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Abstract 
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By Edward Graham Finegan, M.S. 

A thesis submitted in partial fulfillment of the 
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The goal of this research was to determine if the results of 

a simple comparison algorithm (SCA) could be improved by 

adding a hyperspace analogue to language model of memory 

(HAL) layer to form NCA. The HAL layer provides contextual 

data that otherwise would be unavailable for consideration. 

It was found that NCA did improve the results when compared 

to SCA alone. However, NCA added complexity problems that 

limit its practicality. The complexity of this algorithm is 

On3 where n is equal to the number of unique symbols in the 



 
ix 

data. While there is a relativity reasonable soft upper 

bound for the number of unique symbols used in a language, 

the complexity still limits the uses of the NCA combined 

algorithm. The conclusion from this research is that NCA can 

improve results. This research also suggested that the 

quality of results might increase as more data is processed 

by NCA.
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Review of the Literature 

 

Introduction 

 

This research was conducted to determine if the results of a 

simple comparison algorithm (SCA) could be improved by 

adding a hyperspace analogue to language model of memory 

(HAL) layer. Although this research will focus on grouping 

similar web pages, it could be applied to any set of text 

documents. An intelligent algorithm is used because such an 

algorithm has the ability to adapt to the environment it is 

used in. This intelligent algorithm will learn from the data 

that it has already processed and continually improve the 

results of its output.  

 

The hyperspace analogue to language model of memory (HAL) 

was chosen for its ability to learn contextual meanings of 

words. (Burgess 1998) The intent in this research is to 

combine a learning HAL with SCA to create a new comparison 

algorithm (NCA) which will effectively form groupings of 

similar web pages. The HAL layer is intended to give NCA an 

insight into the context of words and symbols that appear in 

web pages. HAL can process the contextual meaning of words, 
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but can also process misspelled words and symbols such as 

“:)”. Since this algorithm processes both words and symbols, 

the term symbol will be used with the intended meaning that 

a word can be a symbol. The SCA without HAL would evaluate 

symbols literally and meanings would not be considered. By 

combining these two algorithms into NCA an intelligent 

algorithm should be created that can group web pages based 

on the context of their content. 

 

The High Dimensional Memory Model 

 

HAL falls into the category of a high-dimensional memory 

model (HDM). (Osgood, Suci, Tannenbaum 1957) HDM has a goal 

of extracting and representing the meaning of words or 

symbols from a streamed input. These models then learn the 

context of words and symbols similarly to the manner in 

which humans do. When recalling a sentence most people do 

not remember what the sentence is word for word, but instead 

abstract a meaning, which is called a mental model. A HDM 

works in much the same way. (Burgess 1998) 

 

HDM are not a new concept. In the 1950’s Charles Osgood 

pioneered much of the early work. (Osgood, Suci, Tannenbaum 

1957) However, recently, the number of papers investigating 

HDM has increased. Current papers produced by Burgess, Lund, 

Landauer, Dumais, Laham and Foltz have advanced the use of 
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HDM in many directions. Many HDM require some type of user 

interaction or interpretation. This made using the HDM time 

consuming and limits its benefits. 

 

HAL is a HDM that requires no user interaction or 

interpretation to learn the contextual meaning of words or 

symbols in a language stream. As a result, HAL can address a 

variety of difficult and problematic situations that caused 

previous HDM to struggle.  

 

HAL takes a set of text data as input. It then tracks 

lexical occurrences of symbols within a sliding window. 

(Burgess 1998) This sliding window can be of any size. In 

previous research (Burgess 1998) and in this research, the 

window size has been set to ten symbols before and after the 

target symbol. HAL then stores the lexical occurrences from 

this window. Using this stored information HAL can then 

generate a vector point for each unique symbol in vector 

space. (Burgess 1998) Since this point represents the 

context of the symbol, the space it is contained in is 

referred to as context space. (Burgess 1998) The distance 

between two points in the context space can be calculated. 

This distance represents the extent of contextual similarity 

of one symbol to another. 
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HAL is not the only style of HDM in use. Latent Semantic 

Analysis (LSA) is also a very popular model. (Landauer, 

Foltz, Laham 1998) This model predates HAL. LSA is a method 

used for extracting and representing the contextual meaning 

of symbols by statistical computations applied to a large 

corpus of text. Although the method and application of HAL 

and LSA differ, the literature indicates that they produce 

similar results.  

 

The HAL model focuses on finding contextually similar 

symbols. LSA is a broader model that has more flexibility 

and can be used in a variety of human memory modeling tasks. 

Thomas K. Landauer, a major researcher behind LSA claims:  

The principal difference between the HAL and LSA 
approaches to date, in addition to possibly significant 
technical differences such as similarity metrics, is 
our focus on the importance of dimensionality matching 
as a fundamental inductive mechanism rather than merely 
a computational convenience. (Landauer, Dumais 1997)  
 

Put simply, the LSA model attends to how humans learn 

language. A major accomplishment of LSA is its ability to 

have vocabulary knowledge equal to that of a child. 

(Landauer, Foltz and Laham 1998) This is achieved by 

processing the same amount of language data to which a child 

would have been exposed. LSA uses statistical functions to 

extract meaning from the data. LSA has also been used to 

model human brain disorders. 
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HAL was derived from the LSA model without the constraint of 

closely modeling human language processing. Instead HAL was 

designed to produce similar results but without the extra 

overhead involved in modeling human behaviors. 

 

This research attempts to further the use of the HAL model. 

HAL was chosen since its goals of producing contextual data 

of symbols are inline with the goals of this research. LSA’s 

goals were less specific and did not fit as well with this 

research. HAL can also produce interesting results with a 

simpler implementation.  

 

Currently, using human agents is potentially the most 

accurate way to intelligently group collections of data. 

However, humans have the disadvantages of being slow and 

prone to fatigue and error. Online search engines such as 

Google have developed algorithms to find similar pages. 

Google finds similarities much faster than humans could. 

Although these algorithms are proprietary, leading search 

engine researchers believe they know the general principal 

behind them. 

 

In general, the search engines create a graph in which web 

pages (nodes) are connected by the links between them. 

Related web pages are often highly connected to one another. 

These densely connected areas are called communities. A web 
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page that is in another web page’s community, with similar 

keywords, is deemed a similar web page. This method does 

return acceptable results. However, these results are 

incomplete. If a web page is weakly linked to its community 

it may not be deemed relevant. (Churchill 2005) Also, this 

method only works in situations where the pages are linked 

as they are on the web. This method would not work on a home 

user’s PC to group plain text files similar in context but 

containing no links.   

 

The HAL Algorithm 

 

Implementation of HAL is straightforward. All data files are 

taken as input. A matrix is created of size N x N, where N 

is equal to the number of unique symbols found throughout 

the body of data. An example matrix can be found in Table 1. 

A sliding window is then used to locate lexical similarities 

of symbols within the text. For example, consider the 

following sentence, “The motorcycle raced down the street 

home”.  The window would start at the beginning of the 

sentence. The size of the window can be set to any value 

less then N. It has been found that any window value greater 

then ten adds little to the meaning of the word being 

analyzed. (Burgess 1998) In this example sentence, however, 

a window size of five will be used in order to simply 

demonstrate how this model works. 
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The word “The” is the first symbol to be analyzed. Since the 

window size is five, the next five symbols are given a score 

in the N x N matrix created earlier (Table 1). As the 

algorithm proceeds, the values stored in the columns of the 

matrix will represent values associated with symbols in that 

half of the window prior to the current symbol. Similarly, 

values in the matrix’s rows will represent the half of the 

window that is after the current symbol. By studying the 

symbol “home”, in Table 1, it is evident that its row is 

empty. This is because “home” has no symbols following it. 

However its column does contain data representing the 

previous appearing symbols in the window.  

 

The values in the matrix are initialized to 0 and the 

results are accumulated. The maximum score added to any 

symbol is the size of the window. As seen in Table 1, when 

the initial “the” is the symbol of interest, “motorcycle” is 

the closest symbol to “the”, so a score of 5 is added to the 

initial 0 value associated with “motorcycle”. The next word, 

“raced” results in a score of 4, “down” 3, “the” 2, and 

“street” 1. The window then slides to the right, one symbol, 

and now “motorcycle” is the symbol that scores are being 

assigned against. From “motorcycle”, “raced” is the closest 

symbol to the right and results in a score of 5. Next is 

“down” which results in a score of 4, “the” 3, “street” 2 
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and finally “home” results in a score of 1. This process is 

continued sequentially for all of symbols in the text. Once 

this process is finished the matrix of scores shown in Table 

1 would have been generated. 

Table 1: “the motorcycle raced down the street home” scoring matrix 
 the motorcycle raced down street home 
the 2 5 4 3 6 4 
motorcycle 3 0 5 4 2 1 
raced 4 0 0 5 3 2 
down 5 0 0 0 4 3 
street 0 0 0 0 0 5 
home 0 0 0 0 0 0 
 

The effect of accumulating scores can be seen by inspection 

of the row corresponding to the symbols “the”. By recording 

how the symbols are used repeatedly, HAL learns its 

contextual meaning. As stated before, a window of size five 

represents five symbols before and after the current symbol. 

However, in the calculations only that half of the window 

after the current symbol needs to be taken into account. For 

example when the window is centered on “motorcycle” the 

symbol “the” precedes it. The symbol “the” is contained in 

the window, but since “the” precedes “motorcycle” there is 

no need to add a score for this relationship to the matrix. 

This relationship will automatically be represented in the 

columns of the matrix once all of the rows are filled. 

 

Once all score values for the matrix have been completed, it 

becomes easy to compare two symbols. To determine a vector 
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point in the context space, the complete row and column for 

one symbol is inspected. Since we have six unique symbols in 

the example above, we have a twelve-dimensional context 

space. The space is twelve dimensional and not six because 

there are six values in the columns representing a symbol of 

interest’s contextual relationship to the symbols preceding 

it in its window, while the six values in the rows represent 

a symbol of interest’s contextual relationship to the 

symbols following it in its window. The context space 

location of the symbol “raced” from above would be 

{4,0,0,5,3,2,4,5,0,0,0,0}. The first six values for this 

vector are found in the row for “raced” in Table 1. The last 

six values are then found in the column for “raced” Table 1. 

 

Once it is understood how this model works, it is easy to 

see why it is so flexible. Previous HDM were unable to 

handle common spelling errors, or typing errors. In the HAL 

model, common errors are quickly grouped together by their 

contextual meanings. If we take the previous example 

sentence and add an additional similar sentence to our set 

of data, it becomes apparent why this model is so flexible. 

 

Original: “The motorcycle raced down the street home.” 

New: “The motorcycle raced down the road home.” 
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Both of these sentences are identical except that one uses 

“street”, and the other uses “road”. When the two sentences 

are processed through the HAL, “street” and “road” will have 

the same vector point in context space. Since the distance 

between the two will be zero, it is safe to assume that in 

this set of data these two symbols have the same meaning and 

are interchangeable. In a larger set of data it would likely 

be very rare that two symbols will have identical vector 

points. However, once the distance between such similar 

symbols is calculated, the distance will be so small in 

comparison to other distance values that these two symbols 

will be interpreted as being very near or identical in 

meaning. 

 

Summary 

 

HAL is a flexible and adaptive algorithm. It can learn the 

context of words and symbols that normally would not be 

expected, such as unique symbols resulting from spelling and 

typing errors. The HAL algorithm is straightforward to 

implement. HAL creates a matrix of unique symbols and fills 

in score values based on locations relative to a sliding 

window. Once the matrix is computed, it can be used to find 

the vector points of each symbol in the high dimensional 

context space. 
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The Problem: An Explosion of Data 

 

Growth of Data and its Organization 

 

Everyday more data is being created. The data ranges from 

that generated by large corporations with data warehouses, 

to that generated by end users with a few gigabytes of data 

on their home PC’s hard drive. The Internet is also 

expanding at a high rate and finding ways to organize this 

data is becoming challenging. It would seem that keeping the 

data grouped together based on similarities in its content 

might prove useful. This research will investigate the 

possible use of a HAL in conjunction with SCA to discover if 

HAL’s ability to learn the contextual meaning of symbols can 

benefit the SCA and produce more useful results. 

 

An objective of this research is to find a method that is 

both fast, because it is processed by computer, as well as 

adaptive and intelligent enough to produce results that 

approach those of a tireless and error-free human. An 

algorithm that can produce both fast and intelligent results 

will be beneficial to any user wanting to group or 

categorize data according to content. 
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Assumptions 

 

Several assumptions underlie this research. The sample data 

used is assumed to be representative of data that may be 

discovered in a real world situation. A second assumption is 

that any findings on this small set of data will hold true 

for larger sets. Thirdly, while not true in all domains, it 

is assumed that any trends found in these results will also 

be present in the larger sample sizes. Finally, even given 

differences in human opinion regarding which documents or 

web pages should be grouped together, this data can be 

intelligently grouped and the similarity of their content 

agreed upon by reasonable people. 

 

Research Hypothesis 

 

NCA, using the use of the HAL algorithm in conjunction with 

SCA will produce more intelligent and flexible results when 

compared to the use of either HAL or SCA alone. 

 

Significance of the Research 

 

This research develops and implements NCA, an algorithm that 

is intelligent and adaptive. The results of NCA should 

create contextually similar groups of data. After the 
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intelligent algorithm processes the data, it groups the data 

based on content. 

 

Scope 

 

The scope of this research is limited to the design and 

verification of the NCA algorithm. The sample data in this 

research, which in theory can be any type of data file, will 

only consist of web pages from the Internet. Since the 

sample data set must be selective, it was arbitrary decided 

that only three categories of data would be used: baseball, 

football, and the Iraqi war. 

 

Summary 

 

An algorithm able to intelligently group data would be an 

asset to many users. Hypothetically, such an algorithm can 

be created by conjoining HAL with SCA. The resulting NCA 

algorithm would learn contextual meanings from the data it 

has already processed. This research is limited to a small 

set of sample data. The scope of this research is to develop 

this NCA algorithm and consider the likelihood of it working 

in a less constrained scenario. 
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Research Procedures 

Research Design 

 

This research was performed on web pages collected from the 

Internet. The data was hand picked in an attempt simulate 

differences and similarities between the web pages. 

Baseball, football and the Iraqi war were the three 

categories that data was chosen from. The NCA algorithm 

presented in this research was used to process this data. 

The output was analyzed and compared against the expected 

results. Anomalies in the results were then further studied 

in order to determine their cause. 

 

The NCA Algorithm 

 

To conduct this research two tools were created. One tool 

stripped HTML from web pages. No known public algorithm 

compares two web pages while utilizing the HAL algorithm. 

Therefore an implementation of NCA was created to carry out 

this task.  

 

The first (and simpler) tool was an HTML parser (see 

Appendix B). The sample data that was acquired contained 
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HTML tags. Because it is believed that removing the HTML 

tags the classification results could be based on content 

alone as opposed to effects of formatting and content. The 

parser processes the sample data and removes most of the 

HTML. It can be argued that the formatting can also contain 

a deeper level of context meaning. While this may be true, 

consideration of formatting effect on meaning is beyond the 

scope of this research. 

 

The primary tool used in this research was the design and 

implementation of NCA that incorporated the HAL algorithm 

and SCA (see Appendix C). Java was the chosen language for 

this tool. By using Java the constraints of platform 

dependency were removed. Java’s many libraries allowed more 

attention to the research as opposed to some implementation 

details. Once processing of selected data is complete, the 

user selects a web page to be compared against all other web 

pages that have been processed. The tool will output a list 

of like web pages with a score given to each one. A higher 

score means the two web pages are more contextually similar. 

 

In detail, the NCA tool first traverses all the data and 

counts the number of unique symbols. A matrix of size N x N 

(where N is equal to the number of unique symbols) is 

created. The tool then applies the sliding window to the 

text and fills in scores for all the symbols in the matrix. 
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Once the matrix scores are filled in, a second matrix is 

created of equal size to the first. 

 

The second matrix is the distance matrix. The distance 

matrix is unique to NCA. It is used to store the distance 

values for every symbol combination. The distance, ∆d is 

found by using the Euclidean distance equation. 

 

22
22

2
11 )(...)()( nn bababad −++−+−=∆  

Equation 1: Euclidean distance equation 
 
The vector points ( (a1,…,an) from the 1

st symbol, (b1,…,bn) 

from the 2nd symbol, where n is equal to the number of unique 

symbols ) are obtained from the first matrix and then 

plugged into the equation. The distances are calculated so 

that once they are found the comparison of two selected 

documents can run swiftly. 

 

Filling this second matrix can be very time consuming. The 

complexity, which will be discussed in detail later, is 

O(n3). The distance matrix stores the distances of every 

symbol from every other symbol. For example, symbol A to 

symbol B then symbol B to symbol A. Consequently, this 

matrix contains a redundant set of data. By only calculating 

half of the matrix the processing time can be cut in half 
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with no loss of information. Even with the count of 

calculations cut in half, however, the processing time can 

be staggering. 

 

With the distance data complete the program must decide 

which symbols are similar. This is a difficult problem 

because the size of context space is dependent on the data 

set. During this research a novel equation was created to 

compute a special case of the Euclidean distance and to give 

intuitive meaning to the HAL algorithm’s generated 

distances. Equation 2 can find a “basic distance” value, ∆b.  

 

∑
=

=∆
w

i
ib

1

24  

Equation 2: Basic Distance where w = HAL window size 
 

The basic distance equation is derived from the Euclidean 

distance equation (Equation 1). This equation finds the 

distance of two symbols that only appear once in the data 

set and never appear in the same sliding window. An example 

∆b, with window size w = 3 and n = 10 unique symbols, 

follows. Since n = 10 a 20 dimensional context space is 

required. Since the symbols only appear once, possible 

coordinates for a one symbol will be { 3, 3, 2, 2, 1, 1, 07, 

…… ,020 }. Recall that the two symbols never appear in the 
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same sliding window. Let vector A corresponding to the first 

symbols be compared to the vector B corresponding to the 

second symbol. Then if Ai > 0 then Bi = 0. Therefore, when 

these two vectors are used in the Euclidean distance 

equation, no set of parentheses will hold two values greater 

than 0. If the contrary were true contextual information 

would be present, but this is not the case. As a result when 

the Euclidean distance equation is used with symbols that 

never appear in the same sliding window, each difference of 

coordinates squared will contain at least one zero. As a 

result a simple summation is used. The 4 in the ∆b equation 

derives from the fact that it represents a distance for two 

symbols, and each symbol has two values for each position of 

the window. The other aspects of the computation follow a 

straight forward extension of the standard Euclidean 

distance computation. 

 

If a distance is equal to this ∆b it is inferred that the 

two symbols appear one time each and there is no data 

suggesting any contextual relationship. If the distance 

value is greater then ∆b it implies that one or both symbols 

were found in the data set more than once; furthermore, 

contextual information indicates that these two symbols are 

more contextually different than they are contextually 

similar. When looking for similar contextual meanings it can 
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be concluded that the more important distance values are 

less than ∆b. When the distance is less than ∆b the data 

suggests more contextual similarities than differences. 

 

Distances below ∆b show evidence of contextual similarities. 

However a distance only slightly below the basic distance 

value may not actually demonstrate a similarity. In this 

research, a ratio of ∆b was used to filter out those symbols 

with less contextual similarity. This ratio value is another 

aspect that is unique to NCA. The ratio is an experimentally 

determined number used to fine tune the results produced 

from the NCA algorithm. This research found that a ratio 

between .4 and .8 works well on the data used. As the ratio 

increases, the filter’s tolerance for less contextual 

similarities increases. This ratio can be used to compute a 

similarity threshold is , T, where T = (ratio value) * (∆b). 

 

Table 2: Example distance matrix, window size = 3, ∆b (basic distance) = 7.48 

 Kitten cat Dog car 
Kitten 0 3.1 6.9 12.3 
Cat 3.1 0 5.8 14.4 
Dog 6.9 5.8 0 11.7 
Car 12.3 14.4 11.7 0 
 

Table 2 is an example of similar symbols being found once 

the distance matrix is calculated. This example uses a 

window size of three. By using Equation 2, ∆b can be found. 
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This value is 7.48. Recall that the lower the distance the 

more similar two symbols are, symbols with a lower distance 

than ∆b indicate evidence of similarity; distances greater 

then ∆b represent more evidence of dissimilarity than 

similarity. In this example, then, the symbols “cat” and 

“kitten” have the lowest distance value. It can therefore be 

assumed that these are the most similar symbols.  

 

The symbols “dog” and “kitten” have a distance value of 6.9. 

This is slightly lower then ∆b. A dog and a kitten are both 

similar because they are pets. However, although both may be 

pets, they remain very different. This is why the similarity 

threshold is used. This research used the ratio value .8. 

Given ∆b of 7.48, T = 5.98 so only strong similarities are 

now produced.  

 

It remains necessary to calculate the similarity of web 

pages. SCA inspects a web page and counts the occurrences of 

the members of the set of symbols in the complete set of 

pages. This count is compared to that of other web pages to 

find similarities. To integrate the HAL algorithm in this 

researche’s NCA, contextually similar symbols were added to 

the SCA symbol list. These contextually similar symbols were 

found using the NCA distance matrix. For each set of web 

pages a similarity score is determined. This score is the 



21 

 

frequency of times the symbols from the SCA symbol list 

appeared in the web page being compared. The HAL context 

data is added to the SCA symbol list and then the scores are 

determined (NCA scores). These scores are then displayed to 

the user in a sorted list. 

 

Data Collection 

 

It was deicide that for this research it would be useful to 

use web pages that have obvious differences and 

similarities. The vast number of topics found on the 

Internet would likely return web pages that had no 

similarities if a small number of these pages were randomly 

selected. For this reason it was decided to collect web 

pages “by hand”.  

 

Three categories were chosen: baseball news articles, 

football news articles, and Iraqi war news articles. It was 

assumed that each article would be similar to the other 

articles in its category.  

 

To test the sensitivity of NCA some baseball and football 

news articles were centered on Philadelphia teams. The 

rationale behind this selection is that two Philadelphia 

baseball articles should be grouped closer than two baseball 

articles pertaining to different cities. In addition, a 
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Philadelphia football article when compared to a 

Philadelphia baseball article would score better than it 

would when compared to a football article about a different 

city. The reference to Philadelphia provides some contextual 

similarity. The Iraqi war articles were added as contrast 

data. It was anticipated that the Iraqi war news articles 

should have little or nothing in common with the football 

and baseball articles.  

 

The first test started with seven web pages. The second test 

increased to fourteen web pages. The last test reached 

twenty-eight web pages. The sample sets contained more 

baseball articles than football or Iraqi war news, in order 

to allow NCA to learn more context data about one subject 

than another. It was not thought to be important that NCA to 

have in-depth knowledge of all three categories. It was 

considered more beneficial for this research that NCA have 

such knowledge in only one category. This should show an 

expectation of improved results as data, time and computing 

resources increase.  

 

Obviously this sample data set represents a miniscule 

portion of possible data available. Yet there is no reason 

to believe that the NCA model should be less useful when 

applied to other categories. In fact, if more diverse data 

were included, it is expected that NCA’s results would 
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become more accurate due to the added depth of context 

learned by HAL. 

 

Limitations and Complexity 

 

Certain parts of this research were restricted due to the 

limits of modern PCs. As was discussed, the largest sample 

data set was only twenty-eight web pages. Ideally, as this 

research tries to prove, the NCA algorithm would make its 

most intelligent Internet data groupings if all the pages on 

the Internet could be processed. However, the retrieval and 

processing of this much data is not possible. 

 

Although retrieval was a concern, the required processing 

power was immense. The cost of processing the data 

outweighed any other constraint. The small sample set of 

twenty-eight web pages contained 25,485 total symbols. Of 

these 25,485 symbols 6,364 were unique. To process this 

data, two 6,364 x 6,364 sized matrices were created. The 

complexity of finding the HAL scores was high, but not 

nearly so high as the complexity of finding the distance 

scores. 

  

The number of calculations required to find the distance 

matrix can be found with the following equation: c = 4n(n2). 

From this equation the order of complexity for finding the 
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distance matrix can be derived which is O(n3) where n is 

equal to the number of unique symbols. 

 

The distance matrix contained 40,500,496 (6,3642) distances 

that need to be calculated. For each one of these distances, 

the distance equation contained 12,728 (6,364 * 2) addition 

and multiplication problems for a total of 25,456 (12,728 * 

2). In total about 1,030,980,626,176 (40,500,496 * 25,456) 

calculations had to be computed to find the distances for a 

set of twenty-eight web pages. If just one unique symbol 

were added to this set, it would increase the total 

calculations to 1,031,466,708,500. An increase of 

486,082,324 calculations for the addition of just one unique 

symbol! The problem will continue to grow exponentially.  

 

In this research in a very small set of data, computation 

was performed using the Linux operating system running on a 

dual processor (hyperthreaded to present itself as a quad 

processor), shared memory parallel processing 64-bit system 

with eight gigabytes of memory. The calculations were spread 

across all four logical processors to speed up the program. 

Even with this relatively powerful hardware, twenty-eight 

web pages needed nearly a full day to completely process.  

 

Despite the computational complexity, however, heuristics 

indicate that in real world situations it might be possible 
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to process more data. As pages are added it is anticipated 

that fewer novel symbols will be introduced by the data. It 

is safe to assume that eventually every possible symbol will 

likely be represented. At that point there would be 

virtually no additional cost to add a web page. And, this 

point might be reached rather quickly. There are about 

54,000 words in modern English. (Nation, Waring 1997) 

However, 16,000 words represent 98% of most written English 

(Chafe, Danielewicz 1987). Once this written vocabulary is 

represented, adding new web pages becomes much less resource 

intense. 

 

Summary 

 

This research was performed with the aid of two custom made 

tools. The first was a HTML parser that removed HTML tags. 

The second was NCA incorporating HAL and SCA. Data was 

collected in a nonrandom fashion; it was limited to three 

distinct categories due to the purpose of this research. The 

data was intentionally selected so that certain web pages 

would be similar or dissimilar. This data was then processed 

and the results were analyzed. The high costs of processing 

this data required use of a high-end computing system. 

Although the computation complexity is O(n3), heuristics 

indicate a computable soft upper bound as the size of that 

data increases.
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Results of Research 

 

Results 

 

This research was performed on three sets of data. The first 

was on a group of data containing seven web pages. Three web 

pages were articles about baseball, two web pages were 

articles about football and the final two web pages were 

articles about the war in Iraq. The next test was conducted 

on fourteen web pages. The last test was conducted on 

twenty-eight web pages. Both the fourteen web page and 

twenty-eight web page tests maintained the ratio of topics 

established for the first test. The two larger tests were 

supersets of the smaller test.  

 

Once all the distance calculations are complete, a web page 

is arbitrarily selected. A list of all other web pages is 

displayed with a score assigned. The higher the score the 

more similar the content of that web page in comparison to 

the original. Representative results are shown here. The 

results are selected as a fair representation of the 

strengths and weaknesses of the NCA al6gorithm.  
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Each set of data contains a target page that other pages 

were compared to. The top five highest scoring web pages are 

listed when the NCA algorithm is used. The order of their 

listing is descending order based on the score assigned 

using NCA. The table lists the points gained that the HAL 

algorithm added to the SCA score. Each target article was 

chosen from the three categories (baseball, football, Iraqi 

war). All NCA generated scores are equal to or greater than 

the SCA score. This is because the use of HAL only adds 

context data, which in turn can only raise the score.  

 

Table 3: 1st Seven web page data set, 

 Target article “MLB recap Reds at Phillies May 15” (baseball) 
Points 

gained from 
HAL 

NCA 
score 

SCA 
score Title Category

21 183 162 MLB recap Reds at 
Phillies May 13th 

baseball 

24 145 121 MLB recap Pirates at 
Cardinals May 23th 

baseball 

0 92 92 No going across the 
middle 

football 

6 78 72 9 US troops killed in 
Iraq 

Iraqi 
war 

0 64 64 US forces encircle 
Iraqi city in new 
offensive 

Iraqi 
war 

 

Table 4: 2nd Seven web page data set, 

Target article “9 US troops killed in Iraq” (Iraqi war) 
Points 

gained from 
NCA 

NCA 
score 

SCA 
score Title Category
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7 93 86 US forces encircle 
Iraqi city in new 
offensive 

Iraqi 
war 

10 91 81 No going across the 
middle 

football 

5 78 73 MLB recap Reds at 
Phillies May 15th 

baseball 

5 77 72 MLB recap Reds at 
Phillies May 13th 

baseball 

3 70 67 MLB recap Pirates at 
Cardinals May 23th 

baseball 

 

Table 5: 1st Fourteen web page data set, 

Target article “MLB recap Reds at Phillies May 15” (baseball) 
Points 

gained from 
NCA 

NCA 
score 

SCA 
score Title Category

19 181 162 MLB recap Reds at 
Phillies May 13th 

baseball 

19 139 120 MLB recap Pirates at 
Cardinals May 23th 

baseball 

0 92 92 No going across the 
middle 

football 

0 90 90 Oil for food program 
investigation 

Iraqi 
war 

0 77 77 Rice to compete for 
spot as Denver’s No. 4 

football 

 

Table 6: 2nd Fourteen web page data set, 

Target article “9 US troops killed in Iraq” (Iraqi war) 
Points 
gained 
from NCA 

NCA 
score 

SCA 
score Title Category

11 118 107 Oil for food program 
investigation 

Iraqi 
war 

3 89 86 US forces encircle 
Iraqi city in new 
offensive 

Iraqi 
war 

6 89 83 US unleashes surprise 
offensive in Iraq 

Iraqi 
war 

6 87 81 No going across the 
middle 

football 

3 76 73 MLB recap Reds at 
Phillies May 15th 

baseball 
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Table 7: 1st Twenty-eight web page data set, 

Target article “MLB recap Reds at Phillies May 15” (baseball) 
Points 

gained from 
NCA 

NCA 
score 

SCA 
score Title Category

16 178 162 MLB recap Reds at 
Phillies May 13th 

baseball

12 133 121 Phillies Ranger 
Recap June 7th 

baseball

11 132 121 MLB recap Pirates at 
Cardinals May 23th 

Baseball

1 126 125 MLB Pedro dominant baseball
0 120 120 Angels Brave recap 

June 7th 
baseball

 

Table 8: 2nd Twenty-eight web page data set, 

Target article “9 US troops killed in Iraq” (Iraqi war) 
Points 
gained 
from NCA 

NCA 
score 

SCA 
score Title Category

1 128 127 Iraqi president 
defends Shiite militia 

Iraqi 
war 

7 114 107 Oil for food program 
investigation 

Iraqi 
war 

4 103 99 US and Iraqi troops 
launch Tal Afar 
offensive 

Iraqi 
war 

0 67 94 MLB Pedro dominant baseball 
3 89 86 US forces encircle 

Iraqi city in new 
offensive 

Iraqi 
war 

 

 

This data demonstrates that the web pages with a clear 

relationship to the target web page gain the most by using 

NCA. For example in Table 3, when the target “MLB recap Reds 

at Phillies May 15th” and is compared to “MLB recap Reds at 

Phillies May 13th”, “MLB recap Reds at Phillies May 13th” 
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gains the most points from HAL in the seven page test. This 

is no surprise because both web pages are extremely similar. 

In Table 3 when “9 US troops killed in Iraq” is compared to 

the same web page, HAL gives no extra points. This trend 

will likely continue as the data sets become larger. 

Unexpectedly, the larger the data set, the less points HAL 

assigned on average. This was true for both the similar 

articles and for not so similar articles. 

 

Summary 

 

Data was generated from three tests containing different 

data set sizes. Each test was performed with two different 

target web pages. The number of points NCA added was shown 

for each of the top five scoring web pages. NCA added the 

most points to similar pages and added little to dissimilar 

pages. As the data set size increased the number of points 

NCA contributed slightly decreased.
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Conclusions and Implications 

 

Summary of Research 

 

The purpose of this research was to determine if the NCA 

algorithm using HAL in conjunction with SCA would produce 

better, more intelligent results than the SCA algorithm 

alone to group web pages based on similarity of content. NCA 

implemented using the HAL algorithm’s matrix to find each 

symbol’s vector point in context space. NCA implemented a 

distance matrix to determine relationships among all 

symbols. The distance matrix is resource intensive to 

calculate, having O(n3) complexity. 

 

The data set used was small due to complexity issues and the 

focus of this research. The Data set sizes were seven, 

fourteen, and twenty-eight web pages. Web pages were limited 

to three categories (baseball, football and Iraqi war 

articles) so that results could be easily studied. The NCA 

program processed the data using the HAL algorithm and 

compared its results to SCA. This was done to measure the 

influence of the HAL algorithm. Once all the computations 

were complete, the results were compared. 
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Conclusions 

 

In all tests, HAL generally improved the score of similar 

pages more than it improved the score for non-similar pages. 

For example, in Table 5 a baseball content web page is the 

target. The two top baseball web pages are each given 19 

addition points when HAL is used. The football and Iraqi war 

web pages are given no extra points. This is a good example 

of how HAL improves the results. 

 

On the other hand, Table 6 has an Iraqi war content web page 

as the target. In this example HAL adds 11 additional points 

to another Iraqi war content web page. However, the rest of 

the results are somewhat problematic. The second and third 

web pages are both Iraqi war related, but only gain 3 and 6 

points respectively from HAL. The fourth web page is about 

football and HAL increases its score by 6 addition points. 

The last web page is about baseball and gains 3 points from 

HAL. In this example HAL is adding the same or more points 

to the football web page as it does for the two prior Iraqi 

war web pages.  

 

These Table 6 results are clearly less supportive to the 

hypothesis than are those in Table 5. This is not 

unexpected. The HAL algorithm learns contextual meanings of 
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words by processing data. The more data it can process the 

more meaning it can learn. Since this research is using 

relatively small sets of data, HAL has only a very limited 

understanding of the contextual meanings of words it 

processes. In order to show some stronger results the 

categories are not evenly represented. As mentioned earlier, 

the data sets contained proportionately more baseball web 

pages then any other web page category. This was done with 

the expectation that it would provide the HAL algorithm with 

a relatively stronger knowledge of baseball vocabulary. The 

results support this expectation. This is evident by 

comparing the results from Table 3 to Table 4, Table 5 to 

Table 6 and Table 7 to Table 8.  

 

These results strongly support the hypothesis for this 

research: The HAL algorithm in conjunction with SCA does 

provide more accurate results. However, the data also shows 

a trend that as more data is added the effects of NCA 

decreases. There seem to be three possible reasons for this. 

Recall that the algorithm was tested using very small sets 

of data. Since previous research has shown that the HAL 

algorithm improves its knowledge as more data is processed, 

(Burgess 1998) it is very possible that the tests that were 

scored higher and contained the smaller data sets, were 

proportionally over scored. As HAL becomes better trained 
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(upon inclusion of more data), scores become more accurate 

in their representation of the data’s contextual meaning.  

 

A second possible reason for the difficulty in handling the 

Iraqi war articles could derive from the many uses of 

metaphor in describing war and sports. In sports the term 

“rocket” may be used to describe a pitcher’s arm, or a good 

pass from a quarterback. But in an article about the Iraqi 

war, a rocket is most likely an explosive projectile. This 

may have caused difficulty for HAL. Since a small set of 

data was used HAL may have interpreted these metaphors as 

similarities, and missed other relevant contextual 

similarities that would have over-shadowed these metaphors. 

 

The final possible reason is the basic distance, ∆b, and the 

threshold T. T was computed using an experimentally 

determined ratio found to generally give good results. This 

ratio tunes the results of the algorithm. The context space 

was very volatile due to the small data sets used. This 

makes having only one ratio tuned appropriately for all data 

sets nearly impossible. As the data set size increase, the 

context space becomes more stable. A simple ratio might be 

then found to work well across many (or all) the larger 

sample sizes.  
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Implications 

 

This research shows that HAL has benefits when used with SCA 

to find matching web pages. However, the complexity of using 

the algorithm makes its practical use limited.  

 

Future Research 

 

This research demonstrates that there is a potential benefit 

from using a HAL model with a SCA algorithm to group 

Internet web pages based on their content. However this 

research has also shown that to achieve this, a very high 

level of computation resources is needed. In its current 

state, the algorithm is not practical for casual use. 

Although some optimizations were effective, their impact is 

insufficient to overcome the polynomial growth of 

calculations needed to be performed as unique symbols are 

added. However there is reason to believe that this rate of 

growth is not sustainable and so may not be as critical as 

it seems. Once the algorithm has encountered most common 

symbols, any new web page will only add a few new symbols. 

It is safe to say at some point most web pages will provide 

no new symbols, but only context data. Currently every time 

a new web page is added the whole set of data is processed 

again. It seems very likely that this would not be needed 

after some relatively large number of pages has been 
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processed. As symbols are added, there is no reason that the 

algorithm could not dynamically update its internal data 

structures to reflect appropriate changes. Over time this 

would substantially reduce the computational power required 

to use the algorithm. Once the algorithm has become more 

efficient, research should be conducted on a larger set of 

data to determine if it produces better results as more data 

is added.  

 

Summary 

 

The results do show that there is a benefit to using NCA to 

gain contextual meaning. There the results also support the 

notion that the HAL algorithm will prove less influential as 

the data size grows. Larger data sets would not only provide 

a better-trained NCA algorithm, but also provide more 

stability to the context space used to store the contextual 

relationships. With a more stable context space, a more 

appropriate ratio might be found. This would improve the 

results on larger data sets over a range of sizes.
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Appendix A 

 

Definitions and Operational Terms 

 

High-dimensional memory model: A class of algorithms that 

contain a high dimensional space (context space) used 

to represent relationships among symbols. 

 

Hyperspace analogue to language model of memory (HAL): A 

machine-learning algorithm that is part of the high 

dimensional memory model class. HAL has the ability to 

learn the contextual meanings of symbols. 

 

Simple comparison algorithm: An algorithm that processes 

sets of data and determines the extent of their 

similarity. This algorithm simply counts similar 

occurrences of symbols between two files and generates 

a score.  
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Basic distance: A term used for the distance of two symbols 

that each only appear once in the entire body of data 

and never appear in the same sliding window. These two 

symbols therefore, have no evidence of contextual 

similarities. If the distance of two symbols is less 

than the basic distance value, it represents evidence 

of contextual similarity. If it is greater than the 

basic distance value, it represents evidence of 

contextual dissimilarity. 

 

Context space: The high dimensional space (hyperspace) that 

all symbols are located in. Within this hyperspace the 

contextual distance of two words can be found. 

 

NCA: The algorithm that was created for this research. It is 

a combination of the HAL algorithm and SCA.
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Appendix B 

 

#!/bin/sh 
#set -x 
 
 
#################### 
#Process the files 
ProcessFile() 
{ 
echo "$1" 
#all variables must be local since recurision is used 
local currentFile=$1 
local newName=`cat $currentFile |grep title\>|sed s/^.......//g|sed 
s/........$//g|tr A-Z a-z` 
local newNameClean=`echo $newName | sed -e 's/[ ]/_/g'` 
local toRemove=`echo $currentFile |sed -e s/"^.*\/"//` 
local workingPath=`echo $currentFile |sed -e s/$toRemove$//` 
#sed expression used to get rid of most html 
local output=`sed -e 's:<[bB][rR]/*>:\ 
:g' \ 
    -e '/</{ 
 :loop 
 s/<[^>]*>//g 
  /</{ 
      N 
      b loop 
  } 
     }' \ 
    -e 's:&[nN][bB][sS][pP];: :g' \ 
    -e 's:&..;::g; s:&...;::g; s:&....;::g' \ 
    $currentFile|tr A-Z a-z` 
local safeFileName=`echo "$newNameClean"|sed -e 's/[/]//g'` 
if [ "$safeFileName" != "" ] 
then 
#output clean file 
echo $output > output/$safeFileName  
fi 
} 
 
 
#################### 
#Go though the folder of data and process it 
 
GoThroughFolders(){ 
local currentDir=$1/ 
#types of files that are not html 
local delTypes="pdf swf aif wav mov wma mp3 mpg aiff gif jpg wmv avi exe" 
for type in $delTypes 
do 
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rm  -f $currentDir*.$type 
done 
for files in `ls $currentDir` 
#set up the recursion to go though this folder and all sub folders 
do 
 if [ -d $currentDir$files ] 
 then 
  GoThroughFolders $currentDir$files 
 else 
  ProcessFile $currentDir$files 
 fi 
done 
 
} 
 
 
#################### 
#Start script 
 
if [ -d $1 ] 
then 
 mkdir output 
 GoThroughFolders $1  
else 
 echo "Usage:" 
 echo "       $0 <directory to start in>"  
fi
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Appendix C 

HAL.java 

import java.awt.BorderLayout; 
import java.awt.event.ActionEvent; 
import java.awt.event.ActionListener; 
import java.io.File; 
import java.io.FileInputStream; 
import java.io.FileOutputStream; 
import java.io.IOException; 
import java.io.ObjectInputStream; 
import java.io.ObjectOutputStream; 
import javax.swing.DefaultListModel; 
import javax.swing.JButton; 
import javax.swing.JFileChooser; 
import javax.swing.JFrame; 
import javax.swing.JLabel; 
import javax.swing.JList; 
import javax.swing.JOptionPane; 
import javax.swing.JPanel; 
import javax.swing.JScrollPane; 
import javax.swing.JTextField; 
 
/* 
 * HAL.java created on Apr 18, 2005 5:42:46 PM 
 */ 
/** 
 * @author Edward G. Finegan <br> 
 *         ed@dryrain.net <br> 
 *         <br> 
 *         Class HAL <br> 
 */ 
public class HAL implements 
    ActionListener { 
 
  private MemoryMatrix     matrix; 
  private final int        MAX_MATCHES      = 5; 
  private final String     OBJECT_FILE_NAME = "##MEMORY_MATRIX.OBJ"; 
  private JFrame           frame; 
  private JButton          compareButton; 
  private JButton          compareButtonNormal; 
  private JButton          startButton; 
  private JButton          browseButton; 
  private JList            nlist; 
  private JList            outnList; 
  private File             allFiles[]; 
  private String           dataLocation; 
  private JTextField       fileField; 
  private JScrollPane      list; 
  private JScrollPane      outList; 
  private DefaultListModel model; 
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  private DefaultListModel outModel; 
  private File             dataSource; 
  private File             objectFile; 
 
  public static void main(String[] args) { 
    if (args.length == 1) { 
      HAL hal= new HAL(args[0]); 
    } 
    else { 
      HAL hal= new HAL(); 
    } 
  } 
 
  public HAL() { 
    makeGUI(); 
  } 
 
  public HAL(String dataLocation) { 
    this.dataLocation= dataLocation; 
    this.objectFile= new File( 
        dataLocation + "/" 
            + OBJECT_FILE_NAME); 
    this.dataSource= new File( 
        dataLocation); 
    if (!dataSource.isDirectory()) { 
      System.out 
          .println("The directoy containing the data must be given as a 
argument!!!"); 
      System.exit(-1); 
    } 
    makeGUI(); 
    fileField.setText(dataLocation); 
  } 
 
  private void startWork() { 
    /* 
     * Check to see if we have this oject saved. If it is open it and use it, if 
     * not make it and save it. 
     */ 
    if (!objectFile.exists()) { 
      matrix= new MemoryMatrix( 
          dataSource); 
      matrix.start(); 
      ProgressBar progressBar= new ProgressBar( 
          frame, matrix); 
      while (!progressBar.complete) { 
        progressBar.display(); 
      } 
      if (!matrix.cancled) { 
        try { 
          // Write to disk with FileOutputStream 
          FileOutputStream f_out= new FileOutputStream( 
              objectFile); 
          // Write object with ObjectOutputStream 
          ObjectOutputStream obj_out= new ObjectOutputStream( 
              f_out); 
          // Write object out to disk 
          obj_out.writeObject(matrix); 
        } 
        catch (IOException e) { 
          System.out 
              .println("Unable to save matrix object!!"); 
          e.printStackTrace(); 
        } 
      } 
    } 
    else { 
      try { 
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        // Read from disk using FileInputStream 
        FileInputStream f_in= new FileInputStream( 
            objectFile); 
        // Read object using ObjectInputStream 
        ObjectInputStream obj_in= new ObjectInputStream( 
            f_in); 
        // Read an object 
        matrix= (MemoryMatrix)obj_in 
            .readObject(); 
      } 
      catch (Exception e) { 
        System.out 
            .println("Cannot open object!!"); 
        e.printStackTrace(); 
      } 
      matrix.reopened(); 
    } 
  } 
 
  private void makeGUI() { 
    /* 
     * Make the GUI 
     */ 
    frame= new JFrame("Memory Matrix"); 
    frame 
        .setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
    JPanel window= new JPanel(); 
    window 
        .setLayout(new BorderLayout()); 
    JPanel topWindow= new JPanel(); 
    model= new DefaultListModel(); 
    nlist= new JList(model); 
    list= new JScrollPane(nlist); 
    topWindow.add(list); 
    JPanel bottomWindow= new JPanel(); 
    startButton= new JButton("Start"); 
    startButton.addActionListener(this); 
    bottomWindow.add(startButton); 
    compareButton= new JButton( 
        "Find Matches"); 
    compareButton 
        .addActionListener(this); 
    compareButton.setEnabled(false); 
    bottomWindow.add(compareButton); 
    compareButtonNormal= new JButton( 
        "Find Matches WO Alog."); 
    compareButtonNormal 
        .addActionListener(this); 
    compareButtonNormal 
        .setEnabled(false); 
    bottomWindow 
        .add(compareButtonNormal); 
    /* 
     * create a file selection box 
     */ 
    JPanel fileWindow= new JPanel(); 
    JLabel selectFile= new JLabel( 
        "Select Directory"); 
    fileField= new JTextField(35); 
    browseButton= new JButton("Browse"); 
    browseButton 
        .addActionListener(this); 
    bottomWindow.add(browseButton); 
    /* 
     * create a place of output 
     */ 
    JPanel subWindow= new JPanel(); 
    subWindow 
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        .setLayout(new BorderLayout()); 
    outModel= new DefaultListModel(); 
    outnList= new JList(outModel); 
    outList= new JScrollPane(outnList); 
    JPanel outWindow= new JPanel(); 
    outWindow.add(outList); 
    fileWindow.add(selectFile); 
    fileWindow.add(fileField); 
    fileWindow.add(browseButton); 
    window.add(fileWindow, 
        BorderLayout.NORTH); 
    window.add(list, 
        BorderLayout.CENTER); 
    subWindow.add(bottomWindow, 
        BorderLayout.NORTH); 
    subWindow.add(outList, 
        BorderLayout.SOUTH); 
    window.add(subWindow, 
        BorderLayout.SOUTH); 
    frame.getContentPane().add(window); 
    frame.pack(); 
    frame.show(); 
  } 
 
  public void actionPerformed( 
      ActionEvent evt) { 
    if (evt.getSource() == browseButton) { 
      JFileChooser chooser= new JFileChooser(); 
      chooser 
          .setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY); 
      int returnVal= chooser 
          .showOpenDialog(frame); 
      /* 
       * If ok is selected we go in the if and retrive the file that is selected 
       */ 
      if (returnVal == JFileChooser.APPROVE_OPTION) { 
        fileField.setText(chooser 
            .getSelectedFile() 
            .toString()); 
      } 
    } 
    /* 
     * Start Button 
     */ 
    if (evt.getSource() == startButton) { 
      this.dataLocation= fileField 
          .getText(); 
      this.objectFile= new File( 
          dataLocation + "/" 
              + OBJECT_FILE_NAME); 
      this.dataSource= new File( 
          dataLocation); 
      if (!dataSource.isDirectory()) { 
        JOptionPane 
            .showMessageDialog( 
                frame, 
                "The directory that was enter is invaild. Please enter a\nvaild 
directory, or select one using the browse button.", 
                "Error", 
                JOptionPane.ERROR_MESSAGE); 
      } 
      else { 
        /* 
         * display a message before starting work 
         */ 
        if (!objectFile.exists()) { 
          int answer= JOptionPane 
              .showConfirmDialog( 
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                  frame, 
                  "There was no precalculated language file found. Would you\n" 
                      + "like to calculate one now? (This may take a long 
time!!!)", 
                  "Object File found", 
                  JOptionPane.OK_CANCEL_OPTION, 
                  JOptionPane.QUESTION_MESSAGE); 
          if (answer == JOptionPane.OK_OPTION) { 
            /* 
             * Make dialog about processor optimatation 
             */ 
            startButtonGO(); 
          } 
        } 
        else { 
          Object[] options= {"OK", 
              "Recalculate", "Cancle"}; 
          int answer= JOptionPane 
              .showOptionDialog( 
                  frame, 
                  "A precalculated language file was found. Whould you like to 
use this file,\n" 
                      + "or recalcuate a new file? (Recalcuating may take a long 
time!!!)", 
                  "Lanuage File Found", 
                  JOptionPane.DEFAULT_OPTION, 
                  JOptionPane.QUESTION_MESSAGE, 
                  null, options, 
                  options[0]); 
          /* 
           * answer =0 ==OK =1 ==RECALCULATE =2 ==CALCLE 
           */ 
          if (answer == 0) { 
            startButtonGO(); 
          } 
          else if (answer == 1) { 
            objectFile.delete(); 
            startButtonGO(); 
          } 
        } 
      } 
    } 
    if (evt.getSource() == compareButtonNormal) { 
      int selection= nlist 
          .getSelectedIndex(); 
      try { 
        String nearSymbols[]= matrix 
            .getAllNearSymbols(allFiles[selection]); 
        String mainFileSymbols[]= matrix 
            .getParsedData(allFiles[selection]); 
        String symbol[]= new String[mainFileSymbols.length]; 
        int symbolCount[]= new int[mainFileSymbols.length]; 
        /* 
         * null out array 
         */ 
        for (int i= 0; i < symbol.length; i++) { 
          symbol[i]= null; 
          symbolCount[i]= 0; 
        } 
        /* 
         * fills the (real)symbol array and the array that tracks the number 
         * each one is found 
         */ 
        for (int i= 0; i < mainFileSymbols.length; i++) { 
          String currentSymbol= mainFileSymbols[i]; 
          for (int j= 0; j <= i; j++) { 
            if (symbol[j] == null) { 
              symbol[j]= currentSymbol; 



49 

 

              symbolCount[j]= 1; 
              j= i; 
            } 
            else if (symbol[j] 
                .equalsIgnoreCase(currentSymbol)) { 
              symbolCount[j]+= 1; 
              j= i; 
            } 
          } 
        } 
        /* 
         * Find the highest reoccuring sysmbol 
         */ 
        int highestCount= 0; 
        int highestSymbol= 0; 
        for (int i= 0; i < symbolCount.length; i++) { 
          if (highestCount < symbolCount[i]) { 
            highestCount= symbolCount[i]; 
            highestSymbol= i; 
          } 
        } 
        /* 
         * count the symbols 
         */ 
        int fileScores[]= new int[allFiles.length]; 
        for (int i= 0; i < allFiles.length; i++) { 
          if (i != selection) { 
            String symbolsToCompare[]= matrix 
                .getParsedData(allFiles[i]); 
            for (int j= 0; symbol[j] != null; j++) { 
              for (int k= 0; k < symbolsToCompare.length; k++) { 
                int symbolMatchCount= 0; 
                if (symbol[j] 
                    .equalsIgnoreCase(symbolsToCompare[k])) { 
                  fileScores[i]++; 
                  symbolMatchCount++; 
                } 
              } 
            } 
          } 
        } 
        /* 
         * print out the top results 
         */ 
        String topScoresName[]= new String[MAX_MATCHES]; 
        int topScores[]= new int[MAX_MATCHES]; 
        for (int i= 0; i < MAX_MATCHES; i++) { 
          topScores[i]= 0; 
          topScoresName[i]= "EMPTY"; 
        } 
        /* 
         * rank top x number scores 
         */ 
        outModel.clear(); 
        RankedResults results= new RankedResults( 
            fileScores, allFiles); 
        for (int i= 0; i < results 
            .sizeOf(); i++) { 
          outModel.add(outModel 
              .getSize(), results 
              .getScore(i) 
              + " -- " 
              + results.getName(i)); 
        } 
      } 
      catch (ArrayIndexOutOfBoundsException e) { 
        JOptionPane 
            .showMessageDialog( 
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                frame, 
                "Please select a file to find matches agaist.", 
                "", 
                JOptionPane.WARNING_MESSAGE); 
      } 
    } 
    if (evt.getSource() == compareButton) { 
      int selection= nlist 
          .getSelectedIndex(); 
      try { 
        String nearSymbols[]= matrix 
            .getAllNearSymbols(allFiles[selection]); 
        String mainFileSymbols[]= matrix 
            .getParsedData(allFiles[selection]); 
        String symbol[]= new String[nearSymbols.length]; 
        int symbolCount[]= new int[nearSymbols.length]; 
        /* 
         * null out array 
         */ 
        for (int i= 0; i < symbol.length; i++) { 
          symbol[i]= null; 
          symbolCount[i]= 0; 
        } 
        /* 
         * fills the (real)symbol array and the array that tracks the number 
         * each one is found 
         */ 
        System.out 
            .println("nearSymbols = " 
                + nearSymbols.length 
                + " mainFileSymbols = " 
                + mainFileSymbols.length); 
        for (int i= 0; i < nearSymbols.length; i++) { 
          String currentSymbol; 
          currentSymbol= nearSymbols[i]; 
          for (int j= 0; j <= i; j++) { 
            if (symbol[j] == null) { 
              symbol[j]= currentSymbol; 
              symbolCount[j]= 1; 
              j= i; 
            } 
            else if (symbol[j] 
                .equalsIgnoreCase(currentSymbol)) { 
              symbolCount[j]+= 1; 
              j= i; 
            } 
          } 
        } 
        /* 
         * Find the highest reoccuring sysmbol 
         */ 
        int highestCount= 0; 
        int highestSymbol= 0; 
        for (int i= 0; i < symbolCount.length; i++) { 
          if (highestCount < symbolCount[i] 
              && !(symbol[i] 
                  .equals("the")) 
              && !(symbol[i] 
                  .equals(" ")) 
              && !(symbol[i] 
                  .equals("a")) 
              && !(symbol[i] 
                  .equals("and")) 
              && !(symbol[i] 
                  .equals("in")) 
              && !(symbol[i] 
                  .equals("is")) 
              && !(symbol[i] 
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                  .equals("of")) 
              && !(symbol[i] 
                  .equals("to")) 
              && !(symbol[i].equals(""))) { 
            highestCount= symbolCount[i]; 
            highestSymbol= i; 
          } 
        } 
        System.out 
            .println("Highest Count = " 
                + highestCount 
                + " for " 
                + symbol[highestSymbol] 
                    .charAt(0) + "<<" 
                + symbol[highestSymbol] 
                + "<<"); 
        /* 
         * count the symbols 
         */ 
        int fileScores[]= new int[allFiles.length]; 
        for (int i= 0; i < allFiles.length; i++) { 
          if (i != selection) { 
            String symbolsToCompare[]= matrix 
                .getParsedData(allFiles[i]); 
            for (int j= 0; symbol[j] != null; j++) { 
              for (int k= 0; k < symbolsToCompare.length; k++) { 
                int symbolMatchCount= 0; 
                if (symbol[j] 
                    .equalsIgnoreCase(symbolsToCompare[k])) { 
                  fileScores[i]++; 
                  symbolMatchCount++; 
                  System.out 
                      .println("highestCount " 
                          + highestCount 
                          + "symbolMatchCount " 
                          + symbolMatchCount); 
                  if (symbolMatchCount > Math 
                      .ceil(highestCount / 4)) { 
                    k= symbolsToCompare.length; 
                    System.out 
                        .println("CUTOFF"); 
                  } 
                } 
              } 
            } 
          } 
        } 
        /* 
         * print out the top results 
         */ 
        String topScoresName[]= new String[MAX_MATCHES]; 
        int topScores[]= new int[MAX_MATCHES]; 
        for (int i= 0; i < MAX_MATCHES; i++) { 
          topScores[i]= 0; 
          topScoresName[i]= "EMPTY"; 
        } 
        /* 
         * rank top x number scores 
         */ 
        outModel.clear(); 
        RankedResults results= new RankedResults( 
            fileScores, allFiles); 
        for (int i= 0; i < results 
            .sizeOf(); i++) { 
          outModel.add(outModel 
              .getSize(), results 
              .getScore(i) 
              + " -- " 
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              + results.getName(i)); 
        } 
      } 
      catch (ArrayIndexOutOfBoundsException e) { 
        JOptionPane 
            .showMessageDialog( 
                frame, 
                "Please select a file to find matches agaist.", 
                "", 
                JOptionPane.WARNING_MESSAGE); 
      } 
    } 
  } 
 
  private void startButtonGO() { 
    startWork(); 
    if (!matrix.cancled) { 
      allFiles= matrix.getAllFiles(); 
      model.clear(); 
      for (int i= 0; i < allFiles.length; i++) { 
        model.add(model.getSize(), 
            allFiles[i].getName()); 
      } 
      compareButton.setEnabled(true); 
      compareButtonNormal 
          .setEnabled(true); 
      startButton.setLabel("Restart"); 
      frame.pack(); 
    } 
  } 
} 
 
MemoryMatrix.java 

 

import java.io.BufferedReader; 
import java.io.File; 
import java.io.FileNotFoundException; 
import java.io.FileReader; 
import java.io.IOException; 
import java.util.Vector; 
 
/* 
 * MemoryMatrix.java created on Apr 25, 2005 4:36:35 PM 
 */ 
/** 
 * @author Edward G Finegan ed@dryrain.net 
 */ 
public class MemoryMatrix extends 
    Thread implements 
    java.io.Serializable { 
 
  /* 
   * Constants 
   */ 
  private int          distanceCounter; 
  private final int    WINDOW_SIZE               = 10; 
  private final double BD_RATIO                  = 0.8; 
  private int          numThreads                = 1; 
  private final String MEMORY_MATRIX_FILE_NAME   = "##MEMORY_MATRIX.TXT"; 
  private final String DISTANCE_MATRIX_FILE_NAME = "##DISTANCE_MATRIX.TXT"; 
  /* 
   * class varables 
   */ 
  public int           matrixSize; 
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  private File[]       allFiles; 
  private Vector       allSymbolsUnique; 
  private int          totalSymbols; 
  public short[][]     matrix; 
  public float[][]     distanceMatrix; 
  public boolean[]     completedRows; 
  private File         memoryMatrixFile; 
  private File         distanceMatrixFile; 
  private double       basicDistance; 
  private File         dataSource; 
  public boolean       cancled                   = false; 
 
  public void stopCalc() { 
    distanceCounter= matrixSize - 1; 
  } 
 
  public void run() { 
    distanceCounter= 0; 
    findDistances(); 
  } 
 
  public MemoryMatrix(File dataSource) { 
    this.dataSource= dataSource; 
    Runtime r= Runtime.getRuntime(); 
    numThreads= r.availableProcessors(); 
    System.out.println("Optimized for " 
        + numThreads + " CPUs"); 
    memoryMatrixFile= new File( 
        dataSource.toString() + "/" 
            + MEMORY_MATRIX_FILE_NAME); 
    distanceMatrixFile= new File( 
        dataSource.toString() + "/" 
            + DISTANCE_MATRIX_FILE_NAME); 
    cleanDir(dataSource); 
    allFiles= dataSource.listFiles(); 
    allSymbolsUnique= new Vector(); 
    totalSymbols= 0; 
    findAllSymbols(); 
    fillMatrix(); 
    /* 
     * Set all distances to -1 Set all rows to false, not completed 
     */ 
    distanceMatrix= new float[matrixSize][matrixSize]; 
    completedRows= new boolean[matrixSize]; 
    for (int i= 0; i < matrixSize; i++) { 
      completedRows[i]= false; 
      for (int j= 0; j < matrixSize; j++) { 
        distanceMatrix[i][j]= -1; 
      } 
    } 
  } 
 
  public void reopened() { 
    Runtime r= Runtime.getRuntime(); 
    numThreads= r.availableProcessors(); 
    System.out.println("Optimized for " 
        + numThreads + " CPUs"); 
    System.out.println(totalSymbols 
        + " total symbols processed"); 
    System.out 
        .println(allSymbolsUnique 
            .size() 
            + " total unique symbols found"); 
    System.out.println(basicDistance 
        + " Basic Distance"); 
  } 
 
  public File[] getAllFiles() { 
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    return allFiles; 
  } 
 
  private void cleanDir( 
      File dataDirectory) { 
    File DSstore= new File( 
        dataDirectory.toString() 
            + "/.DS_Store"); 
    DSstore.delete(); 
  } 
 
  /** 
   * Finds all the symbols in the set of files, and then find the unique symbols 
   */ 
  private void findAllSymbols() { 
    for (int i= 0; i < allFiles.length; i++) { 
      String[] parsedData= getParsedData(i); 
      /* 
       * Check to see if the word is already in the vector 
       */ 
      if (allSymbolsUnique.size() == 0) { 
        allSymbolsUnique 
            .add(parsedData[0]); 
      } 
      for (int j= 0; j < parsedData.length; j++) { 
        totalSymbols++; 
        boolean notRepeat= true; 
        for (int k= 0; k < allSymbolsUnique 
            .size(); k++) { 
          if (parsedData[j] 
              .equalsIgnoreCase((String)allSymbolsUnique 
                  .get(k))) { 
            notRepeat= false; 
            k= allSymbolsUnique.size(); 
          } 
        } 
        if (notRepeat) { 
          allSymbolsUnique 
              .add(parsedData[j]); 
        } 
      } 
    } 
    matrixSize= allSymbolsUnique.size(); 
    System.out.println(totalSymbols 
        + " total symbols processed"); 
    System.out 
        .println(allSymbolsUnique 
            .size() 
            + " total unique symbols found"); 
  } 
 
  /** 
   * Filles the matrix with the symbol data 
   */ 
  private void fillMatrix() { 
    /* 
     * Set it all to 0's 
     */ 
    matrix= new short[matrixSize][matrixSize]; 
    for (int i= 0; i < matrixSize; i++) { 
      for (int j= 0; j < matrixSize; j++) { 
        matrix[i][j]= 0; 
      } 
    } 
    /* 
     * Go though th files and process the symbols in the matrix 
     */ 
    for (int i= 0; i < allFiles.length; i++) { 
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      String[] parsedData= getParsedData(i); 
      /* 
       * Start to build up the matrix Loop though all the symbols in the file, 
       * and then loop though the window area. Record the data to the matrix. 
       */ 
      for (int j= 0; j < parsedData.length; j++) { 
        int currentLocationIndex= allSymbolsUnique 
            .indexOf(parsedData[j]); 
        int distance= WINDOW_SIZE; 
        for (int k= j + 1; k <= j 
            + WINDOW_SIZE 
            && k < parsedData.length; k++) { 
          int currentWindowIndex= allSymbolsUnique 
              .indexOf(parsedData[k]); 
          matrix[currentLocationIndex][currentWindowIndex]+= distance; 
          distance--; 
        } 
      } 
    } 
  } 
 
  /** 
   * Use this to print out the matrix in human readable form 
   */ 
  private void printMatrix() { 
    for (int i= 0; i < matrix.length; i++) { 
      for (int j= 0; j < matrix.length; j++) { 
        System.out.print(matrix[i][j] 
            + " "); 
      } 
      System.out.println(); 
    } 
  } 
 
  /** 
   * Use this to print out the distance matrix in human readable form 
   */ 
  private void printDistanceMatrix() { 
    for (int i= 0; i < matrixSize; i++) { 
      for (int j= 0; j < matrixSize; j++) { 
        System.out 
            .print(distanceMatrix[i][j] 
                + " "); 
      } 
      System.out.println(); 
    } 
  } 
 
  private void findDistances() { 
    /* 
     * Find the distances for each symbol related to every other symbol If we 
     * are singile threaded don't bother adding the over head of more threads, 
     * if we are more then on thread then create them and do it 
     */ 
    if (numThreads == 1) { 
      int r= 2; 
      for (distanceCounter= 0; distanceCounter < matrixSize; distanceCounter++) 
{ 
        for (int j= distanceCounter; j < matrixSize; j++) { 
          long currentDistance= 0; 
          for (int k= 0; k < matrixSize; k++) { 
            currentDistance+= Math 
                .pow( 
                    matrix[distanceCounter][k] 
                        - matrix[j][k], 
                    r); 
          } 
          for (int k= 0; k < matrixSize; k++) { 



56 

 

            currentDistance+= Math 
                .pow( 
                    matrix[k][distanceCounter] 
                        - matrix[k][j], 
                    r); 
          } 
          distanceMatrix[distanceCounter][j]= (float)Math 
              .pow(currentDistance, 
                  1.0 / r); 
        } 
        completedRows[distanceCounter]= true; 
        System.out.println("row " 
            + distanceCounter 
            + " complete"); 
      } 
    } 
    else { 
      FindDistances[] findDistancesThreads= new FindDistances[numThreads]; 
      for (int i= 0; i < numThreads; i++) { 
        System.out 
            .println("creating thread " 
                + i); 
        findDistancesThreads[i]= new FindDistances( 
            this); 
        findDistancesThreads[i].start(); 
      } 
      /* 
       * Busy wait here untill the last row is completed 
       */ 
      while (!completedRows[completedRows.length - 1]) { 
        if (cancled) { 
          findDistancesThreads= null; 
        } 
        try { 
          Thread.sleep(5000); 
        } 
        catch (Exception e) { 
          System.out 
              .println("Sleep failed"); 
          e.printStackTrace(); 
        } 
      } 
    } 
    /* 
     * Find Basic distance 
     */ 
    int total= 0; 
    for (int i= 1; i <= WINDOW_SIZE; i++) { 
      total+= Math.pow(i, 2); 
    } 
    basicDistance= Math.sqrt(total * 4); 
    /* 
     * Find the standared devation 
     */ 
  } 
 
  /** 
   * This takes a file, reads it and retunds it in an array. 
   *  
   * @param fileIndex - int, the number of the file you want to get retruned in 
   *        the array 
   * @return String[] 
   */ 
  private String[] getParsedData( 
      int fileIndex) { 
    return getParsedData(allFiles[fileIndex]); 
  } 
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  public String[] getParsedData( 
      File file) { 
    String fileData= ""; 
    String line; 
    try { 
      BufferedReader fIn= new BufferedReader( 
          new FileReader(file)); 
      /* 
       * Go though each line of the file 
       */ 
      while ((line= fIn.readLine()) != null) { 
        fileData= fileData + line + " "; 
      } 
    } 
    catch (FileNotFoundException e) { 
      System.out 
          .println("Was unable to find file: " 
              + file); 
      e.printStackTrace(); 
    } 
    catch (IOException e) { 
      System.out 
          .println("IO error with file: " 
              + file); 
      e.printStackTrace(); 
    } 
    return fileData.replace('\t', ' ') 
        .toLowerCase().split(" "); 
  } 
 
  public String[] getAllNearSymbols( 
      File file) { 
    double cutOff= basicDistance 
        * BD_RATIO; 
    String[] realSymbols= getParsedData(file); 
    Vector nearSymbols= new Vector(); 
    for (int i= 0; i < realSymbols.length; i++) { 
      nearSymbols.add(realSymbols[i]); 
      int symbolIndex= allSymbolsUnique 
          .indexOf(realSymbols[i]); 
      /* 
       * go though matrix and find the distances that fall below the cutoff 
       */ 
      for (int j= 0; j < matrixSize; j++) { 
        if (distanceMatrix[symbolIndex][j] > 0.0 
            && distanceMatrix[symbolIndex][j] <= cutOff) { 
          nearSymbols 
              .add((String)allSymbolsUnique 
                  .get(j)); 
        } 
        if (distanceMatrix[j][symbolIndex] > 0.0 
            && distanceMatrix[j][symbolIndex] <= cutOff) { 
          nearSymbols 
              .add((String)allSymbolsUnique 
                  .get(j)); 
        } 
      } 
    } 
    String[] nearSymbolsA= new String[nearSymbols 
        .size()]; 
    for (int i= 0; i < nearSymbols 
        .size(); i++) { 
      nearSymbolsA[i]= (String)nearSymbols 
          .get(i); 
    } 
    return nearSymbolsA; 
  } 
} 
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FindDistances.java  

/* 
 * FindDistances.java created on May 26, 2005 12:52:33 PM 
 */ 
/** 
 * @author Edward G. Finegan <br> 
 *         ed@dryrain.net <br> 
 *         <br> 
 *         Class FindDistances <br> 
 */ 
public class FindDistances extends 
    Thread { 
 
  private MemoryMatrix matrixes; 
 
  FindDistances(MemoryMatrix matrixesIn) { 
    matrixes= matrixesIn; 
  } 
 
  /* 
   * Thread that will run and proccess a row of the matrix 
   */ 
  public void run() { 
    int r= 2; 
    for (int i= 0; i < matrixes.matrixSize; i++) { 
      if (!matrixes.completedRows[i]) { 
        matrixes.completedRows[i]= true; 
        System.out.println("Row " + i 
            + " complete"); 
        for (int j= i; j < matrixes.matrixSize; j++) { 
          long currentDistance= 0; 
          for (int k= 0; k < matrixes.matrixSize; k++) { 
            currentDistance+= Math 
                .pow( 
                    matrixes.matrix[i][k] 
                        - matrixes.matrix[j][k], 
                    r); 
          } 
          for (int k= 0; k < matrixes.matrixSize; k++) { 
            currentDistance+= Math 
                .pow( 
                    matrixes.matrix[k][i] 
                        - matrixes.matrix[k][j], 
                    r); 
          } 
          matrixes.distanceMatrix[i][j]= (float)Math 
              .pow(currentDistance, 
                  1.0 / r); 
        } 
      } 
    } 
  } 
} 
 
 
RankedResults.java 

import java.io.File; 
import java.util.Vector; 
 
/* 
 * RankedResults.java created on May 24, 2005 7:26:21 PM 
 */ 
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public class RankedResults { 
 
  private Vector rankedNames; 
  private Vector rankedScores; 
 
  RankedResults(int[] scores, 
      File[] names) { 
    rankedScores= new Vector(); 
    rankedNames= new Vector(); 
    for (int i= 0; i < scores.length; i++) { 
      int highestScore= 0; 
      int highestPosition= 0; 
      for (int j= 0; j < scores.length; j++) { 
        if (scores[j] >= highestScore) { 
          highestScore= scores[j]; 
          highestPosition= j; 
        } 
      } 
      rankedScores.add(new Integer( 
          scores[highestPosition])); 
      rankedNames 
          .add(names[highestPosition] 
              .getName()); 
      scores[highestPosition]= -1; 
    } 
  } 
 
  public String getName(int index) { 
    return ((String)rankedNames 
        .get(index)); 
  } 
 
  public int getScore(int index) { 
    return ((Integer)(rankedScores 
        .get(index))).intValue(); 
  } 
 
  public int sizeOf() { 
    return rankedScores.size(); 
  } 
} 
 
 
ProgressBar.java 

import java.awt.event.ActionEvent; 
import java.awt.event.ActionListener; 
import javax.swing.JFrame; 
import javax.swing.JOptionPane; 
import javax.swing.JProgressBar; 
import javax.swing.Timer; 
 
/* 
 * ProgressBar.java created on Jun 2, 2005 10:29:01 PM 
 */ 
/** 
 * @author Edward G. Finegan <br> 
 *         ed@dryrain.net <br> 
 *         <br> 
 *         Class ProgressBar <br> 
 */ 
public class ProgressBar extends 
    JOptionPane implements 
    ActionListener { 
 
  private JFrame       frame; 
  private MemoryMatrix matrix; 
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  private JProgressBar progressBar; 
  private int          amountDone = 0; 
  private Timer        timer; 
  public boolean       complete   = false; 
 
  public ProgressBar(JFrame frame, 
      MemoryMatrix matrix) { 
    this.frame= frame; 
    this.matrix= matrix; 
    display(); 
  } 
 
  public void display() { 
    progressBar= new JProgressBar(0, 
        matrix.completedRows.length - 1); 
    progressBar.setValue(0); 
    progressBar.setStringPainted(true); 
    Object[] items= {progressBar}; 
    Object[] options= {"Continue", 
        "Exit"}; 
    // Object[] options= {}; 
    timer= new Timer(1000, this); 
    timer.start(); 
    int pick= showOptionDialog( 
        frame, 
        items, 
        "Creating Lanuage Matrix", 
        JOptionPane.YES_NO_CANCEL_OPTION, 
        JOptionPane.PLAIN_MESSAGE, 
        null, options, options[0]); 
    /* 
     * Exit 
     */ 
    if (pick == 1) { 
      timer.stop(); 
      matrix.cancled= true; 
      matrix.stopCalc(); 
      System.exit(0); 
    } 
    /* 
     * Continue 
     */ 
    else if (pick == 0) { 
      timer.stop(); 
    } 
  } 
 
  public void actionPerformed( 
      ActionEvent evt) { 
    for (int i= amountDone; i < matrix.completedRows.length; i++) { 
      if (!matrix.completedRows[i]) { 
        amountDone= i; 
        i= matrix.completedRows.length; 
      } 
      if (matrix.completedRows[matrix.completedRows.length - 1]) { 
        amountDone= matrix.completedRows.length; 
        progressBar 
            .setString("Complete!!! Please press continue."); 
        complete= true; 
        timer.stop(); 
        Object[] item= {"Done"}; 
        setOptions(item); 
        repaint(); 
      } 
    } 
    progressBar.setValue(amountDone); 
  } 
}
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