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Abstract 

THE ROLE OF SULFATIDE IN ALZHEIMER'S DISEASE 

By Charles Britton Beasley, Jr., B.S. Biology 

A Thesis submitted in partial fulfillment of the requirements for the degree of Master's in 
Anatomy and Neurobiology at Virginia Conmonwealth University. 

Virginia Commonwealth University, 2006 

Major Director: Jeffrey Dupree, Ph.D. 
Assistant Professor, Department of Anatomy and Neurobiology 

Alzheimer's disease (AD) is characterized by the accumulation of amyloid beta 

plaques, neurofibrillary tangles (NFT) and loss of cortical neurons that control memory 

and cognition. The cause of NFTs and AP plaques is not clear, though it is known that they 

are formed by enzymes which are preferentially sequestered to membrane domains called 

lipid rafts. Sulfatide (ST) is a glycosphingolipid that is essential for the proper structure 

and function of lipid rafts. In mice that lack ST, membrane domains that are normally 

maintained by adhesive contacts and functional lipid rafts are improperly formed and are 

unstable. In these ST null mice, voltage gated sodium channels, neuronal proteins that 
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normally cluster at the nodes of Ranvier, initially accumulate in the node but are not 

retained with age. Taken together the findings from the ST null mice indicate that 

membrane organization is compromised. Recently, a published report demonstrated that 

ST is significantly reduced in AD. Based on this observation combined with the findings 

Erom the ST null mice, I propose that membrane architecture is also altered in AD and this 

alteration may facilitate AD pathogenesis. To test this hypothesis, I have used an 

imrnunohistochemical approach to assess neuronal membrane organization in AD and non- 

AD brain samples. Analysis of the sodium channel clusters was chosen since these nodal 

domains provide an easy assessment tool for membrane organization. In the current study, 

sodium channel domains were not altered and no change in isoform expression was 

observed. Based on these fmdings, membrane organization does not appear to be altered in 

AD. It is important to note, however, that sodium channel clusters are restricted to a 

specific region of the axon and thus membrane organization within other regions of the 

axon and in other regions of the neuron may be altered. Additionally, assessment of the 

brain samples, using thin layer chromatography, did not show a reduction in ST levels 

between the AD and non-AD brains. Therefore, my study strongly suggests that M e r  

analysis of ST levels in AD brains sould be conducted to resolve the contrasting results 

between the current study and the previously published work. 



Introduction 

Overview of Alzheimer's Disease 

Alzheimer's disease (AD) is the most prevalent cause of neural degeneration and 

dementia in the rapidly growing elderly population. Patients with AD experience mild to 

severe dementia including progressive memory loss. Though the trends resemble those of 

the normal aging brain, symptoms are significantly exaggerated in AD. Age is the most 

important risk factor. The characteristic pathologies at the microscopic level are arnyloid 

beta (AP) plaques and neurofibrillary tangles (NFT). Though these are well-established 

indicators, much remains to be understood about their formation. (reviewed by Armstrong, 

2006). 

Diagnosis of AD involves both psychological analysis for the presence and level of 

dementia and post-mortem morphological testing for AP plaques and NFTs. The rnini- 

mental state examination (MMSE) and the AD assessment scale (ADAS) are both used as 

objective measures of progression of cognitive impairment (Schmitt et al., 2002). In 

addition to the MMSE and ADAS classifications, Braak and Braak (1 991) developed a 

staging system for the disease that is based on the degree and location of NFTs. Braak and 

Braak demonstrated that levels of AD correlated with the patterns and extent of NFT 

formation. In this system, stages I and I1 are characterized by mild to severe alteration of 
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the transentorhinal layer; stages I11 and IV involve the proper entorhinal cortex, and stages 

V and VI show destruction of isocortical association areas as well. Magnetic resonance 

imaging for loss of gray and white matter is also used in the diagnosis (Karas et al., 2004; 

Sjobeck et al., 2006). 

AD can be divided into familial and non-familial categories. Familial AD is 

usually associated with early onset and often involves mutations in the APP gene or 

presenilins. Gottries et al., (1 996) used confusional symptomatology and parietal 

pathology to differentiate between the two categories. Parietal pathology was associated 

more with the early AD and confusioanl symptomatology with late onset. 

The cause of Alzheimer's remains unknown. Various treatments including 

acetylchoinesterase (AChE) inhibitors and new experimental therapies using AP antibodies 

have been used with minimal success. AChE has been very effective in providing 

incremental increase in cognitive ability by increasing levels of acetylcholine, but has no 

effect on the underlying pathology. The use of antibodies is still under examination. 

Histopathology of Alzheimer's Disease 

The underlying cause of dementia in AD is loss of neurons. Specifically, this loss 

is seen in pyramidal and interneurons in the entorhinal neocortices, the nucleus basalis, 

basal forebrain, and pyramidal neurons in the CAI and CA2 regions of the hippocampus. 

This loss of cells leads to gross brain changes such as reduction in overall brain size, 

widened sulci, narrowed gyri, and dilated ventricles. Microscopic analysis using silver 



stains reveals the two hallmark pathologies that are NFTs and AP plaques (Figure 1). 

NFTs are found intracellularly and AP plaques extracellularly (DeArmond, 1997). 

NFTs are not unique to AD, although they are a necessary histological finding for 

AD diagnosis (Braak and Braak, 1991). They are also found in Parkinson's and 

amyotrophic lateral sclerosis (Kokubo and Kuzuhara, 2004). Tangles are formed in 

neuronal cell bodies as a result of hyperphosphorylation of the microtubule associated 

protein tau. Hyperphosphorylation of tau results in the formation of paired helical 

filaments (PHF), which are the building blocks of NFTs. Microtubule associated protein 

kinase, glycogen synthase kinase-3, cyclin-dependant kinase 2, cyclin-dependant kinase 5, 

calcium/calmodulin-dependent protein kinase 11, protein kinase A, and fyn kinase have 

been shown to be involved in this hyperactive phosphorylation (Drewes et al., 1992; 

Madelkow et al., 1992; Baumann et al., 1993). Fyn and cdk are associated with lipid rafts 

as well (Kramer et al., 1999). Reduced phosphatase activity has also been reported in AD 

and implicated in the formation of tangles (Matsuo et al., 1994; Iqbal et al., 1994). Though 

tau is normally phosphorylated only at sites outside the microtubule (MT) binding region, 

in PHFs phosphorylation is found at sites within .the MT binding region (De Armond, 

1997).When abnormally phosphorylated, tau does not bind properly to MTs, but rather 

associates with itself (De Armond, 1997). 



Figure 1: Hallmark histopathologies in Alzheimer's disease: neurofibrillary tangles and 
arnyloid beta plaques. (Taken from American Health Assistance Foundation: 
http://www.ahaf.org/alzdis/about/AmyloidPlaques.htm) 



Figure 1: Illustration of neurofibrillary tangles and amyloid beta plaques 



The theoretical course then, by which NFTs prove toxic to neurons consists of the 

following steps as described by Trojanowski and Lee, (2005): First, the abnormal 

hyperphosphorylation of tau leads to tau aggreagation. This leads to a decrease in MT- 

bound tau and then to MT depolymerization. Axonal transport is impaired as a result, and 

leads to stasis and aggregation of axonal traffic. Function at the synapse is compromised 

and axons degenerate and disconnect. 

As mentioned above, AP plaques are the other of the classic neuropathologic 

hallmarks of AD and are also required for AD diagnosis. These plaques are the product of 

an alternate cleavage of the type I transmembrane protein, amyloid precursor protein 

(APP) (Figure 2). APP is ubiquitously expressed protein whose function remains unclear. 

There are two types of APP cleavage, alpha-gamma and beta-gamma, both of which occur 

on the ltunenal side of membranes (Greenfield et al., 1999). The alpha-gamma cleavage 

(non-amyloidogenic) consists of a cut at the alpha site by alpha-secretases, which occurs at 

the cell membrane. Several zinc metaloproteinases and the aspartyl proteinase beta- 

amyloid cleavage enzyme 2, that are present mostly at the cell surface, are responsible for 

the cut at the alpha site. This cleavage is followed by another cut at the gamma site within 

the transmembrane domain of APP by the multimaic protein complex known as the 

gamma secretase. The gamma cleavage occurs mainly in endocytotic vesicles The alpha- 

gamma sequence is the normal non-pathologic event that occurs 95% of the time. 

In AD, the beta-gamma (amyloidogenic) sequence becomes more prevalent, 

resulting in the deposit of the toxic AP peptides (Vetrivel and Thinakaran, 2006). In this 
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pathologic state, the alpha cleavage is replaced by a beta-cleavage occuring mainly on the 

membrane of endocytotic vesicles by the membrane bound beta-amyloid cleavage enzyme 

1 (BACE 1 or just BACE). AP peptides are exocytosed and accumulate to form plaques or 

soluble oligomers in the extracellular space. This accumulation primarily occurs in the 

cerebral cortex in associational areas (Hof and Mobbs, 2001) and is considered to be one of 

the early events of AD. Although the direct consequence of these AP aggregates is 

unknown, they may contribute to inflammation (reviewed by Minghettis, 2005) and altered 

ion transport (as reviewed by Kourie, 2001), both of which are possible players in AD. 

AP peptides are found in several isoforms including 1-40, 1-42, and 1-43 called 

protofibrils (Figure 2). The 42 residue protofibril has the highest tendency to aggregate 

and accumulate in the extracellular space. Although the 1-40 isoform does aggreagate, 

these oligomers are very unstable. The amyloid cascade hypothesis, which has been one of 

the most prominent theories of AD pathogenesis, holds that the fibrillar plaques formed by 

AP 1-42 are responsible for neuronal death (reviewed by Klein, 2002). Evidence has 

shown that the location of insoluble Af3 shows poor correlation to the region of cell death, 

and quantity of these plaques show poor association with degree of dementia (reviewed by 

Klein, 2002). Soluble oligomers of AP 1-42 however have a significant correlation with 

synapse loss. Levels of 1-42 are correlated with memory loss and regionally associated 

with neuron death, making soluble AP seem the more likely culprit in AP. 



Figure 2: a) Location and amino acid sequence of amyloid precursor protein. P and a 
cleavage sites shown on the lurninal side of the membrane. y cleavage sites (40 and 42) 
shown in the intramembrane domain. b) Non-amyloidogenic sequence of cleavage events 
( a  followed by y). c) Arnyloidogenic (pathologic) cleavage sequence (P followed by y). 
(taken from Vetrivel and Thinakaran, 2006) 



APP a-CTF APP P-CTF 
AlCD - AlCD 

Figare 2: Structure and cleavage of amyloid precursor protein 
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The means by which NFTs and AP form are unknown for non-familial AD. One 

possibility for the pathogensis is that the enzymes that generate these pathologies become 

abnormally localized in membrane domains called lipid rafts. 

Lipid Rafts and Sphingolipids 

The traditional model of cell membrane architecture describes a homogenous free- 

floating lateral organization of the cell membrane, though it has become clear that domains 

of tight lipid packing occur especially in the outer leaflet. These domains are highly 

enriched in cholesterol and sphingolipids that are able to pack tightly due to weak 

interactions of the carbohydrate head groups of the glycosphingolipids (as reviewed by 

Simons and Ikonen, 1997) and saturation of their hydrocarbon chains. These rafts are able 

to move freely within the membrane and can cluster upon interaction of the proteins that 

are associated with them (as reviewed by Rajendran and Simons, 2005). Various proteins 

preferentially partition into the rafts such as glycosylphosphatidyl-inositol (GP1)-anchored 

proteins, tyrosine kinases, G-proteins and other transmembrane proteins (Rajendron and 

Simons, 2004). These proteins are likely recruited to these membrane microdomains for 

the purpose of signaling and adhesion. Some of these proteins include enzymes whose 

activity is influenced by the integrity and clustering of these rafts (as reviewed by Simons 

and Ikonen, 1997). 

Interestingly, it has been recently shown that one of these glycosphingolipids, 

Sulfatide (ST) has levels that are uniquely reduced in AD. Han et al. (2002) showed that 

ST is decreased in AD tissue using mass spectrometry, and Gottfries et al. (1996) obtained 
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the same results using thin layer chromatography. This loss of ST and ensuing disturbance 

of lipid rafts may lead to abnormal distribution of enzymatic activity in the brain, resulting 

in the formation of the hallmark histopathologies of AD. 

It has been suggested that rafts may be involved in the formation of Afl plaques and 

NFTs of AD via the improper recruitment of enzymes or loss of compartmentalization (as 

reviewed by Cordy et al., 2006). The secretases and kinases that form the plaques and 

tangles, respectively, are known to be preferentially partitioned into these membrane 

domains (Kramer et al., 1999). Abnormal proportions of raft lipids have been shown to 

alter the &I.rities of these enzymes for rafts and therefore enzymatic activity (Kalvodova 

et al., 2005; Kramer et al., 1999). 

One example of enzyme activity conveyed by aggregation of raft proteins is that of 

fyn kinase as evidenced by Kramer et al. (1999). This example is especially relevant to the 

study at hand since fyn is involved in the hyper-phosphorylation of tau which results in 

NFTs (Lee et al., 2004). Glycoshpingolipids such as sulfatide, which are enriched in rafts, 

are synthesized at the same stage in the maturing OL as fyn coupled GPI-linked proteins 

get associated into rafts. In these early myelinating cells fyn kinase is highly active and 

linked to rafts. In OL progenitors or other membranes without rafts, fyn does not show the 

same activity. Also, addition of an antibody that leads to crosslinking of this fyn-coupled 

protein increases fyn activity. These results suggest that rafts are in fact a necessary 

platform for fyn enzyme activity that is directly implicated in formation of one of the 

hallmark AD microscopic pathologies (Kramer, 1999). 
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Cyclin dependant kinase 5 (cdk5) is also very pertinent to a raft-related theory of 

AD pathogenesis. Cdk5 is another of the numerous kinases responsible for the 

hyperphosphorylation of tau (Baunlan et al., 1993). Furthermore, cdk5 activity is 

regulated by p35, and activator that associates with the cell membrane (Monaco et al., 

2004), potentially with lipid rafts through N-terminal myristalation (Giese et al., 2005). 

Griffith et al. (2004) recently showed that only plasma membrane associated cdk5, which 

was complexed with p35, displayed activity. Improper membrane recruitment of this 

activator results in the mislocalized and prolonged activity of cdk5 potentially inducing tau 

hyperphosphorylation (Patrick et al., 1999) 

APP is also associated with lipid rafts. It has also been shown that BACE, the 

enzyme responsible for the P-cleaveage of APP (Hussain et al., 1999), is selectively 

partitioned into rafts (Ehehalt et al., 2003). This occurs since BACE undergoes 

palmitoylation, which targets proteins to rafts (as reviewed by Vetrivel and Thinakaran, 

2006). Addition of a GPI-anchor, which localizes proteins to rafts, to BACE increased the 

cleavage of APP at the f3 site (Cordy et al., 2003; Ehehalt et al., 2003). All four 

components of the gamma-secretase complex are also localized to these detergent 

insoluble membrane regions (Vetrivel et al., 2004). Also, Chen et al. (2006) showed that 

the intracellular domain of APP is associated with the raft protein flotillin-1. Using in vitro 

experiments in which concentrations of lipids found in rafts were varied, Kalvadova et al. 

(2005) showed that the ratio of lipids directly affects the activity of BACE. In addition, 

the alpha secretases responsible for normal processing of APP have not been linked to 

these lipid microdomains (Ehehalt et al., 2003). 



A critical problem is how to test our hypothesis that altered raft formation due to 

reduced ST leads to AD pathogenesis. To possibly solve this dilemma, we will draw on 

results from our laboratory studying a knockout mouse in which the synthetic enzyme for 

Sulfatide, cerebroside sulfotransferase (CST), has been eliminated. ST is greatly enriched 

in oligodendrocytes (Norton et al., 1975), the myelin-forming cells in the CNS. 

Interestingly, the knockout animals consistently show dramatic changes in the myelin 

sheath, and specifically in the axonal-oligodendroglial junctions in the paranodal region, 

which is normally maintained by adhesion molecules sequestered into lipid rafts. 

Importantly, these mutant animals show altered distributions of ion channels which are 

normally uniquely sequestered in the axon plasma membrane. Since this re-distribution 

has been seen in the mutant animals due to loss of ST and potentially abnormal lipid rafts, 

we will examine AD brains for a similar redistribution which may be reflective of more 

global membrane changes specifically related to the pathogenesis of AD. Furthermore, the 

ST knockout mouse shows gray matter (GM) changes including neuronal death (Marcus et 

al., 2006), a finding consistent with AD pathology. The following sections briefly discuss 

the role of ST in nervous tissue, the importance of normal axon-oligodendroglial junctions 

and summarizes our results from experiements utilizing the CST mutant animals. 

The role of ST in axon-oligodendroglial interactions 

ST is a glycosphingolipid predominately synthesized by OLs in the CNS and 

therefore primarily found in myelin (Vos et al., 1994; Han et al., 2002). ST is found in 

hydroxylated and non-hydroxylated forms. The hydroxyl group is on the alpha carbon of 
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the fatty acid chain. Carbon chain lengths of ST vary from 16 to 26. ST is present in 

white matter (WM) and GM although it is much more prevalent in WM (Han et al., 2002; 

Krafft et al., 2005). ST accumulation due to enzymatic dysfunctions is involved in the 

pathogenesis of various human diseases such as metachromatic leukodystrophy and 

Krabbe's Disease (Han et al., 2002). Cerebroside sulfotransferase (CST) synthesizes ST 

by the sulfation of galactocerebroside (GalC) (Honke et al., 1997) Figure 3). ST mediates 

various biological processes such as cell regulation, protein tracking, signal transduction, 

cell adhesion, neuronal plasticity, and morphogenesis (reviews by Vos et al., 1994; 

Ishizuka, 1997; and Merrill et al., 1997). 

ST may regulate neuronal viability by involvement in interactions between axons 

and OLs. Also, OLs are required fir development, function and survival of neurons. The 

interaction of the axon and OL at the paranode is likely the means through which OLs are 

involved in these functions. One way ST may mediate axo-glial interactions is via the 

maintenance of OL membrane domains. 

Axon-oligodendroglial junctions 

The junction of the myelin sheath and the axon is characterized primarily by the 

interactions of several membrane proteins at the paranode that serve in adhesion (Menegoz 

et al., 1997), signaling (reviewed by Arroyo and Scherer, 2000), and membrane 

compartmentalization (Einheber et al., 1997). (Figure 4) The adhesion molecule 

CASPR/Paranodin/NCPl (CASPR) is present on the axonal side and associates with 

neurofascin (Nfasc) 155 in the OL membrane for the purpose of adhesion (Tait et al., 



2000). The binding of CASPR to Nfasc 155 is essential for the formation of a structural 

component of the myelin-axon junction known as transverse bands. These "bands" 

provide the junction with a physical appearance that resembles invertebrate septate 

junctions which prevent fiee lateral difhsion of molecules along the membrane. When 

these junctions are compromised, both glial and neuronal protein domains are disrupted 

(Dupree et al., 1999; Bhat et al., 2001). 

The proper hctioning of the junction is crucial to maintaining axolemmal protein 

clustering. Although other factors may be involved (Kaplan et al., 1997), both initial 

clustering (Dugandzija-Novakovic et a1.1995) and long-term domain maintenance (Dupree 

et al., 2005) both require physical contact between the glial cell and the neuron. Sodium 

and potassium channel clusters are maintained by these junctions and are easily studied via 

immunohistochemistry (IHC). Additionally, clustering of these channels is a valuable 

indicator of junctional integrity (Dupree et al., 1999). 

Sodium channels are multi-domain membrane spanning proteins (Aidley, 1998) 

that provide the means by which sodium ions rapidly pass through the axolemma as action 

potentials travel down the axon. In the CNS two types of sodium channels (Navl.2 and 

Navl.6) have been found clustered at the node (Boiko et al., 2001; Kaplan et al., 2001). 

Navl.2 is the immature form and is initially expressed in the CNS nodes of Ranvier. As 

myelination continues, Navl.2 is replaced in over 90% of the CNS nodes by the mature 

form Navl.6. Following a demyelinating event (Dupree et al., 2005) and in 

dysmyelinating animal models (Craner et al., 2003; 2004; Suzuki et al., 2004), Navl.2 



Figure 3: Sulfatide is synthesized from the addition of a sulfate group to 
galactocerebroside by the enzyme cerebroside sulfotransferase (CST). The 
galactocerebroside is synthesized by the addition of a galactose group to ceramide by the 
enzyme ceramide galactotransferase (CGT). (taken from Coetzee et al., 1998) 
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Figure 4: (Upper left) A single PNS internodal segment is shown with the myelin sheath 
unwrapped. The segment is flanked by paranodes and nodes of Ranvier. (Upper right) an 
oligodendrocyte is shown with three processes terminating in three internodal segments, 
again with the myelin sheath unwrapped. (Below) An axonal node of Ranvier is shown in 
longitudinal-section. The three major regions are depicted: node, paranode, and internode. 
The juxtaparanode is the internodal region immediately adjacent to the paranode on the 
internodal side. As shown, sodium @a+) channels cluster in the node, CASPR 1 Paranodin 
accumulates at the paranode, and rectifying potassium channels (Kvl.1 and Kv1.2) are 
concentrated at the juxtaparanode. (Taken from Dupree, 1996) 



Figure 4: Nodal / Paranodal Region Architecture 
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expression is significantly upregulated, suggesting that Navl.2 may be used as a marker of 

de- and or dysmyelination. 

CST Null Mouse 

Work in an animal model demonstrates the critical role of ST in the maintenance of 

the paranodal region. Honke et al. (2002) engineered a CST null mouse in order to 

determine whether a single gene and enzyme were responsible for the production of ST. 

This mutant mouse displays minimal deficiencies through the early stages of development. 

By 6 weeks of age these animals exhibit profound motor dysfunction in their hind limbs 

accompanied by altered axo-glial interactions. These findings were confirmed by Marcus 

et al. (2006), who showed that the absence of ST does not result in the gross disruption of 

development, but that ST is essential for the maintenance of myelin and axon structure. In 

the aged CST null mouse, nodal structure is compromised, axon diameter is decreased, and 

neurons appear to be lost. Additionally, Ishibashi et al. (2002) reported that the initial 

clustering of K+ and Na+ channels was only mildly altered in the young ST null mice; 

however, with age and in the absence of demyelination, clusters of both the Na+ and K+ 

channels were lost, and K' channel clusters that remained were shifted to the paranodal 

region. In addition, CASPR was dispersed throughout the internode rather than clustered 

at the paranode. Taken together, these studies strongly suggest that ST is critical for the 

maintenance of neuronal membrane organization, function and even survival. 



Proper localization of sodium channels to the node of Ranvier and potassium 

channels to the juxtaparanodal region are maintained by the integrity of the paranode. Is it 

possible to use this organization of protein domains, which is maintained by rafts and 

paranodal junctions, to measure changes in the interface between OLs and axons in AD. It 

is feasible to observe such modifications by uitilizing irnrnunohistochemistry to visualize 

any rearrangement of ~ a +  and K+ channels in AD tissue. 

Rationale and Hypothesis 

The cause of NFTs and AP plaques, the hallmark AD pathologies, is not clear. 

Tangles and plaques are formed by enzymes that are preferentially sequestered to 

membrane domains called lipid rafts. Sulfatide is essential for the proper structure and 

function of lipid rafts. Our laboratory has demonstrated that reduced ST results in altered 

membrane domains that are normally maintained by adhesive contacts and functional lipid 

rafts. Sodium channel clusters at the nodes of Ranvier are lost as a result. This change in 

sodium channel localization provides a useful measure for assessing overall alterations in 

paranodal junctions and rafts. In this study, normal and age-matched AD brains will be 

immunolabeled in order to evaluate the amount of clusters present. I hypothesize that 

reduced ST in the AD brain disrupts lipid raft membrane domains as evidenced by loss of 

sodium channel clusters at the node of Ranvier. 



Materials and Methods 

Tissue Acquisition and Storage 

Human brain tissue was acquired fiom the University of California at Los Angeles 

(UCLA) brain bank (Table 1). UCLA provided samples of occipital lobe. Tissue from 

severe AD, mild AD and non-AD patients (based on Braak and Braak staging) was 

requested, and 3 samples fi-om each category were received. 

The brain bank ranked each patient according to the Braak and Braak criteria and as 

cognitively normal or having dementia prior to death. The Braak and Braak stage refers to 

the presence and location NFTs in the post-mortem pathological analysis. Lower Braak 

and Braak scores (Table 1) correlated with 'no dementia' diagnosis, and higher scores with 

diagnosis of 'dementia.' 

The brain bank provided information on the duration between death and collection 

of the tissue (ranging fiom 7 - 28 hours) although information for five of these samples 

was lacking. All samples were fiesh frozen and shipped on dry ice. Upon receipt, the 



Table 1: Information regarding the diagnosis of the patients and the post-mortem 
pathologic state of the tissue obtained. Time post-mortem refers to period between death 
and tissue collection. Braak and Braak stage was determined post-mortem primarily by the 
extent of NFTs. 



Table 1: TISSUE INFORMATION (1 sample each: occipital lobe) 

20030027 

20030030 

AD-SEVERE 

AD-SEVERE 

Not provided 

7:OO 

VI 

V 



Reagents Used 

Tissue sections were stained with Quickstain (American Master*tech Scientific, 

Inc.) in order to study the integrity of the tissue. The lx  phosphate buffered saline (PBS) 

used for IHC was composed of 160.lg NaCL, 28.8 g Na2HP04, 4.8 g K&P04, 4.0 g KC1 

dissolved in 20L of filtered water and made at pH 7.4. In order to localize sodi~mi and 

potassium channels, commercially available antibodies were used as previously described: 

pan Na channel antibody (Sigma S8809) (Dupree et al.., 1999; Marcus et al., 2001), Na 

channel Nav 1.2 (Upstate Biotechnology) (Dupree et al., 2005), and Kvl . 1 potassium 

channel antibody (Upstate Biotechnology) (Dupree et al., 1999). To assure that the density 

of myelinated axons was comparable among samples, tissue sections were immunolabeled 

with antibodies directed against neurofilaments (SMI33, Covance Research Products) and 

the MT associated protein known as MAPlb (AA6, Sigma). An antibody against 2',3'- 

Cyclic nucleotide 3'-phosphodiesterase (CNPase, SMI91, Covance Research Products) was 

used to label myelin in order to distinguish between gray matter and white matter. 

The standards for ST and cerebrosides were obtained from Avanti Polar Lipids 

(cat# 13 13 05 [ST] and 13 1303 [Cerebrosides]). A protease inhibitor cocktail (Sigma cat# 

P8849) was used in the tissue homogenization process. Protein assay was performed using 

a BSA kit obtained from Pierce Biotechnology, Inc. 



Tissue Handling 

The fresh frozen tissue was immediately stored at -80° C upon receipt. The tissue 

was then slightly thawed in order to harvest small samples of WM enriched tissue that 

were embedded in OCT compound (Tissue-Tek, Optimum Cutting Temperature, Sakura 

Finetech). The OCT embedded tissue blocks were placed immediately on dry ice and 

again stored at -80" C. Each tissue block was then sectioned at a thickness of 1 Opm using 

a cryostat at -20° C. Twenty-five consecutive sections were placed on slides (ProbeOn 

Plus, Fisher), appropriately labeled (specimen#, brain region, section thickness, and slide 

order), and stored at -80" C. 

Immunostaining protocol 

Imrnunohistochemical staining was performed according to the method of (Dupree 

et al., 1999) Slides were removed from the freezer and allowed to air dry for 30 minutes. 

Excess OCT was cut away from the perimeter of the tissue. A hydrophobic barrier was 

applied around the section using a PAP pen (Super PAP Pen, Electron Microscopy 

Sciences) to assist in maintaining incubation solutions on the section. Dried slides were 

labeled to indicate antibody and incubated in -20" C acetone to permeabilize for 10 min. 

The slides were then rinsed three times in phosphate buffered saline (PBS) for five minutes 

each followed by a 30 minute incubation in a blocking solution. The blocking solution 

contained -5% cold water fish skin gelatin (approximate since it was added dropwise and 

is extremely viscous, 10% fetal calf serum, and 0.1% Triton-X 100 in PBS. Following the 

block, sections were incubated in the appropriate primary antibody at the concentration 



shown in Table 2. All antibodies used in this study have been well characterized in 

previously published studies from laboratory (Dupree et al., 1999; 2005; Marcus et al., 

2002). The tissue remained in primary antibody overnight at 4" C in a humidified chamber 

to prevent drying. The following day, three PBS rinses and 30 min blocking steps were 

repeated, followed by a 90 min secondary antibody (Table 2) incubation in the dark at 

room temperature. The secondary antibodies, which were fluorescently conjugated, were 

also diluted in the blocking solution to a concentration of 1 :200. The slides were then 

rinsed three times in PBS for 5 minutes and mounted with Vectashield (Vector 

Laboratories) medium and a cover slip was applied. 

Controls, negative andpositive 

Mouse tissue was analyzed along with human tissue under the same conditions in 

order to confirm the specific binding of the antibodies. Since the specificity of the 

antibodies used have been established in mouse tissue, and labeling patterns were 

consistent between the two animals it was concluded that binding in the human occurred 

and was specific. Labeling with different primary antibodies and the same secondary 

revealed unique patterns of labeling and therefore assured the specificity of each. This 

provided both positive and negative controls for the primary antibody. Tissue was also 

stained with primary antibody and no secondary to ensure that the primary antibody did 

not fluoresce. In order to confirm that the secondary antibodies only bound to the primary 

antibodies used, IHC was performed in the absence of any primary antibody under 

identical conditions. 



Table 2: Primary and Secondary Antibodies Used 



Table 2: Primary Antibody Concentrations and Corresponding Secondary 
Antibodies with Conjugated Fluorochromes 

Primary 
Antibody 
Dilution 
Secondary 
Antibody 
(1:200) 

Kvl . 1 

1:lOO 
Alexa 
594 
Anti- 
Mouse 

Pan NaCh 

1 : 100 
Alexa 
594 
Anti- 
Mouse 

MAP 1 b 

1:lOO 
Alexa 
594 
Anti- 
Mouse 

NaCh 1.2 

1:lOO 
Alexa 
594 
Anti- 
Rabbit 

Neurofilament 

1:lOOO 
Alexa 
594 
Anti- 
Mouse 

CNPase 

1:lOOO 
Alexa 594 
Anti- 
Mouse 



Analysis of Sodium Channel Clusters 

Quickstain 

Each sample was stained with Quickstain in order to confirm the integrity of the tissue. 

Tissue was analyzed for presence or lack of artifactual spaces. White matter without 

significant space was deemed appropriate for IHC. One drop of dye was placed on a tissue 

section for ten seconds and then rinsed in phosphate buffered solution (PBS) for 10 

seconds. Slides were dried and cover slipped with immersion oil. Slides were visualized 

under a Nikon Eclipse 800M bright field microscope and images were recorded at the GM 

I WM interface at 40x and at 200x in each of the two regions (GM and WM). 

Representative fields for each tissue section were chosen and recorded. Consecutive 

sections were analyzed by Quickstain and by IHC for NaCh clusters. 

The first step in analyzing each slide was to distinguish between WM and GM. 

Prior to nodallparanodal protein data collection, myelin markers were used for this purpose 

(as previously discussed). In addition to the myelin antibody markers, distinct patterns of 

lipofuscin (LF), corresponding to the WM and GM region, was observed. Subsequently, 

LF patterning was used to make the distinction. 



Confocal Microscopy 

After confiiing areas, of white matter, all sections were imaged using the Leica 

TCS SP2 AOBS or Zeiss LSM510 NLO META confocal microscopes housed in the VCU 

Microscopy Facility. A minimum of six fields were collected, depending on the size of the 

WM region in each sample. In all cases, except for Kvl .l data collection, a single optical 

plane was scanned. In the case of the Kvl . 1 , a maximum projection of a z-stack of 10 

optical planes at a step size of 0.4 pm was collected in order to capture pairs of potassium 

channel clusters in different planes. Gain and offset settings were held as consistent as 

possible from fiame to frame. Following is a list of settings used for image collection 

(Table 3). 

Digital Removal of Autoflourescence 

One of the difficulties of fluorescent labeling of human tissue is the presence of the auto- 

fluorescing substance known as lipofuscin (LF). LF accumulates in cell bodies and is 

composed of lipids, metals, organic molecules, and biomolecules (as reviewed by Brunk 

and Terrnan, 2002). LF emits fluorescence in the red spectrum when excited with 488 and 

594 nm light. The majority of the experiments were performed with a secondary antibody 

that was optimally excited at 594 nm and which also emitted light in the red spectrum. 

Since both the fluorescent label and LF emitted in the same region of the spectnun, it was 

not possible to discern specific labeling from LF autoflourescence. Two techniques were 

employed to resolve this issue. On the Leica confocal microscope, a subtraction technique 

was used. 



Table 3: These settings were determined to be optimal for the information desired. 



Table 3: Confocal microscope settings 

Gain Offset Pinhole Zoo Objective Format Line Voxel 
Diam. m Av Size 

Leica 700 +I- 71 0 +I- 0.05 115 -pm = 1 2 63x 1024x 4 116.14 x 
Airy Unit 1024 116.14 

nm 
Zeiss 700 +I- 63 0 +I- 0.05 112 pm = 1 2 63x 1352x 4 98.82 x 

Airy Unit 1352 98.82 
nm 



Briefly, when excited by the 488 nm laser, ordy LF fluorescence was present, and thus all 

pixels visible in this image corresponded to LF. Another image was taken under 594 nm 

light that contained specific labeling for the antibody used as well as LF autoflouresence. 

All pixels from the 488 image were subtracted from the 594 image leaving only pixels 

corresponding to the protein of interest. The subtraction method was not ideal, however, 

since in the instance of pixels that overlapped between the two channels, the signal of the 

desired channel was diminished or eliminated. 

In addition to the subtraction method, autoflourescence and antibody labeling were 

also distinguished by the Zeiss spectral unmixing capabilities of the META system of the 

Zeiss confocal microscope. With the exception of the neuronal markers to neurofilaments 

and MAP 1 b, used to determine axon density, all of the IHC experiments were completed 

on the Zeiss confocal microscope in order to use its META capabilities. Since only ratio 

between the clusters (measured on the Zeiss) and axon density (measured on the Leica) 

was needed, data from one microscope could be used to analyze data from the other. The 

META detector was a polychromatic 32-channel detector for fast acquisition of lambda 

stacks and allowed simultaneous acquisition of up to 8 channels. Multiple images of the 

same field were gathered - each scanned using incremental emitted wavelengths from 447- 

704 nm. These data were compiled in order to create profiles of the fluorescing intensity 

for each emitted wavelength at each pixel. The profiles were curves plotted with 

fluorescent intensity on the y-axis and the spectrum of emission wavelengths on the x- 

axis. 



Profiles of specific pixels were then chosen as representative of each fluorescent 

species (i.e. 594, lipofuscin, background). All signals that identified with profiles for LF 

and background were digitally removed from the image. Thus, only pixels corresponding 

to the 594 fluorochrome (which was conjugated to the secondary antibody and 

corresponded to the immunolabeled protein of interest) remained in the recorded image. 

This procedure, called linear untnixing, was a more precise method of identifying which 

pixels correspond to specific secondary antibodies since it was able to distinguish even 

between overlapping pixels based their the spectral fingerprints (Figure 7). 

Quantitation of sodium channel clustering 

Following spectral unrnixing, the clusters of sodium and potassium channels were 

counted with IPLAB (Scanalalytics, Inc) software using segmentation analysis. The 

threshold was set such that the number of clusters counted for several fields corresponded 

approximately to the numbers generated by counting manually. In the cluster counts 

IPLAB's segment quantification feature was used with settings including pixels with 

intensities between 50 and 255 and clusters having areas of between 9 and 1000 pixels 

(9,800 nm2 1 pixel). The threshold (intensity) and cluster size settings were optimized in an 

attempt to reproduce the choices made by eye as to what constituted a cluster and to 

reproduce manual counts. These setting were chosen by first counting several different 

frames manually. The same frames were then subjected to quantification analyses with 

various combinations of intensity threshold and number of pixels per cluster settings. The 

optimal settings were chosen when the clusters outlined by the software resembled the 



shape and size of those seen in the raw images and the numbers of clusters counted by 

IMAGEJ (httv://rsb.info.nih.gov/ii/ ) were similar to those that were manually obtained. 

To assure comparisons of structurally similar brain regions, axon fiber densities 

were calculated using axonal markers based on percent labeled pixels per field. As 

previously indicated, an antibody to MT associated protein 1 b (MAP 1 b), which is a good 

indicator of axonal MTs, was used as well as an antibody directed against neurofilaments. 

For this quantification, Image J software was utilized to count all pixels in a field that had 

intensities between 70 and 255 on the thresholding feature of the software. This range was 

chosen by simultaneously viewing thresholded and original images to create and image 

which only revealed pixels pertaining to axons. Sodium channel clusters were counted and 

then standardized based on the obtained axon densities. Cluster counts were divided by 

axon densities generating numbers in clusters 1 Clm2 of axon / field. 

Statistics 

One section of each sample was analyzed. Every ninth field was recorded such that 

a nzinimum of six fields analyzed depending on the amount of WM per sample All values 

are presented as mean +/- standard deviation (SD). All data were statistically analyzed by 

t-test or analysis of variance (ANOVA) where appropriate, using Sigmastat software 

package (Systat Software Inc.) with the assistance of Dr. David Sirnpson, Associate 

Professor of Anatomy and Neurobiology at VCU. Significance was set at p < 0.05. 



Thin layer analysis of sulfatide content 

Lipid Extraction 

Lipids were extracted as previously published by Sato and Yu (1990). Dr. Carmen Sato- 

Bigbee, Associate Professor of Biochemistry and Emilse Sanchez guided this portion of 

the study and all TLC procedures were conducted in Dr. Sato-Bigbee's laboratory. 

Briefly, for the extraction, 1 1 Omg of WM enriched samples were harvested (confimed 

by visual inspection). For each specimen, the tissue sample was homogenized in 500uL 

of PBS that contained a protease inhibitor cocktail (Sigma cat# P8849) on wet ice. An 

aliquot of homogenate was set aside at 4' C for protein analysis. A 200uL aliquot of the 

homogenate was added to 40 volumes of choloroform:methanol2: 1. All of the steps after 

homogenization were performed at room temperature. Each sample was then centrifuged 

at 2000 rpm for 1 0 min. The supernatant was transferred to a fiesh 1 5rnl plastic 

graduated tube (Falcon, Fisher Scientific). Distilled water in the amount of 20% of the 

original solvent volume was then added. The sample was shaken, allowed to settle, and 

centrifuged at 1000 rprn for 5 min. The top of the upper layer (the aqueous phase) was 

marked on the tube and the upper layer was removed. The tube was filled to the mark 

with Ch1oroform:Methanol:Water (4:48:47). The sample was shaken, settled, and 

centrifuged at 1000 rpm for 5 rnin. The upper 2 layers, the aqueous and interphase, were 

removed and the sample was dried under nitrogen in order to prevent oxidative 

degradation. The sample was then resuspended in chloroform:methanol2: 1 in 20% of 

initial solvent volume. After the extraction, volumes of the organic layer, which 
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contained the lipids, varied, suggesting that water content varied among the samples. 

These volume values were used later to standardize the TLC results. 

To determine which bands correlated with ST, cerebroside and ST standards were 

run next to samples on the TLC plate. The standards for ST and cerebrosides were 

obtained from Avanti Polar Lipids (cat# 13 1305 [ST] and 13 1303 [Cerebrosides]). Stock 

solutions of standards were at 1.7 pg/pL in 2: 1 chloroform:methanol. 

Preparation of tissue 

Optimal loading amount of the sample was predetermined for GM and WM based 

on a TLC of a series of increasing amounts of lipids. Loading volumes were made by 

pipetting various masses of total lipids into disposable glass culture tubes (Baxter 

12x75mm) and drying under nitrogen. Samples were then redissolved in 10 pL of 2:l 

Chloroform:Methanol, the optimal TLC loading volume as previously determined by 

(Sato and Yu, 1990). The samples were cortical regions enriched in WM (1 1 Omg). The 

mass of the human samples was chosen based the amount of WM available. A TLC of a 

series of amounts of lipids (Figure 12) was performed on non-diseased WM and GM 

samples at concentrations: 5, 10, and 20 pL (dried under nitrogen and redissolved in 10 

pL of choroform:methanol). The 5uL band was too faint and the 10 pL band too large 

(Figure 13). Therefore, 7.5 pL was determined to be the optimal load for WM. One and 

three pL volumes of standards (1.7 ug / pL) were diluted to 10uL and loaded. 



TLC Plate loading and developing 

The TLC protocol was as follows: The silica gel plate (obtained fiom EMD 

Chemicals cat# 1 176416) was activated by heating at 130' C for two hours. The samples 

were immediately loaded on the plate on 1.0 cm lines spaced 0.5 cm apart. The material 

was loaded 1.5 cm fiom the bottom of the plate to ensure that the solvent in the TLC well 

did not contact the sample. A 25mL Hamilton glass syringe with a blunt tip was used for 

loading. Samples were added dropwise. The plate was placed vertically in the well such 

that less than 1.5 cm of the plate was immersed in the solvent solution of methyl 

acetate:chloroform:methanol: l-propano1:water (2528: 10:25:7) and the well was sealed. 

The samples were allowed to run until the progress of the mobile phase had visibly 

ceased to progress. The plate was stained with orcinol which has been shown by Zoller et 

al. (2005), to be especially effective in staining ST and the images were recorded with a 

Fluorochem Imaging system (Alpha Innotech) 

Protein Assay 

In order to further standardize our TLC data, a protein assay was performed. 

Aliquots of the tissue homogenate were used to determine the total concentration of 

protein in the sample. 300uL of the initial 500uL homogenate of the tissue samples was 

used for the assay. This volume was diluted with 1mL of radioimmunoprecipitation 

(FUPA) buffer solution and further homogenized in a 15rnL disposable tissue grinder 

(VWR International, 47732-446). RIPA buffer was added to reach a dilution of 1 :20 of 

the original 300pL aliquot. The tissue was further homogenized in a glass tissue grinding 
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tube with a ceramic pestle bit in a ring-stand mounted drill. The sample was then assayed 

for total protein content at several dilutions. The assay used was a Pierce BSA kit that 

measures total tryptophan residues. The assay was performed on each sample in 

triplicate along with a standard curve using bovine albumin. Protein concentrations were 

measured using an ELISA plate reader at 570 nrn. 

Quantification of TLC's 

The densities of bands were measured with ImageJ image analysis software. 

Densities were calculated by selecting the combined hydroxylated and non-hydroxylated 

ST bands and calculating the area under the peaks in curves corresponding to the bands. 

From the densitometry data, a total number of optical density units for the entire 1 lOmg 

tissue sample was extrapolated. Considering that the number of OD units for the ST 

bands for a given lane correspond to the amount of ST in volume of lipids loaded, a 

concentration in the form of OD units per mL of lipid extract can be calculated. Using 

the fiaction of the homogenate which the lipid extract constitutes, OD units per mL of 

homogenate can be calculated. Since the tissue was homogenized in 500mL of PBS, 

multiplying the OD units of ST / mL homogenate by 500 will give total OD units of ST 

for the tissue sample. A total amount of protein (in mg) for the harvested sample was 

calculated. A standard curve was generated from the ST standards of known 

concentration versus optical density enabling the conversion of the density of ST in the 

samples to be converted to mass. The densities of the ST bands were standardized 

relative to the cerebroside and cholesterol lipid bands as well as to total protein content. 
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Results were reported as pg ST / pg protein and pg ST / pg cerebroside. A one-way 

ANOVA among the sample groups was performed on the standardized values for ST 

content. 



Results 

Immunohistochemistry 

Immunohistochemistry (IHC) techniques were employed to evaluate the 

competency of the axo-glial interactions in the AD tissue based on the clustering of 

sodium channels. For these studies, fiesh frozen tissue saniples were immunolabeled for 

several paranodal and nodal proteins known either to mediate axo-glial interactions or 

whose distribution is directly altered when these mediations are compromised (Menegoz 

et al., 1997; Dupree et al., 1999; Rios et al., 2000; Ishibashi et al., 2002). 

Tissue samples 

Quickstain analysis revealed that the WM of the most samples was in tact (Figure 

5). Some holes were present in GM, though minimal. Only those tissues which were 

judged to be in good condition were used. 



Gray and white matter regions determined by myelin markers and lipofuscin patterns 

As shown in Figure 6, distinct patterns of lipofuscin exist for gray matter and 

white matter. These regions were initially determined by myelin markers. CNP was used 

as a myelin marker and provided very clear visualization of distinct GM and WM 

regions. CNP labeling confirmed that the distinct patterns of a~ltofluorescence was a 

reliable method of differentiating GM and WM regions. 

Axonal orientation and girth consistent among samples 

First, to assure that .the density of myelinated axons was comparable among 

samples, tissue sections were immunolabeled with antibodies directed against 

neurofilaments (SMI33, Covance Research Products) and the MT 

associated protein known as MAPlb (AA6, Sigma). An antibody against 2',3'-Cyclic 

nucleotide 3'-phosphodiesterase (CNP) was used to label myelin in order to distinguish 

between GM and WM. 

Using qualitative assessment, it was determined that the regions analyzed 

contained homogenous populations of axonal processes with respect to caliber and 

density. Due to the fact that the qualitative analysis showed uniformity among samples 

and that most of the axons in all samples were in oblique section, density was determined 

to be a reliable correlate to axon length. Since the number of clusters is dependant on 

axon length, the cluster counts were standardized based on axon density. In other words, 

the number of ion channel clusters per field was divided by the density of axonal staining 

per field. 



Figure 5: Samples were stained with Quickstain to assess degree of artifact. Images 
shown are representative of condition of the typical sample. What little artifact is present 
is in the form of spaces within the tissue as shown by the arrows, which is probably due 
to freezing. Typical fields of A) GM, B) WM. The GM regions consistently show greater 
artifact than WM. 



Figure 5: Typical Tbne Samples Show Only Minor Artifact 

A) Gray hiatter 

B) White Matter 



Figure 6 a, b: a) GM exhibits larger clusters of lipofuscin autoflouresence yet the clusters 
are less uniform in distribution, shapes and sizes compared to b) WM which lacks neuronal 
cell bodies and thus smaller clusters of LF are observed in a more regular pattern. Neither 
(a) nor (b) were treated with primary antibody, but were otherwise subjected to the 
identical protocol as the other IHC experiments, and thus no specific immunolabeling is 
present in these images. 
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Fire 6 a, b: Lipofnscin patterns used to differentiate gray and white matter 

a) Gray Matter 

b) White Matter 



Figure 7 a, b: a) Lipofuscin (yellow) makes sodium channel clusters (white) difficult to 
identify. b) Lipofuscin signal has been removed via lambda scanning and linear 
unrnixing . 



Figure 7: Lipofuscin removal made sodium channel cluster identiileation passible 

a) Pan NaCh labeling with lipofuscin 

. 
r .I b . b  * . - 

I 

b) Pan NaCh Labeliug without lipofuscin 
I I I 



Axonal markers revealed slight variations in axon densities 

Axonal markers to MAPl b and neurofilaments were used to compare relative axon 

densities between brain regions. Both qualitative and quantitative assessments were used 

to compare tissue samples. Among the samples, axon girth appeared constant; few axons 

were longitudinally oriented; most axons were transversely or obliquely oriented. The 

results from this analysis are shown below in Table 4 and Figure 8. These densities were 

used to standardize the protein clustering values. MAPl b yielded a mean axon density of 

2 1 7 +I- 105 pixelslfield for severe AD, 200 +I- 105 for mild, and 173 +I- 1 9 for non-AD 

with a p value of 0.9. Neurofilament densities were 186 +I- 75 for severe, 143 +I- 23 for 

mild, and 174 +/- 36 for the controi and a p value of 0.6. 

Nodal architecture was intact 

IHC studies on the ST null mouse revealed dramatic alteration in protein clusters 

(Ishibashi et al., 2002). To test whether the nodal changes seen in the ST null mouse were 

also present in AD, the distribution of several CNS nodal and paranodal proteins was 

determined. Negative control labeling with secondary antibodies in the absence of 

primary antibodies revealed no specific labeling. 

Sodium channels were unchanged between sample groups 

In the non-standardized cluster counts from the pan NaCh there was no significant 

difference between AD and non-AD as seen in Table 5 and Figures 9, 10, and 11. Age- 



Figure 8: Variability in axonal labeling among samples: Samples were labeled 
with antibodies directed against axonal cytoskeleton in order to calculate axon 
density 



Figure 8 a, b, c, Bi d: Variability in axoml labeliag seen among samples 



Table 4: Axon densities were measured in number of pixels per fiame of labeling for 
Maplb and neurofilaments above an intensity of 50 (on a scale of 0-255). Means and 
standard deviations are given for each disease or non-disease group. 



Table 4: Axon densities varied among samples 



Figure 9 a, b: Pan NaCh Labeling Unchanged Between Non-Alzheimer's and 
Alzheimer's Tissue These figures demonstrate the clustering seen in sodium 
channels at the nodes of Ranvier. Mouse monoclonal pan NaCh primary antibody 
was used at 1 : 100; Alexa 594 conjugated anti-mouse secondary antibody at 1 :200. 



Fire 9: Pan Sodium Channel Labeling Unchanged 

b) Alzheimer's Pan NaCh Labeling 
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matched, non-demented brains revealed the same cluster mean (329 +/- 68 clusters/field) 

as the severe diseased (308 +/- 170 clusters/field) and the mild diseased (28 1 +/- 104) 

brains. When standardized against axon density (Figure 1 I), the pan NaCh antibody again 

revealed no significant difference (P = 0.235) among the sample groups as determined by 

aone-way ANOVA. Raw and standardized means among groups showed similar trends. 

Navl. 2 sodium channels unchanged 

Despite the fact that the pan NaCh antibody showed no difference between sample 

groups, it remained to be determined whether clustering of specific Na channel isoforms 

was altered. Quantification of the clustering of Nav 1.2 removed this ambiguity as well as 

serving as a marker for demyelinating pathology. This antibody revealed no significant 

difference (P = 0.142) between AD and non-AD groups for either clusters or total area 

(Table 6). It was therefore concluded that there were no differences between these sample 

groups for the Nav 1.6. 

Thin Layer Chromatography 

No Difference in ST Levels Among Samples 

Considering the premise of the study was the previous findings of Gottfries, 

Karlsson, and Svennerholni (1996), and more recent data from Han et al. (2002), who 

reported a 60% decrease in WM ST, TLC was employed to c o n f i  these results. Upon 



Figure 10: Shown in purple are the average number of total pixels per field of MAPl b 
labeling (representing axon density). In red are the average number of clusters of sodium 
channels per field. The first three pairs represent severe AD, the second three, mild, and 
the third, non-diseased. This figure demonstrates how the axonal marker MAPl b and 
NaCh clustering varied in parallel with each another. 





Figure 11: This figure shows the mean number of clusters per field divided by the mean 
axonal density as determined by MAPlb immunolabeling. A slight trend can be detected 
in this graph, though an analysis of variance revealed any differences to be insignificant. 



I q  M ce ii$t'Sdhm C!hfm&l C b t m  Standardized with MAPlb 



Table 5: This table contains mean number of clusters per field for NaCh for the three 
sample groups of the tissue in the 'NaCh' clusters columns. Columns headed 'NaCh' / 
MAP1 b' or SMI 33 show cluster counts standardized by dividing by axon density. 



Table 5: Ne DHZhmee4n sodium d Potassixam Channel Cl'llsters 
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initial inspection by eye, there appeared to be no difference among sample groups (Figure 

13). Densitometry with ImageJ analysis software revealed that there was a trend towards a 

decrease in ST in the AD groups although the differences were not significant. One TLC 

was preformed and densitometry was performed on one band of each sample. In the 

analysis ST levels were determined to be slightly higher in the control group than in the 

mild and severe AD groups (Table 7, Figure 13). The control group revealed 0.48 +I- 0.05 

pg ST / OD units of cholesterol compared to the mild group, which presented a ratio of 

0.36 +I- 0.01. Similarly the severe group exhibited a ST to cholesterol ratio of 0.36 +/- 

0.07. A one-way ANOVA gave a P-value for these three groups of 0.201. 



Table 6: Shown are total segments/field and areaslfield of labeling of anti-Navl.2 primary 
antibodies in the tissue 





Figure 12: This figure shows from left to right - two lanes of cerebroside standards: 0.02 
and 0.06 pg; two lanes of ST standards (2 bonds: non-hydroxylated above hydroxylated) 
0.02 and 0.06 pg; three lanes of WM enriched non-diseased human brain extract: 5, 10,20 
pL of extract; and three lanes of GM at 5,10 and 20uL of extract. Nothing was loaded on 
the empty lane between the 5 pL and 10 pL GM. 



Figure 12: 15pL Determined Optimal Loading Volume for White Matter 
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Figure 13: The TLC shows the various lipid bands found in the white matter enriched 
human brain tissue samples. The top band is cholesterol (Ch), the next two bands are 
cerebrosides (non-hydroxylated above hydroxylated) as can be seen by the cerebrosides 
(C) standard bands seen on the left. The next two bands correspond to ST (non- 
hydroxylated above hydroxylated) as seen in the (ST) standards the left. 



Figme 13: No Change in White Matter Subtide Levels Among Sample Groups 
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Table 7: Shown are the standardized optical densities of the ST bands from TLC analysis 
of the tissue. The ST was standardized by the cholesterol band as shown in the 'ST / 
cholesterol' column. ST was also standardized by protein. 



Table 7: No Difference in White Matter Sulfatide Levels 

W S T I P ~  PgST/Pg 
Sample Cholesterol Protein 

Severe 27 0.36 48 
30 0.29 81 
17 0.43 62 

Mild 

Control 



DISCUSSION 

Alzheimer's disease is characterized by accumulation of AP plaques, NFTs and 

neuronal death, though the cause of these hallmark pathologies remains unclear. Enzymes 

that are involved in the formation of AP plaques and NFTs are associated with the 

neuronal membrane (Kramer et al., 1999; Ehehalt et al., 2003), and proper partitioning in 

the normal membrane prevents inappropriate interaction of axolemmal enzymes and 

potential substrates (reviewed by Simons and Ikonen, 1997). Sulfatide is essential for the 

proper structure and function of lipid rafts, and Han et al. (2002) recently reported that ST 

is significantly reduced even in the earliest stages of AD. Thus, I hypothesized that 

reduced ST in the AD brain would disrupt lipid raft membrane domains as evidenced by 

loss of sodium channel clusters at the node of ranvier. In the present study, membrane 

domain organization appeared to be in tact in AD tissue. Sulfatide levels also appeared to 

be unchanged. I was therefore unable to support my hypothesis. 

Protein Organization 

Sodium channel clustering was used as a marker to determine membrane domain 

organization since it is well characterized and easily labeled. Clusters were unchanged in 

AD tissue at both early and late stages as compared to controls. 



Simons and Ehehalt, 2002 and Ehehalt et al., 2003 suggested that rafts are involved Af3 

formation. When cholesterol was depleted Af3 generation increased and a-cleavage (non- 

amyloidegenic) increased. Cholesterol depletion would disrupt raft organization and 

render more of the usually raft associated APP in non-raft membrane domains. 

We decided therefore to analyze protein organization in the axolemma as a measure of raft 

integrity. Imrnunohistochemical analysis, confocal microscopy, and digital quantification 

were rigorously performed. 

Our findings do not suggest a loss in neuronal membrane organization, suggesting 

that the increased f3-amyloidogenic processing in AD is due to some mechanism other than 

rafi disruption This supports the findings of Simons since raf3 disruption would be 

expected to increase non-disease causing APP processing and decrease Af3 production. 

This opens the possibility that hyper aggregation of rafts is actually responsible for the 

increased P-cleavage activity that ultimately leads to the formation of amyloid plaques. 

Sulfatide in Alzheimer's Disease 

In the thin layer chromatography analysis of the lipid content, ST was not 

significantly different in the AD and non-AD brains. Our findings are in contrast to those 

of both Han et al., 2002 and Gottfries et al., 1996. Both of these previous studies showed a 

significant decrease in ST in AD. 

Han and colleagues showed a 60% decrease in WM using electrospray ionization 

mass spectrometry, which is a more sensitive method for quantitative analysis of Sulfatide 

than TLC. Although TLC is a less sensitive it is unlikely that the 60% decrease observed 



in the Han study would not have been detected. Gottfries et al., 1996, differentiated 

between early and late AD and compared them both to non-AD tissue in their study of 

brain lipids. They used TLC to analyze ST content in the late onset tissue and compared 

-this to the control, revealing nearly a 40% decrease. In the present study we did not 

differentiate between early and late onset AD, and herein may lay the reason for the 

conflicting data. 

Considering that we only studied white matter and Gottfries did as well, yet Han 

also saw a decrease in ST in GM, it is possible that the ST level decrease that is truly 

important in AD pathogenesis is that in GM. Since the hallmark pathologies of AD are 

associated with the neuron, it would very possible that a decrease in GM ST would have a 

direct role in AD. 

Caveats 

Differences in axon density, caliber, and orientation among samples were a concern 

due to lack of specific information on the location of harvest. This concern was essentially 

eliminated by standardization with axon density and qualitative analysis of axon girth. 

Variation in duration between time of death and time of harvesting was initially a concern 

since it might possibly be cause for tissue degradation due to lipidases. The white matter 

was largely in excellent condition suggesting that state of membrane organization revealed 

by the sodium channel data could be trusted. Due to the high water content in WM of live 

tissue and the inconsistency in post-mortem treatment of our tissue, there was a possibility 

that the dry weight of the tissue, and therefore total lipids, harvested varied among 



samples. In order to control for this a protein assay was performed. Standardization by 

protein mass did not significantly change the relative ST concentrations among sample 

groups suggesting that variations in water content was not a significant source of error. 
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