

caterpillars became smaller and sicklier than normal parasitized caterpillars.  



   

 18 

Heritability of development time and brood size suggests long-term adaption of each 

wasp type to their specific host-plant complex in response to selective pressures created by both 

the host and plant. Differences in larval development time are difficult to interpret and may be 

due to CcC larvae not being as adapted to M. sexta. Brood size per host of gregarious parasitoids 

can be adjusted in different situations to maximize fitness, such as laying fewer eggs per host 

when presented with more hosts (Tagawa 2000; Hasan and Ansari 2010). Given that M. sexta is 

more solitary and larger than the gregarious C. catalpae, MsT wasps allocate more eggs to their 

host, while CcC wasps allocate fewer eggs for their smaller host while also having a greater 

likelihood of finding other nearby hosts to parasitize. Since caterpillars of equal size and 

condition were split evenly between cross types our results suggest that wasps are making 

different decisions based on caterpillar species or there is differential survival of larvae within M. 

sexta between MsT and CcC wasps. It is possible that CcC wasps recognize M. sexta as a 

suboptimal host and therefore allocate fewer eggs to them; however, brood size and sex ratio are 

comparable to those found in the wild (MsT = 48 ± 23% female; CcC = 72 ± 17% female; 

Kester, unpublished data). Similarly, wasps should allocate more females to gregarious rather 

than solitary hosts since males are more likely to disperse.  

 Divergence in male acoustic signals, larval development time, reproductive factors, and 

other traits along with possible differences in female pheromones indicates that these two 

genetically divergent sources of C. congregata also have diverged behaviorally. However, the 

lack of isolation due to courtship behavior implies that other ecological mechanisms, such as 

assortative mating by host plant, are preventing these complexes from mating in the wild. The 

presence of post-zygotic isolation suggests that the polydnavirus can evolve faster than sexual 

pre-zygotic isolation to exploit hosts and that ecological isolation may be the first step in 
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speciation. Small differences in courtship signals, initially diverged through genetic drift, may 

then be selected for to prevent mating between incompatible races and a reduction in fitness from 

hybrid offspring. Testing across geographically distant populations of these two host-plant 

complexes can assess whether differences between our two sources hold across all populations 

within these complexes.  

 The MsT and CcC host-plant complexes are likely incipient species in that gene flow 

between these complexes is possible and may occur to a limited extent in nature. However, 

speciation may still occur despite limited gene flow and without absolute isolation (Nosil 2008). 

Therefore, given the 2% genetic divergence of mtDNA COI region (Karns 2009), and the 

decreased fitness observed for one of the hybrid crosses, the MsT and CcC lineages may even be 

considered sibling species. The identification of parasitoid sibling species has implications for 

their use in biological control, since crossing incompatible species may inhibit population 

growth.  
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Table 1  Comparison (mean ± SE) of elements of the male courtship acoustic signal between two 

host-plant complex sources of Cotesia congregata (MsT = Manduca sexta on tobacco, n = 21; 

CcC = Ceratomia catalpae on catalpa, n = 24). Amplitude re: 20 μPa at 2-3 mm. Two-way t-test 

between MsT and CcC. Bold are p < 0.05. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acoustic element   MsT    CcC    p-value

Boings per second 2.88 ± 0.05 2.74 ± 0.04 0.0220

Total boing period (ms) 348.7 ± 6.2 367.3 ± 5.4 0.0279

     Boing (part 1) time (ms) 121.2 ± 2.8 133.8 ± 3.0 0.0037

     Buzz (part 2) time (ms) 203.6 ± 6.4 213.6 ± 4.4 0.1960

     Gap time (ms) 22.8 ± 0.7 19.9 ± 0.8 0.0088

  

Signal Frequency (Hz) 229.4 ± 3.1 239.2 ± 2.8 0.0245

Boing frequency (Hz) 229.0 ± 3.7 237.1 ± 2.8 0.0845

Buzz frequency (Hz) 239.2 ± 3.2 245.4 ± 2.3 0.1191

  

Boing amplitude (dB) 64.2 ± 0.8 66.6 ± 0.9 0.0436

Buzz amplitude (dB) 54.9 ± 1.1 58.7 ± 0.9 0.0096
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Table 2  Results of controlled matings producing broods with females, only males, or no larvae 

in the F1 (157 crosses) and F2 (137 crosses from hybrid females x siblings) generations among 

crosses between two host-plant complex sources of Cotesia congregata. Proportion mated is the 

number of crosses that produced females per total number of matings that produced offspring. 

Numbers in parenthesis indicate entire lineages originating from single parental generation 

matings. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MsT♂ x MsT♀ CcC♂ x MsT♀ MsT♂ x CcC♀ CcC♂ x CcC♀

F1 With females 13 17 29 17

All male 7 23 35 15

Prop. mated 0.65 0.43 0.45 0.53

# w/ no larvae 1 0 0 0

F2 With females 7 (4) 3 (2) 5 (3) 6 (5)

All male 7 (2) 3 (1) 34 (16) 17 (5)

Prop. mated 0.5 0.5 0.13 0.26

# w/ no larvae 0 (0) 50 (12) 4 (1) 1 (0)

Prop. w/ progeny 1.00 (1.00) 0.11 (0.20) 0.91 (0.95) 0.96 (1.00)
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Table 3  Mean percent (± SE) and range of F2 Cotesia congregata larvae that did not egress from 

individual M. sexta hosts among F1 crosses as determined by host dissections. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cross type n % larvae in host ± SE  Range

MsT♂ x MsT♀ 5       13 ± 4% 0-19%

CcC♂ x MsT♀ 6       39 ± 15% 0-88%

MsT♂ x CcC♀ 34       26 ± 2% 4-57%

CcC♂ x CcC♀ 7       36 ± 11% 5-93%
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Figure 1  Proportion of males (± SE) of two host-plant complex sources of Cotesia congregata 

fanning to different female pheromone sources on the male’s respective host plant (tobacco or 

catalpa) (n = 15 each). 
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Figure 2  (A) Typical waveform of the male acoustic courtship signal of Cotesia congregata. 

Each signal contains three components: a high amplitude boing (part 1), a lower amplitude buzz 

(part 2), and a short gap. Frequency spectra of (B) boing and (C) buzz elements were used to 

determine fundamental frequency. (D) Frequency spectrum of background noise for comparison. 
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Figure 3  Scatter plot of duration of boing and buzz acoustic elements of courtship signal from 

MsT and CcC host-plant complex males of Cotesia congregata. The two elements did not 

correlate (r
2
 = 0.0089).  
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Figure 4  Comparison of larval development time (LS mean ± SE) among progeny of control 

lines and hybrid crosses (♂ x ♀) produced by (A) parental and (B) F1 generations of two host-

plant complexes of Cotesia congregata. Different upper-case letters indicate significant 

differences among F1 progeny, while p-values are given for largest differences among F2 

progeny produced by female hybrids crossed with male siblings (ANOVA followed by Tukey’s 

test, p < 0.05). 
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Figure 5  Comparison of brood size of larvae that egressed and spun cocoons (LS mean ± SE) 

among control lines and hybrid crosses (♂ x ♀) produced by (A) parental and (B) F1 generations 

of two host-plant complexes of Cotesia congregata. Different upper-case letters indicate 

significant differences among F1 broods, while lower-case letters indicate significant differences 

among F2 broods produced by female hybrids crossed with male siblings (ANOVA followed by 

Tukey’s test, p < 0.05). 
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Figure 6  Comparison of the proportion female (LS mean ± SE) produced among control lines 

and crosses (♂ x ♀) between two host-plant complexes of Cotesia congregata. All male broods 

were excluded from analysis. Different letters indicate significant differences among crosses 

(ANOVA followed by Tukey’s test, p < 0.05). 
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