
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

2005

Intelligent Autonomous Data Categorization
Edward Graham Finegan
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Computer Sciences Commons

© The Author

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses
and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/1343

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VCU Scholars Compass

https://core.ac.uk/display/51291786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F1343&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F1343&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F1343&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F1343&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F1343&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F1343&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarscompass.vcu.edu%2Fetd%2F1343&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/1343?utm_source=scholarscompass.vcu.edu%2Fetd%2F1343&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

© Edward Graham Finegan 2005

All Rights Reserved

Intelligent Autonomous Data Categorization

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science at Virginia
Commonwealth University.

By

Edward Graham Finegan
B.S. Rowan University 2003

Director: David Primeaux, Ph.D.
Interim Chairman, Department of Computer Science

Virginia Commonwealth University
Richmond, Virginia

August 2005

ii

Acknowledgment

I would like to show my appreciation for my wonderful

girlfriend Shannon for her help and support.

Table of Contents

LIST OF TABLES...................................VI

LIST OF FIGURES.................................VII

ABSTRACT.......................................VIII

REVIEW OF THE LITERATURE..........................1

INTRODUCTION... 1

THE HIGH DIMENSIONAL MEMORY MODEL 2

THE HAL ALGORITHM .. 6

SUMMARY.. 10

THE PROBLEM: AN EXPLOSION OF DATA................11

GROWTH OF DATA AND ITS ORGANIZATION 11

ASSUMPTIONS .. 12

RESEARCH HYPOTHESIS .. 12

SIGNIFICANCE OF THE RESEARCH................................. 12

SCOPE ... 13

SUMMARY.. 13

RESEARCH PROCEDURES..............................14

iv

RESEARCH DESIGN ... 14

THE NCA ALGORITHM ... 14

DATA COLLECTION ... 21

LIMITATIONS AND COMPLEXITY 23

SUMMARY.. 25

RESULTS OF RESEARCH..............................26

RESULTS.. 26

SUMMARY.. 30

CONCLUSIONS AND IMPLICATIONS.....................31

SUMMARY OF RESEARCH .. 31

CONCLUSIONS .. 32

IMPLICATIONS.. 35

FUTURE RESEARCH ... 35

SUMMARY.. 36

BIBLIOGRAPHY.....................................37

APPENDIX A.......................................40

DEFINITIONS AND OPERATIONAL TERMS............................. 40

APPENDIX B.......................................42

APPENDIX C.......................................44

HAL.JAVA .. 44

MEMORYMATRIX.JAVA ... 52

FINDDISTANCES.JAVA .. 58

v

RANKEDRESULTS.JAVA .. 58

PROGRESSBAR.JAVA .. 59

List of Tables

TABLE 1: “THE MOTORCYCLE RACED DOWN THE STREET HOME” SCORING MATRIX .. 8

TABLE 2: EXAMPLE DISTANCE MATRIX, WINDOW SIZE = 3, •B (BASIC DISTANCE)

= 7.48.. 19

TABLE 3: 1ST SEVEN WEB PAGE DATA SET, 27

TABLE 4: 2ND SEVEN WEB PAGE DATA SET, 27

TABLE 5: 1ST FOURTEEN WEB PAGE DATA SET, 28

TABLE 6: 2ND FOURTEEN WEB PAGE DATA SET, 28

TABLE 7: 1ST TWENTY-EIGHT WEB PAGE DATA SET, 29

TABLE 8: 2ND TWENTY-EIGHT WEB PAGE DATA SET, 29

List of Figures

EQUATION 1: EUCLIDEAN DISTANCE EQUATION........................ 16

EQUATION 2: BASIC DISTANCE WHERE W = HAL WINDOW SIZE 17

Abstract

INTELLIGENT AUTONOMOUS DATA CATEGORIZATION

By Edward Graham Finegan, M.S.

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science at Virginia
Commonwealth University.

Virginia Commonwealth University, 2005.

Major Director: David Primeaux, Ph.D. Interim Chairman

Department of Computer Science

The goal of this research was to determine if the results of

a simple comparison algorithm (SCA) could be improved by

adding a hyperspace analogue to language model of memory

(HAL) layer to form NCA. The HAL layer provides contextual

data that otherwise would be unavailable for consideration.

It was found that NCA did improve the results when compared

to SCA alone. However, NCA added complexity problems that

limit its practicality. The complexity of this algorithm is

On3 where n is equal to the number of unique symbols in the

ix

data. While there is a relativity reasonable soft upper

bound for the number of unique symbols used in a language,

the complexity still limits the uses of the NCA combined

algorithm. The conclusion from this research is that NCA can

improve results. This research also suggested that the

quality of results might increase as more data is processed

by NCA.

1

Review of the Literature

Introduction

This research was conducted to determine if the results of a

simple comparison algorithm (SCA) could be improved by

adding a hyperspace analogue to language model of memory

(HAL) layer. Although this research will focus on grouping

similar web pages, it could be applied to any set of text

documents. An intelligent algorithm is used because such an

algorithm has the ability to adapt to the environment it is

used in. This intelligent algorithm will learn from the data

that it has already processed and continually improve the

results of its output.

The hyperspace analogue to language model of memory (HAL)

was chosen for its ability to learn contextual meanings of

words. (Burgess 1998) The intent in this research is to

combine a learning HAL with SCA to create a new comparison

algorithm (NCA) which will effectively form groupings of

similar web pages. The HAL layer is intended to give NCA an

insight into the context of words and symbols that appear in

web pages. HAL can process the contextual meaning of words,

2

but can also process misspelled words and symbols such as

“:)”. Since this algorithm processes both words and symbols,

the term symbol will be used with the intended meaning that

a word can be a symbol. The SCA without HAL would evaluate

symbols literally and meanings would not be considered. By

combining these two algorithms into NCA an intelligent

algorithm should be created that can group web pages based

on the context of their content.

The High Dimensional Memory Model

HAL falls into the category of a high-dimensional memory

model (HDM). (Osgood, Suci, Tannenbaum 1957) HDM has a goal

of extracting and representing the meaning of words or

symbols from a streamed input. These models then learn the

context of words and symbols similarly to the manner in

which humans do. When recalling a sentence most people do

not remember what the sentence is word for word, but instead

abstract a meaning, which is called a mental model. A HDM

works in much the same way. (Burgess 1998)

HDM are not a new concept. In the 1950’s Charles Osgood

pioneered much of the early work. (Osgood, Suci, Tannenbaum

1957) However, recently, the number of papers investigating

HDM has increased. Current papers produced by Burgess, Lund,

Landauer, Dumais, Laham and Foltz have advanced the use of

3

HDM in many directions. Many HDM require some type of user

interaction or interpretation. This made using the HDM time

consuming and limits its benefits.

HAL is a HDM that requires no user interaction or

interpretation to learn the contextual meaning of words or

symbols in a language stream. As a result, HAL can address a

variety of difficult and problematic situations that caused

previous HDM to struggle.

HAL takes a set of text data as input. It then tracks

lexical occurrences of symbols within a sliding window.

(Burgess 1998) This sliding window can be of any size. In

previous research (Burgess 1998) and in this research, the

window size has been set to ten symbols before and after the

target symbol. HAL then stores the lexical occurrences from

this window. Using this stored information HAL can then

generate a vector point for each unique symbol in vector

space. (Burgess 1998) Since this point represents the

context of the symbol, the space it is contained in is

referred to as context space. (Burgess 1998) The distance

between two points in the context space can be calculated.

This distance represents the extent of contextual similarity

of one symbol to another.

4

HAL is not the only style of HDM in use. Latent Semantic

Analysis (LSA) is also a very popular model. (Landauer,

Foltz, Laham 1998) This model predates HAL. LSA is a method

used for extracting and representing the contextual meaning

of symbols by statistical computations applied to a large

corpus of text. Although the method and application of HAL

and LSA differ, the literature indicates that they produce

similar results.

The HAL model focuses on finding contextually similar

symbols. LSA is a broader model that has more flexibility

and can be used in a variety of human memory modeling tasks.

Thomas K. Landauer, a major researcher behind LSA claims:

The principal difference between the HAL and LSA
approaches to date, in addition to possibly significant
technical differences such as similarity metrics, is
our focus on the importance of dimensionality matching
as a fundamental inductive mechanism rather than merely
a computational convenience. (Landauer, Dumais 1997)

Put simply, the LSA model attends to how humans learn

language. A major accomplishment of LSA is its ability to

have vocabulary knowledge equal to that of a child.

(Landauer, Foltz and Laham 1998) This is achieved by

processing the same amount of language data to which a child

would have been exposed. LSA uses statistical functions to

extract meaning from the data. LSA has also been used to

model human brain disorders.

5

HAL was derived from the LSA model without the constraint of

closely modeling human language processing. Instead HAL was

designed to produce similar results but without the extra

overhead involved in modeling human behaviors.

This research attempts to further the use of the HAL model.

HAL was chosen since its goals of producing contextual data

of symbols are inline with the goals of this research. LSA’s

goals were less specific and did not fit as well with this

research. HAL can also produce interesting results with a

simpler implementation.

Currently, using human agents is potentially the most

accurate way to intelligently group collections of data.

However, humans have the disadvantages of being slow and

prone to fatigue and error. Online search engines such as

Google have developed algorithms to find similar pages.

Google finds similarities much faster than humans could.

Although these algorithms are proprietary, leading search

engine researchers believe they know the general principal

behind them.

In general, the search engines create a graph in which web

pages (nodes) are connected by the links between them.

Related web pages are often highly connected to one another.

These densely connected areas are called communities. A web

6

page that is in another web page’s community, with similar

keywords, is deemed a similar web page. This method does

return acceptable results. However, these results are

incomplete. If a web page is weakly linked to its community

it may not be deemed relevant. (Churchill 2005) Also, this

method only works in situations where the pages are linked

as they are on the web. This method would not work on a home

user’s PC to group plain text files similar in context but

containing no links.

The HAL Algorithm

Implementation of HAL is straightforward. All data files are

taken as input. A matrix is created of size N x N, where N

is equal to the number of unique symbols found throughout

the body of data. An example matrix can be found in Table 1.

A sliding window is then used to locate lexical similarities

of symbols within the text. For example, consider the

following sentence, “The motorcycle raced down the street

home”. The window would start at the beginning of the

sentence. The size of the window can be set to any value

less then N. It has been found that any window value greater

then ten adds little to the meaning of the word being

analyzed. (Burgess 1998) In this example sentence, however,

a window size of five will be used in order to simply

demonstrate how this model works.

7

The word “The” is the first symbol to be analyzed. Since the

window size is five, the next five symbols are given a score

in the N x N matrix created earlier (Table 1). As the

algorithm proceeds, the values stored in the columns of the

matrix will represent values associated with symbols in that

half of the window prior to the current symbol. Similarly,

values in the matrix’s rows will represent the half of the

window that is after the current symbol. By studying the

symbol “home”, in Table 1, it is evident that its row is

empty. This is because “home” has no symbols following it.

However its column does contain data representing the

previous appearing symbols in the window.

The values in the matrix are initialized to 0 and the

results are accumulated. The maximum score added to any

symbol is the size of the window. As seen in Table 1, when

the initial “the” is the symbol of interest, “motorcycle” is

the closest symbol to “the”, so a score of 5 is added to the

initial 0 value associated with “motorcycle”. The next word,

“raced” results in a score of 4, “down” 3, “the” 2, and

“street” 1. The window then slides to the right, one symbol,

and now “motorcycle” is the symbol that scores are being

assigned against. From “motorcycle”, “raced” is the closest

symbol to the right and results in a score of 5. Next is

“down” which results in a score of 4, “the” 3, “street” 2

8

and finally “home” results in a score of 1. This process is

continued sequentially for all of symbols in the text. Once

this process is finished the matrix of scores shown in Table

1 would have been generated.

Table 1: “the motorcycle raced down the street home” scoring matrix
 the motorcycle raced down street home
the 2 5 4 3 6 4
motorcycle 3 0 5 4 2 1
raced 4 0 0 5 3 2
down 5 0 0 0 4 3
street 0 0 0 0 0 5
home 0 0 0 0 0 0

The effect of accumulating scores can be seen by inspection

of the row corresponding to the symbols “the”. By recording

how the symbols are used repeatedly, HAL learns its

contextual meaning. As stated before, a window of size five

represents five symbols before and after the current symbol.

However, in the calculations only that half of the window

after the current symbol needs to be taken into account. For

example when the window is centered on “motorcycle” the

symbol “the” precedes it. The symbol “the” is contained in

the window, but since “the” precedes “motorcycle” there is

no need to add a score for this relationship to the matrix.

This relationship will automatically be represented in the

columns of the matrix once all of the rows are filled.

Once all score values for the matrix have been completed, it

becomes easy to compare two symbols. To determine a vector

9

point in the context space, the complete row and column for

one symbol is inspected. Since we have six unique symbols in

the example above, we have a twelve-dimensional context

space. The space is twelve dimensional and not six because

there are six values in the columns representing a symbol of

interest’s contextual relationship to the symbols preceding

it in its window, while the six values in the rows represent

a symbol of interest’s contextual relationship to the

symbols following it in its window. The context space

location of the symbol “raced” from above would be

{4,0,0,5,3,2,4,5,0,0,0,0}. The first six values for this

vector are found in the row for “raced” in Table 1. The last

six values are then found in the column for “raced” Table 1.

Once it is understood how this model works, it is easy to

see why it is so flexible. Previous HDM were unable to

handle common spelling errors, or typing errors. In the HAL

model, common errors are quickly grouped together by their

contextual meanings. If we take the previous example

sentence and add an additional similar sentence to our set

of data, it becomes apparent why this model is so flexible.

Original: “The motorcycle raced down the street home.”

New: “The motorcycle raced down the road home.”

10

Both of these sentences are identical except that one uses

“street”, and the other uses “road”. When the two sentences

are processed through the HAL, “street” and “road” will have

the same vector point in context space. Since the distance

between the two will be zero, it is safe to assume that in

this set of data these two symbols have the same meaning and

are interchangeable. In a larger set of data it would likely

be very rare that two symbols will have identical vector

points. However, once the distance between such similar

symbols is calculated, the distance will be so small in

comparison to other distance values that these two symbols

will be interpreted as being very near or identical in

meaning.

Summary

HAL is a flexible and adaptive algorithm. It can learn the

context of words and symbols that normally would not be

expected, such as unique symbols resulting from spelling and

typing errors. The HAL algorithm is straightforward to

implement. HAL creates a matrix of unique symbols and fills

in score values based on locations relative to a sliding

window. Once the matrix is computed, it can be used to find

the vector points of each symbol in the high dimensional

context space.

11

The Problem: An Explosion of Data

Growth of Data and its Organization

Everyday more data is being created. The data ranges from

that generated by large corporations with data warehouses,

to that generated by end users with a few gigabytes of data

on their home PC’s hard drive. The Internet is also

expanding at a high rate and finding ways to organize this

data is becoming challenging. It would seem that keeping the

data grouped together based on similarities in its content

might prove useful. This research will investigate the

possible use of a HAL in conjunction with SCA to discover if

HAL’s ability to learn the contextual meaning of symbols can

benefit the SCA and produce more useful results.

An objective of this research is to find a method that is

both fast, because it is processed by computer, as well as

adaptive and intelligent enough to produce results that

approach those of a tireless and error-free human. An

algorithm that can produce both fast and intelligent results

will be beneficial to any user wanting to group or

categorize data according to content.

12

Assumptions

Several assumptions underlie this research. The sample data

used is assumed to be representative of data that may be

discovered in a real world situation. A second assumption is

that any findings on this small set of data will hold true

for larger sets. Thirdly, while not true in all domains, it

is assumed that any trends found in these results will also

be present in the larger sample sizes. Finally, even given

differences in human opinion regarding which documents or

web pages should be grouped together, this data can be

intelligently grouped and the similarity of their content

agreed upon by reasonable people.

Research Hypothesis

NCA, using the use of the HAL algorithm in conjunction with

SCA will produce more intelligent and flexible results when

compared to the use of either HAL or SCA alone.

Significance of the Research

This research develops and implements NCA, an algorithm that

is intelligent and adaptive. The results of NCA should

create contextually similar groups of data. After the

13

intelligent algorithm processes the data, it groups the data

based on content.

Scope

The scope of this research is limited to the design and

verification of the NCA algorithm. The sample data in this

research, which in theory can be any type of data file, will

only consist of web pages from the Internet. Since the

sample data set must be selective, it was arbitrary decided

that only three categories of data would be used: baseball,

football, and the Iraqi war.

Summary

An algorithm able to intelligently group data would be an

asset to many users. Hypothetically, such an algorithm can

be created by conjoining HAL with SCA. The resulting NCA

algorithm would learn contextual meanings from the data it

has already processed. This research is limited to a small

set of sample data. The scope of this research is to develop

this NCA algorithm and consider the likelihood of it working

in a less constrained scenario.

14

Research Procedures

Research Design

This research was performed on web pages collected from the

Internet. The data was hand picked in an attempt simulate

differences and similarities between the web pages.

Baseball, football and the Iraqi war were the three

categories that data was chosen from. The NCA algorithm

presented in this research was used to process this data.

The output was analyzed and compared against the expected

results. Anomalies in the results were then further studied

in order to determine their cause.

The NCA Algorithm

To conduct this research two tools were created. One tool

stripped HTML from web pages. No known public algorithm

compares two web pages while utilizing the HAL algorithm.

Therefore an implementation of NCA was created to carry out

this task.

The first (and simpler) tool was an HTML parser (see

Appendix B). The sample data that was acquired contained

15

HTML tags. Because it is believed that removing the HTML

tags the classification results could be based on content

alone as opposed to effects of formatting and content. The

parser processes the sample data and removes most of the

HTML. It can be argued that the formatting can also contain

a deeper level of context meaning. While this may be true,

consideration of formatting effect on meaning is beyond the

scope of this research.

The primary tool used in this research was the design and

implementation of NCA that incorporated the HAL algorithm

and SCA (see Appendix C). Java was the chosen language for

this tool. By using Java the constraints of platform

dependency were removed. Java’s many libraries allowed more

attention to the research as opposed to some implementation

details. Once processing of selected data is complete, the

user selects a web page to be compared against all other web

pages that have been processed. The tool will output a list

of like web pages with a score given to each one. A higher

score means the two web pages are more contextually similar.

In detail, the NCA tool first traverses all the data and

counts the number of unique symbols. A matrix of size N x N

(where N is equal to the number of unique symbols) is

created. The tool then applies the sliding window to the

text and fills in scores for all the symbols in the matrix.

16

Once the matrix scores are filled in, a second matrix is

created of equal size to the first.

The second matrix is the distance matrix. The distance

matrix is unique to NCA. It is used to store the distance

values for every symbol combination. The distance, ∆d is

found by using the Euclidean distance equation.

22
22

2
11)(...)()(nn bababad −++−+−=∆

Equation 1: Euclidean distance equation

The vector points ((a1,…,an) from the 1

st symbol, (b1,…,bn)

from the 2nd symbol, where n is equal to the number of unique

symbols) are obtained from the first matrix and then

plugged into the equation. The distances are calculated so

that once they are found the comparison of two selected

documents can run swiftly.

Filling this second matrix can be very time consuming. The

complexity, which will be discussed in detail later, is

O(n3). The distance matrix stores the distances of every

symbol from every other symbol. For example, symbol A to

symbol B then symbol B to symbol A. Consequently, this

matrix contains a redundant set of data. By only calculating

half of the matrix the processing time can be cut in half

17

with no loss of information. Even with the count of

calculations cut in half, however, the processing time can

be staggering.

With the distance data complete the program must decide

which symbols are similar. This is a difficult problem

because the size of context space is dependent on the data

set. During this research a novel equation was created to

compute a special case of the Euclidean distance and to give

intuitive meaning to the HAL algorithm’s generated

distances. Equation 2 can find a “basic distance” value, ∆b.

∑
=

=∆
w

i
ib

1

24

Equation 2: Basic Distance where w = HAL window size

The basic distance equation is derived from the Euclidean

distance equation (Equation 1). This equation finds the

distance of two symbols that only appear once in the data

set and never appear in the same sliding window. An example

∆b, with window size w = 3 and n = 10 unique symbols,

follows. Since n = 10 a 20 dimensional context space is

required. Since the symbols only appear once, possible

coordinates for a one symbol will be { 3, 3, 2, 2, 1, 1, 07,

…… ,020 }. Recall that the two symbols never appear in the

18

same sliding window. Let vector A corresponding to the first

symbols be compared to the vector B corresponding to the

second symbol. Then if Ai > 0 then Bi = 0. Therefore, when

these two vectors are used in the Euclidean distance

equation, no set of parentheses will hold two values greater

than 0. If the contrary were true contextual information

would be present, but this is not the case. As a result when

the Euclidean distance equation is used with symbols that

never appear in the same sliding window, each difference of

coordinates squared will contain at least one zero. As a

result a simple summation is used. The 4 in the ∆b equation

derives from the fact that it represents a distance for two

symbols, and each symbol has two values for each position of

the window. The other aspects of the computation follow a

straight forward extension of the standard Euclidean

distance computation.

If a distance is equal to this ∆b it is inferred that the

two symbols appear one time each and there is no data

suggesting any contextual relationship. If the distance

value is greater then ∆b it implies that one or both symbols

were found in the data set more than once; furthermore,

contextual information indicates that these two symbols are

more contextually different than they are contextually

similar. When looking for similar contextual meanings it can

19

be concluded that the more important distance values are

less than ∆b. When the distance is less than ∆b the data

suggests more contextual similarities than differences.

Distances below ∆b show evidence of contextual similarities.

However a distance only slightly below the basic distance

value may not actually demonstrate a similarity. In this

research, a ratio of ∆b was used to filter out those symbols

with less contextual similarity. This ratio value is another

aspect that is unique to NCA. The ratio is an experimentally

determined number used to fine tune the results produced

from the NCA algorithm. This research found that a ratio

between .4 and .8 works well on the data used. As the ratio

increases, the filter’s tolerance for less contextual

similarities increases. This ratio can be used to compute a

similarity threshold is , T, where T = (ratio value) * (∆b).

Table 2: Example distance matrix, window size = 3, ∆b (basic distance) = 7.48

 Kitten cat Dog car
Kitten 0 3.1 6.9 12.3
Cat 3.1 0 5.8 14.4
Dog 6.9 5.8 0 11.7
Car 12.3 14.4 11.7 0

Table 2 is an example of similar symbols being found once

the distance matrix is calculated. This example uses a

window size of three. By using Equation 2, ∆b can be found.

20

This value is 7.48. Recall that the lower the distance the

more similar two symbols are, symbols with a lower distance

than ∆b indicate evidence of similarity; distances greater

then ∆b represent more evidence of dissimilarity than

similarity. In this example, then, the symbols “cat” and

“kitten” have the lowest distance value. It can therefore be

assumed that these are the most similar symbols.

The symbols “dog” and “kitten” have a distance value of 6.9.

This is slightly lower then ∆b. A dog and a kitten are both

similar because they are pets. However, although both may be

pets, they remain very different. This is why the similarity

threshold is used. This research used the ratio value .8.

Given ∆b of 7.48, T = 5.98 so only strong similarities are

now produced.

It remains necessary to calculate the similarity of web

pages. SCA inspects a web page and counts the occurrences of

the members of the set of symbols in the complete set of

pages. This count is compared to that of other web pages to

find similarities. To integrate the HAL algorithm in this

researche’s NCA, contextually similar symbols were added to

the SCA symbol list. These contextually similar symbols were

found using the NCA distance matrix. For each set of web

pages a similarity score is determined. This score is the

21

frequency of times the symbols from the SCA symbol list

appeared in the web page being compared. The HAL context

data is added to the SCA symbol list and then the scores are

determined (NCA scores). These scores are then displayed to

the user in a sorted list.

Data Collection

It was deicide that for this research it would be useful to

use web pages that have obvious differences and

similarities. The vast number of topics found on the

Internet would likely return web pages that had no

similarities if a small number of these pages were randomly

selected. For this reason it was decided to collect web

pages “by hand”.

Three categories were chosen: baseball news articles,

football news articles, and Iraqi war news articles. It was

assumed that each article would be similar to the other

articles in its category.

To test the sensitivity of NCA some baseball and football

news articles were centered on Philadelphia teams. The

rationale behind this selection is that two Philadelphia

baseball articles should be grouped closer than two baseball

articles pertaining to different cities. In addition, a

22

Philadelphia football article when compared to a

Philadelphia baseball article would score better than it

would when compared to a football article about a different

city. The reference to Philadelphia provides some contextual

similarity. The Iraqi war articles were added as contrast

data. It was anticipated that the Iraqi war news articles

should have little or nothing in common with the football

and baseball articles.

The first test started with seven web pages. The second test

increased to fourteen web pages. The last test reached

twenty-eight web pages. The sample sets contained more

baseball articles than football or Iraqi war news, in order

to allow NCA to learn more context data about one subject

than another. It was not thought to be important that NCA to

have in-depth knowledge of all three categories. It was

considered more beneficial for this research that NCA have

such knowledge in only one category. This should show an

expectation of improved results as data, time and computing

resources increase.

Obviously this sample data set represents a miniscule

portion of possible data available. Yet there is no reason

to believe that the NCA model should be less useful when

applied to other categories. In fact, if more diverse data

were included, it is expected that NCA’s results would

23

become more accurate due to the added depth of context

learned by HAL.

Limitations and Complexity

Certain parts of this research were restricted due to the

limits of modern PCs. As was discussed, the largest sample

data set was only twenty-eight web pages. Ideally, as this

research tries to prove, the NCA algorithm would make its

most intelligent Internet data groupings if all the pages on

the Internet could be processed. However, the retrieval and

processing of this much data is not possible.

Although retrieval was a concern, the required processing

power was immense. The cost of processing the data

outweighed any other constraint. The small sample set of

twenty-eight web pages contained 25,485 total symbols. Of

these 25,485 symbols 6,364 were unique. To process this

data, two 6,364 x 6,364 sized matrices were created. The

complexity of finding the HAL scores was high, but not

nearly so high as the complexity of finding the distance

scores.

The number of calculations required to find the distance

matrix can be found with the following equation: c = 4n(n2).

From this equation the order of complexity for finding the

24

distance matrix can be derived which is O(n3) where n is

equal to the number of unique symbols.

The distance matrix contained 40,500,496 (6,3642) distances

that need to be calculated. For each one of these distances,

the distance equation contained 12,728 (6,364 * 2) addition

and multiplication problems for a total of 25,456 (12,728 *

2). In total about 1,030,980,626,176 (40,500,496 * 25,456)

calculations had to be computed to find the distances for a

set of twenty-eight web pages. If just one unique symbol

were added to this set, it would increase the total

calculations to 1,031,466,708,500. An increase of

486,082,324 calculations for the addition of just one unique

symbol! The problem will continue to grow exponentially.

In this research in a very small set of data, computation

was performed using the Linux operating system running on a

dual processor (hyperthreaded to present itself as a quad

processor), shared memory parallel processing 64-bit system

with eight gigabytes of memory. The calculations were spread

across all four logical processors to speed up the program.

Even with this relatively powerful hardware, twenty-eight

web pages needed nearly a full day to completely process.

Despite the computational complexity, however, heuristics

indicate that in real world situations it might be possible

25

to process more data. As pages are added it is anticipated

that fewer novel symbols will be introduced by the data. It

is safe to assume that eventually every possible symbol will

likely be represented. At that point there would be

virtually no additional cost to add a web page. And, this

point might be reached rather quickly. There are about

54,000 words in modern English. (Nation, Waring 1997)

However, 16,000 words represent 98% of most written English

(Chafe, Danielewicz 1987). Once this written vocabulary is

represented, adding new web pages becomes much less resource

intense.

Summary

This research was performed with the aid of two custom made

tools. The first was a HTML parser that removed HTML tags.

The second was NCA incorporating HAL and SCA. Data was

collected in a nonrandom fashion; it was limited to three

distinct categories due to the purpose of this research. The

data was intentionally selected so that certain web pages

would be similar or dissimilar. This data was then processed

and the results were analyzed. The high costs of processing

this data required use of a high-end computing system.

Although the computation complexity is O(n3), heuristics

indicate a computable soft upper bound as the size of that

data increases.

26

Results of Research

Results

This research was performed on three sets of data. The first

was on a group of data containing seven web pages. Three web

pages were articles about baseball, two web pages were

articles about football and the final two web pages were

articles about the war in Iraq. The next test was conducted

on fourteen web pages. The last test was conducted on

twenty-eight web pages. Both the fourteen web page and

twenty-eight web page tests maintained the ratio of topics

established for the first test. The two larger tests were

supersets of the smaller test.

Once all the distance calculations are complete, a web page

is arbitrarily selected. A list of all other web pages is

displayed with a score assigned. The higher the score the

more similar the content of that web page in comparison to

the original. Representative results are shown here. The

results are selected as a fair representation of the

strengths and weaknesses of the NCA al6gorithm.

27

Each set of data contains a target page that other pages

were compared to. The top five highest scoring web pages are

listed when the NCA algorithm is used. The order of their

listing is descending order based on the score assigned

using NCA. The table lists the points gained that the HAL

algorithm added to the SCA score. Each target article was

chosen from the three categories (baseball, football, Iraqi

war). All NCA generated scores are equal to or greater than

the SCA score. This is because the use of HAL only adds

context data, which in turn can only raise the score.

Table 3: 1st Seven web page data set,

 Target article “MLB recap Reds at Phillies May 15” (baseball)
Points

gained from
HAL

NCA
score

SCA
score Title Category

21 183 162 MLB recap Reds at
Phillies May 13th

baseball

24 145 121 MLB recap Pirates at
Cardinals May 23th

baseball

0 92 92 No going across the
middle

football

6 78 72 9 US troops killed in
Iraq

Iraqi
war

0 64 64 US forces encircle
Iraqi city in new
offensive

Iraqi
war

Table 4: 2nd Seven web page data set,

Target article “9 US troops killed in Iraq” (Iraqi war)
Points

gained from
NCA

NCA
score

SCA
score Title Category

28

7 93 86 US forces encircle
Iraqi city in new
offensive

Iraqi
war

10 91 81 No going across the
middle

football

5 78 73 MLB recap Reds at
Phillies May 15th

baseball

5 77 72 MLB recap Reds at
Phillies May 13th

baseball

3 70 67 MLB recap Pirates at
Cardinals May 23th

baseball

Table 5: 1st Fourteen web page data set,

Target article “MLB recap Reds at Phillies May 15” (baseball)
Points

gained from
NCA

NCA
score

SCA
score Title Category

19 181 162 MLB recap Reds at
Phillies May 13th

baseball

19 139 120 MLB recap Pirates at
Cardinals May 23th

baseball

0 92 92 No going across the
middle

football

0 90 90 Oil for food program
investigation

Iraqi
war

0 77 77 Rice to compete for
spot as Denver’s No. 4

football

Table 6: 2nd Fourteen web page data set,

Target article “9 US troops killed in Iraq” (Iraqi war)
Points
gained
from NCA

NCA
score

SCA
score Title Category

11 118 107 Oil for food program
investigation

Iraqi
war

3 89 86 US forces encircle
Iraqi city in new
offensive

Iraqi
war

6 89 83 US unleashes surprise
offensive in Iraq

Iraqi
war

6 87 81 No going across the
middle

football

3 76 73 MLB recap Reds at
Phillies May 15th

baseball

29

Table 7: 1st Twenty-eight web page data set,

Target article “MLB recap Reds at Phillies May 15” (baseball)
Points

gained from
NCA

NCA
score

SCA
score Title Category

16 178 162 MLB recap Reds at
Phillies May 13th

baseball

12 133 121 Phillies Ranger
Recap June 7th

baseball

11 132 121 MLB recap Pirates at
Cardinals May 23th

Baseball

1 126 125 MLB Pedro dominant baseball
0 120 120 Angels Brave recap

June 7th
baseball

Table 8: 2nd Twenty-eight web page data set,

Target article “9 US troops killed in Iraq” (Iraqi war)
Points
gained
from NCA

NCA
score

SCA
score Title Category

1 128 127 Iraqi president
defends Shiite militia

Iraqi
war

7 114 107 Oil for food program
investigation

Iraqi
war

4 103 99 US and Iraqi troops
launch Tal Afar
offensive

Iraqi
war

0 67 94 MLB Pedro dominant baseball
3 89 86 US forces encircle

Iraqi city in new
offensive

Iraqi
war

This data demonstrates that the web pages with a clear

relationship to the target web page gain the most by using

NCA. For example in Table 3, when the target “MLB recap Reds

at Phillies May 15th” and is compared to “MLB recap Reds at

Phillies May 13th”, “MLB recap Reds at Phillies May 13th”

30

gains the most points from HAL in the seven page test. This

is no surprise because both web pages are extremely similar.

In Table 3 when “9 US troops killed in Iraq” is compared to

the same web page, HAL gives no extra points. This trend

will likely continue as the data sets become larger.

Unexpectedly, the larger the data set, the less points HAL

assigned on average. This was true for both the similar

articles and for not so similar articles.

Summary

Data was generated from three tests containing different

data set sizes. Each test was performed with two different

target web pages. The number of points NCA added was shown

for each of the top five scoring web pages. NCA added the

most points to similar pages and added little to dissimilar

pages. As the data set size increased the number of points

NCA contributed slightly decreased.

31

Conclusions and Implications

Summary of Research

The purpose of this research was to determine if the NCA

algorithm using HAL in conjunction with SCA would produce

better, more intelligent results than the SCA algorithm

alone to group web pages based on similarity of content. NCA

implemented using the HAL algorithm’s matrix to find each

symbol’s vector point in context space. NCA implemented a

distance matrix to determine relationships among all

symbols. The distance matrix is resource intensive to

calculate, having O(n3) complexity.

The data set used was small due to complexity issues and the

focus of this research. The Data set sizes were seven,

fourteen, and twenty-eight web pages. Web pages were limited

to three categories (baseball, football and Iraqi war

articles) so that results could be easily studied. The NCA

program processed the data using the HAL algorithm and

compared its results to SCA. This was done to measure the

influence of the HAL algorithm. Once all the computations

were complete, the results were compared.

32

Conclusions

In all tests, HAL generally improved the score of similar

pages more than it improved the score for non-similar pages.

For example, in Table 5 a baseball content web page is the

target. The two top baseball web pages are each given 19

addition points when HAL is used. The football and Iraqi war

web pages are given no extra points. This is a good example

of how HAL improves the results.

On the other hand, Table 6 has an Iraqi war content web page

as the target. In this example HAL adds 11 additional points

to another Iraqi war content web page. However, the rest of

the results are somewhat problematic. The second and third

web pages are both Iraqi war related, but only gain 3 and 6

points respectively from HAL. The fourth web page is about

football and HAL increases its score by 6 addition points.

The last web page is about baseball and gains 3 points from

HAL. In this example HAL is adding the same or more points

to the football web page as it does for the two prior Iraqi

war web pages.

These Table 6 results are clearly less supportive to the

hypothesis than are those in Table 5. This is not

unexpected. The HAL algorithm learns contextual meanings of

33

words by processing data. The more data it can process the

more meaning it can learn. Since this research is using

relatively small sets of data, HAL has only a very limited

understanding of the contextual meanings of words it

processes. In order to show some stronger results the

categories are not evenly represented. As mentioned earlier,

the data sets contained proportionately more baseball web

pages then any other web page category. This was done with

the expectation that it would provide the HAL algorithm with

a relatively stronger knowledge of baseball vocabulary. The

results support this expectation. This is evident by

comparing the results from Table 3 to Table 4, Table 5 to

Table 6 and Table 7 to Table 8.

These results strongly support the hypothesis for this

research: The HAL algorithm in conjunction with SCA does

provide more accurate results. However, the data also shows

a trend that as more data is added the effects of NCA

decreases. There seem to be three possible reasons for this.

Recall that the algorithm was tested using very small sets

of data. Since previous research has shown that the HAL

algorithm improves its knowledge as more data is processed,

(Burgess 1998) it is very possible that the tests that were

scored higher and contained the smaller data sets, were

proportionally over scored. As HAL becomes better trained

34

(upon inclusion of more data), scores become more accurate

in their representation of the data’s contextual meaning.

A second possible reason for the difficulty in handling the

Iraqi war articles could derive from the many uses of

metaphor in describing war and sports. In sports the term

“rocket” may be used to describe a pitcher’s arm, or a good

pass from a quarterback. But in an article about the Iraqi

war, a rocket is most likely an explosive projectile. This

may have caused difficulty for HAL. Since a small set of

data was used HAL may have interpreted these metaphors as

similarities, and missed other relevant contextual

similarities that would have over-shadowed these metaphors.

The final possible reason is the basic distance, ∆b, and the

threshold T. T was computed using an experimentally

determined ratio found to generally give good results. This

ratio tunes the results of the algorithm. The context space

was very volatile due to the small data sets used. This

makes having only one ratio tuned appropriately for all data

sets nearly impossible. As the data set size increase, the

context space becomes more stable. A simple ratio might be

then found to work well across many (or all) the larger

sample sizes.

35

Implications

This research shows that HAL has benefits when used with SCA

to find matching web pages. However, the complexity of using

the algorithm makes its practical use limited.

Future Research

This research demonstrates that there is a potential benefit

from using a HAL model with a SCA algorithm to group

Internet web pages based on their content. However this

research has also shown that to achieve this, a very high

level of computation resources is needed. In its current

state, the algorithm is not practical for casual use.

Although some optimizations were effective, their impact is

insufficient to overcome the polynomial growth of

calculations needed to be performed as unique symbols are

added. However there is reason to believe that this rate of

growth is not sustainable and so may not be as critical as

it seems. Once the algorithm has encountered most common

symbols, any new web page will only add a few new symbols.

It is safe to say at some point most web pages will provide

no new symbols, but only context data. Currently every time

a new web page is added the whole set of data is processed

again. It seems very likely that this would not be needed

after some relatively large number of pages has been

36

processed. As symbols are added, there is no reason that the

algorithm could not dynamically update its internal data

structures to reflect appropriate changes. Over time this

would substantially reduce the computational power required

to use the algorithm. Once the algorithm has become more

efficient, research should be conducted on a larger set of

data to determine if it produces better results as more data

is added.

Summary

The results do show that there is a benefit to using NCA to

gain contextual meaning. There the results also support the

notion that the HAL algorithm will prove less influential as

the data size grows. Larger data sets would not only provide

a better-trained NCA algorithm, but also provide more

stability to the context space used to store the contextual

relationships. With a more stable context space, a more

appropriate ratio might be found. This would improve the

results on larger data sets over a range of sizes.

37

Bibliography

38

Bibliography

Broder, Andrei, Ravi Kumar, Farzin Maghoul, Praghakar
Raghavan, Sridhar Rajagopalan, Raymie Stata, Andrew
Tomkins and Janet Wiener. Graph structure in the web.
Proceedings of the Ninth International World Wide Web
Conference, 2000.

Brooks, Terrence. The Semantic Distance Model of Relevance

Assessment. Information Access in the Global
Information Economy, Vol 35, Proceedings of the 61st
Annual Meeting of ASIS, 33-44, 1998.

Burgess, Curt. From simple associations to the building

blocks of language: Modeling meaning in memory with the
HAL model. Behavior Research Methods, Instruments, &
Company, 189-198, 1998.

Burgess, Curt and Kevin Lund. Modelling Parsing Constraints

with High-dimensional Context Space. Psychology Press,
part of the Taylor & Francis Group, Vol 12, 2-3, 1997.

Chafe, Wallace and Jane Danielewicz. Properties of Spoken

and Written Language. Comprehending Oral and Written
Language, Academic Press, 1987.

Churchill, Christine. Search Engine Algorithms & Research.

SearchEngineWatch.com, 2005.

Haveliwala, Taher and Sepandar Kamvar. The Second Eigenvalue

of the Google Matrix. preprint, 2003.

Kennedy, James, Russell Eberhart and Yuhui Shi. Swarm

intelligence. Morgan Kaufman Publishers, 2001.

Hintzman, DL. Human Learning and Memory: Connections and

Dissociations. Annual Review of Psychology, Vol 41,
109-139, 1990.

39

Landauer, Thomas and Susan Dumais. A Solution to Plato’s
Problem: The Latent Semantic Analysis Theory of
Acquisition, Induction and Representation of Knowledge.
Psychological Review, Vol 104, 211-240, 1997.

Landauer, Thomas and Susan Dumais. Memory model reads

encyclopedia, passes vocabulary test. Presented at the
Psychonomics Society, 1994.

Landauer, Thomas, Peter Foltz and Darrel Laham. An

Introduction to Latent Semantic Analysis. Discourse
Processes, Vol 25, 259-284, 1998.

Nation, Paul and Robert Waring. Vocabulary size, text

coverage and word lists. Vocabulary: Description,
Acquisition and Pedagogy: Cambridge, Cambridge
University Press, 6-19, 1997.

Osgood, Charles, George Suci and Percy Tannenbaum. The

measurement of meaning. University of Illinois Press,
1957.

Ramscar, Michael and Daneil Yarlett. The use of a high-

dimensional, "environmental" context space to model
retrieval in analogy and similarity-based transfer.
Presented at the Twenty Second Annual Meeting of the
Cognitive Science Society, 2000.

Schutze, Hinrich. Dimensions of meaning. Proceedings of

Supercomputing, New York: Association for Computing
Machinery, 787-796, 1992.

Stwyvers, Mark, Richard Shiffrin and Douglas Nelson. Word

Association Spaces for Predicting Semantic Similarity
Effects in Episodic Memory. In A. Healy (Ed.),
Experimental Cognitive Psychology and its Applications:
Festschrift in Honor of Lyle Bourne, Walter Kintsch,
and Thomas Landauer, American Psychological
Association.

40

Appendix A

Definitions and Operational Terms

High-dimensional memory model: A class of algorithms that

contain a high dimensional space (context space) used

to represent relationships among symbols.

Hyperspace analogue to language model of memory (HAL): A

machine-learning algorithm that is part of the high

dimensional memory model class. HAL has the ability to

learn the contextual meanings of symbols.

Simple comparison algorithm: An algorithm that processes

sets of data and determines the extent of their

similarity. This algorithm simply counts similar

occurrences of symbols between two files and generates

a score.

41

Basic distance: A term used for the distance of two symbols

that each only appear once in the entire body of data

and never appear in the same sliding window. These two

symbols therefore, have no evidence of contextual

similarities. If the distance of two symbols is less

than the basic distance value, it represents evidence

of contextual similarity. If it is greater than the

basic distance value, it represents evidence of

contextual dissimilarity.

Context space: The high dimensional space (hyperspace) that

all symbols are located in. Within this hyperspace the

contextual distance of two words can be found.

NCA: The algorithm that was created for this research. It is

a combination of the HAL algorithm and SCA.

42

Appendix B

#!/bin/sh
#set -x

####################
#Process the files
ProcessFile()
{
echo "$1"
#all variables must be local since recurision is used
local currentFile=$1
local newName=`cat $currentFile |grep title\>|sed s/^.......//g|sed
s/........$//g|tr A-Z a-z`
local newNameClean=`echo $newName | sed -e 's/[]/_/g'`
local toRemove=`echo $currentFile |sed -e s/"^.*\/"//`
local workingPath=`echo $currentFile |sed -e s/$toRemove$//`
#sed expression used to get rid of most html
local output=`sed -e 's:<[bB][rR]/*>:\
:g' \
 -e '/</{
 :loop
 s/<[^>]*>//g
 /</{
 N
 b loop
 }
 }' \
 -e 's:&[nN][bB][sS][pP];: :g' \
 -e 's:&..;::g; s:&...;::g; s:&....;::g' \
 $currentFile|tr A-Z a-z`
local safeFileName=`echo "$newNameClean"|sed -e 's/[/]//g'`
if ["$safeFileName" != ""]
then
#output clean file
echo $output > output/$safeFileName
fi
}

####################
#Go though the folder of data and process it

GoThroughFolders(){
local currentDir=$1/
#types of files that are not html
local delTypes="pdf swf aif wav mov wma mp3 mpg aiff gif jpg wmv avi exe"
for type in $delTypes
do

43

rm -f $currentDir*.$type
done
for files in `ls $currentDir`
#set up the recursion to go though this folder and all sub folders
do
 if [-d $currentDir$files]
 then
 GoThroughFolders $currentDir$files
 else
 ProcessFile $currentDir$files
 fi
done

}

####################
#Start script

if [-d $1]
then
 mkdir output
 GoThroughFolders $1
else
 echo "Usage:"
 echo " $0 <directory to start in>"
fi

44

Appendix C

HAL.java

import java.awt.BorderLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import javax.swing.DefaultListModel;
import javax.swing.JButton;
import javax.swing.JFileChooser;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JList;
import javax.swing.JOptionPane;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTextField;

/*
 * HAL.java created on Apr 18, 2005 5:42:46 PM
 */
/**
 * @author Edward G. Finegan

 * ed@dryrain.net

 *

 * Class HAL

 */
public class HAL implements
 ActionListener {

 private MemoryMatrix matrix;
 private final int MAX_MATCHES = 5;
 private final String OBJECT_FILE_NAME = "##MEMORY_MATRIX.OBJ";
 private JFrame frame;
 private JButton compareButton;
 private JButton compareButtonNormal;
 private JButton startButton;
 private JButton browseButton;
 private JList nlist;
 private JList outnList;
 private File allFiles[];
 private String dataLocation;
 private JTextField fileField;
 private JScrollPane list;
 private JScrollPane outList;
 private DefaultListModel model;

45

 private DefaultListModel outModel;
 private File dataSource;
 private File objectFile;

 public static void main(String[] args) {
 if (args.length == 1) {
 HAL hal= new HAL(args[0]);
 }
 else {
 HAL hal= new HAL();
 }
 }

 public HAL() {
 makeGUI();
 }

 public HAL(String dataLocation) {
 this.dataLocation= dataLocation;
 this.objectFile= new File(
 dataLocation + "/"
 + OBJECT_FILE_NAME);
 this.dataSource= new File(
 dataLocation);
 if (!dataSource.isDirectory()) {
 System.out
 .println("The directoy containing the data must be given as a
argument!!!");
 System.exit(-1);
 }
 makeGUI();
 fileField.setText(dataLocation);
 }

 private void startWork() {
 /*
 * Check to see if we have this oject saved. If it is open it and use it, if
 * not make it and save it.
 */
 if (!objectFile.exists()) {
 matrix= new MemoryMatrix(
 dataSource);
 matrix.start();
 ProgressBar progressBar= new ProgressBar(
 frame, matrix);
 while (!progressBar.complete) {
 progressBar.display();
 }
 if (!matrix.cancled) {
 try {
 // Write to disk with FileOutputStream
 FileOutputStream f_out= new FileOutputStream(
 objectFile);
 // Write object with ObjectOutputStream
 ObjectOutputStream obj_out= new ObjectOutputStream(
 f_out);
 // Write object out to disk
 obj_out.writeObject(matrix);
 }
 catch (IOException e) {
 System.out
 .println("Unable to save matrix object!!");
 e.printStackTrace();
 }
 }
 }
 else {
 try {

46

 // Read from disk using FileInputStream
 FileInputStream f_in= new FileInputStream(
 objectFile);
 // Read object using ObjectInputStream
 ObjectInputStream obj_in= new ObjectInputStream(
 f_in);
 // Read an object
 matrix= (MemoryMatrix)obj_in
 .readObject();
 }
 catch (Exception e) {
 System.out
 .println("Cannot open object!!");
 e.printStackTrace();
 }
 matrix.reopened();
 }
 }

 private void makeGUI() {
 /*
 * Make the GUI
 */
 frame= new JFrame("Memory Matrix");
 frame
 .setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 JPanel window= new JPanel();
 window
 .setLayout(new BorderLayout());
 JPanel topWindow= new JPanel();
 model= new DefaultListModel();
 nlist= new JList(model);
 list= new JScrollPane(nlist);
 topWindow.add(list);
 JPanel bottomWindow= new JPanel();
 startButton= new JButton("Start");
 startButton.addActionListener(this);
 bottomWindow.add(startButton);
 compareButton= new JButton(
 "Find Matches");
 compareButton
 .addActionListener(this);
 compareButton.setEnabled(false);
 bottomWindow.add(compareButton);
 compareButtonNormal= new JButton(
 "Find Matches WO Alog.");
 compareButtonNormal
 .addActionListener(this);
 compareButtonNormal
 .setEnabled(false);
 bottomWindow
 .add(compareButtonNormal);
 /*
 * create a file selection box
 */
 JPanel fileWindow= new JPanel();
 JLabel selectFile= new JLabel(
 "Select Directory");
 fileField= new JTextField(35);
 browseButton= new JButton("Browse");
 browseButton
 .addActionListener(this);
 bottomWindow.add(browseButton);
 /*
 * create a place of output
 */
 JPanel subWindow= new JPanel();
 subWindow

47

 .setLayout(new BorderLayout());
 outModel= new DefaultListModel();
 outnList= new JList(outModel);
 outList= new JScrollPane(outnList);
 JPanel outWindow= new JPanel();
 outWindow.add(outList);
 fileWindow.add(selectFile);
 fileWindow.add(fileField);
 fileWindow.add(browseButton);
 window.add(fileWindow,
 BorderLayout.NORTH);
 window.add(list,
 BorderLayout.CENTER);
 subWindow.add(bottomWindow,
 BorderLayout.NORTH);
 subWindow.add(outList,
 BorderLayout.SOUTH);
 window.add(subWindow,
 BorderLayout.SOUTH);
 frame.getContentPane().add(window);
 frame.pack();
 frame.show();
 }

 public void actionPerformed(
 ActionEvent evt) {
 if (evt.getSource() == browseButton) {
 JFileChooser chooser= new JFileChooser();
 chooser
 .setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY);
 int returnVal= chooser
 .showOpenDialog(frame);
 /*
 * If ok is selected we go in the if and retrive the file that is selected
 */
 if (returnVal == JFileChooser.APPROVE_OPTION) {
 fileField.setText(chooser
 .getSelectedFile()
 .toString());
 }
 }
 /*
 * Start Button
 */
 if (evt.getSource() == startButton) {
 this.dataLocation= fileField
 .getText();
 this.objectFile= new File(
 dataLocation + "/"
 + OBJECT_FILE_NAME);
 this.dataSource= new File(
 dataLocation);
 if (!dataSource.isDirectory()) {
 JOptionPane
 .showMessageDialog(
 frame,
 "The directory that was enter is invaild. Please enter a\nvaild
directory, or select one using the browse button.",
 "Error",
 JOptionPane.ERROR_MESSAGE);
 }
 else {
 /*
 * display a message before starting work
 */
 if (!objectFile.exists()) {
 int answer= JOptionPane
 .showConfirmDialog(

48

 frame,
 "There was no precalculated language file found. Would you\n"
 + "like to calculate one now? (This may take a long
time!!!)",
 "Object File found",
 JOptionPane.OK_CANCEL_OPTION,
 JOptionPane.QUESTION_MESSAGE);
 if (answer == JOptionPane.OK_OPTION) {
 /*
 * Make dialog about processor optimatation
 */
 startButtonGO();
 }
 }
 else {
 Object[] options= {"OK",
 "Recalculate", "Cancle"};
 int answer= JOptionPane
 .showOptionDialog(
 frame,
 "A precalculated language file was found. Whould you like to
use this file,\n"
 + "or recalcuate a new file? (Recalcuating may take a long
time!!!)",
 "Lanuage File Found",
 JOptionPane.DEFAULT_OPTION,
 JOptionPane.QUESTION_MESSAGE,
 null, options,
 options[0]);
 /*
 * answer =0 ==OK =1 ==RECALCULATE =2 ==CALCLE
 */
 if (answer == 0) {
 startButtonGO();
 }
 else if (answer == 1) {
 objectFile.delete();
 startButtonGO();
 }
 }
 }
 }
 if (evt.getSource() == compareButtonNormal) {
 int selection= nlist
 .getSelectedIndex();
 try {
 String nearSymbols[]= matrix
 .getAllNearSymbols(allFiles[selection]);
 String mainFileSymbols[]= matrix
 .getParsedData(allFiles[selection]);
 String symbol[]= new String[mainFileSymbols.length];
 int symbolCount[]= new int[mainFileSymbols.length];
 /*
 * null out array
 */
 for (int i= 0; i < symbol.length; i++) {
 symbol[i]= null;
 symbolCount[i]= 0;
 }
 /*
 * fills the (real)symbol array and the array that tracks the number
 * each one is found
 */
 for (int i= 0; i < mainFileSymbols.length; i++) {
 String currentSymbol= mainFileSymbols[i];
 for (int j= 0; j <= i; j++) {
 if (symbol[j] == null) {
 symbol[j]= currentSymbol;

49

 symbolCount[j]= 1;
 j= i;
 }
 else if (symbol[j]
 .equalsIgnoreCase(currentSymbol)) {
 symbolCount[j]+= 1;
 j= i;
 }
 }
 }
 /*
 * Find the highest reoccuring sysmbol
 */
 int highestCount= 0;
 int highestSymbol= 0;
 for (int i= 0; i < symbolCount.length; i++) {
 if (highestCount < symbolCount[i]) {
 highestCount= symbolCount[i];
 highestSymbol= i;
 }
 }
 /*
 * count the symbols
 */
 int fileScores[]= new int[allFiles.length];
 for (int i= 0; i < allFiles.length; i++) {
 if (i != selection) {
 String symbolsToCompare[]= matrix
 .getParsedData(allFiles[i]);
 for (int j= 0; symbol[j] != null; j++) {
 for (int k= 0; k < symbolsToCompare.length; k++) {
 int symbolMatchCount= 0;
 if (symbol[j]
 .equalsIgnoreCase(symbolsToCompare[k])) {
 fileScores[i]++;
 symbolMatchCount++;
 }
 }
 }
 }
 }
 /*
 * print out the top results
 */
 String topScoresName[]= new String[MAX_MATCHES];
 int topScores[]= new int[MAX_MATCHES];
 for (int i= 0; i < MAX_MATCHES; i++) {
 topScores[i]= 0;
 topScoresName[i]= "EMPTY";
 }
 /*
 * rank top x number scores
 */
 outModel.clear();
 RankedResults results= new RankedResults(
 fileScores, allFiles);
 for (int i= 0; i < results
 .sizeOf(); i++) {
 outModel.add(outModel
 .getSize(), results
 .getScore(i)
 + " -- "
 + results.getName(i));
 }
 }
 catch (ArrayIndexOutOfBoundsException e) {
 JOptionPane
 .showMessageDialog(

50

 frame,
 "Please select a file to find matches agaist.",
 "",
 JOptionPane.WARNING_MESSAGE);
 }
 }
 if (evt.getSource() == compareButton) {
 int selection= nlist
 .getSelectedIndex();
 try {
 String nearSymbols[]= matrix
 .getAllNearSymbols(allFiles[selection]);
 String mainFileSymbols[]= matrix
 .getParsedData(allFiles[selection]);
 String symbol[]= new String[nearSymbols.length];
 int symbolCount[]= new int[nearSymbols.length];
 /*
 * null out array
 */
 for (int i= 0; i < symbol.length; i++) {
 symbol[i]= null;
 symbolCount[i]= 0;
 }
 /*
 * fills the (real)symbol array and the array that tracks the number
 * each one is found
 */
 System.out
 .println("nearSymbols = "
 + nearSymbols.length
 + " mainFileSymbols = "
 + mainFileSymbols.length);
 for (int i= 0; i < nearSymbols.length; i++) {
 String currentSymbol;
 currentSymbol= nearSymbols[i];
 for (int j= 0; j <= i; j++) {
 if (symbol[j] == null) {
 symbol[j]= currentSymbol;
 symbolCount[j]= 1;
 j= i;
 }
 else if (symbol[j]
 .equalsIgnoreCase(currentSymbol)) {
 symbolCount[j]+= 1;
 j= i;
 }
 }
 }
 /*
 * Find the highest reoccuring sysmbol
 */
 int highestCount= 0;
 int highestSymbol= 0;
 for (int i= 0; i < symbolCount.length; i++) {
 if (highestCount < symbolCount[i]
 && !(symbol[i]
 .equals("the"))
 && !(symbol[i]
 .equals(" "))
 && !(symbol[i]
 .equals("a"))
 && !(symbol[i]
 .equals("and"))
 && !(symbol[i]
 .equals("in"))
 && !(symbol[i]
 .equals("is"))
 && !(symbol[i]

51

 .equals("of"))
 && !(symbol[i]
 .equals("to"))
 && !(symbol[i].equals(""))) {
 highestCount= symbolCount[i];
 highestSymbol= i;
 }
 }
 System.out
 .println("Highest Count = "
 + highestCount
 + " for "
 + symbol[highestSymbol]
 .charAt(0) + "<<"
 + symbol[highestSymbol]
 + "<<");
 /*
 * count the symbols
 */
 int fileScores[]= new int[allFiles.length];
 for (int i= 0; i < allFiles.length; i++) {
 if (i != selection) {
 String symbolsToCompare[]= matrix
 .getParsedData(allFiles[i]);
 for (int j= 0; symbol[j] != null; j++) {
 for (int k= 0; k < symbolsToCompare.length; k++) {
 int symbolMatchCount= 0;
 if (symbol[j]
 .equalsIgnoreCase(symbolsToCompare[k])) {
 fileScores[i]++;
 symbolMatchCount++;
 System.out
 .println("highestCount "
 + highestCount
 + "symbolMatchCount "
 + symbolMatchCount);
 if (symbolMatchCount > Math
 .ceil(highestCount / 4)) {
 k= symbolsToCompare.length;
 System.out
 .println("CUTOFF");
 }
 }
 }
 }
 }
 }
 /*
 * print out the top results
 */
 String topScoresName[]= new String[MAX_MATCHES];
 int topScores[]= new int[MAX_MATCHES];
 for (int i= 0; i < MAX_MATCHES; i++) {
 topScores[i]= 0;
 topScoresName[i]= "EMPTY";
 }
 /*
 * rank top x number scores
 */
 outModel.clear();
 RankedResults results= new RankedResults(
 fileScores, allFiles);
 for (int i= 0; i < results
 .sizeOf(); i++) {
 outModel.add(outModel
 .getSize(), results
 .getScore(i)
 + " -- "

52

 + results.getName(i));
 }
 }
 catch (ArrayIndexOutOfBoundsException e) {
 JOptionPane
 .showMessageDialog(
 frame,
 "Please select a file to find matches agaist.",
 "",
 JOptionPane.WARNING_MESSAGE);
 }
 }
 }

 private void startButtonGO() {
 startWork();
 if (!matrix.cancled) {
 allFiles= matrix.getAllFiles();
 model.clear();
 for (int i= 0; i < allFiles.length; i++) {
 model.add(model.getSize(),
 allFiles[i].getName());
 }
 compareButton.setEnabled(true);
 compareButtonNormal
 .setEnabled(true);
 startButton.setLabel("Restart");
 frame.pack();
 }
 }
}

MemoryMatrix.java

import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.util.Vector;

/*
 * MemoryMatrix.java created on Apr 25, 2005 4:36:35 PM
 */
/**
 * @author Edward G Finegan ed@dryrain.net
 */
public class MemoryMatrix extends
 Thread implements
 java.io.Serializable {

 /*
 * Constants
 */
 private int distanceCounter;
 private final int WINDOW_SIZE = 10;
 private final double BD_RATIO = 0.8;
 private int numThreads = 1;
 private final String MEMORY_MATRIX_FILE_NAME = "##MEMORY_MATRIX.TXT";
 private final String DISTANCE_MATRIX_FILE_NAME = "##DISTANCE_MATRIX.TXT";
 /*
 * class varables
 */
 public int matrixSize;

53

 private File[] allFiles;
 private Vector allSymbolsUnique;
 private int totalSymbols;
 public short[][] matrix;
 public float[][] distanceMatrix;
 public boolean[] completedRows;
 private File memoryMatrixFile;
 private File distanceMatrixFile;
 private double basicDistance;
 private File dataSource;
 public boolean cancled = false;

 public void stopCalc() {
 distanceCounter= matrixSize - 1;
 }

 public void run() {
 distanceCounter= 0;
 findDistances();
 }

 public MemoryMatrix(File dataSource) {
 this.dataSource= dataSource;
 Runtime r= Runtime.getRuntime();
 numThreads= r.availableProcessors();
 System.out.println("Optimized for "
 + numThreads + " CPUs");
 memoryMatrixFile= new File(
 dataSource.toString() + "/"
 + MEMORY_MATRIX_FILE_NAME);
 distanceMatrixFile= new File(
 dataSource.toString() + "/"
 + DISTANCE_MATRIX_FILE_NAME);
 cleanDir(dataSource);
 allFiles= dataSource.listFiles();
 allSymbolsUnique= new Vector();
 totalSymbols= 0;
 findAllSymbols();
 fillMatrix();
 /*
 * Set all distances to -1 Set all rows to false, not completed
 */
 distanceMatrix= new float[matrixSize][matrixSize];
 completedRows= new boolean[matrixSize];
 for (int i= 0; i < matrixSize; i++) {
 completedRows[i]= false;
 for (int j= 0; j < matrixSize; j++) {
 distanceMatrix[i][j]= -1;
 }
 }
 }

 public void reopened() {
 Runtime r= Runtime.getRuntime();
 numThreads= r.availableProcessors();
 System.out.println("Optimized for "
 + numThreads + " CPUs");
 System.out.println(totalSymbols
 + " total symbols processed");
 System.out
 .println(allSymbolsUnique
 .size()
 + " total unique symbols found");
 System.out.println(basicDistance
 + " Basic Distance");
 }

 public File[] getAllFiles() {

54

 return allFiles;
 }

 private void cleanDir(
 File dataDirectory) {
 File DSstore= new File(
 dataDirectory.toString()
 + "/.DS_Store");
 DSstore.delete();
 }

 /**
 * Finds all the symbols in the set of files, and then find the unique symbols
 */
 private void findAllSymbols() {
 for (int i= 0; i < allFiles.length; i++) {
 String[] parsedData= getParsedData(i);
 /*
 * Check to see if the word is already in the vector
 */
 if (allSymbolsUnique.size() == 0) {
 allSymbolsUnique
 .add(parsedData[0]);
 }
 for (int j= 0; j < parsedData.length; j++) {
 totalSymbols++;
 boolean notRepeat= true;
 for (int k= 0; k < allSymbolsUnique
 .size(); k++) {
 if (parsedData[j]
 .equalsIgnoreCase((String)allSymbolsUnique
 .get(k))) {
 notRepeat= false;
 k= allSymbolsUnique.size();
 }
 }
 if (notRepeat) {
 allSymbolsUnique
 .add(parsedData[j]);
 }
 }
 }
 matrixSize= allSymbolsUnique.size();
 System.out.println(totalSymbols
 + " total symbols processed");
 System.out
 .println(allSymbolsUnique
 .size()
 + " total unique symbols found");
 }

 /**
 * Filles the matrix with the symbol data
 */
 private void fillMatrix() {
 /*
 * Set it all to 0's
 */
 matrix= new short[matrixSize][matrixSize];
 for (int i= 0; i < matrixSize; i++) {
 for (int j= 0; j < matrixSize; j++) {
 matrix[i][j]= 0;
 }
 }
 /*
 * Go though th files and process the symbols in the matrix
 */
 for (int i= 0; i < allFiles.length; i++) {

55

 String[] parsedData= getParsedData(i);
 /*
 * Start to build up the matrix Loop though all the symbols in the file,
 * and then loop though the window area. Record the data to the matrix.
 */
 for (int j= 0; j < parsedData.length; j++) {
 int currentLocationIndex= allSymbolsUnique
 .indexOf(parsedData[j]);
 int distance= WINDOW_SIZE;
 for (int k= j + 1; k <= j
 + WINDOW_SIZE
 && k < parsedData.length; k++) {
 int currentWindowIndex= allSymbolsUnique
 .indexOf(parsedData[k]);
 matrix[currentLocationIndex][currentWindowIndex]+= distance;
 distance--;
 }
 }
 }
 }

 /**
 * Use this to print out the matrix in human readable form
 */
 private void printMatrix() {
 for (int i= 0; i < matrix.length; i++) {
 for (int j= 0; j < matrix.length; j++) {
 System.out.print(matrix[i][j]
 + " ");
 }
 System.out.println();
 }
 }

 /**
 * Use this to print out the distance matrix in human readable form
 */
 private void printDistanceMatrix() {
 for (int i= 0; i < matrixSize; i++) {
 for (int j= 0; j < matrixSize; j++) {
 System.out
 .print(distanceMatrix[i][j]
 + " ");
 }
 System.out.println();
 }
 }

 private void findDistances() {
 /*
 * Find the distances for each symbol related to every other symbol If we
 * are singile threaded don't bother adding the over head of more threads,
 * if we are more then on thread then create them and do it
 */
 if (numThreads == 1) {
 int r= 2;
 for (distanceCounter= 0; distanceCounter < matrixSize; distanceCounter++)
{
 for (int j= distanceCounter; j < matrixSize; j++) {
 long currentDistance= 0;
 for (int k= 0; k < matrixSize; k++) {
 currentDistance+= Math
 .pow(
 matrix[distanceCounter][k]
 - matrix[j][k],
 r);
 }
 for (int k= 0; k < matrixSize; k++) {

56

 currentDistance+= Math
 .pow(
 matrix[k][distanceCounter]
 - matrix[k][j],
 r);
 }
 distanceMatrix[distanceCounter][j]= (float)Math
 .pow(currentDistance,
 1.0 / r);
 }
 completedRows[distanceCounter]= true;
 System.out.println("row "
 + distanceCounter
 + " complete");
 }
 }
 else {
 FindDistances[] findDistancesThreads= new FindDistances[numThreads];
 for (int i= 0; i < numThreads; i++) {
 System.out
 .println("creating thread "
 + i);
 findDistancesThreads[i]= new FindDistances(
 this);
 findDistancesThreads[i].start();
 }
 /*
 * Busy wait here untill the last row is completed
 */
 while (!completedRows[completedRows.length - 1]) {
 if (cancled) {
 findDistancesThreads= null;
 }
 try {
 Thread.sleep(5000);
 }
 catch (Exception e) {
 System.out
 .println("Sleep failed");
 e.printStackTrace();
 }
 }
 }
 /*
 * Find Basic distance
 */
 int total= 0;
 for (int i= 1; i <= WINDOW_SIZE; i++) {
 total+= Math.pow(i, 2);
 }
 basicDistance= Math.sqrt(total * 4);
 /*
 * Find the standared devation
 */
 }

 /**
 * This takes a file, reads it and retunds it in an array.
 *
 * @param fileIndex - int, the number of the file you want to get retruned in
 * the array
 * @return String[]
 */
 private String[] getParsedData(
 int fileIndex) {
 return getParsedData(allFiles[fileIndex]);
 }

57

 public String[] getParsedData(
 File file) {
 String fileData= "";
 String line;
 try {
 BufferedReader fIn= new BufferedReader(
 new FileReader(file));
 /*
 * Go though each line of the file
 */
 while ((line= fIn.readLine()) != null) {
 fileData= fileData + line + " ";
 }
 }
 catch (FileNotFoundException e) {
 System.out
 .println("Was unable to find file: "
 + file);
 e.printStackTrace();
 }
 catch (IOException e) {
 System.out
 .println("IO error with file: "
 + file);
 e.printStackTrace();
 }
 return fileData.replace('\t', ' ')
 .toLowerCase().split(" ");
 }

 public String[] getAllNearSymbols(
 File file) {
 double cutOff= basicDistance
 * BD_RATIO;
 String[] realSymbols= getParsedData(file);
 Vector nearSymbols= new Vector();
 for (int i= 0; i < realSymbols.length; i++) {
 nearSymbols.add(realSymbols[i]);
 int symbolIndex= allSymbolsUnique
 .indexOf(realSymbols[i]);
 /*
 * go though matrix and find the distances that fall below the cutoff
 */
 for (int j= 0; j < matrixSize; j++) {
 if (distanceMatrix[symbolIndex][j] > 0.0
 && distanceMatrix[symbolIndex][j] <= cutOff) {
 nearSymbols
 .add((String)allSymbolsUnique
 .get(j));
 }
 if (distanceMatrix[j][symbolIndex] > 0.0
 && distanceMatrix[j][symbolIndex] <= cutOff) {
 nearSymbols
 .add((String)allSymbolsUnique
 .get(j));
 }
 }
 }
 String[] nearSymbolsA= new String[nearSymbols
 .size()];
 for (int i= 0; i < nearSymbols
 .size(); i++) {
 nearSymbolsA[i]= (String)nearSymbols
 .get(i);
 }
 return nearSymbolsA;
 }
}

58

FindDistances.java

/*
 * FindDistances.java created on May 26, 2005 12:52:33 PM
 */
/**
 * @author Edward G. Finegan

 * ed@dryrain.net

 *

 * Class FindDistances

 */
public class FindDistances extends
 Thread {

 private MemoryMatrix matrixes;

 FindDistances(MemoryMatrix matrixesIn) {
 matrixes= matrixesIn;
 }

 /*
 * Thread that will run and proccess a row of the matrix
 */
 public void run() {
 int r= 2;
 for (int i= 0; i < matrixes.matrixSize; i++) {
 if (!matrixes.completedRows[i]) {
 matrixes.completedRows[i]= true;
 System.out.println("Row " + i
 + " complete");
 for (int j= i; j < matrixes.matrixSize; j++) {
 long currentDistance= 0;
 for (int k= 0; k < matrixes.matrixSize; k++) {
 currentDistance+= Math
 .pow(
 matrixes.matrix[i][k]
 - matrixes.matrix[j][k],
 r);
 }
 for (int k= 0; k < matrixes.matrixSize; k++) {
 currentDistance+= Math
 .pow(
 matrixes.matrix[k][i]
 - matrixes.matrix[k][j],
 r);
 }
 matrixes.distanceMatrix[i][j]= (float)Math
 .pow(currentDistance,
 1.0 / r);
 }
 }
 }
 }
}

RankedResults.java

import java.io.File;
import java.util.Vector;

/*
 * RankedResults.java created on May 24, 2005 7:26:21 PM
 */

59

public class RankedResults {

 private Vector rankedNames;
 private Vector rankedScores;

 RankedResults(int[] scores,
 File[] names) {
 rankedScores= new Vector();
 rankedNames= new Vector();
 for (int i= 0; i < scores.length; i++) {
 int highestScore= 0;
 int highestPosition= 0;
 for (int j= 0; j < scores.length; j++) {
 if (scores[j] >= highestScore) {
 highestScore= scores[j];
 highestPosition= j;
 }
 }
 rankedScores.add(new Integer(
 scores[highestPosition]));
 rankedNames
 .add(names[highestPosition]
 .getName());
 scores[highestPosition]= -1;
 }
 }

 public String getName(int index) {
 return ((String)rankedNames
 .get(index));
 }

 public int getScore(int index) {
 return ((Integer)(rankedScores
 .get(index))).intValue();
 }

 public int sizeOf() {
 return rankedScores.size();
 }
}

ProgressBar.java

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.JFrame;
import javax.swing.JOptionPane;
import javax.swing.JProgressBar;
import javax.swing.Timer;

/*
 * ProgressBar.java created on Jun 2, 2005 10:29:01 PM
 */
/**
 * @author Edward G. Finegan

 * ed@dryrain.net

 *

 * Class ProgressBar

 */
public class ProgressBar extends
 JOptionPane implements
 ActionListener {

 private JFrame frame;
 private MemoryMatrix matrix;

60

 private JProgressBar progressBar;
 private int amountDone = 0;
 private Timer timer;
 public boolean complete = false;

 public ProgressBar(JFrame frame,
 MemoryMatrix matrix) {
 this.frame= frame;
 this.matrix= matrix;
 display();
 }

 public void display() {
 progressBar= new JProgressBar(0,
 matrix.completedRows.length - 1);
 progressBar.setValue(0);
 progressBar.setStringPainted(true);
 Object[] items= {progressBar};
 Object[] options= {"Continue",
 "Exit"};
 // Object[] options= {};
 timer= new Timer(1000, this);
 timer.start();
 int pick= showOptionDialog(
 frame,
 items,
 "Creating Lanuage Matrix",
 JOptionPane.YES_NO_CANCEL_OPTION,
 JOptionPane.PLAIN_MESSAGE,
 null, options, options[0]);
 /*
 * Exit
 */
 if (pick == 1) {
 timer.stop();
 matrix.cancled= true;
 matrix.stopCalc();
 System.exit(0);
 }
 /*
 * Continue
 */
 else if (pick == 0) {
 timer.stop();
 }
 }

 public void actionPerformed(
 ActionEvent evt) {
 for (int i= amountDone; i < matrix.completedRows.length; i++) {
 if (!matrix.completedRows[i]) {
 amountDone= i;
 i= matrix.completedRows.length;
 }
 if (matrix.completedRows[matrix.completedRows.length - 1]) {
 amountDone= matrix.completedRows.length;
 progressBar
 .setString("Complete!!! Please press continue.");
 complete= true;
 timer.stop();
 Object[] item= {"Done"};
 setOptions(item);
 repaint();
 }
 }
 progressBar.setValue(amountDone);
 }
}

	Virginia Commonwealth University
	VCU Scholars Compass
	2005

	Intelligent Autonomous Data Categorization
	Edward Graham Finegan
	Downloaded from

	Table of Contents
	List of Tables
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8

	List of Figures
	Figure 1. Equation 1.
	Figure 2. Equation 2.

	Abstract
	Review of the Literature
	The Problem: An Explosion of Data
	Research Procedures
	Results of Research
	Conclusions and Implications
	Bibliography
	Appendix A.
	Appendix B.
	Appendix C.

