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     The ultimate goal in the rapidly burgeoning field of spintronics is to realize 

semiconductor-based devices that utilize the spin degree of freedom of a single charge 

carrier (electron or hole) or an ensemble of such carriers to achieve novel and/or enhanced 

device functionalities such as spin based light emitting devices, spin transistors and femto-

Tesla magnetic field sensors. These devices share a common feature: they all rely on 

controlled transport of spins in semiconductors. A prototypical spintronic device has a 

transistor-like configuration in which a semiconducting channel is sandwiched between 

two contacts (source and drain) with a gate electrode sitting on top of the channel. 

 xiv 
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 Unlike conventional charge-based transistors, the “source” electrode of a spin transistor is 

a ferromagnetic (or half-metallic) material which injects spin polarized electrons in the 

channel. During transit, the spin polarizations of the electrons are controllably rotated by a 

gate electric field mediated spin-orbit coupling effect. The drain contact is ferromagnetic 

(or half-metallic) as well and the transmission probability of an electron through this drain 

electrode depends on the relative orientation of electron spin polarization and the (fixed) 

magnetization of the drain. When the spins of the electrons are parallel to the drain 

magnetization, they are transmitted by the drain resulting in a large device current (ON 

state of spinFET). However, these electrons will be completely blocked if their spins are 

antiparallel to the drain magnetization, and ideally, in this situation device current will be 

zero (OFF state of spinFET). Thus, if we vary the gate voltage, we can modulate the 

channel current by controlling the spin orientations of the electrons with respect to the 

drain magnetization. This is how transistor action is realized (Datta-Das model).  

     However, during transport, electrons’ velocities change randomly with time due to 

scattering and hence different electrons experience different spin-orbit magnetic fields. As 

a result, even though all electrons start their journey with identical spin orientations, soon 

after injection spins of different electrons point along different directions in space. This 

randomization of initial spin polarization is referred to as spin relaxation and this is 

detrimental to the spintronic devices. In particular, for Datta-Das transistor, this will lead 

to inefficient gate control and large leakage current in the OFF state of the spinFET. The 

aim of this work is to understand various spin relaxation processes that are operative in 

semiconductor nanostructures and to indicate possible ways of minimizing them. 
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     The theoretical aspect of this dissertation (Chapters 2 – 5) focuses on the D’yakonov-

Perel’ process of spin relaxation in a semiconductor quantum wire. This process of spin 

relaxation occurs because during transport electron spin precesses like a spinning top about 

the spin-orbit magnetic field. We show that the conventional drift-diffusion model of spin 

transport, which has been used extensively in literature, completely breaks down in case of 

a quantum confined system (e.g. a quantum wire). Our approach employs a semi-classical 

model which couples the spin density matrix evolution with the Boltzmann transport 

equation. Using this model we have thoroughly studied spin relaxation in a semiconductor 

quantum wire and identified several inconsistencies of the drift-diffusion formalism. 

     The experimental side of this work (Chapters 6 – 8) deals with two different issues:  

(a) performing spin transport experiments in order to extract spin relaxation length and 

time in various materials (e.g. Cu, Alq3) under one-dimensional confinement, and  

(b) measurement of the ensemble spin dephasing time in self-assembled cadmium sulfide 

quantum dots using electron spin resonance technique.  

The spin transport experiment, as described in Chapter 7 of this dissertation, shows that the 

spin relaxation time in organic semiconductor (Alq3) is extremely long, approaching a few 

seconds at low temperatures. Alq3 is the chemical formula of tris-8-hydroxy-quinoline 

aluminum, which is a small molecular weight organic semiconductor. This material is 

extensively used in organic display industry as the electron transport and emission layer in 

green organic light emitting diodes. The long spin relaxation time in Alq3 makes it an ideal 

platform for spintronics. This also indicates that it may be possible to realize spin based 

organic light emitting diodes which will have much higher internal quantum efficiency 



xvii 

than their conventional non-spin counterparts. From the spin transport experiment 

mentioned above we have also identified Elliott-Yafet mode as the dominant spin 

relaxation mechanism operative in organic semiconductors.  

     Electron spin resonance experiment performed on self-assembled quantum dots 

(Chapter 8) allows us to determine the ensemble spin dephasing time (or transverse spin 

relaxation time) of electrons confined in these systems. In quantum dots electrons are 

strongly localized in space. Surprisingly, the ensemble spin dephasing time shows an 

increasing trend as we increase temperature. The most likely explanation for this 

phenomenon is that spin dephasing in quantum dots (unlike quantum wells and wires) is 

dominated by nuclear hyperfine interaction, which weakens progressively with 

temperature. 

     We hope that our work, which elaborates on all of the above mentioned topics in great 

detail, will be a significant contribution towards the current state of knowledge of subtle 

spin-based issues operative in nanoscale device structures, and will ultimately lead to 

realization of novel nano-spintronic devices. 
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CHAPTER 1.   Introduction 
 

    Spintronics (acronym for “spin-based electronics”) is defined as the science and 

technology of manipulating the spin degree of freedom of a single charge carrier (electron 

or hole) or an ensemble of such carriers to encode, store, process and deliver information 

[1-3]. In conventional electronic devices (e.g. diodes or transistors) carrier spins point 

along random directions in space and play no role in the performance of these devices. 

Spintronic devices, on the other hand, rely on the controlled transport of “spin-polarized” 

carriers. Such a spintronic device is the read-head sensor [4] which accompanies every 

state-of-the-art computer hard drive. The main advantage of this sensor (over its previous 

generation counterpart) is its higher sensitivity to magnetic fields originating from the 

recorded bits on a magnetic hard disc drive (HDD). This increased sensitivity allows 

efficient signal detection (read operation) from smaller recorded bits and thus leads to 

enormous storage capacity exceeding 10 Gigabytes/in2 [5]. 

    The operating principle of the read head sensor is the giant magnetoresistance effect 

(GMR) observed in heterogeneous metallic systems in which magnetic (e.g. Fe, Co) and 

non-magnetic layers (e.g. Cu, Ag) are alternately stacked to form a multilayer 

configuration. The resistance of this multilayered structure depends on the relative 

magnetization orientations of the ferromagnetic layers. In particular, when the 

magnetizations of the ferromagnets are parallel (antiparallel) device resistance is low
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 (high). The change in resistance is approximately 100% at low temperature and hence this 

effect is dubbed as “giant” magnetoresistance” (GMR) effect [6, 7] as opposed to the  

anomalous magnetoresistance effect where change in resistance is meager 1-2%. The 

origin of the GMR effect lies in spin polarized electron injection from ferromagnetic layers 

into the paramagnet and spin dependent scattering at the ferromagnet/paramagnet interface. 

A nice review on this topic is available in reference [8]. 

    Motivated by this initial commercial success of spintronics in metallic systems, 

significant effort has been invested in search of similar killer application in semiconductor 

based systems. Early efforts in this area were focused on developing spin based analogues 

of classical signal processing devices (e.g. field-effect [9, 10] or bipolar junction [11-14] 

transistors). The motivation behind this was a tacit belief that spintronic transistors would 

consume less power and operate faster than their electronic brethren. A closer re-

examination of these concepts reveals that as far as the signal processing functions are 

concerned, the spintronic transistors may not offer significant advantage over their charge 

based counterparts [15]. However, these spintronic devices can play a role in memory 

applications which do not require high gain or high frequency performance. Other 

unconventional areas where semiconductor spintronics may find niche applications include 

(a) single spin logic [16], (b) spin neurons [17] and (c) quantum computing using spin in a 

quantum dot to encode qubits [18, 19]. 

    An important consideration for spintronic devices (irrespective of their applications) is 

the longevity of spin. After injection in a semiconductor channel, the spin of the carrier 

couples with the environmental magnetic field accruing from various sources including 

spin-orbit interaction, nuclear hyperfine interaction and interaction with other charge
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 carriers. As a result the initial spin polarization gets randomized with time and the spin-

coded information is lost. This phenomenon which is commonly referred to as spin 

dephasing, or spin relaxation, is detrimental to spintronic device applications. Thus it is 

crucial to understand various spin relaxing mechanisms that are operative in semiconductor 

nanostructures and devise suitable means to suppress them. This is exactly what this 

dissertation investigates. 

    In this work, we address various issues regarding spin relaxation in quasi-one-

dimensional (quantum wires) and zero-dimensional (quantum dots) structures. As 

mentioned above, spin relaxation mainly takes place due to spin-orbit coupling and 

hyperfine interaction present in the system under consideration. In this introductory 

chapter we will focus on the basic physics of electron spin relaxation in nanostructures due 

to these two effects.  

    This chapter is organized as follows: in the next section we will review the basic 

concepts of spin-orbit coupling, followed by a discussion on how this effect manifests in 

solid-state systems. Next we will discuss various modes of electron spin relaxation in 

solids and how contemporary theories address the problem of spin polarized electron 

transport. We will conclude with a discussion on hyperfine interaction in quantum dots and 

present an overview of this dissertation. 

1.1 Spin-orbit coupling: basic concepts  
 
    Spin is an intrinsic magnetic moment associated with an electron. In order to control 

spin-orientation, we need a magnetic field. This field can either be externally applied or it 
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 can originate from the spin-orbit coupling effect of the system in which the electron 

belongs. In this section we review the basic concepts of spin-orbit coupling. 

     Let us consider an electron moving with a velocity evr  under the influence of an 

external electric field E
r

. In case of a single hydrogen atom, this electric field arises due to 

the positively charged proton situated at the center of the atom. In the rest frame of the 

electron, the proton orbits the electron with a velocity same as the velocity of the electron 

around the proton (just as the Sun orbits the Earth in the Earth’s rest frame). This 

“orbiting” positively charged proton produces a magnetic field at the location of the 

electron according to the laws of electrodynamics. We can also arrive at this same physical 

picture starting from the special theory of relativity. The proton, in its rest frame, 

experiences only the coulomb electric field between itself and the orbiting electron. 

However, to the electron, in its own rest frame, this electric field appears as a Lorentz-

transformed magnetic field [20]. This magnetic field, denoted by 'B ,  is given by the well 

known equation [21]:  

                          ( )
( )

cv
c

vE

cv

cvEB e
e

e

e <<
×

→
−

×
= limit   on the  ,   

 /  1

/     ' 22

2 rrrr
r

                              (1.1) 

where  is the velocity of light and c evr  is the linear velocity of the orbiting electron. This 

magnetic field (originating from “orbital” or spatial motion of the electron), in the rest 

frame of the electron, affects the spin polarization of the electron. This is the so-called 

“spin-orbit coupling” effect where spin polarization of an electron is influenced by its 

spatial motion in an electric field. The energy of an electron due to this spin-orbit magnetic 

field is given by  
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                                            '
2

' B
m
eB

e

rrhrr
⋅−≡⋅−= σµε                                                        (1.2) 

where µr  is the electron spin magnetic moment,  is the electronic mass and em σr  is the 

Pauli spin matrix. 

    Thus, combining equations (1.1) and (1.2) we can write the quantum-mechanical 

Hamiltonian describing spin-orbit coupling as 

                                        ( )OP
e

e
SO vV

cm
eH rrrh

×∇⋅−= σ22
                                                  (1.3) 

where  is the electric potential, spatial variation of which gives rise to the electric field V

E
r

  and   is the electron velocity operator.   OP
evr

    The above discussion is qualitative in nature and indeed cannot explain the 

experimentally observed atomic spectra. Historically, this discrepancy posed a major 

challenge to the physicists [22]. Later, Thomas pointed out [23] that this discrepancy is 

resolved by a correct treatment of the Lorentz transformations connecting electron’s rest 

frame and lab frame. Because of the acceleration of the orbiting electron, it is not enough 

to boost the lab frame by the electron’s instantaneous velocity in order to obtain a rest 

frame of reference. An observer in the rest frame of the electron finds that additional 

rotation is required to align his coordinate axes with the ones obtained by boosting the lab 

frame of reference. If this consideration is taken into account, it introduces an additional 

factor of two in the denominator of the expression describing spin-orbit Hamiltonian 

( ) in equation (1.3). SOH

    From the above discussion we can loosely say that spin-orbit interaction splits a spin-

degenerate level into two spin-split levels with spins parallel and antiparallel to the spin-
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orbit magnetic field. In a free atom, this is indeed the case, where the spin-split levels have 

same spatial wavefunctions but spinors pointing along opposite directions. However, in 

solids, such a splitting may be prohibited due to issues regarding crystal symmetry. In the 

next section we will focus on the spin-orbit coupling effects in solids and discuss these 

symmetry issues in detail. Depending on the origin of the potential gradient V∇
r

, there 

exist various types of spin-orbit interactions in solids. Judicious control of these effects can 

lead to novel spintronic devices as proposed in numerous research articles over the last 

decade. 

1.2 Spin-orbit coupling in solids and symmetry considerations 
 
    A central theorem in solid-state physics is the Bloch’s theorem which states that if the 

potential energy  is periodic with the periodicity of the lattice, then the solutions )(rU

)( rϕ  of the wave equation 

                              )(      )(  )(   
2

     )(  2
2

rErrU
m

rH
e

ϕϕϕ =⎥
⎦

⎤
⎢
⎣

⎡
+∇−=

h                                  (1.4) 

are of the form )( ) ( exp)( rurkir kk
rr

⋅=ϕ  where  is periodic with the periodicity of 

the direct lattice and k denotes electron quasi momentum. Even in the absence of externally 

applied electric field or material inhomogeneity, an electron moving inside a “perfect” 

solid experiences electric fields 

)(ruk

( )erU /)(∇−
r

 due to the periodic lattice of ions and the 

presence of other electrons. This “crystal electric field” may or may not produce a net spin-

orbit magnetic field, depending on symmetry properties of the unit cell. Specifically, if the 

cell does not possess center of inversion symmetry, this electric field will result in a non-

zero spin-orbit magnetic field which will in turn affect the electron spin. This is
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 exactly what happens in crystals of III-V (e.g. GaAs, InAs) or II-VI (e.g. CdS, ZnSe) 

semiconductors where the crystal lattice consists of two dissimilar atoms. These symmetry 

issues will be revisited in greater detail in subsections 1.2.1 and 1.2.2. The bottomline is 

that if an electron travels through an inversion asymmetric crystal, its spin will be 

reoriented due to precession about the spin-orbit magnetic field which is inherent to the 

crystal. This is the so-called D’yakonov-Perel’ mechanism and we will discuss this in 

section 1.3. For crystals that possess inversion symmetry (e.g. Ge, Si), the net spin-orbit 

magnetic field is zero but spin re-orientation can happen via momentum relaxing 

collisions. This is the Elliott-Yafet mechanism which will be addressed in section 1.3.          

     Another point that needs to be mentioned is that real crystals contain impurities and the 

electrons experience electric field in the proximity of these impurities. This can also, in 

principle, introduce additional spin-orbit coupling effect and change the spin polarization 

of the electron. The impurity distribution is not periodic by any means and hence their 

effect cannot be incorporated in the quantity . Generally the impurities are treated as 

scatterers that scatter Bloch electrons from one momentum state k

)(rU

r
 to another state 'k

r
. As 

mentioned earlier, in presence of spin-orbit interaction, these innocuous, spin-independent 

scattering processes can affect the spin of an electron (Elliott-Yafet). Additionally if the 

impurity species is magnetic in nature then there will be a direct coupling between electron 

spin and the magnetic moment of the impurity. Yet another source of momentum 

scattering in a solid is the temperature induced vibrations of lattice ions (or phonons). This 

introduces temperature dependence in the Elliott-Yafet spin relaxation rate. 
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    In order to address these various effects systematically, let us first consider the spin-

orbit coupling effect arising from the periodic crystal electric field ( )erU /)(∇−
r

 only. The 

effect of impurity or phonon scattering will be considered in section 1.3. Since  has 

the periodicity of the lattice, the spin-orbit coupling term arising from it (see equation 

(1.3)) also has the same periodicity. So the corresponding eigenfunction will have the 

Bloch form i.e. they will have the same spatial periodicity as the crystal lattice. But these 

functions will not, in general, correspond to pure spin states. In other words there will be 

no global spin quantization axis for all 

)(rU

k
r

. This can be understood easily because different 

electrons have different velocities and hence the spin-orbit magnetic fields experienced by 

the electrons point along different directions in space. Analytically we can write the Bloch 

state as [24] 

                              ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡↓+↑=

↓

↑
↓↑↑ )(

 )(
 )( )()(

,

,
,,, r

r
rrr

k

k

zkzkk β
α

βαϕ                                 (1.5)     

 Here )(, rk ↑α  and )(, rk ↓β  are the Bloch-type functions with lattice periodicity. These are 

the coefficients of the pure spin states given by 

                                          ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡↓⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≡↑

1
0

   and  ,
0
1

zz
                                                    (1.6) 

where ẑ  is some arbitrary direction in space. The “↑ ” sign in the suffix of ↑,kϕ  in 

equation (1.5) indicates that this state is “generally up” (or “pseudo spin up”) in the sense  

                                      0
2

,

2

,,, >−= ↓↑↑↑ kkkzk βαϕσϕ                                              (1.7) 
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In what follows, we will continue to assume without any loss of generality that 

↓↑ > ,, kk βα . In the following subsections we will see how various symmetry elements 

affect spin splitting of the energy bands. 

1.2.1 Time reversal symmetry and Kramer’s theorem  
                                                                                                                                                 

     The time reversal transformation Κ  maps rr rr
→ , pp rr

−→  and σσ rr  −→ . 

Mathematically, 0  Κ−=Κ yi σ  where 0Κ , in Schrödinger representation, is the operation 

of taking the complex conjugate [25]. When operated on ↑,kϕ , we obtain  

           

zkzk
k

k

kkk
yk

rr
r
r

r
r

r
r

i
i

i
r
r

i

↓+↑−≡
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
−=⎥

⎦

⎤
⎢
⎣

⎡
Κ−=Κ

↑↓
↑

↓

↓↓↓

↑
↑

↑↑

 )( )(
)(
)(

)(
)(

 
01
10

)(
)(

 
0

0
  

)(
)(

   

*
,

*
,*

,

*
,

*
,

*

*
,

*

,

k,
0,

k,k,

αβ
α
β

β
α

β
α

β
α

σϕ

             (1.8) 

which is clearly a “pseudo spin down” state since 
2

,

2

, ↓↑ > kk βα  (see equation (1.7)). Also, 

this state ↑Κ ,kϕ  belongs to wavevector k
r

− . Similarly, the time reversal operator, acting 

on a “pseudo spin down” state, produces a pseudo spin up state with opposite wavevector. 

According to Kramer’s theorem, in absence of any external magnetic field, both ϕ  and 

ϕΚ are the eigenstates of the Hamiltonian with same energy eigenvalue. This implies 

↓−↑ = ,, kk εε and ↑−↓ = ,, kk εε  where ε  denotes electron energy. This means that each energy 

occurs twice but not at the same value of k
r

.  The up- and down-arrows indicate pseudo 

spin up and pseudo spin down states respectively.  
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    These states are therefore non-degenerate in presence of spin-orbit coupling. This is 

analogous to Zeeman splitting where the degeneracy of spin up and spin down states is 

lifted in presence of an external magnetic field. In the present case, the pseudo Zeeman 

field originates from spin-orbit interaction and is different for different Bloch states. This 

field is a function of electron velocity. 

1.2.2 Space inversion symmetry 

Now let us consider the case when additional symmetry elements are present in the system. 

In particular, we consider the situation when the crystal has space inversion symmetry. 

Space inversion operator  maps J rr rr  −→ , pp rr  −→  and σσ rr
→ . If the Hamiltonian is 

invariant under space inversion, then the combined symmetry operations  and Κ  yields J

↓↑ = ,, kk εε [24]. As mentioned before, the up- and down-arrows indicate pseudo spin up 

and pseudo spin down states respectively. Thus, in presence of inversion symmetry, double 

degeneracy occurs at same energy and wavevector. This means that the energy of an 

electron (for a given k) does not depend on its spin orientation. Hence in crystals with 

inversion symmetry spin splitting is not allowed in bulk and they retain their spin 

degeneracy. In this case there will be no pseudo Zeeman field as described earlier. But still, 

momentum scattering events will re-orient electron spin polarization (see section 1.3). 

    Spin-orbit interaction effect can be classified depending on the origin of the electric field 

from which it is induced. It is evident from the above discussion that the crystals which 

lack inversion symmetry, there exists a spin-orbit coupling effect. This is known as “bulk 

inversion asymmetry” induced “Dresselhaus spin-orbit coupling” [26]. Additional 

asymmetry can be caused artificially by application of a “gate” electric field on quantum  
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confined systems (e.g. a two dimensional electron gas). This is known as “structural 

inversion asymmetry” induced “Rashba spin-orbit coupling” [27, 28]. Also, in case of a 

quantum well structure, if the well and the barrier have different ionic composition (e.g. 

InAs/GaSb quantum well), there exists a spin-orbit coupling term due to “interface 

asymmetry”. 

1.                                                                                                                                                                                         
3 Spin polarized transport in semiconductors in presence of spin-orbit coupling 

     Spin transport in semiconductor structures is a subject of much interest from the 

perspective of both fundamental physics and device applications. The basic problem here 

is as follows. We inject spin polarized electrons at one end of a semiconductor structure 

(say r = r0) at time  t = t0. By “spin polarized injection” we mean that at t = t0 (and r = r0) 

the spin polarizations of all electrons are either pointing parallel or antiparallel to a 

particular direction (say ) in space such that  0̂θ

                                              00 >
−

=
+
−

= ↓↑

↓↑

↓↑

N
nn

nn
nn

P                                                (1.9) 

Here N is the total number of injected electrons and  is the number of electrons with 

spins parallel (antiparallel) to . Thus, the quantity P

( )↓↑n

0̂θ 0 denotes the net spin polarization of 

the injected electrons (pointing along ). In an all-electrical spin transport experiment, 

this situation is realized by using ferromagnetic (or, half metallic) materials as spin 

injector

0̂θ

1. The magnitude of P0 is not in general equal to the polarization of the spin 

injector, since there is always some spin flip at the injector/semiconductor interface. 

                                                 
1 In chapters 6 and 7 of this dissertation we report all-electrical spin transport experiments performed on 
nanowire geometry. There we use nickel and cobalt as spin injector/detector. 
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    After injection, these electrons travel through the semiconductor under the influence of a 

transport-driving electric field. During their transit, the electrons experience spin-orbit 

coupling effects originating from various sources as mentioned above. Due to these spin-

orbit interactions, the spins of the electrons get re-oriented. In other words, during transit 

the spin polarizations are not necessarily parallel (or antiparallel) to  and the spin 

orientations continuously evolve with time. Spin-orbit coupling strength depends on 

electron velocity and hence the spin-orbit magnetic field is different for different electrons, 

assuming that there is a spread in electron velocities due to scattering or injection 

condition. As a result, spins of different electrons get re-oriented by different amounts. 

Thus at a later instant t = t

0̂θ

1, the net spin polarization of electron ensemble (say P1, which 

is equal to the magnitude of ensemble averaged spin polarization vector) is less than its 

initial value (P0). This loss of spin polarization is termed as “spin relaxation” or “spin 

dephasing”. 

    There are various mechanisms (some of which are obviously mediated by spin-orbit 

interactions, while others are not) that cause spin relaxation during transport. In case of 

semiconductors (as well as metals), the most dominant mechanisms [29] are (a) Elliott-

Yafet mechanism [30, 31], (b) D’yakonov-Perel’ mechanism [32, 33], (c) Bir-Aronov-

Pikus mechanism [34] and (d) Hyperfine interaction with nuclei [35]. Among these, the 

first two mechanisms accrue from spin-orbit interaction. The third one originates from the 

coupling between electron and hole spin. Hyperfine interaction is due to interaction 

between carrier spins and the nuclear spins. These mechanisms are briefly described 

below. 
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(a) Elliott-Yafet mechanism: 

    As we have seen in section 1.2, in presence of spin-orbit coupling, Bloch states of a real 

crystal are not spin eigenstates. These states are either pseudo-spin-up or pseudo-spin-

down, in the sense that a particular state with a given spin orientation has a small 

admixture of the opposite spin state. This is an outcome of the presence of spin-orbit 

coupling in the crystal. This admixture is a function of electronic wavevector, and as a 

result, in general two different Bloch states have non-orthogonal spin orientations. Thus 

spin-independent momentum scattering events can couple two different Bloch states and 

re-orient the initial spin polarization. This is the Elliott-Yafet mechanism of spin 

relaxation. From the above discussion one naively expects that spin relaxation rate due to 

Elliott-Yafet mechanism should be proportional to the momentum scattering rate. This is 

indeed true, and from reference [29], we quote a formula relating these two quantities: 

                                   
)(

1 
)(

1
22

 , kpg

k

SOg

SO

kEYs EE
E

E
A

E ττ ⎟
⎟
⎠

⎞
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⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∆+
∆

=                                  (1.10) 

This formula is valid for III-V semiconductors. Here )() ,( kEYsp Eτ is the momentum 

relaxation time (spin relaxation time due to Elliott-Yafet process) for electrons with energy 

. The energy gap is denoted by and kE gE SO∆  is the spin-orbit splitting of the valence 

band. The prefactor A, depends on the nature of the scattering mechanism. The above 

equation indicates that Elliott-Yafet process is significant for semiconductors with small 

band gap and large spin-orbit splitting. Typical example of such a semiconductor is indium 

arsenide (InAs). 
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    Note that in case of Elliott-Yafet mechanism, the mere presence of spin-orbit interaction 

in the system does not cause spin relaxation. Only if the carriers are scattered during 

transport, spin relaxation takes place. So this mechanism is weak for ballistic transport as 

well as for semiconductor quantum wires at low temperature. In the latter case, at low 

temperature, phonon scattering is suppressed, and so is the elastic scattering due to 

constriction in phase-space [36]. Elliott-Yafet mechanism is weak in these situations. 

However, this mechanism is dominant in metallic systems. Elliott-Yafet mode is expected 

to be more efficient in presence of magnetic field. This has been shown analytically [37] in 

the context of a quantum wire with an axial magnetic field. 

(b) D’yakonov-Perel’ mechanism: 

    This mechanism of spin relaxation is dominant in solids which lack inversion symmetry. 

Prototypical examples of such systems are III-V semiconductors (e.g. GaAs) or II-VI 

semiconductors (e.g. ZnSe) where inversion symmetry is broken by the presence of two 

distinct atoms in the Bravais lattice. As described earlier in section 1.2, in these systems 

the momentum states of pseudo spin-up and pseudo spin-down electrons are non-

degenerate (recall ↓↓−↑ ≠= ,,, kkk εεε  and ↑↑−↓ ≠= ,,, kkk εεε  from our earlier discussion on 

spin-orbit coupling in solids in section 1.2). This spin-splitting can be described by an 

internal magnetic field B that depends on electron velocity. As a result, when an electron 

travels through an inversion-asymmetric crystal, its spin precesses continuously (like a 

spinning top) about B. This is the well known Larmor precession of spin about a magnetic 

field. The magnitude and direction of this magnetic field change every time the electron 

encounters scattering. This magnetic field is different for different electrons as long as 
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 there is a spread in electron velocity due to scattering or electric field or injection 

condition. Thus the ensemble averaged spin vector decays with time. This is the 

D’yakonov-Perel’ mode of spin relaxation. Note that unlike Elliott-Yafet mechanism, it is 

not necessary to have scattering in the system for D’yakonov-Perel’ process to take place. 

As long as the electrons have different velocities (depending on the injection condition), 

D’yakonov-Perel’ relaxation will occur. 

    In chapters 2, 3, 4 and 5 of this dissertation we will discuss various aspects of 

D’yakonov-Perel’ spin relaxation in a quantum wire in presence of Rashba and 

Dresselhaus spin-orbit interactions. 

(c) Bir-Aronov-Pikus mechanism: 

    This mechanism of spin relaxation is dominant in heavily p-doped semiconductors. The 

exchange interaction between electrons and holes is described by the Hamiltonian 

)(  rJSAH rrr
δ⋅=  where A is proportional to the exchange integral between the conduction 

and valence states,  J  is the angular momentum operator for holes and  S  is the electron 

spin operator. Now, if the hole spin flips (due to strong spin-orbit interaction in the valence 

band), due to this electron-hole coupling, the spin of the electron will flip as well. A more 

detailed description is available in reference [29]. 

(d) Hyperfine interaction: 

    Hyperfine interaction is the magnetic interaction between the magnetic moments of 

electrons and nuclei. This is the dominant spin relaxation mechanism in quantum dots, 

where the electrons are strongly localized in space. Later in this chapter (see section 1.4) 

we will discuss this topic in detail. 
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    If we consider unipolar (say electronic) transport in a III-V semiconductor system (bulk, 

2D and 1D), the most dominant spin relaxation mechanisms are the Elliott-Yafet mode and 

D’yakonov-Perel’ mode. In chapters 2, 3, 4 and 5 of this dissertation we will discuss 

various aspects of D’yakonov-Perel’ spin relaxation in a semiconductor quantum wire.  

    Various formalisms have been used to study the problem of spin transport in 

semiconductor nanostructures, primary among which are a classical drift-diffusion 

approach [38-40], a kinetic theory approach [41] and a microscopic semiclassical approach 

[42-48]. As far as the classical models are concerned, a number of studies used a drift-

diffusion type approach to model spin transport and spin dephasing at elevated 

temperatures and moderate electric fields. “Spin up” and “spin down” electrons are treated 

similar to electrons and holes in conventional bipolar transport. Spin dephasing is treated 

by a spin relaxation term that describes coupling between the “spin up” and “spin down” 

electrons similar to the generation-recombination term describing coupling between 

electrons and holes in bipolar transport. Apart from the fact that the relaxation time 

approximation does not fully capture the physics of spin dephasing (even if different 

relaxation times are used to describe different processes), the drift-diffusion formalism is 

invalid at relatively high electric fields when transport non-linearities become important. 

Furthermore this model cannot treat coherence effects arising from superposition of spin 

up and spin down states. Such superpositions are taken into account by the kinetic theory 

approach, but this model does not treat momentum dependence of spin-orbit coupling self-

consistently. 

    In reality, the temporal evolution of spin and the temporal evolution of the momentum 

of an electron cannot be separated. The dephasing (or depolarization) rates are functionals
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 of the electron distribution function in momentum space which continuously evolves with 

time when an electric field is applied to drive transport. Thus spin dephasing rate is a 

dynamic variable that needs to be treated self-consistently in step with the dynamic 

evolution of the electron’s momentum. Such situations are best treated by Monte Carlo 

simulation. In chapters 2, 3, 4 and 5 of this dissertation we adopt this angle of approach for 

studying spin transport in semiconductor quantum wires and highlight various 

inconsistencies of the classical drift-diffusion formalism.   

1.4 Hyperfine interaction in semiconductor quantum dots 
 
    The spin-orbit interaction mechanism described above is the dominant source of electron 

spin dephasing in bulks, quantum wells and quantum wires, where the electrons are not 

strongly localized in space. However, in case of quantum dots electron motion is restricted 

in all three dimensions and hence spin-orbit interaction, being proportional to electron 

momentum, is extremely weak in these systems [49-51]. Thus, the most effective spin 

dephasing mechanism in quantum dots is the hyperfine interaction with nuclei. Since the 

spin state of an electron hosted in a semiconductor quantum dot is considered as a 

promising candidate for realizing solid-state qubit [18, 19, 27, 52-55], it is essential, from 

the perspective of quantum information processing, to preserve the coherence of the spin-

qubit for sufficiently long time in order to perform fault-tolerant (quantum) computational 

tasks [56]. Even though spin-orbit coupling is sufficiently weak in quantum dots, it is the 

nuclear hyperfine interaction that poses serious limitation on spin-qubit coherence time in 

these systems. Motivated by this, there have been a large number of theoretical [57-63] and 

experimental [64-68] investigations on electron spin dynamics under the influence of 
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 nuclear hyperfine field in quantum dots. A comprehensive review on the theoretical aspect 

of this topic is available in reference [69]. Here we will briefly discuss some basic concepts 

regarding the origin of hyperfine interaction in common semiconductor materials and how 

it causes electron spin dephasing in quantum dots. 

1.4.1 Origin of hyperfine interaction in semiconductor materials 

Electrons, protons and neutrons are fermions, which imply that they carry half integer 

spins. For example, an electron is a spin-1/2 particle. It is customary to represent the total 

angular momentum of the atomic nucleus (neutrons plus protons) by the symbol  I, and call 

it nuclear spin. An atomic nucleus often behaves as if it is a single entity with intrinsic 

angular momentum  I. Associated with nuclear spin  I  there is a nuclear magnetic moment 

defined by the relation Imqg NNI

r
h

r  )2/(=µ , where  is the g-factor of the nucleus, q is 

the amount of positive charge in the nucleus,  is the mass of a neutron/proton (~ three 

orders of magnitude heavier than an electron). This nuclear magnetic moment couples with 

electronic spin magnetic moment and results in dephasing of electron spin in solid state 

systems. This is how hyperfine interaction (which is nothing but a coupling effect between 

nuclear and electronic magnetic moments) causes electron spin dephasing. It is interesting 

to note that even though a neutron is a charge-less particle, it has non-zero magnetic 

moment. This indicates that neutron is not an elementary particle. Indeed, it is made up of 

quarks which are charged entities. 

Ng

Nm

    Unfortunately, almost all semiconductors have isotopes that carry non-zero nuclear 

spins. All naturally occurring isotopes of Ga, In, Al, Sb and As have nuclear spins with 

substantial magnetic moments and hence nuclear hyperfine interaction is particularly 
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 dominant in technologically popular III-V semiconductors e.g. Ga(Al)As, In(Al)As etc. 

On the other hand, materials like Cd, Zn, S, Se and Te have nuclear spin carrying isotopes 

with less natural abundance and hence in II-VI semiconductor materials nuclear hyperfine 

interaction is weaker compared to their III-V counterparts. Due to the same reason nuclear 

hyperfine interaction is weak in case of elemental semiconductors e.g. Si and Ge. 

Hyperfine interaction can be avoided in case of II-VI semiconductors, Si and Ge if we use 

isotopically purified material containing a greatly reduced amount of  isotopes. But 

due to the high cost of isotopic purification, this may not be a commercially viable option. 

0≠I

    As mentioned before, hyperfine interaction is the coupling of nuclear magnetic moment 

(proportional to nuclear spin I ) and electron magnetic moment (due to both orbital motion 

and spin S). For an s-type electron, there is no orbital contribution and in this case, the 

hyperfine interaction is described by the Fermi contact Hamiltonian [35, 70] 

                                          ISr
I IIB

rrr
⋅=   )(    

3
4Η 20

hf ψµµ
µ                                            (1.11) 

where )( IS
rr

is the electron (nuclear) spin operator, ( )Ir
rψ  is the value of (s-type) electronic 

wavefunction at the location ( Ir
r

) of the nucleus, , and 117
0 m A s V104 −−−×= πµ Bµ  is the 

Bohr magneton. The hole wavefunction is zero at the nuclear sites and hence the hyperfine 

interaction of nuclear spins with holes is considerably weaker.  

    The above equation is the starting point for describing nuclear hyperfine interaction on 

an s-type conduction band electron in a quantum dot. In this case we can write the 

wavefunction ( )Ir
rψ  as a product of Bloch amplitude function )( Iru r  and a modulating 

envelope function )( Ir
rϕ . Thus the hyperfine Hamiltonian takes the form 
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                                            ISr
I IIB

rrr
⋅=    )(      

3
4Η 20

hf ϕξµµ
µ                                      (1.12) 

where ( ) 22  )0(     uru I ≈=
rξ  is a constant (independent of Ir

r
) for a given semiconductor 

material. If the electron density were homogeneously smeared over the unit cell, ξ  would 

be equal to unity. However in real crystals,  )(  Iru r  has sharp maxima at the lattice sites 

(i.e. locations of the nuclei) and hence 1>ξ . The value of this quantity can be extracted 

from electron spin resonance experiments [70]. Typical values of ξ  for different materials 

are as follows [69, 70]:  

186,105.4 ,107.2 ,109.10 ,103.6 Si
3

As
3

Ga
3

Sb
3

In =×=×=×=×= ξξξξξ . 

    The hyperfine interaction described above plays a dual role. On one hand we can view it 

as an effective magnetic field ( ) created by nuclear spins which interacts with electron 

spins and causes dephasing. On the other hand it can also be viewed as an effective 

magnetic field ( ) created by the electron spin magnetic moment and acting on the 

nuclear spin. In the latter case, this causes nuclear spin relaxation. In electron spin 

resonance experiments the quantity  gives rise to Overhauser shift by modifying the 

electron spin precession frequency. In case of nuclear spin resonance experiments, the 

quantity  results in an analogous effect which is known as Knight shift. This intricate 

interaction is schematically explained in the Figure 1.1.  

NB

eB

NB

eB

    An electron spin hosted in a (GaAs) quantum dot typically experiences 105 nuclear spins 

in its vicinity. So we can express the net hyperfine interaction (as experienced by the 

electron spin) as a summation of contributions from every individual nuclear spin: 
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Figure 1.1  Hyperfine interaction in a quantum dot 
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where the subscript i denotes the i th nuclear spin and N is the total number of nuclear spin 

the electron is interacting with. From equation (1.12), the coupling constant  is given by  iA

                          ( ) ( ) 2
0

2
00

0              
3

4
iiIBi rvArvn

I
A rr ϕϕξµµ

µ
≡⎥⎦

⎤
⎢⎣
⎡=                                (1.14) 

where  is the density of the nuclei,  being the volume of the unit cell. We can 

write the effective magnetic field experienced by the electron spin due to all nuclear spins 

as:  

00 /1 vn = 0v
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Clearly electrons localized in various regions of a single quantum dot will experience very 

different values of  since this quantity depends on how the electronic envelope function 

is spatially distributed over various nuclear sites. The value of  also depends on the 

relative alignment of the nuclear spins. To elaborate this latter point we consider two 

extreme cases: (1) when the nuclear spins are fully polarized and (2) when they are fully 

unpolarized. We will observe that relative alignment of the nuclear spins strongly affects 

the nuclear magnetic field. 

NB

NB

Case 1: If all nuclei are fully polarized (ferromagnetic inter-nuclei coupling), i.e. if all 

nuclear spins  point along some arbitrary direction iI
r

ẑ , we have 
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where we have used the normalization condition ( ) 1    2 =Ω∫
Ω

drrϕ . Here  denotes that the 

integration has been carried out over the unit cell with volume . This “fully polarized” 

configuration is probably valid at zero temperature when the system is in ground state (i.e. 

S and I

Ω

0v

i are antiparallel leading to minimum value of Hhf) and inter-nuclear coupling is 

ferromagnetic. Optical pumping techniques, in presence of an external magnetic field can 

also produce considerable alignment of the nuclear spins. This fully- 
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polarized nuclear configuration gives rise to strong Overhauser field acting on the electron 

spin qubit.  

Case 2: Now let us consider the opposite limit when the nuclear spin system is  fully 

unpolarized. This means that at a given time different nuclear spins point along arbitrary 

directions in space implying . In order to get an estimate of , we 

replace  by its “fluctuation value” (

∑
=

→
N

i
iI

1  
0

r
dunpolarizefully   N,B

iI
r

I∆ ). To calculate this quantity we proceed as 

follows. Since nuclear spins  vary randomly from one nuclear site to another, we can 

consider it as a random variable in statistical sense. Thus, fluctuation 

iI
r

I ∆ is defined as the 

standard deviation of iI
r

 (mean value of iI
r

), which is also a random variable. Thus 
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where σ is a constant, being equal to the standard deviation of Ii. Following the same 

procedure in the fully-polarized case we obtain,
Ng

AB
B   dunpolarizefully  N, µ

≈ . Thus the 

effective nuclear magnetic field (and hence the strength of the hyperfine interaction) is 

reduced by a factor of N . In case of GaAs, , which implies a reduction in the 

hyperfine field by a factor of 300 in case of unpolarized nuclear spin configuration 

compared to the fully-polarized version. This means that as the nuclear spin configuration 

gets more depolarized, strength of the hyperfine field decreases. 

510≈N
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    It is also instructive to calculate the order of magnitude of the hyperfine interaction. Let 

us take the example of GaAs.  69Ga (I = 3/2) has a nuclear magnetic moment of 2.016 Nµ  

with natural abundance of 60.4%, 71Ga (I = 3/2) has a nuclear magnetic moment of 

2.562 Nµ  with natural abundance of 39.6%, and 75As (I = 3/2) has a nuclear magnetic 

moment of 1.439 Nµ  with natural abundance of 100%. The average nuclear magnetic 

moment Iµ is calculated as follows: 

)magneton nuclear  of units(in  8356.1
100100

100439.16.39562.24.60016.2
Nµµ =

+
×+×+×

=I  

Using this value of Iµ , total  I  of 9/2 and , we get 3
0 nm/6.45=n eV 100µ≈A . This is 

the strength of the hyperfine coupling acting on the electron spin in presence of a fully 

polarized nuclear spin configuration. The corresponding hyperfine magnetic field in GaAs 

is ~ 5T ! Thus if the nuclear spins are polarized, they can produce quite strong Overhauser 

field at the location of the spin qubit. Following the same recipe, we obtain 

NI µµ 07844.0−≈  and eV 10µ≈A for CdS. 

1.4.2 Electron spin dephasing due to nuclear hyperfine field 
 
   Electron spin dephasing in presence of hyperfine field consists of three sub-processes: 

(1) precession of electron spin in the “frozen” hyperfine field of nuclei, (2) precession of 

nuclear spins in the hyperfine field of the electron, and (3) nuclear spin relaxation due to 

dipole-dipole interaction between neighboring nuclear spins. The timescales for these 

processes has been estimated for GaAs, whose hyperfine constants are well known. For 

quantum dots containing 105 nuclei they are found to be ~ 1ns, 0.1-1 µs, and  ~ 100 µs  
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respectively [59]. Therefore electron spin dephasing can be described as a precession in the 

quasi-stationary frozen hyperfine field of the nuclei. A formula for the spin dephasing time 

( ) in an ensemble of quantum dots was derived in reference [59] using this physical 

picture. Spin dephasing occurs due to inhomogeneous broadening of the hyperfine 

magnetic field over an ensemble of quantum dots. This formula is as follows 

*
2T

                              
∑ +

=

j

jjj AII
T 2

*
2 ))(1(2

3
h                                                            (1.18) 

assuming all nuclei in the unit cell contributes in spin dephasing,  j being the nuclear spin 

index. We will use this formula in Chapter 8 to analyze and understand the experimental 

data obtained from electron spin resonance experiments. Our experimental data agrees 

reasonably well with this model. This is also consistent with the experimentally observed 

dependence of  on temperature. *
2T

1.5 This dissertation

    The chapters in this dissertation are to a large extent self-contained. The amount of 

redundancy is however kept to a minimum for those reading this dissertation from the 

beginning to the end. A brief outline of each chapter is described below: 

(a) Chapter 2:  In this chapter we consider D’yakonov-Perel’ spin relaxation process in a 

quantum wire and point out that it is not correct to describe spin and charge diffusion by 

the same diffusion constant D. We also indicate the necessary conditions for D’yakonov-

Perel’ mechanism to take place in quantum wire geometry.  
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(b) Chapter 3: In this chapter we consider the D’yakonov-Perel’ process in a multi-

subband quantum wire in the presence of scattering. To study this problem we have 

employed a semiclassical formalism that couples Boltzmann transport equation with spin 

density matrix evolution. We have found that spin relaxation length (limited by 

D’yakonov-Perel’ mechanism only) is ~ 10 microns at low temperatures. This is at least an 

order of magnitude improvement on what has been calculated in two-dimensional systems 

for similar values of temperature and bias. We also indicate the physical reason for this 

improvement. 

(c) Chapter 4: In this chapter we consider the spin relaxation of “upstream” electrons due 

to D’yakonov-Perel’ mechanism. We show that spatial decay of spin polarization is non-

exponential which is in direct contradiction with the claims of the drift-diffusion model. 

(d) Chapter 5: In this chapter we consider the problem of spin fluctuation and spin noise. 

We show that the D’yakonov-Perel’ mode is indeed a very efficient mechanism of spin 

relaxation that erases any long term memory of initial spin in an ensemble. 

(e) Chapter 6: In this chapter we describe the spin transport experiment performed on Ni-

Cu-Co nanowire spin valves. We have extracted the spin relaxation length and spin 

relaxation time in this system and identified the dominant spin relaxation mechanism in 

Cu. 

(f) Chapter 7: In this chapter we describe the spin transport experiment performed on Ni-

Alq3-Co nanowire spin valves. Spin relaxation time in this system is extremely long, 

approaching a few seconds at low temperatures. This result establishes organic 

semiconductors (e.g. Alq3) as an ideal platform for spintronics. 
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(g)  Chapter 8: In this chapter we describe our preliminary results on measurements of 

ensemble averaged spin dephasing time in self-assembled cadmium sulfide quantum dots 

using an electron spin resonance technique. 
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CHAPTER 2.   Spin Relaxation in Time versus Space: The 
Difference between Charge and Spin Diffusion Constants♣

 
♣ Publications based on this chapter:  
[71] S. Pramanik, S. Bandyopadhyay, and M. Cahay, "Spin relaxation in the channel of a spin field-effect 
transistor," IEEE Transactions on Nanotechnology, vol. 4, pp. 2-7, 2005 and 
[72] S. Pramanik, S. Bandyopadhyay, and M. Cahay, "The inequality of charge and spin diffusion 
coefficients," submitted. 

 

Overview 

Drift-diffusion models of spin transport tacitly assume that the diffusion coefficients 

describing charge and spin diffusion are the same. In this chapter we will show that this is 

generally incorrect. The two diffusion coefficients can be vastly different. We highlight 

this with the extreme example of spin transport in a quantum wire where a single subband 

is occupied and spin relaxation occurs via the D’yakonov-Perel’ mode. In this case, the 

spin diffusion coefficient is infinite even though the charge diffusion coefficient is finite. 

We also show that there is a difference between spin relaxation in time and in space. Spin 

can relax in time even when it does not relax in space. We also point out the necessary 

conditions for D’yakonov-Perel’ spin relaxation in a quantum wire and indicate the 

pathways to eliminate it. 
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2.1 Introduction  

The drift-diffusion theory of (bipolar) charge transport and spin transport, in the absence of 

spin-charge coupling and/or spin accumulation processes (e.g. spin Hall effect [73]), is 

based on the following two equations [74-77]:              
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where  n  is the electron density (qn is the charge density), and  is the density of 

electrons having a particular spin 

σn

σ . Generally, [A], [B], [C], [D] and [E] are dyadics (9 

component tensors) [38, 78], but in the simplest case, they reduce to scalars, so that the 

above equations simplify to: 
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where  D  is the particle (or charge) diffusion constant, sτ  is the spin relaxation time and τ  

is the electron-hole recombination time. The quantities α̂  and  are proportional to the 

electric field driving transport. Unless this field is very large, the third terms in the above 

two equations can be neglected, so that the steady-state solution of equation (2.2b) is: 

 where  

β̂

)/( exp )0()( sLxnxn −= σσ

                                                                ss DL τ=                                                        (2.3) 



30 
Here  Ls  is the spin diffusion length. Similarly, the steady state solution of equation (2.2a) 

is )/( exp )0( )( DLxnxn −=  where  LD  is the charge diffusion length given by   

                                                            τDLD =                                                          (2.4) 

In equations (2.1) – (2.4), it is tacitly assumed that the same diffusion constant “D” 

describes charge transport and spin transport. This assumption is commonplace in the 

literature (see, for example, references [38, 74-76, 79]). Reference [80] considers a two-

dimensional system with different spin and charge diffusion constants but ultimately 

assumes that the bare spin diffusion constant is the same as the charge diffusion constant. 

Reference [81] also examines this issue, and based on an heuristic assumption that spin 

transport is analogous to bipolar charge transport, reaches the conclusion that the two 

diffusion coefficients are equal as long as the populations of upspin and downspin carriers 

are equal. In spin polarized transport, the two populations are unequal by definition. 

Therefore, it is imperative to examine if these two diffusion constants are still equal in spin 

polarized transport, and if not, then how unequal they can be. In this chapter we will show 

that these two diffusion coefficients are vastly different. In fact, in one case, the spin 

diffusion constant Ds can be infinite when the charge diffusion constant Dc is finite. We 

show this analytically. We also show that there is an essential difference between spin 

relaxation in time and spin relaxation in space. The system where it happens is a 

semiconductor quantum wire where only the lowest subband is occupied at all times and 

spin relaxation occurs via the D’yakonov-Perel’ mechanism [32, 33]. In the following 

section we will show analytically that in this system charge and spin diffusion constants 

are vastly unequal. When multiple subbands are occupied, Ds  is finite but still it is several 

orders of magnitude larger than the charge diffusion constant Dc in the same system. 



31 
 
2.2 Analytical proof that Dc  ≠ Ds 

Consider an ensemble of electrons injected in a quantum wire at time t = 0 from the 

end  x = 0 as shown in Figure 2.1. Only the lowest subband is occupied in the wire at 

all times. There is an electric field Ex driving charge transport, and there is also a 

transverse “gate” electric field ( ) breaking structural inversion symmetry, thereby 

causing a Rashba spin-orbit interaction [28]. This structure mimics the configuration of 

a spin interferometer [9]. We will assume that the quantum wire axis is along the [100] 

crystallographic direction and that there is crystallographic inversion asymmetry along 

this direction giving rise to Dresselhaus spin-orbit interaction [26]. We choose this 

system because it is the simplest. Reference [79] has considered this system within the 

framework of drift-diffusion model and shown that there is a single time constant 

describing spin relaxation. In contrast, spin relaxation in a two-dimensional system 

(quantum well) may be described by more than one time constant [79]. For illustration 

purposes, we will assume hypothetically that the spin injection efficiency is 100%, so 

that at x = 0, all electrons are spin polarized along some particular, though arbitrary, 

direction 

yEy ˆ

0η̂  in space. Their injection velocities are not necessarily the same. We are 

interested in finding out how the net spin polarization of the ensemble, S
r

, decays in 

time or space due to the D’yakonov-Perel’ process. In the quantum wire, the electrons 

experience various momentum relaxing scattering events. Between successive 

scattering events, they undergo free flight and during this time, their spins precess 

about a velocity-dependent pseudo-magnetic field )( xSO vB
r

 caused by Rashba and 

Dresselhaus spin-orbit interactions. This field is related to the spin-orbit 
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Figure 2.1 Geometry of the quantum wire. Here Ex is the longitudinal electric field 
that drives transport. The transverse electric field Ey induces Rashba spin-orbit 
coupling. The orange arrows indicate spin polarized (along x) electron injection in the 
quantum wire channel from x = 0 at time t = 0. Clearly at x = 0 (and t = 0), < Sx > = 1, 
< Sy > = < Sz > = 0 and |< S >| = 1, where < > indicates ensemble averaging over the 
entire electron population. As these electrons travel along the channel under the 
influence of transport driving electric field Ex, their initial spin orientations change 
due to spin-orbit coupling effects in the quantum wire channel. The strength of this 
spin-orbit coupling effect depends on electron velocity vx as well as on the subband 
indices. Thus each electron experiences different spin-orbit coupling and hence spins 
of different electrons are rotated by different angles. Thus at t > 0, different electrons 
have different spin orientations and |< S >| (t > 0) < 1. This is the D’yakonov-Perel’ 
mechanism of spin relaxation. We are interested in finding out how |< S >|evolves in 
time as well as in space (i.e. along the quantum wire channel).  
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interaction Hamiltonian  as  SOH

                                      )( )2/( xSOBSO vBgH
rr

⋅= σµ                                                         (2.5) 

where Bµ  is the Bohr magneton, g is the g-factor, zyx zyx ˆˆˆ σσσσ ++=
r , with iσ (i = x, y, 

z) being the Pauli spin matrix, and  is the electron velocity along the wire axis. The spin 

precession occurs according to the equation     

xv

                                             Sv
dt
Sd

x

rr
r

×Ω= )(                                                                    (2.6) 

where S
r

 is the spin polarization vector and )( xvΩ
r

is a vector whose magnitude is the 

angular frequency of spin precession. It is related to )( xSO vB
r

 as )()/()( *
xSOx vBmqv =Ω

r
 

where  q  is the magnitude of the electronic charge and is the electron’s effective mass. *m

    The precession vector  has two orthogonal components due to Rashba and 

Dresselhaus interactions: 

)( xvΩ
r

                                          )()()( xRxDx vvv Ω+Ω=Ω
rrr

                                                      (2.7) 

where the first term is the Dresselhaus and the second term is the Rashba contribution. 

These two contributions are given by  
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where Wy and Wz are the transverse dimensions of the wire (m and n are the respective 

subband indices), a42 and a46 are material constants,  is the unit vector along the x axis,  x̂
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which coincides with the axis of the channel and ẑ  is the unit vector along the z-direction. 

In the present case, when transport takes place via the lowest subband, .  1== nm

Note that the precession vector )( xvΩ
r

lies in the zx − plane. The angle θ  that  makes 

with the channel axis ( ) is given by       

Ω
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which is independent of electron velocity , but depends only on m and n. In the present 

case, since only the lowest subband is occupied during transport, 

xv

θ  is the same for all 

electrons. This means that the precession axis is fixed for all electrons but the magnitude of 

the precession frequency is different for different electrons. Thus, every electron, 

regardless of its velocity, precesses about the same axis, as long as only one subband is 

occupied. The direction of precession (clockwise or counter-clockwise) depends on the 

sign of the velocity and therefore can change if the velocity changes sign, but the 

precession axis remains unchanged. However, the precession frequency depends on the 

velocity and is therefore different for different electrons as long as there is a spread in their 

velocities caused by varying injection conditions or random scattering. As a result, when 

we ensemble average over all electrons, the quantity S
r

decays in time, leading to spin 

relaxation in time.  

To show this more clearly, we start from equation (2.6). 
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where is the spin component along the - axis. Equating each component 

separately we get 

),,( zyxnSn = n
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If every electron had the same , then we could replace every spin component  in the 

last equation by its ensemble averaged value 

xv nS

nS , so that     
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In that case, S
r

will not decay in time and there will be no D’yakonov-Perel’ spin 

relaxation in time. However, if  is different for different electrons either due to different 

injection conditions, or because of scattering, then we cannot replace  by 

xv

nS nS  in 
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equation (2.11). As a result, 0≠
dt

Sd
r

, and there will be a D’yakonov-Perel’ relaxation in 

time. To establish this, we show results of Monte Carlo simulation of D’yakonov-Perel’ 

spin relaxation in time in Figure 2.2. The system studied is the one in Figure 2.1. The 

details about the simulator is available elsewhere [46, 82] and will not be repeated here. 

We inject  polarized electrons in the lowest subband of the quantum wire (Figure 2.1). 

They suffer intra-subband scattering due to interactions with phonons, which randomly 

change their velocities. We then study the temporal decay of ensemble averaged spin 

components. 

x̂

    The electric field and temperature are kept low enough that no electron transitions to a 

higher subband by inter-subband scattering. From this simulation we observe that the 

decay of spin with time is not exponential, but at least monotonic. We find sτ  (defined as 

the time taken for S
r

 to decay to 1/e times its initial value at t = 0) to be about 10 nsec at 

30 K, when the driving electric field is 0.5 kV/cm. This is a standard method, and has been 

used by, for example, Kim and Kiselev in reference [83]. The exact value of sτ  is not 

important here. We only stress that sτ  is finite for diffusive transport in a quantum wire, 

even if transport occurs via a single channel. Spin dephasing time is expected to increase as 

we reduce the driving electric field [46, 82]. But even in the zero-field limit, when 

transport takes place only by diffusion and there is no drift, sτ  will be finite according to 

the physical picture presented here. 

    Next, let us consider D’yakonov-Perel’ spin relaxation in space. From equation (2.11) 

we obtain (using the simple chain rule of differentiation) 
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Figure 2.2 Temporal decay of ensemble averaged spin components as calculated 
using Monte Carlo simulator. The quantum wire material is GaAs and Ey = 100 
kV/cm. Injected spins are all polarized along  and occupy the lowest subband during 
transport. The simulation is based on the model depicted in Figure 2.1. The spin 
diffusion time is approximately 10 ns at 30 K and driving field of 0.5 kV/cm. This low 
field and low temperature ensure that the second subband is not occupied. 

x̂
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In this case, even if different electrons have different velocities, it does not matter since the 

spatial rates 
dx

dSn  are independent of velocity. Therefore we can always replace  in the 

above equation by its ensemble averaged value 

nS

nS  whether or not there is scattering 

causing a spread in the electron velocity. Consequently,               
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Thus there is never any D’yakonov-Perel’ relaxation in space as long as a single subband is 

occupied. This is true whether or not there is any intra-subband scattering. In Figure (2.3) 

we show a Monte Carlo simulation result to show this [71].  

    What we have shown is that in a quantum wire with single subband occupancy and 

D’yakonov-Perel’ as the only spin relaxation mechanism, there is a fundamental difference 

between spin relaxation in time and spin relaxation in space. The physical origin of this 

difference is explained below: 

The precession frequency is given by 

                                  )()()( 22 tvtv
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≡+=≡Ω                                        (2.15)
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If all electrons are injected with the same spin polarization at t = 0, then the angle by which 

any given electron’s spin has precessed at time t = t0 is 

                                                                   (2.16) ( )[ ] 0
0

00  )0()()(
0

dxtxdttvt
t

OxO ξξξϕ =−== ∫

where d0 is the distance between the location of the electron at time t0 and the point of 

injection. Obviously d0 is history-dependent, because different electrons with different  

 

Figure 2.3 Spatial spin relaxation in a GaAs quantum wire as described in 
Figure 2.1. The driving electric field is 2 kV/cm and lattice temperature is 30 K. 
These results are obtained from Monte Carlo simulation. Spin does not relax for 
single-channeled (single-subband) transport but does relax for multi-channeled 
transport. 
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injection velocities and/or scattering histories would traverse different distances in time t0. 

Consequently, if we denote the angle by which the n th electron’s spin has precessed in 

time t0 as )( 0tnϕ , then )()()( 00201 ttt mϕϕϕ ≠⋅⋅⋅≠≠ . As a result, if we take a snapshot at 

t0, we will find that the spin polarization vectors of different electrons are pointing in 

different directions. Therefore, ensemble averaged spin at t0 is less than what it was at time 

t = 0. Consequently, spin depolarizes with time leading to D’yakonov-Perel’ relaxation. 

    The spatial rate of precession, on the other hand, is obtained as 
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Therefore, the angle by which any given electron’s spin has precessed when it arrives at a 

location  x = X0 is 
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This angle is obviously history-independent since it depends only on the coordinate X0 

which is the same for all electrons at location X0, regardless of how and when they arrived 

at that location. In fact, an electron may have visited the location X0 earlier, gone past it, 

and then scattered back to X0. Or it may have arrived at X0 for the first time. It does not 

matter. Regardless of the past history, the angle by which an electron’s spin has precessed 

when it is located at X0 is a constant. Therefore every single electron at x = X0 has its spin 

polarization vector pointing in the same direction, and the ensemble averaged spin at x =  
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X0 is the same as that at x = 0. Therefore spin does not depolarize in space and there is no 

D’yakonov-Perel’ spin relaxation in space, unlike time. 

2.3 Spin diffusion constant and charge diffusion constant

 Since spin relaxes in time but not in space, the relaxation time sτ  is finite whereas the 

relaxation length  Ls is infinite. Therefore, the fact that ∞=sL , but ∞≠sτ , implies spin 

diffusion constant Ds is infinite, according to equation (2.3). But the diffusion constant Dc 

associated with charge transport is certainly finite since we have frequent momentum 

relaxing scattering in our system. Therefore, the only way to reconcile these facts is to 

postulate that there are two very different diffusion constants Ds and Dc associated with 

spin and charge diffusion. This completes our analytical proof that  Dc ≠ Ds.  

One final question remains, namely how general is the above result. Is it only valid for a 

quantum wire with single subband occupancy? The answer is negative. To show this we 

considered a quantum wire with multi-subband occupancy. Here there is D’yakonov-Perel’ 

relaxation in both time and space [46, 47, 71] and one could extract a finite value of the 

spin diffusion constant Ds from equation (2.3) provided we can calculate Ls and τs. We 

have carried out this exercise. In Chapter 3 we will report our studies on multisubband spin 

transport in a quantum wire. The value of  Ls extracted from that study is m  10~ µ  at low 

temperatures. On the other hand, the value of nss  1~τ  [46]. This yields Ds = 103 cm2/s 

(from equation (2.3)) which is still several orders of magnitude higher than the charge 

diffusion constant Dc in the same quantum wire under the same conditions [84-86]. 

Thus , in general, and the two quantities can be vastly different.  cs DD ≠
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2.4 Necessary conditions for D’yakonov-Perel’ spin relaxation in space

It is quite straightforward to deduce the spatial variation of individual spin components 

from equation (2.13). We will not show the derivation here, but leave it as an exercise for 

the curious reader. We only write down the final result: 
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It has been assumed that injected spin polarizations point along . From these equations, 

we can identify the necessary conditions for (spatial) D’yakonov-Perel’ spin relaxation to 

take place in a quantum wire. 

x̂

2.4.1 Rashba interaction 

We can immediately see from the “boxed” equations derived above that if there is no 

Rashba interaction ( )0 or, 046 == yEa , then at all positions x ,  ,1)( =xS x 0)( =xS y  and 

0)( =xS z . This implies xxSxSxSxS zyx    ,1()()()( 222 ∀=++=
r

. As  
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described earlier, here, the angular bracket ⋅⋅  denote ensemble average over the entire 

electron population and )(xS
r

 is the ensemble averaged spin vector at position x . Thus 

we infer that as long as the electrons are injected in the quantum wire channel with their 

spins polarized along the axis of the wire, there is no D’yakonov-Perel’ spin relaxation, 

since the ensemble averaged spin )(xS
r

 does not decay at all. Therefore Rashba 

interaction is a necessary ingredient for ensemble averaged spin to relax.  

    It is possible to furnish a physical explanation of this phenomenon. In absence of Rashba 

interaction, the only spin-orbit magnetic field in the channel is due to bulk inversion 

asymmetry which points along  (depending on the sign of , see equations (2.8)). We 

are injecting electrons with spins polarized along . Clearly there will be no spin 

precession as the cross product of two collinear vectors cancels out. It does not matter even 

if different electrons experience different spin-orbit magnetic fields (i.e. if they are 

occupying different subbands or have different velocities). Since the injected spins are 

collinear with the spin-orbit magnetic field, they are immune to its presence.  

x̂± xv

x̂

    There is a second possible way of looking into this issue. In case of a quantum wire, 

Dresselhaus spin-orbit coupling is proportional to the x  component of Pauli spin matrix 

with eigenspinors pointing along x̂± . Thus when electrons with spins polarized along  

enter the channel, they find themselves in one of the stationary states of the channel 

implying no temporal (and hence spatial) evolution. 

x̂

    Thus, in a III-V quantum wire, if there is no Rashba interaction present in the system, 

D’yakonov-Perel’ mechanism of spin relaxation (in space) will be completely eliminated. 
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2.4.2 Dresselhaus interaction 

If there is no Dresselhaus interaction ( )0  i.e. 42 =a  then from equations (2.19) we have 
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Therefore the magnitude of ensemble averaged spin vector 

1)( 222 =++= zyx SSSxS
r

, for all values of x . Again, we see that the ensemble 

averaged spin does not decay. In this case the ensemble averaged spin vector rotates in the 

xy  plane (the  polarization remains zero), but the amplitude of this oscillation does not 

decay. Therefore there can be no D’yakonov-Perel’ spin relaxation without Dresselhaus 

interaction. 

z

    The physical picture is as follows: in absence of Dresselhaus interaction, the only spin-

orbit magnetic field in the quantum wire channel is due to the Rashba interaction which is 

pointing along ẑ± (depending on the orientation of ). The injected  polarized spins 

precess about this magnetic field like a spinning top, the plane of precession being the 

xv x̂

xy  

plane. In this case, the Rashba spin orbit magnetic field is different for different electrons 

since it is a function of electron velocity. Indeed, if we compute the temporal evolution of 

ensemble averaged spin vector, it will decay with time. The reason being at a given instant 

of time spins of different electrons will rotate by different amounts resulting in temporal 

spin dephasing. However, there will be no dephasing in space because  cancels out in 

quantum wire geometry (as described before). Thus in a quantum wire, if Dresselhaus 

interaction is absent, there will no D’yakonov-Perel’ spin relaxation in space. 

xv
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2.4.3 Multichanneled transport 

If both Rashba and Dresselhaus interactions are present, but transport is single channeled 

i.e. , then every electron is in the same subband 00   , nnmm == ( )00 , nm . In that case 
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Once again it is straightforward to verify that the magnitude of ensemble averaged spin 

vector is unity for all values of x  inside the channel. Consequently there is no D’yakonov-

Perel’ spin relaxation if the transport is single channeled. This is true regardless whether 

the electrons are into the lowest subband or any other subband, as long as there is no 

intersubband scattering. 

2.4.4 What is necessary for D’yakonov-Perel’ spin relaxation (in space)? 

If transport is multichanneled then different electrons at position x  occupy different 

subbands i.e. the subband indices are different for different electrons. As pointed out 

earlier, this leads to D’yakonov-Perel’ spin relaxation. Therefore multichanneled transport, 

in presence of both Rashba and Dresselhaus interaction leads to D’yakonov-Perel’ spin 

relaxation. It is important to note that “scattering” or intersubband transitions are not 

necessary for D’yakonov-Perel’ spin relaxation. Even if every electron remains in the 

subband in which it was originally injected, there will be a D’yakonov-Perel’ relaxation as 
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 a consequence of ensemble averaging over all electrons. Of course, if there is scattering 

and intersubband transitions then the subband indices become functions of x , in which 

case the effect of ensemble averaging is exacerbated and the relaxation will be more rapid. 

Thus we have established that three conditions are needed for D’yakonov-Perel’ spin 

relaxation in space: (a) Rashba interaction, (b) Dresselhaus interaction and (c) 

multichanneled transport. All three of these conditions are necessary for D’yakonov-Perel’ 

spin relaxation in space. 

2.5 Conclusion

In this chapter we have shown that spin diffusion coefficient and charge diffusion 

coefficient are vastly different and have established the conditions required for D’yakonov-

Perel’ spin relaxation in a quantum wire. This relaxation is harmful for most spintronic 

devices (one example is the spinFET [9]), because it leads to spin randomization. Since 

optimum materials for spinFET type devices (e.g. InAs) usually posses strong Rashba and 

also some Dresselhaus spin-orbit interactions, the only effective way to eliminate the 

D’yakonov-Perel’ spin relaxation is to ensure and enforce single channeled transport. 

There has been some proposals that advocate using multichanneled devices for spinFET, 

along with the claim that they provide better spin control via the use of multiple gates [87].  

While it is unlikely that spin control is improved by using multiple gates, since 

synchronizing these gates is an additional engineering burden that can only degrade device 

operation and gate control, it is even more important to understand that multichanneled 

devices have serious drawbacks. The original proposal for spinFET pointed out that 

multichanneled transport is harmful because it dilutes the spin interference effect which is 

the basis of the spinFET device [9]. Here we have pointed out an additional motivation to
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avoid multichanneled devices: they will suffer from D’yakonov-Perel’ spin relaxation, 

while the single-channeled device will not. 

In Chapter 3 we will describe our study of multisubband spin transport based on a Monte 

Carlo simulation technique. 



 

 

 

 

CHAPTER 3.   D’yakonov-Perel’ Spin Relaxation in a Quantum 
Wire: Multichanneled Transport1

 

Overview 
In this chapter we study the spatial decay of spin-polarized hot carrier current in a spin-

valve structure consisting of a semiconductor quantum wire flanked by half-metallic 

ferromagnetic contacts. The current decays because of D’yakonov-Perel’ spin relaxation in 

the semiconductor caused by Rashba and Dresselhaus spin-orbit interactions in multi-

channeled transport. The associated relaxation length is found to decrease with increasing 

lattice temperature (in the range 30 K to 77 K) and exhibit a non-monotonic dependence on 

the electric field driving current. The relaxation lengths are several tens of microns which 

are at least an order of magnitude larger than what has been theoretically calculated for 

two-dimensional structures at comparable temperatures, spin-orbit interaction strengths 

and electric fields. This improvement is a consequence of one-dimensional confinement 

that does not necessarily suppress carrier scattering, but nevertheless suppresses 

D’yakonov-Perel’ spin relaxation. As we have observed in the previous chapter, as long as  

                                                 
1 This chapter has been published as  
[47] S. Pramanik, S. Bandyopadhyay, and M. Cahay, "Decay of spin-polarized hot carrier current in a 
quasi-one-dimensional spin-valve structure," Applied Physics Letters, vol. 84, pp. 266-268, 2004. 
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the carriers reside in one particular subband, there is no D’yakonov-Perel’ relaxation in 

space. It is necessary to have inter-subband scattering in the system for this mechanism to 

take place. Intra-subband scattering, however frequent it may be, will not cause 

D’yakonov-Perel’ spin relaxation in space. 

3.1 Introduction  

In the previous chapter we pointed out that multichanneled transport in presence of both 

Rashba and Dresselhaus interaction leads to D’yakonov-Perel’ spin relaxation in a 

quantum wire. Thus, in order to suppress this mechanism of spin relaxation it is essential to 

enforce single channeled transport. However, in general, multiple subbands are occupied 

by electrons during transport and hence there will be D’yakonov-Perel’ spin relaxation in 

space. In this chapter, we study D’yakonov-Perel’ spin relaxation in presence of 

multichanneled transport in quantum wires and find out spin relaxation length limited by 

this process.  

    The model we study here has the spin FET configuration as described before (see Figure 

2.1). A quasi-one dimensional semiconductor channel is flanked between two half-metallic 

ferromagnetic contacts. One contact (called “source”) injects spin polarized electrons (or 

spin polarized current) into the channel and thus acts as a “spin polarizer”.  The other 

contact acts as a “spin-analyzer” and is termed the “drain”. Carriers drift from the source to 

the drain under the influence of a driving electric field. When they arrive at the drain, they 

are transmitted with a probability ⎟
⎠
⎞

⎜
⎝
⎛=

2
cos  22 θT  where θ  is the angle between the 

electron’s spin polarization at the drain end and the drain’s magnetization. With increasing
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 degree of spin depolarization in the channel (caused by spin relaxation), the average 

“misalignment angle” θ  (for the electron ensemble) increases and consequently the 

transmitted current decreases. Ultimately, when there is no residual spin polarization in the 

current (i.e. electrons are equally likely to have their spins aligned parallel or antiparallel to 

the drain’s magnetization), the transmitted current will fall to 50% of its maximum value. 

We are interested to find out how the (transmitted) spin polarized current falls off with 

distance along the channel at different driving fields and temperatures.  

    As mentioned above, we only focus on D’yakonov-Perel’ mechanism of spin relaxation. 

In this mechanism, spins depolarize in the channel primarily because of spin-orbit 

interactions caused by bulk inversion asymmetry (Dresselhaus spin-orbit coupling) and 

structural inversion asymmetry (Rashba spin-orbit coupling). The spatial decay due to 

D’yakonov-Perel’ mechanism was studied in the past by Bournel et al. [42-45, 88-91] and 

Saikin et al. [48, 92-98]  in two-dimensional channels. They mostly dealt with low driving 

electric fields so that transport is linear or quasi-linear. In contrast, we have studied the 

spatial decay in quasi-1D structures of both spin and spin-polarized current at high driving 

electric fields of 1 – 10 kV/cm, which result in hot carrier transport and nonlinear effects.  

3.2 Theoretical model

In a 1D structure, the spin polarized current due to a single electron is proportional to 

2    Tvq x where  is the electronic charge,  is the velocity of the electron, and q xv 2  T  is 

the transmission probability of the electron through the drain contact. As stated before, the 

quantity 2  T  depends on the component of the electron’s spin polarization along the  
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magnetization of the drain. We will assume that the source and drain are both magnetized 

along the channel’s axis ( x  axis). This results in the initial spin orientation to be along the 

channel axis. Accordingly,  

⎟
⎠
⎞

⎜
⎝
⎛=

2
cos  22 θT , 
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where  is the spin component along the nS ) , ,(  zyxn =  axis, and xS  is the normalized 

value of . xS

The ensemble averaged spin polarized current at any position x  is given by      

                                             ( )∑=
xx Sv

xxxxs STvxSvfqxI
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2
 )(    ,, )(                                 (3.2) 

where the velocity ( ) and spin (xv xS ) dependent distribution function ( )xSvf xx ,,  at any 

position x  is found directly from the Monte Carlo simulator described in references [46, 

82] and will not be repeated here. In this simulator we use a parabolic energy versus 

velocity dispersion relation  
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where  and n  are the subband indices along  and m y z  respectively, neglecting any band 

structure non-parabolicity, which is not important in the energy range encountered. It is 

possible to introduce some band structure non-parabolicity by using an energy-dependent 

effective mass. However, this is not important. The carrier kinetic energies remain small in 
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every subband so that non-parabolicity effects are never significant. If the energy of a 

carrier in the lowest subband begins to increase, the carrier suffers intersubband transition 

to a higher subband by absorbing or emitting phonons. This process keeps the kinetic 

energy in every subband small and the carrier temperature remains very close to the lattice 

temperature. The intersubband scattering (not intervalley scattering) is also responsible for 

velocity saturation in the quantum wire. 

    The dispersion relation in equation (3.3) allows us to calculate the velocity  from the 

carrier energy 

xv

E  and subband indices m  and  (which are tracked in the simulator) very 

easily. If instead we used the energy versus wave-vector relation (which is traditional) and 

then attempted to find  from the velocity versus wave-vector relation, it would have 

been immensely complicated. The reason is that the velocity (or energy) versus wavevector 

relation is spin-dependent in the presence of Rashba effect [99] and becomes even more 

complicated if the Rashba effect is strong which leads to spin-mixing effects [100]. These 

complications would have been overwhelming in our case since we have a continuous 

distribution of spins and hence would have been faced with a denumerably infinite number 

of energy versus wavevector relations. The way to avoid this daunting complication and 

the associated numerical cost is to use the energy-velocity relation, which is spin-

independent, instead of energy-wavevector relation which is spin-dependent. 

n

xv

    In the simulation, carriers are injected into a quasi-1D GaAs channel of rectangular 

cross-section (  as described in Figure 2.1. We have assumed that there is a 

transverse electric field of  (in the direction) that gives rise to structural 

)nm 4 nm 30 ×

kV/cm 100 y
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inversion asymmetry and induces a Rashba effect in the channel. This field perturbs the 

subband energies in the channel but only slightly. The transverse voltage drop over a 4 nm 

wide channel due to this field is 40 meV, while the lowest subband energy is 355 meV. 

Therefore the perturbation is 11% for the lowest subband and progressively decreases for 

higher subbands. Consequently, we neglect this perturbation. Electrons are injected from a 

Fermi-Dirac distribution with their spins all aligned along the channel axis ( x  axis) in 

order to simulate the spin polarizer. At any given position x , we find the spin vector xS  

and compute the quantity ( ) 2
      xST for every electron. We also find the velocity  for 

every electron at position 

xv

x  and then compute the spin polarized current  by performing 

the ensemble averaging as described earlier. We have calculated  versus position 

SI

SI x  for 

channel electric fields in the range 1 – 10 kV/cm at two different temperatures of 30 K and 

77 K.   

3.3 Results and discussion

In Figure 3.1 we show the spatial decay of the normalized spin polarized current  for the 

four different (

SI

x directed) channel electric fields at a temperature of 30 K. In figure 3.2, we 

show the same quantity (along with the spatial decay of the ensemble averaged spin 

component xS ) at an electric field of 2 kV/cm at temperatures of 30 K and 77 K. Spin 

depolarization is complete when the normalized spin current  reaches a value of 0.5. At 

this point an electron is equally likely to have its spin aligned parallel or antiparallel to the 

drain’s magnetization (and therefore it is equally likely to be transmitted or blocked).  

SI
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We can define a “spin relaxation length” as the distance over which the injected spin 

polarized current decays to 50% of its initial value (i.e., becomes completely depolarized). 

 

Figure 3.1 Spatial decay of the normalized spin polarized current in a GaAs 
quantum wire channel of rectangular cross section 30 nm × 4 nm. The results 
are shown for four different channel electric fields (1, 2, 4 and 10 kV/cm) at 
lattice temperature of 30K. 

 

 

 

It is clear from Figure 3.2 that the spin relaxation length decreases with increasing carrier 

temperature because of increased scattering that causes increased spin depolarization. The 

electric field, on the other hand, has two opposing effects. The scattering rate increases 

slowly with the electric field, but so does the ensemble averaged electron drift velocity  
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until the saturation velocity is reached. A larger drift velocity makes the electrons travel a 

greater distance before getting depolarized. Consequently, the relaxation length at first 

increases with increasing electric field, but once the drift velocity begins to saturate, the    

 

 

 

 

Figure 3.2 Spatial decay of the normalized spin polarized current and the injected spin 
vector in the GaAs quantum wire channel. The results are shown for two different 
temperatures of 30 K and 77 K at a fixed channel electric field of 2 kV/cm. 

increased scattering takes over and the relaxation length starts to decrease with increasing 

electric field. The dependence of relaxation length on the electric field is therefore 

nonmonotonic. This non-monotonicity is shown in Figure 3.3. Based on the data presented  
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in this plot, we find that the relaxation length for spin polarized current is very large 

(between 20 and 100 m µ for the cases considered). This is at least an order of magnitude 

larger than what was calculated for two-dimensional structures at comparable temperatures 

and driving electric fields [95, 96]. 

 
Figure 3.3 Dependence of spin relaxation length on transport-driving electric field 

 
 
This difference is not due to any suppression of scattering. Even though elastic scattering is 

suppressed in quasi-1D structures [36], inelastic scattering is not [101], and the calculated 

mobility in 1D structure in this temperature range is less than that in bulk [86]. The true 

origin of the difference lies in the fact that Dresselhaus and Rashba interactions cause an  
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electron’s spin to precess slowly (during free flight) about a so called “spin precession 

vector” that is independent of electron’s velocity but depends only on subband indices and 

gate electric field. Intrasubband scattering cannot change the direction of this precession 

vector. Only when an electron undergoes an intersubband transition, this vector changes its 

direction. This leads to slow spin relaxation. In contrast, intrasubband scattering can 

change the direction of the spin precession vector in two- or three-dimensional structures. 

Therefore spin depolarizes at a faster rate in multi-dimensional structures. 

    Before concluding this chapter, we should mention that in a spin-valve type of structure, 

there is always a magnetic field in the channel, caused by the ferromagnetic contacts. This 

field, however weak, ensures that the eigenstates in the channel are not spin eigenstates 

[102, 103]. Therefore, even non-magnetic scatterers can cause spin relaxation [37]. This 

mechanism has not been considered here, since we have not considered the channel 

magnetic field. 

    Thus we have shown that spin relaxation length of electrons is very large in quasi-1D 

systems, even at elevated temperatures and high electric fields. Large spin relaxation 

lengths have been observed before in multidimensional structures, but only at low driving 

electric fields and low temperatures [104-106]. One-dimensional confinement can extend 

the range to high electric fields and elevated temperatures, which are required for realistic 

device applications. 

 

 

 



 
 

 
 

CHAPTER 4.  D’yakonov-Perel’ Spin Relaxation of “Upstream” 
Electrons in a Quantum Wire: Failure of the Traditional “Drift-

Diffusion” Model1

 

Overview 
The classical drift-diffusion model of spin transport treats spin relaxation via an empirical 

parameter known as the spin diffusion length. According to this model, the ensemble 

averaged spin of electrons drifting and diffusing in a solid decays exponentially with 

distance due to spin dephasing interactions. The characteristic length scale associated with 

this (spatial) decay is the spin diffusion length. The drift-diffusion model also predicts that 

this length is different for “upstream” electrons traveling in a decelerating electric field 

than for “downstream” electrons traveling in an accelerating electric field. However, this 

picture ignores energy quantization in confined systems (e.g. quantum wires) and therefore 

fails to capture the nontrivial influence of subband structure on spin relaxation. In this 

chapter we highlight this influence by simulating upstream spin transport in a 

multisubband quantum wire, in the presence of D’yakonov-Perel’ spin relaxation, using a 

semiclassical model that accounts for the subband structure rigorously. We find that the  

                                                 
1 This chapter has been published as  
[107] S. Pramanik, S. Bandyopadhyay, and M. Cahay, "Spin relaxation of "upstream" electrons in 
quantum wires: Failure of the drift diffusion model," Physical Review B, vol. 73, pp. 125309-1--125309-7, 
2006. 
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upstream spin transport has a complex dynamics that defies the simplistic definition of a 

“spin diffusion length”. In fact spin does not decay exponentially or even monotonically 

with distance, and the drift-diffusion picture fails to explain the qualitative behavior, let 

alone predict the quantitative features accurately. Unrelated to spin transport, we also find 

that upstream electrons undergo a “population inversion” as a consequence of the energy 

dependence of the density of states in a quasi-one-dimensional structure. 

4.1 Drift-diffusion model of spin transport  

The central result of the drift diffusion model is a differential equation that describes the 

spatial and temporal evolution of carriers with a certain spin polarization . Reference 

[38] derived this equation for a number of special cases starting from the Wigner 

distribution function. In a coordinate system where the 

σn

x  axis coincides with the direction 

of electric field driving transport, this equation is of the form 

                                        0   
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D  is the diffusion coefficient, and and  are dyadics (nine component tensors) that 

depend on 

A B

D , the mobility µ , and the spin-orbit interaction strength in the material. 

Solution of equation (4.1), with appropriate boundary conditions, predict that the ensemble  
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averaged spin 222 )(  )(  )(  )( xSxSxSxS zyx ++=
r

should decay exponentially 

with x  according to  
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 Here E  is the strength of the driving electric field and  is a parameter related to the 

spin-orbit interaction strength. 

C

    The quantity  is the characteristic length over which L  )( xS
r

 decays to 
e
1  times its 

original value. Therefore it is defined as the “spin diffusion length”. Equation (4.4) clearly 

shows that spin diffusion length depends on the sign of the electric field E . It is smaller 

for upstream transport (when E  is positive) than for downstream transport (when E  is 

negative). 

    This difference assumes importance in the context of spin injection from a metallic 

ferromagnet into a semiconducting paramagnet. Reference [40] pointed out that spin 

injection efficiency across the interface between these materials depends on the difference 

between the quantities ssL σ/  and mmL σ/ , where  is the spin diffusion length in the 

semiconductor, 

sL

sσ  is the conductivity of the semiconductor, mσ  is the conductivity of the 

metallic ferromagnet, and  is the spin diffusion length in the metallic ferromagnet. 

Generally

mL

sm σσ >> . However, at sufficiently high retarding field, , so thatms LL <<
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 mmss LL σσ // ≈ . When this equality is established, the spin injection efficiency is 

maximized. Thus reference [40] claimed that it is possible to circumvent the infamous 

“conductivity mismatch” problem [108], which inhibits efficient spin injection across a 

metal-semiconductor interface, by applying a high retarding electric field in the 

semiconductor close to the interface. A tunnel barrier between the ferromagnet and the 

semiconductor [109], or a Schottky barrier [110, 111] at the interface does essentially this 

and therefore improves spin injection. 

    The result of reference [40] depends on the validity of the drift diffusion model and 

equation (4.3) which predicts an exponential decay of spin polarization in space. Without 

the exponential decay, one cannot even define a “spin diffusion length” . The question 

then is whether one expects to see the exponential decay under all circumstances, 

particularly in quantum confined structures such as quantum wires. The answer to this 

question is in the negative. Equation (4.1) and similar equations derived within the drift 

diffusion model, do not account for energy quantization in quantum confined systems and 

neglect the influence of subband structure on spin depolarization. This is a serious 

shortcoming, since in a semiconductor quantum wire, the spin-orbit interaction strength is 

different in different subbands. It is this difference that results in D’yakonov-Perel’ spin 

relaxation in quantum wires. Without this difference, the D’yakonov-Perel’ relaxation will 

be completely absent in quantum wires and the corresponding spin diffusion length will be 

always infinite [71]. The subband structure is therefore vital to spin relaxation. In the next 

section we will briefly repeat the semiclassical model which we used in earlier chapters. 

L
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4.2 Semiclassical model of spin relaxation

We have studied spin relaxation using a microscopic semiclassical model that is derived 

from the Liouville equation for the spin density matrix [112]. This model has been 

described in detail in previous chapters and will not be repeated here. Instead, for sole 

purpose of easy reference we will only highlight its essential features. This model allows 

us to study D’yakonov-Perel’ spin relaxation taking into account the detailed subband 

structure in the system being studied. 

    In technologically important semiconductors, such as GaAs, spin relaxation is 

dominated by the D’yakonov-Perel’ mechanism [32, 33]. This mechanism arises from 

Dresselhaus [26] and Rashba [27, 28] spin-orbit interactions that act as velocity dependent 

effective magnetic fields )( vB
r

. An electron’s spin polarization vector S
r

 precesses about 

)( vB
r

 according to the equation 

                                                      Sv
dt
Sd rr
r

×Ω= )(                                                            (4.5) 

where )( vΩ
r

 is the angular frequency of spin precession and is related to )( vB
r

 as 

)(  )/()( * vBmev
rr

=Ω , where  is the electron’s effective mass. If the direction of *m )( vB
r

 

changes randomly due to electron scattering which changes vr , then ensemble averaging 

over the spins of a large number of electrons will lead to a decay of the ensemble averaged 

spin in space and time. This is the physics of D’yakonov-Perel’ spin relaxation in bulk and 

quantum wells. In a quantum wire, the direction of  vr   never changes in spite of scattering, 

it is always along the axis of the quantum wire ( x̂± ).  The direction of the magnetic field  
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)( vB
r

 is always fixed as long as an electron does not suffer intersubband scattering. 

Nevertheless, there can be D’yakonov-Perel’ relaxation in a multisubband quantum wire, 

as we explain in the next paragraphs. 

    We will consider a quantum wire of rectangular cross section (as before) with its axis 

along the [100] crystallographic orientation, which we label the x  axis. A symmetry 

breaking electric field   is present along  to induce Rashba interaction (see Figure 2.1, 

for example). Then the components of the vector 

yE ŷ

)( xvΩ
r

 due to the Dresselhaus and 

Rashba interactions are given by 

                                 xv
W
m

W
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where  and  are material constants,  and  are the transverse subband indices,  

is the electronic wavevector along the axis of the quantum wire, and  are the 

transverse dimensions of the quantum wire along  and  

42a 46a m n xv
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Thus lies in the )( xvB
r

zx − plane and subtends an angle θ  with the wire axis ( ) given by x̂
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Note from the above equation that in any given subband in a quantum wire, the direction of 

is fixed, irrespective of the magnitude of the velocity  since )( xvB
r

xv θ  is independent of 

. Only the precession frequency xv Ω
r

 depends on . In case of bulk or 2D, both xv θ  and Ω
r

 

depend on electron velocity even if the electron resides in the same subband. This is the 

reason why D’yakonov-Perel’ process is suppressed in a quantum wire. 

    However, θ  is different in different subbands because the Dresselhaus interaction is 

different in different subbands. Consequently, as electrons transition between subbands 

because of intersubband scattering, the angle θ , and therefore the direction of the effective 

magnetic field )( vB
r

 changes. This causes D’yakonov-Perel’ spin relaxation in a 

multisubband quantum wire. Since spins precess about different axes in different subbands, 

ensemble averaging over electrons in all subbands results in a gradual decay of net spin 

polarization. Thus there is no D’yakonov-Perel’ spin relaxation in a quantum wire if a 

single subband is occupied, but it is present if multiple subbands are occupied and 

intersubband scattering occurs. This was discussed thoroughly in Chapters 2 and 3 of this 

dissertation [71]. 

    The subband structure is therefore critical to D’yakonov-Perel’ spin relaxation in a 

quantum wire. In fact, if a situation arises whereby all electrons transition to a single  
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subband and remain there, further spin relaxation due to D’yakonov-Perel’ process will 

cease thereafter. In this case, spin no longer decays, let alone decay exponentially with 

distance. Hence spin relaxation cannot be parameterized by a constant spin diffusion 

length.  

    The rest of this chapter is organized as follows. In the next section, we describe our 

model system, followed by results and discussions in section 4.4. Finally we conclude in 

section 4.5. 

4.3 Model of upstream spin transport

We consider a non-centrosymmetric (e.g. GaAs) quantum wire with axis along [100] 

crystallographic direction. We choose a three-dimensional Cartesian coordinate system 

with  coinciding with the axis of the quantum wire (Figure 4.1). The structure is of length x̂

mLx   005.1 µ=  with rectangular cross section nmWnmW zy  30  , 4 == . A metal gate is 

placed on the top (not shown in Figure 4.1) to induce symmetry breaking electric field 

, which causes the Rashba interaction. In a quantum wire defined by split Schottky 

gates on a two dimensional electron gas,  arises naturally because of the triangular 

potential confining carriers near the heterointerface. We assume 

yE y ˆ 

yE y ˆ 

kV/cm  100=yE [46]. In 

addition, there is another electric field )0( ˆ >− xx ExE which drives transport along the 

axis of the quantum wire. Consider the case when spin polarized monochromatic electrons 

are constantly injected into the channel at mxx   10 µ== with injection velocities along 

. If these electrons occupy only the lowest subband at all x̂−
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 times, then there will be no   D’yakonov-Perel’ spin relaxation [71]. Therefore in order to 

study multisubband effect on spin dephasing of upstream electrons, we inject them with 

 

 
Figure 4.1. A quantum wire structure of length mL   005.1    µ= with 
rectangular cross section 30 nm × 4 nm. A top gate (not shown) applies a 
symmetry breaking electric field  to induce the Rashba interaction. A 
battery (not shown) applies an electric field 

yE
0  ,ˆ >− xx ExE , along the channel. 

Monochromatic spin polarized electrons are injected at mxx   10 µ== with 
injection velocity . These electrons travel along injv− x̂−  (upstream electrons) 
until their directions of motion are reversed due to the electric field . We 
investigate spin dephasing of these upstream electrons. 

xEx ˆ−
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enough energy  that they initially occupy multiple subbands. We ignore any thermal 

broadening of injection energy [38] since  for the range of temperatures (

0E

TkE B>>0 T ) 

considered,  being Boltzmann’s constant. Let  denote the energy at the bottom of i th 

subband ( ). We place  between the n th and th subband 

bottoms as shown in Figure 4.2. 

Bk iE

etc. ,,1 , ,...,2 ,1 ⋅⋅⋅+= nni 0E )1( +n

 

 Figure 4.2  Subband energy dispersion in the quantum wire 

 
In other words, . We assume that the injected electrons each with energy , 

are uniformly distributed over the lowest  subbands. In other words, at time ,  

10 +<< nn EEE 0E

n 0=t
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electron population of the th (i ni ≤≤1 ) subband is given by 

( ) )(   )(   /)0 ,( 000 EExxnNtxNi −−== δδ , where  is the total number of injected 

electrons and 

0N

E  denotes their energies. At any subsequent time t , these distributions 

spread out in space ( ), as well as in energy, due to interaction of the injected 

electrons with the electric field   and numerous scattering events. Relative population of 

electrons among different subbands will change as well due to intersubband scattering 

events. Upstream electrons originally injected into, say, subband i  with velocity  

, gradually slow down because of scattering and the decelerating electric 

field. They change their direction of motion (i.e. become downstream) beyond a distance 

0xx <

xE

)0(  ˆ >− ii vxv

0xxi −  measured from the injection point . Thus, no upstream electrons will be found 

in the i th subband beyond 

0x

ix . Note that the value of   0xxi −  depends on three factors: 

the initial injection velocity in subband  , the decelerating electric field and the scattering 

history. On the other hand, the “classical turning distance” of monochromatic electrons 

injected into the th subband with energy  for a given electric field  is given by 

i

i 0E xE

                                              
2
1

0
2*

0 xxEevmEE ixii −==−                                           (4.9) 

where  is the energy at the bottom of the i th subband and  is the injection velocity in 

the i th subband. Note that  does not depend on scattering history and 

iE iv

ix ii xx =  in ballistic 

transport. Clearly 121 vvvv nn <<⋅⋅⋅<< −  for a given  (see Figure 4.2). Thus for a given 

channel electric field , 

0E

xE }min{ 0x0 xxx in −=− , . ,,2 ,1 ni ⋅⋅⋅=  Hence we concentrate only 
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 on the region where almost all electrons are upstream electrons. In the simulation, 

the velocity of every electron is tracked and as soon as an electron alters direction and goes 

downstream (i.e. its velocity becomes positive) it is ignored by the simulator and another 

upstream electron is simultaneously injected from 

},{ 0xxn

0xx =  randomly in any of the  lowest 

subbands with equal probability. This process is continued for a sufficiently long time until 

electron distributions over different subbands, 

n

, ,,2 ,1  ),,( nitxNi ⋅⋅⋅=  no longer change with 

time. Under this condition we say that the steady state is achieved for the upstream 

electrons. These steady state electron distributions are extended from  to  and 

heavily skewed near the region

nxx = 0xx =

0xx = . This steady state distribution of upstream electrons 

does not represent the local equilibrium electron distribution because of two reasons (a) 

upstream electrons are constantly injected into the channel at 0xx = ; this is the reason why 

the distributions are skewed near 0xx = , and (b) we exclude any downstream electrons 

from the distribution. At local equilibrium, there will be of course both upstream and 

downstream electrons in the distribution. 

    The model described above allows us to separate upstream electrons from downstream 

electrons and therefore permits us to study upstream electrons in isolation. Of course, in a 

real quantum wire, both upstream and downstream electrons will be present at any time, 

even in the presence of a strong electric field, since there will always be some 

nonvanishing contribution of backscattered electrons to the upstream population.  
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The semiclassical model and the simulator used to simulate spin transport have been 

described in reference [46]. Based on that model, at steady state, the magnitude of the 

ensemble averaged spin vector at any position x  inside the channel is given by 
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Here zyxxSi ,,  ,)( =ςς  denotes the ensemble average of ς  component of spin at position 

x . Subscript  implies that ensemble averaging is carried out over electrons only in the i th 

subband. The above equation can be simplified to 
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where zxSyxSxxSxS lzlylxl ˆ )(ˆ )(ˆ )()( ++=
r

 and )(xijθ  is the angle between 

)(xSi

r
and )(xS j

r
. Note that in absence of any intersubband scattering event, 

1 )( =xSl

r
 for all x  (i.e. initial spin polarization of the injected electrons) [71]. 

Simulation results that we present here can be understood using equation (4.11). 

4.4 Results and discussion

We examine how ensemble averaged spin polarization of upstream electrons  )( xS
r

 

varies in space for different values of driving electric field  and injection energy ExE 0 for a 
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fixed lattice temperature T . We vary  in the range xE kV/cm 25.0 − for constant injection 

energy 426 meV and T = 30 K, where  is measured from the bulk conduction band 

energy. The lowest subband bottom is 351 meV above the bulk conduction band edge. To 

study the influence of injection energy, we also present results corresponding to 

 with  and 

0E

meV  4410 =E kV/cm  1=xE K 30=T . In all cases mentioned above, injection 

energies lie between subband 3 and subband 4. Injected electrons are equally distributed 

among the three lowest subbands initially. Obviously, this corresponds to a non-

equilibrium situation. All injected electrons are 100% spin polarized transverse to the wire 

axis (i.e. either  or ŷ ẑ ). Figures 4.3 – 4.8 show how ensemble averaged spin components 

)( ,)( ,)( xSxSxS zyx  and  )( xS
r

of upstream electrons evolve over space. Figures 

4.3 – 4.6 show the influence of the driving electric field on spin relaxation. Figure 4.7 

shows the influence of initial injection energy, and Figure 4.8 shows the influence of initial 

spin polarization. It is evident that neither the driving electric field, nor the initial injection 

energy, nor the initial spin polarization has any significant effect on spin relaxation. Note 

that  )( xS
r

 does not decay exponentially with distance, contrary to equation (4.3). 

Spatial distribution of electrons over different subbands is shown in Figures 4.9 – 4.13. 

The classical turning point of each electron in the third subband ( ) has been indicated in 

each case. Figures 4.9 – 4.12 show the influence of initial injection energy on the spatial 

evolution of subband population. As expected, 

3x

30 xx −  decreases with increasing electric 

field in accordance with equation (4.9). Note that at low electric field (Figures 4.9 and 
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 4.10) 33 xx ≈  since all subbands are getting nearly depopulated of “upstream” electrons at 

. Recall that 3xx = 33 xx =  only if transport is ballistic; therefore we can conclude that 

upstream transport is nearly ballistic in the range   30 xx −  when kV/cm  1  <xE . At high 

electric fields, when (Figure 4.12), kV/cm  5.1>xE     0303 xxxx −>− . This indicates 

that there are many upstream electrons even beyond the classical turning point. It can only 

happen if there is significant scattering that drives electrons against the electric field,  

 

Figure 4.3. Spatial variation of ensemble averaged spin components for driving 
electric field 0.5 kV/cm at steady state. Lattice temperature is 30 K, injection energy is 
426 meV. Electrons are injected with equal probability into the three lowest subbands. 
Classical turning point of subband 3 electrons is denoted by x3 and xscat indicates the 
point along the channel axis where subbands 1 and 2 get virtually depopulated. 
Injected electrons are y polarized and x = x0 = 1 µ m is the point of injection. 
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making them go beyond the classical turning point. We can also deduce that most of these 

scattering events impart momentum to the carriers to aid upstream motion rather than 

oppose it since there are electrons beyond the classical turning point. This behavior is a 

consequence of the precise nature of the scattering events and would not have been 

accessible in drift-diffusion models that typically treat scattering via a relaxation time 

approximation. 

 

 Figure 4.4. Spatial variation of ensemble averaged spin components for driving 
electric field 1 kV/cm at steady state. Other conditions are same as in Figure 4.3. 
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4.5 Population inversion of upstream electrons

Note that even though electrons are injected equally in all three subbands, most electrons 

end up in subband 3 – the highest occupied subband initially – soon after injection. Beyond 

a certain distance ( mxx scat   9.0 µ≈= ) subbands 1 and 2 become virtually depopulated. 

This feature is very counterintuitive and represents a population inversion of upstream 

electrons. It can be understood as follows: scattering rate of an electron with energy E  is 

 
 

Figure 4.5. Spatial variation of ensemble averaged spin components for driving 
electric field 1.5 kV/cm at steady state. Other conditions are same as in Figure 4.3. 
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proportional to the density of the final state. In a quantum wire, density of states has 

iEE −/1  dependence where  is the energy at the bottom of the i th subband. As the 

injected electrons move upstream they gradually cool down and their energies approach the 

energy at the bottom of the subband 3 (E

iE

3). To visualize this, imagine the horizontal 

dashed line  E0  in Figure 4.2 sliding down with passage of time. As the bottom of subband 

3 is approached, electrons will increasingly scatter into subband 3 since the density of final 

 

 Figure 4.6. Spatial variation of ensemble averaged spin components for driving 
electric field 2 kV/cm at steady state. Other conditions are same as in Figure 4.3. 
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state in subband 3 is increasing rapidly. To scatter into a final state in subband 2 or 1 that 

has the same density of states as in subband 3 will require a much larger change in energy 

and hence a much more energetic phonon which is rare since the phonons obey Bose-

Einstein statistics. Therefore subband 3 is the overwhelmingly preferred destination and 

this preference increases rapidly as electrons cool further. Consequently, beyond a certain 

 
Figure 4.7. Spatial variation of ensemble averaged spin components at steady state. 
Driving electric field is 1 kV/cm, lattice temperature = 30 K and injection energy is 
441 meV. Injected electrons are y polarized. 

 

 

distance, virtually all electrons are scattered to subband 3 leaving subbands 1 and 2 

depleted. This feature is a peculiarity of quasi-one-dimensional system and will not be  
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observed in bulk or quantum wells. Exact values of  x3  and  xscat  depend on injection 

energy and electric field. In the field range 0.5 – 1.5 kV/cm and injection energy 426 meV, 

| x3 | > |xscat|. However, for higher values of electric field (e.g. 2 kV/cm) or, smaller values 

of injection energies, electrons reach classical turning point before subbands 1 and 2 get 

depopulated. 

 
Figure 4.8. Spatial variation of ensemble averaged spin components at steady state. 
Driving electric field is 1 kV/cm, lattice temperature = 30 K and injection energy is 
426 meV. Injected electrons are z polarized. 

 

 

Spin dephasing in the region (xscat, x0) is governed by equation (4.11). We observe a few 

subdued oscillations in |<S>|(x) in this region because of the “sine term” in equation  
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(4.11). However, in the region (x3, xscat), subbands 1 and 2 are almost depopulated. 

Therefore, there is no D’yakonov-Perel’ relaxation in the interval (x3, xscat) since only a 

single subband is occupied [71]. Consequently, the ensemble averaged spin assumes a 

constant value |<S3>| < 1 and does not change any more. Thus in this region, one can say  

 

 

 

Figure 4.9. Spatial variation of electron population over different subbands at steady 
state. Driving electric field is 0.5 kV/cm, lattice temperature = 30 K and injection 
energy is 426 meV. Injected electrons are y polarized. 

 

that spin dephasing length becomes infinite. It should be noted that it is meaningless to 

study spin dephasing in the region  x < x3  because electrons do not even reach this region. 
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4.6 Conclusion

In this chapter, we have used a semiclassical model to study spin dephasing of upstream 

electrons in a quantum wire, taking into account the subband formation. We showed that 

the subband structure gives rise to rich features in the spin dephasing characteristics of the 

 

Figure 4.10. Spatial variation of electron population over different subbands at steady 
state. Driving electric field is 1 kV/cm, lattice temperature = 30 K and injection 
energy is 426 meV. Injected electrons are y polarized. 

 

 

upstream electrons that cannot be captured in models which fail to account for the precise 

physics of spin dephasing and the fact that it is different in different subbands. Because 

spin relaxation in a multisubband quantum wire is non-exponential (even non-monotonic)  
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in space, it does not make sense to invoke a “spin diffusion length”, let alone use such a 

heuristic parameter to model spin dephasing. Finally, we have found a population 

inversion effect for upstream electrons. It is possible that downstream electrons also 

experience a similar population inversion. This scenario is currently being investigated.



81 

 

 

 

 

 

 

 

Figure 4.11. Spatial variation of electron population over different subbands at steady 
state. Driving electric field is 1.5 kV/cm, lattice temperature = 30 K and injection 
energy is 426 meV. Injected electrons are y polarized. 
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 Figure 4.12. Spatial variation of electron population over different subbands at steady 
state. Driving electric field is 2 kV/cm, lattice temperature = 30 K and injection 
energy is 426 meV. Injected electrons are y polarized. 
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Figure 4.13. Spatial variation of electron population over different subbands at steady 
state. Driving electric field is 1 kV/cm, lattice temperature = 30 K and injection 
energy is 441 meV. Injected electrons are y polarized. 
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CHAPTER 5.   Spin Fluctuations and “Spin Noise”  

 

 Overview 

We have theoretically studied the temporal fluctuations and the resulting kinetic noise in 

the average spin polarization of an electron ensemble drifting and diffusing in a quantum 

wire under a high electric field. Electrons are initially injected in the wire from a 

ferromagnetic contact with all their spins polarized along the wire axis. The average spin 

polarization of the ensemble decays during transport because of D’yakonov-Perel’ 

relaxation caused by both Rashba and Dresselhaus interactions. Once steady state is 

reached, the average spin fluctuates randomly around zero. The time average of this 

fluctuation is zero. The autocorrelation function of this fluctuation approximates a 

Lorentzian and so does the spectral density. To our knowledge, this is the first study of spin 

fluctuations and “spin noise” in a nanostructure. 

5.1 Introduction

 Semi-classical non-linear model of spin transport couples spin density matrix evolution 

(based on a fully quantum mechanical Sturm-Liouville type equation) with the semi-

classical Boltzmann transport equation.  From our discussions in the previous chapters, we
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observed that this approach can account for non-linear transport effects, as well as 

interference effects between orthogonal spin states. So far, this model has revealed 

surprising features of spin transport in semiconductor quantum wires. For instance, it has 

been shown that spin relaxation rate can be very anisotropic (spin injected along the wire is 

much longer lived than spin injected transverse to the wire axis) [46] and the relaxation 

rate can be suppressed by at least an order of magnitude by quasi one-dimensional 

quantum confinement (see Chapter 3, for example). This model is ideal for studying spin 

relaxation due to D’yakonov-Perel’ mechanism. It is also capable of producing information 

about spin fluctuations since they are microscopic and deal with a spin distribution 

function unlike the drift diffusion models that deal only with ensemble averaged 

“moments” of the distribution function. In this chapter, we have used such a model to 

study temporal spin fluctuations of a steady state electron ensemble drifting and diffusing 

in a quantum wire under a high electric field when hot carrier effects (non-local and non-

linear effects) are important. To our knowledge, this is the first study of spin fluctuation 

and noise in a nanostructure. We present results pertaining to the autocorrelation function 

of the fluctuations as well as the spectral density of the associated kinetic “spin noise”. 

5.2 Theoretical model

We consider a “spin-valve” type quantum wire structure consisting of a GaAs quantum 

wire capped by half-metallic ferromagnetic contacts with 100% spin polarization. The wire 

has a rectangular cross section of 30 nm × 4 nm. The confining potential in the wire is 

slightly asymmetric which gives rise to a uniform electric field of 100 kV/cm transverse to 
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 the wire axis (y-axis, see Figure 2.1). An electric field   is applied along the axis of the 

wire (  axis) to drive transport. As the electrons traverse the wire, they experience 

velocity dependent spin-orbit coupling interactions due to the Rashba effect (structural 

inversion asymmetry) and the Dresselhaus effect (bulk inversion asymmetry). As a result, 

the spin vector of each electron precesses around an effective magnetic field. This 

precession is randomized by inter-subband scattering between different subbands that have 

different Dresselhaus interaction strengths. As a result, the ensemble averaged spin vector 

decays with time resulting in D’yakonov-Perel’ type relaxation. This mechanism has been 

discussed in details in last three chapters. 

xEx ˆ

x̂

    We have considered a case where  = 2 kV/cm and the lattice temperature Τ = 30 K. 

The details of the simulation approach (which is based on a Monte Carlo simulator 

modified to study spin transport) can be found in

xE

 reference [46] and will not be repeated 

here. In the simulation, we consider only the D’yakonov-Perel’ relaxation and ignore the 

Elliott-Yafet, Bir-Aronov-Pikus and all other relaxation mechanisms (including relaxation 

due to hyperfine interactions with the nuclei), since these are insignificant compared to the 

D’yakonov-Perel’ relaxation in the present case.  

5.3 Results and discussion

In Figure 5.1, we show that the ensemble average spin component along the wire 

axis )( tSx  decays to zero after 6 ns and thereafter continues to fluctuate around zero, 

signaling the onset of complete depolarization. We will study the nature of this spin 

fluctuation. We define spin autocorrelation function as follows: 
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and the variable τ  is generally referred to as “delay time”. We observe from Figure 5.1 

that )( tSx varies randomly around zero for t  where t  is the time taken to reach 

steady state. Hence, 

0t≥ 0

.0=
avxS  The noise spectral density is defined as the cosine 

transform of the autocorrelation function and is expressed as follows: 

                                                                                    (5.3) 

Figure 5.2 shows the autocorrelation function of the spin fluctuations at a driving electric 

field of 2 kV/cm and the lattice temperature of 30 K. The autocorrelation function decays 

rapidly and becomes almost zero for τ = 0.375 ns. Beyond this point it shows very small 

fluctuation around zero. The associated noise spectral density is shown in Figure 5.3. It 

decays rapidly within 10 GHz. 

( )[ ττπτ dfCfS  )   2( cos  )(
0
∫
∞

= ]

5.4 Conclusion

In this work we have studied, for the first time, “spin noise” in a semiconductor structure 

using a semi-classical approach. The autocorrelation function has no long-duration 

component indicating that once steady state is reached, there is no long-lived “memory” of  
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the initial spin state in the fluctuations. The D’yakonov-Perel’ relaxation is therefore an 

efficient relaxation mechanism that completely erases any long-lived memory of the initial 

spin state. 
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                      Figure 5.1. Temporal dephasing of the x, y and z components of ensemble average 
spin in the GaAs quantum wire at 30 K. The driving electric field is 2 kV/cm, and the 
spins are injected with their polarizations initially aligned along the wire axis (x-axis).  

 

 



90 

 

 

 

 

 

Figure 5.2. Autocorrelation function of the spin fluctuations in the GaAs quantum 
wire at a driving electric field of 2 kV/cm and at a lattice temperature of 30 K. 
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Figure 5.3. The spectral density of “spin-noise” in the quantum wire for driving 
electric field = 2 kV/cm and lattice temperature = 30 K. 

 



 

 

 

 

CHAPTER 6.   Spin Transport Experiment in Self-Assembled 
All-Metal Nanowire Spin Valves: A Study of the Pure Elliott-

Yafet Mechanism♣

 

Overview 

In this chapter we report an experimental study of spin transport in all metal nanowire spin 

valve structures. The nanowires have a diameter of 50 nm and consist of three layers – 

cobalt, copper and nickel. Based on the experimental observations, we determine that the 

primary spin relaxation mechanism in the paramagnet layer – copper – is the Elliott-Yafet 

mode associated with elastic scattering caused by charged states on the surface of the 

nanowires. This mode is overwhelmingly dominant over all other modes, so that we are 

able to study the pure Elliott-Yafet mechanism in isolation. We deduce that the spin 

diffusion length associated with this mechanism is about 16 nm in our nanowires and is 

fairly temperature independent in the range 1.9 K – 100 K, which is consistent with the 

spin relaxation being associated with elastic scattering by surface states. The corresponding 

spin relaxation time is about 100 femtoseconds. We also find that the spin relaxation rate is 

fairly independent of the electric field driving the current in the field range 0.3 – 3 kV/cm.   

                                                 
♣ This chapter has been published as  
[113] S. Pramanik, C-G. Stefanita, and S. Bandyopadhyay, "Spin transport in self assembled all-metal 
nanowire spin valves: A study of the pure Elliott-Yafet mechanism," Journal of Nanoscience and 
Nanotechnology, vol. 6, pp. 1973-1978, 2006. 
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6.1. Introduction

All-metal spin valve devices with Cu as the spacer material have been studied in various 

configurations [114-116] by several groups in the past. However, the dominant spin 

relaxation mechanism in the Cu spacer was never conclusively identified. There exist four 

possible mechanisms that can cause spin relaxation in Cu. These are (1) the D’yakonov-

Perel’ (DP) mechanism [32, 33], (2) the Elliott-Yafet (EY) mechanism [30, 31], (3) the 

Bir-Aronov-Pikus (BAP) mechanism [34] and (4) hyperfine interaction (HFI) between 

nuclear and carrier (electron/hole) spins [35]. The most likely candidates for spin 

relaxation in Cu are the DP and EY processes because the BAP mechanism is absent for 

unipolar transport and the HFI mechanism is much weaker compared to the DP and the EY 

in most solids, including Cu.  

    The DP mechanism comes about because of spin orbit coupling in Cu which gives rise 

to a momentum-dependent effective magnetic field. The carrier spin precesses about this 

effective field, and the precession rate is different for different carriers since they all have 

different momenta owing to scattering. As a result, the spins of different carriers are 

randomized and the average spin of an ensemble of carriers decays with time (as well as 

distance). This decay is the DP relaxation. 

    In the presence of spin-orbit interaction, the Bloch states in a crystal are not spin 

eigenstates. Consequently, even a non-magnetic scatterer can couple two Bloch states that 

have slightly non-orthogonal spins. The resulting scattering event will cause spin rotation 

and thus contribute to both momentum and spin relaxation. This is the EY mechanism. 
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    Neither the DP nor the EY relaxation rate has been individually measured in Cu since it 

is not normally possible to separate the two. However, there is a way to make one rate 

much higher than the other. We measure the spin relaxation length in a nanowire spin 

valve consisting of Co-Cu-Ni as shown in Figure 6.1.  

 

Charged surface states 

Figure 6.1 Schematic description of a nanowire spin valve structure 
consisting of Co, Cu and Ni. 

 

In this type of nanowire, electrons will experience increased  elastic scattering (Coulomb 

scattering) due to a very high concentration of charged surface states (approximately 

1013/cm2) [117], which will decrease carrier mobility. Now the DP mechanism is 

suppressed by frequent elastic scattering [32], while the Elliott-Yafet mechanism is 

enhanced [30]. Thus, confining carriers in a nanowire will make the EY rate 

overwhelmingly dominant over the DP rate and thus allow us to measure the relaxation 
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rate due to the EY mechanism alone. This, then, will permit us to probe various features of 

the EY mechanism in a metal, such as the temperature and electric field dependence of the 

EY relaxation rate. 

6.2 Experimental results

In order to fabricate a nanowire spin valve structure, we start with a high purity (99.997%) 

metallic aluminum foil (0.1 mm thick), which is electropolished in a suitable organic 

solution [118] to produce a mirror like surface. An anodic alumina film with highly 

ordered nanopores is formed on this electropolished surface by a multistep anodization 

procedure [119]. The anodization conditions (e.g. the nature of the acidic electrolyte, 

anodization voltage, duration of final step anodization etc.) determine the dimensions of 

the nanopores. In this work we have used 0.3 M oxalic acid as the electrolyte and 

anodization voltage has been kept constant at 40V dc. Under these conditions we get a 

porous alumina film with nominal pore diameter of 50 nm (Figure 6.2).  

 

Figure 6.2 SEM micrograph of the top surface of the alumina template 
formed by anodization using 3% oxalic acid at 40V dc. 
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Final step anodization was carried out for 90 seconds which makes the pores ~ 100 nm 

deep. The insulating alumina barrier layer at the pore bottom is removed by a “reverse 

polarity etching” technique [120], which results in a “through hole” nanopattern on the 

bulk aluminum. Figure 6.3 shows an SEM micrograph of the porous film from the back 

side showing that the pores have opened up at the back creating a “through hole” structure. 

This “through hole” structure allows dc electrodeposition of materials selectively within 

the pores since it makes the conducting aluminum substrate electrically accessible at the 

pore bottom.  

 

Figure 6.3 SEM micrograph of the bottom surface of the alumina template 
after removing the bulk aluminum. This shows that the reverse polarity 
etching technique has successfully removed the barrier layer. 
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A spin-valve configuration is a trilayered structure in which a nonmagnetic layer is 

sandwiched between two ferromagnetic electrodes. In this work, the nonmagnetic “spacer” 

layer is Cu and the ferromagnetic electrodes are Co and Ni. These tri-layered nanowires 

are produced by sequentially electrodepositing Ni, Cu and Co inside the pores. 

Electrodeposition has been carried out by applying a small dc bias of 1.5 V at a platinum 

counter electrode with respect to the aluminum foil. The electrolyte is a dilute aqueous 

solution of the metal-sulfate salt with slightly acidic pH. Small deposition current (~ µ A) 

ensures slow and well-controlled electrodeposition of metals inside the pores. We 

calibrated the deposition rate of each metal under these experimental conditions. To 

achieve this, we monitor the deposition current during electrodeposition of each metal 

inside an anodic alumina template of known pore length. The deposition current increases 

drastically when the pores are completely filled. The deposition rate is determined by 

calculating the ratio of pore length to pore filling time. According to this calibration, for 

the spin-valve structure, thicknesses of Ni and Cu layers are estimated to be approximately 

40 nm each and the Co layer is approximately 20 nm thick. As a final verification step, we 

prepared a test sample where the ferromagnetic layers were intentionally made thick (in 

order to have a sufficiently long wire for characterization), while the Cu layer thickness 

was kept at 40 nm. These wires were then released from their alumina host by dissolution 

in hot chromic-phosphoric acid, washed, and captured on TEM grids for imaging. Figure 

6.4 shows a TEM micrograph of a tri-layered nanowire. The Cu layer is indeed 40 nm 

thick which attests to the reliability of our calibration procedure.  
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After the electrodeposition step, we are left with a two dimensional array of trilayered 

nanowires vertically standing in an insulating alumina matrix. The alumina film is slightly 

etched from top side in dilute phosphoric acid in order to expose the tips of the nanowires 

for electrical contact from the top. This process exposes the tips of some, but not all, 

nanowires. At the bottom, the nanowires form an ohmic contact with the aluminum 

substrate. 

 

 
 Figure 6.4 Transmission electron micrograph of released tri-layered nanowires showing 

that the Cu layer is ~ 40 nm thick. 
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Again not all nanowires are contacted from the bottom either, since not all pores open up at 

the bottom as seen in Figure 6.3. Overall, the fraction of nanowires that are electrically 

contacted from both top and bottom (and are therefore electrically probed) is rather small. 

This is a boon since it allows us to interrogate a small number of nanowires with relatively 

large contact pads. Contacts pads are made to the top (Co layer) and bottom (Al) using 

silver paste and gold wires are attached to the contact pads for electrical characterization. 

The contact areas are ~ 1mm × 1 mm. The schematic cross-section of the spin-valve 

structure is shown in Figure 6.5. 

 

Figure 6.5 A schematic representation of the all-metal nanowire spin valve 
device. Note that not all nanowires are connected from both sides. Here only two 
wires are shown connected (electrically) from both ends. 

 

 
 

Magnetoresistance of this device is measured in a Quantum Design Physical Property 

Measurement System. Sample temperature is varied in the range 1.9 – 300 K while 

magnetic field is swept from –70 kOe to +70 kOe. Applied bias current is 10 A µ . 
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The device resistance is ~ 300  which is quite large for an all-metal device. Since the 

contact pad area is 1 mm × 1mm, and the pore density is 10

Ω

10 cm-2, the pads must have 

covered 108 wires. Yet the resistance is this large. This can only be explained if a very 

small fraction of 108 wires are actually contacted from both ends. Later we will show that 

only about one in 10 million wires are electrically contacted from both ends. This is 

consistent with our earlier finding [121]. Thus we are fortuitously able to test just a few 

wires in parallel, thereby avoiding the deleterious effects of ensemble averaging.  

    Another reason for the high device resistance is that the conductivities of metal 

nanowires fabricated by self-assembly technique can be much less than those of bulk metal 

[122]. If we assume that the composite conductivity σ  of a trilayered metal nanowire is ~ 

, which is an order of magnitude smaller than typical thin-film conductivity 

values of metals [116], then we can estimate the resistance of a single wire using the 

formula 

115   101 −−Ω× m

)/( AlR σ= . With l = 100nm, A = π (50nm)2/4, we get . Thus, we can 

say that very few (~ 2) wires are electrically connected from both sides since the total 

device resistance is ~ 300 Ω. That means that only one in 50 million wires are electrically 

contacted from both ends, on the average. This feature is unique to these structures [121]. 

Ω 509~R

 The current-voltage characteristic of this device is linear (Figure 6.6) at all temperatures, 

which indicates that the electrical contacts to the few wires that are connected are ohmic. 

6.3 Results and discussion

The magnetoresistance traces at three different temperatures (for a fixed bias current of 

10 A µ ) are shown in Figures 6.7(a) – (c). As indicated in Figure 6.5, the magnetic field is  
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along the length of the nanowires. This coincides with the easy axes of magnetization for 

 

Figure 6.6  The linear I-V characteristics of the device shown in Figure 6.5. The 
linearity indicates that the various heterojunctions and electrical contacts are ohmic in 
nature. 

 

 

 

the ferromagnetic electrodes. We observe a global positive magnetoresistance which has 

been reported earlier in similar studies. The background positive magnetoresistance comes 

about from the anisotropic Hall effect [122]. Against this background, we observe tell-tale 

magnetoresistance peaks between the coercive fields of the magnetic contacts (|Hc,Ni| and 

|Hc,Co|, with |Hc,Ni| < |Hc,Co| in general) which is the characteristic signature of the spin valve 

effect. In the region |Hc,Ni| < |H| < |Hc,Co| magnetizations of the nanomagnets are  
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antiparallel which results in a high device resistance since one contact injects spins of a 

particular polarization and the other contact blocks these electrons from getting through. 

 

Figure 6.7(a)  Magnetoresistance characteristics at 100 K and bias current of 10 
microamperes. The spin valve peaks are indicated by the vertical arrows. 

 

 

This effect manifests itself as the peaks in the magnetoresistance curves. Outside the region 

|Hc,Ni| < |H| < |Hc,Co|,  the magnetizations of the two ferromagnetic contacts are parallel 

resulting in smaller device resistance. This is the basic spin valve effect, which we observe. 

Coercivities of Ni and Co nanomagnets electrodeposited in porous alumina template have  
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been well calibrated in the past [123, 124]. Reference [123] reports coercivity of 

electrodeposited cylindrical Co nanomagnets as a function of diameter and length.  

 

Figure 6.7(b)  Magnetoresistance characteristics at 50 K and bias current 
of 10 microamperes. The spin valve peaks are indicated by the vertical 
arrows. 

 

 

 

Co nanowires with 20 nm length and 10nm diameter have coercivity ~1000 Oe at room 

temperature. Also coercivity decreases as dot diameter is increased. Extrapolating this 

trend, in the present case, where Co nanodots have 50 nm diameter (and 20 nm length), 

coercivity is estimated to be ~ 700 Oe at room temperature. At lower temperatures we  
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expect to see a somewhat higher value than this estimate. Thus, in the temperature range 

1.9 K – 100 K, |Hc,Co| ~ 750 Oe is reasonable. Similarly, for Ni, extrapolating the data in 

reference [124] we expect room temperature coercivity of Ni nanodots of 50 nm diameter   

 

Figure 6.7(c)  Magnetoresistance characteristics at 1.9 K and bias current 
of 10 microamperes. The spin valve peaks are indicated by the vertical 
arrows. 

 

 

to be ~ 200 Oe. Thus in the temperature range 1.9 K – 100 K, |Hc,Ni| ~ 250 Oe is quite 

likely. Therefore, the magnetizations of the nanomagnets are antiparallel in the range [250 

Oe, 750 Oe] in the temperature range 1.9 K – 100 K. We observe magnetoresistance peaks 

in this field range which confirms that what we observe is indeed the spin valve effect. 
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It should be noted that the leading edges and trailing edges of the spin valve peaks do not 

occur at the same magnetic fields at different temperatures. This is expected since the 

coercivities of the ferromagnets are temperature sensitive. Additionally, we note that the 

data at 1.9 K are more “noisy” than those at higher temperatures. This is due to telegraph 

noise caused by surface traps, which is more prominent at lower temperatures. 

    It is possible to estimate the spin relaxation length in Cu spacer from the knowledge of 

the spin valve signal R ∆  which is the change in device resistance from parallel to 

antiparallel configuration. We follow the model of reference [116] modified for the 

classical spin valve geometry: 

                         
)]2/cosh()2/sinh([ )1(

  2
 

)2/(2

NN

L

N

N
F

LLMM

e
AR

N

λλ
σ
λα λ

++
=∆

−

                                        (6.1) 

 

where 
NF

FFNM
σλ

ασλ
 

) 1( 2−
= , ≡

+
−

=
↓↑

↓↑

σσ
σσ

αF bulk current polarization of the ferromagnetic 

electrodes (assuming they are made of same material), )( ↓↑ σσ  indicates the spin up 

(down) conductivity of the ferromagnet, )( FN σσ denote the total conductivity of the Cu 

(ferromagnetic) layer, )( FN λλ  is the spin relaxation length in the Cu (ferromagnetic) 

layer, is the distance between the two ferromagnetic electrodes and nmL  40= A  is the 

cross sectional area through which current flows into the spin valve device. We make the 

following reasonable estimates to calculate Nλ , which is the spin relaxation length in Cu: 

(a) 375.0=Fα (“average” spin polarization of Ni (33%) and Co electrodes (42%). 

(b) (electrical conductivity of nanowire Cu embedded in alumina)115   101 −−Ω×= mNσ
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(c) (“average” electrical conductivity of the nanowire ferromagnets) 115   10  1 −−Ω×= mFσ

(d) =Fλ  5 nm (spin relaxation length in the ferromagnets, see reference [125]) 

(e)  (current carrying cross sectional area of the 

device, assuming  ~ 2 nanowires are electrically connected from both sides; each wire has 

a diameter of 50 nm) 

2152  10    927.3    4/2  )   50 (     mnmA −×=×= π

(f) (thickness of the Cu layer, as discussed earlier) nmL  40=

Equation (6.1) ignores any loss of spin polarization at the interfaces between the 

ferromagnets and the paramagnet. We can ignore this for two reasons: first, the interface 

area is very small (only ×π 25 nm2), and second the loss at the interface becomes 

significant only if there is a large conductivity mismatch between the paramagnet and the 

ferromagnet. In our case, both the paramagnet and the ferromagnet are metals with similar 

conductivities. Therefore, the interface loss is minimal. 

    Note that in case of both Cu and the ferromagnets we have assumed a smaller 

conductivity value (compared to bulk or thin films) in order to incorporate the increased 

resistance associated with nanowires. For simplicity we have assumed the same 

conductivity value for both Cu and ferromagnets. Since we are basically interested in the 

“order of magnitude” estimates for the spin diffusion length, all of these approximations 

are justified. The quantity R ∆  is determined from the magnetoresistance curves (Figures 

6.7(a) - (c)). Using these quantities, we obtain the following estimates of Nλ  from equation 

(6.1). We can also find the spin lifetime τ  using the formula [8] 
3
  mF

N
v λτ

λ =   where  
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610   57.1 ×=Fv m/s is the Fermi velocity in Cu [126] and 5≈mλ nm [8] is the mean free 

path (limited by surface roughness scattering) in Cu spacer. Note that this value of mλ  is 

somewhat smaller than the bulk value (~ 50 nm). This is because of increased surface 

scattering in nanowires reduces the mean free path by about an order of magnitude, which 

is consistent with assuming that the conductivity in nanowires is 10 times less than that in 

bulk samples. Based on all these assumptions, we estimate the spin diffusion lengths and 

spin relaxation times shown in the following table as a function of temperature. 

 
 
 
 
              

Table 6.1 Spin relaxation lengths and spin relaxation times at various 
temperatures 

Temperature 
(K) 

R∆ ( Ω ) Nλ (nm) τ (fs) 

1.9 0.18 18 123.82
50 0.17 16 97.83 
100 0.17 16 97.83 

 
 
Comparing these values to the value of spin relaxation length in thin films (reference 

[116]), we find that the spin relaxation length has been reduced by almost an order of 

magnitude, compared to thin films. This is a consequence of increased coulomb scattering, 

caused by the surface states, which decreases the mobility and therefore exacerbates the 

EY mechanism, while simultaneously quenching the DP mechanism. Thus, what we are 

measuring is the spin relaxation rate associated with pure EY mechanism alone. Typical 

mean free time in the Cu spacer (determined by surface roughness scattering) is  
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approximately given by 1.3/ == Fmf vλτ fs. Thus, on an average, spin relaxation due to 

EY mechanism occurs over 30-40 )/( fττ= momentum scattering events. 

    Note from the above table that spin relaxation length is relatively independent of 

temperature. This is consistent with the EY mechanism. The primary source of the EY 

relaxation is the elastic scattering caused by the high concentration of charged surface 

states. Since this type of elastic scattering does not involve phonons, its effect is expected 

to be relatively temperature independent. 

    The temperature independence also tells us that electron-electron scattering, no matter 

how frequent, is not a major contributor to spin relaxation. First, electron-electron 

scattering is spin-conserving. Whatever spin momentum one electron loses is picked up by 

the other so that the ensemble spin is not affected directly. Second, and more importantly, 

the momentum relaxation rate of a carrier due to electron-electron scattering is strongly 

temperature dependent. It has been shown that the momentum relaxation rate and the spin 

relaxation rate due to the EY mechanism have the same temperature dependence [31, 127]. 

Therefore, if electron-electron scattering were a significant contributor, we would have 

found a strong temperature dependence of the spin relaxation rate. Since we do not, we 

conclude that electron-electron scattering does not play a major role. 

    Figure 6.8 shows magnetoresistance plot at a higher bias current of 100 µ A. However, 

the height of the spin valve peak does not change appreciably by this tenfold increase in 

bias.  Surface roughness scattering does not strongly depend on applied bias and hence 

spin valve signal is expected to be weakly dependent on it at least in 10 - 100 µ A range.  
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We have not gone past the 100 µ A limit in order to prevent sample damage. We point out 

that the voltage on the sample at 100 µ A is 100 µ A × 300 Ω = 30 mV. Therefore, the 

electric field on the Cu spacer layer is 30 mV/100 nm = 3 kV/cm (assuming that the 

electric field is uniform throughout the nanowire since all metals have approximately the 

same conductivity). 

 
Figure 6.8  Magnetoresistance characteristics at 1.9 K and bias current of 
100 microamperes. The spin valve peaks are indicated by the vertical 
arrows. 

 

 

 

Reference [116] reported a significant decrease in spin relaxation length with an increase 

in temperature for Cu thin films. This is in sharp contrast with what we find. There are two 
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possible explanations for this difference. Either the primary relaxation mode in thin films 

is not the EY process which is relatively temperature independent if it is associated with 

elastic scattering events, or the primary relaxation mode is still the EY process, but it is 

associated with inelastic (phonon-assisted) scattering processes which are strongly 

temperature dependent. The first possibility is unlikely. If the primary spin relaxation 

mode is not the EY process, then it must be the DP process. However, the DP relaxation 

rate has weak temperature dependence [128] and therefore cannot explain a strong 

temperature dependence of the relaxation rate. Therefore it is likely that in thin films, 

which have a much smaller surface-to-volume ratio than nanowires, the primary mobility 

degradation mechanism is not elastic surface scattering, but inelastic phonon scattering, 

which has strong temperature dependence. Since the temperature dependence of the 

momentum relaxation rate and the spin relaxation rate is the same in the EY mode, we 

expect the spin relaxation rate to be strongly temperature dependent if momentum 

relaxation occurs primarily via phonons. 

6.4 Conclusion

In conclusion, we have isolated the EY mechanism in Cu by utilizing a nanowire and 

studied the spin relaxation rates associated with this mechanism at various temperatures 

and electric fields. We find that since spin relaxation is associated with elastic scattering 

caused by charged surface states, the spin relaxation rate is both temperature and field 

insensitive. 

 

 



 

 

 

 

CHAPTER 7.   Spin Relaxation in a Nanowire Organic Spin 
Valve: Observation of Extremely Long Spin Relaxation Times♣

 

Overview 

In this chapter we report spin-valve behavior in an “organic nanowire” consisting of three 

layers - cobalt, tris-8-hydroxy-quinolinolato aluminum (Alq3) and nickel – all nominally 

50 nm in diameter. From the height of the spin-valve peaks we extract the spin relaxation 

length in Alq3. Using the conductivity value of the carriers in the organic layer we have 

estimated a typical range of spin relaxation time in this material. Surprisingly, the spin 

relaxation time in Alq3 is extremely long, at least a few milliseconds, and this is relatively 

temperature independent up to 100 K. Analyzing the experimental data, we also conclude 

that the dominant spin relaxation mechanism in Alq3 is the Elliott-Yafet mode. To our 

knowledge, this is the first demonstration of an organic nanoscale spin-valve, as well as the 

first determination of the primary spin relaxation mechanism in organics. Interestingly 

some samples exhibit “inverse spin valve” effect in which magnetoresistance “troughs” are  

                                                 
♣ This work has been submitted for publication as  
[129] S. Pramanik, C-G. Stefanita, S. Patibandla, S. Bandyopadhyay, K. Garre, N. Harth, and M. Cahay, 
"Spin relaxation in a nanowire organic spin valve: observation of extremely long spin relaxation times," 
www.arxiv.org/cond-mat/0508744, 2006 and 
[130] S. Pramanik, S. Bandyopadhyay, K. Garre, and M. Cahay, "Normal and inverse spin valve effect in 
organic semiconductor nanowires and the background monotonic magnetoresistance," accepted for 
publication (Nov. 2006), Physical Review B. 
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observed in between the coercivities. This is caused by resonant tunneling through 

localized impurity states in the organic. Peaks are always found to be accompanied by a 

positive, monotonic background magnetoresistance, while troughs are accompanied by a 

negative, monotonic background magnetoresistance. This curious correlation suggests that 

the background magnetoresistance, whose origin has hitherto remained unexplained, is 

probably caused by the recently proposed phenomenon of magnetic field induced 

enhancement of spin flip scattering in the presence of spin-orbit interaction [37]. 

7.1 Introduction

π - conjugated organic semiconductors are an important platform for “spintronics” that 

purports to harness the spin degree of freedom of a charge carrier to store, process, and/or 

communicate information [131]. Spin-orbit interaction in organic is typically very weak, 

which should result in long spin relaxation times [132]. Many organics are also optically 

active [133] and therefore could lead to multi-functional “opto-spintronic chips” where 

optics and spintronics are integrated to perform seamless signal processing and 

communication functions. Such chips will be inexpensive, versatile, and the tremendous 

flexibility afforded by synthetic organic chemistry offers limitless possibilities in terms of 

the variety and complexity of structures that can be realized. Already some efforts have 

been made to combine optics with spintronics in organics [134]. 

   Recently, a thin-film organic spin valve structure consisting of an organic semiconductor 

placed between two ferromagnetic electrodes was demonstrated [131]. Some theoretical  
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effort has also been made to understand spin transport in such organics [135, 136], but any 

insight into the primary spin relaxation mechanism is still lacking. These structures (and/or 

their derivatives) [137-143] typically show a large background monotonic 

magnetoresistance, which can either be positive or negative. The origin of this 

magnetoresistance has also remained a mystery. Some attempts have been made to explain 

it by invoking weak localization and anti-localization [141] but it is extremely unlikely that 

these are the causes since the magnetoresistance is typically observed up to room 

temperature [141]. Localization or anti-localization requires preservation of quantum 

mechanical phase coherence of charge carriers over long distances. That is unlikely to 

happen at room temperature, particularly in organics where transport occurs mainly via 

phonon-assisted hopping. Thus there is a need for alternate explanation. In this chapter we 

will describe an exhaustive study of spin transport in nanowire organic spin valve 

structures and offer an alternate explanation for the background magnetoresistance, which 

does not require phase coherence and therefore can explain its occurrence at relatively high 

temperatures.  

    As discussed in Chapter 1, there are four major spin relaxation mechanisms in solids: the 

D’yakonov-Perel’ (D-P) [32, 33], the Elliott-Yafet (E-Y) [30, 31], hyperfine interaction 

between nuclear and carrier (electron or hole) spins [35] and the Bir-Aronov-Pikus (B-A-

P) mechanism [34]. They dominate in both semiconductors and metals [127]. 

    It is important to establish which of these four mechanisms is the most dominant in 

organics. The two likely candidates are the D-P and the E-Y mechanisms since the B-A-P 

mechanism is absent in unipolar transport and the hyperfine interaction is very weak in



114 

 organics. The D-P mechanism is suppressed by quasi one-dimensional confinement [47, 

71, 144]. Therefore, if the relaxation rate is found to decrease upon confining carriers to a 

quasi one dimensional structure, then we will have established that the primary mechanism 

is the D-P mode. On the other hand, the E-Y mechanism can be exacerbated by quasi one-

dimensional confinement if the latter increases the momentum relaxation rate. Thus, any 

increase in the spin relaxation rate upon quasi one dimensional confinement is a strong 

indicator that the E-Y mechanism is dominant. 

7.2 Experimental procedure

Based on this premise, we have fabricated a nanowire spin valve structure consisting of 

three layers – cobalt, Alq3 [tris-(8-hydroxy-quinolinolato) aluminum] and nickel. The 

structures were synthesized by using a porous alumina membrane containing a well 

ordered hexagonal close packed arrangement of pores with 50 nm diameter. The 

fabrication of such films has been described in the previous chapter. It is produced on an 

aluminum foil. There is an alumina “barrier layer” at the bottom of the pores which is 

removed by a reverse polarity etching technique [120] so that the underlying aluminum is 

exposed at the bottom of the pores. Nickel is then electrodeposited selectively within the 

pores from a mildly acidic solution of NiSO4 : 6 H20 by applying a dc bias of 1.5 V at a 

platinum counter-electrode with respect to the aluminum substrate. Small deposition 

current (~ µA) ensures well-controlled and slow-but-uniform electrodeposition of Ni inside 

the pores. We calibrated the deposition rate of Ni under these conditions by monitoring the 

deposition current during electrodeposition of Ni inside pores of known length. The  
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deposition current increases drastically when the pores are completely filled and a nickel 

percolation layer begins to form on the surface. The deposition rate is determined by 

calculating the ratio of the pore length to pore filling time. According to this calibration, 

the thickness of the nickel layer (deposited inside the pores) is approximately 500 nm. 

TEM characterization of these Ni nanowires showed that the wire lengths are almost 

uniform and indeed conform to ~ 500 nm. These samples are air-dried and then Alq3 is 

resistively evaporated on the porous film through a mask with a window of area 1 mm2 in a 

vacuum of 10-7 Torr. The rate of deposition is in the range 0.1 – 0.5 nm/s. During 

evaporation, Alq3 seeps into the pores by surface diffusion and capillary action, and 

reaches the nickel. The fact that Alq3 is a short stranded organic of low molecular weight is 

helpful in transporting it inside the pores. The thickness of the evaporated Alq3 layer is 

monitored by a crystal oscillator and subsequently confirmed by TEM analysis. Finally, 

cobalt is evaporated on the top without breaking vacuum (as in reference [131]). The 

fabrication procedure and the resulting structure are schematically depicted in Figure 7.1. 

The thickness of the cobalt layer (as deposited inside the pores) is also ~ 500 nm since the 

total pore length is ~ 1 µm. Thus we end up with an array of nominally identical spin valve 

nanowires. Since the cobalt contact pad has an area of ~ 1 mm2, approximately 2 × 108 

nanowires are electrically contacted in parallel (the areal density of the nanowires is 2 × 

1010 cm-2). Note that the surrounding alumina walls provide a natural encapsulation and 

protect the Alq3 layer from moisture contamination. For electrical measurements, we attach 

two gold wires to the top cobalt and the bottom aluminum layers using silver epoxy. 
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Figure 7.1 Schematic description of the sample fabrication process. The red, yellow and 
green layers indicate cobalt, Alq3 and nickel respectively. 

 

 

 

7.3 Results and discussion

From measured conductivity values, we can estimate the number of nanowires that are 

electrically connected from both ends. For example, resistivity of Alq3 thin film is typically 

105 Ω-cm at room temperature [145]. When Alq3 is confined in pores, we assume that the 

resistivity increases by an order of magnitude because of the increase in surface scattering.
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This is a typical assumption used in similar contexts [113]. Therefore the resistivity of Alq3 

nanowires is 106 Ω-cm. The resistivities of the ferromagnetic nanowire electrodes are  ~ 

10-3 Ω-cm [113]. Thus the resistance of a single trilayered nanowire is 1011 Ω. Since the 

resistance of the sample is ~ 1 kΩ, we estimate that 50% of the nanowires (~108) under the 

cobalt contact pad are electrically connected from both ends. Note that since the resistivity 

of Alq3 is 9 orders of magnitude higher than the resistivities of the ferromagnets, during 

transport experiments, we will always probe the resistance of the Alq3 layer only, and not 

the resistance of the ferromagnetic electrodes, which are in series with the Alq3 layer.  

Thus, all features in the resistance accrue from the organic layer and have nothing to do 

with the ferromagnetic contacts. Consequently, if there are features originating from the 

anisotropic magnetoresistance effects in the ferromagnets, we will never see them. 

    To confirm that the contribution of the ferromagnetic layers to the resistance of the 

structure is indeed negligible, we fabricated a set of control samples without any Alq3 

layer. Note that a parallel array of 2 × 108 Ni/Co bi-layered nanowires (contacted by Al at 

bottom and a thin film of Co at top with area 1 mm2) would produce a resistance of ~ 25 

µΩ, which is below the sensitivity of our measurement apparatus. Therefore we made 

control samples where we probe only ~ 500 nanowires. The trick employed to achieve this 

was to remove the “barrier layer” incompletely from the bottom (intentionally), so that 

only a small fraction of the pores opened up from the bottom. We measure a resistance of ~ 

10 Ω in the control samples at room temperature, which tells us about 500 bi-layered 

nanowires are electrically probed.  
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    The magnetoresistance of the control samples were measured in a Quantum Design 

Physical Property Measurement System with a bias current of 10 µA, over a magnetic field 

range of 0 – 6 kOe and at a temperature of 1.9 K.  A typical trace is shown in Figure 7.2. 

We never observed any magnetoresistance peak or trough in these samples, but observed a 

monotonic positive magnetoresistance )0(|)(||)(| RBRBR −=δ , where B is the magnetic 

flux density. This magnetoresistance effect either accrues from the anisotropic 

magnetoresistance effect associated with the ferromagnetic contacts or the 

magnetoresistance of the aluminum substrate.  

 

Figure 7.2 Magnetoresistance trace of the control sample, consisting of ~ 500 Ni-Co 
bilayered nanowires (no Alq3) 
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However, the maximum value of |)(| BRδ that we observed over the entire measurement 

range (0 – 5 kOe) was only ~ 0.08 Ω, which is more than an order of magnitude smaller 

than the resistance peak ∆R measured in the tri-layered structures (see later). Thus the 

resistance peak measured in the tri-layered structures undoubtedly originates from the spin 

valve effect and has nothing to do with either the anisotropic magnetoresistance associated 

with the ferromagnetic contacts, or the magnetoresistance of the aluminum substrate. 

    We fabricated ~ 90 tri-layered samples using the procedure described in section 7.2. 

Room temperature resistances of these samples range from 1 – 10 kΩ depending on the 

number of nanowires that are electrically connected from both ends. This number varies 

because the process of barrier layer removal is not precisely controllable. The 

magnetoresistance of these samples were measured in a Quantum Design Physical 

Property measurement system. The measured distribution of spin valve signal ∆R/R is 

shown in Figure 7.3. The distribution is very broad and peaks near zero, i.e. most samples 

do not exhibit any measurable spin valve signal. Among the remaining samples, some 

exhibit positive spin valve signals and others exhibit negative signals. 

    The insets of Figure 7.3 show the magnetoresistance traces for the highest positive and 

negative spin valve signals that we have measured among all samples tested. Typical 

magnetoresistance traces indicating normal spin valve response (with positive background 

magnetoresistance) at four different temperatures are shown in Figures 7.4(a) – (d) where 

the magnetic field is parallel to the axis of the wires. This direction also corresponds to the 

easy axis of magnetization for the nickel and cobalt nanomagnets within the pores. 
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Figure 7.3 Distribution of the spin valve signal  

 

This background monotonic magnetoresistance which is often observed in organic 

semiconductors and is dubbed “organic magnetoresistance” (OMAR) [146], but more 

importantly, we find magnetoresistance peaks located between fields of 800 Oe and 1800 

Oe which are the coercive fields of the nickel and cobalt nanowires. This is the tell-tale 

signature of the spin valve effect. The height of this peak decreases with increasing 

temperature and is barely visible at 100 K.  



121 

In these structures, it is not possible to measure the coercivities of the cobalt and nickel 

contacts individually using conventional techniques. SQUID measurements do not resolve 

the coercivities. However, we had individually measured the coercivities of nickel and 

cobalt nanowires in the past [123, 124]. For nickel, [124] reported a maximum coercivity 

of 950 Oe at room temperature for nanowires of diameter 18 nm and it decreased to 600 

Oe for wider nanowires of 21 nm diameter. Since coercivity increases with decreasing 

temperature [147], a value of 800 Oe is quite possible in 50-nm diameter nanowires at 1.9 

K. The coercivity of cobalt nanowires has been studied extensively in reference [123]. The 

coercivity of 22 nm diameter wires was found to be > 1600 Oe at room temperature, so 

that the coercivity of 50 nm wires can quite likely be 1800 Oe at the low temperature of 1.9 

K. Thus, the leading and trailing edges of the peaks in Figures 7.4(a) – (d) seem to occur at 

the coercive fields of the ferromagnetic contacts.  

    Figure 7.5 shows the magnetoresistance traces of a sample exhibiting a negative spin 

valve signal at four different temperatures. As before, spin valve signals manifest between 

800 Oe and 1800 Oe, which represent the coercive fields of the Ni and Co nanowire 

electrodes respectively. The bias current is kept constant at 10 µA. The spin valve signal 

decreases with increasing temperature indicating that the spin diffusion length in the 

organic decreases with increasing temperature.  

    Figure 7.6 shows the bias current dependence of the negative spin valve signal in a 

typical sample at a constant temperature of 1.9 K. As the bias current is increased, the spin 

valve signal decays rapidly and at 200 µA, no signal is measurable with our apparatus.  
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    Figure 7.5 also shows that there is a background monotonic magnetoresistance 

|)(| BRδ accompanying the spin valve signal and its sign is negative (R(|B|) < R(0)). We 

found consistently that whenever the spin valve signal is negative, the background 

magnetoresistance is also negative, and whenever the spin valve signal is positive, the 

background magnetoresistance is positive (see the insets of Figure 7.3). The background 

magnetoresistance has very little sensitivity to temperature (Figure 7.5), but it is extremely 

sensitive to bias, as can be seen in Figure 7.6. It disappears at a bias current of 200 µA. 

    From the relative height of the resistance peak  ∆R / R  shown in Figures 7.4 (a) – (d), 

7.5 and 7.6 we can extract the spin diffusion length in the Alq3 layer following the 

technique employed in reference [131]. We first assume that there is no loss of spin 

polarization at the interface between Alq3 and the injecting ferromagnetic contact because 

of the so-called self adjusting capability of the organic [131, 148]. Next, we assume, as in 

reference [131], that there is a potential barrier at the organic/ferromagnet interface that the 

injected carriers tunnel through with a surviving spin polarization P1. This barrier could be 

the Schottky barrier due to the contact potential. After this, the carriers drift and diffuse 

through the remainder of the organic layer under the influence of the electric field, with 

exponentially decaying spin polarization exp [- (d-d0) / λT] where d is the total width of the 

organic layer, d0 is the spatial extent of the potential barrier, and λT is the spin diffusion 

length in Alq3 at a temperature T. The Schottky barrier at the detecting contact is lowered 

by the electric field and therefore does not present a potential barrier for tunneling. This  
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picture is adapted from reference [131]. Finally, if the spin polarization at the Fermi level 

of the detecting contact is P2, then  ∆ R / R  is given by the Julliere formula [149] 

 

 

 

Figure 7.4 (a) Magnetoresistance trace of Alq3 nanowire at 1.9K. The magnetic field is 
parallel to the wire axis. Solid and broken arrows indicate reverse and forward scans of 
the magnetic field. The spin valve peaks occur between +(-)800 Oe and +(-)1800 Oe. 
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We will now assume that d0 << d. Later we will show that this assumption is valid. In that 

case, the loss of spin polarization in tunneling through the potential barrier is negligible. 

Therefore, P1 is approximately the spin polarization of the injecting contact. Since the spin
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polarization in cobalt and nickel at their Fermi energies are 42% and 33% respectively 

[150], P1 = 0.42 and P2 = 0.33. 

    In order to determine the value of d, we have carried out transmission electron 

microscopy (TEM) of the nanowires. The wires were released from their alumina host by 

dissolution in very dilute chromic/phosphoric acid, washed, and captured on TEM grids for 

imaging. The TEM micrograph of a typical wire is shown in Figure 7.7. The Alq3 layer 

thickness d is found to be 33 nm, which is quite close to the layer thickness estimated from 

the crystal oscillator used to monitor thickness during the evaporation of Alq3 (that value 

was 30 nm). This agreement gives us confidence that d does not vary too much from one 

wire to another. We assume that it varies by ± 5 nm when we calculate λT. This will 

introduce some uncertainty in the spin diffusion length.  

Current voltage characteristics of the nanowires are shown in Figure 7.8. They are 

symmetric because of equal coupling to the contacts [151], but non-linear between -3.5 and 

3.5 V at all measurement temperatures, indicating that the contacts are Schottky in nature. 

This means there has not been significant inter-diffusion of Co or Ni into the Alq3 layer, 

since that would have produced an ohmic contact. As a result, the layer thickness d is well 

defined in the nanowires, which allows us to apply Equation (7.1) to estimate λT. In 

estimating λT. from Equation (7.1), we assumed that d - d0 ≅ d. If this approximation is 

valid, then the estimated λT will be independent of d. To confirm that fact, we fabricated 

another set of samples with slightly smaller d. Figure 7.9 shows the TEM micrograph of a 

wire from this set where the layer thickness is found to be 26 nm. The quantity λT  
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measured from this set at any temperature agrees to within ~10% with that measured from 

the other set at the same temperature. Therefore, λT is reasonably independent of d. The 

values of λT as a function of temperature are plotted in Figure 7.10. Comparing the 

measured values of λT to those reported in thin films of Alq3 (45 nm at 4.2 K) [131], we 

find that quasi one dimensional confinement has actually reduced λT by almost an order of 

magnitude. If the D-P mechanism were the primary cause of spin relaxation, then λT 

should have increased.  Since we find the opposite trend, we conclude that the primary 

relaxation mechanism is the E-Y mechanism.  

Elliott has derived a relation between the spin relaxation time τs and the momentum 

relaxation time τm  [30] which Yafet has shown to be temperature independent [31]: 

                                                           
gs E

∆
∝

τ
τ m                                                              (7.2) 

Here ∆ is the spin orbit interaction strength in the band where the carrier resides (in our 

case the LUMO band) and Eg is the energy gap to the nearest band (in our case the HOMO-

LUMO gap). 

Since τs (T) = λT 2/D (T) = m* λT 2 / (k Tτm), where D (T) is the temperature dependent 

diffusion coefficient related to the mobility by the Einstein relation and m* is the effective 

mass, Equation (7.2) can be recast as (τ2
m k T/ m* λT

2) ∝ ∆ / Eg. Since neither ∆ nor Eg is 

affected by quasi one-dimensional confinement, we can posit that at any temperature the 

following equation will hold: 
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Figure 7.4 (b) Magnetoresistance trace of Alq3 nanowire at 10K. The magnetic field is 
parallel to the wire axis. Solid and broken arrows indicate reverse and forward scans of 
the magnetic field. The spin valve peaks occur between + (-) 800 Oe and + (-) 1800 Oe. 
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Figure 7.4 (c) Magnetoresistance trace of Alq3 nanowire at 50K. The magnetic field is 
parallel to the wire axis. Solid and broken arrows indicate reverse and forward scans of 
the magnetic field. The spin valve peaks occur between + (-) 800 Oe and + (-) 1800 Oe. 
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Figure 7.4 (d) Magnetoresistance trace of Alq3 nanowire at 100K. The magnetic field is 
parallel to the wire axis. Solid and broken arrows indicate reverse and forward scans of 
the magnetic field. The spin valve peaks occur between + (-) 800 Oe and + (-) 1800 Oe. 
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Figure 7.5 Inverse spin valve effect and background negative magnetoresistance in Ni-
Alq3- Co nanowires at four different temperatures and fixed bias of 10 µA rms. 
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 Figure 7.6 Inverse spin valve effect and background negative magnetoresistance in Ni-
Alq3- Co nanowires at four different bias values and fixed temperature of 1.9 K. 
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Figure 7.7 Transmission electron micrograph of a typical nanowire spin valve structure.   
In this set of samples, thickness of the Alq3 layer is ~ 33 nm. For TEM characterization, 
the nanowires were released from the alumina host matrix by dissolution in dilute 
chromic-phosphoric acid. The solution (containing nanowires) was sonicated and 
centrifuged and the nanowires were collected on a TEM grid for imaging. 
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Figure 7.8 Current versus voltage characteristics of the trilayered spin-valve nanowires 
at three different temperatures 
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Figure 7.9 Transmission electron micrograph of a typical nanowire spin valve structure 
(2nd set of samples). In this set, thickness of the Alq3 layer is ~ 26 nm. 
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where “2D” refers to thin film, and “1D” refers to nanowire. From Equation (7.3), we find 

 
Figure 7.10 This figure plots spin relaxation length in Alq3 nanowires as a function of 
temperature. The triangles are data obtained from the first set and the squares are data 
obtained from the second set. We show the maximum and minimum values at different 
temperatures. The non-zero range comes from +/- 5 nm uncertainty in the thickness of 
the organic layer. 

 

 

 

 

that one-dimensional confinement has reduced τm by a factor of ~ 10. This is possible in 

our structures. There is a huge density of charged surface states - of the order of 1013/cm2 - 

at the interface between the nanowire and its ceramic host (alumina) [117]. These surface 
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 states will cause frequent momentum randomizing collisions in the nanowire via Coulomb 

interaction, which will significantly reduce τm  in these nanowires compared to thin films. 

It is possible to estimate the temperature dependent spin relaxation time τs (T) from λT 

using the relation τs (T) = λT 2/ D (T) = e λT 2 / k Tµ,  where µ is the drift mobility. The 

reported drift mobility in Alq3 is given by the relation [152]: 

                                                                                                             (7.4) ]  [ exp)( 2/1
0 EE αµµ =

where µ0  and α  are constants and E is the electric field. Reference [152] reports µ0 = 10-7 

– 10-9 cm2/V-sec, and α = 10-2 (cm/V)1/2 in the bulk organic. 

In order to determine the electric field  E  in the organic, we proceed as follows. The 

voltage over the nanowires can be estimated from the measured resistance and the current 

using Ohm’s law: V = I × R = 10 µA × 1520 Ω = 15.2 mV. Since the Alq3 layer (in the first 

set) is nominally 33 nm wide, the average electric field across it is 15.2 mV/33 nm = 4.6 

kV/cm. Using this value in Equation (7.4), we estimate that the carrier mobility in the bulk 

organic is 2 × 10-7 – 2 × 10-9 cm2/V-sec. In nanowires, the mobility is 10 times lower since 

we found that the momentum relaxation time is 10 times smaller. Therefore, the mobility 

in these samples is 2 × 10-8 – 2 × 10-10 cm2/V-sec. 

Assuming that the mobility is temperature independent, we have calculated the spin 

relaxation time τs (T) from the relation τs (T) = e λT 2/ k T µ. These results are plotted as a 

function of temperature in Figure 7.11. The two curves give the maximum and minimum 

values of τs (T) at different temperatures. They range from few milliseconds to over 1 

second at 1.9 K. These are among the longest spin relaxation times reported in any system.
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Figure 7.11 This figure plots spin relaxation time in Alq3 nanowires as a function of 
temperature. The triangles are data obtained from the first set and the squares are data 
obtained from the second set. We show the maximum and minimum values at different 
temperatures. The non-zero range comes from the uncertainty in the mobility value of 
the organic layer. 

 

 

 

 

Finally, in Figures 7.12 and 7.13, we plot the spin diffusion length and the spin relaxation 

time as a function of the electric field within the organic layer at a temperature of 1.9 K. 

Both quantities decrease with increasing field since the latter promotes momentum 

relaxing scattering events and therefore increases the spin relaxation rate. 

One final question remains. What is the origin of negative (or inverted) spin valve peaks 

observed in Figures 7.5 and 7.6 ? If there are localized defects in the organic and carriers 

resonantly tunnel through them, then the spin polarization of the ferromagnetic contact 
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 nearer to the defect can be effectively inverted (sign reversed) [150, 153]. In that case, P1 

and P2 in equation (7.1) will have opposite signs implying RAP < RP. Here RAP (and RP) 

denotes the device resistance when the ferromagnetic contacts are magnetized anti-parallel 

(and parallel) to each other. This will produce a negative spin valve effect. In other words, 

the “peak” becomes a “trough”. 

    Thus the negative (inverted) spin valve peak (or the trough) is manifested when carriers 

resonantly tunnel through a localized defect state. This requires that the carrier energy is 

resonant with the impurity level. In some nanowires, this may happen and they exhibit a 

trough. In others, this does not happen so that they exhibit a peak, instead of a trough. 

Since each sample consists of a large number (~ 108) of nanowires, there is some 

cancellation between the positive and negative signals which decreases the measured 

signal as a result of ensemble averaging. This is probably the reason why the distribution 

in Figure 7.3 peaks near zero. 

    We will now explain why a peak is accompanied by a positive background 

magnetoresistance and a trough is accompanied by a negative background 

magnetoresistance. At any magnetic field, except between the coercive fields of the two 

ferromagnets, the magnetizations of the injecting and detecting contacts are parallel. 

Assume also that both ferromagnets have the same sign of the spin polarization (as is 

indeed the case with cobalt and nickel). Now consider the case when the spin valve peak is 

positive, meaning that there is no resonant tunneling through impurity states resulting in an 

effective inversion of the spin polarization of the nearest contact. In this case, an injected 

carrier will transmit and contribute to current if its spin does not flip within the spacer
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 layer. In the presence of spin-orbit interaction, a magnetic field will increase the spin flip 

rate by inducing spin-mixing [37, 103]. Thus, the probability of spin flipping increases 

with increasing magnetic field. If the injected carrier’s spin flips, then it will be blocked by 

the detecting contact and the current will decrease resulting an increase in resistance. Thus 

the resistance should increase with increasing magnetic field resulting in a positive 

background monotonic magnetoresistance. This is what we observe.   

    In the case of negative spin valve signal, resonant tunneling through an impurity state 

results in effective inversion of the spin polarization of the nearer ferromagnetic contact. In 

this case, spin flipping within the spacer layer will allow the flipped spin to transmit 

through the detector contact, which would have otherwise blocked it. Thus spin flip events 

decrease the device resistance, instead of increasing it. Since a magnetic field increases the 

spin flip rate, the resistance will decrease with increasing magnetic field, resulting in a 

negative monotonic background magnetoresistance. Again this is exactly what we observe. 

These mechanisms are illustrated in Figure 7.14.  

    Note that the above mechanism for the background monotonic magnetoresistance does 

not call for phase coherence of charge carriers and therefore can persist upto high 

temperatures. We believe that this is a more likely cause of the background monotonic 

magnetoresistance in organic spin valves than either localization or anti-localization. Of 

course, this mechanism requires correlation of the signs of the spin valve signal and the 

background magnetoresistance. If they turn out to be anti-correlated, then this will not be 

the cause. We have always observed this correlation, and never observed anti-correlation, 
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 in all our experiments (90 samples, multiple traces). Therefore we believe the mechanism 

suggested here is indeed the likely cause. 

    In conclusion, we have demonstrated the first “quantum wire” organic spin valve, and in 

the process identified the dominant spin relaxation mechanism in organics to be the E-Y 

mode. We have also demonstrated that the spin relaxation time in organics is exceptionally 

long which is consistent with vanishingly small spin orbit interaction strength in organics. 

This establishes organic semiconductors as a very viable platform for spintronics. We also 

report an intriguing correlation between the sign of the spin valve signal and the 

background monotonic magnetoresistance. Based on this correlation, we have proposed a 

likely origin of the background magnetoresistance. 
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Figure 7.12 This figure plots spin relaxation length in Alq3 nanowires as a function of 
applied bias at a fixed temperature of 1.9 K.  
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Figure 7.13 This figure plots spin relaxation time in Alq3 nanowires as a function of 
applied bias at a fixed temperature of 1.9 K.  
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Figure 7.14 Explanation of background negative (panels (a) and (b)) and positive 
(panels (c) and (d)) magnetoresistance. We have assumed for simplicity that Ni is a 
100% spin injector. Though this assumption is not true, it does not affect the 
conclusions. 



 

 

 

 

CHAPTER 8.  Transverse Spin Relaxation Times in an 
Ensemble of Electrochemically Self-assembled CdS Quantum 

Dots♣

 

Overview 

Using electron spin resonance (ESR) experiments, we have measured the ensemble 

transverse relaxation time ( ) of spins in arrays of cadmium sulfide (CdS) quantum dots 

self-assembled by selective electrodeposition of the compound in 10 nm diameter pores of 

an anodic alumina film. The  time is very short – a few nanoseconds at low 

temperatures – and it increases with increasing temperature in the range 3.7 K – 20 K. The 

major source of dephasing contributing to the relaxation rate is believed to be spatially 

varying hyperfine interactions with nuclear spins. The temperature dependence is 

consistent with the nuclear magnetic field being increasingly depolarized at higher 

temperatures leading to a progressively weaker hyperfine interaction. The effective Lande’ 

g  factor in the quantum dots was found to be ~ 2. 

*
2T

*
2T
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♣ This chapter has been published in the Proceedings of 6th IEEE conference on Nanotechnology (IEEE-
Nano), Cincinnati, 2006. (Authors: S. Pramanik, B. Kanchibotla, and S. Bandyopadhyay) 
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8.1 Introduction

There is significant interest in studying spin coherence lifetimes in semiconductor quantum 

dots [69] because of potential applications in spin based quantum computing. The spin of a 

single electron in a quantum dot has often been considered a suitable entity to encode a 

qubit because spin coherence times can vastly exceed charge coherence times [154]. 

Consequently, spin based quantum computers are expected to be more robust and fault-

tolerant than charge based quantum computers.  

    Interest in quantum processors, particularly fault tolerant logic gates, has motivated the 

study of spin coherence in quantum dots. The study of spin lifetimes in semiconductors 

dates back to almost 40 years. There are two types of spin lifetimes that are of interest. The 

first is the so-called longitudinal relaxation time, or  time, which essentially refers to the 

mean time that elapses before an excited spin flips to the ground state. This time is of great 

importance in classical spin-based logic gates [16] but less relevant to quantum computing 

where what matters is how rapidly a single spin loses its quantum mechanical phase 

coherence. That time is determined by the transverse relaxation time, or  time. The 

definition of the  time invariably involves a concept of quantum superposition. A qubit 

is a coherent superposition of “upspin” and “downspin” states, as expressed by the 

following equation:  

1T

2T

2T

                                       ↓+↑=   qubit ba                                                                    (8.1) 

where  and  are complex quantities with a definite phase relationship between them. 

Also, the norm of this state is unity

a b

( ) 1 i.e. 22 =+ ba . In order to preserve the coherence 

between the upspin and downspin states, one needs to maintain the precise phase
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 relationship between the complex coefficients  and . The time constant associated with 

the temporal decay of this phase relation is the  time. Accordingly,  provides a 

measure of the robustness of a qubit. 

a b

2T 2T

    It is difficult to measure the  time directly since we have to probe decoherence of a 

single electron. In most experiments, one probes a large number of spins simultaneously. 

Even if these spins do not interact with each other, inhomogeneities in local magnetic 

fields caused by nuclear spins having random polarization, or spatially varying spin-orbit 

interaction, will increase the decoherence rate substantially. Therefore what one measures 

will always be less than the actual  time associated with a single electron. We call this 

measured time the  time. It has been shown that  can be several times smaller than 

 [62].  

2T

2T
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    There are many ways of measuring  in quantum dots. For example reference [66] has 

used femtosecond - resolved Faraday rotation technique to study  lifetime in chemically 

synthesized CdSe quantum dots with diameters varying in the range 2 – 8 nm. They 

reported spin lifetime of  ~ 3 nanoseconds at zero magnetic field, which reduces to ~ 100 

picoseconds at an applied magnetic field of  4 T. The 

*
2T

*
2T

g  factor is in the range of 1.1 – 1.7.  

In these systems,  is independent of temperature in the range 6 – 282 K. References [67, 

68] report  time of ~ 6 nanoseconds in GaAs quantum dots. Hanle effect measurements 

[65] show that  is approximately 0.2 nanoseconds in case of self-assembled InAs 

quantum dots. The nuclear spin of Indium is 9/2 and this is probably the reason why  is 

shorter for InAs quantum dots as compared to GaAs or CdSe quantum dots. In the present 

*
2T

*
2T

*
2T

*
2T
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 work we use electron spin resonance (ESR) technique to determine  and the *
2T g  factor 

of CdS quantum dots. 

    This ESR technique is quite straightforward. The quantum dots are subjected to a dc 

magnetic field which lifts the degeneracy of the spin states. This is the well known Zeeman 

splitting. Next, an ac magnetic field produced by a microwave source, is applied over the 

spins. It induces Rabi oscillations between the Zeeman-split levels when the microwave 

frequency is resonant with the spin-splitting energy. Consequently, microwave is absorbed 

when resonance occurs. From the linewidth of the absorption peak, we can deduce . 

Also from the value of resonance frequency (equivalently, the value of dc magnetic field at 

which resonance occurs, when microwave frequency is kept constant) we can deduce the 

*
2T

g  factor of the electrons in the quantum dots.  

    Although this is a straightforward technique, it has been seldom applied to quantum dots 

since the absorption intensity depends on the number of participating spins and that 

number has to be large in order to produce a strong enough signal. With quantum dots, the 

number of spins involved is typically small so that normal ESR is not a reliable method. 

However, if the density of the quantum dots is sufficiently high, then it may be possible to 

obtain a strong enough ESR signal (particularly at low temperatures when level broadening 

is small) to yield a reliable estimate of  time. Since we can produce an extremely dense 

array of quantum dots (density > 10

*
2T

11/cm2) using electrochemical self-assembly, we have 

used ESR, successfully, to measure the  time. *
2T
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8.2 Sample fabrication procedure

The electrochemical self-assembly technique for fabricating quantum-confined structures 

has been discussed in details in the previous chapters. Here we will reiterate the basic steps 

of the fabrication process. This process is schematically shown in Figure 8.1. 

    We first electropolish and then anodize an aluminum foil in 15% sulfuric acid using a 

constant voltage of 10V dc to produce a porous alumina film on the substrate. The pore 

diameter is 10 nm with 10% standard deviation [118]. A SEM micrograph of the anodized 

template is shown in Figure 8.2.  

    The pores are then selectively filled with CdS using ac electrodeposition in a non-

aqueous solution of dimethyl sulfoxide comprising cadmium perchlorate, lithium 

perchlorate and sulfur powder. Electrodeposition is carried out at 100oC with an rms 

voltage of 20V and 250 Hz frequency. In the end, we have an ordered array of cylindrical 

CdS quantum dots, each with a diameter of 10 nm, and heights ranging from 10 – 100 nm, 

hosted in an alumina matrix. 

    The alumina film is released from its aluminum substrate by dissolution in HgCl2 

solution which does not affect the alumina or CdS, but dissolves away the aluminum. 

Several such films (~ 20) are then stacked in the sample chamber of a Bruker BioSpin ESR 

spectrometer in order to acquire a signal of sufficient strength. Signal is obtained from ~ 

1011 dots. Spin resonance measurements are carried out over a temperature range extending 

from 3.7 K to 20 K. Above 20 K, the strength of the ESR signal fades and falls below the 

equipment’s sensitivity. 
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8.3 Experimental results

In Figure 8.3, we show the first derivative of the ESR linewidth as a function of (dc) 

magnetic field at four different temperatures. The microwave frequency is fixed at 9.35 

GHz and the dc magnetic field is varied to reach resonance. The center field for the ESR 

resonance peak is found from Figure 8.3 to be 3310 Gauss. From this value we can find the 

Lande’ g  factor using the formula ( ) cB Bgf     2 µπ =h  where  is the microwave 

frequency, 

f

π2/h=h  is the reduced Planck constant,  Bµ  is Bohr magneton, and  is the 

flux density of the center field (i.e. 3310 Gauss). Putting  and 

, we get . This measurement yields the magnitude of the 

cB

GHz 35.9 =f

Gauss 3310=cB 0.2=g g  factor 

but not its sign. It is interesting to note that an electron in these quantum dots have, on the 

average, the same g  factor as a free electron. From Figure 8.3, we can find the  time at 

different temperatures. We used very low microwave power (

*
2T

 W~ µ ) in order to avoid 

sample saturation. At this power level, sT  100~1 µ and the ESR linewidth is determined by 

. The lineshape resembles a Lorentzian. In that case  is given by *
2T *

2T
( )PPe B

T
∆

=
3

1*
2 γ

 

where eγ  is the electronic magnetogyric ratio (1.76 × 107 G -1s -1), and  is the 

separation between the positive and negative peaks in Figure 8.3 which is basically the 

full-width-at-half-maximum of the ESR lineshape, scaled down by a factor of 

PPB ∆

3 (due to 

Lorentzian shape of the absorption curve).  

    In Figure 8.4, we plot  time as a function of temperature. Clearly the transverse 

relaxation time increases monotonically with temperature at least in the temperature range 

(3.7 K, 20 K). This is very counterintuitive, because in case of bulk, quantum well, or, 

*
2T
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quantum wires, spin dephases at a faster rate as we increase temperature. But, surprisingly, 

for quantum dots, we observe an opposite effect. Here spin dephasing process is slowed 

down as we increase temperature. In order to understand this effect let us take a close look 

at the various spin dephasing mechanisms that are operative in quantum dots.  

 

  Figure 8.1 Schematic description of the sample fabrication process 
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Figure 8.2 A SEM micrograph of nanoporous template with nominal pore diameter of 
10 nm. The areal density of the pores is approximately 1011/cm2

 
Figure 8.3 First derivative of the ESR linewidth as a function of magnetic flux density 
at four different temperatures. Note that the distance between the two peaks decreases 
slowly as we increase temperature. The vertical axis is in arbitrary units and the four 
spectra are shifted vertically for easy comparison. 
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8.4 Discussion

There are several mechanisms that can cause electron spin dephasing in quantum dots. 

First of all, there is ubiquitous spin-orbit interaction accruing from various sources. For a 

comprehensive discussion on this topic the reader is encouraged to go through reference 

[49]. However, in case of quantum dots, spin-orbit interaction is extremely weak since the 

electron is strongly localized in space i.e. its motion is restricted in all three dimensions 

[49, 51]. Typical time scale of spin dephasing due to spin-orbit interaction alone is ~ few 

milliseconds [49]. Thus spin-orbit interaction is not the dominant source of spin dephasing 

at least for quantum dots. It is widely believed that the primary cause of spin dephasing in 

an ensemble of quantum dots is the spatially varying hyperfine interaction caused by 

nuclear spins. The spatial variation comes about from two sources. First, the electronic 

wavefunction varies in space and the strength of the hyperfine interaction depends on this 

wavefunction. Second, the magnetic field due to nuclear spins is also inhomogeneous. This 

inhomogeneity is the major contributor to the dephasing rate . In quantum wells, on 

the other hand, the major spin dephasing mechanism is believed to be Rashba spin-orbit 

interaction. That interaction, however, is extremely weak in quantum dots since the 

electron motion is restricted in all three dimensions [51]. Also dipole-dipole interaction 

between nuclear spins causes the net nuclear field to change with time. This change in net 

nuclear magnetic field can cause electron spin dephasing. But this process occurs on a 

much longer time scale. For example in case of GaAs, typical timescale associated with 

this process is ~ 100 µs (obtained from the linewidth of NMR absorption spectrum). Thus 

this process is not very effective in dephasing electron spins.  

*
2/1 T
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Reference [57] provides an equation for the transverse relaxation rate in the special case of 

electrons hopping between dots 

( ) ττµ dHHg
TT NZNZ

B ∫
∞

∞−

+=  )()0(
22

11
2

2

12 h
 

where the bracket ⋅⋅  denotes ensemble average and  is the effective magnetic field 

due to nuclear spins. Obviously, the dephasing rate increases with increasing 

autocorrelation given by the integral in the above equation. With increasing temperature, 

the nuclear spin polarizations are randomized leading to a decrease in the autocorrelation 

function. This explains why the dephasing rate decreases with increasing temperature as 

shown in Figure 8.4.  

NZH

    The thermal depolarization of nuclear spins also plays a direct role in electron spin 

dephasing. As we discussed in Chapter 1, for an unpolarized configuration of nuclear 

spins, the net magnetic field is reduced by a factor N , where N is the total number of 

nuclear spins interacting with the electron. Since hyperfine interaction gets weaker at 

higher temperature, electron spin dephasing rate decreases. Using the theory of reference 

[59], we indeed obtain , which is in excellent agreement with our experimental 

finding. 

ns 2~*
2T

8.5 Conclusion

In conclusion, we have measured the ensemble transverse spin relaxation time  in an 

array of 10

*
2T

11 quantum dots using ESR. The relaxation time increases with temperature 

which is consistent with hyperfine interaction due to nuclear spins being the primary cause  
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of spin dephasing. The measured time is very short, of the order of few nanoseconds, 

which agrees with previously published experimental data and theoretical model. 

 

 

 

 

 

 

Figure 8.4 The measured T time as a function of temperature *
2 
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