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Abstract 

VIMENTIN OVEREXPRESSION CONTRIBUTES TO THE BIOLOGICAL 
PROPERTIES OF METASTATIC HEAD AND NECK CANCER CELLS 

Rachel Josephine Paccione 
Master of Science 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science at Virginia Commonwealth University School of Medicine. 

Virginia Commonwealth University, 2005 

Major Director: W. Andrew Yeudall, Interim Director 
Philips Institute of Oral and Craniofacial Molecular Biology, Biochemistry 

Epithelial to mesenchymal transition occurs in the later stages of epithelial tumor 

progression, with cells expressing mesenchymal markers. Of these, the intermediate 

filament protein vimentin is frequently upregulated in metastatic carcinomas. Previously, 

microarray studies showed that the gene encoding vimentin is highly upregulated in 

metastatic HN12 cells compared to a related primary tumor cell line. In this study, we 

confirmed this difference using real-time quantitative PCR, western blot analysis, and 

irnmunostaining. Furthermore, EGF and TGF-P, growth factors that induce migration 

and invasion of HN12 cells, produced synergistic increases in vimentin expression. To 

assess the contribution of vimentin to the biological properties, HN12 cells were stably 

transfected with a plasmid that directs synthesis of vimentin shRNA. Clones expressing 



decreased amounts of vimentin were isolated and characterized. These cells showed 

significantly reduced proliferation compared to non-targeting controls. Moreover, 

downregulation of vimentin led to a decrease in cell motility, as well as reducing their 

ability to invade through a basement membrane substitute. Using transient transfection 

assays, vimentin promoter activity was determined in HN12 cells to define regulatory 

elements important for controlling vimentin upregulation in the absence or presence of 

EGF and TGF-P. Taken together, the data indicate that overexpression of vimentin is 

important for proliferation and invasion of metastatic HN12 cells, and suggest that EGF- 

dependent pathways target binding elements in the proximal vimentin promoter, while 

TGF-P is likely to act in an API-dependent manner. Furthermore, both growth factors 

appear to synergize by stimulating promoter activation through the ASE site, suggesting 

involvement of Stat-dependent pathways in regulation of vimentin expression in HN12 

cells. 



1. Introduction 

1.1. Growth Control and Tumor Development 

Cancer is caused by the failure of regulatory mechanisms that control the growth 

and survival of cells. During normal development, intricate genetic control systems 

regulate the balance between cell proliferation and cell death in response to growth 

promoting signals, growth-inhibitory signals, and death signals. The growth of tumor 

cells depends not only on the increase of cells that are proceeding through cell division, 

but also a decrease in the number of cells that are undergoing programmed cell death 

(Martin, 1996). Programmed cell death or apoptosis is a physiological process that 

embodies a series of characteristics and genetically controlled steps, which include 

chromatin condensation and fragmentation, cell shrinkage, and the engulfment of the cell 

by neighboring cells without an inflammatory response (Martin, 1996). Apoptosis is 

essential for both normal development and tissue homeostasis in the adult (Stellar, 1995). 

It is the failure of certain tumor cells to undergo apoptosis that appears to be one of the 

factors underlying the genetic instability of these particular cells, their resistance to 

chemotheurapeutic agents, and their increase in proliferation (Martin, 1996). 

The loss of cellular regulation contributes to the genesis of malignancies and is 

due in large part to genetic damage. Genetic changes in proto-oncogenes and tumor 

suppressor genes are primarily responsible for the initiation and progression of a tumor 



(Martin, 1996). Since the majority of mutations do not increase the growth 

characteristics of a cell, specific genetic changes must underlie the progression to cancer 

(Lowy, 1996). For instance, proto-oncogenes may be activated to become oncogenes by 

a particular mutation, which causes the gene to become excessively active in growth 

promotion, or they may bc expressed inappropriately. In addition, tumor suppressor 

genes that normally restrain the growth of cells can be inactivated, thereby de-regulating 

cell growth. 

Proto-oncogenes are appropriately named because they are essentially progenitors 

of oncogenes or precursors of cancer genes. Proto-oncogenes can be converted into 

oncogenes by several mechanisms, including intragenic mutation and chromosomal 

rearrangement (Bishop and Hanafusa, 1996). In either case, the result is the abnormal 

uninhibited expression of a gene or the deregulation of the protein product (Bishop and 

Hanafusa, 1996). Proto-oncogene products participate in cell signaling that drives cell 

growth and usually falls into one of four categories: growth factors, growth factor 

receptors, intracellular signal transducers, and transcription factors (Leis and Livingston, 

1996). Oncogenes may be associated with a cancer predisposition as a result of a 

mutational event in many types of cancers, they may gain function through a dominant 

allele in which only one allele is mutated in cancer, and are rarely passed on to progeny 

through germ line transmission (Leis and Livingston, 1996). On the other hand, tumor 

suppressor genes are negative regulators of cell growth that undergo loss of function 

through mutation of both alleles, although for some genes, loss of a single allele is 

enough to perturb suppressor function (haploinsufficiency). Germ line transmission of a 



mutant allele results in predisposition to developing malignant disease (Leis and 

Livingston, 1996). 

As noted previously, oncogenic mutations usually only occur in somatic cells; 

therefore, the mutations are not passed from one generation to another. In order for 

oncogenic mutations to induce cancer, the mutations must occur in the dividing cells and 

therefore be passed to progeny cells. When such a mutation occurs in nondividing cells, 

e.g. neurons or muscle cells, the mutation generally does not induce cancer, which is one 

reason why tumors of muscle and nerve cells are very rare in adults. 

However, there are certain inherited mutations in tumor suppressor genes, for 

example mutations in RB and BRCAI, which are carried through the germ-line and 

increase the probability that cancer will occur during an individual's lifetime (Leis and 

Livingston, 1996). Mutations in the proto-typical tumor suppressor genes generally 

behave in a recessive manner at the molecular level and therefore it is only when both 

copies of the gene become inactivated that an abnormal phenotype will manifest in the 

cell (Leis and Livingston, 1996). It is due to this recessive genetic behavior that a single 

mutant allele of such a gene can be passed through the germ line which is tolerated 

during embryogenesis because its presence is revealed in a tissue only when the 

remaining wild-type allele is lost (Leis and Livingston, 1996). 

Oncogenic mutation or loss of tumor suppressor function may result in cancer 

cells acquiring a proliferative potential that does not necessarily require an external 

inducing signal. In addition, these cells may fail to sense particular signals that restrict 

cell division and continue to grow within the tissue when they should otherwise 



differentiate or die. Furthermore, cancer cells often alter their attachment to adjacent 

cells and to extracellular matrix in order to gain the potential to migrate and invade into 

surrounding tissues. 

Tumor cells must develop a blood supply in order to survive in the tissue, a 

process known 2s angiogenesis. Angiogenesis is a complex phenomerion ,of 

neovascularization that facilitates provision of nutrients to sustain the continued growth 

and survival of tumor cells. Without this, tumor growth would be severely limited. 

Angiogenesis requires several discrete steps; degradation of the basal lamina surrounding 

a nearby capillary, migration of endothelial cells lining the capillary into the tumor, 

endothelial cell division, and the formation of a new basement membrane around the 

newly elongated capillary. During the early stages of cancer, an abundant amount of new 

capillaries usually exists along the basement membrane below the transformed epithelium 

(Weinberg and Hanahan, 1996). However, if neovascularization persists in an invasive 

cancer, then the capillaries have the ability to breach the basement membrane and invade 

through the stroma (Weinberg and Hanahan, 1996). Interestingly, it is thought that 

transforming growth factor P (TGF-P) may play an important role in angiogenesis 

because along with other angiogenic factors, cells release TGF-P during development and 

tissue repair as part of a mechanism that promotes the vascularization of normal tissues 

(Weinberg and Hanahan, 1996). 

The majority of benign tumors pose little risk to the host because they remain 

localized and are small. The cells that compose a benign tumor resemble and may even 

function like normal cells while maintaining cell adhesion and thereby restricting the 



tumor to the site of origin. In contrast, malignant tumor cells have the capability of 

dividing rapidly compared to normal cells, as well as enhanced survival. Thus, malignant 

cells usually exhibit the characteristics of rapidly growing cells, that is, high nucleus-to- 

cytoplasm ratio, prominent nucleoli, and relatively little specialized structure. The major 

characteristics that differentiate malignant tumors from benign lesions are their 

invasiveness and ability to spread to local, regional and distant body sites. 

1.2. Metastasis 

Metastasis occurs when a tumor invades into the surrounding tissue, gets into the 

circulatory or lymphatic systems, allowing the cells to spread to regional or distant sites 

and facilitating the establishment of secondary foci of proliferation. Invasion of the 

underlying connective tissue proceeds in stages and is mediated by various factors 

produced by the tumor cell (Weinberg and Hanahan, 1996). For metastasis to occur, 

tumor cells must release proteases such as collagenase IV, which dissolves the collagen 

in the basement membrane allowing the tumor to penetrate the subjacent stroma. These 

invasive cancers express membrane-localized receptors for laminin and fibronectin, 

which are large glycoprotein components of the basement membrane and connective 

tissue stroma, respectively. It is the binding of these elements that provides the tumor 

cells with a lattice for anchorage and attachment. Enzymes such as plasminogen 

activators, collagenases I, cathepsins, heparanase, and hyaluronidase are released by the 

tumor cells and destroy the matrix constituents, thereby enabling the cells to advance 

further into the connective tissue (Weinberg and Hanahan, 1996). 



However, fewer than 1 in 10,000 cells that escape from the primary tumor site 

survive to colonize another tissue and form a secondary, metastatic tumor. In the case of 

hematogenous spread, cells that escape the primary tumor must adhere to the endothelial 

lining of a capillary and migrate across or through it to the underlying tissue in order to 

enter circulation. In addition, tumor cells secrete autocrine motility factors.that direct 

their migration, as well as vascular permeability factors that allow plasma proteins to 

accumulate in the tumor and angiogenic factors that increase the vascularity of the tumor 

(Weinberg and Hanahan, 1996). 

As the tumor develops, the cells become very well adapted to growth and invasion 

of the surrounding tissues. The invasion of tissues is nonrandom, depending on the nature 

of both the metastasizing cell and the invaded tissue. It is thought that the tumor cells 

preferentially invade along the pathways that provide the least resistance, such as the 

connective tissue stroma (Weinberg and Hanahan, 1996). 
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Figure 1: Sequential steps of the metastatic cascade. The process of metastasis 
begins when an individual tumor cells detaches from the primary tumor. The 
progression to metstasis requires individual tumor cells adhering and invading 
through the basement membrane, migrating through extracellular matrix, and 
intravasating into blood or lymphatic vessels, where the tumor cells can 
disseminate to distant sites. In addition, the tumor cells must extravasate out of 
the vessel and invade into the target organ, which forms a metastatic tumor. 
(Howell and Grandis, 2005) 

1.3. Head and Neck Cancer 

Squamous cell carcinoma of the head and neck region (HNSCC) is the sixth most 

common malignancy worldwide, representing 6% of all cancers. Each year 

approximately 40,000 individuals in the United States are diagnosed with HNSCC (Kim 

and Califano, 2004) and more than two-thirds of these cases will present with advanced 

stages (stage I11 and IV) (AJCC, 1983). The 5-year survival rate has remained largely 



unchanged over the last two decades at 50% despite the significant improvements in the 

treatment of this disease that has decreased morbidity (Kim and Califano, 2004). Studies 

have shown that if the patient survives the initial lesion, a constant and continuing risk 

(from 2.7-4% per year) of secondary primary tumor formation exists following the initial 

treatment (Jovanovich et al., 1994). The probability of a second malignancy forming 

within five years after the presentation of the initial tumor may be as high as 22% 

(Dhooge et al., 1998). 

Head and neck squarnous cell carcinoma (HNSCC) is a locally aggressive 

malignancy that may develop after years of prolonged abuse of alcohol and tobacco 

products. Exposure to these particular agents results in alterations in genes that are 

important for the regulation of various cellular functions, which allows tumor cells to 

survive and grow in an uninhibited manner, as discussed above (section 1.1). Some of 

these important functions include the acquisition of immortality, the ability to invade 

tissue andlor metastasize to other sites, and acquiring the ability to induce angiogenesis 

(Hasina and Lingen, 2001). 

HNSCC generally responds inadequately to chemotherapeutic and 

radiotherapeutic measures; therefore, surgery remains the primary treatment. However, 

patients with locally advanced, operable (HNSCC) are known to be at high risk of 

treatment failure, which ranges from local regrowth to lymphatic spread and systemic 

dissemination (Bernier and Cooper, 2005). HNSCC lesions are locally aggressive and 

frequently metastasize to local and regional lymph nodes. Therefore, treatment of 

HNSCC must address not only the initial primary lesion, but also early diagnosis of high- 



risk pre-malignant lesions to prevent malignant development and progression. Poor long- 

term survival is due to numerous variables including delayed diagnosis as well as the 

development of multiple primary and secondary tumors. Thus, in addition to early 

detection, continued emphasis must be placed on preventing the development of 

secondary tumors as well a? establishing more effective treatments for individuals who 

present with advanced disease. 

1.4. Intermediate Filaments and Cancer 

The intermediate filament protein family consists of at least 65 distinct proteins, 

in which all assemble into 10 nm wide filaments and serve as prominent structural 

elements both in the nucleus and the cytoplasm (Herrmann and Aebi, 2004). The family 

comprises both nuclear (lamins) and cytoskeletal proteins such as cytokeratins, vimentin, 

desmin, glial fibrillary acidic protein, neurofilaments, internexin, nestin, and peripherin 

(Steinert and Leim, 1990). Two other principal structural elements of the eukaryotic cell 

cytoskeleton are microtubules and microfilaments. Compared to both microtubules and 

rnicrofilarnents, which often break when subjected to shear stress, intermediate filaments 

become viscoelastic and are flexible (Janmey et al, 1998). The molecular building blocks 

of intermediate filaments are fibrous proteins that consist of long, uninterrupted segments 

of a-helices. Since single a-helical chains are unstable in aqueous solution, they often 

adopt a rope-like structure by forming multistranded left-handed coiled coils (Watson and 

Crick, 1953). With the use of electron microscopy, it has been shown that coiled-coil 

intermediate filaments protein dimers are 45 to 50 nm long rod-like molecules. 



Intermediate filament proteins may be useful for the diagnosis of certain tumors 

because of their distinct expression patterns. For example, in some malignant tumors the 

cells lose their normal appearance and, therefore, their origin is unable to be identified 

purely on morphological grounds. However, the expression of particular intermediate 

filament proteins is one of the differentiated properties of the cell that may be retained in 

tumor cells. Hence, with the use of antibodies specific for the intermediate filament 

protein of interest, researchers can determine exactly where the tumor originated, 

epithelial, mesenchymal, or neuronal tissue. Identifying the intermediate filament protein 

in a tumor cells may allow physicians to select the most effective treatment because 

epithelial and mesenchymal malignancies may be sensitive to different therapeutic 

regimes. 

1.4.1. Vimentin 

The fact that intermediate filaments span from the nucleus to the cell membrane 

suggests that intermediate filaments have the potential to play significant roles in the 

structural stability of the cell and the ability to transmit andlor transduce mechanical 

signals into biological responses (Coulombe et al., 2000). Vimentin, which is a major 

structural component of intermediate filaments in many different cell types, has been 

shown to play a significant role in essential mechanical and biological functions 

including cell contractility, migration, and proliferation (Wang and Starnenovic, 2002). 

Live imaging of cells expressing the GFP-vimentin fusion protein revealed that 

the vimentin network is motile, with the filaments constantly changing the shape of the 



cell (Yoon et al., 1998; Helfand et al., 2002). It is the motile properties of vimentin 

filaments that are particularly evident in the spreading cell, in which three different 

structural forms of vimentin are involved in the assembly of the vimentin network 

(Prahlad et al., 1998). 

Figure 2: GFP-vimentin in a living endothelial cell. (Helmke et al., 2000) 

1.4.2. Vimentin and Epithelial to Mesenchymal Transition 

Vimentin serves as an appropriate marker for EMT because it is an established 

marker for the mesenchymal cell and is not normally expressed in cells of epithelial 

origin. EMT is one feature that may characterize the progression of a tumor toward a 

highly malignant phenotype, and involves numerous changes in gene expression that 

result in the substitution of epithelial characteristics for those of the mesenchymal cell 

(Gilles and Thompson, 1996). Typically, cells that have undergone EMT exhibit a 

spindle-shaped morphology with organized cytoskeleton, reduced cellular adhesions, and 



the expression of specific mesenchymal cell markers such as vimentin. This correlation 

between EMT and increased vimentin expression has been shown in a variety of tumor 

cells, including invasive breast cancer cells (Korsching et al., 2005) and liver metastasis 

of a pancreatic carcinoma (Nakajima et al., 2004). In addition, it has been shown that 

many growth factors and cytokines induce EMT (Boyer et al., 2000; Thiery, 2002). 

1.4.3. Cytokeratin and Epithelial to Mesenchvmal Transition 

Whereas vimentin is turned on during EMT, a normal epithelial specific 

intermediate filament, cytokeratin, is downregulated andlor switched to a different 

isoform (Wu et al., 2003). In vivo studies and experimental models show that epithelial 

cells are polarized, display cytokeratin filaments and membrane-associated specialized 

junctions such as demosomes and adherens junctions (Hay, 1995; Savagner et al., 1994). 

It is after EMT when these epithelial features are lost and the acquisition of mesenchymal 

characteristics occurs, which includes vimentin filaments and a flattened phenotype (Hay, 

1995; Savagner et al., 1994). Therefore, cytokeratins are highly regulated during EMT 

and progressively vanish from within the cell when the vimentin level inside the cells 

increases and adopts a mesenchymal phenotype (Boyer et al., 1989). 

It has been proposed that EMT represents a permanent switch from cytokeratin to 

vimentin in certain tumors (Gilles et al., 1997), consistent with the findings of an 

androgen-independent model of prostate cancer which demonstrated an increase in 

vimentin expression of the metastatic cell line accompanied by a decrease in the levels of 

cytokeratin (Singh et al., 2003) as well as mammary epithelial cells that underwent EMT 



in response to transfection with the matrix metalloproteinase stromelysin 1 (Lochter et 

al., 1997). 

EMT 

-b 
FGFI, E t r ,  
mu 

Figure 3: In vitro EMT in carcinoma cells. After EMT, the cells express 
mesenchymal cell markers such as vimentin, become individualized, spread, and 
migrate. (Savagner, 200 1) 

1.4.4 Vimentin Gene Expression 

Vimentin expression is upregulated in some metastatic tumor cells, making it a 

potential marker of oncogenic progression. The promoter of the vimentin gene contains 

multiple elements responsible for its complex transcriptional regulation, including a 

TATA-box, several positive regulatory elements that include eight GC-boxes (Rittling 

and Baserga, 1987), a PEA3 site (Chen et al., 1996), an NF-KB site (Lilienbaum and 

Paulin, 1993), A19 site (Salvetti et al., 1993), a PS element (Wieczorek et al., 2000), two 

tandem AP-1 binding sites (Rittling et al., 1989), a 0-catenin site (Gilles et al., 2003), an 

antisilencer (ASE) element (Izmailova and Zehner, 1999), and a proximal silencer 

element (Salvetti et al., 1993). Determining what controls vimentin expression could 



lead to an understanding of what contributes to the changes in gene expression that 

occurs during transformation to the malignant state. 

-800 -600 
APl APl 

ASE H4TF1 

Figure 4: A diagram of the relative position of vimentin's previously reported 
regulatory elements; Gc-box 1, PEA3, NF-KB, PS, H4TF-1, tandem AP- 1 binding 
sites, and ASE. 

1.5. Growth Factors 

Growth factors interact with specific protein receptors at the cell surface, which 

are generally proteins that traverse the lipid bilayer of the plasma membrane. The growth 

factor receptors contain an external ligand-binding domain and a cytoplasmic domain, 

which triggers further biochemical events within the cell. The term "signal transduction" 

is used to characterize this process in which binding of the growth factor leads to the 

activation of specific intracellular pathways. The activated receptor induces a change at 

the cytoplasmic side of the membrane by either becoming enzymatically active or by 

interacting with other regulator proteins at the plasma membrane. This leads to a series 

of events in the cytoplasm; for example, changes in ion concentration, production of 

second-messengers, or activation of protein kinases, which are the enzymes that 



phosphorylate other protein substrates. These cytoplasmic signals can then alter gene 

expression within the nucleus. (Bishop and Weinberg, 1996) 

In normal tissue, adjacent cells or distant cells that have the ability to produce and 

release growth factors control the amount of growth factor available to the cell, which 

ensures normal levels of proliferation. However, certain cells have the ability to undergo 

autocrine stimulation in which they have the capability of expressing both the growth 

factor and the receptor. Therefore, once the growth factor is secreted it can be considered 

to be constantly in the active state because subsequent binding of the growth factor to the 

receptor stimulates a cellular response. Therefore, normal regulatory events that prevent 

prolonged interaction of the growth factor and its receptor are bypassed, thereby 

contributing to cellular transformation. (Pawson, 1996) 

1.6. Transforming Growth Factor-Beta 

1.6.1. Introduction to Transforming Growth Factor-Beta 

The mammalian transforming growth factor-beta (TGF-P) family consists of five 

isoforms: TGF-PI, TGFP-2, TGFP-3, TGFP-4 and TGFP-5. All are secreted and 

activated in the extracellular environment and bind to receptors at the cell surface 

receptors, of which there are three types: TGF-PI, TGF-PII, and TGF-PIII. The TGF-P 

isoforms share 64-82% similarity at the amino acid level, largely due to a conserved 

cysteine knot structure that is characteristic of the TGF-P monomer (Archer et al., 1993; 

Daopin et al., 1992; Schlunegger and Grutter, 1992). Interestingly, the type I11 receptor 



is also known as a betaglycan and can exist in a soluble form that has the ability to bind 

two TGF-P molecules (Bachman and Park, 2005). Therefore, it is this increased binding 

capacity which allows a greater concentration of TGF-P molecules to be present at the 

cell surface, thus maximizing the interaction of TGF-P with type I and type I1 receptors 

(Lopez-Castillas, et al., 1993) which transduce the signal to the intracellular environment. 

Recent advances in molecular biology reveal that tumor development requires the 

accumulation of a particular set of cellular characteristics. These include the ability to 

grow independently of exogenous growth factors, to divide indefinitely, to grow new 

blood vessels, and to invade surrounding tissues. The TGF-P signaling pathway regulates 

many of these cellular processes, and tumor cells may exploit alterations in TGF-P 

signaling cascade to promote malignant progression (Rich et al., 2001). 

1.6.2. TGF-8 - Tumor Suppressor or Tumor Promoter? 

Normal Benign Malignant Metastatic 

TGF-p overexpression 

Figure 5: Model of TGF-P action in cancer. 

TGF-P is a cytokine that is known for its ability to inhibit epithelial proliferation. 

However, many epithelial malignancies acquire a resistance to the growth-inhibitory 



effects of TGF-P. Therefore, it is thought that this resistance is part of a particular 

signaling event is which TGF-P loses its growth inhibitory effects and is then used by the 

epithelial cells to promote cell growth (Bachman and Park, 2005). 

It is important to note that in some model systems, mutated TGF-P receptors 

appear to block TGF-P signaling completely because neither growth-inhibitory nor 

growth-promoting responses are observed (Bachman and Park, 2005). Therefore, it is 

thought that the decision of the cancer cell to use TGF-P as a tumor suppressor instead of 

as a tumor promoter is not mediated at the level of the ligandlreceptor interaction. 

Over the last decade, numerous studies have demonstrated that TGF-P1 not only 

maintains transforming potential but can also drive malignant progression, invasion and 

metastasis both in vitro and in vivo (Derynck et aL., 2001). It has now become clear that 

TGF-P can act as both a tumor suppressor in which three isoforms bind to the same type 

I1 receptor (Akhurst and Derynck, 2001) and as a significant stimulator of tumor 

progression, invasion, and metastasis (Cui et al., 1996). 

At the early stages of tumorigenesis when the lesion is still benign, TGF-P acts 

directly on the cancer cells to suppress tumor growth. However, as the tumor progresses, 

genetic and/or biochemical changes allow the TGF-P to stimulate tumor progression on 

both the cancer cell and on the non-malignant stromal cell types on the tumor (Akhurst 

and Derynck, 2001). It is this stimulation and metastasis caused by TGF-P that might be 

of greater clinical significance because a majority of tumors retain the functional TGF-P 

signaling pathway. 



1.6.3. TGF-B Signaling Pathway in Tumor Progression 

Two general mechanisms may explain the contribution of TGF-P signaling to 

enhance tumor progression, invasion, and metastasis. First, there can be an early loss of 

signaling components, such as the type I1 TGF-P receptor, leading to rapid tumor cell 

growth. It is this increased cell division that also potentiates the probability of further 

cancer-causing mutations and cytogenetic changes that have the ability to drive tumor 

progression. Second, the TGF-P signaling pathway can remain intact, but become 

disrupted by other mechanisms such as deregulated Smad signaling. The altered Smad 

signaling leads to a direct increase in tumor cell plasticity, invasion, and metastasis. 

(Akhurst and Derynck, 2001) 

1.6.4. TGF-I3 and Smad Signaling 



Ligand 
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Figure 6: General mechanism of TGF-/3 receptor and Smad activation. 

TGF-P is secreted from cells as a biologically inactive latent form that requires 

some processing to generate the active growth factor. At the cell surface, TGF-P binds to 

a complex of transmembrane receptor serineltheorine kinases (type I and 11) and induces 

the phosphorylation of the GS segment on the type I receptor by the type I1 kinases. This 

heterodimeric transmembrane receptor complex is composed of type I1 (TPRII) and type 

I receptors (AlkSlTPRI) (Glick, 2004). The type I1 receptor is a constitutive kinase and 

capable of binding TGF-P1 on its own (Glick, 2004). However, the type I receptor 



kinase is only activated after complex formation and trans-phosphorylation by the type I1 

receptor (Glick, 2004). 

Ligand Type11 Type I R-Smad 

TGF-P TPRII ALK5 (TPRII) Smad2 

ALK- 1 Smad3 

ALK-2 Smadl 

Smad5 

Table 1: Combinatorial interactions of type I1 and type I receptors define the 
signaling responses. 

The activated type I receptor phosphorylates selected Smad proteins at serine 

residues within the C-terminal region. These receptor-activated Smads (R-Smads) then 

form a complex with Smad4 (Derynck and Zhang, 2003). Smad2 and Smad3 are the 

major substrates for the activated type I kinase (Glick, 2004). These proteins are inactive 

cytoplasmic transcription factors until they become phosphorylated by the ligand-bound 

receptor complex, at which point they bind to Smad4 and translocate to the nucleus 

(Glick, 2004). R-Smads and Smad4 shuttle back and forth between the nucleus and 

cytoplasm (Derynck and Zhang, 2003). 

Upon translocating to the nucleus, Smad complexes regulate transcription of 

target genes through physical interaction and functional cooperation with DNA-binding 



factors or coactivators such as CREB-binding protein (CBP) and p300 (Derynck and 

Zhang, 2003). Positive and negative regulation of transcription occurs with the 

cooperation of other DNA binding proteins and transcription factors at both the Smad 

binding elements (SBE) in the promoter regions of target genes and at the binding sites 

for other transcription factors (Derynck and Zhang, 2003). 

TGF-$/BMP IFN-y TNF-a EGF 
I 

4 Cytoplasm 

Figure 7: R-Smad activation is regulated by receptor interacting proteins and 
Smad617. 

Interestingly, activation of R-Smads by type I receptor kinases is inhibited by 

Smad6 or Smad7 (Derynck and Zhang, 2003). In contrast to R-Smad expression, 

expression of the inhibitory Smad6 or Smad7 is highly regulated by extracellular signals 

(Derynck and Zhang, 2003). Induction of Smad6 and Smad7 expression by BMP and 

TGF-P respectively represents an auto-inhibitory feedback mechanism for ligand-induced 

signaling (Massague et al., 2000; Itoh et al., 2000; Moustakas et al., 2001). Activation of 



EGF receptor and possibly other tyrosine kinase receptors, interferon-y (INF-)I) signaling 

through Stat (signal transducer and activator of transcription) proteins, and activation of 

NF-KB by tumor-necrosis factor-a (TNF-a), also induce Smad7 expression, which leads 

to inhibition of TGF-P signaling (Massague et al., 2000; Itoh et al., 2000; Moustakas et 

al., 2001). 

1.6.5. TGF-$ signaling through Smad Independent Pathways 

Other proteins can associate with type I or type I1 receptors and regulate TGF-P 

ligand signaling without the direct effect of Smad activation. The activated receptor 

complexes activate non-Smad signaling pathways, such as TAKlNEKK-1, Ras, RhoA, 

PP2A signaling pathways (Derynck and Zhang, 2003). 

1.6.6. TGF-8 and EMT 

TGF-P1 is a ubiquitous cytokine that was originally named for its ability to 

transform normal fibroblasts in culture. Subsequently, TGF-PI was found to inhibit 

growth of normal epithelial cells, although it was also discovered that TGF-P1 could 

induce tumor cells to proliferate and promote an invasive phenotype and the ability to 

metastasize by mediating changes in the cytoskeletal architecture, which is known as 

EMT (Massague et al., 2000). Autocrine TGF-fl expression by tumorgenic cells induces 

matrix degradation, downregulates basement membrane components, and cell-cell 

adhesion molecules; such as E-cadherin, and induces an invasive, motile phenotype 

(Glick, 2004). 



It has been shown that TGF-P can induce morphological changes characteristic of 

EMT in normal and transformed mammary epithelial cells in culture (Oft et al., 1996; 

Miettinen et al., 1994). Furthermore, these experiments have also shown that this 

cytoskeletal reorganization is accompanied by the downregulation of adhesion and 

cytoskeletal proteins. such as E-cadherin and keratins, and induce de novo expression of 

the mesenchymal intermediate filament protein, vimentin (Oft et al., 1996; Miettinen et 

al., 1994). Since these initial experiments, TGF-P-induced EMT has also been reported 

in epidermal squamous cell carcinoma (Portella et al, 1998), in ras-transformed 

mammary carcinoma cells (Oft et al., 1996) and in ovarian adenosarcoma cells (Kitagawa 

et al., 1996). 

1.6.7. TGF-B Stimulates Angiogenesis 

As mentioned earlier (section 1.1), tumor angiogenesis is critical for tumor 

growth and invasion because this process facilitates the delivery of nutrients and oxygen 

to the tumor cells allowing sustained, rapid growth. The mechanism of angiogenesis 

simulation by TGF-PI is a combination of direct and indirect effects. Directly, TGF-P 

induces the expression of angiogenesis-inducing vascular endothelial cell growth factor 

(VEGF) (Pertovaara et al., 1994). TGF-P also can directly induce capillary formation of 

the endothelial cells cultured on a collagen matrix (Madri et al, 1998). Indirectly, TGF-P 

induces expression of the metalloproteases MMP-2 and MMP-9, as well as 

downregulation of tissue inhibitor metalloproteases (TIMPs) in tumor and endothelial 



cells, thus providing a protease-rich microenvironment that is conducive to the enhanced 

migration and invasion of active endothelial cells (Hagedorn et al., 2001). 

1.6. Epidermal Growth Factor 

1.6.1. Epidermal Growth Factor Introduction 

Epidermal Growth Factor Receptor (EGFR) is a receptor tyrosine kinase that is 

overexpressed in a number of human epithelial malignancies, including carcinomas of the 

lung, colon, ovary, bladder, and head and neck (Bishop and Weinberg, 1996). EGFR 

stimulates several properties that are critical for tumor progression, including 

proliferation, cell motility, cell adhesion, invasion, cell survival, and angiogenesis 

(Grandis and Sok, 2004). 

EGFR is a 170-kDa plasma membrane glycoprotein containing an extracellular 

ligand-binding domain, a single transmembrane domain, an intracellular domain with 

intrinsic tyrosine activity, and a C-terminal tail that contains specific tyrosine containing 

sequences that become binding sites for SHZcontaining signaling proteins upon 

phosphorylation. EGFR is one of a family of four structurally similar receptors that make 

up the erbB family. These receptors show homology in their kinase domains but are 

different in their extracellular regions and C-terminal tails. The erbB family of receptors 

are widely expressed in a variety of tissues and regulate different functions, including 

mitogenesis, differentiation, and cell survival and can undergo homo- (thick arrows) or 

heterodimerization (thin arrows) both constitutively and in response to the presence of 



specific ligands resulting in the potential to activate many signaling pathways (Grandis 

and Sok, 2004). 
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Figure 8: EGFR Signaling Pathway. 

Specificity of signaling is generated, at least in part, through the range of ligands 

and the intracellular protein-protein interactions that occur downstream of these erbB 

receptors. The selective activation of the signaling transduction pathways (yellow boxes) 

depends on the various arrangements of the ligand-erbB engagement, tyrosine 



phosphorylation, and subsequent receptor dimerization combinations beneath the cell 

surface (Grandis and Sok, 2004). In addition, for example, several ligands bind to 

EGFRIerbBl, including epidermal growth factor (EGF), transforming growth factor- 

alpha (TGF-a), and amphiregulin (Grandis and Sok, 2004). 

1.7.2. Epidermal Growth Factor and Head and Neck Cancer 

The up-regulation of EGFR expression and activity has been described in a 

number of epithelial tumors, including HNSCC (Howell and Grandis, 2005). 80-100% of 

head and neck tumors express EGFR (Grandis et al., 1998). Furthermore, EGFRIerbBl, 

erbB2, and erbB3 have each been independently correlated with the presence of nodal 

metastases and a shortened length of survival (Do et al., 2004; Xia et al., 1999). Studies 

have provided support for the prominent role of EGFR in controlling HNSCC invasion 

and metastasis and indicate EGFR as being one of the strongest predictors of survival and 

locoregional relapse (Ang et al., 2002; Grandis et al., 1998). Upregulation of EGFR is 

thought to influence important steps in tumor invasion and metastasis by enhancing cell 

motility, regulating cytoskeletal changes, altering cell adhesion, and directing the 

production of matrix-degrading proteolytic enzymes though downstream signaling 

effector molecules such as phospholipase C gamma-1 (PLCy-1) and focal adhesion 

kinase, in addition to promoting angiogenesis (Khazaie et al., 1993). 



Enbate$ Motillity Degradation ~f ECM 

Figure 9: Signal transduction elements important to HNSCC invasion and 
metastasis. (Howell and Grandis, 2005) 

1.7.3. Matrix Metalloproteinases in Head and Neck Cancer 

EGFR activation is known to increase activation of matrix metalloproteinase 

(MMPs), in particular MMP-9 (Howell and Grandis, 2005). MMP-9 belongs to the MMP 

family of zinc dependent endopeptidases, which have been associated with tumor cell 

invasion, metastasis, and tumor-induced angiogenesis (Fridman et al., 2003). In addition, 

the MMP family member pro-MMP-9, has been shown to be a key enzyme in tumor 

progression playing a significant role in tumor cell invasion and in angiogenesis (Fridman 

et al., 2003). As a secreted MMP, pro-MMP-9 is released into the extracellular 

environment by tumor and stroma cells, degrading both the ECM matrix and non-ECM 



proteins, thus participating in events that are required for tumor cell migration and tumor- 

induced angiogenesis (Fridman et al., 2003). 

An elevated EGFR level in HNSCC tumors correlates with the expression of 

MMP-2, MMP-3, MMP-7, MMP-9, and MMP-10 (Howell and Grandis, 2005). MMP-2 

and MMP-9 overexpression in tumor cells has been shown to correlate with invasion, 

metastasis, and poor prognosis (Kawata et al., 2002; Ikebe et al., 1999; Hong et al., 

2000). In addition, EGF has been shown to increase HNSCC invasion through a 

basement membrane substitute and upregulate the expression of MMPs in HNSCC cell 

lines, again with a significant upregulation of MMP-9 (0-Charoenrat et al., 2000). 

Further, studies have demonstrated a failure of MMP upregulation, migration, and 

invasion in HNSCC tumor cell lines on EGFR blockade (0-Charoenrat et al., 2000). 



Figure 10: MMP cascade of zymogen activation involved in pro-MMP-9 
activation. (Fridman et al., 2003) 

Pro-MMP-9 can be activated by several different MMPs, including MMP-3 

(Ogata et al., ! 992), MMP-2 (Fridman et al., 2003), and MMP13 (Knauper e? al., 1997. 

This cascade of zymogen activation is initiated by MTl-MMP located at the cell 

membrane and requires the activation of TIMP-2. With the generation of MMP-2 and 

MMP-13, it can activate pro-MMP-9 (Fridman et al., 2003). 

1.7.4. Phospholipase C Pamma (PLCy-1) and Head and Neck Cancer 

PLCy-I is a ubiquitously expressed phosphoinositide-specific phospholipase that 

is activated downstream of EGFR (Wells and Grandis, 2003). PLCy-1 is activated by 

many growth factors including EGF and is required for cell motility (Howell and 

Grandis, 2005). Since cell migration is critical for metastatic progression of tumor cells, 

it is thought that the overexpression of PLCy-1 in HNSCC could contribute to invasion 

and metastasis. Interestingly, PLCy-1 regulates cell motility in response to growth 

factors through the activation of actin-modifying proteins such as gelosin, and through 

the hydrolysis of phosphoinositide (43 bisphosphate (PIP2) into diacylglycerol (DAG) 

and inositol triphosphate (IP3), which are significant in the regulation of actin 

cytoskeletal alterations and adhesionlde-adhesion mechanisms (Wells and Grandis, 

2003). 



Increased total and phosphorylated PLCy-1 has been reported in HNSCC tumors 

compared with normal adjacent mucosa (Thomas et al., 2003). Furthermore, other 

studies have shown that inhibition of PLCy-1 signaling significantly reduces in vitro 

invasion through matrix barriers, suggesting that PLCy-1 plays a role in HNSCC invasion 

and metastasis (Thomas SM et al., 2003). Therefore, the upregulation of PLCy-1 is one 

downstream signal transducer that may mediate invasion and metastasis in HNSCC and 

other epithelial tumors. 

1.7.5. EGFR and Focal Adhesion Kinase 

Focal Adhesion Kinase (FAK) is upregulated in several tumor types, including 

HNSCC (Aronsohn et al., 2003). FAK is an intracellular nonreceptor tyrosine kinase, 

which associates with integrins within cellular structures referred to as focal adhesions 

and becomes phosphorylated and activated during integrin-mediated cell adhesion to 

extracellular matrix (ECM) ligands (Howell and Grandis, 2005). Furthermore, FAK is an 

important mediator of growth factor signaling, cell proliferation, cell survival, and cell 

migration (McLean et al., 2005). 

FAK expression and its activity are frequently correlated with malignant or 

metastatic disease and poor patient prognosis (Recher et al., 2004; Schlaepfer et al., 

2004). Previous studies have shown an association between the enhanced expression and 

phosphorylation of FAK and increased invasiveness and the metastatic ability in HNSCC 

cell lines (Schneider, et al., 2002; Kornberg, 1998). In addition, gains in the FAK gene 



copy number have been found in cells derived from head and neck cancer (Agochiya et 

al., 1999). 

Figure 1 1: Focal-adhesion kinase as a signal integrator. (McLean et al., 2005) 

FAK carries out protein-protein interaction adaptor functions at the sites of cell 

attachment to the ECM, which contributes to focal-adhesion and transmits adhesion- 

dependent and growth factor-dependent signals into the cell interior (McLean et al., 

2005). FAK integrates signals from extracellular cues, including growth-factor receptors 

and integrins, and from the upstream SRC-family kinases, to control and coordinate 

adhesion dynarnicslcell migration with survival signaling (McLean et al., 2005). 



Figure 12: Focal-adhesion kinase influences cell migration through additional 
molecular signaling pathways. (McLean et al., 2005) 

FAK mediated signaling events induce the expression of genes encoding MMPs 

(McLean et al., 2003). As stated previously (section 1.7.3), once the MMPs are secreted 

by the cell, they have the ability to mediate the breakdown of surrounding ECM 

substrates and promote cell invasion (McLean et al., 2003). 

1.7.6. EGFR and Angiogenesis 

EGFR activation has been linked with an increase in angiogenesis and metastasis. 

It has been proposed that EGFR-mediated signaling upregulates the expression of VEGF 

and interleukin-8 (IL-8) by inducing downstream signaling pathways, which promote the 

coactivation of transcription factors for IL-8 and VEGF expression, including nuclear 

factor kappaI3 (NF-KB) and activator protein-1 (AP-1) (Bancroft et al., 2001). VEGF and 

IL-8 are proangiogenic factors that are upregulated and coexpressed in HNSCC tumors, 

and are associated with aggressive tumor growth and decreased survival rate (Eisma et 

al., 1999; Bancroft et al., 2001). AP-1 is thought to activate the transcription of both 



VEGF and IL-8, whereas, NF-KB activates IL-8 transcription as well as being important 

for the expression of growth-regulated oncogene-1 (GRO-I), which is a neutrophil 

chemoattractant whose increased expression has also been associated with HNSCC tumor 

angiogenesis and metastasis (Bancroft et al., 2001; Shintani et al., 2004) 

1.8. Aims of the Current Studs 

1. To determine how vimentin expression differs in primary and metastatic HNSCC. 

2. To determine if vimentin expression is modulated by the invasion-inducing 
transforming growth factor P (TGF-P) and/or epidermal growth factor (EGF). 

3. To determine if vimentin expression contributes to the invasive phenotype of 
metastatic HNSCC cells. 

4. To determine what mechanisms regulate vimentin gene transcription in metastatic 
HNSCC. 



2. Paper Introduction 

In cancer progression, epithelial to mesenchymal transition (EMT) is associated 

with tumor invasiveness, and intravasation and extravasations of metastatic cells 

(reviewed in Thiery, 2002). For example, many invasive and/or metastatic tumors are 

characterized by partial or complete EMT, in which the epithelial phenotype of tight 

intercellular junctions and polarity across the epithelial layer is replaced by a more 

mesenchymal phenotype with reduced cell-cell adhesions, altered shape, expression of 

mesenchymal cellular markers, and enhanced cell motility (Ruiz and Gunthert, 1996; 

Boyer et al., 2000; Wu et al., 2004). EMT is now being recognized as a hallmark of 

tumor progression, characterizing invasive and metastatic carcinomas (Birchmeier et al., 

1996). 

It has been suggested that the intermediate filament protein, vimentin, may be a 

potential diagnostic marker for the initial progression of cells from a localized epithelial 

lesion to become migratory, metastatic tumor cells (Gilles et al., 1996). There are 

approximately fifty different types of intermediate filament protein that are categorized 

into five subtypes, with vimentin belonging to type 111. Vimentin is normally expressed 

in the cells of mesenchymal origin; therefore, it serves as an appropriate marker for the 

transition of carcinoma cells from an epithelial to mesenchymal phenotype. 



Vimentin displays a complex pattern of gene expression. Eukaryotic gene 

regulation studies suggest that multiple binding motifs are located within the human 

vimentin promoter, some of which bind factors that enhance gene expression and others 

that repress expression. These include: a TATA-box and several positive regulatory 

elements such as eight GC-boxes (Rittling and Baserga, 1987); a PEA3 site (Chen et al., 

1996); an NF-KB site (Lilienbaum and Paulin, 1993); a A19 site (Salvetti et al., 1993); a 

PS element (Wieczorek et al., 2000); two tandem AP-1 binding sites (Rittling et al., 

1989); a p-catenin site (Gilles et al., 2003); an antisilencer (ASE) element (Izmailova and 

Zehner, 1999); and a proximal silencer (PS) element (Salvetti et al., 1993). 

It has been shown that binding of the GC-box (at position -64 to -55) is critical 

for the regulation of human vimentin gene expression (Izarnailova et al., 1999). The c- 

Jun protein synergizes with the activator protein spl to enhance vimentin gene expression 

by binding to the GC-box1 (Wu et al., 2003). In addition to direct interaction with spl, 

cJun also binds to tandem AP-1 sites located upstream in the vimentin promoter in order 

to activate vimentin gene expression (Wu et al., 2003). Interestingly, ZBP-89, a known 

Kruppel-like zinc finger protein, is capable of interacting with spl and inhibiting the 

activation of the vimentin promoter (Zhang et al., 2003). Furthermore, the PS silencer 

element located between positions -319 and -261 binds ZBP-89, which represses gene 

transcription (Wieczorek et al., 2000). An antisilencer element, ASE, located further 

upstream (position -757) binds Stat3 and can overcome ZBP-89-dependent repression 

(Wu Y., 2004). Interestingly, recent findings have shown that Stat3 is constitutively 

activated in many metastatic tumors from a range of cell lineages (Bromberg et al., 1999; 



Bromberg et al., 2001; Garcia et al., 2001; Zajchowski et al., 2001; Levy and Darnell, 

2002). 

EMT can be induced by a variety of growth factors, including EGF and TGF-P 

(Miettinen et al., 1994; Bhowmick et al., 2001 ; Piek et al., 1999; Lu et al., 2003), and a 

synergistic effect on EMT has been observed following treatment with a combination of 

EGF and TGF-P (Grande et al., 2002). Interestingly, at the transcriptional level, EGF 

and TGF-P activate different binding sites on the vimetin promoter, EGF targeting the 

transcriptional binding protein, spl  binding to GC-box and TGF-P targeting the tandem 

AP-1 sites. In addition, EGF and TGF-P synergistically activate the transcriptional 

binding protein, Stat3, which binds to the ASE site on the vimentin promoter. 

Squamous cell carcinoma of the head and neck region (HNSCC) is the sixth most 

common malignancy worldwide. HNSCC lesions are locally aggressive and frequently 

undergo EMT, with metastasis to local and regional lymph nodes, which dramatically 

decreases the likelihood of a good clinical outcome. Thus, prevention, early detection, 

and the ability to prevent invasion and regional metastasis of the primary lesion are major 

goals to combat this disease. In order to develop a model system in which to investigate 

genetic, biochemical, and biological changes that occur during metastatic progression of 

head and neck squamous cell carcinoma, we established HN4 cells from a primary tongue 

tumor and HN12 cells from a synchronous lymph node metastasis and characterized their 

behavior (Yeudall et al., 2005). Metastasis-derived HN12 cells are invasive in vitro and 

tumorigenic in vivo, whereas HN4 cells are not. In addition, invasion of HN12 cells is 

enhanced by epidermal growth factor (EGF; Yeudall et al., 2005) and by transforming 



growth factor P (TGF-P; Miyazaki et al., in press). Comparing global gene expression 

profiles of HN4 and HN12 cells revealed that vimentin gene expression was found to be 

upregulated in metastasis-derived HN12 cells (Miyazaki et al., 2005). 

Determining the mechanisms of vimentin gene regulation will contribute to our 

.understanding of processes involved in EMT and might, potentially, provide insight into 

factors controlling tumor cell invasiveness. In the present study, we have investigated 

regulation of vimentin expression by EGF and TGF-P in metastatic HN12 cells, and the 

contribution of vimentin overexpression to the cellular phenotype. 



3. 'Materials and Methods 

3.1 Cell, Cultures 

HN4 cells were derived from a primary squarnous cell carcinoma of the head and 

neck region, while HN12 was derived from a nodal metastasis in the same patient from 

whom the HN4 cells originated. HNSCC cell lines were cultured in DMEM (Invitrogen 

Corporation, NY) supplemented with 10% fetal bovine serum (FBS), and penicillin - 

streptomycin (IOuglml) (Mediatech, Cellgro) in the presence of puromycin (lpglml) at 

37°C in 90% air/lO% C02. 

3.2 Plasrnids 

Targeting sequences for vimentin-shRNA plasmids were designed using web- 

based software. 

( h t t p : / l w w w . a m b i o n . c o r n / t e c h l i b / m i s c / s i ~ )  (Ambion, Austin, TX) and the 

sequences for senselantisense oligonucleotides are as follows: vimentin-shRNA sense, 5'- 

GATCCGTAAGCACTAGCCACGACACTTTTCAAGAGAGTGTCGTGGCTAGTGC 

TTATTCTTTTTTTCTAGAG-3'; antisense, 5'- 

AATTCTCTAGAAAAAAAGAATAAGCACTAGCCACGACACTCTCTTGAAAAGT 

GTCGTGGCTAGTGCTTAG-3'. Oligonucleotides for non-targeting controls were 

sense, 5'- 



GATCCGGCATGTACTAGCCTAAGCGTTTTCAAGAGACGCTTAGGCTAGTACA 

TGCTTCTTTTTTTCTAGAG-3'; antisense, 5'- 

AATTCTCTAGAAAAAAAGAAGCATGTACTAGCCTAAGCGTCTCTTGAAAACG 

CTTAGGCTAGTACATGCG-3', respectively. Complimentary oligonucleotides were 

diluted ta..l Ow, mixed togethPs, boiled for 5 min in a water bath, and leftaxemight at 

ambient temperature. Annealed oligonucleotides were ligated into the pSIREN-Retro-Q 

retroviral vector (BD Biosciences Clontech, Palo Alto, CA) digested by BamHI and 

EcoRI. 

For chloramphenicol acetyltransferase (CAT) assays, 5'-deleted sequences 

representing nucleotides -757/+72, -749/+72, -719/+72, or -216/+72 or point-mutated 

sequences (-747/+72mAPl) of the human vimentin promoter were cloned upstream of 

the CAT gene as described (Izmailova and Zehner, 1999; Izmailova et al., 2000; 

Wieczorek et al., 2000; Wu et al., 2004). Promoter sequences are indicated in Figure 17 

A and B. 

3.3 Generation of Cell Lines that Stably Express shRNA Plasmids 

HN12 cells containing vimentin shRNA or non-targeted control plasmids were 

prepared as follows. HN12 cells were plated in 10cm tissue culture dishes at 60% 

confluency, transfected with 3pg of plasmid DNA using TranslT Keratinocyte Reagent 

(Mirus Bio Corporation, Madison, WI). 48h later, cells were selected in the presence of 



lpglrnl puromycin. Individual puromycin resistant colonies were isolated and 

propagated. 

3.4 Cell Transfection and CAT Assay 

HN12 cells -were transfected using Amaxa Nucleofector Kit (Amaxa hc., 

Gaithersburg, MD) according to the manufacturer's recommended protocol. Cells were 

plated (5 x lo5) in one well of a six-well plate and transfected with 1.5pg of plasmid 

DNA and 0.5pg GFP in order to serve as an internal control for transfection efficiency. 

The amount of each plasmid was optimized by transfecting different amounts of plasmid 

DNA. After transfection (48h), cell lysates were prepared and CAT Elisa assays were 

performed according to the provided protocol by Roche Diagnostic Corporation 

(Indianapolis, IN). Alternately, after 24h transfection, cells were serum starved or treated 

with the appropriate growth factor for 24h. Western blot analysis was performed using 

GFP B-2 specific antibody (Santa Cruz Biotechnology, Santa Cruz, California). 

3.5 Western Blot Analvsis 

Cell extracts were prepared from HNSCC, parental vimentin shRNA, and control 

transfected HN12 cell lines after 48h serum starvation or 24h serum starvation followed 

by treatment with growth factors, EGF, TGF-P, or TGF-P and EGF for 24h. Cells were 

washed and resuspended in 5 0 0 ~ 1  of ice-cold Lysis buffer (25 rnM HEPES, pH 7.5,0.3M 

NaCl, 1.5mM MgC12, 0.2mM EDTA, 0.5mM DTT, 1% Triton X-100, 0.1% SDS, and 

1rnM PMSF, and 0.4M NaCl). Cleared lysates were combined with SDS sample buffer, 



denatured for 5 min at 100 "C, and resolved by 10% SDS-PAGE. Fractionated proteins 

were electroblotted to PVDF membranes (Irnmobilon-P, Millipore Corporation, Bedford, 

MA) overnight. The membranes were then blocked with 4% non fat dried milk in 0.03% 

tween-TBS (T-TBS) for l h  at room temperature, washed with 0.03% T-TBS three times, 

and incubated with. anti-vimentin monoclonal antibody 1 : 1000 diluted in 4% non fat dried 

milk for l h  at room temperature. Membranes were then washed with 0.03% T-TBS three 

times, incubated with horseradish peroxidase-conjugated (HRP) goat anti-mouse 

monoclonal antibody 1: 10000 diluted in blocking buffer for 1 h at room temperature, and 

washed four times in 0.03% T-TBS at room temperature. The specific antigen-antibody 

interactions were detected using enhanced chemiluminescence (ECL Plus, Amersham 

Biosciences, Piscataway, NJ). 

3.6 Imrnunofluorescence 

Cell lines (2 x lo5) were plated on coverslips in twelve-well plates and allowed to 

attach for 24h. Cells were then serum starved for 48h, washed, and fixed with cold 

methanol at -20°C for 20 min. Cells were washed with PBS for 5 min, and blocked in 

5% BSA, 0.1% Triton-X 100 in PBS for l h  at room temperature. Cells were incubated 

with monoclonal anti-vimentin antibody (Sigma, St. Louis, MO) 1:250 diluted in 

blocking buffer overnight at 4°C. The cells were then washed three times with PBS and 

incubated with a FITC-conjugated anti-mouse antibody at 1:500 dilution in 5% BSA, 

0.1% Triton-X 100 in PBS for lh  at room temperature. Coverslips were mounted on a 



microscope slide and viewed with a Zeiss Axiovent 200 inverted fluorescence 

microscope. 

3.7 Immunocytochemistry 

Cell lines were plated on coverslips in twelve-well plates at 2 x 10~cells/well. 

After 24h culture, cells were washed twice with PBS and serum starved for 48h or serum 

starved for 24h and treated with EGF, TGF-P, or EGF and TGF-P for 24h. Cells were 

washed, fixed with cold methanol at -20 OC for 20 rnin, washed with PBS for 5 min, and 

blocked in 5% BSA, 0.1% Triton-X 100 in PBS for lh. Cells were incubated with anti- 

vimentin antibody as described above overnight at 4OC. Cells were then washed three 

times with PBS and incubated with HRP-conjugated goat anti-mouse antibody (Cappel, 

ICN Pharmaceuticals Inc., Aurora, OH) 1500 diluted in blocking buffer for l h  at room 

temperature and washed three times in PBS. The specific antigen-antibody interactions 

were detected using a DAB staining kit (Vector Laboratories, Burlingame, CA) according 

to the manufacturer's instruction. Coverslips were mounted on microscope slides and 

viewed under an Olympus CK40 microscope. 

3.8 Migration Assay 

Subconfluent lOcm plates of cell lines were detached using HBSS / 5rnM EDTA / 

25rnM Hepes pH 7.2 solution (Mediatech, Cellgro). The cells were then washed twice in 

DMEM/O.l% BSA and resuspended in DMEM/O.l% BSA at a concentration of 1 x lo6 

cells/rnl. Cells (1x10~) were added to the upper chamber of a 8pm pore size Transwell 



(Corning Incorporated, Beverley, MA) and allowed to migrate for 6h. EGF (lOngIml) 

-, 

(Austral Biological, San Roman, CA) in DMEM/O.l% BSA was added to the lower 

chamber of each well as a chemoattractant. The cells were then fixed in 100% methanol, 

stained with 0.1% crystal violet in O.1M sodium borate pH 9, 2% EtOH overnight at 

ambient temperature, and destained in ddH20. The non-migratory cells on the upper 

surface of the membrane were removed with cotton swabs and mounted on a microscope 

slide. Migrated cells were counted in five randomly selected high power fields per 

membrane using an Olympus CK40 microscope. 

3.9 Invasion Assay 

Subconfluent lOcm plates of the HNSCC and vimentin stably transfected HN12 

cell lines were detached using Cellstripper (Mediatech, Cellgro). The cells were then 

resuspended in DMEM supplemented with 0.1% Bovine Serum Albumin (BSA) and 

plated (2 x 10~ /400~1)  in the upper chamber of Matrigel-coated Transwell inserts (pore 

size 12p.m) (Corning Incorporated, Beverley, MA). In addition, 500~1 of DMEM 

supplemented with 0.1% BSA with lOng/ml EGF was added to the lower chamber of 

each well. The cells were allowed to invade for 16h and then fixed with 0.5ml of 5% 

glutaraldehyde in l x  PBS for 10 min at ambient temperature and washed three times in 

ddH20. The cells were stained with 0.1 % crystal violet in O.1M sodium borate pH 9, 2% 

EtOH for 20 min at room temperature and then washed three times with ddH20. The 

non-invading cells on the upper surface of the membrane were removed with cotton 

swabs and membranes were mounted on microscope slides. Invading cells were counted 



in five randomly selected high power fields per membrane using an Olympus CK40 

microscope. 

3.10 Proliferation Assay 

Cell lines were trypsinized using 0.25% Trypsin-EDTA (Invitrogcn Corporation, 

NY). The cells were then resuspended in complete growth medium containing lpglml 

puromycin, counted, and plated 2 x 10' cells/well in twenty four-well plates. After 24h 

of culture, triplicate wells were counted daily for eight consecutive days using a 

hemacytometer. 

3.11 qRT-PCR 

To design the oligonucleotide primers for quantitative RT-PCR, we utilized the 

Primerbank database 

(ht tp: / /pga.mgh.harvard.edu/primerbank/)  (Wang and Seed, 2003). We 

initially screened several set of primers by running PCR experiments to confirm that 

these produced PCR products of the predicted size. The primers used were as follows: 

Vimentin-qPCR sense, 5'-CTCCTCCCCCTGTCACATAC-3'; Vimentin-qPCR 

antisense, 5'-TGATTGGCATCAGGACCGTTG-3'. Total RNA was extracted from 

lOcm plates using 8ml of T r i a l  reagent after washing with PBS twice, and 3pg of total 

RNA was converted to cDNA using Superscript I11 (Invitrogen Corporation) according to 

the manufacturer's instructions. Real-time quantitative PCR was performed using a 

Lightcycler (Roche Diagnostics, Indianapolis, IN) with fluorescence signal detection 



(SYBR green) after each cycle of amplification as previously described (Deb et al., 

2002). Product-specific amplification was confirmed by a melting curve analysis and 

agarose gel electrophoresis analysis. Quantification was focused on the log-linear phase 

of amplification above the baseline using the Lightcycler software. The calculated 

cDNA copy number in each sample was derived from an extrapolated crossing point of a 

mathematically derived line extending from the exponential phase of amplification in a 

plot of fluorescence intensity (SYBR green) versus cycle number. For each reaction, 

diluted amounts of known templates provided quantitative standard curve reactions from 

which cDNA copy number could be determined. GAPDH was used as a housekeeping 

gene to normalize the initial content of total cDNA in the samples. 



4. Results 

4.1 Upregulation of Vimentin in HN12 cells. 

The derivation of the metastatic HN12 squamous carcinoma cell line and the non- 

metastatic HN4 cell line has heerl described previously. When comparing the gene L 

expression pattern of these two cell lines using cDNA microarrays (Miyazaki et al., 

2005), we discovered overexpression of vimentin in HN12 cells. In order to confirm this 

finding, we prepared total cellular RNA from serum-deprived HN4 and HN12 cells, 

reverse-transcribed this and performed quantitative real-time PCR (qRT-PCR) on the 

cDNA template using vimentin-specific primers. As shown in Fig. 13A (upper panel), 

vimentin RNA is around 4-fold more abundant in HN12 cells compared to HN4. Further, 

we confirmed vimentin overexpression in HN12 cells by western blot analysis of total 

cellular protein lysates. Whereas vimentin was readily detectable in HN12 cell lysates, 

no signal was obtained with HN4 lysates (Fig. 13A, lower panel). In addition, 

immunocytochemical staining (Fig. 13B) showed strong vimentin ubiquitous staining in 

HN 12 cells, whereas this was absent in HN4 cells. Irnmunofluorescence microscopy (Fig 

13C) revealed a dense network of vimentin filaments in the HN12 cells. These data 

confirm that expression of vimentin is upregulated in cells at a later stage of tumor 

progression and confirm the microarray findings. 



vimentin 

Figure 13A: Total RNA was extracted from subconfluent cultures, reverse-transcribed to 

generate cDNA and subjected to real-time quantitative PCR as described in 'Materials 

and Methods'. The relative expression ratio is defined as the expression levels of 

vimentin to that of an internal standard, GAPDH. Assays were carried out in triplicate 

and means+lSD are indicated. Parallel cultures, similarly treated, were used for western 

blot analysis of vimentin expression. After 48h of serum deprivation, total cell protein 

extracts were prepared as described in 'Materials and Methods' and analyzed for 

vimentin expression (top panel). Levels of p-actin were determined as a loading control 

(lower panel). 
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Figure 13B: Analysis of vimentin expression in HN4 and HN12 cells using 

immunocytochernistry. Cells were cultured on glass coverslips for 24h, serum deprived 

for 48h, and fixed as described in 'Materials and Methods'. Cells were incubated with 

anti-vimentin antibody (or mouse IgG as control) overnight and detected with HRP- 

conjugated goat anti-mouse antibody and DAB. Images were viewed under a light 

microscope. 
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Figure 13C: Analysis of vimentin expression in HN4 and HN12 cells using 

imrnunofluorescence. Cells were cultured on glass coverslips for 24h, serum deprived for 

48h, and fixed as described in 'Materials and Methods'. Cells were incubated with anti- 

vimentin antibody (or mouse IgG as control) overnight then incubated with a FITC- 

conjugated anti-mouse antibody for lh  and counterstained with DAPI. Images were 

viewed using a fluorescence microscope. 



4.2 EGF and TGF-fl Synergize to Increase Vimentin Expression. 

Epidermal growth factor (EGF) and transforming growth factor P (TGF-P) are 

thought to contribute to tumor metastasis through a number of mechanisms, including 

enhanced cell migration and epithelial to mesenchymal transition (EMT), and have been 

demonstrated to enhance migration and invasion of HN12 cells (Yeudall et al., 2005; 

Miyazaki et al., in press). To determine whether either of these growth factors resulted in 

upregulation of vimentin expression, we treated HN12 cells with EGF or TGF-P, or a 

combination of both, then performed qRT-PCR using cDNA prepared from HN12 RNA 

as a template. As shown in Fig. 14A (upper panel), vimentin RNA was increased by 

around three-fold in TGF-P treated cells over basal expression levels, around five-fold 

with the addition of EGF, and a synergistic seven-fold increase when cells were treated 

with a combination of TGF-P and EGF. Interestingly in HN4 cells, we observed a 

similar trend of vimentin upregulation but, even with the addition of both EGF and TGF- 

p, expression was considerably lower than basal levels in HN12 cells. 

As we had found that EGF and TGF-P elevated levels of vimentin RNA in HN12 

cells, we sought to determine whether this was reflected by an increased abundance of 

vimentin protein. Therefore, we treated cells with growth factors as before, prepared 

total cellular protein extracts, and performed western blot analysis. Vimentin protein 

expression was undetectable in HN4 cells by our assay (Fig. 14A, lower panel), even 

with addition of growth factors. However, increased levels of vimentin protein were 

detected in TGF-P and EGF-treated HN12 cells, concomitant with the previously 



observed rise in vimentin RNA. Further, we analyzed vimentin expression in growth 

factor-treated cells by irnrnunocytochernical staining. HN12 cells displayed an 

ubiquitous distribution pattern of vimentin throughout the cell, which was further 

enhanced, with the addition of EGF and TGF-P (Fig 14B). Taken together, EGF and 

TGF-P Ireatment result in increased vimentin RNA and protein levels in HN12 cells, 

suggesting that both growth factors may play a role in EMT in this system. Further, EGF 

and TGF-P stimulate expression of vimentin RNA in primary tumor-derived HN4 cells 

with a trend similar to that seen in HN12 cells; however RNA levels are extremely low 

and vimentin protein is undetectable. 
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Figure 14A: Cells were cultured in the presence or absence of growth factors as indicated. 

Total RNA was extracted from subconfluent cultures, reverse-transcribed to generate 

cDNA, and subjected to quantitative real-time PCR as described in 'Materials and 

Methods'. The relative expression ratio is defined as level of vimentin expression to that 

of an internal standard, GAPDH. Assays were carried out in triplicate and means+lSD 

are indicated. Parallel cultures, similarly treated, were used for western blot analysis of 

vimentin expression as described in 'Materials and Methods' and as described in Figure 1. 
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Figure 14B: Immunocytochernical analysis of vimentin expression in HN4 and HN12 

cells with the addition of TGF-P and EGF. Cells were cultured on glass coverslips for 

24h, then serum deprived for 48h or serum deprived for 24h and treated with EGF, TGF- 

p, or EGF andfor TGF-P for 24h and then fixed as described in 'Materials and Methods'. 

Cells were incubated with anti-vimentin antibody (or mouse IgG as control) overnight 

and detected with HRP-conjugated goat anti-mouse antibody and DAB. Images were 

viewed under a light microscope. 



4.3 Tar~eted Suppression of Vimentin Expression. 

In order to study the contribution of vimentin expression to the biological 

properties of HN12 cells, we used RNA interference (RNAi) technology to reduce 

vimentin levels. Thus, HN12 cells were stably transfected with a plasmid that directs 

synthesis of a vimentin shRNA, or a non-targeting control (NTC) plasmid, and colonies 

selected for resistance to puromycin and screened for vimentin expression by qRT PCR, 

western blot analysis, and immunofluorescence. As shown in Fig 15A, qRT-PCR 

identified a ten-fold minimum decrease in vimentin expression in HNl2-shVim clones 

compared to the HN12-NTC control cells. In addition, this reduction of vimentin 

expression was confirmed by imrnunofluorescence microscopy, which showed a 

cytosolic distribution pattern of staining in the HN12-NTC clones and the absence of 

staining in the HN 12-shVim clones (Fig 15B). Furthermore, vimentin expression was 

undetectable by western blot analysis in either of the two HNl2-shVim clones compared 

to the parental HN12 cell line and HNlZNTC clones (Fig. 15A). Taken together, these 

data indicate that vimentin expression is substantially reduced in HN12-shVim clones 

compared to non-targeting controls and, thus, may be suitable for investigating the 

contribution of vimentin expression to the biological phenotype of metastatic HN12 cells. 

Immunocytochemical staining demonstrated a significant increase of vimentin 

expression in HN12-NTC compared to the HN12-shVim clones (Fig 15C). With the 

addition of EGF and TGF-0, the expression pattern of vimentin in HN12-shVim cells 

(Fig. 15C) is similar to the pattern seen in HN4 cells (Fig. 14B). Interestingly, there is a 



slight increase in vimentin expression with the addition of either EGF or TGF-P 

individually and an even greater increase with the addition of both growth factors 

together. However, even with the addition of both growth factors to the HNl2-shVim 

cell line, the expression of vimentin is considerably lower then the basal expression of 

vimentin in HN12 and HN12-NTC cells. Further, we confirmed these results using 

western blot analysis of total cellular protein lysates (Fig 15C). 
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Figure 15A: Cells lines that stably express vimentin shRNA or non-targeting control 

plasrnids were generated as described in 'Materials and Methods'. Total RNA was 

prepared from subconfluent cultures, reversed transcribed, and the resultant cDNA 

subjected to quantitative real-time PCR as described above. The relative expression ratio 

is defined as the expression level of vimentin to that of an internal standard, GAPDH. 

Assays were carried out in triplicate and means+lSD are indicated. Western blot analysis 

vimentin 

actin 

of vimentin expression (top panel) and actin as a control was carried out as described 

above (lower panel). 
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Figure 15B: Cells were plated on glass coverslips for 24h, serum deprived for 48h and 

then fixed as described in 'Materials and Methods'. Cells were incubated with anti- 

vimentin antibody (or mouse IgG as control) overnight followed by FITC-conjugated 

goat anti-mouse antibody. Cells were counterstained with DAPI and detected using a 

fluorescence microscope. 
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Figure 15C: Cells containing vimentin shRNA or non-targeting control plasmids were 

cultured on coverslips for 24h, serum starved for 48h, and fixed as described in 

blot 

'Materials and Methods'. Cells were incubated with anti-vimentin antibody (or mouse 

IgG as control) overnight then incubated with a HRP-conjugated anti-mouse antibody for 

Ih. Images were viewed using a light microscope. Western blot analysis of vimentin 

expression (top panel) and actin as a control was carried out on parallel cultures as 

described above (lower panels). 



4.4 Vimentin Overexpression is Important for Biological Properties of HN12 Cells. 

Squamous carcinoma cells tend to grow more rapidly andlor fail to die at a normal 

rate. In addition, these cells can also invade surrounding tissue and metastasize. Many 

cells undergo EMT as a feature of tumor progression. Thus, in order to determine 

whether the mesenchymal cell marker, vimentin, contributes to the phenotype of HN12 

cells, we first compared the proliferation rate in culture of HNl2-shVim and HN12-NTC 

cells. Cells were seeded in quadruplicate in multi-well plates, then trypsinized and 

counted over an eight day period. As is apparent from Fig. 16A, HNl2-shVim clones 

exhibit a marked decrease in proliferation compared to the HN12-NTC cells, suggesting 

that vimentin may contribute to cell growth. Next, we compared the contribution of 

vimentin overexpression on the motility and invasiveness of HN12 cells using in vitro 

assays. As shown in Fig. 16B, downregulation of vimentin expression in HN12-shVim 

cell lines decreases migration in Transwell assays by four-fold in comparison to the 

HNl2-NTC control clones. Furthermore, in vitro invasion through Matrigel is markedly 

decreased in cells with lower expression of vimentin (Fig. 16C). Taken together, these 

data indicate a crucial role for vimentin in the proliferation and invasion of metastatic 

HN 12 squamous carcinoma cells. 
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Figure 16A: Cells (2 x lo3 per well) were plated in triplicate in 24-well plates and 

incubated under standard culture conditions as described in 'Materials and Methods'. 

Cells were trypsinized and counted daily for eight consecutive days. Values shown are 

meanskl SD. 
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Figure 16B: Cells from subconfluent cultures were detached in the absence of trypsin, 

washed, and plated in Transwell chambers as described in 'Materials and Methods' with 

EGF in the lower chamber to act as a chemoattractant. 6h later, migrated cells were 

stained and counted in 10 random high power fields. Data shown represent means+lSD. 



Invasion 

Figure 16C: Cells from subconfluent cultures were detached in the absence of trypsin, 

washed, and plated in Matrigel-coated Transwell chambers as described in 'Materials and 

Methods'. 16h later, invading cells were stained and counted in 10 random high power 

fields. Data shown represents means21 SD. 



4.5 Regulation of Vimentin Promoter Activity in HN12 Cells by EGF and TGF-B. 

How the vimentin gene is regulated is important for understanding the 

relationship between gene expression and tumor progression which, based on our data 

presented above, could ultimately contribute to controlling the invasiveness in some 

tumors. Therefof?, we used vimentin promoter fragments, which begin at +72 and extend 

to -261, -719, -749, and -757 to investigate which transcription factor binding sites 

mediate upregulation of vimentin expression in HN12 cells. These promoter fragments 

were cloned 5' to a CAT reporter gene and are shown in schematic form in Fig. 17A. 

The vimentin promoter sequence is shown in Fig. 17B. Plasmids encoding vimentin 

promoter-CAT sequences were transiently transfected into HN12 cells and CAT activity 

measured by ELISA assay following serum withdrawal (Fig. 17C). The 261CAT 

sequence containing the GC-boxl, PEA3 and NF-KB sites showed substantial activity 

under conditions of growth factor withdrawal. This activity was much reduced in cells 

transfected with the 719CAT plasmid, which contains two sites (PS and H4TF-1) that 

bind the ZBP-89 repressor protein. Moderate restoration of activity was achieved with 

the addition of two AP-1 binding sites in the promoter (749CAT), while further addition 

of the ASE site (757CAT) further increased promoter activity (Fig. 17C). Taken together, 

the data suggest that basal activity of the vimentin promoter in HN12 cells is mediated 

through ASE and AP-1 sites, as well as one or more of the GC-boxl, PEA3 and NF-KB 

sites. Furthermore, the data indicate that ZBP-89 repressor activity is high in these cells. 



Next, we examined vimentin promoter activity in the presence of EGF and TGF-P 

to determine the binding elements responsible for the increased vimentin expression 

observed by qRT-PCR, western blot analysis, immunocytochemistry, and 

immunofluorescence. Using the 757CAT sequence, we found that treatment of cells with 

either EGF or TGF-P stimulated promoter activity above that observed under conditions 

of serum withdrawal, while the presence of both growth factors further elevated CAT 

activity (Fig. 17D). In contrast, CAT activity in cells transfected with the 261CAT 

sequences (containing the GC-box, PEA3 and NF-KB sites) was maximal in the presence 

of EGF, which stimulated promoter activity by around 3-fold over basal conditions (Fig. 

17E). Treatment of these cells with TGF-P did not produce any significant increase in 

promoter activity. Surprisingly, addition of both growth factors simultaneously resulted 

in lower activity than with EGF alone (Fig. 17E), suggesting that TGF-P may antagonize 

the action of EGF on these promoter elements. However, in cells transfected with the 

749CAT plasmid, TGF-P produced an increase in promoter activity of around 2.5-fold 

over basal levels, whereas EGF had little effect (Fig. 17F). Similar to the results with the 

261CAT sequences, addition of both growth factors failed to produce a synergistic effect, 

implying that EGF antagonizes the TGF-P-mediated stimulation of the AP-1 sites. Taken 

together, the data suggest that EGF-dependent pathways target binding elements in the 

proximal vimentin promoter, while TGF-P is likely to act in an AP-1-dependent manner. 

Furthermore, both growth factors appear to synergize by stimulating promoter activation 

through the ASE site, suggesting involvement of Stat-dependent pathways in regulation 

of vimentin expression in HN12 cells. 
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Figure 17A: Regulatory elements [transcription factor binding sites] in the vimentin 

promoter. The relative position of regulatory elements previously reported to be present 

in the vimentin promoter is shown (top panel). 5'-deleted sequences or point-mutated 

sequences of the human vimentin promoter were cloned upstream of the CAT reporter 

gene as described in 'Materials and Methods'. * indicates site of point mutation. 



-900 catggcccagctgtaagttggtagcactgagaactagcagcgcgcgcggagcccgctgag 

-840 a c t t g a a t c a a t c t g g t c t a a c g g o  
ASE 

-720 tttcctctgccaccgccgtctcgcaactcccgccgtccgaagctggactgagcccgttag 

-600 gaggcgcgggccggagcagcccccctttccaagcgggcggcgcgcgaggctgcggcgagg 

-540 cctgagccctgcgttcctgcgctgtgcgcgcccccaccccgcgttccaatctcaggcgct 

-480 ctttgtttctttctccgcgacttcagatctgagggattccttactctttcctcttcccgc 

-420 tcctttgcccgcgggtctccccgcctgaccgcagccccgagaccgccgcgcacctcctcc 

-240 cqqaaa~ccccc~gtcccagcccagcgctgaagtaacgggaccatgcccagtcccag 
NF-KB 

-180 g c c c c g ~ ~ u c c c c a c c c g c c c a c c c t c c c c g c t t c t  
PEA-3 GCboxl 

-120 cgctaggtccctattggctggcgcgctccgcggctgggatggcagtgggaggggaccctc 

-60 tttcctaacggggttataaaaacagcgccctcggcggggtccagtcctctgccactctc -1 

0 ctccgaggtccccgcgccagagacgcagccgcgctcccaccacccacacccaccgcgccC 
tcgttcgcctcttctccgggagccagtccgcgccaccgccgccgcccaggccatcgccAc 
cctccgcagccATGTCCACCAGGTCCGTGTCCTCGTCCTCCTACCGCAGGATGTTCGGCG 
GCCCGGGCACCGCGAGCCGGCCGA 

Figure 17B: Nucleotide sequence of the vimentin promoter. Specific regulatory 

elements are indicated (underline). Coding sequence is indicated (capitals). 
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Figure 17C: HN12 cells were transfected with vimentin promoter fragments, which 

begin at +72 and extend to -261, -719, -749, and -757 as described in 'Materials and 

Methods'. 24h after transfection, cells were serum starved for 24h and then CAT activity 

was determined by ELISA assay. The relative expression ratio is defined as the 

expression level of vimentin to that of an internal standard, GFP. Values shown are 

meanskl SD. 



Figure 17D: Effects of EGF and TGF-P on vimentin promoter activity. HN12 cells were 

transfected with 757 CAT plasrnid. Serum was withdrawn for 24h, then cells were 

treated with the indicated growth factors for 24h after which CAT activity was 

determined by ELISA assay. The relative expression ratio is defined as the expression 

level of vimentin to that of an internal standard, GFP. Values shown are means+lSD. 
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Figure 17E: Effects of EGF and TGF-P on vimentin promoter activity. HN12 cells were 

transfected with 261 CAT plasmid. Serum was withdrawn for 24h, then cells were 

treated with the indicated growth factors for 24h after which CAT activity was 

determined by ELISA assay. The relative expression ratio is defined as the expression 

level of vimentin to that of an internal standard, GFP. Values shown are means+lSD. 
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Figure 17F: Effects of EGF and TGF-P on vimentin promoter activity. HN12 cells were 

transfected with 749 CAT plasmid. Serum was withdrawn for 24h, then cells were 

treated with the indicated growth factors for 24h after which CAT activity was 

determined by ELISA assay. The relative expression ratio is defined as the expression 

level of vimentin to that of an internal standard, GFP. Values shown are means+lSD. 



5. Discussion 

5.1 Aims of Current Study 

The aims of this study were to determine how vimentin expression differs in 

primary and metastatic HNSCC cells; to determine if vimentin expression is modulated 

by the invasion-inducing growth factors TGF-P and/or EGF; to determine if vimentin 

expression contributes to the invasive phenotype of metastatic HNSCC cells; and to 

determine what mechanisms regulate vimentin gene transcription in metastatic HNSCC. 

5.2 HNSCC Model System 

In order to develop a model system to study the nodal metastasis or oral squamous 

cell carcinoma, the HN4 cell line was generated from a primary carcinoma of the tongue 

and the HN12 cell line from a co-existing lymph node metastasis. Both of the cell lines 

were found to have undergone identical inactivation of CDKN2A and P.53 genes, which 

strongly suggests that the metastatic cells were the results of malignant progression of 

cells from the primary lesion (Yeudall et al., 1994; Yeudall et al., 1997) and that they 

were likely to have a similar genetic background. Previous studies have demonstrated 

that P53 (Burns et al., 1994; Koch et al., 1994) and CDKN2A (Yeudall et al., 1994) 

mutation found in the primary tumor are maintained during metastatic progression. HN4 

cells were unable to form tumors in immunodeficient mice and HN12 cells were highly 

tumorigenic in vivo, indicating that the HN12 cells are at a more advanced stage of tumor 

progression (Yeudall et al., 2005). 



5.3 Microarras Data 

A high throughput analytical method, high density microarray technology, was 

used to identify the genetic alterations that occur during metastatic progression or 

primary oral squamous cell carcinoma (Miyazaki et al., 2005). The gene set documented 

in this report, including ilimentin, overlap those identified from in vivo studies. which 

suggest that the model has relevance for the study of HNSCC metastasis (Miyazaki et al., 

2005). The high basal levels of vimentin present in the metastatic cells, consistent with 

their more mesenchymal appearance as well as the expression being elevated by both 

EGF and TGF-P served as the foundation for the present study. 

In addition, simultaneous exposure of both growth factors to HN12 cells resulted 

in a higher level of vimentin expression than that found with either EGF or TGF-P alone 

indicating some level of cooperatively between the EGF- and TGF-P-dependent signaling 

pathways to the upregulation of vimentin expression (Miyazaki et al., in press). Here, we 

investigate regulation of the vimentin promoter in the presence of EGF and TGF-P to 

determine distinct promoter elements acted upon by these signaling pathways. 

5.4 Vimentin as a Molecular Marker 

Different intermediate filament proteins serve as markers for the identification of 

normal, highly differentiated cells (Anguelov, 2000). Furthermore, intermediate filament 

proteins are relied upon to help diagnosis tumor types, for example, vimentin is being 

used as a marker for melanomas and keratin as a marker for adenocarcinomas (Anguelov, 

2000). Molecular markers for malignancy, such as vimentin, are expected to become 



reliable prognostic tools that will aid oncologists in fine-tuning their cancer management 

strategies (Anguelov, 2000). This molecular diagnosis would allow physicians to stage 

the patient's cancer more effectively and specifically tailor a treatment strategy that is 

clinically and cost effective (Anguelov, 2000). 

5.4.1 Upregulation of Vimentin in HN12 cells 

In this study, vimentin RNA was found to be more abundant in HN12 cells 

compared to HN4. Vimentin overexpression in HN12 cells was confirmed by western 

blot analysis, immunocytochemical staining, and immunofluorescence microscopy. 

Immunocytochemical staining showed strong vimentin ubiquitous staining in HN12 cells, 

whereas this was absent in HN4 cells and immunofluorescence microscopy revealed a 

dense network of vimentin filaments in the HN12 cells. These findings confirm that 

expression of vimentin is upregulated in cells at a later stage of tumor progression 

confirming the microarray findings. Concurrent with our results, other metastatic cell 

lines have also been reported an upregulation in expression of the intermediate filament, 

vimentin. 

Using an androgen-independent model of prostate cancer, among the 

differentially expressed genes between the two cells lines, LNCaP and CL1, vimentin 

was overexpressed 20-fold in the CLl  cells (Singh et al., 2003). The androgen-sensitive 

LNCaP prostate cancer cell line is less invasive than hormone-insensitive cell lines 

(Singh et al., 2003). CL1 is an aggressive hormone-insensitive LNCaP subline that was 

derived by continuous culture in hormone-depleted medium (Singh et al., 2003). 



Upregulation of vimentin expression was confirmed by northern and western blots and 

visualized by immunofluorescence microscopy (Singh et al., 2003). In addition, these 

data confirm the findings of previous studies in which the phenotypes of prostate cancer 

cell line have been examined and LNCaP cells showed low levels of vimentin expression 

in contrast to the ?igh expression seen in their more aggressive DU145 and PC3 

counterparts (Nagle et al., 1987; Mitchell et al., 2000). 

5.5 Vimentin Expression and Epithelial to Mesenchymal Transition 

A major problem in cancer management is metastasis, the ability of the primary 

tumor cells to migrate by the way of the blood or lymphatic vessels and to form tumors at 

distant sites. It has been reported that EMT facilitates the dissemination of single 

carcinoma cells from the sites of primary tumors and is involved in the dedifferentiation 

that is typical of metastatic carcinoma (Theiry, 2002). Originally, EMT was described in 

the morphogenic remodelings during embryonic development (Hay, 1995; Boyer et al., 

1999). The acquisition of mesenchymal features by epithelial cells induced migration 

during embryological processes (Savagner et al., 1994; Hay, 1995). 

Now, we have come to appreciate the contribution of this phenomenon to both 

pathological and normal processes where EMT can be diagnosed by the expression of 

vimentin and the loss of epithelial cell-adhesion molecules (Savagner et al., 1994; Hay, 

1995). EMT has been shown to occur in cultured mammary epithelial cells (Stoker et al., 

1987) in a bladder carcinoma cell line, NBT-11 (Boyer et al., 1989) and a prostate 

carcinoma cell line (Singh et al., 2003). In culture, the definition of EMT is limited to 



the escape of single cells from epithelial sheets, increased motility, and a modification of 

the differentiation so that the migrating cells no longer express epithelial characteristics, 

but require a mesenchymal phenotype (Boyer et al., 1989). 

Using the bladder cell line, NBT-11, a study showed the mesenchymal phenotype 

defined by the acquisition of vimentin, while the loss of the epithelial phenotype is 

defined by the decline in keratin expression, in which a single marker defines the 

phenotype (Petersen et al., 2001). It is this definition that has been adopted in the field of 

breast cancer research (Petersen et al., 2001). 

Thus, in a report studying EMT in human micrometastatic and primary breast 

carcinoma cells, findings showed that all micrometastatic cancer cell lines displayed loss 

of epithelial cytokeratins (CK8, CK18, and CK19) and ectopic expression of vimentin 

commonly present in mesenchymal cells (Willipinski-Stapelfeldt et al., 2005). 

Immunohistochernical analysis of breast cancer samples further showed that the loss of 

cytokertain and ectopic vimentin expression were significantly associated with a higher 

tumor grade and higher mitotic index. This study indicated that micrometastatic cancer 

cells exhibit marked changes in the expression of cytoskeletal proteins indicative of EMT 

and is associated with the aggressive behavior of breast cancer cells in vivo (Willipinski- 

Stapelfeldt et al., 2005), and is consistent with our observations in HNSCC cells. This 

increased expression of vimentin it the metastatic cell has been suggested as a critical 

marker to distinguish 'true con~plete EMT7 from cell scattering' or 'partial EMT' 

(Grunert et al., 2003). 



5.6 Vimentin Expression Suppressed in HN12 Cells 

In order to study the contribution of vimentin expression to the biological 

properties of HN12 cells, we used RNA interference (RNAi) technology to reduce 

vimentin levels. Colonies were screened for vimentin expression by qRT PCR, western 

blot analysi:,, and immunofluorescence, which showed a cytosolic distribution pattern of 

staining in the HN12-NTC clones and the absence of staining in the HNl2-shVim clones. 

HNl2-shVim clones show an efficient reduction compared to non-targeting controls and 

thus were suitable for investigating the contribution of vimentin expression to the 

biological phenotype of metastatic HN12 cells. 

5.7 Vimentin Expression and Biological Properties 

The ability of tumor cells to migrate and invade , which is interpreted clinically as 

tumor aggressiveness, has been associated with changes in intermediate filaments 

(Anguelov, 2000). The deregulation of intermediate filament gene expression in tumor 

cells results in an intermediate filament phenotype, which is conducive to a higher 

potential for invasion and migration (Anguelov, 2000). The observation that an altered 

intermediate filament phenotype is associated with the ability of tumor cells to invade 

adjacent tissues and organs and migrate in specific ways throughout the body could lead 

to new strategies for cancer management. 

5.7.1 Vimentin Expression is Important for the Biological Properties of HNSCC 



The presence of regional metastasis in patients with HNSCC is a common adverse 

event associated with poor prognosis and high mortality (Howell and Grandis, 2005). 

Squamous carcinoma cells tend to grow more rapidly andlor fail to die at a normal rate. 

In addition, these cells can also invade surrounding tissue and metastasize. 

In order to determine whether the mesenchymal cell marker, vimentin, contributes 

to the phenotype of HN12 cells, we first compared the proliferation rate in culture of 

HN12-shVim and HN12-NTC cells. HNl2-shVim clones exhibit a marked decrease in 

proliferation compared to the HN12-NTC cells, suggesting that vimentin contributes 

positively to cell growth. In addition, in vitro invasion through Matrigel and migration 

assays displayed markedly decrease in cells with lower expression of vimentin. These 

findings indicate a crucial role for vimentin in the proliferation and invasion of metastatic 

HN12 squamous carcinoma cells. 

In accord with our HNSCC results, a study comparing the phenotype and 

behavior of seven head and neck squamous cell carcinoma cell lines found that the 

presence of the intermediate filament, vimentin coincided with the loss of anchorage 

dependency and a malignant phenotype (Tomson et al., 1996). 

5.7.2 Vimentin Expression and Biological Properties of Other Cell Lineages 

After establishing that vimentin expression was only slightly detectable in LNCaP 

cells and highly expressed in the faster-growing, more aggressive CLI subline, the study 

mentioned previously (Section 5.4.2) assessed the contribution of vimentin to an invasive 

phenotype (Singh et al., 2003). This study found that experimentally reducing the 



expression of vimentin in the CLI cell line effectively abolished the invasive potential of 

CL1 in the in vitro Matrigel invasion assays (Singh et al., 2003). 

In addition, breast and cervical carcinoma models show the expression of 

vimentin and the loss of E-Cadherin, an epithelial cell marker, to be associated with high 

invasiv.- abilities (Gilles et al., 1997) Experiments conducted with a breast cancer cell 

line showed that transient down-regulation of vimentin in MDA-MB-231 cells led to a 

decrease in their migratory ability (Hendrix et al., 1997). The findings of another breast 

cancer study revealed adriamycin-resistant MCF-7 cells expressing vimentin with 

diminished keratin 19 expression to reduce desmosome and tight junction formation as 

determined by reduced immunodetection of their components desmoplakins I and I1 and 

zonula occludens (20)-1 (Sommers et al., 2002). Consistent with our data in HNSCC 

cells, these studies confirm vimentin's central role in the proliferation and 

motility/invasiveness of advanced stage tumor cells. 

5.8 Expression of the Vimentin Promoter in HN12 Cells 

How the vimentin gene is regulated is important for understanding the 

relationship between gene expression and tumor progression, and, based on our data 

presented above, could ultimately contribute to controlling the invasiveness of some 

tumors. For the most part, vimentin expression coincides with cellular growth and is cell 

cycle regulated (Franke et al, 1979; Rittling and Baserga, 1987). We used vimentin 

promoter fragments, which begin at +72 and extend to -261, -719, -749, and -757 

relative to the translational start site to investigate which transcription factor binding sites 



mediate upregulation of vimentin expression in HN12 cells. The current model of 

eukaryotic gene regulation suggests that many positive and negative acting factors 

control the expression of the vimentin promoter (Wieczorek et al., 2000). 

The 261CAT sequence containing the GC-box, PEA3 and NF-KB sites showed 

substantial activity under conditions of growth factor withdrawal. It has been reported 

that at least eight sequences, which match the GC-box consensus site were found within 

the vimentin promoter (Rittling and Baserga, 1987). However, findings show that of 

these multiple GC-boxes, expression of the vimentin promoter is dependent on GC-box1 

located at position -64 which binds Spl (Izmailova et al., 1999). Mutation of the GC- 

box1 to a nonfunctional sequence results in little reporter gene expression despite the 

addition of considerable upstream DNA demonstrating that this element is required for 

regulated gene expression (Izmailova et al., 1999). Here, our findings demonstrate that 

the transcriptional elements within 261CAT are important regulators for the activation of 

vimentin expression with evidence specifically pointing to GC-box and NF-KB sites. 

A recent article reveals that the activation of the transcription factor, NF-KB, 

occurs in many human tumors and studies have shown that NF-KB can promote cell 

proliferation and oncogenesis, possibly by protecting cells from apoptosis (Huber et al., ' 

2004). Little is known about whether NF-KB is involved in tumor progression including 

EMT, which is a central process governing both morphogenesis and carcinoma 

progression in multicellular organisms. However, in a combined in vitro/in vivo model of 

mammary carcinogenesis, NF-KB was found to be essential in both the induction and 

maintenance of EMT and for in vivo metastasis (Huber et al., 2004). 



The activity of the vimentin promoter was much reduced in cells transfected with 

the 719CAT plasmid, which contains two sites (PS and H4TF-1) that bind the ZBP-89 

repressor protein. ZBP-89 is a zinc-finger, Kruppel-like protein, which is thought to be 

ubiquitously expressed (Wu et al., 2004). ZBP-89 is a transcriptional repressor in the 

case of vimentin (Wieczorek et al., 2000), epithelial neutrophil-activating peptide-78 

(Keates et al., 2001), gastrin (Merchant et al., 1996), ornithine decarboxylase (Law et al., 

1998b), and bovine adrenodoxin (Law et al., 2000). However, for other genes such as 

p21 (Hasegawa et al., 1999), a lymphocyte-specific protein tyrosine kinase (lck) (Yamada 

et al., 2001), type 1 collagen (Hasegawa et al., 1997), and stromelysin (Ye et al., 1999), it 

appears to activate gene expression (Wu et al., 2004). Furthermore, it has been suggested 

that ZBP-89 is a negative regulator of cell growth as overexpression in two gastric tumor 

cell lines (GH4 and AGS) inhibited cellular proliferation and led to cell cycle arrest of 

GH4 cells in G1 (Remington et al., 1997). 

Exactly, how ZBP-89 can function both as an activator and as a repressor of gene I 

I 
expression is unknown. It has been proposed that, for some genes, ZBP-89 and Spl can I 

compete for binding to a GC-rich sequence (Law et al., 1998a). However, in the case of I 

the vimetin promoter, a separate PS element (at position -319 to -278) has been found, I 
which does not directly bind Spl (Wieczorek et al., 2000). Thus, in the vimentin gene, 

ZBP-89 and Spl (or Sp3) bind to separate DNA elements and interact with each other 

directly (Zhang et al., 2003). It has been proposed that this interaction accounts for the 

dependence of vimentin gene activity on a functional GC-box1 and its associated factors 

(Wieczorek et al., 2000). Evident by our results using 719CAT is the apparent 



interaction between ZBP-89 and PS and H4TF-1, transcriptional factors within the 

promoter to repress the expression of vimentin. 

Moderate restoration of activity was achieved with the addition of two AP 1 

binding sites in the promoter (749CAT). Previous studies have implicated the activator 

protein (API) transcription factors in tumor progression (Young et al., 1999). The APl 

family of basic, leucine-zipper (bZIP) proteins is composed of heterodimers of Jun (c- 

Jun, JunB, JunD), Fos (cFos, FosB, Fral and Fra2) or ATF (ATF-1, ATF-2)/CREB, or 

homodimers of JunIJun (Angel and Karin 1991; Rahmsdorf, 1996). Given the large 

number of interactive partners, it is evident that the AP1 family can mediate the 

expression of a wide variety of genes that could contribute to tumor progression (Wu et 

al., 2003). The tandem AP1 sites with the vimentin promoter have been shown to be 

important for the serum and TPA inducibility of the vimentin gene (Rittling et al., 1989), 

as well as expression in vimentin-positive breast cancer cell lines (Sommers et al., 1994). 

Here, the impacts of the AP1 sites on the vimentin promoter is evident not only with the 

data demonstrating the increase of vimentin expression with the 749CAT plasmid 

compared to 719CAT, but also the substantial decrease seen when the AP1 sites are 

mutated in the 747mCAT. 

It has been reported that, unlike many other proteins, c-Jun has the ability to 

activate vimentin gene expression both by the classical method of c-Jun binding as either 

a homodimer or heterodimer to its tandem APl sites as well as by an independent, 

synergistic interaction with Spl, thereby enhancing its ability to recruit transcription 

factors (Wu et al., 2003). In addition, it has been reported that cJun synergizes with Spl 



to enhance its subsequent binding to a GC-box element and only the leucine-zipper 

region of c-Jun is required for this (Wu et al., 2003). This dual mechanism of action 

could greatly affect levels of gene expression. 

Addition of the ASE site (757CAT) further increased promoter activity. 

Previously. it has been reported that the vimentin gene promoter contain an ASE site, 

which is unlike the usual enhancer element in that it requires the presence of the PS 

silencer element in cis to activate transcription fully (Stover and Zehner, 1992; Izmailova 

and Zehner, 1999). It has been reported that the upstream ASE antisilencer site binds 

Stat3 whereby its interaction with ZBP-89 can overcome repression and restore gene 

expression (?Vu et al., 2004). Therefore Stat3, a proven oncogene, can interact with a 

suggested growth suppressor, ZBP-89, to restore gene expression (Wu et al., 2004). 

Thus, the interplay between Stat3 and ZBP-89, which could contribute to the activation 

of vimentin gene expression as occurs in EMT (Gilles and Thompson, 1996) and is 

crucial for controlling cellular growth by direct effects on gene expression. 

Stats are a family of transcriptional activators, which play a central role in 

signaling pathways involving cytokines, growth factors, or peptide hormones (Ihle, 1996; 

Darnell, 1997; Horvath, 2000; Levy and Darnell, 2002). Activated receptors are protein- 

kinases of the JAK family, which phosphorylate Stats. Phosphorylated Stats form dimers 

via their SH2 domains and rapidly translocate to the nucleus where they bind regulatory 

DNA elements of target genes involved in cell proliferation, differentiation, apoptosis, 

and development (Wu et al., 2004). 



Stat3 is constitutively active in many tumors such as lymphomas, leukemia, 

multiple myeloma, brain, breast, lung, head and neck, and prostate cancers (Bowman et 

al., 2000), and the constitutively active form of Stat3 can mediate cellular transformation 

(Bromberg et al., 1999). In addition, vimentin has been shown to be highly expressed in 

these tumors (Busserrrtkers et al., 1992; Hsieh et al., 1995; Zajchowski et al., 2001). 

Thus, a correlation between activated Stat3 and vimentin gene expression is indicated, 

which coincides with the results of this present study. 

In conclusion, the data suggest that basal activity of the vimentin promoter in 

HN12 cells is mediated through ASE and API sites, as well as one or more of the GC 

box, PEA3 and NF-lcB sites. Furthermore, the data indicate that ZBP-89 repressor 

activity is high in these cells. 

5.9 EGF and TGF-6 and Vimentin Expression 

Epidermal growth factor (EGF) and transforming growth factor P (TGF-P) are 

thought to contribute to tumor metastasis through a number of mechanisms, including 

enhanced cell migration and EMT, and have been demonstrated to enhance migration and 

invasion of HN12 cells (Yeudall et al., 2005; Miyazaki et al., in press). Vimentin RNA 

was increased in TGF-P treated cells over basal expression levels, as well as with the 

addition of EGF. In addition, a synergistic increase was evident when cells were treated 

with a combination of TGF-P and EGF, suggesting that both growth factors play a role in 

EMT in this system. In addition, western blot analysis demonstrated increased levels of 



vimentin protein were detected in TGF-P and EGF-treated HN12 cells, concomitant with 

the previously observed rise in vimentin RNA and immunocytochemical staining, HN12 

cells displayed an ubiquitous distribution pattern of vimentin throughout the cell, which 

was further enhanced with the addition of EGF and TGF-P. 

5.10 EGF and TGF-B and the Virnentin Promoter 

Next, we examined vimentin promoter activity in the presence of EGF and TGF-P 

to determine the binding elements responsible for the increased vimentin expression 

observed by qRT-PCR, western blot analysis, irnrnunocytochemistry, and 

immunofluorescence. Using the 757CAT sequence, we found that treatment of cells with 

either EGF or TGF-0 stimulated promoter activity above that observed under conditions 

of serum withdrawal, while the presence of both growth factors further elevated CAT 

activity. In contrast, CAT activity in cells transfected with the 261CAT sequences 

(containing the GC box, PEA3 and NFKB sites) was maximal in the presence of EGF, 

which stimulated promoter activity. However, in cells transfected with the 749CAT 

plasmid, TGF-P produced an increase in promoter activity over basal levels, whereas 

EGF had little effect. 

Taken together, the data suggest that EGF-dependent pathways target binding 

elements in the proximal vimentin promoter, while TGF-P is likely to act in an AP1- 

dependent manner. Furthermore, both growth factors appear to synergize by stimulating 

promoter activation through the ASE site, suggesting involvement of Stat-dependent 

pathways in regulation of vimentin expression in HN12 cells. Here, our findings 



demonstrate that the induction of vimentin expression with the addition of growth factors, 

EGF and TGF-P occurs at the transcriptional level of the promoter targeting specific 

transcriptional sites. 

5 11 TGF-8 and Tumorigenesis 

TGF-P is a multipotent cytokine that regulates a variety of cellular activities, such 

as cell proliferation, differentiation, and extracellular matrix (ECM) formation (Liberati 

et al., 1999). TGF- P plays a complex role in tumorigenesis since it has both tumor 

suppressor and oncogenic activities (Akhurst and Derynck, 2001; Derynck et al., 2001; 

Wakefield and Roberts, 2002). During the early stages of tumorigenesis, TGF- P, acts as 

a tumor suppressor. It is suggested to be predominantly through its ability to induce 

growth factor arrest and apoptosis in epithelial cells for which the majority of human 

cancers derive (Nicolas and Hill, 2003). It is at the late stages when the pro-oncogenic 

activities of TGF- P dominate. TGF- P acts directly on the tumor cells to induce EMT, 

and to increase motility, invasiveness and metastasis, and on the surrounding stroma to 

suppress immune surveillance and increase angiogenesis (Akhurst and Derynck, 2001; 

Derynck et al., 2001 ; Wakefield and Roberts, 2002). 

TGF-P profoundly influences the differentiation of many cell types of 

mesechymal origin, including preadipocytes (Ignotz and Masague, 1985; Choy et al., 

2000) osteoblasts (Centrella et al., 1994) and myoblasts (Olson, 1992). The identification 

of genes transcriptionally regulated by TGF-P and the elucidation of the molecular 

mechanisms responsible for this transcriptional regulalion will help define how TGF-P 



exerts its cellular effects and its role in resulting physiological processes (Liberati et al., 

1999). 

Interestingly, research studies have shown that it is the association of the Smad 

complexes with transcription factors and transcriptional co-activators/co-repressors in the 

nucleus that further regulate transcriptional control by TGF-P (Davies et al., 2005). The 

receptor-associated Smads (R-Smads) interact directly with, and are phosphorylated by, 

activated type I receptors of the TGF-P superfamily (Verrecchia et al., 2001). 

5.12 TGF-D and AP1 Binding Sites 

Numerous studies have characterized the differential expression of specific genes 

in response to TGF-P, revealing a common link in the ability of TGF-P to regulate many 

of these genes through the functions of the AP-1 family of transcription factors (Liberati 

et al, 1999). The ability of TGF-P to induce the expression of several genes, including 

PAI- 1, clusterin, monocyte chemoattractant protein- 1 (JEIMCP- I), type I collagen, and 

TGF-P itself depends on specific APl DNA-binding sites in the promoter regions of 

these genes (Keeton et al., 1991 ; Jin and Howe, 1997; Armendaruz-Borunda et al., 1994; 

Kim et al., 1990; Takeshita et al., 1995; Mauviel et al., 1996). I t  has also been shown 

that expression of many APl proteins themselves is induced as an early response to TGF- 

0 in a cell type-specific manner (Beauchamp et al., 1996; Blatti et al., 1992; Pertovaara et 

al., 1989; Wong et al., 1999). These studies demonstrate a link between TGF-P signaling 

and API in TGF-P regulated expression of various genes (Liberati et al., 1999). 

Interestingly, components of the AP1 transcriptional complex were recognized early as 



transcriptional targets of TGF-P signaling before the mechanisms of TGF-p transduction 

were known (Pertovaara et al., 1989; Mauviel et al., 1998; Kim et al., 1990) 

5.13 TGF-13 Induction via Smad Dependent and Independent Pathways 

k has becn suggested that several genes, such as those encoding the plasminogen 

activator inhibitor-1 (PAI-I), the a 2  chain of type I collagen (COLlA2), or the interstitial 

collagnease (MMP-l), in which TGF-0 responsiveness was originally described as AP-1 

dependent (Keeton et al., 1991; Chung et al., 1996; Mauviel et al., 1996) can also be 

regulated by Smads, via either Smad-specific cis elements. It is known that Smad3 

activation occurs in response to TGF-p, in which Smad3DNA interaction is detectable as 

early as 10 minutes after TGF-P addition (Vindevoghel et al., 1998a). Recent findings 

have demonstrated transcriptional responses depend on the structure of the target 

promoter, whether they contain APl or Smad specific cis-elements (Verrecchia et al., 

2001). 

It is now recognized that TGF-PI can activate mitogen-activated protein kinases 

(MAPKs) (Hartsough and Mulder, 1995; Yamaguchi et al., 1995; Atfi et al., 1997; 

Bhowmick et al., 2001b). The APl transcriptional complex is a primary target of a 

number of MAPK pathways and it has been shown that APl components can interact 

directly with Smad3 (Zhang et al., 1998, Peron et al., 2001; Verrechia et al., 2001). This 

suggests that API may be central to crosstalk between Smad and MAPK pathways 

(Davies et al., 2005). 



There is convincing evidence for the involvement of MAPK signaling in TGF-PI- 

induced EMT (Ellenrieder et al., 2001; Zavadil et al., 2001; Bakin et al, 2002). A recent 

study showed that TGF-pl-induced EMT involves Smad-dependent pathways (Davies et 

al., 2005), which is in agreement with the limited number of studies using cells of human 

origin (Ellenrieder et al., 2001; T i ~ n  et al., 2003). MAPKs function to enhance Smad 

213-dependent transcription TGF-p 1 -induced EMT (Davies et al., 2005). In conclusion, 

MAPK and Smads pathways, together with the AP-1 complex mediate TGF-p 1-induced 

EMT (Davies et al., 2005). 

These research findings confirm our results, in which cells transfected with the 

749CAT plasmid, TGF-P produced a substantial increase in promoter activity over basal 

levels. This upregulation of the 749CAT vimentin promoter can be explained through 

TGF-P interaction with the promoter tandem APl sites as there are a number of research 

findings that provide strong evidence to support the role of Ap-1 in TGF-pl-induced 

EMT. 

Interestingly, research studies also show that the transcriptional factor NF-KB 

functionally cooperates with Smad3 as well as the transcriptional factor protein, Spl,  

which is found to functionally cooperate with Smad 21314 (Miyazono et al., 2001) These 

research findings can be used to explain the upregulation of vimentin expression with the 

addition of TGF-P to the 261CAT plasmid since both Smad 2 and 3 are activated by the 

growth factor TGF-P. 



5.14 EGFR Induction 

The precise mechanisms by which growth factor-induced cell surface signals are 

transmitted to the nucleus and ultimately result in cell division are partially understood. 

In the response to ligands, EGFR dimerizes and becomes phosphorylated on multiple 

tyrosine residues. These phosphotyrosines, in turn, allow the activated receptor* 

associate with other signaling proteins. Several EGFR signaling intermediates have been 

described including ras/MAP kinase, PI-3-kinase, and PLCy. 

5.15 EGF and spl bind in^ Protein 

Despite the proven ability of spl to regulate the transcriptional activity of a 

variety of genes involved in cell differentiation and proliferation (Merchant et al., 1995, 

Li et al., 1995), little is known about its role in tumor growth and progression. High 

levels of spl have been reported in gastric carcinomas (Kitadai et al., 1992) and a 

coordinate overexpression of spl and lamin-yl was found in human hepatocellular 

carcinomas (Lietard et al., 1997). 

In a study using breast cancer models, western blot analysis with anti-Spl 

antibody on nuclear extracts from seven malignant specimens and three breast lesions 

conformed the presence of varying nuclear levels of spl proteins in the malignant tumors 

and the absence of a detectable signal in benign breast lesions (Zannettii et al., 2000). 

Promoter assays were studied and the binding data reflect Spl protein relative to the 

levels assessed by western blot analysis of the same samples (Zannettii et al., 2000). 



In addition , it has been previously shown for other genes, such as, gastrin 

(Porchet et al., 1999) or apolipoprotein A-I (Zheng et al., 2001), that spl may participate 

to EGF-mediated up-regulation of the target gene. Using a lung cancer cell line, 

researchers were able to show in MUC2 and MUCSAC, two target genes of EGFR 

ligands in lung cancer. cells, that spl not only transactivated MUC2 and MlJC5AC 

transcription but also participates in their up-regulation by EGF and TGF-a (Perrais et 

al., 2002). 

These studies confirm the substantial activation of 261CAT by EGF, indicating 

that EGF targets the spl transcriptional binding protein within the vimentin promoter. 

Interestingly, further studies might investigate the amount of spl protein in metastatic 

HN12 cells to determine that not only is spl activated by EGF signaling pathway, but 

there might also be an increased present amount of spl protein in the metastatic cell 

similar to the breast cancer mentioned previously. In conclusion, these studies help 

define new therapeutic strategies in carcinomas in which one may want to efficiently and 

selectively inhibit EGFR-signaling pathway to reduce or prevent metastasis. 

5.16 Stat3 Protein and Metastasis 

It has been shown that the Stat3 protein plays an important role in the growth and 

survival of breast cancers in culture and in vivo (Gracia et al., 2001; Zajchowski et al., 

2001). Maximal Stat3 activation is thought to result from the cooperation of different 

growth factors receptors, cytokine receptors, and nonreceptor tyrosine kinases (Wu et al., 

2004). Thus, constitutive activation of Stat3 is more predominant in highly aggressive, 



metastatic breast cancers, and inhibiting Stat3 activation can block the malignant 

progression of breast tumors (Bowman et al., 2000; Gracia et al., 2001). Established 

breast cancer cell lines demonstrate constitutively active Stat3 homodimers (Sartor et al., 

1997). 

EGF has been shown to be capable of activating Stats 1 and 3 in EGFR- 

overexpressing cells (Zhong et al., 1994; Leaman et al., 1996; Chin et al., 1996; 

Nakamura et al., 1996), Stat activation in these cells has not been linked to proliferation 

or transformation. However, recent studies show that Src-induced transformation of 

fibroblasts results in Stat3-mediated gene expression (Turkson et al., 1998) and that Stat3 

is constitutively activated in breast carcinoma cell lines but not in normal breast epithelial 

cells (Gracia et al., 1997). The results presented in these studies are the first 

demonstration of growth inhibition after selective downmodulation of a Stat protein in 

EGFR-overexpressiong cells. 

These research findings confer with our results in which the EGF induced 

activation of the 757CAT vimentin promoter, which contains the ASE transcriptional site 

that is activated by the transcriptional protein, Stat3. In addition, 757CAT also displayed 

induction with the addition of growth factor, TGF-P. 

It has been proposed in other cell models the formation of a complex between 

Stat3 and Smadl indicating that these two binding motifs may physically interact via an 

adaptor molecule. The CREB-binding protein (CBP)/p300 family of transcriptional 

coactivators interact with various transcription factors, such as, APl, Myb, and nuclear 

receptors altering there activity (Kamei et al., 1998). Interestingly, Smadl, 2, 3, and 4 



associate with CBPlp300 family members (Nishihara et al., 1998; Janknecht et al., 1998). 

This study showed the formation of a complex between Stat3 and Smadl, bridged by 

p300, is involved in the cooperative signaling of LIF and BMP2 and the subsequent 

induction of astrocytes from neural progenitors (Nakashima et al., 1999). In conclusion, 

the transcriptiocnl cuactivator p300 physically interacts with Stat3 and Smadl, in which 

the formation of a complex between Stat3 and Smadl, bridgedby p300, is involved in the 

cooperative signaling of the pathway (Nakashima et al., 1999). 

With Smadl being a downstream target of TGF-P and CBPlp300 family members 

also associating with Smad2 and 3 provides strong evidence for the further increase in 

induction of the 757CAT plasmid with the addition of TGF-P compared to EGF 

stimulation alone. Furthermore, this concept provides increasing evidence for the 

synergistic effect found with the addition of both growth factors confirming Stat3 as the 

target for induction by both EGF and TGF-P. 

5.17 Conclusion 

In conclusion, HNSCC remains the sixth most common malignancy worldwide 

(Parkin et al., 1999; Landis et al., 1999). While primary lesion undergo hematogenous 

spread only rarely, they are locally aggressive, and frequently metastasize to local and 

regional lymph nodes, with lethal consequences (Yeudall et al., 2005). Therefore, it is 

the prevention and early detection that are of great importance to reduce the incidence of, 

and consequent morbidity from, HNSCC (Yeudall et al., 2005). One of the major goals 

to combat this disease involves the ability to prevent invasion and regional metastasis of 



the primary lesions. This requires a detailed understanding of the basic cellular biology 

and biochemistry of invasion and metastasis in this cell system (Yeudall et ul., 2005). 

With our findings, it can be suggested that particular transcription factors and the 

signaling pathways involved in their activation should receive attention as potential 

targets for the developments of novel anti-metastatic cancer treatments. .Fi.~ture studies 

involve using a CHIP assay to confirm the findings of the transcriptional data. As well as 

further evaluating our preliminary finding, which demonstrate a decrease of cytokertain 

in the metastatic, HN12 cell line. 



6. Future Experiments 

6.1 Dcw_nregulation of Cvtokeratirr in 1-IN12 cells 

Whereas vimentin is overexpressed in metastatic HN12 cells, an epithelial 

specific intermediate filament, cytokeratin, is downregulated. Here, we show that HN12 

cells demonstrate a downregulation of cytokeratin 13, 14, and 15 by western blot analysis 

of total cellular protein lysates. After 48h of serum starvation, total cell protein extracts 

were prepared as described in 'Materials and Methods' and analyzed for cytokeratin 

expression (top panels). Levels of !3-actin were determined as a loading control (lower 

panel). Anti-cytokeratin 13, 14, and 15 monoclonal antibodies were used (Waseem et al., 

1998; Waseem et al., 1999). 



Whereas each cytokeratin was readily detectable in HN4 cell lysates, no signal 

was obtained in HN12 lysates with cytokeratins 13 and 15 and diminished signal with 

cytokeratin 14. Furthermore, increased cytokeratin 13, 14, and 15 expression was 

detectable by western blot analysis in two HN12-shVim clones compared to the parental 

HN12 cell line and HN12-NTC clones. These data indicate that cytokeratin 13, 14, and 

15 expression is downregulated at a later stage of tumor progression. 
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