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Abstract 

REAL-TIME FUNDAMENTAL FREQUENCY ESTIMATION ALGORITHM FOR 
DISCONNECTED SPEECH 

 

By Thomas Skjei, M.S. 

A thesis submitted in partial fulfillment of the requirements for the degree of 
Masters of Science at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2011 

Director: Kayvan Najarian 
ASSOCIATE PROFESSOR, DEPARTMENT OF COMPUTER SCIENCE 

 

A new algorithm is presented for real-time fundamental frequency estimation of speech 

signals.  This method extends and alters the YIN algorithm, which uses the 

autocorrelation-based difference function, by adding features to reduce latency, correct 

predictable errors, and make it structurally appropriate for real-time processing 

scenarios.  The algorithm is shown to reduce the error rate of its predecessor while 

demonstrating latencies sufficient for real-time processing.  The results indicate that the 

algorithm can be realized as a real-time estimator of spoken pitch and pitch variation, 

which has applications including diagnosis and biofeedback-based therapy of many 

speech disorders. 
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Executive Summary & Contributions: 

Pitch detection algorithms (PDA’s) have been an active research topic for more 

than 40 years.  A wide variety of methodologies have been employed but their success 

has been generally domain-specific.  This fragmented success underlies not only the 

complexity of the task, but the breadth of domains that have use for such algorithms.  

The determination of a fundamental period of some complex signal is one of the most 

elemental questions posed in the field of signal processing.  The research presented 

here limits the scope of this question to a specific domain: real-time disconnected (i.e. 

with breaks between words) speech.  It employs a novel strategy towards achieving 

these ends, uses an evaluation methodology consistent with the existing body of PDA 

research, and produces results which satisfy its stated goals and contributes to the 

existing literature in the field, particularly for real-time speech processing.  

The primary goal of this research is the development of an algorithm that can 

accurately estimate the fundamental frequency (F0) of a disconnected speech signal in 

real-time.  This requires the algorithm to maximize accuracy while minimizing latency, 

and to make a voiced/unvoiced decision indicating whether the speaker is currently 

speaking.  There are many PDA’s developed primarily for analyzing musical signals and 

which mention their feasibility for speech domains as well, but their success here has 

been limited [6, 11, 3 ].  Additionally, there is very little work targeting speech 

exclusively.  Since the harmonic content of speech often contains more ambiguities and 

complexities than musical signals, this suggests the need for a more a domain-focused 

approach.  
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The development strategy for this algorithm was to start with an existing method that 

had moderate success in both speech and music domains and then to significantly 

change and improve it in ways that make it more appropriate to real-time speech 

processing.  The strategy taken in the current work can be summarized into the 

following steps: 

• Selection of a base algorithm: an algorithm that is relatively robust in both music 

and speech domains is selected.  Particular preference is given to an algorithm 

that “degrades gracefully” (i.e. continues to perform well as the input signal’s 

resolution is decreased). 

• Address the problem of latency by developing an algorithm that is capable of 

processing at a lower sampling rate:  Both speech databases used in this 

research contain speech sampled at 20 kHz, so a target of 10 kHz is used. 

• Narrow the assumptions for the range and characteristics of the input signals:  

Since the algorithm is intended for speech, which has a limited frequency range 

(compared to music, for example), additional latency and accuracy improvements 

may be found by narrowing the allowable frequency band. 

• Reduce the frequency-matching resolution:  Since the base algorithm uses an 

autocorrelation variant, increasing the distance between lags will decrease 

frequency resolution, while yielding large latency improvements.  This work forms 

a balanced tradeoff in a way that is appropriate to the given problem. 

• Find the most predictable errors as a result of these degradations and implement 

error correction steps. 
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To provide a substantive evaluation, the methodology was consistent with the 

norms established in the PDA literature.  This includes the following: 

• The use of standard error definitions for assessing accuracy. 

• The use of 2 widely-cited speech analysis databases for speech samples and 

laryngograph-based analyses which define the ground truth frequencies. 

• Complete separation of sample files used for parameter tuning versus 

evaluation. 

• Comparison of two main algorithms in the field: Yin (the base algorithm) and 

WavePitch, a wavelet-based algorithm used in for speech and music signals. 

The results of this research may be summarized as follows: 

• The new algorithm outperformed both algorithms in terms of accuracy and 

demonstrated latency sufficient for processing in a real-time environment. 

• The new algorithm appears to meet the primary goals stated previously and is 

therefore a suitable PDA for real-time disconnected speech. 
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1.0. Background 

1.1.  Motivation  

There are two groups of applications where a real-time PDA for disconnected speech 

can be extremely useful.  The first group involves systems which can recognize 

prosodic features of language in real-time.  Prosody refers to the rhythm, stress, and 

most importantly, the intonation (i.e. pitch variation) of language.  While most current 

speech recognition systems ignore intonation, it is well known that it carries a great deal 

of information [6].  In addition to speech recognition systems, hearing impairment 

devices which can identify and emphasize intonation could provide many benefits. 

The second group of applications involves systems which provide immediate pitch or 

intonation-based feedback for diagnostic or therapeutic purposes.  There are a variety 

of pitch-related speech impairments where this can be useful.  One such impairment is 

‘Dysprosody’, which refers to the inability to control some prosodic aspect one’s speech.  

This is common in people afflicted with Parkinson’s disease, people with profound 

hearing loss, and a variety of other rare speech impairments [27, 28].  Another speech 

impairment which could benefit from real-time pitch feedback software is ‘Muscle 

Tension Dysphonia’, which refers to an excess of tension in the muscles around the 

larynx [29].  This can result in a loss of pitch control in one’s speech.  Software 

providing real-time pitch feedback could aid the therapy and diagnosis of both of these 

conditions and ultimately improve a patient’s ability to communicate through speech 

[30]. 
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1.2 Historical Background  

Although the range of methodologies used by PDA’s is tremendous, there have been 

4 main approaches: time, frequency, and wavelet-domain methods as well as statistical 

methods. 

Time-domain approaches generally fall into 1 of 3 classes: 

1) Event-rate detection  

2) Phase-space methods 

3) Autocorrelation-based approaches 

Event-rate detection models count some specific event (e.g. the number of zero-

crossings) over time and use that to infer the period.  Phase-space methods consider 

the waveform values vs. the slope over a short-time history and attempt to infer period 

from any repetitive cycles [6].  Both of these methods have had limited success and 

academic interest. 

The most important time-domain PDA methodology has been autocorrelation [10].  

The algorithm presented in this paper belongs to the autocorrelation family, so the 

mathematical details will be discussed in more detail later (sec. 2.3.4.1).  However, the 

main idea of autocorrelation is to look for the maximum of a signal multiplied by itself at 

various lags.  The lag corresponding to the maximum value indicates the period.  This 

method works well for simple, periodic signals, but in more complicated scenarios such 

as speech signals, which contain complex harmonic content, it may fail [7].  The most 

common mistakes occur when correlating with the zero lag [1, 7].  Other known issues 

include when the maximum corresponds to some partial of the fundamental or when 

there is variability in the amplitude [7]. 
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Despite the mixed results of classic autocorrelation, there have been many 

enhancements to help it recognize fundamental frequencies of complex and otherwise 

problematic signals.  One such enhancement is Average Magnitude Difference Function 

(AMDF) [8] which calculates the difference magnitudes rather than the product of the 

signal lagged with itself.  YIN [1] is another PDA that   extends AMDF by adding a series 

of error correction steps.  YIN forms the basis of the new method presented here and 

will be described in greater detail in section 2.3. 

The most prominent frequency-domain PDA is the Cepstral method [12].  The 

Cepstral method takes the Fourier Transform of the log of the magnitude spectrum.  

One benefit is that it can be performed efficiently and on smaller windows than 

autocorrelation-based methods.  However, it fails when there are too many high-energy 

upper partials or when the pitch is sufficiently low.  It may also fail if the voiced pitch is 

sufficiently high, as it will contain less harmonics.  In this case, the voiced/unvoiced 

decision will also likely fail as it is based on a thresholding of its cepstral peaks. 

Recently, much attention has been given to wavelet-domain methods.  One of the 

methods evaluated in this paper is WavePitch [5].  WavePitch implements the fast-lifting 

wavelet transform to decompose a signal into approximations and details.  The 

approximation is then used to estimate the period.  As will be shown in this study, it is a 

very fast algorithm that fits the frequency contour exceedingly well, but has trouble with 

the voicing decision. 

Another school of thought for PDA’s is to view the problem as a statistics and/or 

machine learning problem.  As such, maximum likelihood estimators and  neural net-

based approaches have been used.  Both methods have been moderately successful 
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but their popularity has been limited because of their requirement of training to the 

speaker’s voice and due to the black box model implemented by the NN-based 

approach. 

 

1.3 Solution 

The method presented in this paper constitutes a new algorithm that is a significant 

extension and alteration of the YIN algorithm.  The fundamental strategy in adapting 

YIN to real-time disconnected speech processing is: 

 

1) Modify existing components to be compatible with the assumptions made 

regarding the requirements of real-time environments (section 2.2.2.2). 

2) Find the least destructive means of reducing the algorithm’s resolution, to 

provide decreased latencies. 

3) Narrow the restrictions on the input signal (e.g. assume it must be speech, not 

music), which constrain the resulting error types and provides shorter search-

spaces for decreased latencies. 

4) Implement error correction steps for the most predictable set of errors resulting 

from the previous changes. 

 

YIN was selected as a starting point for a few reasons: 

 

1) Its relatively robust performance and speed with musical and speech signals. 
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2) It’s simple pipeline architecture would be easy to extend and alter for real-time 

requirements. 

3) It takes a measure of aperiodic power at each window, which can be used as a 

basis for a voiced/unvoiced decision. 

4) As a time-domain based algorithm, it is fairly intuitive in design and 

implementation. 

 

Just as YIN is fundamentally an extension of the AMDF[1, 10], this new algorithm is 

an extension of YIN.  For that reason, the algorithm introduced in this study is referred 

to as ‘YinRT’ where ‘RT’ is an acronym for ‘real-time’. 

1.4.  Summary of Process & Results 

 Three algorithms were compared for accuracy of pitch estimation based on 2 

standard speech frequency-evaluation databases.  Each database contains a collection 

of recorded speech samples along with corresponding captures of activity in the vocal 

folds as recorded by a laryngograph.  Both databases provide a manually-checked 

fundamental frequency analysis of each laryngograph capture, defining the ground truth 

fundamental frequencies for each speech sample.  The parameters used for the other 2 

algorithms were the default parameters suggested by the respective authors, although 

two parameters- window size and input sampling rate, were made uniform across each 

algorithm.  For the 2 real-time algorithms (YinRT and WavePitch), processing time as a 

percentage of file length was also reported. 

 The results showed YinRT to be the most accurate algorithm in every 

comparison variation.  WavePitch was the fastest algorithm, executing about 4% the 
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length of the file length, however YinRT consistently executed at 15% of the file length 

size, which is sufficient for real-time processing. 
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2. Methods  

2.1 Data 

 

Two databases containing speech samples and analyses were used in this research: 

the Fundamental Frequency Determination Algorithm (FDA) Evaluation Database [2], 

provided by the Centre for Speech Technology Research at the University of Edinburgh 

and the Keele Pitch Database [9], provided by Keele University and the University of 

Liverpool School of Psychology.  These freely available databases are widely used in 

PDA research and development and so it provides some common ground for 

comparison between works. 

The FDA database provides 0.12h of clean, disconnected speech recordings with 

corresponding laryngograph captures and frequency analyses of the raw captures.  One 

male and one female speaker were recorded reciting 50 identical sentences, specially 

selected to contain a wide phonographic range, while at the same time a laryngograph 

recorded the excitation energy of the vocal folds.  Each recording contained one 

sentence for a total of 100 audio recordings and 100 laryngograph captures.  The 

laryngograph signals were analyzed using in-house software and produced a 

counterpart pitch-tracking file.  The pitch-tracking files contain a sequence of 

timestamps and corresponding frequency values, with special identifiers for breaks in 

speech.  The speech recordings were sampled at 20 kHz with a bit-depth of 16 bits and 

the laryngograph was sampled at 20 kHz with a bit-depth of 12. 

The Keele database provides 0.15h of clean, disconnected speech recordings of 5 

male and female English speakers reading a phonetically balanced text.  Corresponding 
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laryngograph recordings and pitch analysis files are provided for each audio sample.  

The pitch analysis files define the ground truth fundamental frequencies and are based 

on the laryngograph but with manual checking to identify anomalies or noise introduced 

into the laryngograph.  Unlike the FDA Database, the Keele pitch analysis files (ground 

truth) are sampled at a constant rate- 100ms.  The speech and laryngograph recordings 

were sampled at 20 kHz with a bit-depth of 16 bits. 

 

2.2. Evaluation 

The proposed algorithm was evaluated with two separate, but equally important 

measurements:  

1) Accuracy of pitch estimations  

2) Processing latency. 

Additionally, a method for parameter-tuning was required to select the best parameters 

prior to comparison with other algorithms. 

 

2.2.1. Accuracy 

2.2.1.1. Measurements 

To evaluate the accuracy of a pitch tracking algorithm, a class of measurements must 

first be defined which can quantitatively characterize accuracy.  Though there is some 

variation in the literature of PDA research regarding what measurements should be 

used and what their particular definition should be.  As such, four prominently agreed-

upon measurements were used in this study [3, 25, 1].   
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These 4 measurements can be divided into 2 categories: voiced and unvoiced errors.  

The former involves an error in a non-zero pitch estimation when the subject is speaking 

and the latter indicates a disagreement regarding whether a given processing window is 

voiced or not. 

The two types of voiced errors are gross and fine errors.  A gross error indicates that 

a non-zero pitch estimation differs from the actual frequency by +/- 10% when the 

ground truth is voiced.  A fine error occurs when any non-zero pitch estimation differs 

from the voiced, ground truth frequency by less than +/- 10%. 

The two types of unvoiced errors are called ‘type 1’ and ‘type 2’.  A type 1 unvoiced 

error occurs when the actual speech is unvoiced but the PDA’s estimation is non-zero 

and a type 2 unvoiced error is the converse: the PDA considers the speech region to be 

unvoiced, when in reality it is not. 

2.2.1.2. Defining Ground Truth Fundamental Frequenc y (F0) 

There’s considerable variation in the PDA literature about how to define or acquire the 

actual F0.  The lack of consensus on this point is understandable considering the 

natural periodic ambiguities and complexities of speech.  Some studies use the 

frequency analysis of the laryngograph signal and others prefer to process the 

laryngograph using their specific methods [1]. 

In this study, F0 is defined using the frequency analyses provided by both databases, 

but this introduces some issues which are resolved as follows.   

The first issue is the evaluation rate mismatch between the PDA and the frequency 

analysis provided by the FDA database.  The PDA will produce evaluations at some 
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fixed, predetermined rate; however the frequency analysis file’s evaluations are not 

strictly periodic.  The difference in timestamps for adjacent evaluations varies.  To solve 

this, a timestamp is derived for the PDA’s evaluation and then linear interpolation is 

used for the adjacent ground truth estimates to determine a corresponding actual 

frequency. 

One complication to the linear interpolation strategy occurs when one of the adjacent 

ground truth values is zero. If not handled as a special case, linear interpolation would 

find some new ground truth frequency somewhere between the voiced and unvoiced 

sample, weighted by its proximities to each.  This would not represent the actual 

transition from voiced to unvoiced (or vice versa).  The solution is to select the value of 

whichever adjacent ground truth estimate the evaluation timestamp is closer to.  Thus, 

( ) ( )( )
( ) ,00,0|

0*0*
0 21

12

1221 ≠
−

−+−
= GG

GG

GcurGGGcur
cur FF

TSTS

FTSTSFTSTS
F  

,|0 211 curGGcurG TSTSTSTSF −≤−=  

122 |0 GcurcurGG TSTSTSTSF −<−=
            (1)

 

where F0cur is the interpolated ground truth frequency to solve for with timestamp, TScur 

and F0G1 and F0G2 are the adjacent ground truth frequencies with corresponding 

timestamps, TSG1 and TSG2. 

A final interpretive complexity regarding our definition of ground truth is that the 

provided frequency analysis is based on the laryngograph signal and it does not 

account for any time lag due to the acoustic propagation from the vibrating vocal cords 

through the vocal tract to an audible, recorded utterance.  This situation is resolved by 
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defining a range of lag times and evaluating the PDA’s estimations with the ground truth 

delayed by each lag time.  The final accuracy measurements reported correspond to the 

best performing propagation lag. 

  

2.2.1.3. Comparison to other PDA’s  

A comparison to other established PDA’s provides a context for YinRT’s performance 

to be judged.  Two other PDA’s are used: Yin [1] and WavePitch [5].  YIN (discussed 

earlier) is the basis for the current algorithm, so its relative performance should reveal 

the tradeoff’s entailed by constraining the new algorithm to the requirements of real-time 

processing.  WavePitch is a new, wavelet-based PDA which shows promise regarding 

its speed and relative accuracy. 

2.2.2. Latency  

2.2.2.1. Defining a Real-time Criteria 

A real-time processing algorithm needs to minimize latency below some threshold, but 

defining that threshold is subject to research.  In this study, a simpler but reasonable 

approach to this threshold is used.  The total time processing each batch of raw audio 

samples is recorded and this time is required to be less than the given audio recording’s 

length multiplied by some fixed percentage.  This requirement is elaborated in the 

parameter-tuning section.  This percentage is set to a conservative value to allow for 

variations in processing time due to platform-specific constraints. 

2.2.2.2. Assumptions for Real-time environment 
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The specific mechanisms for delivering real-time audio samples to some process vary 

across environments. Data can be delivered at the sample, window, or batch-of-

samples level.  Consequently, YinRT assumes constraints that make it widely 

compatible across such environments.  Specifically, the algorithm is designed to be 

compatible in a “batch-dump” environment as well as a “per window” environment. 

The “batch-dump” environment is the more permissive of the two and it assumes that 

the given audio capture device will deliver a batch of samples of arbitrary length.  This is 

common in most architectures because of the I/O inefficiencies of delivering per-sample 

data to a process.  In this model, it is acceptable to look ahead at data in the batch, 

beyond the boundaries of the given window.  It is also acceptable to look backwards in 

the batch, beyond the window boundary, at both raw and evaluation data.  Both of these 

rules are subject to the real-time latency requirements discussed above. 

The “per window” environment is more restrictive and provides some important 

constraints.  First, there are no look-aheads beyond the boundary of the current 

window.  That is because it is assumed only 1 window of data is passed to the algorithm 

at a time.  Secondly, look-behinds are limited to the previous evaluation.  This permits 

some error correction without imposing significant overhead. 

Thus YinRT is capable of receiving batches of samples and windowing the data itself, 

or it can receive each window of data.  In both cases, its look-ahead permission is 

limited to the current window and its look behind permission is limited to the previous 

evaluation. 

2.2.2.3. Measurements 
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The proposed algorithm records the wall-clock time when it begins windowing data.  

Prior to that point, the data is still raw and unprocessed.  The algorithm records the wall-

clock time when all windows have completed processing and uses the difference as the 

measurement of processing latency for the given recording.  Then this value is divided 

by the length of the sample file and the resulting percentage is reported. 

2.2.3. Parameter Tuning  

Prior to the accuracy and latency-based comparisons, YinRT goes through a 

parameter tuning process.  The algorithm contains the following 8 parameters: 

1) Min F0 

2) Max F0 

3) Low pass Filter Threshold 

4) Difference Function Threshold 

5) Unvoiced Threshold 

6) Window Overlap 

7) Downsample Factor 

8) Lag Scaling 

 

This relatively large number of parameters poses a problem for tuning the algorithm.  

This many parameters would not be problematic provided the parameters were 

decoupled from each other.  Were this the case, a feasible parameter tuning strategy 

would be to evaluate one parameter at a time, holding all others as constant, then to 

use the best combination of parameters.  But there is a high degree of interdependence 
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among these parameters and so this complicates the parameter tuning situation.  As a 

result, an exhaustive search of parameters is necessary.  However, the number of 

iterations in a coarse-search of parameters combinations can be in the hundred-

thousands.  

This problematic overhead for parameter tuning is resolved by the real-time latency 

constraints.  Because this study is not interested in evaluating the accuracy of 

parameter settings which are not sufficiently fast, if any parameter combination fails to 

meet the real-time latency constraints for a single file in the corpus, then that 

combination’s evaluation is terminated and the next combination is selected.  Any 

parameter combination whose total processing time exceeded 70% of the actual length 

of the recording was considered too slow.  As a result, hundreds of parameter 

combinations were able to be evaluated in a couple minutes. 

Once the parameter tuning process was complete, the data was inspected and the 

most accurate combination was selected.  If there was a tie, the quickest combination 

would win. 

Since there are four measurements of accuracy, assessing the ‘most accurate’ 

combination presented a challenge as to whether the measurements should be 

weighted equally or not.  The conclusion was to find the parameter combination with the 

best overlap.  More specifically, each error measurement was sorted by accuracy for 

each parameter combination.  The parameter combination that had the earliest 

placement in all groups was selected. 
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 To avoid any overfitting of the data in the parameter tuning process, separate 

training data was used from each database and these files were not included in the final 

comparison.   

2.3. Proposed Method 

YinRT is implemented as a pipeline of signal analysis and error correction steps which 

build upon one another.  The structure is summarized in figure 1. 

 

Figure 1.  YinRT Block Diagram (Pipeline) 
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2.3.1. Initialization  

During initialization, YinRT uses the input parameters to allocate data structures and 

set some key values.  Many of the parameters are specific to a particular processing 

step, and so they will be discussed in the context of that step.  However, there are 2 

parameters which are used throughout the algorithm and should be discussed here: 

1) Window Size 

2) Window Overlap 

Window size is the length, in number of samples, of the processing window.  The 

processing window is simply a contiguous block of samples that is used to create one 

estimate.  The larger the window size, the more information you have to calculate a 

frequency, however it also increases the risk that the frequency may change within the 

window, creating an ambiguity for the PDA.  The standard window size for 

autocorrelation-based methods is two times the minimum frequency.   

Window overlap specifies the percentage of overlap that processing windows should 

have.  For non-overlapping windows, this value is 0.  In a non-overlapping configuration, 

one window starts on the sample after the previous window’s ending sample.  Although 

non-overlapping windows have a computational advantage of less windows, 

overlapping windows enable some special error correction possibilities, such as the 

Best Local Estimate.  Also, the extra computational disadvantage based on redundant 

calculation of overlapping regions can be minimized using some special techniques. 
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The number of samples between windows is known as the evaluation interval or 

simply the ‘hop’.  This number is the closest even number which corresponds to the 

specified window overlap percentage parameter. 

2.3.2. Preprocessing 

The preprocessing step begins when a batch of audio samples is provided to the 

algorithm (presumably from the audio capture device, although in our implementation, 

this is simulated).  There are two main actions during the preprocessing step: 

1) Downsample the batch, as specified 

2) Low-pass filter the batch, as specified 

Downsampling means to keep samples based on a specified interval and to discard 

the rest.  It can greatly reduce the amount of data being processed.  Note that the input 

audio is sampled at 20 kHz.  Also note that most phone systems sample at 8 kHz and 

often humans can still identify pitch while talking on the phone. Thus one could 

hypothesize that downsampling to 10 kHz (i.e. downsampling by a factor of 2) may 

provide latency improvements without affecting accuracy too much.   

After downsampling, the next preprocessing step is to low-pass filter the block of 

samples.  The threshold for the low-pass filter is specified as one of the input 

parameters.  Removing the jitter from the raw audio greatly simplifies subsequent 

processing. 

Note that downsampling only occurs if specified by an input parameter but that low-

pass filtering always occurs, though the specific threshold is specified by another input 

parameter. 



 

 

2.3.3. Window Loop Start 

The window loop start breaks the sample batch into successive windows separated 

by the number of samples specified by the ‘hop’ value until the batch is exhausted.  

Each window gets processed by the following 6 steps (per fig. 1), until control returns to 

the loop and then next window is forwarded.  

2.3.4. In-place Difference Function

The core algorithm of the proposed method is the calculation of the difference 

function over a specified range of lags.  The difference function is based on the 

autocorrelation function, and so 

first. 

2.3.4.1. Autocorrelation  

Autocorrelation is a time-domain based algorithm which measures the “similarity” of a 

signal with itself at different time lags.

Figure 2: An original signal and a lagged copy of itself. 
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Each window gets processed by the following 6 steps (per fig. 1), until control returns to 

of the proposed method is the calculation of the difference 

function over a specified range of lags.  The difference function is based on the 

proper background, autocorrelation is presented 

domain based algorithm which measures the “similarity” of a 



 

 

19 

 

This similarity can be computed simply as the summation of products of the signal, xj 

and its lagged self, xj + τ : 

ττ +

−+

=
∑= j

Wt

tj
jt xxr

1

)(                  (2) 

Where τ indicates the given lag, W equals the window size, and t equals the time at 

which the autocorrelation is computed. 

Under the right conditions, the autocorrelation function can determine the 

fundamental frequency of a periodic signal.  The frequency search range must be 

defined by a max and min frequency (fmax and fmin) and this translates into the lag range 

such that: 

τmin = SR / fmax                                            (3) 

τmax = SR / fmin                                            (4) 

Where SR = sampling rate (Hz). 

Subject to certain constraints, the specific lag τ, which produces the maximum value 

of r(τ) from τmin to τmax will equal the period of the fundamental frequency. 

2.3.4.2. The Difference Function  

Unfortunately, there are a variety of circumstances which can cause autocorrelation 

to fail.  This includes selecting a zero-lag if the τmin is too small or selecting a higher or 

lower order peak due to the harmonic content or amplitude variation of the signal. 

An alternative which avoids many of these pitfalls is found in the difference function.  

Rather than summing the products of a signal with it’s lagged self as with 
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autocorrelation, the difference function sums the squared differences of a signal with its 

lagged self: 

2
1

)()( ττ +

−+

=
∑ −= j

Wt

tj
jt xxd     (5) 

Where the difference d at time t and lag τ equals the summation of the difference of 

signal x with its lagged self over the window t to t+W-1, and W equals the window size. 

Rather than searching for the maximum value of d, as was the case with 

autocorrelation, the difference function estimates the fundamental frequency as the lag τ 

with the minimum value.  This corresponds with the commonsense idea that a periodic 

signal, when subtracted from itself at lags equal to the period, will be zero. 

The difference function is obviously closely related to the autocorrelation function.  

This relationship can be expanded by expressing the difference function in terms of the 

autocorrelation function: 

)(2)0()0()( ττ τ tttt rrrd −+= +       (6) 

In this case the first two terms are the ACF of the signal at the zero lags, at times 

separated by τ and then subtracted by the 2 times the autocorrelation at time t lagged 

by τ. 

2.3.4.3 Implementation of the Difference Function  

The difference function calculated directly is expensive, especially from the 

perspective of a real-time application.  There are two strategies to calculate it more 

efficiently.  These strategies are: 
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1) Eq (6) with FFT-based autocorrelation. 

2) “In-place” method to exploit overlapping regions. 

The first strategy relies on the fact that autocorrelation can be calculated directly 

using a Fast Fourier Transform.  In a general sense, this is based on the similarities 

between correlation and convolution.  A more specific description is as follows: 

1) Perform two FFT’s on the signal x. 

2) Multiply one X(f) by the complex conjugate of the other. 

3) Perform the IFFT on the result of step 2. 

4) Although the result will be complex, the imaginary part will be zero.  The values of 

this result will be the autocorrelation value at different lags.[4] 

 Using this technique in combination with eq (6), an efficient way to calculate the 

difference function was implemented.   But upon closer inspection, eq (6) is not well 

suited to our problem as it requires calculation of the middle term rt+τ(0).  This implies 

that we would calculate the zero-lag autocorrelation, at points (t + τmin) through (t + τmax).  

However in the proposed windowed setting, the difference function at every (i * hop) 

where i is an integer > 0 is calculated.  Thus the proposed algorithm would multiply the 

number of autocorrelations one needs to calculate drastically when the window overlap 

percentage was not extremely high.   

The other means to quickly calculate the difference function is to use ‘In-place’ 

calculation.  This method calculates the difference function directly per eq (5), but it 

divides the process into two steps to take advantage of overlapping regions.   



 

 

The first step of the ‘In-place’ calculation is to divide the signal into sequential, non

overlapping regions of size hop

range for each region.  Note that 

calculation, this is calculated over the full range of the signal at once, whereas YinRT, 

due to the constraints of the “per window” real

current window.  Furthermore YIN is free to select any lag range so long as it stays 

within the signal’s boundaries, while YinRT is again constrained to the current window’s 

data. 

The second step of the ‘In-place’ calculation is to sum the previous per 

of the difference function for each 

greater the overlap in windows, the greater the advantage because overlapping regions 

are only calculated once.  Conversely, if the algorithm is configured for non

windows, the ‘In-place’ method is equivalent to a naive implementation of eq (5).  But 

YIN and YinRT are optimized for some amount of overlapping windows as this enables 

the Best Local Estimate method, which is a valuable error correction step and ensures 

that estimations are stable within their given period.  With non

Best Local Estimate method could not be performed.

Figure 3: In-place Calculation’s 2 steps
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Another interesting aspect of the ‘In-place’ method of calculating the difference 

function is that the intervals used to calculate step 1 must evenly divide step 2.  That is 

to say that the window size must be divisible by the hop value.  YIN and YinRT handle 

this situation differently.  YIN lets any hop amount be specified and augments the 

window length by the minimum amount necessary to be evenly divisible by hop.  YinRT 

allows any even value of hop to be specified and then calculates step 1 using regions 

with a size equal to the greatest common divisor of window length and hop.  Worst 

case, step 1 could be calculated every 2 samples.  This decision was made because 

YIN’s extension of the window length limits its capability for accuracy whereas the 

YinRT method of using subdivided regions for the initial difference function calculation 

only affects the memory consumption of the algorithm, but not its capability for 

accuracy.  This downside is probably less pronounced in YIN because of its 

sophisticated error correction steps, but YinRT is only able to implement a weakened 

subset of these steps due to its “per window” real-time assumption.   

2.3.4.4 Lag Scaling 

The proposed method also includes a parameter called ‘Lag Scaling’ which allows 

the difference function to be calculated using lags at a specified interval.  Normally, 

there will be a minimum and maximum lag value and each value within this range will be 

calculated.  If the lag value is incremented by one sample for every value in this range, 

then the estimation process has a resolution equal to the sampling rate.  This resolution 

comes at the cost of an increased search range for later processing steps.  The lag 

scaling parameter attempts to trade off some resolution for a smaller search space.  

Various lag scaling values are experimented with in the parameter tuning section. 
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2.3.5. Cumulative Mean Normalized Difference 

Once the original difference function is calculated, the subsequent processing steps 

effectively provide error-corrections for circumstances which are known to cause the 

minimum d to not correspond to the fundamental frequency.  The first such error 

correction step is the Cumulative Mean Normalized Difference calculation.  This step 

protects against selecting a too high frequency.  There are two common scenarios in 

which this might occur: 

1) Selecting a dip in d based on its proximity to the zero-lag rather than the actual 

fundamental. 

2) Selecting a dip in d correspond to a highly resonant group of harmonics of the 

fundamental (i.e. a formant) 

Both of these errors are enabled by the fact that the value of d might be nonzero at the 

fundamental frequency (most likely due to complex harmonic content). 

The solution to this situation is to first normalize the difference values by dividing 

them by their cumulative means.  The cumulative mean is simply the average difference 

value for all lag values less than the current lag.  Additionally, all lags shorter than τmin 

are set to 1 to deter a correlation with the 0-lag dip.  The cumulative mean normalized 

difference function is expressed: 
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Where d’
t() equals the new cumulative mean normalized difference value, based on the 

old difference value dt() . 

2.3.6. Absolute Threshold 

While the cumulative mean normalized difference step protects against too high 

errors, the absolute threshold protects against a too low error.  If one searches for the 

global min across all lags, due to imperfect or complex periodicities and harmonic 

content, a lag greater than the fundamental will often be selected and thus the 

frequency estimate will be too low.  The absolute threshold protects against this 

situation by progressively bounding the upper search range based on the minimum 

values it sees.  It is essentially a 2-pass algorithm that can be described as follows: 

1) Find the global min and increment the configured threshold by this value. 

2) Start a min search from the beginning again but reduce the upper boundary by a 

fixed factor every time you hit a cumulative min which is less than the new 

threshold value. 

The output of this step contains two important values:  a lag value corresponding to the 

minimum d’() and the value of d’().  The former is the period estimate and the latter can 

be thought of as analogous to the aperiodic power [1]. 
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One of the parameters of YinRT is an unvoiced threshold, and the voiced/unvoiced 

determination is based on whether this d’() value is greater or less than the threshold.  If 

it is greater, this implies that the cumulative mean normalized difference min was not 

very small and thus at the selected lag, there were still considerable differences 

between the signal and it’s lagged self.  This is considered an indication of aperiodicity 

and so the given window is considered to be unvoiced. 

2.3.7. Parabolic Interpolation 

One assumption of the signal processing up until this point is that the actual 

fundamental frequency is a multiple of the sampling rate.  In this case, one can 

graphically imagine a pitch contour following a step-wise progression up and down.  

Clearly, this isn’t the case and so we use parabolic interpolation to find the best value. 

Parabolic interpolation exploits the periodicity of the difference function such that 

when a frequency estimate is provided, the difference function value at the 

corresponding lag should be the minimum of a parabola.  The difference values on 

either side must be larger or they would have been selected as the period estimate, and 

therefore the current lag must represent a dip in the difference function.  Then through 

the well-known technique of parabolic interpolation, a parabola is fit within these 3 

values and the new minimum represents a non-integer lag offset which is applied to the 

original lag value to produce a period estimate that is not a strict multiple of the 

sampling rate.  This is realized in the following equation: 
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where pd represents the current period estimate with cumulative mean-normalized 

difference function value dpd and dpd-1 and dpd+1 represent the cumulative mean-

normalized difference functions immediately before and after dpd. 

2.3.8. Best Local Estimate 

The next error correction step is the Best Local Estimate which looks at the previous 

estimates from within the timeframe of the current estimate’s period. This step sets the 

current estimate to the estimate with the smallest difference function value in the 

specified range.  This is akin to asking what estimate is the most confident within the 

period range of the current estimate.  The effect is to provide some pitch stability or 

avoid a fine or gross error. 

YIN implements the Best Local Estimate step differently from YinRT as the latter is 

constrained to only search previous estimates given the no look-aheads assumption. 

One useful caveat in the implementation of the Best Local Estimate step is to only 

search the original cumulative mean normalized difference values, rather than ones 

which have already been modified by the Best Local Estimate.  Otherwise, a very 

confident estimate can propagate forward until a new highly confident estimate is found. 

 

2.3.9. Octave Error Correction 

The octave error correction step is new to YinRT and is used to prevent a frequency 

estimation from immediately halving from its previous estimate.  Since speech does not 

generally halve frequency in the space of one sample, this can be interpreted as an 

error by the algorithm and the previous estimate can be repeated. 
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The necessity of this step became apparent during parameter tuning experiments 

when limiting the min and max frequency was attempted.  The goal was to limit the 

search range and possibly provide more accuracy with less latency.  On the contrary, 

there was significant octave halving errors which had not existed before.  Upon further 

reflection, these errors were attributed to the fact that by lowering the max lag, the 

absolute threshold had a shorter search range, resulting in a smaller percentage of 

upper bounds being reduced; meaning higher order dips were searched and selected. 

One possible response to this situation would be to adjust the absolute threshold or 

its search bounding factor, but given this demonstration of interdependence among the 

various signal processing steps, it was concluded that there were probably other 

parameter combinations which could result in a similar errors.  Therefore an error 

correction step would provide more value.   

2.3.10. Window Loop End 

The final step in YinRT is to join the local results with some global data structure and 

release any local variables which are no longer needed.  Then it returns control to the 

top of the window loop and the next processing window is passed down. 
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3. Results 

3.1. Parameter Tuning 

 Parameter tuning for YinRT was conducted as specified in section 2.2.3.  Figure 

4 illustrates the results of this process.  Thousands of parameter combinations were 

tested and only those with latencies sufficient to meet the specified criteria are plotted 

below.  Selection of the best parameter combination was performed by finding the 

combination that produced the most accurate results and then as a tie-breaker, to 

choose the combination with the smallest latency.  The final parameters are displayed 

below in table 1. 

 

Figure 4:  Scatter plot of parameter tuning combinations for male & female recordings.  Parameter 

combinations below real-time latency threshold (where processing time > 70% file length) are not 

pictured.   
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Table 1:  Final tuned parameters for YinRT. 

Parameter Value 

Min F0 60 

Max F0 400 

Low pass Filter 
Threshold 

2000 

Difference 
Function 

Threshold 

1.2 

Unvoiced 
Threshold 

0.4 

Window Overlap 70% 

Downsample 
Factor 

2 (10 kHz) 

Lag Scaling 2 

 

3.2  Accuracy & Latency Results 

 The results from accuracy and performance testing the test set are displayed in 

tables 2-6.  Data was collected for each algorithm on each file in the test set and then 

aggregated in total (table 2), by database (tables 3-4), and by genders (tables 5-6).    

Latencies could only be collected for WavePitch and YinRT since YIN is not a real-time 

algorithm.  The columns Gross, Fine, Type 1, and Type 2 correspond to the total count 

of these respective errors divided by the total number of evaluations.  The Proc Time 

Pct column shows the total processing time divided by the length of the test files.  The 

results below are rounded to the nearest hundredth.  The ‘total’ column represents the 

summation of all error rates (voiced and unvoiced) and is the primary value used in 

comparing the algorithms’ overall accuracies. 
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Table 2: All Databases 

  

Voiced Unvoiced   Total   

Gross Fine Type 1 Type 2 Proc Time Pct 

YIN 0.00 0.00 0.00 0.17 0.18 N/A 

YinRT 0.01 0.01 0.03 0.05 0.10 0.16 

WavePitch 0.00 0.00 0.00 0.29 0.30 0.06 

 

Table 3: All Genders, FDA Database 

  

Voiced Unvoiced   Total   

Gross Fine Type 1 Type 2 Proc Time Pct 

YIN 0.00 0.00 0.00 0.22 0.22 N/A 

YinRT 0.01 0.01 0.02 0.06 0.10 0.15 

WavePitch 0.00 0.00 0.00 0.34 0.35 0.06 

 

Table 4: All Genders, Keele Database 

  

Voiced Unvoiced   Total   

Gross Fine Type 1 Type 2 Proc Time Pct 

YIN 0.00 0.00 0.01 0.13 0.14 N/A 

YinRT 0.01 0.01 0.04 0.03 0.09 0.16 

WavePitch 0.00 0.00 0.00 0.25 0.25 0.07 

 

Table 5: Male Samples, All Databases 

  

Voiced Unvoiced   Total   

Gross Fine Type 1 Type 2 Proc Time Pct 

YIN 0.00 0.00 0.00 0.22 0.22 N/A 

YinRT 0.01 0.01 0.03 0.06 0.10 0.15 

WavePitch 0.00 0.00 0.00 0.38 0.38 0.06 
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Table 6: Female Samples, All Databases 

  

Voiced Unvoiced   Total   

Gross Fine Type 1 Type 2 Proc Time Pct 

YIN 0.00 0.00 0.01 0.13 0.14 N/A 

YinRT 0.01 0.01 0.03 0.04 0.09 0.16 

WavePitch 0.00 0.00 0.00 0.21 0.22 0.07 

  



 

 

Figure 5: Example of all algorithms

female speaker saying “Here’s the forwarding address”.  Note the YIN (blue) follows the contour 

accurately, but appears to be doubling the frequencies.  WavePitch (black) makes a large num

2 unvoiced errors where it decides the window is not voiced when it actually is, although outside of these 

errors, it seems to be performing quite accurately.  YinRT (red) performs the best of all these algorithms
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Example of all algorithms compared with the ground truth frequencies.  This corresponds to a 

female speaker saying “Here’s the forwarding address”.  Note the YIN (blue) follows the contour 

accurately, but appears to be doubling the frequencies.  WavePitch (black) makes a large num

2 unvoiced errors where it decides the window is not voiced when it actually is, although outside of these 

errors, it seems to be performing quite accurately.  YinRT (red) performs the best of all these algorithms

 

 

compared with the ground truth frequencies.  This corresponds to a 

female speaker saying “Here’s the forwarding address”.  Note the YIN (blue) follows the contour 

accurately, but appears to be doubling the frequencies.  WavePitch (black) makes a large number of type 

2 unvoiced errors where it decides the window is not voiced when it actually is, although outside of these 

errors, it seems to be performing quite accurately.  YinRT (red) performs the best of all these algorithms. 



 

 

Figure 6:  Example of all algorithms compared with the ground truth frequencies.  This corresponds to a 

male speaker saying “Will I have an

ground truth frequencies (green) 

follows the contour accurately, but 

makes almost all type 2 unvoiced errors where it decides the window is not voiced when it actually is

YinRT (red) performs the best of all these algorithms

 

4.  Discussion 

 The most salient result from each comparison is that YinRT had the smallest 

cumulative error rate.  With all the new constraints placed on YinRT, it is particularly 

interesting that it reports a greater accuracy than its unconstrained predecessor

But there are a variety of considerations which should be noted in making sense of this 

data. 
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voiced content.  
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cumulative error rate.  With all the new constraints placed on YinRT, it is particularly 

a greater accuracy than its unconstrained predecessor
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cumulative error rate.  With all the new constraints placed on YinRT, it is particularly 

a greater accuracy than its unconstrained predecessor, Yin.  

But there are a variety of considerations which should be noted in making sense of this 
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 These results invite the scrutiny that a direct comparison was not performed, 

hence YinRT’s better accuracy than Yin.  There are two arguments which support this 

claim.  The first suggests that by using the author-recommended parameters rather than 

tuning Yin on the data as with YinRT, an unfair advantage might have been given to 

YinRT.  The second argument would be that changing the hop parameter for Yin to 

match YinRT, the rest of the parameters should have been retuned accordingly. 

 Both of these arguments have some validity, but only with the acknowledgement 

of the following considerations.  The default parameters for Yin were based on its 

performance against 5 databases, including the Keele and FDA corpuses.  Thus to 

some degree, Yin already had been trained on this same data.  However, these 

samples were not downsampled and the ground-truth used in its evaluation was not the 

database-supplied F0 files, but rather the raw-laryngograph data as processed by Yin.  

Additionally, the hop amount may have changed and unbalanced some of the other 

parameters due to some hidden dependencies in the algorithm, but one would expect 

this parameter to be the most decoupled to other parameters in the algorithm.  In fact, 

the original Yin paper does report gross error percentages using the same ground-truth 

data as with YinRT for each database, and the results observed here for Yin are 

improvements to the gross error percentages reported by the author. 

 Compared to the other algorithms, the significant advantage of YinRT appears to 

be its minimization of Type II Unvoiced Errors.  For all the algorithms, the greatest 

source of error was the type II unvoiced error rate.  In fact, Yin reports uniformly better 

accuracy than YinRT for both voiced error types as well as type I unvoiced errors.  It is 

only when Yin’s type II unvoiced error is factored in that YinRT overtakes it for the 
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greatest accuracy.  The difference between type I and II unvoiced errors for YinRT was 

uniformly smaller than either Yin or WavePitch.  Type II unvoiced errors represents 

uncertainty: a signal is sufficiently complex that whatever F0 is estimated has a low 

confidence associated with it, and so the algorithm decides it must be that the current 

window is unvoiced.  This again begs the question, why YinRT was able to better 

recognize the true F0 in these situations that its counterparts.  One answer is that with 

its reduced estimation resolution, provided by the lag scaling parameter, more noise 

was able to be factored out than useful signal.  There may be some underlying 

relationship between sampling rate and the lag rate used to estimate the fundamental 

frequency.   

 The latencies reported by Yin are sufficiently fast for real-time processing, 

involving a processing time about 15% the length of the file, but the latencies reported 

by WavePitch were more than twice as fast at about 6%.  WavePitch is very quick 

indeed, but this contrasts with it performing uniformly worst in accuracy.  Almost all of 

the error in WavePitch is occurring as type II unvoiced errors, representing a lack of 

capability for WavePitch to recognize a complex signal.   

5. Conclusions and Future Work 

The field of pitch detection algorithms remains fragmented as new methods and 

results generally provide domain-specific improvements.  A new algorithm has been 

presented which attempts to optimize latency (i.e. for real-time applications) and 

accuracy in the domain of disconnected speech signals.  The fundamental strategy was 

to degrade the signal and estimation resolutions to provide suitably fast performance, 
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and then to apply various error correction steps to minimize the impact these decreased 

resolutions.  As acknowledged by its name, YinRT, the new method extended and 

altered the well-known YIN algorithm.  YinRT produced improvements in accuracy and 

processing-time compared to similar domain-oriented methods.  These results 

demonstrate the potential of YinRT as real-time PDA for disconnected speech.   

  Topics requiring further investigation regarding YinRT include testing on a broader 

range of speakers and finding ways of addressing noise in the signal.  Possible areas 

for improvement include reducing the number and interdependence of parameters, and 

finding more efficient means of processing and representing difference function data.  In 

particular, perhaps a new method could be found to exploit the periodicity of the 

difference function, resulting in a smaller memory footprint and search range.  Another 

possible improvement may be found in using the magnitude of difference function 

similar to AMDF [8] instead of calculating the squared error.  The reduction in 

multiplication operations may reduce the latency without affecting accuracy. 

It should also be noted that none of the test auditory databases supplied samples 

of dysarthric speech and therefore YinRT’s performance in such a setting would be 

difficult to predict.  No such samples were used primarily because there were no freely 

available databases containing dysarthric speech and their corresponding fundamental 

frequencies.  Evaluating any PDA’s performance absent some ground-truth frequency 

data would be problematic.  However, some type of evaluation of YinRT’s performance 

processing dysarthric speech would be an important next step. 
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