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RADIATION SENSITIZATION OF BREAST CANCER CELLS BY VITAMIN D 

THROUGH THE PROMOTION OF AUTOPHAGIC CELL DEATH 

By Eden Nicole Wilson 
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Radiation therapy is a widely used tool in cancer therapy and is frequently offered 

as the first line of treatment for cancers of the breast. While radiotherapy is often initially 

effective in killing tumor cells or suppressing their growth, there are factors that confer 

tumor cell resistance to irradiation.  Development of resistance may lead to disease 

recurrence despite the use of surgery, chemotherapy and radiation therapy. A primary 

goal of the studies in Dr. Gewirtz’s laboratory is to develop strategies to overcome 

resistance to radiation (and chemotherapy) in breast cancer, with the ultimate goal of 

preventing or attenuating disease recurrence.  One of these approaches involves 

combining the active form of vitamin D, 1,25-di hydroxy vitamin D3 or its analogs with 

radiotherapy.  
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Our proposed studies were designed to build upon and extend previous work from 

this laboratory focused on determining the nature of cell death when vitamin D3 is 

combined with ionizing radiation in breast tumor cells.  Studies were extended to the wild 

type p53, estrogen receptor positive, ZR-75-1 breast cancer cell line. We were able to 

validate that vitamin D3 does in fact, sensitize ZR-75-1 breast cancer cells to radiation 

therapy and substantiate that autophagy is the mode of sensitization by vitamin D3. 

Interestingly, our experimental system demonstrated that autophagy can actually have 

dual roles. Specifically, inhibition of autophagy both enhanced sensitivity to radiation 

and attenuated radiation sensitization by 1,25D3. Moreover, this experimental model 

proved to be a useful tool in trying to distinguish the factors involved in cytoprotective 

and cytotoxic autophagy, as we were able to demonstrate a potential role of 5' adenosine 

monophosphate-activated protein kinase in the sensitization of breast tumor cells to 

radiation by vitamin D3 as well as cytotoxic autophagy. 
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Chapter 1 

 

Introduction 

 

Cancer 

Cancer is the leading cause of death worldwide and the second leading cause of 

death in the United States (Lyn, 2012). Deaths are projected to continue rising, with an 

estimated 13.1 million deaths in 2030 (Boehringer Ingelheim, 2012). Cancer is defined as 

the uncontrolled growth of cells and can develop in almost every tissue and organ in the 

body (American Cancer Society, 2011b). Benign tumors do not have the capacity to 

invade other tissues, in contrast to malignant tumors that have these properties 

(Kleinsmith et al., 2005). Cancerous cells stop responding to normal growth regulatory 

factors as a result of multiple mutations in genes involved in cell growth (National 

Cancer Institute, 2000). Mutations can occur in oncogenes which promote growth, tumor 
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suppressor genes that inhibit growth, genes involved in programmed cell death and DNA 

repair genes (Chow, 2010). One of the most widespread mutations to occur in cancer 

cells is in p53, a tumor suppressor gene and “the guardian of the genome” that is involved 

in apoptosis, maintaining genomic stability and regulating angiogenesis (Ames et al., 

1995; Bai and Zhu, 2006).  

The most common cancer diagnosed in men is lung cancer followed by prostate 

cancer, whereas breast cancer is the most common cancer found in women (Centers for 

Disease Control and Prevention, The, 2011). It is estimated that 1 in 8 women will 

develop breast cancer in her lifetime and of this population 1 in 36 women will die from 

the disease (U.S. breast cancer statistics.2012). There are two primary forms of breast 

cancer, ductal and lobular. Lobular carcinomas originate in lobules of the breast that 

produce milk whereas ductal carcinomas originate in the tubes that move milk from the 

breast to the nipple; ductal carcinomas are more prevalent (Mayo Clinic, 2012). Breast 

Cancers are broken down into three categories: Hormone receptor positive (estrogen or 

progesterone receptor), HER2 positive, and triple negative (Breast Cancer: Know your 

type.2011 . Approximately 75% of all breast cancers are estrogen receptor (ER) positive 

and  about 65% of these cancers are also progesterone positive (Wax, 2010). Breast 

cancer, which is hormone-receptor positive is most likely to respond to hormonal 

therapies. Approximately 20% to 25% of breast cancers, are her2/neu positive 

(overproduction of HER2/neu) and, unlike breast cancers which are hormone receptor 

positive, these breast cancers tend to be much more aggressive and fast-growing 

(Pohlmann et al., 2009; Pruthi, 2010). It is estimated that between 10% and 17% of breast 

cancer cells are triple negative, meaning that these cancers lack the estrogen and 
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progesterone receptors and do not overexpress HER2 (Wax, 2010). These cancers are 

often very aggressive and prone to metastasis as well as disease recurrence (How triple-

negative breast cancer behaves and looks.2012). 

Cancer Treatments 

Cancer treatments are dependent upon the type of cancer and stage of the disease. 

Cancer treatments include surgical removal, chemotherapy, hormone antagonist, gene 

therapy and radiation therapy. The decision to conduct surgery depends on the location 

and size of the tumor. For instance, a breast cancer patient may receive a lumpectomy or 

a mastectomy to remove cancerous tissue. Mastectomy refers to the surgical removal of 

the entire breast whereas a lumpectomy refers to removal of only a portion of the breast 

that has cancerous tissue (Mastectomy vs. lumpectomy.2012).  For many tumors, cancer 

surgery is the best treatment if the tumor is localized and has not metastasized (Cancer 

surgery: Physically removing cancer.2011). However, in some cases surgery is not the 

best option as some cancerous tissue is not completely accessible.  

Chemotherapy is the use of anti-neoplastic agents to treat cancer (Fayed, 2009). 

Most chemotherapies are designed to target cells that divide rapidly and act by promoting 

cytotoxicty which leads to cell death (Chemotherapy and you: Support for people with 

Cancer.2011). Chemotherapies are divided in to five classes, which include: alkylating 

agents, anti-metabolites, plant alkanoids, topoisomerase inhibitors and cytotoxic 

antibiotics. Moreover, chemotherapy can eliminate cancer cells that have metastasized to 

other parts of the body and therefore is a systemic approach to cancer treatment as it 

treats the primary site as well secondary sites (American Cancer Society, 2011c). 
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Unfortunately, chemotherapy can target normal cells that are actively dividing and can 

lead to many adverse side effects.  

Hormone therapy is another systemic approach to treat cancer. It is an adjuvant 

treatment and often used to help reduce recurrence after surgery, but it can also be used to 

treat cancer that has spread or recurred (American Cancer Society, 2012). Hormone 

therapies generally involve interfering with the actions of hormones that promote growth 

and consequently hormone therapy is effective in cancers such as the breast and prostate. 

A commonly used drug to treat breast cancer is Tamoxifen. Estrogen receptor positive 

breast cancers require estrogen to proliferate and Tamoxifen, an estrogen receptor 

antagonist, prevents their proliferation (American Cancer Society, 2012). Another class 

of hormone therapy is aromatase inhibitors. Aromatase inhibitors prevent the synthesis of 

estrogen in the breast tumor tissue, thereby inhibiting the growth of breast cancer cells 

(American Cancer Society, 2012). However, treatment is ineffective against ER negative 

tumors. 

Radiation therapy is one of the most widely used tools in cancer therapy and is a 

fundamental component in the treatment of breast cancer. Radiation therapy uses high-

energy radiation to shrink tumors and kill cancer cells (How radiation works.2012; 

Radiation therapy.2012). X-rays, gamma rays, and charged particles are types of 

radiation used for cancer treatment (National Cancer Institute, 2010b; National Cancer 

Institute, 2010b). Patients receive either external-beam radiation therapy or internal 

radiation therapy (brachytherapy) (American Cancer Society, 2009). External-beam 

radiation therapy uses an external source of radiation, which is directed at a particular 
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part of the body whereas brachytherapy is radiation delivered from radiation sources 

(radioactive materials) placed inside or on the body (National Cancer Institute, 2007).  

Exposure to ionizing radiation leads to rapid generation of reactive oxygen 

species (ROS) and oxidative stress that produce indirect DNA damage (Chen and Nirodi, 

2007). One of the most lethal radiation induced lesions in DNA is the double strand 

break, as these lesions are not as easily repaired by DNA damage repair mechanisms as 

single strand breaks (Spitz et al., 2004). Moreover, double strand breaks in the DNA can 

lead to growth arrest or cell death by the activation of several signaling pathways 

(Rothkamm and Lobrich, 2002). Other types of DNA damage caused by radiation include 

single strand breaks, DNA-protein cross-links and addition of DNA adducts (Davidson 

and Coh, 1988; Hall and Giaccia, 2006). DNA damage caused by ionizing radiation can 

be direct or indirect. Most often damage is indirect, which occurs through the ionization 

of atoms (Hall and Giaccia, 2006). Specifically, indirect DNA damage occurs via the 

ionization of water, which in turn leads to the formation of O2 and hydroxyl radicals 

(OH) (Fig 1.1) (Hall and Giaccia, 2006). 

The amount of radiation used in photon radiation therapy is measured 

in gray (Gy), and varies depending on the type and stage of cancer being treated. For 

curative cases, the typical dose for a solid epithelial tumor ranges from 60 to 80 Gy, 

while lymphomas are treated with 20 to 40 Gy (National Cancer Institute, 2010b). 

Patients typically receive fractionated radiation doses of 2 Gy (National Cancer Institute, 

2010b). As ionizing radiation is not specific for cancer cells, fractionating the radiation 

dose allows normal cells time to recover from treatment. Due to decreased repair 

mechanisms, tumor cells are generally less efficient in recovering from radiation 
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treatment (National Cancer Institute, 2010b). Another benefit of fractionated radiation is 

the ability to allow tumor cells that were in a relatively radio-resistant phase of the cell 

cycle during one treatment to cycle into a sensitive phase of the cycle before the next 

fraction is given (National Cancer Institute, 2010b). Likewise, tumor cells that are more 

radioresistant due to hypoxia may have time to reoxygenate between fractions, which can 

improve tumor cell killing (National Cancer Institute, 2010b). The typical fractionation 

schedule for adults is 1.8 to 2 Gy per day, five days a week (National Cancer Institute, 

2010b).  

As with many therapeutic approaches, there are limitations associated with 

radiation therapy. While ionizing radiation is often initially effective in killing tumor 

cells or suppressing their growth, there are factors that confer resistance to irradiation in 

breast tumor cells, such as refractoriness to apoptosis and increased DNA repair capacity 

(Dent et al., 2003). Development of resistance may lead to disease recurrence despite the 

use of surgery, chemotherapy and radiation therapy.  

 

 

 

 

 

Figure 1.1 DNA Damage Induced by Ionizing Radiation (Goodall, 2004) 
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Cellular Responses to Cancer Therapy 

Apoptosis is a caspase dependent programmed cell death pathway (Widmann et 

al., 1998). Apoptosis is a normal physiological process that occurs during cellular 

development and serves to maintain cellular homeostasis and protect against abnormal 

cell division (Schwartzman and Cidlowski, 1993). It can also be activated following 

extreme cellular stress conditions such as DNA damage or hypoxia and is often thought 

to be the main response to cancer treatments (Hannun, 1997; Lowe and Lin, 2000). 

Apoptosis is characterized by morphological features such as cell shrinkage, membrane 

blebbing and nuclear fragmentation (Boe et al., 1991). There are two main apoptotic 

pathways, the extrinsic and intrinsic which respond to external and internal death signals 

respectively. Both pathways lead to transduction of intracellular signals that ultimately 

result in the activation of a complex cleavage cascade, converging on caspase-3 (an 

effector protein that initiates degradation) and subsequent destruction of the cell 

(Ashkenazi, 2008; Elmore, 2007). Other executioner caspases such as 6 and 7 are also 

involved in mediating apoptosis (Tong et al., 2002). 

The extrinsic apoptotic pathway involves the activation of transmembrane death 

receptors (Fesik, 2005). These receptors are members of the tumor necrosis factor (TNF) 

receptor gene superfamily, where the most well characterized receptor ligands include 

FasL, TNF-alpha, Apo3L, and Apo2L (Fesik, 2005). The corresponding receptors are 

FasR, TNFR1, DR3, and DR4/DR5, respectively (Fesik, 2005). The binding of the FasL 

to Fas receptors triggers multiple receptors on the cell surface to aggregate together. 

Formation of this aggregate results in the recruitment of Fas-associated death domain 

protein (FADD), an adaptor protein on the cytoplasmic side of the receptor (Fesik, 2005). 
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FADD, in turn, recruits caspase-8, an initiator protein, to form the death-inducing signal 

complex (DISC) (Elmore, 2007; Fesik, 2005). Moreover, the activated caspase-8-DISC 

complex directly activates caspase-3 to initiate degradation of the cell (Fig 1.2) (Fesik, 

2005).   

Unlike the extrinsic pathway, the intrinsic apoptotic pathway is not receptor- 

mediated, but in turn responds to internal stimuli such as cellular stress, specifically 

mitochondrial stress caused by factors such as DNA damage and heat shock (Fulda and 

Debatin, 2006). After receiving a stress signal, the cytoplasmic pro-apoptotic proteins, 

BAX and BID, bind to the outer membrane of the mitochondria to signal the release of 

internal content (Ashkenazi, 2008; Fulda and Debatin, 2006). Another pro-apoptotic 

protein, BAK which resides within the mitochondria, is recruited for cytochrome c 

release (Fulda and Debatin, 2006). Following its release, cytochrome C forms a complex 

in the cytoplasm with adenosine triphosphate (ATP) and Apaf-1, which leads to 

activation of caspase-9 (Fulda and Debatin, 2006). The cytochrome c, ATP and Apaf-1 

complex is termed the apoptosome. In a similar manner to the extrinsic pathway, the 

apoptosome activates caspase-3 (Fig 1.2) (Elmore, 2007). It is believed that many cancers 

arise from the dysfunction in the apoptotic pathway (Kasibhatla and Tseng, 2003).  

Mitotic Catastrophe is cellular response due to abnormal cell division and 

believed to maintain genome stability by preventing division of cells with damaged DNA 

(Vitale et al., 2011). Mitotic catastrophe has been defined in morphological terms as a 

mechanism of cell death occurring during or after aberrant mitosis (Vitale et al., 2011). It 

is believed to occur as a result of aberrant chromosome segregation during early mitosis.  
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Mitotic Catastrophe is also correlated with incomplete DNA synthesis (Castedo et al., 

2004).  

 

 

 

Figure 1.2 Intrinsic and Extrinsic Apoptosis Pathways (Method used by COX-2 

enzymes in development of colon cancer described by UCSD medical researchers.2003) 
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In a similar fashion to apoptosis, cells undergoing mitotic catastrophe display 

chromosome condensation (Castedo et al., 2004; Vakifahmetoglu et al., 2008) . However, 

unlike apoptotic cells, cells undergoing mitotic catastrophe do not undergo shrinkage of 

the cytoplasm and nuclear fragmentation (Castedo et al., 2004). All the morphological 

and biochemical changes involved in mitotic catastrophe are not fully understood; 

however Castedo et al proposes that mitotic catastrophe is a result of the combination of 

deficient cell cycle checkpoints and cellular damage (Castedo et al., 2004). Cells 

undergoing mitotic catastrophe are characterized by an accumulation of multiple 

micronuclei and one of the most prominent morphological characteristics of mitotic 

catastrophe is the formation of giant cells with abnormally large nuclei (Castedo et al., 

2004; Vakifahmetoglu et al., 2008; Vitale et al., 2011). There is evidence that cell cycle 

specific kinases such as cyclin B1-dependent kinase, aurora kinases, survivin and p53 

play a part in regulation of mitotic catastrophe (Castedo et al., 2004). It is still unclear 

whether mitotic catastrophe results in caspase-dependent or caspase-independent cell 

death. 

Senescence is irreversible growth arrest caused by the shortening of telomeres or 

cellular stress such as extensive DNA damage caused by radiation or DNA damaging 

agents (Ben-Porath and Weinberg, 2004). During senescence (believed to be a state of 

permanent growth arrest), cells are refractory to physiological proliferation stimuli but 

they remain viable and have some metabolic activity (Ben-Porath and Weinberg, 2004). 

Senescent cells also exhibit altered cell morphology and gene expression patterns (Dimri 

et al., 1995). Senescent cells are characterized by an enlarged flattened morphology and 

an increase of β-galactosidase activity (Dimri et al., 1995).  
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There are three forms of senescence: oncogene-induced, replicative and stress 

induced. Replicative senescence is a fundamental feature of somatic cells as it prevents 

unlimited cell division and is believed to be a tumor suppressive mechanism (Campisi, 

2001). Human diploid fibroblasts were the cell type initially used to define the 

mechanisms underlying replicative lifespan (Dimri, 2005). Replicative senescence is 

initiated by telomere shortening and reports in the literature suggest a role of cell cycle 

regulators such as p53, p16 and p21 (Dimri, 2005). On the other hand, oncogene-induced 

senescence (OIS) is a sustained antiproliferative response as a result of oncogenic 

signaling which results from oncogene mutations, or the inactivation of tumor-suppressor 

genes (Braig and Schmitt, 2006). Oncogene induced senescence (OIS) was first observed 

following expression of an oncogenic form of RAS in normal human fibroblasts (Lleonart 

et al., 2009). Moreover, OIS is telomere independent and is believed to be a tumor 

suppressive mechanism to prevent the development of malignant tumors (Braig and 

Schmitt, 2006). Stress-induced senescence (SIS) can be induced by DNA damage, 

ionizing radiation such as X-rays or UV, and oxidative stress (Lleonart et al., 2009). 

Necrotic cell death is often referred to as the premature death of cells and unlike 

other cellular responses to therapy, it is not believed to occur by an orderly set of 

signaling cascades (Golstein and Kroemer, 2007). A classical definition of necrosis is 

based on morphological features, which include plasma membrane rupture, dilation of 

cytoplasmic organelles and spillage of intracellular proteins that activates a damage 

response regulated by the immune system (Golstein and Kroemer, 2007).  Induction of 

the inflammatory response and immune amplification is in sharp contrast to apoptotic 

cells that are silently removed by tissue macrophages (Golstein and Kroemer, 2007). 
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Moreover, morphological features of necrotic cells are similar to apoptosis but there is no 

involvement of caspases (Vandenabeele et al., 2010). 

 Recent reports suggest that necrosis might in fact have distinct molecular 

markers. Genetic studies have identified death receptor adaptors, including receptor 

interacting protein kinase 1 (RIPK1) and the tumor necrosis factor (TNF) receptor –

associated factor (TRAF2), as essential regulators of death receptor–induced necrotic cell 

death (Galluzzi et al., 2009). Receptor-interacting serine threonine kinase (RIP-1) is also 

thought to be involved in this pathway. RIP-1 is reported to induce necrosis via 

mitochondrial dysfunction (Vandenabeele et al., 2010). Cells deficient in RIPK1 or 

TRAF2 have been shown to be protected from necrotic cell death when treated with Fas 

ligands (Festjens et al., 2007).  

Autophagy is an evolutionary conserved process whereby cytoplasm and cellular 

organelles are degraded in lysosomes for amino acid and energy recycling (Chen and 

Karantza-Wadsworth, 2009) (Fig 1.3). Autophagy is activated by various cellular 

stressors such as nutrient starvation, energy depletion, DNA damage, interruption of 

growth factor signaling pathways, activation of mitogen-activated protein kinase 

signaling, inhibition of proteasomal degradation, the accumulation of intracellular 

calcium, and endoplasmic reticulum stress (Chen and Karantza-Wadsworth, 2009; 

Shintani and Klionsky, 2004). Upon activation, there is the formation of a double 

membrane structure around the cytoplasm and cytoplasmic organelles termed an 

autophagasome (Chen and Karantza-Wadsworth, 2009; Levine and Klionsky, 2004). 

Various autophagy proteins (ATGS) are required for initiation and elongation of this 

structure. One of the most crucial ATGS recruited to the autophagasomal membrane is 
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light chain protein 3 (LC3/ATG 8) which is needed for stabilization of this structure 

(Tanida et al., 2004). Once autophagy is activated, LC3 I is converted to LC3 II by E1-

like enzyme, ATG-7. When the autophagasome fully matures it fuses with the lysosome 

and the contents are degraded by hydrolases (Chen and Karantza-Wadsworth, 2009; 

Kroemer and Jaattela, 2005; Shintani and Klionsky, 2004). The degraded contents are 

used for substrates for amino acids to allow for synthesis of new macromolecules 

(Codogno and Meijer, 2005; Geng and Klionsky, 2008) (Fig 1.3) 

Two unique ubiquitin-like conjugation systems, Atg8-phosphatidylethanolamine 

(Atg8-PE) and Atg12-Atg5, are involved in the biogenesis of the autophagic membrane 

(Fig 1.4). These conjugation systems are widely conserved in various eukaryotes and 

have an essential role in autophagy (Levine and Klionsky, 2004; Mizushima et al., 1998). 

In the Atg12-Atg5 conjugation system, an irreversible isopeptide bond is formed between 

a C-terminalglycine residue of Atg12 and a central lysine residue of Atg5 (Kilonsky, 

2011). Two additional proteins are required to form this conjugate; one is Atg7, which is 

an E1 ubiquitin activating enzyme and the other is Atg10, which functions like an E2 

ubiquitin conjugating enzyme (Geng and Klionsky, 2008; Mizushima et al., 1998). As in 

the ubiquitin system, the E1-like enzyme Atg7 binds the C-terminal glycine of Atg12 

through its active site to form an intermediate complex via a thioester bond (Mizushima 

et al., 1998). ATP hydrolysis results in Atg12 activation, and activated Atg12 is then 

transferred to the E2 like enzyme, Atg10 (Mizushima et al., 1998).Finally, Atg12 is 

covalently bonded to an internal lysine residue of Atg5 to form the final conjugate 

(Mizushima et al., 1998). The Atg12- Atg5 conjugate noncovalently binds another 

protein Atg16, which can mediate the formation of a higher multimeric structure of 
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Atg12, Atg5, and Atg16 (Mizushima et al., 1998). Experiments have demonstrated that 

the formation of the multimeric Atg12-Atg5-Atg16 complex is functionally important for 

autophagy (Geng and Klionsky, 2008; Xie and Klionsky, 2007). 

 

 

 

Figure 1.3 Autophagy: Autophagosome formation and degradation (Chen and 

Klionsky, 2011)   
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The other autophagy conjugation system involves Atg8 as a modifier of a lipid, 

phosphatidylethanolamine (Geng and Klionsky, 2008). Atg8 was originally characterized 

as a microtubule-associated protein required for autophagy. In the first step of Atg8 

conjugation, Atg4 proteolytically removes a C-terminal arginine residue of Atg8, which 

exposes a glycine residue, making it accessible to the E1-like enzyme Atg7 (Geng and 

Klionsky, 2008). Atg7 activates Atg8, which is then transferred to another E2-like 

enzyme, Atg3, and eventually conjugated to phosphatidylethanolamine (PE) (Geng and 

Klionsky, 2008).  

Autophagy is thought to be initially activated as a survival mechanism (Fung et 

al., 2008; Ito et al., 2005; Lum et al., 2005; Lum et al., 2005; Shintani and Klionsky, 

2004; Shintani and Klionsky, 2004; Wu et al., 2008). However, data demonstrates that 

autophagy can become a cellular suicide pathway when apoptosis is defective and 

following extreme stress conditions (Debnath et al., 2005; Gorka et al., 2005; Maiuri et 

al., 2007; Mathew et al., 2007; Oh et al., 2008). Anticancer therapies such as drug 

treatment and gamma-irradiation have been shown to induce autophagy(Paglin et al., 

2001a) and  the autophgay induced can either contribute to cell death or represent a 

mechanism of resistance to these treatments(Apel et al., 2008; Gewirtz et al., 2009) .  

There is some controversy in the literature as to whether autophagy is actually a 

cell death mechanism or rather just a precursor to other forms of cell death (Kroemer and 

Levine, 2008; Levine and Yuan, 2005; Shen and Codogno, 2011). There are, however, 

certain characteristics that define autophagic cell death. These characteristics include: i) 

cell death occuring without the involvement of apoptosis and necrosis; (ii) increased 

autophagic flux, rather than an increase of autophagic markers; and (iii) suppression of 
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autophagy via both pharmacological inhibitors and genetic approaches is able to rescue or 

prevent cell death (Shen and Codogno, 2011). 

 

 

 

Figure 1.4 Autophagy Conjugation Systems (Kilonsky, 2011)  
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Autophagy Signaling (AMPK/mTOR, ER Stress) 

Autophagy is a multi-step process that appears to be regulated by various 

signaling pathways (Codogno and Meijer, 2005). Suppression of mammalian target of 

rapamycin (mTOR) signaling has been implicated as one of the primary pathways 

associated with promotion of autophagy (Botti et al., 2006; Codogno and Meijer, 2005). 

mTOR is a sereine/thereonine kinase that belongs to the phosphatidylinositol kinase-

related kinase (PIKK) family (Jung et al., 2010). mTOR is responsible for regulating cell 

growth, proliferation, cytoskeletal organization, transcription, protein synthesis, 

ribosomal biogenesis and cellular survival (Dowling et al., 2010; Jung et al., 2010). 

 mTOR is present in two distinct protein complexes commonly referred to as 

mTOR complex 1 (mTORC1) and mTOR complex 2 ( (Fig 1.6) (Dowling et al., 2010). 

mTORC1 signaling is frequently deregulated in cancer (Pantuck et al., 2007). Loss or 

inactivation of effectors upstream of mTOR, which antagonize activation of mTORC1, 

such as p53, LKB1, PTEN, and TSC1/2, can promote tumorigenesis via increased 

signaling through mTORC1 (Guertin and Sabatini, 2007). Moreover, increased levels 

and/or phosphorylation of downstream targets of mTORC1 have been reported in various 

human malignancies in which they correlate with tumor aggressiveness and poor 

prognosis (Hirashima et al., 2010; Pantuck et al., 2007). The activity of mTOR is 

inhibited by such stressors as nutrient starvation (amino acids and glucose), and energy 

depletion (Jung et al., 2010). Both stressors are known as crucial activators of autophagy 

induction in eukaryotes (Jung et al., 2010). Among the numerous components involved in 

the regulation of autophagy and growth, TOR (target of rapamycin) is a key component 
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that coordinately regulates the balance between growth and autophagy in response to 

cellular physiological conditions and environmental stress (Jung et al., 2010). 

 

 

Figure 1.5 mTOR Signaling (Dowling et al., 2010)  
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mTOR is also closely linked with 5′-adenosine monophosphate-activated 

protein kinase (AMPK) as it represents an important regulator of mTOR activity (Chen 

and Klionsky, 2011; Motoshima et al., 2006).  AMPK has emerged as an important 

regulator of cellular energy homeostasis that coordinates metabolic pathways in order to 

balance nutrient supply with energy demand in mammalian cells (Motoshima et al., 

2006). AMPK is activated in response to an increase in the AMP:ATP ratio during 

hypoxia, starvation, or glucose deprivation (Hardie, 2011). The heterotrimeric AMPK 

contains a catalytic α-subunit, encoded by two genes α1 and α2 (Kodiha et al., 2007; 

Viollet et al., 2010).The regulatory β- and γ-subunits are encoded by two and three genes, 

respectively (Kodiha et al., 2007).  

Activation of AMPK includes the phosphorylation of Threonine 172 of the α-

subunit, which can be mediated by one of three upstream regulatory kinases LKB1,  

Ca2+/calmodulin-dependent kinase kinase (CaMKK)  and TAK1 (Chen and Klionsky, 

2011; Kim et al., 2011b; Luo et al., 2005).  Numerous studies have determined an 

involvement of AMPK activation in autophagy induction (Hardie, 2011; Mihaylova and 

Shaw, 2011; Roach, 2011). It is believed that AMPK promotes autophagy by inhibiting 

mTOR activity through its phosphorylation of mTOR inhibitor, TSC2 (Chen and 

Klionsky, 2011; Hardie, 2011). Furthermore, the LKB1–AMPK–TSC1/2 and CaMKK–

AMPK–TSC1/2 signaling pathways have been shown to play a role in mTORC1 

inhibition under oxidative stress (Chen and Klionsky, 2011). It has also been proposed 

that AMPK can induce autophagy independent of mTOR by direct activation of 

autophagy inducer ULK1. Hoyer-Hansen et al demonstrated that calcium-mobilizing 

agents such as vitamin D can trigger an increase in intracellular calcium levels, which can 
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ultimately lead to autophagy induction through the AMPK-mTOR pathway (Jung et al., 

2010; Kim et al., 2011b; Roach, 2011). Inhibition of CaMKKβ using pharmacological 

inhibitor ST609 or knockdown using siRNA has been shown to attenuate autophagic cell 

death induced by vitamin D in MCF-7 breast cancer cells (Hoyer-Hansen et al., 2007). In 

addition, inhibition of intracellular calcium by BAPTA-AM and AMPK inhibition by 

pharmacological inhibitor compound C also inhibits autophagy induced by vitamin D in 

MCF-7 cells, suggesting a crucial role of this signaling pathway in autophagic cell death 

in breast cancer cells (Fig 1.6). 

 

Figure 1.6 AMPK Signaling (Chen and Klionsky, 2011)   
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 The endoplasmic reticulum serves two major functions in the cell. It facilitates the 

proper folding of newly synthesized proteins destined for secretion, cell surface or 

intracellular organelles, and it provides the cell with a Ca2+ reservoir (Hoyer-Hansen and 

Jaattela, 2007a). The endoplasmic reticulum (ER) is the compartment in which protein 

folding occurs prior to transport to the extracellular surface or various intracellular 

organelles (Hoyer-Hansen and Jaattela, 2007a). ER stress occurs in various physiological 

and pathological conditions where the capacity of the ER to fold proteins becomes 

saturated. For example, ER stress can become activated  in response to the expression of 

folding incompetent or aggregation prone proteins, Ca2+ flux across the ER membrane, 

glucose starvation (reduced protein glycosylation), hypoxia (reduced formation of 

disulfide bonds) or defective protein secretion or degradation  (Hoyer-Hansen and 

Jaattela, 2007a; Verfaillie et al., 2010). Furthermore, activation leads to the induction of a 

complex intracellular signaling cascade, termed the unfolded protein response (UPR), to 

remove misfolded and damaged proteins (Ogata et al., 2006). It is been shown that there 

is a direct link between the UPR and autophagy (Hoyer-Hansen and Jaattela, 2007a; 

Ogata et al., 2006). When the UPR becomes overwhelmed, autophagy is activated as a 

compensatory mechanism to remove the damaged proteins (Hoyer-Hansen and Jaattela, 

2007a; Verfaillie et al., 2010).  

  While the UPR is usually a prosurvival response, under certain moderate and 

intermittent degrees of ER stress, chronic stress can lead to autophagic cell death 

(Verfaillie et al., 2010). Although autophagy has been associated with ER stress, the 

detailed molecular mechanisms behind activation have not been fully elucidated. 

However, there is increasing evidence that suggest that induction/activation of PERK, 
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eIF2α, IRE1, JNK, and XPB1 (Fig 1.7) are involved in ER stress mediated autophagy 

signaling (Hoyer-Hansen and Jaattela, 2007b; Verfaillie et al., 2010) In fact PERK-eif2a 

has been shown to mediate the conversion of LC3I to LC3II (Kouroku et al., 2007). 

 

 

 

 

 

Figure 1.7 ER Stress Signaling (Hoyer-Hansen and Jaattela, 2007a) 

 ER Stress 
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Vitamin D 

Vitamin D is a part of a group consisting of fat-soluble secosteroids (National 

Cancer Institute, 2010a) (Fig 1.8). Vitamin D functions as a pro-hormone and unlike most 

vitamins; it can be synthesized in the body (National Cancer Institute, 2010a). Vitamin D 

can be obtained from two sources, UV-B light from exposure to the sun and through 

dietary sources such as fatty fish, cod liver oil and milk (Cui and Rohan, 2006). 

Moreover, vitamin D is not a true vitamin because it does not require dietary supplements 

when sun exposure is adequate (National Cancer Institute, 2010a).  

Vitamin D is synthesized from cholesterol, specifically 7-dehydrocholestorol (Cui 

and Rohan, 2006; Ma et al., 2010; National Cancer Institute, 2010a). Synthesis is 

triggered when ultraviolet rays from sunlight (UV-B) strike the skin and convert 7-

dehydrocholestorol into Cholecalciferol (pre- vitamin D3),  (Cui and Rohan, 2006). Pre-

Vitamin D3 is inert and must be activated by 2 hydroxylation steps, first in the liver by 

25-hydroxylase (CYP24B1) where it becomes 25-hydroxyvitamin D and second in the 

kidney by 1-alpha-hydroxylase (CYP24A1) (Fig 1.9) (Cui and Rohan, 2006).  Pre-

Vitamin D3 is transported in the blood stream on vitamin D binding proteins. The active 

form of vitamin D is termed calcitriol (1-alpha-dihydroxyvitamin D 1,25D3)(Cui and 

Rohan, 2006). Deactivation occurs when 1,25D3 is hydroxylatd by 24-hydroxylase, 

which yields 1-alpha-24,25 hydroxyvitamin D (Cui and Rohan, 2006).  

Vitamin D’s effects are mediated through its binding with the vitamin D receptor 

(VDR) (Cui and Rohan, 2006). The VDR can be found in both the cytoplasm and the 

nucleus, but in many cells it is predominately in the nucleus (Fleet et al., 2012). Once 
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activated by calcitriol (1,25D3), the active form of vitamin D, it forms a hetereodimer 

with the retinoid-X receptor (RXR) and translocates to the nucleus where it can bind to 

vitamin D response elements in DNA to affect gene transcription (Cui and Rohan, 2006). 

The major biologic function of vitamin D is to maintain normal blood levels of 

calcium and phosphorus (American Cancer Society, 2010; Cui and Rohan, 2006). 

Vitamin D aids in the absorption of calcium in the bone, which enables bone growth, 

remodeling and mineralization (American Cancer Society, 2010; Cui and Rohan, 2006). 

Activation of 1,25D3 is triggered when calcium levels are low (Cui and Rohan, 2006). 

The parathyroid gland releases the parathyroid hormone, which in turn increases the 

synthesis of 1-alpha hydroylase and consequently results in an increase of active vitamin 

D (Silver et al., 1999). 

 

Figure 1.8 Vitamin D structure 
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Apart from the established role of vitamin D3 in regulation of calcium 

homeostasis, numerous studies have shown that the metabolically active form of vitamin 

D3, 1,25-di hydroxy vitamin D3, is actually involved in numerous biological processes.  

It has been demonstrated that Vitamin D can modulate cell growth, neuromuscular and 

immune function, reduce inflammation as well effect the tumor microenvironmnt (Deeb 

et al., 2007; National Cancer Institute, 2010a). Many genes encoding proteins that 

regulate cell proliferation, differentiation, and apoptosis are modulated in part by vitamin 

D (Trabert et al., 2007). Numerous types of cells have also been shown to express the 

vitamin D receptor and possess 1α-hydroxylase allowing for extrarenal activation of 

vitamin D on site (Buras et al., 1994; Chiang and Chen, 2009; Chung et al., 2009; Fleet et 

al., 2012). 

Vitamin D has been shown to be involved in cancer prevention and treatment (Ma 

et al., 2010; National Cancer Institute, 2010a). The first results came from epidemiologic 

studies known as geographic correlation studies. In these studies, an inverse relationship 

was found between sunlight exposure levels in a given geographic area and the rates of 

incidence and death for certain cancers in that area (Fleet et al., 2012; National Cancer 

Institute, 2010a). Individuals living in southern latitudes were found to have lower rates 

of incidence and death for these cancers than those living at northern latitudes. Because 

sunlight/UV exposure is necessary for the production of vitamin D3, researchers 

hypothesized that variations in vitamin D levels accounted for the observed relationships 

(National Cancer Institute, 2010a).Furthermore, women deficient in Vitamin D have been 

shown to have more advanced breast cancer that is prone to metastasis than women who 

have sufficient levels (National Cancer Institute, 2010a). Laboratory studies also 
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suggested a possible cancer-protective role for vitamin D using cell culture models 

(National Cancer Institute, 2010a). In fact, it is now known that a number of cancer cells 

express the vitamin D receptor and activation of the VDR can lead to differentiation, 

growth arrest, inhibition of metastasis and angiogenesis as well as cell death in a number 

of malignancies (Chiang and Chen, 2009; Fleet et al., 2012; Ma et al., 2010). 

 

Figure 1.9 Vitamin D Activation (Deeb et al., 2007) 
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Genes involved in growth that are known to be regulated by vitamin D include 

p21, p27 and cyclin dependent kinases (Deeb et al., 2007; Ingraham et al., 2008; Wu and 

Sun, 2011). One interesting research finding showed that vitamin D is a partner in the 

antioxidant defense system of cells, helping to clear them of free radicals and thereby 

protecting them from DNA damage that can lead to mutations (Fleet et al., 

2012).  Moreover, studies have shown that mutations of the VDR can render prostate and 

breast cancer cells more aggressive and harder to treat (Deeb et al., 2007; Fleet et al., 

2012). An additional mechanism by which vitamin D may influence cancer cell growth 

and viability is through modulation of growth factor signaling i.e. Insulin-like growth 

factor signaling (Fleet et al., 2012).  

It is believed that vitamin D’s anti-proliferative effects are due to modulating cell 

signaling pathways leading to casapase dependent and independent cell death such as 

apoptosis and autophagy (Deeb et al., 2007; Fleet et al., 2012). For instance, Hoyer-

Hansen et al reported that vitamin D analog (100nM), EB1089, can induce cytotoxic 

autophagy in MCF-7 cells following a 5 day treatment (Hoyer-Hansen et al., 2005; 

Welsh, 2007). Studies by Welsh et al have demonstrated biochemical and morphological 

features of apoptosis in breast cancer in response to vitamin D (Welsh, 2007). In addition 

to vitamin D having anti-proliferative effects on its own, it has been shown that vitamin 

D can actually enhance the effects of other cancer therapies such as Adriamycin, Taxol 

and 5- Fluorouracil (Ma et al., 2010).  

Previous Studies 

A primary goal of research in our laboratory has been to develop strategies using 

natural compounds to enhance the response to radiation therapy by devising ways to 
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prevent proliferative recovery. We believe proliferative recovery is one basis for disease 

recurrence. Once disease recurs, it often very difficult to treat (American Cancer Society, 

2011a). One strategy employed to enhance radiation response included using the active 

form of vitamin D, Calcitriol (1,25D3) as well as analogs of vitamin D to sensitize cells 

to radiation (Demasters et al., 2006; Gewirtz et al., 2009; Sundaram and Gewirtz, 1999). 

Previous work in our laboratory has demonstrated that the active form of vitamin D and 

vitamin D analogs can enhance radiation therapy in MCF-7 breast cancer cells 

(Demasters et al., 2006; Gewirtz et al., 2009; Sundaram and Gewirtz, 1999). Pre-

treatment with 100nM EB1089 or 100nM 1,25D3 for 72 hours significantly reduced cell 

viability in cells receiving a fractionated dose of radiation (5x2gy) compared to cells that 

received radiation treatment alone (Demasters et al., 2006). Vitamin D and its analog 

appeared to interfere with proliferative recovery as the recovery was completely 

attenuated with vitamin D pre-treatment. Studies evaluating the cellular responses 

mediating vitamin D radiosensitization revealed that apoptosis and mitotic catastrophe 

were not responsible and promotion of autophagy was likely the mode of sensitization 

(Demasters et al., 2006). This hypothesis was based on the fact that there was a 

significant increase in autophagy in 1,25D3+IR treatment compared to cells that received 

1,25D3 and IR treatment alone (Demasters et al., 2006).  

Hypotheses and Specific Aims 

Our proposed studies were designed to build upon and extend previous work from 

this laboratory focused on determining the nature of cell death when vitamin D is 

combined with ionizing radiation in the MCF-7 breast cancer cell line. We sought to 

extend these studies to other breast cancer cell lines believed to be highly resistant to 
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radiotherapy and to elucidate the autophagic signaling mechanisms by which 1,25-di 

hydroxy vitamin D3 sensitizes breast cancer cells to ionizing radiation therapy.  We 

hypothesized that: 

• Drug- and radiation-resistant breast cancer cell lines will be sensitized to radiation 

therapy following treatment with 1,25-di hydroxyl vitamin D3  

• Autophagy is responsible for radiosensitization of breast tumor cells by 1,25-di 

hydroxy vitamin D3 and pharmacological and genetic inhibition of autophagy will 

block 1,25-di hydroxy vitamin D3 mediated radiosensitization.  

• The ER stress and mTOR pathways are involved in the autophagic signaling 

cascade and may be critical signaling elements in the radiosensitization of breast 

tumor cells by 1,25-di hydroxy vitamin D3  

To test our hypotheses we developed the following specific aims: I) proving that 

1,25D3 sensitizes drug and radiation resistant breast cancer cells to radiotherapy using 

ZR-75-1, HS587T cells and 231-BR breast cancer cells; II) Substantiating that autophagy 

is the mode of radiation sensitization in breast tumor cells treated with 1,25 dihydroxy 

vitamin D3 by ruling out other forms of cell death and using pharmacological and genetic 

approaches to inhibit autophagy. III) Determining the involvement/modulation of the ER 

stress and mTOR pathways in radiosensitization of breast cancer cells by 1,25 dihydroxy 

vitamin D3. 
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Chapter 2 

 

Materials and Methods 

 

Cell Lines 

The p53 wild-type (WT) ZR-75-1, MCF-7 and HS587t human breast tumor cell lines 

were obtained from ATCC. 231- BR cells were a generous gift from Dr. Palemiri. The 

ZR-75-1 ATG5-/-and ATG7-/- cells were generated as indicated below. 

RNA Interference 

The siRNA sequence to target Atg5 was obtained from a previous publication (Crighton et 

al., 2006):   The sequence of the siRNA was:  GCAACTCTGGATGGGATTG.  It was 

ordered as a hairpin oligonucleotide with the sense and antisense sequence separated by a 

loop sequence and restriction sites at the 5’ and 3’ ends to facilitate cloning into System 
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Bioscience’s pSIH-H1-puro lentiviral shRNA vector (which uses the H1 promoter to 

drive expression).   With the shRNA inserted into this vector, lentivirus was produced in 

HEK 293TN cells co-transfected with the followingvectors that encode the necessary 

packaging components:  pPack-Rev, pPack-Gag and pPack-VSVg (purchased from 

Systems Biosciences as a mix).  The virus shed into the medium was then used to infect 

the ZR75 cells. The latter were selected in medium with 1 ug/ml puromycin to enrich the 

infected cells. A 70% KD of Atg5 in these cells was observed following selection.  

shRNA control cells were generated in similar fashion except that the siRNA sequence 

used was against the irrelevant Aequorea victoria green fluorescent protein (GFP).    

Mission shRNA lentiviral transduction particles for Atg 7 (Sigma NM_006395), were 

purchased as a set of 5 different shRNA viral particles.  After infecting the ZR-75- target 

cells with each of the 5 different viral populations, each at 3 different MOI’s, the cells 

were checked for Atg7 expression and the culture that displayed the greatest decrease in 

Atg7 expression, was selected.  The Sigma particles that worked best were 

#TRCN0000007584 (at an MOI of 0.5), with shRNA directed against the following 

sequence in the 3’UTR of Atg7:  GCCTGCTGAGGAGCTCTCCA.  The transduced cells 

were selected with in medium with 1 ug/ml puromycin to obtain stable cell lines. 

Cell Culture and Treatment 

All ZR-75-1 derived cell lines were grown from frozen stocks in basal RPMI 1640 

supplemented with 5% FCS, 5% BCS, 2 mmol/L l-glutamine, and penicillin/streptomycin 

(0.5 mL/100 mL medium).  ZR-75-1/ATG5-/- and ATG-7-/- cells were maintained using 

(1µg/ml) puromycin (Sigma p8833) for resistance. All cells were maintained at 37°C 
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under a humidified, 5% CO2 atmosphere.  Cells were exposed to γ-IR using a 137Cs 

irradiator. In our studies, cells were exposed to 100 nmol/L 1,25 Vitamin D3 (Sigma 

D1530) alone or concurrently with radiation treatment. In the cases where the radiation 

doses were fractionated, four fractions of 2 Gy radiation were administered over two 

consecutive days (two fractions separated by 6 hours on days 1 and 2). 

Cell Viability and Clonogenic Survival 
 

Cell viability was determined by trypan blue exclusion at various time points after 

treatment. Cells were harvested using trypsin, stained with 0.4% trypan blue dye (Sigma 

T8154), and counted using phase contrast microscopy. For clonogenic survival studies, 

cells were plated in triplicate in six well tissue culture dishes at the appropriate density 

for each condition. (500 cells per treatment). After 14 days, the cells were fixed with 

100% methanol, air-dryed and stained with 0.1% crystal violet (Sigma C3886). For 

computing the survival fraction, groups of 50 or more cells were counted as colonies. 

Data were normalized relative to untreated controls, which were taken as 100% survival. 

Terminal Deoxynucleotidyl Transferase–Mediated dUTP Nick End Labeling Assay              

                                                             for Apoptosis 

The method of Gavrieli et al.(Gavrieli et al., 1992) was used as an independent 

assessment of apoptotic cell death in combined cytospins containing both adherent and 

nonadherent cells. Cells were fixed and the fragmented DNA in cells undergoing 

apoptosis was detected using the In situ Cell Death Detection kit (Roche 11373242910, 

03333566001), where strand breaks are end labeled with fluorescein-dUTP by the 

enzyme terminal transferase. Cells were then fixed to glass slides using DAPI-containing 
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Vectashield mounting medium (Sigma D9542).  Pictures were taken using an Olympus 

inverted fluorescence microscope. All images presented are at the same magnification. 

Western Blot Analysis 

After the indicated treatments, cells were washed in PBS and lysed using 500-1000 µL 

M-PER mammalian protein extraction reagent (Thermo Scientific #78501) containing 

protease and phosphatase inhibitors for 5 minutes on a shaker. Protein concentrations 

were determined by the Lowry method and equal aliquots of protein (40 µg) were 

separated using 12% SDS-PAGE. Proteins were transferred onto a nitrocellulose 

membrane and using Licor blocking buffer. Membranes were immunoblotted with 

respective antibodies and then incubated with respective Licor secondary antibodies. 

Proteins were visualized using the Licor imaging system. Primary antibodies used were 

anti-p62 (SQSTM1 – Santa Cruz sc-28359), anti-ATG5 (APG5 – Biosensis R-111-100), 

anti-ATG7 (APG7 – Santa Cruz sc-33211, anti-ß actin (Santa Cruz sc-47778) anti α-

tubulin (Santa Cruz sc-5286), anti-caspase 3(Cell Signaling 9665), anti-parp (Cell 

signaling 46D11). All primary antibodies presented were used at a 1:1000 dilution. All 

primary antibodies presented were used at a 1:1000 dilution 

Detection and Quantification of Autophagic Cells by staining with Acridine Orange 

As a marker of autophagy, the volume of the cellular acidic compartment was visualized 

by acridine orange staining (Paglin et al., 2001a). Cells were seeded in six well tissue 

culture dishes and treated as described above for the cell viability study. 72 hrs hours 

following initial treatment, cells were incubated with medium containing 1 µg/mL 

acridine orange (Invitrogen A3568) for 15 minutes; the acridine orange was then 
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removed, cells were washed once with PBS, fresh media was added, and fluorescent 

micrographs were taken using an Olympus inverted fluorescence microscope. All images 

presented are at the same magnification.  The number of cells with increased acidic 

vesicular organelles (AVO) was determined by flow cytometry. Cells were trypsinized, 

harvested and analyzed by BD FACSCanto II using BD FACSDiva software. A 

minimum of 10,000 cells within the gated region were analyzed 

Detection of Autophagic Cells by staining with Monodansylcadaverine (MDC) 

The autofluorescent agent monodansylcadaverine (Sigma Chemical) was used as a 

specific autophagolysosome marker (Zakeri et al., 2008). Cells were seeded in six well 

tissue culture dishes and treated as described above for the cell viability study. 72 hrs 

hours following initial treatment, cells were incubated with medium containing 1 µg/mL 

MDC for 15 minutes; the MDC was then removed, cells were washed once with PBS, 

fresh media was added, and fluorescent micrographs were taken using an Olympus 

inverted fluorescence microscope. Again, all images presented are at the same 

magnification.   

Cell Cycle Analysis by Propidium Iodide Staining 

For the cell cycle analysis, tumor cells treated as described above were trypsinized, fixed 

with 70% ethanol, and stained with propidium iodide 72 hours post treatment. Protocol 

was adapted from Z. Darzynkiewicz et al (Debacq-Chainiaux et al., 2009). A minimum 

of 20,000 cells/events was analyzed. 
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Transmission Electron Microscopy 

TEM services, including sample fixation, embedding, ultra-microtomy and staining were 

provided by the VCU Department of Anatomy and Neurobiology Microscopy Facility.  

Sections were imaged via Jeol JEM-1230 transmission electron microscope (EM) 

equipped with a Gatan UltraScan 4000SP 4K x 4K CCD camera.  The scale bar at the 

bottom of the micrograph indicates the magnification of each image. 

FACS Analysis for Annexin V and Propidium Iodide Positive Cells to Monitor 

Apoptosis and Necrosis 

For the FACS analysis, cells treated as described above were collected and labeled 

fluorescently for detection of apoptotic and necrotic cells by adding 500uL of binding 

buffer, 5uL of Annexin V-FITC and 5uL of propidium iodide to each sample. Samples 

were mixed gently and incubated at room temperature in the dark for 15 min. The number 

of cells with increased annexin/PI staining was determined by flow cytometry and 

analyzed by BD FACSCanto II using BD FACSDiva software. A minimum of 10,000 

cells within the gated region was analyzed. 

Cytochemical Detection of β-galactosidase Staining. 

β-galactosidase-positive cells were detected by the method of Dimri et al.(Dimri et al., 

1995) Briefly, the monolayers of cells were washed two times with PBS and then fixed 

with 2% formaldehyde 1 0.2% glutaraldehyde (prepared in PBS) for 5 min. The cells 

were then washed again two times with PBS. After the last wash, staining solution was 

added [1mg/ml 5-bromo-4-chloro-3-inolyl-b-D-galactoside(X-gal) in dimethyformamide 

(20 mg/ml stock), 40 mM citric acid/sodium phosphate, pH 6.0,5 mM potassium 
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ferrocyanide, 5 mM potassium ferricyanide, 150mM NaCl, 2 mM MgCl2] and the cells 

were incubated in a 37°C for 24 hr. After incubation the cells were washed two times 

with PBS and visualized using an Olympus inverted microscope.  

                              FACS Analysis of β-galactosidase Activity 

Cells were treated as described above and analyzed using fluorescent β-galactosidase 

activity marker C12FDG. The protocol was adapted from Debacq-Chainiaux et al 

(Debacq-Chainiaux et al., 2009).  

RFP-LC3 Redistribution 

 The MCF7 RFP-LC3 construct was a generous gift from Dr. Keith Miskimins. ZR-75-1 

cells were stably transfected with RFP-LC3 using the standard effectene (Qiagen) 

protocol. Cells were treated as described above and visualized using a Leica Confocal 

laser-scanning microscope. Cells were counterstained with DAPI to visualize. Five fields 

were counted for each treated condition to determine the average number of LC3 puncta 

per cell. 

Sytox Green and Propidium Iodide to Assess Cell Viability 

For the FACS analysis, cells treated as described above were collected and labeled 

fluorescently for evaluation of cell viability. Sytox green (Invitrogen) was diluted 1:1000 

in PBS. For Propidium iodide staining, a 1:1000 dilution was also used. Samples were 

mixed gently and incubated at room temperature in the dark for 15 min. The number of 

cells with increased sytox green staining was determined by flow cytometry and analyzed 

by BD FACSCanto II using BD FACSDiva software. A minimum of 10,000 cells within 

the gated region was analyzed 
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Kinase activation by Flow Cytometry 

After the indicated treatments, cells were washed with 1X PBS, fixed with 4% 

paraformaldehyde for 10 minutes, permeabilized with 100% cold methanol for 30 

minutes and incubated with blocking buffer (bovine serum albumin in PBS) for 10 

minutes.  Cells were then incubated with a 1:50 dilution of primary antibody for 1 hour. 

Cells were washed again with PBS and incubated with a fluorochrome-conjugated 

secondary antibody (1:100) for 30 minutes. Cells were washed with blocking buffer and 

resuspended in 400uL PBS. Fluorescent intensity was measured by FACS analysis. A 

minimum of 10,000 cells was analyzed for each sample. Primary antibodies used were 

anti- p-AMPK α1/α2THR 139 (Santa Cruz sc-33524), p-MTOR SER 2448 (Cell 

Signaling #2976), p-eif2a SER 52 (Santa Cruz sc-12412), p-PERK THR 981 (Santa Cruz 

sc-32577) anti- y-H2AX Ser139 (Millipore 05-636)  

Assessment of Intracellular Calcium using Flou-3am 

Cells were treated as described above, washed with PBS and incubated with intracellular 

calcium marker, Fluo3am (1:1000 in PBS). Fluorescent intensity was analyzed by FACS 

analysis. 

Statistical Analysis 

Statistical differences were determined using StatView statistical software. The data were 

expressed as the means ± SE (as standard error of the mean) Comparisons were made 

using a one-way ANOVA followed by Tukey Kramer post-hoc test. Ps ≤ 0.05 were taken 

as statistically significant.  
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Chapter 3 

 

Sensitization to Radiation by 1,25D3 

 

1,25 D3 has Modest Growth Inhibitory Effects on ZR-75-1 Breast Cancer Cells 

 Initial studies assessed the influence of treatment with 1,25D3 on cell viability to 

determine an effective concentration for use in our radiation sensitivity studies.  We have 

proposed that 1,25D3 treatment alone must be capable of producing at least a modest 

impact on cell viability in order to observe sensitization. Previous studies in our 

laboratory demonstrated that 1,25D3 treatment slows the growth of MCF-7 cells at 

100nM (Demasters et al., 2006). Thus, initial studies were conducted to assess the effects 

of 1,25D3 treatment in ZR-75-1 breast cancer cells. ZR-75-1 cells are similar to MCF-7 

cells in that they are estrogen receptor positive and contain wild type p53 (Neve et al., 

2006). However, unlike MCF-7 cells, they possess functional caspase-3 (Neve et al., 

2006). 
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To assess sensitivity to radiation by 1,25D3 in ZR-75-1 breast cancer cells, we 

conducted a clonogenic survival assay using 10nM, 50nM and 100nM 1,25D3 (Fig 3.1) 

Cells were treated with 1,25D3 for 72 hours and allowed to form colonies for 2 weeks. 

Both 50nM and 100nM 1,25D3 resulted in a modest but significant decrease in 

clonogenicity. A dose of 100nM was chosen for future studies. To confirm results 

obtained in the clonogenic survival assay, a trypan blue exclusion assay was performed to 

determine effects of 1,25D3 on cell viability. ZR-75-1 cells were treated with 100nM 

1,25D3 for 72 hours and cell viability was assessed at days 3 and 6 post treatment (Fig 

3.2). Similar to the clonogenic survival data, exposure of ZR-75-1 cells to 1,25D3 alone 

had a modest impact on cell growth; at day 3 control cells had doubled approximately 2.5 

times whereas cells treated with 1,25 D3 had doubled approximately 2 times.  Temporary 

growth inhibition is likely due to 1,25 D3’s regulation of proteins involved in cell cycle 

progression such as p21 (Ingraham et al., 2008; Wu et al., 1997). 

1,25D3 Sensitizes ZR-75-1 Cells to Radiation Therapy 

Our next set of studies was conducted to determine if treatment with 1,25D3 

sensitizes ZR-75-1 cells to radiation. Cells were treated with 1,25D3 concurrently with a 

fractionated dose of radiation (4x2 Gy) and viable cell number was determined by 

exclusion of trypan blue at days 3 and 6 following treatment (Fig 3.3). In previous studies 

in the laboratory, cells were pre-treated with 1,25D3 prior to receiving radiation. This 

method, however, did not result in enhanced sensitivity to radiation by 1,25D3 in ZR-75-

1 cells. Consequently, studies were conducted using concurrent 1,25D3 treatment as this 

treatment paradigm resulted in reliable and reproducible results. The combination of 

1,25D3 with radiation resulted in an approximate 40% reduction in cell viability (actual 
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cell killing) that was followed by growth arrest in the residual surviving cell population; 

in contrast, radiation alone appeared to inhibit cell growth without producing an actual 

reduction in viable cell number (compared to control) indicating that these cells were 

likely undergoing exclusively growth arrest (Fig 3.3).  To confirm these results, we 

sought to measure cell viability by flow cytometry using sytox green as described in the 

Materials and Methods section. Similar to trypan blue exclusion studies, at day 3 the 

combination of 1,25D3+IR produced a significant increase in non-viable cells, whereas 

radiation treatment alone did not reduce cell viability (Fig 3.4.) Staurosporine was used 

as a positive control for cell killing. 

Radiosensitization of ZR-75-1 breast cancer cells by 1,25 D3 was further assessed 

by the clonogenic survival assay using both single dose (Fig 3.5) and fractioned dose 

radiation (Fig 3.6); when combined with 1,25 D3, there was a significant decrease in 

clonogenicity compared to radiation alone at all radiation doses. As in the previous 

studies, 1,25D3 treatment alone produced a minimal impact on clonogenicity, indicating 

that the sensitization to radiation is likely not simply a result of additive toxicity between 

1,25D3 and radiation. 
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Figure 3-1 Modest Impact of 1,25D3 alone on Clonogenic Survival in ZR-75-1 Breast 
Cancer Cells. Cells were treated with various doses of 1,25D3 and clonogenic survival 
was assessed 14 days post treatment. Values shown are from a representative 
experiment with triplicate samples for each condition. * p<0.05   compared to control 

C
ontr

ol

1,
25

D
3 

10
nM

1,
25

D
3 

50
nM

1,
25

D
3 

10
0n

M

C
lo

n
o

g
e

n
ic

 S
u

rv
iv

a
l 
(C

o
lo

n
y
 N

u
m

b
e

r 
%

 C
o

n
tr

o
l)

0.1

1

10

100

1000

* *



 
 

42 

 

 
   
  

Figure 3-2 Modest Impact of 1,25D3 Alone on Cell Viability. ZR-75-1 breast cancer 
cells were exposed to 100nM 1,25D3 continuously. Viable cell number was determined 
by exclusion of trypan blue at days 3 and 6 post treatment. * p<0.05   compared to 
control 
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Figure 3-3 Growth Arrest by IR and Cell Death by 1,25D3+IR. ZR-75-1 cells received 
fractionated doses of 4x2 Gy (over a period of 2 days) or were treated concurrently with 
1,25D3 and  4x2 Gy radiation.Viable cell number was determined by exclusion of trypan 
blue at days 3 and 6 post treatment. Values shown are from a representative experiment 
with triplicate samples for each condition. * p<0.05   compared to control # p<0.05 
compared to IR alone  
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Figure 3-4 Increased Cell Death by 1,25D3+IR Treatment. ZR-75-1 cells were exposed 
to 100nM 1,25D3 continuously, 4 Gy radiation or were treated concurrently with 1,25D3 
and 4 Gy radiation. Viable cell number was determined by measuring intensity of Sytox 
Green at day 3 post treatment. Staurosporine was used as a positive control 
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Figure 3-4 (Continued) Increased Cell Death by 1,25D3+IR Treatment. ZR-75-1 
cells were exposed to 100nM 1,25D3 continuously, a dose of 4 Gy radiation or were 
treated concurrently with 1,25D3 and 4 Gy radiation. Viable cell number was determined 
by measuring intensity of Sytox Green at day 3 post treatment. * p<0.05   compared to 
control  
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Figure 3-5 1,25D3 Increases Sensitivity to Radiation (single dose radiation) ZR-75-1 
cells received 100nM 1,25D3 alone, various single doses of radiation or were treated 
concurrently with 1,25D3 and radiation. Clonogenic survival was assessed 14 days post 
treatment. Values shown are from a representative experiment with triplicate samples for 
each condition. * p<0.05   compared to IR 
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Figure 3-6 1,25D3 Increases Sensitivity to Radiation (fractionated radiation) ZR-75-1 
cells received 100nM 1,25D3 alone, various fractionated doses of radiation or were treated 
concurrently with 1,25D3 and radiation. Clonogenic survival was assessed 14 days post 
treatment. Values shown are from a representative experiment with triplicate samples for 
each condition. * p<0.05   compared to IR 
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Lack of Sensitization to Radiation by 1,25D3 in Cells Lacking Functional p53 

 To extend our radiosensitization studies to other breast cancer cells resistant to 

radiotherapy, we conducted studies in HS587t and 231-BR cells. HS587t breast cancer 

cells lack the estrogen receptor and are p53 mutant (Neve et al., 2006) . HS587t cells 

were treated with 1,25D3, fractionated radiation (4x2Gy) or 1,25D3+IR and cell viability 

was assessed at days 3 and 6 post treatment (Fig 3.7). Unlike the outcome of studies 

using ZR-75-1 cells, 1,25D3 treatment failed to sensitize HS578t cells to radiation 

therapy. DMSO, the solvent used to dissolve 1,25D3, was used as a control. In fact, while 

1,25D3 had no effect on cell viability alone inclusion of 1,25D3 appears to protect the 

cells from radiation. However, the increase in cell viability with 1,25D3+IR treatment 

was not significant compared to IR treatment alone. To confirm the lack of 

radiosensitization by 1,25D3, we conducted a clonogenic survival assay; as was the case 

with the trypan blue exclusion data, 1,25D3 also failed to sensitize HS587t cells to 

radiation therapy (Figs 3.8-and 3.9).  

We conducted the same studies in 231-BR breast cancer cells, a subclone of 

MDA-MB-231 human breast carcinoma cells that selectively metastasizes to brain (Gril 

et al., 2008). 231-BR cells originate from MDA-MB-231 breast cancer cells, which are 

triple negative, meaning they lack the estrogen receptor, functional p53 and the 

progesterone receptor. In addition, 231-BR cells overexpress the Epidermal Growth 

Factor Receptor (EGFR) (Gril et al., 2008). 231-BR cells were treated with 1,25D3 

before IR or treated concurrently with 1,25D3+IR and cell viability was measured using 

trypan blue exclusion at days 3 and 6 post treatment (Fig 3.9). Neither pre-treatment nor 
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continuous exposure to 1,25D3 sensitized 231-BR cells to radiation.  Thus, no further 

studies were conducted to assess radiosensitization. 
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Figure 3.7 Treatment with 1,25D3 does not Enhance Sensitivity to Radiation in 
HS587T Breast Cancer Cells. Cells were treated with 1,25D3, a fractionated dose of 
radiation (4x2 Gy over a period of 2 days) or were pre-treated with 1,25D3 for 72 hours 
prior to receiving a dose of 4x2 Gy radiation. Viable cell number was determined by 
exclusion of trypan blue at days 2 and 4 following post treatment. Values shown are from 
a representative experiment with triplicate samples for each condition 
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Figure 3-8 Lack of Sensitization to Radiation by 1,25D3 in HS587t Cells. Cells were 
exposed to 100nM 1,25D3, fractionated doses of 4x2 Gy (over a period of 2 days) or were 
pre-treated with 1,25D3 for 72 hours prior to receiving a dose of 4x2 Gy radiation. 
Clonogenic survival was assessed 14 days post treatment. Values shown are from a 
representative experiment with triplicate samples for each condition.  
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Figure 3-8 Lack of Sensitization to Radiation by 1,25D3 in HS587t cells (continued) Cells 
were exposed to 100nM 1,25D3, fractionated doses of 4x2 Gy (over a period of 2 days) or 
were pre-treated with 1,25D3 for 72 hours prior to receiving a dose of 4x2 Gy radiation 
Clonogenic survival was assessed 14 days post treatment. Values shown are from a 
representative experiment with triplicate samples for each condition.        * p<0.05   compared 
to control  
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Figure 3.9 Treatment with 1,25D3 does not Enhance Sensitivity to Radiation in 231-BR 
Breast Cancer Cells.  Cells received 100nM 1,25D3, a 4 Gy dose of radiation or were pre-
treated with 1,25D3 followed by 4 Gy radiation or concurrently treated with 1,25D3 and 4 
Gy radiation. Viable cell number was determined by exclusion of trypan blue at days 3 and 6 
following treatment. Values shown are from a representative experiment with triplicate 
samples for each condition.      * p<0.05 compared to IR alone  
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Summary 

 

1,25D3 alone had a modest impact on cell growth in ZR-75-1 breast cancer cells. 

However, 1,25D3 enhanced sensitivity to radiation as demonstrated by an increase in non 

-viable cells by trypan blue exclusion and sytox green assessment by flow cytometry. In 

addition, clonogenic survival assays showed a significant decrease in clonogenicity when 

1,25D3 was combined with either single dose or fractionated radiation. These data are 

consistent with our previous studies in which a similar effect was observed with radiation 

and 1,25D3 in MCF-7 breast cancer cells (Demasters et al., 2006; Gewirtz et al., 2009; 

Sundaram and Gewirtz, 1999).  In contrast, cells lacking p53 such as Hs587T and 231-

BR breast cancer cells were not sensitized to radiation therapy when combined with 

1,25D3. These findings are consistent with previous studies in our laboratory by 

Sundaram et al demonstrating that MDA-MB-231 and T47D breast cancer cells, both 

lacking functional p53, are not sensitized to radiation by 1,25D3 or vitamin D analog 

EB1089 (Sundaram and Gewirtz, 1999). Taken together, these studies suggest a clear 

requirement of functional p53 for sensitization to radiation by 1,25D3. Microarray data 

generated by Dr. Matthew Beckman support these conclusions. 
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Chapter 4 

 

Substantiating that Autophagy is the 

Mode of Radiation Sensitization by 

Vitamin D 

 

 

Minimal Induction of Apoptosis, Necrosis and Mitotic Catastrophe by Radiation 

and 1,25D3+IR 

As mentioned in the Introduction, autophagic cell death can be characterized as 

occurring in the absence of apoptosis, necrosis or mitotic catastrophe. It should be noted 

that the absence of other cell death mechanisms alone, however, is not enough to prove 

that cells are undergoing autophagic cell death, but does provide some insight into how 

sensitization is and is not occurring.  Therefore, initial studies were conducted to rule out 
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apoptosis (generally one of the primary modes of cell death) as the mode of 

radiationsensitization by 1,25D3 in ZR-75-1 breast cancer cells. We first assessed 

apoptosis by staining cells with DAPI and the TUNEL assay, which evaluate nuclear 

morphology and the presence of a specific form of DNA damage (cleavage) respectively.  

ZR-75-1 cells were treated with 1,25D3, radiation or the combination of 

1,25D3+radiation and assessed at 72 hours post treatment (Fig 4.1) Stauroporine, a 

protein kinase C inhibitor and potent apoptosis inducer, was used as a positive control 

(Bertrand et al., 1994; Watson et al., 1988). Minimal apoptosis was detected as indicated 

by lack of nuclear shrinkage and fragmentation by DAPI staining as well as lack of 

positive green fluouescence by TUNEL, which would be indicative of DNA 

fragmentation and strand breaks. These characteristics were only observed with the 

positive control, Staurosporine. 

Although TUNEL staining is relatively specific for apoptosis, we sought to 

confirm apoptosis or the lack thereof using Annexin V and propidium iodide (PI). 

Annexin V/PI staining can distinguish cells undergoing both early and late apoptosis. 

Cells undergoing apoptosis will display phosphatidylserine on their outer membrane. 

Annexin V recognizes and binds to phosphatidylserine and then fluoresces; fluorescent 

intensity can be measured using flow cytometry. Early apoptosis will only result in 

positive Annexin V staining whereas cells undergoing late apoptosis will have positive 

staining for both Annexin V and PI. In addition, this assay can detect cells undergoing 

necrosis. In contrast to apoptotic cells, necrotic cells only exhibit positive PI staining.  

ZR-75-1 cells were treated with 1,25D3, radiation or 1,2D3+IR and Annexin V/PI 

staining was assessed 48 and 72 hours post treatment (Fig 4.2). Similar to the results of 
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TUNEL and DAPI staining, minimal apoptosis was evident based on minimal staining in 

quadrants Q2 and Q4, which are indicative of early and late apoptotic cells. There was 

also no evidence of necrosis by treatment with 1,25D3, IR or 1,25D3+IR, as indicated by 

lack of positive staining in quadrant Q1. Again Staurosporine, used as a positive control, 

resulted in an approximate 50% increase in apoptotic cells. 

To further confirm the lack of apoptosis, we conducted western blot analysis for 

the cleavage of apoptotic markers caspase-3 and PARP (Boulares et al., 1999). There was 

no cleavage of caspase-3 or PARP in response to any of our treatments, again suggesting 

lack of apoptosis induction by 1,25D3, radiation or the combination of 1,25D3 + 

radiation (Fig 4.3). We also conducted cell cycle analysis to evaluate the population of 

cells in the sub-G1 phase, which would be indicative of cells undergoing apoptosis. 

Again there is no evidence of cells undergoing apoptosis as there was minimal 

accumulation of cells in this region (Fig 4.4). 

Another possible mode of sensitization to radiation by 1,25D3 would be through 

mitotic catastrophe. There are not many assays to monitor mitotic catastrophe other than 

cell morphology. Cells undergoing mitotic catastrophe exhibit multinucleation and 

nuclear enlargement as a result of failed cellular division (Castedo et al., 2004; Vitale et 

al., 2011). Changes in morphology can be measured using Hoechst dye to stain the cell 

nucleus. One advantage of this assay is that it allows the cell membrane to stay intact, 

therefore allowing for the determination of cells that are multinucleated. At days 3 and 6 

post treatment, there was little to no indication of extensive mitotic catastrophe for any of 

our treatment groups (Fig 4.5). To support this conclusion cell cycle analysis also 
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indicated that there was no mitotic catastrophe, due to the lack of accumulation of cells 

with DNA content greater than 4n (Fig 4.4) (Kwong et al., 2009; Portugal et al., 2010). 
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Figure 4.1 Minimal Apoptosis Induction as indicated by  DAPI and TUNEL 

Staining ZR-75-1 cells were exposed to 100nM 1,25D3 continuously, fractionated 

doses of 4x2 Gy (over a period of 2 days) or were pre-treated with 1,25D3 followed 
by a dose of  4x2 Gy radiation. Images were taken 72 hours post treatment. 

Staurosporine was used as a positive control 
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Figure 4.2 Minimal Apoptosis Induction as indicated by Annexin V/Propidium Iodide 
Staining (48 hours). ZR-75-1 cells were exposed to 100nM 1,25D3 continuously, a dose of 
4 Gy radiation or concurrently with 1,25D3 and 4 Gy radiation. Treated cells were stained 
with Annexin V/PI and fluorescence intensity was analyzed by flow at 48 hours post 
treatment. Staurosporine was used as a positive control 
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Figure 4.2 (Continued) Minimal Apoptosis Induction as indicated by Annexin 

V/Propidium Iodide (72hours).ZR-75-1 cells were exposed to 100nM 1,25D3 

continuously, a dose of 4 Gy radiation or concurrently with 1,25D3 and 4 Gy 

radiation. Treated cells were stained with Annexin V/PI and fluorescence intensity 

was analyzed by flow at 72 hours post treatment. Staurosporine was used as a 

positive control 
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Figure 4.3 Western Blot Analysis Revealed Lack of Caspase-3 and PARP cleavage ZR-75-1 
cells were exposed to 100nM 1,25D3 continuously, fractionated doses of 4x2 Gy (over a 

period of 2 days) or were treated concurrently with 1,25D3 and a dose of 4x2 Gy radiation. 

Cell lysates were taken 72 hours post treatment. α -Tubulin was used as loading control 
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Figure 4.4 Cell Cycle Analysis by Flow Cytometry Indicates Minimal Accumulation 

of Cells in the Sub-G1 Phase ZR-75-1 cells were exposed to 100nM 1,25D3 

continuously, fractionated doses of 4x2 Gy (over a period of 2 days) or were treated 

concurrently with 1,25D3 and a dose of 4x2 Gy radiation. Cells were fixed, stained with 

PI and analyzed 72 hours post treatment. 20,000 cells were analyzed for each treatment.  
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Figure 4.5 Lack of Cells Undergoing Mitotic Catastrophe ZR-75-1 cells were 
exposed to 100nM 1,25D3 continuously, fractionated doses of 4x2 Gy (over a period 

of 2 days) or were treated concurrently with 1,25D3 and  4x2 Gy radiation. Cells 

were stained with Hoechst dye and images were taken 72 hours post treatment 
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Autophagy Induction and Autophagic Flux by Radiation Alone and  

1,25 D3+Radiation 

Autophagy has been shown to play a role in cell death; positive characteristics of 

autophagic cell death include an increase in autophagic markers as well as autophagic 

flux (Pyo et al., 2005; Shen and Codogno, 2011).  To investigate whether autophagy 

plays a role in radiation sensitization in the ZR-75-1 cells, cells were stained with 

acridine orange and the formation of punctate stained vesicles was monitored based on 

visual assessment using fluorescence microscopy as well as quantification using flow 

cytometry. Figure 4.6 presents representative acridine orange images at 48 and 72 hours 

post treatment. At 48 hours, only cells treated with 1,25D3+IR displayed increased 

punctate staining, where treatment with either IR or 1,25D3+IR resulted in increased 

punctate formation at 72 hours. Serum starvation was used a positive control. Images 

were also taken under natural white light to monitor vacuolization, which is also 

characteristic of cells undergoing autophagy (Fig 4.7). Red arrows indicate vacuolization.  

To quantify the extent of autophagy induced following treatment, fluorescent 

intensity of acridine orange was monitored by flow cytometry. Figure 4.8 summarizes 

data collected from a timecourse experiment. At 72 hours post irradiation, both IR and 

1,25D3+IR resulted in an approximate 5- fold increase in the percent of AVOs (acidic 

vacuolar organelles). However, time course data confirmed previous studies with visual 

assessment of acridine orange, which suggested that autophagy is initiated earlier in cells 

treated with 1,25D3+IR. The data further suggest that autophagy is sustained to a slightly 

higher extent in cel1s treated with 1,25D3+IR treatment compared to radiation treatment 
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alone as at day 5 there was a significant increase in the percent of positive AVO staining 

(Fig 4.8). Serum starvation using EBSS for 24 hours was used as a positive control.  

The promotion of autophagy by both radiation alone and 1,25-D3 + radiation was 

confirmed by monodacylcadaverine (MDC) staining at 48 and 72 hours post treatment 

(Fig 4.9). Similar to acridine orange staining, there was no autophagy induction in control 

cells or cells treated with vitamin D for 48 or 72 hours.  However, autophagy was 

induced at 48 hours and 72 hours post treatment with 1,25D3+IR compared to only at 72 

hours with IR treatment alone, again suggesting earlier induction of autophagy in the 

combination treatment.  Transmission electron microscopy further confirms autophagy 

induction at 72 hours post treatment with both IR and 1,25D3 treatment. 

Autophagosomes are indicated by the red arrows (Fig 4.10). 

Another assay for monitoring autophagy induction is RFP-LC3 redistribution. 

Upon autophagy induction, RFP-LC3 displays punctate staining in the cytoplasm and can 

be visualized using confocal microscopy (Kirisako et al., 2000).  ZR-75-1 cells were stably 

transfected with a plasmid containing LC3 labeled with red fluorescent protein and 

treated with 1,23D3, IR or 1,25D3+IR. At 72 hours post treatment, cells were fixed and 

visualized. Confocal images and quantification of RFP-LC3 puncta for each treatment is 

presented in figure 4.11. Consistent with the acridine orange staining data, essentially the 

same number of LC3 puncta are detected per cell for IR and 1,25D3+IR treatment at 72 

hours.  

Since the presence of autophagic vesicles does not necessarily mean that the 

autophagosomes have fused with the lysosome and that the contents of the 
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autophagosome have been degraded, autophagic flux was assessed by western blot 

analysis for p62 degradation (Larsen et al., 2010; Pankiv et al., 2007). p62 binds directly 

to LC-3 (Atg8), a critical protein involved in autophagosome formation to facilitate 

autophagic degradation (Larsen et al., 2010; Pankiv et al., 2007).  Consistent with the 

acridine orange staining and electron microscopy data, there was no p62 degradation with 

1,25D3 alone while p62 degradation is shown with serum starvation, which was used as a 

positive control. In the case of both radiation alone and 1,25D3 + radiation, p62 

degradation appears to be virtually complete within 72 hours (Fig 4.12).  We also 

monitored autophagic flux visually by assessing the colocalization of RFP-LC3 and 

fluorescent stained lysosomes (Fig 4.13). Images were taken at 24 hours and 72 hours 

post treatment. Autophagic flux is indicated by the presence of a yellow stain due to the 

colocalization of RFP-LC3 and lysotracker green. At 24 hours, only cells treated with 

1,25D3+IR and serum starved cells displayed colocalization. By 72 hours, both IR and 

1,25D3+IR treatment display colocalization. These data are consistent with the p62 

western blot analysis, where autophagic flux appears to occur earlier in cells treated with 

1,25D3+IR compared to IR treatment alone. 
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Figure 4.6 Analysis of Autophagy by Acridine Orange Staining ZR-75-1 cells were 
exposed to 100nM 1,25D3 continuously, fractionated doses of 4x2 Gy (over a period of 2 

days) or were treated concurrently with 1,25D3 and  4x2 Gy radiation. Cells were stained 

with Acridine Orange and images were taken 48 hours and 72 hours post treatment. Serum 

Starvation was used as a positive control                                                                   
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Figure 4.7 Increased Vacuolization Following Treatment with IR and 
1,25D3+IR ZR-75-1 cells were exposed to 100nM 1,25D3 continuously, 
fractionated doses of 4x2 Gy (over a period of 2 days) or were treated 
concurrently with 1,25D3 and  4x2 Gy radiation. Cells were visualized using 
natural white light and images were taken 72 hours post treatment. Vacuoles 
are indicated by the red arrows                                                                  



 
 

68 

 

  

Figure 4.8 Assessment of Acridine Orange Staining by Flow Cytometry. ZR-75-1 cells 
were exposed to 100nM 1,25D3 continuously, a dose of 4 Gy or were treated concurrently 
with 1,25D3 and 4 Gy radiation. 10,000 cells were analyzed for each treatment by flow 
cytometry. Values shown are from a representative experiment with triplicate samples for 
each condition. Percentage of cells with positive acridine orange staining is represented as 
the mean ± SE # p< 0.05 compared to IR 
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Figure 4.9 Analysis of Autophagy by MDC staining ZR-75-1 cells were exposed to 
100nM 1,25D3 continuously, fractionated doses of 4x2 Gy (over a period of 2 days) or 

were treated concurrently with 1,25D3 and  4x2 Gy radiation. Cells were stained with 

MDC and images were taken 48 hours and 72 hours post treatment.  
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Figure 4.11 Assessment of RFP-LC3 Redistribution. ZR-75-1 cells were 
stably transfected with RFP-LC3 and exposed to 100nM 1,25D3 continuously, 
a dose of 4 Gy or were treated concurrently with 1,25D3 and 4 Gy radiation. 
The average number of puncta per cell was counted in five fields for each 
condition at 72 hours post treatment. Punctate formation is represented as the 
mean ± SE * p< 0.05 compared to control 
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Figure 4.12 Assessment of Autophagic flux by Western Blot Analysis of p62 

ZR-75-1 cells were exposed to 100nM 1,25D3 continuously (A) , a dose of 4 

Gy (B) or were treated concurrently with 1,25D3 and  4 Gy radiation (C) . 

Degradation of p62 was monitored at various time points post treatment. 

Serum Starvation was used as a positive control. 
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Figure 4.13 Assessment of Autophagic Flux by Confocal Microscopy ZR-75-1 cells stably 
transfected with RFP-LC3 were exposed to 100nM 1,25D3 continuously, a dose of 4 Gy or were 
treated concurrently with 1,25D3 and 4 Gy radiation. At 24 hours and 72 hours post treatment 
cells were stained with Lysotracker Green and visualized by confocal microscopy. Serum 
starvation was used as a positive control for autophagic flux 
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Effects of Pharmacological Autophagy Inhibition on Cell Viability after IR and 

1,25D3+IR 

Confirmation of autophagic cell death requires evidence that suppression of 

autophagy via both pharmacological inhibitors and genetic approaches is able to rescue 

the cell by preventing cell death (Shen and Codogno, 2011). Thus, we initially employed 

a pharmacological approach to inhibit autophagy and assess effects on cell viability 

following treatment. In efforts to confirm that autophagy is the basis for sensitization by 

1,25D3, studies were conducted using the pharmacological autophagy inhibitors 

Chloroquine and Bafilomycin A1. Bafilomycin A1 prevents the fusion of the 

autophagosome with the lysosome, while Chloroquine prevents the acidification of the 

lysosome (Carew et al., 2010; Eskelinen and Saftig, 2009; Shen and Codogno, 2011). We 

identified concentrations of Bafilomycin A1 and Chloroquine that would have little to no 

toxic effects, as indicated by a MTT assay (Fig 4.14) as well as by trypan blue exclusion 

(Fig 4.15).  

It was important to first validate that the doses of Bafilomycin A1 and Chloroqine 

(200nM and 5uM respectively) did, in fact inhibit the autophagy induced by our 

treatments. Initial studies assessed the accumulation of autophagic vacuoles based on 

acridine orange staining. Due to the fact that Bafilomycin A1 and Choloroquine are both 

late stage autophagy inhibitors, cells undergoing autophagy will display an accumulation 

of autophagic vesicles resulting from impaired lysosomal activity. Indeed at 72 hours 

post treatment, there is an increased accumulation of autophagic vacuocles in cells treated 

with Bafilomycin A1 and Chloroquine in combination either with IR or 1,25D3+IR 

treatment (Fig 4.16).  Accumulation was also observed at 48 hours post initial treatment 
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with 1,25D3+IR following autophagy blockade, which was not observed with IR 

treatment alone. These data demonstrate the inhibitors are indeed working. 1,25D3 

treatment alone did not display accumulation of autophagic vesicles (data not shown).   

Inhibition of the autophagy induced by either radiation or 1,25D3 + radiation 

(specifically the formation of acidified autophagic vesicles) was confirmed through an 

assessment of acridine orange by flow cytometry using Bafilomycin A1 (Fig 4.17) There 

was a decrease in intensity of acridine orange staining which is consistent with 

Bafilomycin A1 inhibiting autophagy. As Bafilomycin A1 alters lysosomal pH, a 

decrease in intensity of acridine orange would be expected (Note light orange to 

yellowish staining in Fig 4.16).  

Another assay to confirm autophagy blockade is to assess RFP-LC3 distribution. 

Similar accumulation of RFP-LC3 punctate was observed after IR and 1,25D3+treatment 

following blockade with Chloroquine at 72 hours post treatment (Fig 4.18). 

Quantification indicated that there is more accumulation of RFP-LC3 punctae in cells 

treated with 1,25D3+IR in the presence of the autophagy inhibitors, again suggesting 

increased autophagic flux by the combination treatment. 

As these studies have established that both Bafilomycin A1 and Chloroquine 

inhibit autophagy, we proceeded to measure the effects of autophagy inhibition on 

radiation sensitivity by measuring cell viability using trypan blue exclusion. Treatment 

with radiation alone concurrently with Bafilomyin A1 or Chloroquine resulted in a 

significant enhancement of cytotoxicity as indicated by the decline in viable cell number 

(Fig 4.19A). These observations are consistent with the premise that autophagy induced 
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by radiation alone is cytoprotective, which has been demonstrated in our lab as well as by 

others (Paglin et al., 2001b; Wilson et al., 2011).  In dramatic contrast, interference with 

autophagy in 1,25D3+IR treated cells results in reduced radiation sensitivity, which is the 

expected outcome if autophagy mediates the cytotoxicity of the 1,25 D3-radiation 

combination treatment (Fig 4.19B). In fact, the cell death induced by the combination 

treatment is attenuated and cell viability is restored to levels similar to what is observed 

with IR treatment alone (comparing the figures 4.19A and 4.19B).  

We also conducted a clonogenic survival assay to assess proliferative capacity. As 

shown in figure 4.20, these studies verified that autophagy induced by 1,25D3+IR is 

cytotoxic as there is increased clonogenicity after 1,25D3+IR treatment when autophagy 

is blocked with Bafilomycin A1 and Chloroquine compared to 1,25D3+IR treatment 

alone (Fig 4.20). Unexpectedly, autophagy blockade with radiation treatment alone did 

not result in decreased clonogenicity, which was observed in trypan exclusion. This 

might be a consequence of a longer experimental window for this assay. Compared to 

other assays where experiments were analyzed at day 3 and 6 post treatment, this assay 

was analyzed at 14 days post treatment. It is plausible that the autophagy inhibiting 

effects of Bafilomycin A1 and Chloroquine have diminished by 14 days, which could 

explain why we fail to detect decreased sensitivity.  

Up until this point, reports in the literature have argued for either cytoprotective 

or cytotoxic autophagy following treatment with chemotherapies. These findings 

provided the foundation for the existence of an “autophagic switch.” It was the first time 

that BOTH cytoprotective and cytotoxic functions of autophagy were observed in the 

same experimental system. Moreover, this was a very exciting finding as we believe 
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future studies assessing autophagy following treatment with radiation or 1,25D3+IR 

should shed light on how a cell determines whether autophagy will switch from a pro-

survival mechanism to pro-death.  

The next series of studies were designed to determine how autophagy inhibition 

sensitizes ZR-75-1 cells to radiation treatment. Thus, we monitored apoptosis induction 

following Chloroquine+IR treatment by assessing Annexin V/PI staining by flow 

cytometry (Fig 4.21). The data generated suggested that radiosensitization by chloroquine 

appears to be a result of the promotion of apoptosis. Approximately 20% of the cells were 

apoptotic. There was not a significant increase in the percent of necrotic cells. In addition 

we monitored mitotic catastrophe using Hoechst stain. Irradiated cells in which 

autophagy was blocked by Bafilomycin A1 or Chloroquine displayed binucleated cells 

and enormous nuclei both indicative of mitotic catastrophe (Fig 4.22). These 

characteristics were not observed with any other of our treatments. 

Pharmacological inhibition studies were extended to MCF-7 breast cancer cells by 

measuring cell viability to validate the existence of cytotoxic autophagy as the mode of 

radiosensitization by 1,25D3. Previous studies in the laboratory assessing sensitization by 

1,25D3 were performed by pre-treating MCF-7 cells with 1,25D3 followed by irradiation. 

Consequently, we wanted to verify that changing the treatment paradigm to concurrent 

exposure with IR resulted in similar radiosensitization. MCF-7 cells were treated with 

1,25D3, IR or concurrently with 1,25D3 and IR, which is identical to the studies 

conducted in ZR-75-1 cells (Fig 4.23). Similar to previous studies, 1,25D3+IR treatment 

resulted in a significant decrease in viable cell number at day 6 post treatment. We next 

assessed the effects of pharmacological autophagy inhibition on viable cell number by 



 
 

78 

 

using a 5uM dose of Chloroquine. Chloroquine had a minimal impact on cell growth 

alone as indicated by trypan blue exclusion (Fig 4.23). However in a similar fashion to 

our ZR-75-1 studies, autophagy inhibition resulted in attenuation of 1,25D3 mediated 

radiosensitization (Fig 4.24). Inhibition of autophagy following treatment with IR 

resulted in a modest decrease in cell viability. This is important as it allows for detection 

of cytotoxic autophagy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

C
ontr

ol

A
D
R
 1

.7
1uM

C
Q

 1
00nM

C
Q

 5
00nM

C
Q

1uM

C
Q

 5
uM

B
A
F 1

0nM

B
A

F 2
5nM

B
A

F 5
0nM

B
A

F 2
00nM

A
b

s
o

rb
a

n
c

e
 (

M
T

T
)

0 .0

0.1

0.2

0.3

0.4

0.5

Figure 4.14 Dose Response of Autophagy Inhibitors Chloroquine and Bafilomycin 
A1 ZR-75-1 cells were exposed to various does of Chloroquine and Bafilomycin A1 
for 72 hours. Cell toxicity was assessed by MTT 
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Figure 4.15 Minimal effect of Chloroquine and Bafilomyin A1 on Cell viability 
ZR-75-1 cells were exposed to 100nM vitamin D, 5uM Chrloroquine or 200nM 
Bafilomyin A1. Cell viability was assessed by trypan blue exclusion at 72 hours post 
treatment 
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Figure 4.16 Increase in Autophagic Vacuole formation in Acridine Orange Staining 
Following Autophagy Inhibition ZR-75-1 cells were exposed to Bafilomycin A1 or 
Chloroquine alone, radiation in the absence or presence of either Bafilomycin A1 or 
Chloroquine or 1,25D3 concurrently with 4x2 Gy radiation in the absence or presence of 
either Bafilomycin A1 or Chloroquine. Cells were stained with Acridine Orange and 
images were taken 48 hours and 72 hours post treatment  
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 Figure 4.17 Autophagy Inhibition by Bafilomycin A1 ZR-75-1 cells were exposed to 
4x2 Gy radiation alone or concurrently with Bafilomycin A1 or 1,25D3 concurrently with 

4x2 Gy radiation in the absence or presence of Bafilomycin A1. The percentage of cells 

with positive AVO staining was monitored using flow cytometry at 72 hours post 

treatment #p<0.05 compared to IR ##p<0.05 compared to 1,25D3+IR.  
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Figure 4.18 Increase in RFP-LC3 Redistribution Following Autophagy Inhibition ZR-75-1 
stably transfected with RFP-LC3 were treated with Chloroquine alone, a dose of 4 Gy or were 
treated concurrently with 1,25D3 and 4 Gy radiation in the absence or presence of 
Chloroquine.  RFP-LC3 redistribution was monitored by Confocal Microscopy at 72 hours 
post treatment 
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Figure 4.18 Continued Increase in RFP-LC3 Redistribution Following Autophagy 
Inhibition ZR-75-1 stably transfected with RFP-LC3 were treated with a dose of 4 Gy or 
were treated concurrently with 1,25D3 and 4 Gy radiation in the absence or presence of 
Chloroquine.  RFP-LC3 redistribution was monitored by Confocal Microscopy at 72 
hours post treatment p* <0.05 compared to control 
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4.19 Effects of Pharmacologic Autophagy Inhibition on Cell Viability by IR and 
1,25D3+IR Treatment A) ZR-75-1Cells were exposed to radiation in the absence or 
presence of either Bafilomycin A1 or Chloroquine and viable cell number was assessed by 
trypan blue exclusion at days 3 and 6 post treatment. B) ZR-75-1 cells were exposed to 
1,25D3 concurrently with 4x2 Gy radiation in the absence or presence of either Bafilomycin 
A1 or Chloroquine and viable cell number was assessed by trypan blue exclusion at days 3 
and 6 post treatment. Values shown are from a representative experiment with triplicate 
samples for each condition. *p<0.05 compared to IR **p<0.05 compared to 1,25D3+IR  
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4.20 Effects of Pharmacologic Autophagy Inhibition on Clonogenic Survival by IR and 
1,25D3+IR Treatment ZR-75-1 cells were exposed to Bafilomycin A1 or Chloroquine 
alone, radiation in the absence or presence of either Bafilomycin A1 or Chloroquine ,1,25D3 
concurrently with 4x2 Gy radiation in the absence or presence of either Bafilomycin A1 or 
Chloroquine. Clonogenic survival was assessed at 14 days post treatment.  *p<0.05 
compared to control $p<0.05 compared to IR 1,25D3+IR # p<0.05 compared to1,25D3+IR  
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Figure 4.21 Autophagy Inhibition Increases Extent of Apoptosis by IR. ZR-75-1 cells were 
exposed to Chloroquine alone, radiation in the absence or presence of Chloroquine, or 1,25D3 
concurrently with 4 Gy radiation in the absence or presence of Chloroquine. Annexin V/PI 
fluorescence intensity was analyzed by flow at 72 hours post treatment. # p<0.05 compared to 
IR alone  
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Figure 4.23 Increased Mitotic Catastrophe following Autophagy Inhibition in Irradiated ZR-
75-1Cells. Cells were exposed to 100nM 1,25D3 continuously, a dose of 4 Gy radiation or 
concurrently with 1,25D3 and 4 Gy radiation and stained with Hoechst dye. Images were taken 
72 hours post treatment 
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Figure 4-23 Radiation Sensitization by 1,25D3 in MCF-7 Breast Cancer Cells. Cells 
were treated with 1,25D3 alone, a dose of 4 Gy radiation or 4 Gy concurrently with 
1,25D3.Viable cell number was determined by exclusion of trypan blue at days 3 and 6 
following post initial treatment. Values shown are from a representative experiment with 
triplicate samples for each condition. # p<0.05 compared to IR alone  
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4.24 Autophagy Inhibition Reverses Sensitization to Radiation by 1,25D3 in MCF-7 cells. 
Cells were exposed to 1,25D3, CQ, radiation in the absence or presence Chloroquine, or 
1,25D3 concurrently with 4 Gy radiation in the absence or presence of Chloroquine. Viable 
cell number was assessed by trypan blue exclusion at day 3 post treatment. Values shown 
are from a representative experiment with triplicate samples for each condition. $p<0.05 
compared to1,25D3+IR 
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Effects of Genetic Autophagy Inhibition on Cell Viability in IR and 1,25D3+IR 

treated cells 

To confirm the results generated with pharmacological autophagy inhibition, 

additional studies were performed using ZR-75-1 cells in which expression of either 

ATG-5 or ATG-7 was stably suppressed by shRNA. ATG-5 combines with Atg12 in a 

multimeric protein complex that is required for autophagosome formation, whereas ATG-

7 is an E1-like enzyme involved in activating both LC3II (Atg8) and Atg-5 (Klionsky, 

2005). ATG-5 levels were reduced by approximately 77% and ATG-7 levels by 

approximately 60% as indicated by western blot analysis (Fig 4.25 A-B). Furthermore, to 

determine if our knockdown was sufficient to alter autophagic function, autophagic flux 

was monitored by p62 degradation in ATG-5 and ATG-7 knockdown cells (Fig 4.25C). 

Indeed, cells in which ATG-5 or ATG-7 had been knocked down displayed decreased 

autophagic flux compared (i.e. a reduction in degradation of p62) to vector control cells 

following serum starvation. In addition, we conducted acridine orange and transmission 

electron microscopy assays to assess autophagy induction in cells in which ATG-5 was 

knocked down. In cells where ATG 5 was knocked down, there was no increase in the 

amount of acridine orange staining induced by either IR or 1,25D3+IR (Fig 4.26A). Lack 

of autophagy was also observed in the EM images following treatment with IR or 

1,25D3+IR (Fig 4.26B).  

Studies were also conducted to confirm that 1,25D3, IR and 1,25D3+IR treatment 

produced the same relative effects in control cells expressing shRNA against GFP 

(shRNA control) as in the parental ZR-75-1 cells.  A single dose of 4 Gy radiation was 
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used for these studies, as we found that this dose allowed us to more effectively 

distinguish the effects of radiation alone from the combination treatment in these 

genetically modified cells. Figure (4.27A) shows transient growth inhibition by 1,25D3 

while Figure (4.27 B) indicates that indeed 1,25D3 sensitized shRNA control cells to IR 

treatment.  

Our next series of studies were conducted to confirm that cells with knockdown 

of ATG-5 or ATG-7 retained sensitivity to 1,25D3, which was indeed observed (Fig 

4.28). This result was the expected outcome, as 1,25D3 does not induce autophagy. 

Consequently, autophagy inhibition should not have an effect on 1,25D3’s ability to 

moderately inhibit growth. 

In ZR-75-1 cells where ATG-5 was partially silenced, sensitivity to radiation was 

increased compared to the shRNA control cells, again indicating that autophagy is a 

mode of cell protection for radiation alone (Fig 4.29A). In dramatic contrast, the impact 

of 1,25 D3 + radiation is blunted or attenuated when Atg-5 is suppressed, which supports 

the cytotoxic actions of autophagy for the 1,25-D3 + radiation combination treatment 

(Fig 4.29B). Studies conducted in ATG-7 suppressed cells demonstrated an essentially 

identical outcome as with the pharmacological inhibitors Chloroquine and Bafilomycin 

A1 as well as with suppression of Atg5. That is, sensitivity to radiation alone is increased 

(Fig 4.30A), while radiosensitization by 1,25D3 is markedly attenuated (Fig 4.30B).   
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Figure 4.25 Knockdown of ATG-5 and ATG-7 Reduces Autophagic Flux Following 
Serum Starvation Knockdown of ATG-5 and ATG-7 in ZR-75-1 cells were verified by 
western blot analysis (A-B). Degradation of p62 was monitored at 24 hours following 
serum starvation (C). 
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Figure 4.26 No Change in Autophagic Vacuole Formation with Suppressed ATG-5. ZR-75-1 
cells were exposed to 100nM 1,25D3, a dose of 4 Gy radiation or were treated concurrently with 

1,25D3 and 4 Gy radiation. Cells were stained with Acridine Orange and images were taken 72 

hours post treatment (A). The lack of presence of autophagic vacuoles was confirmed by electron 

microscopy at 72 hours (B).  
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4.27 Confirmation of Sensitization to Radiation by 1,25D3 in ZR-75-1 shRNA Control Cells.  
ZR-75-1 cells stably transfected with a lentivirus encoding shRNA against GFP (control) were 
treated continuously with 1,25D3 (A), a single dose of 4 Gy or concurrently with 1,25D3 and IR 
(B) Cell viability was assessed by trypan blue exclusion. * p<0.05 compared to IR alone  
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Figure 4.28 Genetic Inhibition of Autophagy Does Not Interefere With 
1,25D3’s Ability to Moderately Inhibit Growth.ZR-75-1 breast cancer cells 
stably transfected with lentivirus for silencing expression of ATG-5 (A) or 
ATG-7 (B) were exposed to 100nM 1,25D3 continuously. Viable cell 
number was determined by exclusion of trypan blue at days 3 and 6 
following post treatment. * p<0.05   compared to control 
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Figure 4.29 Effects of Genetic Autophagy Inhibition (ATG-5) on Cell Viability by IR and 
1,25D3+IR Treatment ZR-75-1 cells stably transfected with a lentivirus encoding shRNA 
against GFP (control) or lentivirus for silencing expression of ATG-5 were exposed to a dose of 
4 Gy radiation (A) or 4 Gy concurrently with 1,25D3 (B). Viable cell number was determined by 
exclusion of trypan blue at days 3 and 6 following post treatment. Values shown are from a 
representative experiment with triplicate samples for each condition. * p<0.05   compared 
shRNA GFP control 
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Figure 4.30 Effects of Genetic Autophagy Inhibition (ATG-7) on Cell Viability by IR and 
1,25D3+IR Treatment ZR-75-1 cells stably transfected with a lentivirus encoding shRNA 
against GFP (control) or lentivirus for silencing expression of ATG-7 were exposed to a dose of 
4 Gy radiation (A) or 4 Gy concurrently with 1,25D3 (B). Viable cell number was determined 
by exclusion of trypan blue at days 3 and 6 following post treatment. Values shown are from a 
representative experiment with triplicate samples for each condition. * p<0.05   compared 
shRNA GFP control 
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Residual Surviving Cells are in a State of Senescence 

 In previous studies, we reported that MCF-7 cells undergo a period of growth 

arrest/senescence following treatment with radiation alone as well as in the residual 

surviving breast tumor cell population following treatment with vitamin D analog, 

EB1089 + radiation (Sundaram and Gewirtz, 1999). Based on cell morphology and β-

Galactosidase staining, residual surviving cells are indeed in a state of senescence after 

both radiation alone and 1,25D3 + radiation treatment (Fig 4.31). To further confirm β-

Galactosidase activity 5-dodecanoylaminofluoresceindi-β-D-galactopyranoside 

(C12FDG), a fluorogenic substrate for β-galactosidase activity was analyzed by FACS 

analysis and fluorescence intensity was measured (Debacq-Chainiaux et al., 2009) (Fig 

4.32). For both experimental conditions, senescence is most pronounced at 144 hours 

post-treatment. There was no difference in the extent of senescence induced by IR and 

1,25D3+IR. 1,25D3 treatment alone did induce some senescence, but not to the extent of 

the other treatments. 

We were also interested in determining if there was a relationship between 

senescence and autophagy, since the two processes appear to occur at the same time. 

There have been some studies in the literature that suggest autophagy and senescence are 

interrelated (Gewirtz, 2009; Narita et al., 2009; Young et al., 2009; Young and Narita, 

2010). Thus, we employed pharmacological inhibition using both Bafilomycin A1 and 

Chloroquine to evaluate whether senescence might be affected. Senescence was assessed 

at days 3 and 6 post treatment. Bafilomycin A1 and Chloroquine alone did not generate 

senescent cells (Fig 4.33). It appears there is a slight increase in senescent cells after IR 
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and 1,25D3+IR treatments when autophagy is blocked pharmacologically (Figs 4.34 and 

4.35). 

 

 

 

 

 

 

 

  

Figure 4.31 Residual Surviving Cells are in a State of Senescence.  ZR-75-1 cells were exposed 
to 100nM 1,25D3, radiation (4x2 Gy) administered over a period of 2 days or 1,25D3 

concurrently with radiation. Cells were stained with β -galactosidase and images were taken at 3 

and 6 days post drug treatment or post irradiation.  
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Figure 4.32 Assessment of Senescence by Flow Cytometry ZR-75-1 cells were exposed 
to 100nM 1,25D3, radiation (4 Gy) or 1,25D3 concurrently with 4 Gy radiation and 
samples were stained as described in materials and methods and analyzed by FACS 
analysis at days 3 and 6 post treatment. * p<0.05 compared to day 0 
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Figure 4.33 Minimal Senescence Observed with Pharmacological Autophagy Inhibitors 

Chloroquine and Bafilomyin A1 ZR-75-1 cells were exposed to 5uM Chrloroquine or 200nM 
Bafilomyin A1 and stained with β –galactosidase. Images were taken at 3 and 6 days post drug 
treatment or post irradiation.  
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4.34 Effects of Pharmacological Autophagy Inhibition on Senescence following IR ZR-75-1 
cells were exposed to radiation (4x2Gy) in the absence or presence of either Bafilomycin A1 
or Chloroquine and stained with senescence marker, β -galactosidase at days 3 and 6 post 
treatment.  
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4.35 Effects of Pharmacological Autophagy Inhibition on Senescence following 1,25D3+IR 

ZR-75-1 cells were exposed to 1,25D3 concurrently with 4x2 Gy radiation in the absence or 
presence of either Bafilomycin A1 or Chloroquine and stained with senescence marker, β -
galactosidase at days 3 and 6 post treatment. 
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Summary 

Evaluation of the characteristics of autophagic cell death revealed that 1,25D3 

mediated radiosensitization is in fact due to the promotion of autophagic cell death. This 

conclusion is further supported by data demonstrating the lack of other modes of cell 

death such as apoptosis, necrosis and mitotic catastrophe. Studies assessing autophagy 

induction in 1,25D3+IR treatment revealed that autophagy is indeed induced and that the 

cellular contents are effectively being degraded by the lysosomes, as shown by assays 

assessing autophagic flux. Furthermore, autophagy inhibition both pharmacologically and 

genetically attenuated radiation sensitization by 1,25D3. Autophagy was also induced in 

cells only receiving radiation treatment. Pharmacological and genetic inhibition revealed 

that the autophagy was different for IR treatment as inhibition resulted in increased 

sensitivity to radiation treatment, strongly supporting activation of cytoprotective 

autophagy by radiation alone. Sensitization to radiation by autophagy inhibitors appears 

to be a result of a combination of apoptotic and mitotic catastrophe cell death 

mechanisms. Moreover, residual surviving cells are in a state of senescence and 

autophagy inhibition appears to have a minimal effect on senescence. 
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Chapter 5 

 

Exploring Intracellular Signaling 

Pathways Involved in 1,25D3 Mediated 

Radiosensitization 

 

Studies in this chapter were designed to elucidate the pathways by which 1,25 D3 

sensitizes breast cancer cells to radiation in addition to efforts to distinguish the signaling 

pathways involved in cytotoxic and cytoprotective autophagy. It is known that autophagy 

is a multi-step process that appears to be regulated by various signaling pathways (Botti 

et al., 2006; Codogno and Meijer, 2005). The capacity of 1,25D3 to promote 

radiosensitization may involve its modulation of proteins in the DNA damage response or 

ER stress and mTOR signaling pathways. 

DNA Damage Response 

One possible mechanism that could be potentially altered by 1,25D3 to confer 

enhanced sensitivity to radiosensitization is a change in the DNA damage response. The 
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DNA damage response is a collection of cellular events by which a cell identifies and 

repairs DNA upon damage following such stressors as radiation (Zhou and Elledge, 

2000). One indicator of DNA damage is γ-H2AX, which is activated in response to 

double strand breaks in the DNA (Celeste et al., 2003). Initial studies were conducted to 

determine whether radiation sensitization could be due to 1,25D3’s ability to increase 

DNA damage induction or interfere with DNA repair. ZR-75-1 cells were exposed to 

1,25D3, IR or 1,25D3+IR and the increase in γ-H2AX was monitored using 

immunocytohistochemistry and flow cytometry. Fig 5.1 presents images of γ-H2aX foci 

taken 1-hour post treatment.  Both IR and 1,25D3+IR treatments produced significant 

increases in γ-H2AX compared to the control and 1,25D3 treatment alone.  Images were 

also taken at 3, 6 and 24 hours post treatment and the results were essentially the same 

(data not shown). To quantify the extent of DNA damage following treatment, we used 

an antibody directed toward phosphorylated γ-H2AX and measured fluorescent intensity 

using flow cytometry at 1 hour and 24 hours post treatment (Fig 5.2). Similar to the 

images in Fig 5.1, there was a significant increase in median fluorescent intensity in cells 

treated with IR and 1,25D3+IR at both time points compared to control. However, there 

was no difference in median fluorescent intensity between IR and 1,25D3+IR at either 

time point. At 1 hour both IR and 1,25D3+IR treatment resulted in a significant 

enhancement of γ-H2AX fluorescent intensity, suggesting that both treatments result in 

the same extent of DNA damage. At 24 hours both treatments resulted in decreased γ-

H2AX, suggesting that DNA repair is occurring essentially to the same extent following 

treatment with IR or 1,25D3+IR. Moreover, these data imply that radiation sensitization 

by 1,25D3 is likely not due to an alteration in DNA damage induction or repair. This 
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observation is consistent with previous studies conducted in the laboratory, which 

demonstrated an essentially identical response (Demasters, 2006). 

 

Figure 5-1 No Difference in γ-H2AX Foci Formation by IR and 1,25D3+IR Treatment. ZR-
75-1 breast cancer cells were exposed to 100nM 1,25D3 continuously, a dose of 4 Gy radiation 

or concurrently with 1,25D3 and 4 Gy radiation. γ-H2AX foci were monitored 1 hour post 
treatment 
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Figure 5-2 No change in γ- H2AX fluorescence intensity with IR compared to 

1,25D3+IR treatment ZR-75-1 breast cancer cells were exposed to 100nM 1,25D3 

continuously, a dose of 4 Gy radiation or concurrently with 1,25D3 and  4 Gy radiation. γ-
H2AX fluorescent intensity monitored 1 hour and 24 hours post treatment. 10,000 cells 
were analyzed for each sample * p<0.05 compared to control  
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ER Stress 

Activation of ER stress has been shown to be involved in autophagy induction 

(Hoyer-Hansen and Jaattela, 2007a; Qin et al., 2010). Moreover, as both the ER stress 

pathway and the UPR pathways have been shown to be activated in response to radiation 

(Kim et al., 2010; Zhang et al., 2010), it seemed logical to explore this pathway as a 

possible basis for radiosensitization by 1,25D3. Additionally, accumulation of unfolded 

proteins in the ER in response to diverse cellular insults has been shown to upregulate 

autophagy in cancer cells via protein kinase-like endoplasmic reticulum kinase (PERK), 

eukaryotic initiation factor (eif2a) and glucose-regulated protein of 78 kDa (GRP78) 

(Verfaillie et al., 2010). Therefore, we monitored the upregulation/phosphorylation of 

these effectors.  

We first assessed the activation of PERK using an antibody directed towards the 

threonine 980 phosphorylation site and measured the fluorescent intensity of this protein 

at 6, 24 and 48 hours post treatment. PERK is an endoplasmic reticulum resident 

transmembrane protein that couples ER stress signals to inhibit translation upon 

activation of ER stress (Hoyer-Hansen and Jaattela, 2007a). Moreover, PERK is a 

reliable indicator of ER stress as induction of ER stress results in an increase in PERK 

activity (Hoyer-Hansen and Jaattela, 2007a; Verfaillie et al., 2010). The results presented 

in Figure 5.3 indicate that both IR and 1,25D3+IR treatments resulted in a significant 

increase in phosphorylated PERK;  1,25D3+IR produced a slightly more pronounced 

increase at 6 and 24 hours compared to IR alone (Fig 5.3). The increase of PERK activity 

by 1,25D3+IR treatment was significant compared to control levels at 6 hours post 
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treatment, whereas this was not the case with IR alone. 1,25D3 treatment alone did not 

significantly increase phosphorylated PERK until 48 hours post treatment. 

  To further delve into this pathway, we assessed the levels of eif2α, which is a 

downstream target of PERK, by also measuring fluorescent intensity using flow 

cytometry (Verfaillie et al., 2010). Activation of eif2α ultimately leads to reduced protein 

translation following ER stress (Verfaillie et al., 2010). At 24 hours and 48, hours both IR 

and 1,25D3+IR treatment resulted in a significant increase in phosphorylated eif2α 

compared to control, while no activity was observed with 1,25D3 treatment alone until 48 

hours post treatment (Fig 5.4). These data correspond to our PERK data, which 

demonstrated an essentially identical outcome. By 48 hours there was an approximate 

two-fold increase in phosphorylated eif2a with all of the treatments compared to control.  

Lastly, we assessed levels of GRP78, an endoplasmic reticulum chaperone 

involved in monitoring protein folding, quality control and calcium signaling (Wang et 

al., 2010). Analysis of GRP78 levels by western blot analysis failed to demonstrate any 

change in activity for IR or 1,25D3+IR treatment as there were no significant alterations 

in protein levels at any of the indicated time points (Figs 5.5). Taken together, these 

results suggest that the PERK-eif2α arm of the ER stress pathway is indeed activated by 

treatments with 1,25D3, IR, and 1,25D3+IR while there is no requirement of GRP78 for 

ER stress induction in our experimental system.  In addition, ER stress activation does 

not appear to be the mode of radiation sensitization by 1,25D3 as there was no difference 

in PERK or eif2α activation by IR and 1,25D3+IR treatment. 
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Figure 5-3 Induction of p-PERK ZR-75-1 breast cancer cells were exposed to 100nM 1,25D3 
continuously, a dose of 4 Gy radiation or concurrently with 1,25D3 and 4 Gy radiation. 
Fluorescent intensity of p-PERK was monitored at 6 hours, 24 hours and 48 hours post 
treatment. 10,000 cells were analyzed for each sample. * p<0.05 compared to control 
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Figure 5-4 Induction of p-eif2α ZR-75-1 breast cancer cells were exposed to 100nM 
1,25D3 continuously, a dose of 4 Gy radiation or concurrently with 1,25D3 and 4 Gy 
radiation. Fluorescent intensity of p-eif2a was monitored at 24 hours and 48 hours post 
treatment. 10,000 cells were analyzed for each sample * p<0.05 compared to control 
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Figure 5.5 Assessment of GRP78 by Western Blot Analysis (IR and 1,25D3+IR) ZR-75-1 
cells were exposed to a dose of 4 Gy or were treated concurrently with 1,25D3 and 4 Gy 
radiation. GRP78 levels were monitored at various time points post treatment 
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AMPK/mTOR 

This section will focus on experiments designed to assess the impact of 1,25D3, 

radiation and 1,25D3+IR treatment on the mammalian target of rapamycin (mTOR), 

specifically mTORC1. mTORC1 functions as a sensor for nutrients and energy (Guertin 

and Sabatini, 2005; Jung et al., 2010). As aforementioned, mTOR is the key central 

negative regulator of autophagy and its downregulation can lead to autophagy (Dowling 

et al., 2010; Jung et al., 2010). Downregulation of mTOR leads to decreased protein 

synthesis as a result of low nutrients and growth factor deprivation (Jung et al., 2010).  

Initial studies were conducted to determine if 1,25D3, IR or 1,25D3+IR resulted 

in downregulation of mTOR by evaluating its deactivation using an antibody directed 

towards the Theronine 2441 phosphorylation site and measuring fluorescent intensity by 

flow cytometry. The results shown in figure 5.6 indicate a significant decrease in 

phosphorylated mTOR following 1,25D3, IR and 1,25D3+IR at 24 hours post treatment 

compared to control levels. However, treatment with 1,25D3+IR resulted in an even a 

more pronounced decrease in p-mTOR at 24 hours compared to 1,25D3 and IR treatment 

alone at the same time point.  

Subsequent studies assessed AMP activated protein kinase (AMPK) activity, 

which is an effecter directly upstream of mTOR (Chen and Klionsky, 2011; Motoshima 

et al., 2006).  Activated AMPK inhibits mTOR complex via tuberous sclerosis complex 1 

& 2 (TSC 1&2) and its substrate Rheb (an increase in p-AMPK results in a decrease in p-

MTOR) (Chen and Klionsky, 2011). Initial studies measured the impact of 1,25D3, IR 

and 1,25D3+IR on AMPK activity by monitoring its phosphorylation at the Threonine 

172 site by visual assessment using confocal microscopy and flow cytometry. Confocal 
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microscopy revealed that only 1,25D3+IR treatment resulted in a significant increase in 

phosphorylated AMPK post treatment at 3, 6 and 24 hours, which is indicated by intense 

green staining in the cytoplasm as well as the nucleus (Fig 5.7A). A similar increase of p-

AMPK was observed when p-AMPK fluorescent intensity was monitored by flow 

cytometry 24 hours post treatment (Fig 5.7B).  An approximate 1.5 fold increase was 

shown for 1,25D3+IR compared to control, suggesting a potential role of AMPK in 

1,25D3 mediated radiosensitization. The increase in p-AMPK for 1,25D3+IR was also 

significant compared to IR treatment alone.  

Since there appeared to be an involvement of the AMPK pathway in 

radiosensitization by 1,25D3, we investigated whether inhibition of AMPK resulted in 

decreased autophagy induction by 1,25D3+IR. The pharmacological inhibitor, 

Compound C, was employed to determine if there was a relationship between AMPK 

activity and autophagy induction. (Gormand et al., 2011; Hoyer-Hansen et al., 2007). 

Autophagy was monitored by assessing redistribution of RFP-LC3 using confocal 

microscopy at 24 hours post treatment (Fig 5.8). Treatment with Compound C completely 

attenuated RFP-LC3 redistribution in cells treated with 1,25D3+IR. Moreover, 

Compound C reversed 1,25D3 mediated radiosensitization based on evaluation of cell 

viability by trypan blue exclusion (Fig 5.9). In fact, results of the studies where AMPK 

was inhibited were very similar to studies where Bafilomycin A1 or Chloroquine were 

used to suppress autophagy. As expected, there was no effect of Compound C on cell 

viability with IR treatment alone as no increase in AMPK activity was observed in our 

previous studies where cells were exposed to IR treatment. 
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Due to the fact that there was a clear distinction in response among 1,25D3, IR 

and 1,25D3+IR, we decided to evaluate changes in calcium. An increase in free cytosolic 

calcium has been shown to activate autophagy via the Ca2+/ calmodulin-dependent 

kinase kinase-Beta (CaMKKβ)/AMPK pathway (refer to introduction for diagram) (Chen 

and Klionsky, 2011; Hoyer-Hansen and Jaattela, 2007a). CaMKKβ is directly upstream 

of AMPK and is one of the three upstream kinases responsible for its initiation (Chen and 

Klionsky, 2011; Hoyer-Hansen and Jaattela, 2007a). This pathway is mediated by slow 

release of calcium from the ER to the cytosol, resulting in autophagy (Hoyer-Hansen and 

Jaattela, 2007a; Hoyer-Hansen et al., 2007). Hoyer-Hansen et al demonstrated that 

inhibition of AMPK or CaMKKβ by siRNA or pharmacological inhibition attenuated 

autophagy induced by calcium mobilizing agents in MCF-7 cells (Hoyer-Hansen et al., 

2007). Thus, it seemed logical to explore the  Ca-AMPK signaling pathway since vitamin 

D3 and its analogs are calcium-mobilizing agents; furthermore previous studies have 

shown that long exposure to 1,25 D3 or its analog EB1089 indeed induce a slow increase 

in cytosolic calcium and autophagy followed by autophagic cell death in MCF-7 breast 

cancer cells (Hoyer-Hansen et al., 2007). 

 Changes in free cytosolic calcium levels were evaluated following treatment with 

1,25D3, IR or 1,25D3+IR treatment using the calcium indicator, Fluo-3am. The intensity 

of Fluo-am was assessed one hour post treatment (Fig 5.10). There was indeed a 

significant increase in free cytosolic calcium following treatment with 1,25D3+IR. In 

contrast, there was actually a decrease in cytosolic calcium following treatment with 

either 1,25D3 or IR, suggesting that calcium levels are differentially regulated. 
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Figure 5-6 Assessment of mTOR phosphorylation ZR-75-1 breast cancer cells were exposed to 
100nM 1,25D3 continuously, a dose of 4 Gy radiation or concurrently with 1,25D3 and 4 Gy 
radiation. Fluorescent intensity of p-MTOR was monitored at 24 hours post treatment. 10,000 
cells were analyzed for each sample* p<0.05 compared to control # p<0.05 compared to 1,25D3 
and IR alone  
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Figure 5-7A Assessment of Changes in Phosphorylated AMPK by Confocal 
Microscopy(Timecourse) ZR-75-1 breast cancer cells were exposed to 100nM 1,25D3 
continuously, a dose of 4 Gy radiation or concurrently with 1,25D3 and  4 Gy radiation. 
Induction of p-AMPK was monitored visually by confocal microscopy. p-AMPK is 
represented by the green staining.  
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Figure 5-7B Assessment of Changes in Phosphorylated AMPK by Flow Cytometry ZR-75-1 
breast cancer cells were exposed to 100nM 1,25D3 continuously, a dose of 4 Gy radiation or 
concurrently with 1,25D3 and 4 Gy radiation. Fluorescent intensity of p-AMPK was measured 
using flow cytometry at 24 hour post treatment. 10,000 cells were analyzed for each sample 
*p <0.05 compared to Control #p <0.05 compared to IR 
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Figure 5.8 Assessment of Redistribution of RFP-LC3 Following Inhibition of AMPK. 

ZR-75-1 cells stably transfected with RFP-LC3 were exposed to 100nM 1,25D3 

continuously, a dose of 4 Gy or were treated concurrently with 1,25D3 and 4 Gy radiation 

in the presence or absence of Compound C (5uM). At 24 post treatment cells were 

counterstained with DAPI and visualized using Confocal Microscopy.  
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Figure 5-9 Effects of Pharmacological Inhibition of AMPK on Cell Viability. 
ZR-75-1 breast cancer cells were exposed to 5uM Compound C, 100nM 1,25D3 
continuously, a dose of 4 Gy radiation or concurrently with 1,25D3 and  4 Gy 
radiation with or without Compound C. Viable cell number was determined by 
exclusion of trypan blue at 72 hours post treatment. Values shown are from a 
representative experiment with triplicate samples for each condition. $ p<0.05   
compared to 1,25D3+IR 
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Figure 5-10 Assessment of Changes in Calcium Levels using Fluo-3am ZR-75-1 breast cancer 

cells were exposed to 100nM 1,25D3 continuously, a dose of 4 Gy radiation or concurrently with 

1,25D3 and  4 Gy radiation. Fluorescent intensity was measured by flow cytometry at 1 hour post 

treatment. *p <0.05 compared to Control 



 
 

123 

 

Summary 

 Sensitization to radiation by 1,25D3 does not appear to be a consequence of 

increased DNA damage or decreased DNA repair as γ-H2AX studies demonstrated 

essentially identical levels of DNA damage induction following IR or 1,25D3+IR 

treatment. While ER stress was activated by 1,25D3, IR and 1,25D3+IR, there was no 

difference in the extent of ER stress induced by IR and 1,25D3+IR as indicated by PERK 

assessment. Similar to PERK studies, an increase of phosphorylated eiF2a was observed 

with all treatments. However, phosphorylation was delayed following 1,25D3 treatment. 

The fact that 1,25D3 does not enhance ER stress signaling following radiation treatment 

suggest that this pathways is unlikely to be the mode of radiosensitization   Furthermore, 

GRP78 did not appear to play a significant role in ER stress activation following 

treatment with 1,25D3, IR or 1,25D3+IR. 

Studies assessing mTOR phosphorylation revealed that there is a significant 

decrease in mTOR activity following treatment with 1,25D3, IR and 1,25D3+IR 

compared to control levels, but the decrease observed with the combination of 1,25D3 

and IR treatment was significantly reduced compared to either treatment alone. The fact 

the all treatments resulted in decreased mTOR activity seems logical as each treatment is 

a stress to the cell and a halt in proliferation is necessary to deal with these insults.  

AMPK activity appeared to be exclusively activated by 1,25D3+IR treatment. 

Treatment with the pharmacological inhibitor, Compound C, resulted in decreased 

autophagy and consequently attenuation of radiosensitization observed by 1,25D3. 

Lastly, due to the fact that 1,25D3+IR treatment results in increased AMPK and 
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subsequent decrease in mTOR suggest that the AMPK-mTOR pathway may play a 

critical role in mediating the promotion of autophagic cell death by 1,25D3+IR. Studies 

using a genetic approach to inhibit AMPK are in progress to validate these findings. 
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Chapter 6 

Discussion 

As mentioned in the introduction, breast cancer is one of the most common 

cancers diagnosed in women and approximately 1 in 8 women will succumb to the 

disease (U.S. breast cancer statistucs). As result, there is a need for continued research 

efforts to help develop new treatment strategies to decrease breast cancer mortality rates. 

The studies conducted in this dissertation research project were designed to build upon 

and extend previous work from this laboratory focused on determining the nature of cell 

death when vitamin D was combined with ionizing radiation in MCF-7 breast cancer 

cells. We sought to extend these studies to other breast cancer cell lines believed to be 

highly resistant to radiotherapy such as those that are mutant in p53.   The current studies 

further establish the potential utility of vitamin D as an adjuvant therapy for the treatment 
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of breast cancer and furthermore provide evidence that sensitization to radiation by 

1,25D3 occurs through the promotion of autophagy. 

Sensitization to Radiation 

We hypothesized that drug- and radiation-resistant breast cancer cell lines would 

be sensitized to radiation therapy following treatment with 1,25-di hydroxyl vitamin D3 

(1,25D3). To test our hypotheses, we assessed the effect of vitamin D on sensitivity to 

radiation in the p53 wild type breast cancer cell line, ZR-75-1, as well as in breast cancer 

cells lines that were mutant in p53 such as HS587t and 231-BR.  Our studies confirmed 

earlier findings which demonstrated that treating MCF-7 breast cancer cells with 1,25D3 

or Vitamin D analogs in combination with radiation results in a significant decrease in 

viable cell number compared to radiation treatment alone. In contrast, IR treatment alone 

did not result in actual cell killing but rather growth arrest while treatment with 1,25D3 

alone had a modest impact on cell growth. Clonogenic survival assays demonstrated a 

significant decrease in the ability of ZR-75-1 cells to form colonies when 1,25D3 was 

combined with either single dose or fractionated radiation. 

 In a similar fashion to radiation treatment in MCF-7 breast cancer cells, treatment 

with radiation alone led to growth arrest followed by a recovery in the cells’ ability to 

proliferate. We believe that this proliferative recovery serves a as model of disease 

recurrence in the clinic. As mentioned before, breast cancer cells respond relatively well 

to radiation therapy, but the real issue is disease recurrence. Once disease recurs, it is 

often very aggressive and difficult to treat (American Cancer Society, 2011a).  Thus it is 

very important to develop strategies to help prevent disease recurrence.   The fact that 

treatment with 1,25D3 led to actual cell killing and prevented proliferative recovery is 
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very encouraging and suggests that 1,25D3 could be a good candidate for potential use in 

the clinic as a potential radio sensitizer. 

In contrast to studies conducted in ZR-75-1 cells, treatment with 1,25D3 did not 

sensitize Hs587T and 231-BR breast cancer cells, both lacking p53. In fact, 1,25D3 

treatment alone did not have any effect on growth or viability of HS587t cells. Despite 

that fact that western blot analysis revealed that these cells do express the vitamin D 

receptor, this observation suggests that sensitization by 1,25D3 is likely related to one of 

the genomic actions in this cell line. Studies conducted in 231-BR cells actually revealed 

a modest but significant radioprotection effect following treatment with 1,25D3+IR. This 

effect was also observed in HS587t cells, but the protection did not reach statistical 

significance.  A similar protective effect was also observed in studies conducted by 

Stambolsky et al., where 1,25D3 was used in combination with Cisplatin or Etoposide in 

SKBR3 breast cancer cells (Stambolsky et al., 2010).  

 The findings that 1,25D3 does not sensitize p53 mutant breast cancer cells are 

quite consistent with previous studies in our laboratory by Sundaram et al which 

demonstrated that MDA-MB-231 and T47D breast cancer cells, both lacking functional 

p53, were not sensitized to radiation by 1,25D3 or the vitamin D analog EB1089 

(Sundaram and Gewirtz, 1999). These studies suggested a clear requirement for 

functional p53 in order to observe sensitization to radiation by 1,25D3. Reports in the 

literature suggest that p53 status determines the biological impact of vitamin D on tumor 

cells (Stambolsky et al., 2010). Furthermore, studies have demonstrated that mutant p53 

can render vitamin D anti-apoptotic (Stambolsky et al., 2010). It appears possible that 

mutant p53 can convert vitamin D into a cytoprotective agent and our findings as well as 
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other studies in the literature suggest an important functional relationship between p53 

and 1,25D3 (Stambolsky et al., 2010). Microarray data conducted by Dr. Matthew 

Beckman supports a requirement of functional p53 to observe radiosensitization by 

vitamin D.  

Enhancement of Radiosensitization by 1,253 is a Consequence of Promotion 

of Autophagic Cell Death 

 Based on previous studies in the laboratory, we also hypothesized that autophagy is 

responsible for radiosensitization of breast tumor cells by 1,25-di hydroxy vitamin D3 

and that pharmacological and genetic inhibition of autophagy would block 1,25-di 

hydroxy vitamin D3 mediated radiosensitization. Thus, our next set of studies were 

designed to substantiate that autophagy is the mode of radiation sensitization in breast 

tumor cells treated with 1,25D3. As autophagy has both cytoprotective and cytotoxic 

actions, we performed rigorous studies to prove our hypothesis. These studies included: 

evaluating the characteristics of autophagic cell death which include ruling out other 

forms of cell death such as apoptosis, necrosis and mitotic catastrophe, demonstrating an 

increase in autophagic flux and demonstrating that both pharmacological and genetic 

approaches to inhibit autophagy resulted in an increase in cell viability following 

1,25D3+IR treatment.  

  Apoptosis induction was assessed visually using DAPI and TUNEL staining, 

by western blot analysis for PARP and Caspase-3 cleavage, assessment of the sub-G1 

population in cell cycle analysis and by measuring the intensity of apoptotic markers 

Annexin V and Propidium Iodide using flow cytometry. Evaluation of the characteristics 
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of apoptotic cell death revealed that the increase in cell death by treatment with 1,25D3 

+IR was likely not a consequence of increased apoptosis. This conclusion was based on 

the fact that none of the assays showed an increase in morphological or biochemical 

markers associated with apoptotic cell death following treatment with 1,25D3, IR or 

1,25D3+IR. There was also no significant increase in the percentage of necrotic cells, 

which was shown with propidium iodide staining. Furthermore, mitotic catastrophe was 

assessed visually using Hoechst dye to stain cell nuclei. Morphological changes 

associated with mitotic catastrophe such as enlarged nuclei, formation of micronuclei and 

binucleation were not observed when cells were exposed to 1,25D3, IR or 1,25D3+IR. 

Taken together, these studies demonstrated that apoptosis, necrosis and mitotic 

catastrophe were not likely to be the mode(s) of cell death responsible for 1,25D3 

mediated radiosensitization of breast cancer cells. Further, the data obtained satisfy the 

first characteristic of autophagic cell death, which is cell death occurring in the absence 

of apoptosis, necrosis, or mitotic catastrophe.  

 We next assessed the induction of autophagy following treatment with 1,25D3, IR 

and 1,25D3+IR. Initial studies assessed autophagy induction by staining cells with 

acridine orange or MDC and visually monitoring the formation of punctate staining as 

well as assessment of fluorescent intensity using flow cytometry.  Studies revealed that 

autophagy was being induced by 1,25D3+IR treatment as early as 24 hours post 

treatment. Autophagy induction was also observed at 48 as well as 72 hours and even as 

late as 5 days post treatment. In contrast to 1,25D3+IR, treatment with radiation did not 

induce autophagy until 72 hours, and a significant increase in autophagy was not 

observed at earlier time points (24 and 72 hours). While there was still an increase in 
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autophagic markers at day 5, it was significantly reduced as compared to 1,25D3+IR 

treatment. Interestingly, acridine orange staining indicated a significant increase in 

fluorescent intensity by 1,25D3 treatment alone compared to control cells at 24 hours, 

where the extent of autophagy induced appeared to be essentially identical to that for 

1,25D3+IR treatment. But, unlike 1,25D3+IR treatment, autophagy decreased and 

returned to basal levels at 72 and 120 hours post treatment. These data are actually 

consistent with reports in the literature, as previous studies have demonstrated treatment 

with 1,25D3 or its analogs alone can induce autophagy (Hoyer-Hansen et al., 2005; 

Hoyer-Hansen et al., 2010; Wu and Sun, 2011). Assessment of autophagy induction 

visually using light microscopy, transmission electron microscopy and confocal 

microscopy to monitor vacuolization, the formation of autophagasomes and RFP-LC3 

redistribution respectively, confirmed that there is an increase in autophagic markers 72 

hours following treatment with both IR and 1,25D3+IR. One of the most interesting 

observations, however, is the fact that treatment with IR appears to result in delayed 

autophagy. 

  Additional studies conducted to assess autophagic flux revealed that the contents of 

the autophagosome were effectively being degraded by the lysosomes, based on p62 

degradation and colocalization of RFP-LC3 with Lysotracker Green. Although an 

increase in autophagic markers was observed in cells treated with 1,25D3 alone, there 

was no p62 degradation, which suggests that 1,25D3 alone was unable to increase 

autophagic flux. p62 degradation was observed for both IR and 1,25D3+IR treatment. 

Again, p62 degradation occurred earlier in cells treated with 1,25D3+IR compared to 

radiation alone. This observation was confirmed by confocal microscopy, where 
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increased autophagic flux was detected at 24 hours following exposure to 1,25D3+IR 

compared to IR treatment alone.  Furthermore, although the amount of autophagy 

induced appears to be essentially the same for both IR and 1,25D3+IR treatment at 72 

hours, we speculate that 1,25 D3 increases the rate and extent of autophagic flux in 

radiation treated cells and that this increase mediates the radiosensitizing effects of 

1,25D3. Furthermore, the fact that autophagy induction and flux occurs much earlier in 

cells treated with 1,25D3+IR suggests that cells are dying by autophagic cell death as a 

result of intense, prolonged autophagy. The concept of prolonged autophagy leading to 

autophagic cell death has frequently been reported in the literature (Denton et al., 2012; 

Levine and Yuan, 2005). 

As mentioned previously, cellular proteins are degraded by the lysosomes during 

autophagy to recycle amino acids (Codogno and Meijer, 2005; Geng and Klionsky, 

2008). Experiments assessing the actual rate and extent of degradation are required to test 

the hypothesis of increased autophagic flux and should provide greater insights into how 

1,25D3 sensitizes breast cancer cells to radiation therapy. One such experiment would be 

to measure protein degradation by labeling proteins with radioactive Valine and 

quantification using liquid scintillation counting (Bauvy et al., 2009). The rate of 

degradation is calculated from the ratio of the acid‐soluble radioactivity in the medium to 

that in the acid‐precipitable cell fraction (Bauvy et al., 2009).  However, since amino 

acids are physiological inhibitors of autophagy it is important not to choose an amino 

acid such as leucine, which is a potent inhibitor of autophagy. Valine is frequently used 

because it does not interfere with autophagy in most cell types (Bauvy et al., 2009). 

 One of the more exciting findings was that pharmacological inhibition of autophagy 
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using Bafilomycin A1 and Chloroquine as well as genetic inhibition through knockdown 

of ATG-5 and ATG-7 completely attenuated radiation sensitization by 1,25D3 in ZR-75-

1 breast cancer cells, supporting our hypothesis which was promotion of cytotoxic 

autophagy by the combination treatment as the mode of radiation sensitization. 

Pharmacological inhibition of autophagy in MCF-7 breast cancer cells resulted in a 

similar outcome, which was reversal of 1,25D3 mediated radiosensitzation as indicated 

by increased cell viability. Surprisingly, pharmacological and genetic inhibition revealed 

that the autophagy was actually different in cells treated with IR than 1,25D3+IR, as 

inhibition of radiation induced autophagy switched the cellular response from growth 

arrest to actual cell death. This increase in sensitivity to radiation treatment strongly 

supports activation of cytoprotective autophagy. A number of literature reports indicate 

that autophagy can represent a mechanism of resistance to radiation therapy and 

autophagy inhibition has frequently been shown to increase sensitivity to radiation 

therapy (Apel et al., 2008; Ito et al., 2005; Lomonaco et al., 2009). However, to our 

knowledge the coexistence of cytoprotective autophagy and cytotoxic autophagy in the 

same experimental system has not been reported in the literature. 

  Studies examining the actual mode of radiosensitization by autophagy inhibition 

with IR alone revealed that sensitization is likely due to the promotion of apoptotic cell 

death. Approximately 20% of cells were apoptotic when autophagy was inhibited using 

Chloroquine as indicated by Annexin V/ Propidium Iodide staining 72 hours post 

irradiation and there was no significant increase in the percentage of necrotic cells. In 

addition, assessment of Mitotic Catastrophe following IR using Hoechst stain showed an 

increased in giant nuclei and binucleation with both autophagy nhibitors, Bafilomycin A1 
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and Chloroquine. Sensitization to radiation by autophagy inhibitors appears to be a result 

of a combination of cell death mechanisms, apoptosis and mitotic catastrophe. A similar 

observation of increased radiosensitization was evident when autophagy was blocked in 

MCF-7 cells post radiation; however the sensitization was much more pronounced (an 

approximate 80% reduction). A dose of 25uM Chloroquine was used in these studies 

instead of a 5uM dose, which might explain why there was more pronounced 

sensitization to radiation following autophagy inhibition. 

 In dramatic contrast to autophagy inhibition following IR treatment alone, no 

increase in other modes of cell death was observed in cells treated with 1,25D3+IR. A 

lack of increase in other modes of cells death mechanisms would be the expected 

outcome if 1,25D3 does in fact sensitize breast cancer cells to radiation by inducing 

cytotoxic autophagy. Thus, this data is quite consistent with our previous studies 

demonstrating increased cell viability with autophagy inhibition and this data further 

supports the promotion of autophagic cell death as the mode of sensitization to radiation 

by 1,25D3. 

 Finally, 1,25 D3 appears to switch the cells from a cytoprotective to a cytotoxic 

mode of autophagy. Although either cytoprotective or cytotoxic actions of autophagy 

have been reported in multiple publications, to our knowledge these are the first studies 

in the literature to provide evidence for this type of “autophagic switch.” It is important to 

emphasize that this experimental system should provide the appropriate model system to 

address the question of what factors might distinguish cytoprotective from cytotoxic 

autophagy, which is currently a fundamental question in this field (Kroemer and Levine, 

2008; Shen and White, 2001). In fact, a recent report by Kroemer et al argues that 
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autophagic cell death does not exist and autophagy is actually just a precursor to other 

modes of cell death (Kroemer and Levine, 2008). Further, the authors pose the question 

whether autophagic cell death is ‘cell death with autophagy’ or ‘cell death by autophagy’. 

This is an interesting question but we believe our studies provide one more piece of 

evidence for the existence of autophagic cell death. 

Residual Surviving Cells are in a State of Senescence 

 Senescence had been frequently observed in cells exposed to radiation treatment in 

our laboratory as well as others (Roninson et al., 2001; Roninson, 2003; Sundaram and 

Gewirtz, 1999). Thus, we were interested to determine whether growth arrest is a 

consequence of promotion of senescence by IR or 1,25D3+IR treatment. Assessment of 

senescence associated β-galactosidase activity both visually and by flow cytometry 

revealed that both IR and 1,25D3+IR produced a significant increase in senescence at 3 

and 6 days post treatment. 1,25D3 treatment alone resulted in senescence as well but not 

to the extent of IR or 1,25D3+IR. Moreover, this data is consistent with the literature and 

suggest that residual surviving cells are in a state of senescence. Furthermore, senescence 

does in fact appear to be the reason for the growth arrest observed with IR and 

1,25D3+IR. Senescence might also in part be the reason for the slowed growth of breast 

cancer cells exposed to 1,25D3 alone. 

   Reports in the literature have suggested that autophagy is required for senescence 

(Gewirtz, 2009; Narita et al., 2009; Young et al., 2009). Thus, we were interested in 

determining whether autophagy inhibition had any effect on senescence. Pharmacological 

inhibitors, Bafilomycin A1 and Chloroquine, did not promote senescence alone. 

Pharmacological inhibition of autophagy in ZR-75-1 breast cancer cells following 
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treatment with IR or 1,25D3+IR did not result in decreased senescence, suggesting that 

these processes occur independently of one another.  

Involvement of the DNA Damage Response, ER Stress and mTOR Signaling 

Our last hypothesis was that the ER stress and mTOR pathways would be 

involved in the autophagic signaling cascade and may be critical signaling elements in 

the radiosensitization of breast tumor cells by 1,25-di hydroxy vitamin D3.  

Consequently, studies were designed to elucidate the autophagic signaling mechanisms 

by which 1,25-di hydroxy vitamin D3 sensitizes breast cancer cells to ionizing radiation 

therapy by assessing various effectors in both pathways as well as evaluating the DNA 

damage response.  

  We first assessed DNA damage induction and repair by monitoring changes in as 

γ-H2AX following treatment with 1,25D3, IR, and 1,25D3+IR.  Assessment of γ-H2AX 

demonstrated that there was a significant increase in γ-H2AX foci in confocal 

microscopy images and an increase in the intensity of an antibody directed towards the 

Serine 139 phosphorylation site of  γ-H2AX following treatment with IR  and1,25D+IR 

compared to control and 1,25D3 treatment alone. However, when comparing IR and 

1,25D3+IR treatment, there was no significant difference in γ-H2AX foci or fluorescent 

intensity at 1 or 24 hours post treatment. Consequently we conclude that sensitization to 

radiation by 1,25D3 did not appear to be a consequence of increased DNA damage or 

decreased DNA repair. Similar studies conducted in the laboratory by Gerald DeMasters 

demonstrated no significant changes in γ-H2AX following treatment with 1,25D3, IR or 

1,25D3+IR. Future studies to confirm these data would involve monitoring 53-BP1, a 

DNA damage checkpoint protein that mediates the DNA damage response or conducting 
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a comet assay to assess DNA damage (Collins, 2004; Wang et al., 2002). 

There is accumulating evidence that indicate ER stress is a potent inducer of 

autophagy and there is also evidence that both 1,25D3 and IR lead to ER stress induction 

(Hoyer-Hansen and Jaattela, 2007a; Hoyer-Hansen et al., 2007).  We explored the ER 

stress pathway to determine if sensitization to radiation by 1,25D3 is a consequence of 

ER stress induction. PERK has been implicated as one of the main mediators of ER 

stress-induced autophagy in mammalian cells and consequently we initially monitored 

PERK activity. By 48 hours post treatment, PERK phosphorylation was significantly 

increased by all treatments, 1,25D3, IR and 1,25D3+IR. Of interest, is that there was no 

significant difference in phosphorylated PERK between IR and 1,25D3+IR treatment as 

well as delayed PERK activation by, 1,25D3 treatment alone (no increase in p-PERK was 

observed at 24 hours post treatment). Similar results were obtained when eiF2α, an 

effector directly downstream of PERK, was assessed; more specifically increased eiF2α 

activity was detected following treatment with 1,25D3, IR or 1,25D3+IR at 48 hours. 

Again no eif2α was observed at 24 hours following 1,25D3 treatment alone, which 

corresponds to the PERK studies. Furthermore, another ER stress marker, GRP78, did not 

appear to play a significant role in ER stress activation following treatment with 1,25D3, 

IR or 1,25D3+IR as there was no change in protein levels post treatment. While these 

data suggest that ER stress signaling is likely not the mode of radiosensitization by 

1,25D3, it does provide some insight into the signaling pathways that might be activated 

leading to autophagy by IR and 1,25D3+IR. It would be interesting to evaluate whether 

inhibition of PERK or eif2a has any effect on autophagy induction. Another ER stress 

pathway associated with autophagy is IRE1-TRAF2-JNK (Verfaillie et al., 2010). Studies 
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by Ogata et al demonstrated a requirement of this pathway for thapsigargan induced 

autophagy in MEFS and it is possible that effectors in this pathway are required for 

1,25D3 mediated radiosensitization (Ogata et al., 2006).  

Our last sets of studies were designed to monitor the mTOR signaling pathway. 

mTOR is thought to be the key central negative regulator of autophagy (Dowling et al., 

2010; Jung et al., 2010). Cellular stressors such as nutrient deprivation and energy 

depletion have been shown to lead to decreased phosphorylated mTOR, consequent 

growth inhibition and autophagy induction (Jung et al., 2010).  

We first conducted studies to see if treatment with 1,25D3, IR or 1,25D3+IR had 

any effect on mTOR activity. Studies assessing mTOR phosphorylation revealed that 

there was a significant decrease in mTOR activity following treatment with 1,25D3, IR 

and 1,25D3+IR compared to control levels. Interestingly, levels of phosphorylated 

mTOR were significantly decreased following 1,25D3+IR treatment compared to 1,25D3 

or IR treatment alone, suggesting that the combination treatment enhances the 

deactivation of this pathway. The pronounced decreased in mTOR phosphorylation 

following treatment with 1,25D3+IR might be important in the promotion of autophagic 

cell death and the radiation sensitization observed in ZR-75-1 breast cancer cells by the 

combination treatment. 

Subsequent studies were conducted to see if there were any differences in an 

effector directly upstream of mTOR, AMPK.AMPK activation is inversely related to 

mTOR activity (an increase in AMPK results in decreased mTOR) (Chen and Klionsky, 

2011; Hardie, 2011). Assessment of AMPK activity revealed that phosphorylation of 

AMPK appears to be exclusively activated by 1,25D3 +IR treatment. Confocal 
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microscopy images of an antibody directed toward the Threonine 172 phosphorylation 

site of AMPK demonstrated an increase in AMPK activity as early as 3 hours post 

1,25D3+IR treatment and AMPK activity was sustained throughout the 24 hour time 

course. Furthermore, data collected to quantify the extent of AMPK activity by flow 

cytometry, demonstrated that 1,25D3+IR treatment significantly increases 

phosphorylated AMPK compared to control levels and IR treatment alone. These results 

substantiated previous data where AMPK was monitored visually, which showed 

increased AMPK activity following 1,25D3+IR treatment; again suggesting that AMPK 

activation is an important regulator of 1,25D3 mediated radiosensitization. 

One important observation was what appeared to be nuclear localization of 

AMPK following treatment with 1,25D3, IR and 1,25D3+IR in confocal microscopy 

images. Interestingly, only treatment with 1,25D3+IR resulted in a significant increase in 

both nuclear and cytoplasmic localization of AMPK. Moreover, a review of the literature 

revealed that the intracellular distribution of AMPK complexes (α1 and α2) is due to 

shuttling between the nucleus and the cytoplasm in response to specific stimuli (Kazgan 

et al., 2010; Kodiha et al., 2007). Violett et al reported that AMPK translocates to the 

nucleus upon stimulation by agents inducing cellular stress in Hela cells (Viollet et al., 

2010). Additionally, the two AMPKα subunits, α1 and α2, have been shown to have 

different localization patterns in mammalian cells, with the α1 subunit being localized to 

the non-nuclear fraction (cytoplasm) and the α2 subunit localized to both the nucleus and 

the non-nuclear fractions (Kazgan et al., 2010; Kodiha et al., 2007; Viollet et al., 2010). 

AMPKα1 is hence likely to phosphorylate cytosolic and plasma membrane substrates, 

whereas AMPKα2 may be primarily involved in the conversion of metabolic signals into 
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transcriptional regulation (Viollet et al., 2010) . The antibody used for these experiments 

detects both α1 and α2 isoforms and thus we speculate that a change in the 

nucleocytoplasmic redistribution of AMPK might be required to observe sensitization to 

radiation by 1,25D3. Specifically, the α1 and α2 subunits might be differentially 

regulated by treatment with 1,25D3+IR since only treatment with this combination 

resulted in both intense nuclear localization as well as cytoplasmic localization. We have 

adenoviruses that express dominant negative α1 and α2 isoforms. Inhibition of each 

isoform will be used to test this hypothesis and determine the involvement of each 

subunit in the sensitization to radiation by 1,25D3.  

To determine if AMPK activity has a direct effect on autophagy, we 

pharmacologically inhibited AMPK using Compound C. Assessment of autophagy by 

RFP-LC3 redistribution revealed that treatment with Compound C completely attenuates 

autophagy induction by 1,25D3+IR treatment. In a similar manner to classical autophagy 

inhibitors, Bafilomycin A1 and Chloroquine, Compound C decreased sensitization to 

radiation when breast cancer cells were treated concurrently with 1,25D3 and radiation. 

These data suggests that AMPK may play a critical role in mediating the promotion of 

autophagic cell death by 1,25D3+IR. Studies using a genetic approach to inhibit AMPK 

are in progress to validate these findings. A proposed mechanism by which vitamin D 

sensitizes breast cancer cells to radiation treatment is presented in figure 6. 1. 

Lastly, it is possible that 1,25D3+IR treatment increases autophagy and leads to 

the promotion of cytotoxic autophagy by activating multiple autophagy signaling 

pathways. Our future studies will be designed to continue to elucidate the pathways by 

which 1,25 D3 sensitizes breast cancer cell to ionizing radiation. It is very exciting to 
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have discovered that AMPK activity can possibly be one of the factors that determine 

whether autophagy will be cytotoxic or cytoprotective. However, there are a number of 

studies that need to be conducted to elucidate the complete mechanism by which 

1,25D3+IR sensitizes breast cancer cells to radiation therapy and these findings should 

provide the foundation to answer this question. 

A relatively new kinase, ULK1, has been shown to be an important regulator of 

autophagy. It can be activated by decreased mTOR or directly by AMPK. A study by 

Kim et al demonstrated a molecular mechanism for regulation of the mammalian 

autophagy-initiating kinase, Ulk1 (Jung et al., 2010; Kim et al., 2011a; Roach, 2011) . 

Under glucose starvation, AMPK promotes autophagy by directly activating Ulk1 

through phosphorylation of Ser 317 and Ser 777. Under nutrient sufficiency, high mTOR 

activity prevents Ulk1 activation by phosphorylating Ulk1 Ser 757 and disrupting the 

interaction between Ulk1 and AMPK. It has been suggested that this coordinated 

phosphorylation is important for Ulk1 in autophagy induction (Fig 6.2). It is possible that 

the combination of 1,25D3 and radiation promote autophagy and increase radiation 

sensitization via the AMPK-ULK1 signaling pathway. 
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Figure 6.1 Proposed Mechanism for Radiation Sensitization by 1,25D3 in ZR-75-1 Breast Cancer Cells 
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Figure 6.2 AMPK –mTOR- ULK1 Signaling Cascade (Kim et al., 2011a) 
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