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ABSTRACT 

Soils, and the microbial communities contained within them, are vital for most chemical, 

physical, and biological processes. This study investigated how microbial community structure 

responded to environmental changes, such as hydrology, across vertical space (depth) and time 

in an emergent fresh water wetland. Research was conducted in a non-tidal freshwater wetland 

along the James River (Charles City County, Virginia) by establishing plots in two areas that 

experienced different hydrologic regimes and plant communities.  Soil cores (30 cm) were 

collected monthly from January 2008 to February 2009, and then every two to three months 

thereafter until October 2009, for a total of 17 sampling events. The soil cores were divided by 

depth (Top: 0 – 10 cm, Bottom: 20 – 30 cm) and analyzed for a variety of soil properties 

including: pH, organic matter (OM), water content (WC), C:N, redox, and root biomass. 

Additionally, above-ground plant communities were monitored during the growing seasons.  

Based on preliminary analysis, one date from each season (Winter, Spring, Summer, and Fall) 

from both sampling years were selected for in depth analysis of the microbial community 

structure via Terminal Restriction Fragment Length Polymorphism (T-RFLP) of 16S-rRNA.  

Analysis of variance (ANOVA) found significant differences were found between the 

environmental parameters in regards to site, depth, and season.  Three physical-chemical 

variables (WC, OM, and redox) were different between sites, but the majority of environmental 

parameters were significantly different between depths and seasons.   The dominant 

environmental effect on microbial communities was soil depth and, overall, no seasonal patterns 

were observed in the microbial communities.  Further, archaeal communities were most strongly 

correlated to changes in water content, while redox was strongly correlated to changes across 



 

 

depth in the bacterial communities.  Collectively, these results demonstrate that wetland 

microbial communities are not a product of one separate variable or spatial scale, but result from 

various factors interlinked to shape microbial communities.  More long-term studies are needed 

to investigate interactions between microbial community structure and environmental variables 

in these dynamic ecosystems.
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INTRODUCTION 

 

Wetlands are considered important ecosystems because of the vital ecological functions 

that they provide, such as sediment trapping, flood mitigation, water purification, and 

groundwater recharge. The significance of wetlands in terms of global health has recently begun 

to be recognized, as it has become apparent that their influence and importance far exceeds their 

size (Mitsch and Gosselink, 2000). Wetlands are very productive environments, globally 

producing an estimated 4 to 9 Pg of carbon per year, which makes them one of the largest 

components of the terrestrial carbon pool (Mitsch and Gosselink, 2000). In addition, wetlands are 

critical because of their ability to ameliorate the effects of nutrient pollution (e.g., nitrate from 

agricultural runoff), and act as a buffer between aquatic and terrestrial ecosystems. Given that 

microorganisms are an integral part of these and numerous other economic and ecological 

functions attributed to wetlands, an enhanced understanding of the environmental controls on 

microbial community structure and function is essential to a better understanding of 

biogeochemical cycling and the preservation of these habitats.    

Hydric soils are the cornerstone for most chemical, physical, and biological activities in 

wetlands, and the resident microbial communities are the driving force for many of these 

processes. In freshwater wetland soils, the majority of the microbial research to date has either 

focused on the population dynamics of selected groups, such as methanogens (e.g., Utsumi et al.  

2003, Chang and Yang 2003, Myrold 2005), or on overall biogeochemical processes (e.g., 

Thomas et al.  2009, Le Mer and Roger 2001, Bai et al.  2010). Significant knowledge has been 
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gained about each of these areas of study individually, providing a nascent understanding of the 

activity of microbial communities in wetlands, but our appreciation of the factors that control 

microbial community composition in freshwater wetlands is still unclear (Gutknecht et al. 2006).  

For example, wetland ecosystems often experience seasonal fluctuations in hydrology that can 

cause an alteration in the availability of oxygen in the soil. Changes in hydrology and oxygen are 

thought to influence microbial populations by decreasing the rates of decomposition and nutrient 

cycling (Bossio et al. 2006, Gutknecht et al. 2006, Hammer 1989).  

One especially important area that is not well defined is how microbial community 

composition changes within vertical space (depth) as a potential result of variation in 

environmental parameters. For example, at greater depths, carbon substrate quality and quantity 

differs from the surface substrate due to the rapid decomposition of the labile fraction of the 

plant material, and the slow accumulation and burial of the resistant fraction over time (Bernal 

and Mitsch, 2008).   Such differences in the carbon quality and availability over a depth gradient 

have been linked to shifts in microbial community composition in soils (Polymenakou et al. 

2005, Fiere et al. 2003, Jackson et al. 2008). Similarly, redox values are affected by seasonal 

fluctuations in the hydroperiod and oxygen concentrations, specifically in terms of the 

availability of alternate terminal electron receptors, and are also related to shifts in microbial 

communities along a depth gradient (Wilms et al., 2010, Pett-Ridge and Firestone, 2005). Such 

environmental variables, and many others, have the potential to influence the composition of the 

microbial communities, either individually or in tandem (Böer et al. 2009, Wilms et al. 2006, 

Thomas et al. 2009, Febria et al. 2009). The connection between changes in hydroperiod and the 

corresponding effects on the soil physiochemical parameters across a depth profile are likely 

critical to microbial community composition and the sediment ecosystem. Yet the interactions 
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between fluctuations in environmental variables, especially seasonal, and the microbial 

communities present across a depth profile is unclear (Bardgett and Shine 1999, Mentzer et al. 

2006, Ahn et al. 2009, Peralta et al. 2010, Böer et al. 2009).  

Seasonal variation includes changes in temperature, moisture regime, and potential 

alteration of the soil environment during the growing season caused by vegetation and 

inundation.  Seasonal variation in soil saturation has the ability to influence environmental 

variables, such as redox and organic matter (OM) (Mitsch and Gosselink, 2000).  Additionally, 

during the growing season, vegetation has a large effect on soil processes through root exudates 

and ventilation, potentially increasing microbial activity and affecting the community structure 

by providing additional sources of nutrients and creating micro-niches of oxygenated zones in 

the rhizosphere(Bachand and Horne 2000, Clement et al. 2002, Storm et al. 2003). However, the 

importance of plant community structure and biomass, especially its seasonal changes, on 

wetland soil microbial communities remains unclear (Kao et al. 2003).  

Seasonal patterns have been observed in water column microbial community structure 

(Buesing et al. 2009) and sediment microbial activity (Gutknecht et al. 2006); however, very few 

studies have coupled the observation of seasonal microbial dynamics with a quantitative 

assessment of environmental parameters (Benner et al. 1986, Böer et al. 2009).  Tighter coupling 

of endemic characteristics and microbial communities is essential if one is to determine which 

aspects of the environment are most important in controlling the composition of the soil 

microbial communities.  Studies conducted in stream and coastal sediments found that 

temperature alone could not explain the seasonal shifts in microbial community structure, and 

these changes are more likely related to other unmeasured environmental parameters such as pH 

or redox potential (Böer et al. 2009, Wilms et al. 2010).   
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The research presented here sought to understand how environmental drivers influence 

microbial communities at various depths and in different hydrologic regimes in a young 

freshwater wetland.  The objective was to elucidate the environmental variables that influence 

community composition during early succession, and to identify variables that have influence 

microbial communities over multiple growing seasons.  Specifically, this study focused on the 

vertical and temporal patterns in sediment microbial  communities, both bacteria and archaea, 

and quantitatively linked these patterns with changes in soil properties and plant community 

structure. This was done by monitoring two areas of an emergent wetland that experienced 

different hydrologic regimes and plant communities over a vertical depth within the rooting zone 

(0 - 40 cm).   It was hypothesized that the different environmental conditions at these sites would 

have the greatest influence on the microbial communities present, and that depth would also 

affect microbial communities.  Specifically, fluctuations in soil water content and redox were 

expected to have a greater effect on the microbial communities present at a dry site, relative to a  

wet site that maintained excessive saturated conditions.  Within the wet site, plant communities 

were anticipated to have the largest effect on the microbial communities through the release of 

oxygen from the roots into the anaerobic soils.  At both sites, variation across the depth profile 

was expected to correlate with differences in redox (aerobic to anaerobic zones) and organic 

matter (resource availability).  
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MATERIALS AND METHODS 

1.   Site Description   

 This research was conducted in an emergent freshwater wetland at Virginia 

Commonwealth University’s Inger and Walter Rice Center for Environmental Life Sciences, 

located along the tidal freshwater portion of James River near Richmond, Virginia (USA) 

(Figure 1). The area of interest (~ 70 acres) was originally a forested wetland, which was cleared 

in 1927 and an earthen dam was erected to create Lake Charles.  This area remained a lake until 

the Fall of 2006, when a storm surge breached the dam, draining a portion of the lake and 

recreating wetland habitat.  Natural restoration of the freshwater wetland then began to occurr in 

the upper section of the former lake bed.    Within a year, native wetland vegetation colonized 

the area and the original stream channel partially re-formed.  Wetland soil conditions have been 

maintained since the original breach occurred.   

 

2. Experimental Design 

 In the Winter of 2008, two sites were selected within the wetland based on apparent 

differences in microtopography and plant community composition, with the goal of comparing 

different hydrologic conditions.  The sites were predominately groundwater fed, and the soils in 

each location were determined by hand analysis to be principally loamy clay (Richardson et al. 

2001).  The “Dry” site (37°20’11.1” N, 77°12’27.0” W) was established in an area of the 

wetland that would not typically be inundated above the soil surface, but maintained saturated 

soil conditions at depth, and the “Wet” site (37°20’13.9” N, 77°12’21.7” W) was established in 



 

8 

 

an area that usually maintained standing water on the soil surface (Figure 2).  Three wetland 

plant species were common to both sites: Juncus effusus, Leersia oryzoides, and  Polygonum 

sagittatum, with two additional species found at the Wet site (Typha angustifolia and Murdannia 

keisak) (Figure 3). These species are all obligate wetland indicators, except for J. effusus, which 

is a facultative wetland plant in this region of the country (USDA, NRCS. 2010). 

 At each site, a 5 m x 5 m plot was established and divided into 1 m x 1 m subplots using 

a square grid system.  Sampling was conducted monthly from January 2008 to February 2009, 

and then every two to three months thereafter until October 2009, for a total of 17 sampling 

events. All sampling events included collection of 30-cm sediment cores for assessment of soil 

properties and microbial community structure; data on plant community composition and above-

ground biomass were also gathered during the growing season (May through November of each 

year). 

 

3. Sampling and Soil Analysis 

 For each sampling event, three subplots were randomly selected at each site.  Within each 

subplot, a 30-cm sediment core was obtained using a Wildco® Hand Corer Sediment Sampler (5 

cm x 50 cm Forestry Suppliers).  Intact cores were kept upright and immediately transported at 

ambient temperature to the lab for processing.  Because of the large number of samples collected 

over the duration of the study (17 sampling events with 3 cores each yielded 51 cores per site), it 

was necessary to sample some subplots more than once. However, a given subplot was never 

visited at two consecutive sampling events, and areas where cores had previously been collected 

were avoided.  
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  Upon return to the lab, the soil cores were extracted from the sleeves and subdivided into 

“Top” (0 – 10 cm below the soil surface) and “Bottom” (20 – 30 cm below the surface) sections.  

All samples were homogenized by gentle hand mixing in an air-tight bag.  Redox and pH 

measurements were immediately taken using a HANNA Combo pH and ORP probe (HANNA 

Instruments).  Sub-samples to determine soil properties and for microbial community analysis 

were taken immediately, and stored at 4 and -20°C, respectively, until further processing.    

Processing of the soil for environmental parameters occurred within 24 h of sample collection.  

 

4. Soil Characterization  

To determine gravimetric water content (WC), a subsample of soil (20-35 g) was dried at 

70°C for 72 h. The dry soil was then combusted at 450°C for 12 h to determine the OM content 

as mass loss on ignition (Klute, 1986). A subsample (2-3 g) was removed before combustion to 

determine the soil carbon to nitrogen ratio (C:N), and that subsample was stored at -20°C until 

acidification and analysis with a Series II CHNS/O Analyzer 2400 (Perkin Elmer). 

 

5.     Vegetation 

  During the growing season, estimates of above-ground plant biomass were obtained 

from the immediate vicinity of the sites by clipping to the ground all live plant material in three 

separate 1 m x 1 m sampling areas.   Care was taken not to remove any vegetation in the main 

sampling plots.  Plant material was then returned to the lab, sorted by species, and dried at 70°C 

for one week.  Above-ground biomass (g dry weight (DW) per m
2
) was then calculated for each 

species. 
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  Root content of the soil (g root DW per g dry soil) was determined by soaking a 

subsample of ~30 grams of soil in 40 mL of 0.2 M Na2HPO4 for 24 to 48 h (Klute 1986).  Roots 

were isolated by sieving the soil through two interlocking U.S.A. standard testing sieves (ATM 

Corp.); the top sieve contained 600 µm openings (#30 mesh) and the bottom sieve contained 355 

µm openings (#45 mesh). The roots were then collected and rinsed by hand, and dried at 70°C 

for 48 to 72 h. 

 

6. Microbial Community Analysis 

After preliminary analysis of soil properties, eight dates were selected for microbial 

community structure analysis, which corresponded to one per season for the two-year duration of 

the study. For this subset of samples, bacterial and archaeal community composition was 

examined using “community fingerprinting” accomplished by terminal restriction fragment 

length polymorphism (T-RFLP) analysis (Liu et al. 1997). 

 

6.1.  DNA Extraction: 

Whole-community DNA was extracted using a PowerSoil
TM

 DNA Isolation Kit (MoBio 

Laboratories, Inc.) per the manufacturer’s instructions. Successful extractions were identified by 

gel electrophoresis of 10 μl aliquots on a 1.5% agarose gel (100 volts, 1 h).  Samples that did not 

show a band on the agarose gel were re-extracted from archived soil  with the addition of a pre-

extraction washing step to remove metal and humic inhibition (He et al. 2005).   Specifically, ~ 

0.25 grams of soil were added to 1.5 ml of 2 mM EDTA and vortexed at a low speed for one 

hour, after which time the samples were centrifuged at 10,000 rpms for 10 min to pellet the soil, 



 

11 

 

and the EDTA was decanted.  DNA extraction then proceeded as above.  DNA concentrations 

were determined using a Nanodrop 8000 Spectrophotometer (Thermo Scientific).  

 

6.2. Polymerase Chain Reaction (PCR) Conditions:  

  For profiling the bacterial portion of the community, the 16S rRNA gene was amplified 

via PCR using bacteria-specific primers 27F (5’-AGA GTT TGA TCM TGG CTA G-3’) and 

1492R (5’-TAC GGY TAC CTT GTT ACG ACT T-3’); the 27F primer was fluorescently 

labeled at the 5’ end with FAM (Lane 2001).  The total volume of each PCR reaction was 50 µl 

containing: 1 µl DNA template at the appropriate dilution, 5 U AmpliTaq DNA Polymerase, 1.5 

mM MgCl2 solution, 0.1 volume of GeneAmp 10X PCR Buffer II, 20 µg BSA, 1 mM each 

dNTP, and 0.3 µM primer of each primer.  All reagents were supplied from Applied Biosystems 

except BSA, which was obtained from Roche.  Most reactions contained between 10 and 12 ng 

of template DNA, though some required 15 to 20 ng of DNA.  Thermal cycling was performed 

in a BioRad iCycler programmed for 95
 o
C for 5 min, 35 cycles of 94

 o
C for 1 min, 57

 o
C for 1 

min, 72
 o
C for 2 min, and a final extension step of 72

 o
C for 8 min.   

For profiling the archaeal members of the microbial community, PCR was performed 

using the primers 21F (5’-FAM-TTC CGG TTG ATC CYG CCG GA-3’) and 958R (5’-YCC 

GGC GTT GCA MTC CAA TT-3’) (Moesender et al., 2001).  Reaction conditions were similar 

to those used for bacteria with the following modifications:  BSA was excluded, primer 

concentrations were increased to 2 µM, and dNTP concentrations were increased to 2.5 mM.  

Thermal cycling conditions were: 94
o
C for 3 min, 30 cycles of 94

 o
C for 1 min, 55

 o
C for 1 min, 

72
 o
C for 2 min, and a final extension step of 72

 o
C for 7 min.   
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6.3. Restriction Digests and Capillary Electrophoresis:  

For each sample, triplicate 50-μl PCR reactions were combined, purified using a 

MinElute 96 UF™ PCR purification kit (Qiagen), and then digested using 40 U HhaI (New 

England Biolabs) at 37
 o
C for 6 h followed by 65

 o
C for 20 min.  Digests were again purified 

using the MinElute 96 UF™ PCR purification kit (Qiagen), and 125 ng of the cleaned DNA was 

resolved using capillary electrophoresis with a MegaBACE 1000 fluorescent genotyper.  Map 

Marker 400 ROX ladder (Bioventures) was included with each sample; injection was at 3000 V 

for 100 seconds, and run time was 100 min at 10,000 V.  Following electrophoresis, T-RFLP 

peaks were scored as present/absent in the size range of 50 to 500 base pairs using Fragment 

Profiler (Version 1.2). 

 

7. Statistical Analyses 

7.1. Preliminary Analysis:  

First, a series of Mantel tests were used to assess whether there was significant temporal 

autocorrelation for each environmental variable (Legendre and Legendre 1998).  Data from all 

17 sampling events were included.  A distance matrix was constructed for time (as days since the 

first sampling event, t=0 to 625) and compared to a matrix of dissimilarity in each environmental 

parameter (generated using Gower’s coefficient (Gower 1971)).  rm and p values were 

determined via randomization using 5000 permutations, and statistical significance was 

established using a step-down Bonferonni correction (Holm 1979) with an initial alpha of 0.05.  

When all data from all sites were considered simultaneously, no significant rm values were 

obtained (Table 1), indicating little temporal autocorrelation in soil properties at the wetland 

scale.  Given that the different sites and depths could respond differently to environmental 
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changes, a similar analysis was conducted for each separate sampling region, but the results 

demonstrate little temporal autocorrelation monthly (Table 1).  These results are consistent with 

a visual examination of the time series graphs for each soil variable (Figure 4).  Based on these 

results, it was decided to restrict subsequent analysis to an examination for seasonal trends, and 

to use eight selected sampling events for molecular characterization of the microbial community 

via T-RFLP.  Dates were chosen to provide one sampling event per season for the two-year 

duration of the study, and to coincide with instances when full plant community data (i.e., total 

and species-specific biomass estimates) were available.  All statistical comparisons described 

below were applied solely to the eight dates and focus on examination of seasonal patterns, and 

the potential for site and depth interactions.   

 

7.2. In-depth Analysis of Selected Dates:  

A correlation analysis was used to investigate the relationship between each environmental 

parameter, including soil properties and above- and below-ground plant biomass, using 

Spearman’s rho and the PASW statistical package (Version 17).  In addition, PASW was used to 

determine the differences between the means and potential effect of interaction between site, 

depth, and season on various environmental parameters using a three factor analysis of variance 

(ANOVA).  Whenever significant interaction effects were detected, the contributing factors were 

separated by treatment for a series of individual one-factor ANOVAs.  Differences between the 

seasons were determined using Tukey’s post hoc comparison.  

 For the analysis of the microbial community composition, the bacterial and archaeal 

datasets were considered separately.  T-RFLP peaks were binned according to size (base pairs, 

bp) with a minimum of three peaks required for each bin and minimum bin size of 0.5 bp. 
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Shoulder peaks, peaks outside the 50-500 bp range, and peaks less than 75 rfu in height were 

excluded. Peak data were then converted into a binary matrix with 1 denoting presence and 0 

denoting absence of a particular terminal restriction fragment. The resulting matrix was analyzed 

using non-metric multidimensional scaling (NMDS) with the Jaccard similarity coefficient in 

PAST v. 2.01 (Hammer et al., 2001).  Significance of differences between groups were identified 

using ANOSIM (ANalysis Of SIMilarities), again with the Jaccard coefficient, corrected by 

PAST for multiple comparisons via step-down sequential Bonferroni approach (Clarke, 1993). 

 Additionally, canonical correspondence analysis (CCA) (PC- ORD vs. 5) was used to 

explore the relationship between the microbial community structure and environmental 

parameters. Row and column scores were standardized by centering and normalizing to yield bi-

plot scaling with site scores rescaled to have a mean of zero and variance of one; plots were 

optimized so plot scores are weighted mean species scores (alpha = 1).   
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RESULTS 

 

1. Environmental Parameters 

1.1.  Site, Depth, and Seasonal Differences in Soil Properties: 

The soil parameters of redox, OM, and water content (WC) differed between the top 10 

cm of the soil and the bottom 20-30 cm for most of the study (Figure 4); pH also differed with 

depth but less so than other parameters.  Additionally, sites were generally less different than 

depths in regards to all environmental parameters.  When the environmental parameters for the 

selected dates were graphed, differences between the sites were again not clear, while a 

difference was once again observed with depth (Figures 5 and 6).  ANOVA was used to assess 

the statistical significance of each difference considering the factors of site, depth, and season 

(Table 2).   

Overall, significant effects of site, depth, and season were observed for all soil parameters 

except for C:N (Table 2).  The majority of environmental parameters were highly significantly 

different across depths and seasons (Table 2; Figures 5 and 6), and three variables (WC, OM, 

redox) also differed across sites.  Several parameters displayed interaction effects between 

factors including: WC (where depth interacted with both site and season), pH and redox (which 

both showed a site-by-season interaction), and root content (which showed a site-by-depth 

interaction).   

Organic matter:  The ANOVA of OM revealed significant site, depth and season effects 

(Table 2).  The Wet site had a higher OM (7.0 + 0.6) than the Dry site (5.9 + 0.5), and the tops of 

the soil cores were also found to have significantly higher OM (8.3 + 0.5) than the bottoms (4.6 
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+ 0.4).  The percent OM was also different between the seasons (p <0.001).  Based on Tukey’s 

HSD, OM was lowest in the Winter (4.3 + 0.4 g) and increased significantly during the growing 

season (Spring: 5.1 + 0.4 g; Summer: 6.6 + 0.7 g).  By the Fall, sampling events, OM was 

dramatically higher than all other times (9.8 + 0.5 g).   

pH:  Season and site were found to have significant interaction in regards to pH (Table 

2).  No significant differences were observed between the averages at each site in Winter (5.9 + 

0.3), Spring (6.0 + 0.2), and Summer (4.4 + 0.1).  Yet, during the Fall there was a significant 

difference (p < 0.001) in the pH’s at each site, with the Wet site having higher average pH (6.6 + 

0.1) than the Dry site (5.3 + 0.2).  Additionally, pH was found to be significantly different 

between the top and bottom portions of the soil cores (p = 0.035) with the mean pH higher in the 

bottoms (5.8 + 0.2) than the tops (5.3 + 0.0).     

Redox:  Similar to pH, redox also had a significant interaction between season and site 

(Table 2). During the Spring and Fall, there was a significant difference in the redox at each site 

(Spring: p < 0.001, Fall: p = 0.02), with the Dry site having higher average redox (Spring: 189.0 

+ 28.0, Fall: 301.5 + 23.4) than the Wet site (Spring: 30.8 + 28.0, Fall: 200.0 + 33.1).  At the Dry 

site, redox increased from the winter over the growing season (Winter = 179.8 + 38.1, Spring = 

189.0 + 19.3, Summer = 276.8 + 49.7, Fall = 301.5 + 24.5); however, this increase was not 

statistically significant (p = 0.36).  In the Wet site, high redox values were observed during the 

growing season (Winter = 130.0 + 32.3, Spring = 30.8 + 28.2, Summer = 278.0 + 44.6, Fall = 

200.0 + 33.1) and significant differences were observed between the Winter/Spring and 

Summer/Fall (p < 0.001). Furthermore, redox was significantly different between the top and 

bottom portions of the soil cores (p < 0.001) with the mean redox lower in the bottoms (130.3 + 

14.7) than the tops (266.1 + 14.7).     
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 Water content:  Water content had significant interactions between the depths and site 

and depth and season (Table 2).  Regardless of site or season, there were no differences in the 

WC for the deep samples (site: p = 0.77, season: p = 0.28), and the overall average water content 

was 60.2% + 3.0.  However, when just the top layer of the soil is considered, the Wet top (92.0% 

+ 4.5) had  significantly higher soil moisture compared to the Dry top (72.4% + 4.0) (p = 0.003). 

For the tops, the only seasonal differences were between the Winter (98.2% + 7.5) and Summer 

(65.4% + 4.0) (p < 0.001).  

 

1.2.  Plant Community Properties: 

Wetland vegetation also differed across sites, both in terms of biomass and community 

composition.  Three plant species were common to both sites: Juncus effusus, Leersia oryzoides, 

and Polygonum sagittatum, with two additional species found at the Wet site (Typha angustifolia 

and Murdannia keisak).  Figure 3 shows the clear differences in community composition across 

sites; when ANOSIM was applied to compare the presence or absence of each species in each 

plot, it was demonstrated that the sites were distinct from one another (p=0.024).  Additionally, 

based on the ANOVA, a significant seasonal effect was observed (p < 0.001) where the Winter 

had no live plant above-ground biomass (0.0 + 0.0 kg/m
2
) but the above-ground biomass 

significantly increased over the growing season (Spring: 0.4 + 0.03 kg/m
2
; Summer: 1.1 + 0.1 

kg/m
2
) and then decreased in the Fall (0.8  + 0.2 kg/m

2
). 

When below-ground (root) biomass was considered, no significant seasonal effects were 

observed (p=0.63) (Table 2).  However, a significant interaction effect was observed for site and 

depth (p = 0.02).  In the bottoms, there are fewer roots and no effect of site (single factor 

ANOVA, p =0.06, overall average root for the bottoms 0.9 + 0.8 mg per gram dry soil).  
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However, the Wet tops (7.5 + 1.4 mg per gram dry soil) have less root matter than the Dry sites 

tops (14.7 + 3.8 mg per gram dry soil) (single factor ANOVA, p = 0.03).   

 

1.3. Spearman Rank Correlations (rs): 

Relationships among soil parameters were explored using Spearman Rank correlation and 

several significant relationships were found (Table 3). Of particular note, root content of the soil 

was correlated with nearly every other parameter measured.  In contrast, soil C:N did not 

correlate significantly with any of the other variables.  Above-ground plant biomass was strongly 

correlated with both soil OM and root content.  Redox, OM, and soil water content were all 

highly correlated; pH was negatively correlated root content and redox. 

When data collected for each depth were considered separately (results not presented), 

some differences emerged, and in general the tops were significantly correlated while the 

bottoms had few significant correlations. In particular, redox was most strongly correlated in the 

top layer of the soil with water content (top: rs = -0.55, p <0.001; and bottom: rs = 0.01, p >0.05) 

and OM (top: rs = 0.56, p <0.001; and bottom: rs = 0.22, p >0.05). A similar relationship was also 

found between pH and roots in the top layer (top: rs = -0.29, p<0.05; bottom rs = -0.04, p<0.05).   

At the surface the correlation between roots and plant biomass was stronger than at depth (top: rs 

= 0.94, p<0.05; top: rs = 0.68, p<0.05), where greater root biomass co-occurred with higher 

above-ground live plant biomass.  

  

2. Soil Microbial Community Analysis 

Patterns in the microbial community structure elucidated with T-RFLP DNA fingerprinting were 

visualized using NMDS.  All possible combinations of site, depth, and time were visualized 
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graphically, and the strongest pattern observed was between site and depth regardless of time for 

both communities. The data were analyzed in three dimensions, and the two axes that 

demonstrated the greatest variation were graphed (Figures 7 and 8).   

 

2.1.  Archaeal Community:  

 All data points regardless of site, depth or season were summarized graphically using the 

two major axes from the 3D analysis, these axes had a stress level of 0.15 and accounted for 61% 

of the variability in the data (Figure 7).   In this graph, the data points separated primarily by 

depth (Axis 1: 44%) and then by site (Axis 2: 17%).   Each sampling site and depth were 

significantly different from one another based on a one-way ANOSIM (all p < 0.001). 

 Most seasonal samples were not significantly different from one another (Figure 8; 

ANOSIM: all p > 0.05 except Fall 2009 to Spring 2008 (p < 0.001) and Winter 2009 (p < 0.001).   

 

2.2.  Bacterial Community:  

As with the archaeal communities, all bacterial data points regardless of site, depth or 

month were summarized graphically with the two major axes based on the 3D  analysis (stress = 

0.18, total variability = 61%, Figure 7).   In this graph, the data points again separated out 

primarily by depth (Axis 1: 38%) and then by site (Axis 3: 23%).  Each sampling site and depth 

was significantly different from one another based on a one-way ANOSIM (all p < 0.05). 

 Similar to the archaeal communities, no consistent seasonal patterns or groupings were 

observed in any of the combinations of depth or site in the bacterial communities (Figure 8).  

None of the seasons were found to be significantly different via one-way ANOSIM (all p > 

0.05).  
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3.  Canonical Correspondence Analysis  

In the CCA biplot of the archaea data, Axis 1 explained only 9.7% of the variation and 

Axis 2 explained 4% (less than NMDS results).  The samples clustered by depth in a similar 

manner to the patterns observed in the NMDS, so the graphs are not reproduced here.  Water 

content, OM, redox, and roots per gram dry weight correlated with Axis 1 and were significant 

(Table 4, Pearson r = 0.85, Monte Carlo p <0.001).  

Similarly, for bacteria, little total variation (10.5%) was explained by the CCA (Axis 1: 

7.5, Axis 2: 3%), and the samples clustered by depth comparable to the NDMS results presented 

in Figure 5. Once again, water content, OM, redox, and roots per gram dry weight were 

correlated with Axis 1 and were significant (Table 4, Pearson r = 0.72, Monte Carlo p <0.001). 

Additionally, for both microbial communities average live plant biomass and C:N were not 

strongly correlated to either axis in the CCA analysis (Table 4). 
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DISCUSSION 

 

In the present study, it was hypothesized that environmental conditions at different sites 

within the wetland would have the greatest influence on the microbial communities present, and 

then, within the sites, depth would be a distinguishing factor between communities. However, 

soil depth was the most important factor in driving environmental conditions and in determining 

microbial community structure during this study period.  In addition, microbial communities 

within each site and depth did not follow a clear seasonal trend.  

Saturated soils have little aeration and, thus, reduced redox status, which in turn 

constrained decomposition creating an accumulation of OM (Bossio et al. 2005; Gutknecht et al. 

2006; Hammer 1989). This expected pattern was observed over the sites and depth gradient 

studied here; with the wet site and top 10 cm of the soil having higher OM and WC, and lower 

redox, all of which were significantly correlated with one another (Table 2).  Surprisingly, the 

only significant interaction found between site and depth was in relation to soil WC with bottoms 

having lower WC than tops, specifically wet tops had a higher average WC than dry site the 

bottoms.  This is caused the low porosity in compacted depths of loamy clay . As a result, bottom 

sediments contained less than half of the WC than top sediments.  Fluctuations in hydrology and 

aeration would have been limited at 20-30 cm depth to changes in the water table, while the top 

10 cm experienced large shifts in surface water inputs, creating differences in physiochemical 

properties of the sediment.   

Differences between sites and depths based on OM were not surprising.  As expected, the 

wetter site experienced a higher accumulation of OM, especially in the top 10 cm of soil, which 

was most likely caused by slower decomposition rates.  Another possibility is that above-ground 
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productivity differed across sites, creating large differences in the amount of OM that would be 

added to the soil surface.  However, this is not likely based on ANOVA results, which found no 

significant differences between the sites based on above-ground plant biomass (p = 0.40).  In 

addition, OM increased significantly over the growing season, which could be from an 

accumulation of root biomass in the soil as plants grow. However, when the soil OM was re-

calculated after removing the contribution of root weight, and then reanalyzed via ANOVA, the 

pattern did not change. Non-root soil OM increased significantly in the Fall (9.2 + 0.9 mg) 

versus the other seasons (Spring: 4.4 + 0.3 mg, Summer: 5.9 + 0.6 mg, Winter: 3.9 + 0.7 mg).  

One potential explanation for this observed increase in OM is the physical breakdown of surface 

litter into small particles throughout the growing season, which was then incorporated into the 

soil matrix and reached a significant accumulation by the Fall.  

Plant communities are assumed to indirectly influence soil pH and redox potentials by 

releasing exudates and oxygen through roots, which in turn influence soil microbial communities 

(Thomas et al. 2009, Ehrenfeld et al. 2005).   Influence of the plant community is anticipated in 

the rooting zone of the soil, typically the top 40 cm (Mitsch and Gosselink 2000).  Plants differ 

in their influence on soil physiochemical properties. For example, Typha latifolia (a similar 

species to the type of Typha found in this wetland) releases twice as much oxygen through its 

roots as Juncus effusus (another dominant plant in this wetland), though both effectively create 

aerobic micro-niches that have the potential to influence redox and pH (Webner et al. 2002).  

Here, more roots were found in the top layers of the soil than at depth, this is most likely due to 

the age of the wetland and recent re-colonization of this area by wetland vegetation.   A strong 

effect of the plant roots was observed in the top 10 cm of the soil as demonstrated by the 

correlation between roots and redox and pH (Table 3).   
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Additional seasonal differences were observed in the environmental parameters of pH, 

redox, and average live plant biomass.  As previously mentioned, pH and redox values can be 

affected by the plant community through root exudates, which likely  experience seasonally 

fluctuations (Ehrenfeld et al. 2005, Thomas et al. 2009).  However, this study used bulk soil 

measurements to determine the soil properties; smaller scale measurements would better indicate 

rhizosphere-induced changes in pH and redox throughout the seasons.   

Overall, seasonal and depth differences were significant in the environmental parameters 

considered.  One concern with the observed differences with depth was that the 20-30 cm soil 

layer may have been from the original wetland, and the surface sediments deposited while this 

area was a lake. However, all soil sampled was deposited while this area was a lake (VCU Rice 

Center Site Assessment report by Draper Aden Associates, 2003).  

The dominant environmental parameters effecting microbial communities was soil depth. 

Archaea communities in surficial sediments were more similar than archaea in the bottom 

sediments, but the opposite was observed for the bacterial communities. Even though these 

patterns were distinct, the two subsets of the microbial community were still highly correlated 

(Mantel test comparing similarity in bacterial communities to similarity in archaea communities, 

rM = 0.23, p <0.001). Soil saturation is a dominant factor in wetlands and controls archaeal and 

bacterial microbial populations (Gutknecht et al. 2006, Mentzer et al. 2006, Balasooriya et al. 

2008).  Though little is known about how environmental parameters influence the total archaea 

community, methanogenesis rates (a process mediated by anaerobic archaea and  thought to be 

very important in freshwater wetlands) are linked to water level and WC in sediments (Coles and 

Yavitt, 2004).  Even though little of the variation observed in the total archaeal communities in 

this study was explained by the environmental variables measured, the variation that could be 
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explained in the CCA was strongly correlated with WC and moderatley correlated with redox, 

OM, and root content (Table 4). In peat sediments, archaea abundance increases with depth and 

is presumed to be caused by anoxic conditions (Debysh et al. 2006; Jackson et al. 2009), which 

is affected by the WC of the soils.   This difference in water alone may be the cause of the 

distinct communities observed between the depths (Hansel et al., 2008), though other factors 

involved with WC and water source (e.g., dissolved organic carbon from soil and plant leachate) 

might also contribute (Jackson et al. 2009; Kemnitz et al., 2007).   

Bacteria communities are also influenced by WC and redox in soils (Balasooriya et al. 

2008, Gutknecht et al. 2006), and, similar to the archaea communities, what little variation could 

be explained in these bacterial communities was correlated with soil WC and redox values.  

Redox was strongly correlated to changes across depth in bacterial communities in the CCA (r = 

0.80).  In marine benthic sediments and tropical soils, redox has also been found to be related to 

bacterial community structure (Edlund et al. 2008, Pett-Ridge and Firestone 2005).    However, 

redox potentials are also a function of the microbial communities present and are influenced by 

nutrient availability, carbon availability, water table fluctuations (Thomas et al. 2009).  

 As previously discussed, pH can be influenced by plant communities through roots, but it 

can also be affected by the physical characteristics of the soil. In mineral wetlands with low 

amounts of OM, such as in this study, pH is typically slightly acidic to neutral (Hammer 1989; 

Mayes et al. 2009).  While the influence of pH on microbial communities is not yet clearly 

understood (Gutknecht et al. 2006), the values recorded in this study were fairly constant and not 

extreme enough to strain the microbial communities.  

 Contrary to the environmental parameters, no clear seasonal patterns were observed in 

the microbial communities, potentially because a strong relationship between the plant 



 

25 

 

community and microorganims has not yet been established.  Additionally, due to the recent 

history of this wetland, the hydrology of the system was very stochastic throughout the study.  

This may have influenced  the microbial communities, not only through fluctuations in WC but 

also by affecting other environmental factors such as the source and availability of nutrients 

(Treves et al. 2003; Zhou et al. 2002), and possibly prevented any sort of predictable seasonal 

patterns from emerging at this time.   Additionally, at longer temporal scales, wetlands 

experience an accumulation of OM, succession in plant community structure, and changes in 

hydrological flow. The accumulation of these changes causes cascading effects that are 

important to microbial community structure that may not have been in effect in this wetland due 

to its age.  Environmental heterogeneity increases through time with succession and is very 

important to microbial community structure in wetlands and benthic habitats (Buesing et al. 

2009, Hullar et al. 2006, Böer et al. 2009, Wilms et al. 2006).   

 In this study, little of the variation observed in the microbial community was explained 

by the environmental parameters examined.  Other studies that have examined depth-related 

changes in the communities have succeeded in linking such patterns to environmental parameters 

such as redox, carbon content and even predation (First et al. 2010, Böer et al. 2009, Edlund et 

al. 2008, Fierer et al. 2003, Wilms et al. 2006).  Yet the influence of such environmental 

variables over time is still not clearly understood (Böer et al. 2009, Mentzer et al. 2006, Wilms 

et al. 2006, Hullar et al. 2006).   Future work that includes a broader scope of environmental 

parameters over a more intense and longer sampling period is needed in order to clarify the 

interaction between environmental parameters and seasonal dynamics and microbial community 

structure.   
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Figure 1: Location of study site, Virginia Commonwealth University’s Inger and Walter Rice 

Center for Environmental Sciences, located along the tidal freshwater portion of James River 

near Richmond, Virginia (USA).   



 

31 

 

 
 

 

Figure 2:  A map of former Lake Charles, with the study sites indicated, Virginia 

Commonwealth University’s Inger and Walter Rice Center for Environmental Sciences, located 

along the tidal freshwater portion of James River near Richmond, Virginia (USA).  



 

32 

 

 
 

Table 1: Mantel Temporal Correlations   

 
 

 
All samples  Wet Tops  Wet Bottoms  Dry Tops  Dry Bottoms  

 r p  r p  r p  r p  r p  

pH 0.05 0.03  0.15 0.0004 * 0.004 0.40  0.11 0.03  0.12 0.02  

Redox 0.05 0.03  - 0.03 0.70  - 0.03 0.66  0.04 0.17  - 0.08 0.93  

OM 0.05 0.02  0.02 0.31  0.01 0.41  0.03 0.31  - 0.06 0.78  

WC 0.06 0.03  0.15  0.01  0.09  0.12  0.08  0.15  0.04 0.27  

 
* Significant following sequential step-down Bonferroni correction with an initial alpha of 0.05. 
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Figure 3:  Average kg per m
2
 of live plant biomass by species present.  A.) Wet site B.) Dry site.  Three wetland plant species were 

common to both sites: Juncus effusus, Leersia oryzoides, and  Polygonum sagittatum, with two additional species found at the wet site 

(Typha angustifolia and Murdannia keisak) 
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Figure 4: Selected environmental parameters for all dates sampled (mean + 1 S.E.), Circles are 

the Wet site while triangles are the Dry site; filled shapes are the top 10 cm of the soil core while 

open shapes are the bottom 20-30 cm of the soil core. 
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Table 2:  ANOVA Test Statistics 

 
 

 
  

C:N OM pH Redox WC Roots Biomass 

 df F p F p F p F p F p F p F p 

Site 1 0.00 0.94 4.77 0.03* 1.27 0.26a 14.17 <0.001** a 7.57 0.007* a 3.54 0.06 a 6.03 0.441 

Depth 1 1.29 0.26 43.59 <0.001** 7.90 0.006* 44.22 <0.001** 172.86 <0.001** a 35.27 0.001* a N/A N/A 

Season 3 0.44 0.73 19.55 <0.001** 18.51 <0.001**a 14.93 <0.001** a 4.27 0.007* a 0.58 0.63 68.29 <0.001** 

Site x Depth 1 0.67 0.42 2.30 0.13 0.02 0.87 0.28 0.59 9.51 0.003* 5.33 0.02 N/A N/A 

Site x Season 3 0.74 0.54 0.72 0.54 7.70 <0.001** 2.82 0.04* 0.33 0.803 0.49 0.69 7.51 0.428 

Depth x Season 3 2.23 0.09 0.43 0.73 0.55 0.65 0.81 0.49 4.62 0.005* 0.70 0.55 N/A N/A 

Site x Depth x Season 3 0.17 0.91 0.56 0.64 0.29 0.83 0.78 0.50 1.01 0.39 0.45 0.72 N/A N/A 

*Significant at the 0.05 level  

**Significant at the 0.001 level  
a 
Output from three way ANOVA  
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Figure 5: Soil parameters (water content, pH, redox) for the eight selected dates (mean + 1 S.E.).  

Circles are the Wet site while triangles are the Dry site; filled shapes are the top 10 cm of the soil 

core while open shapes are the bottom 20-30 cm of the soil core. 
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 Figure 6: Soil parameters (OM, C:N, roots per gram dry soil) for the eight selected dates (mean 

+ 1 S.E.).  Circles are the Wet site while triangles are the Dry site; filled shapes are the top 10 cm 

of the soil core while open shapes are the bottom 20-30 cm of the soil core.
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Table 3: Spearman Rank Correlations between All Environmental Parameters 

 

 

 WC Redox pH OM Roots  C:N 

Redox 0.27**      

pH -0.17 -0.52**     

OM 0.50** 0.38** -0.16    

Roots  0.49** 0.34** -0.30** 0.42**   

C:N -0.04 0.01 -0.01 0.02 -0.19  

Biomass 0.03 0.12 -0.12 0.56** 0.28** 0.07 

 

 

*Significant at the 0.05 level  

**Significant at the 0.001 level  
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Figure 7: NMDS of the microbial communities (mean + 1 S.E.) all samples by site and depth.  

A.) Archaea Communities and B.) Bacterial Communities.
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 Figure 

8: NMDS of the microbial communities (mean + 1 S.E.) all samples by season for both years 

sampled A.) Archaea Communities and B.) Bacterial Communities. 



 

41 

 

 

Table 4: CCA of the Microbial Communities.  Correlation values for each environmental 

parameter to Axis 1 (significant based on the Monte Carlo test with p <0.001).   

 

 

 Archaea Bacteria 

pH -0.09 -0.44 

Redox 0.52 0.80 

OM 0.58 0.52 

Roots 0.64 0.58 

WC 0.85 0.59 

Live Average 

Plant Biomass 
-0.15 -0.34 

C:N 0.11 0.24 
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