
Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2013 

DEVELOPMENT OF ANTAGONISTS TARGETING CHEMOKINE DEVELOPMENT OF ANTAGONISTS TARGETING CHEMOKINE 

RECEPTOR CCR5 AND THE CHEMOKINE RECEPTOR CCR5 – MU RECEPTOR CCR5 AND THE CHEMOKINE RECEPTOR CCR5 – MU 

OPIOID RECEPTOR HETERODIMER OPIOID RECEPTOR HETERODIMER 

Christopher Kent Arnatt 
Virginia Commonwealth University 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 Part of the Pharmacy and Pharmaceutical Sciences Commons 

 

© The Author 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/517 

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It 
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars 
Compass. For more information, please contact libcompass@vcu.edu. 

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/731?utm_source=scholarscompass.vcu.edu%2Fetd%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/517?utm_source=scholarscompass.vcu.edu%2Fetd%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


 

 

 

 

 

 

 

 

 

© Christopher Kent Arnatt 2013 

All Rights Reserved 

 



 

DEVELOPMENT OF ANTAGONISTS TARGETING CHEMOKINE RECEPTOR 

CCR5 AND THE CHEMOKINE RECEPTOR CCR5 – MU OPIOID RECEPTOR 

HETERODIMER  

A dissertation submitted in partial fulfillment of the requirements for the degree of doctor 

of philosophy at Virginia Commonwealth University. 

 

by 

 

CHRISTOPHER KENT ARNATT 

Bachelors in Science, Hampden-Sydney College, 2009 

 

 

Director: YAN ZHANG, PHD 

ASSOCIATE PROFESSOR, DEPARTMENT OF MEDICINAL CHEMISTRY 

 

 

 

 

 

 

 

Virginia Commonwealth University 

Richmond, Virginia 

May, 2013 



ii 

 

 

 

 

Acknowledgement 

The culmination of events in my life which have led me to graduating with a 

Ph.D. have revolved entirely around my family and friends. Without them in my life I 

would be a lesser person. Coming from a family with sixteen children there were plenty 

of facets of a ‘normal’ childhood that I was deprived from. However, it was an 

environment that cultivated my dedication, work ethic, and love of education which lead 

me to become the man I am today. My parents, Sylvia Arnatt-Nestor and Dave Nestor, 

instilled those characteristics into me; without them none of my achievements would 

have ever come to fruition. I cannot begin to encompass the acknowledgements that they 

deserve. My family has and will always play a central role in my life and I thank all of 

my brothers and sisters for being ever-present. They have helped me let my light shine 

on, even through the darkest of times.  

While earning my Ph.D. will be a great accomplishment, it will always pale in 

comparison to marrying my best friend, Mary Ann Haggerty. She makes me strive to 

become a better person and constantly challenges my often stubborn nature. Without her, 

I would have never been able to make it through all of the mental and emotional 

challenges that have occurred during the last four years. She has kept me grounded and 

held me together in the best and worst of times. Too many glowing examples of her can 

be said, but to briefly and pitifully paraphrase them: she is the best person I know. 



iii 

 

 

 

 

Beyond my family and my wife, my core group of friends has added an additional 

layer of support which has proved to me instrumental in my life. I would like to 

acknowledge my best friends Steele Parris and Sean Platt for developing my love of 

science and being a sounding board for all of my thoughts. Beyond them, during college, 

my brothers at the Beta Chi Chapter of Alpha Chi Sigma and my alma mater, Hampden-

Sydney College, helped me to become a good man and a good citizen. During graduate 

school, my friends of the Granite Gang have provided me with comic relief and a lasting 

friendship that helped keep me going during the most stressful times.  

My advisor Yan Zhang has always challenged my perceptions and aided in my 

journey to become a research scientist. He has always seen my potential and has pushed 

me to work harder in order to reach it. My fellow laboratory members, especially Kendra 

Haney and Yunyun Yuan, were indispensable in training me on all of the new chemical 

and biological techniques that were applied in this dissertation. From the Hauser 

laboratory, Seth Dever, has been instrumental in the attainment of all the biological data 

in the NeuroAIDS portion of my research. Also the entire Hauser and Knapp laboratories 

have been instrumental in the obtaining the biological data for the bivalent ligand project.  

Finally, I would like to thank my committee members: Glen Kellogg, Martin 

Safo, Kurt Hauser, and Dana Selley. Each one of you has helped galvanize my education 

through either your teaching or interactions with me.  



iv 

 

 

 

 

Table of Contents 
Page 

Acknowledgements ............................................................................................................. ii 

Table of Contents ............................................................................................................... iv 

List of Tables ..................................................................................................................... ix 

List of Figures .................................................................................................................... xi 

List of Schemes ................................................................................................................ xiv 

List of Abbreviations .........................................................................................................xv 

Abstract .......................................................................................................................... xviii 

Chapter 

1 Introduction ........................................................................................................1 

1.1 Chemokine Receptor CCR5 ....................................................................1 

 1.1.1 Chemokines and Inflammatory Response ......................................1 

 1.1.2 Chemokine Receptor CCR5 and GPCRs .......................................3 

 1.1.3 Chemokine Receptor CCR5 Signaling ...........................................5 

 1.1.4 Chemokine Receptor CCR5 in Different Disease States ...............8 

         1.1.4.1 Prostate Cancer ....................................................................9 

         1.1.4.2 HIV/AIDS .........................................................................11 

 1.1.5 Chemokine Receptor CCR5 Ligands ...........................................13 

1.2 Mu Opioid Receptor ..............................................................................16 

 1.2.1 Opioid Receptors ..........................................................................16 



v 

 

 

 

 

 1.2.2 Mu Opioid Receptor Structure .....................................................18 

 1.2.3 Mu Opioid Receptor Signaling .....................................................19 

 1.2.4 Mu Opioid Receptor in Different Disease States .........................20 

         1.2.4.1 Addiction ...........................................................................20 

         1.2.4.2 NeuroAIDS ........................................................................21 

 1.2.5 Mu Opioid Receptor Ligands .......................................................23 

         1.2.5.1 Agonists .............................................................................23 

         1.2.5.2 Antagonists ........................................................................25 

1.3 GPCR Dimerization ..............................................................................28 

 1.3.1 GPCR Dimerization Involving Mu Opioid Receptor ...................33 

 1.3.2 Bivalent Ligands Targeting GPCR Dimerization ........................34 

1.4 Hypotheses and Specific Aims ..............................................................38 

      1.4.1 Antagonists Targeting CCR5 .......................................................38 

      1.4.2 Bivalent Compounds Targeting the Putative CCR5 – MOR           

Heterodimer ...........................................................................................38 

2 Small Molecule Chemokine Receptor CCR5 Antagonists for Prostate Cancer 

Treatment .....................................................................................................40 

2.1 Project Design .......................................................................................40 

2.2 Chemical Syntheses ...............................................................................44 

 2.2.1 Williamson Ether Synthesis .........................................................46 



vi 

 

 

 

 

 2.2.2 Nitro-group Reduction to Primary Amine ....................................46 

 2.2.3 Piperazine Ring Formation ...........................................................47 

 2.2.4 Aromatic Mono-Nitration .............................................................48 

 2.2.5 Final Compound Synthesis ...........................................................51 

2.3 In Vitro Studies ......................................................................................52 

 2.3.1 Calcium Mobilization Functional Assays ....................................52 

 2.3.2 Prostate Cancer Anti-Proliferation Assays ...................................55 

 2.3.3 Basal Cytotoxicity Assays ............................................................58 

2.4 Conclusion .............................................................................................60 

3 Bivalent Ligands Targeting the CCR5-MOR Heterodimer .............................62 

3.1 Project Design .......................................................................................62 

3.2 Chemical Syntheses ...............................................................................66 

 3.2.1 Buchwald-Hartwig Coupling .......................................................67 

 3.2.2 1,2,4-Triazole-Substituted Tropane Intermediate Synthesis ........69 

 3.2.3 Debenzylation with Hydrogenation ..............................................70 

 3.2.4 Selective Difluorination ...............................................................71 

 3.2.5 Linker Synthesis ...........................................................................72 

 3.2.6 6β-Naltrexamine-Linker Intermediate Synthesis .........................74 

 3.2.7 Final Compound Synthesis ...........................................................76 

3.3 In Vitro Studies ......................................................................................77 



vii 

 

 

 

 

 3.3.1 Calcium Mobilization Functional Assays ....................................77 

 3.3.2 Binding Assays .............................................................................84 

 3.3.3 Cell Fusion Assays .......................................................................85 

 3.3.4 HIV-1 Infection Assays ................................................................85 

 3.3.5 Expression Levels of CCR5 and MOR in Primary and Engineered 

Cells .......................................................................................................90 

3.4 In Silico Studies .....................................................................................92 

 3.4.1 Modeling the CCR5-MOR Heterodimer ......................................92 

 3.4.2 Bivalent Ligand Docking Studies .................................................95 

 3.4.3 CCR5-MOR Molecular Dynamics Simulations ...........................97 

3.5 Conclusion ...........................................................................................104 

4 Experimental ..................................................................................................106 

4.1 Chemical Syntheses .............................................................................106 

 4.1.1 Small Molecule CCR5 Antagonists: Intermediates ....................106 

 4.1.2 Small Molecule CCR5 Antagonists: Final Compounds .............115 

 4.1.3 CCR5-MOR Bivalent Ligands: Intermediates ...........................123 

 4.1.4 CCR5-MOR Bivalent Ligands: Final Compounds ....................148 

4.2 Biology Methods .................................................................................151 

 4.2.1 Anti-Proliferation Assay .............................................................151 

 4.2.2 Basal Cytotoxicity Assay ...........................................................152 



viii 

 

 

 

 

 4.2.3 Establishing a CCR5-hMOR-CHO Cell Line ............................153 

 4.2.4 Calcium Mobilization Assays ....................................................153 

         4.2.4.1 CCR5-MOLT-4 Cells ......................................................153 

         4.2.4.2 hMOR CHO Cells ...........................................................154 

         4.2.4.3 CCR5-hMOR CHO Cells ................................................155 

 4.2.5 Cell Fusion Assay .......................................................................156 

 4.2.6 HIV-1 Infection Assay ...............................................................157 

 4.2.7 PCR Studies ................................................................................158 

4.2 Computational Methods ......................................................................159 

 4.2.1 Small Molecule Construction .....................................................159 

 4.2.2 Sequence Alignment and Model Building .................................159 

 4.2.3 Model Selection and Quality Assessment ..................................160 

 4.2.4 CCR5-MOR Heterodimer Model Building ................................160 

         4.2.4.1 Molecular Docking ..........................................................161 

         4.2.4.2 Molecular Dynamics Simulations ...................................162 

5 Conclusion .....................................................................................................165 

References ........................................................................................................................167 



ix 

 

 

 

 

List of Tables 
Page 

Table 1: Small molecule CCR5 antagonists in clinical development. ...............................13 

Table 2: Example MOR agonists. ......................................................................................24 

Table 3: Example MOR antagonists. .................................................................................26 

Table 4: Selective, morphanin-based bivalent compounds targeting MOR  

heterodimers. ......................................................................................................................36 

Table 5: CCR5 antagonism (calcium mobilization) of compounds 42 through 48  

using RANTES as the agonist............................................................................................54 

Table 6: Anti-proliferation assays for DU 145, PC-3, and M-12 prostate cancer cells 

Using WST-1 to measure cell proliferation. ......................................................................57 

Table 7: Basal cytotoxicity assays using NRU and WST-1 to test for exogenous toxicity 

of compounds 27 through 48 in NIH-3T3 cells. ................................................................59 

Table 8: Antagonism of RANTES stimulated calcium mobilization in  

MOLT-4 cells.....................................................................................................................80 

Table 9:   Antagonism of DAMGO stimulated calcium mobilization in hMOR-CHO 

cells. ...................................................................................................................................81 

Table 10:   Results from the calcium mobilization assays using the CCR5YFP-hMOR-

CHO co-expressed cell line. ..............................................................................................82 

Table 11: CCR5 and MOR radiobinding assays. ...............................................................84 



x 

 

 

 

 

Table 12: Major amino acids in the CCR5 and MOR binding pockets, in the heterodimer, 

interacting with compound 49. ........................................................................................102 



xi 

 

 

 

 

 

List of Figures 
Page 

Figure 1: Graphical representation of the 7-TM GPCR, CCR5...........................................3 

Figure 2: CCR5 signaling cascade .......................................................................................6 

Figure 3: β-arrestin mediated receptor internalization .........................................................8 

Figure 4: HIV entry into host cells ....................................................................................11 

Figure 5: Pfizer CCR5 antagonist HTS hit CCR5 antagonist which lead to  

maraviroc, 1 .......................................................................................................................15 

Figure 6: TAK-779, the first CCR5 small molecule antagonist ........................................16 

Figure 7: MOR monomer crystal structure ........................................................................18 

Figure 8: Pathophysiology and pathogenesis of neuroAIDS .............................................22 

Figure 9: The message-address concept for opioid receptor selectivity. ...........................28 

Figure 10: Observed GPCR oligomers and dimers............................................................31 

Figure 11: Positive and negative cooperativity in GPCR dimerization .............................32 

Figure 12: Example CCR5 antagonists used as the basis of the CCR5 pharmacophore ...41 

Figure 13: Molecular modeling based pharmacophore analysis, and designed CCR5 

antagonist scaffold .............................................................................................................42 

Figure 14: Example pharmacophore-based compound docked into a CCR5 homology 

model..................................................................................................................................42 



xii 

 

 

 

 

Figure 15: Synthesized derivatives with substituted benzyl groups based upon the CCR5 

antagonist scaffold and pharmacophore in Figure 9 ..........................................................43 

Figure 16: Synthesized CCR5 antagonists for elucidating the SAR of the piperazine 

compound library ...............................................................................................................44 

Figure 17: Calcium assay mechanism ................................................................................53 

Figure 18: The first reported bivalent compound targeting the CCR5-MOR  

heterodimer ........................................................................................................................63 

Figure 19: Bivalent compound strategy for targeting the CCR5-MOR heterodimer ........64 

Figure 20: Additional CCR5-MOR bivalent compound (50) and control compounds 

studying the SAR of maraviroc substitution ......................................................................66 

Figure 21: Library of compounds for the study of the CCR5-MOR heterodimer .............78 

Figure 22: Example CCR5 inhibition curve for 49. ...........................................................79 

Figure 23: Cell fusion assay used to mimic HIV invasion without using live virus .........86 

Figure 24: Cell fusion assay based upon luminescence from expressed luciferase reporter 

gene. ...................................................................................................................................87 

Figure 25: HIV-1 infection assay .......................................................................................90 

Figure 26: Relative mRNA expression levels of MOR and CCR5 ...................................91 

Figure 27: Sequence alignment of CCR5 and CXCR4 ......................................................93 

Figure 28: CCR5-MOR heterodimer model ......................................................................95 



xiii 

 

 

 

 

Figure 29: Overview of docking procedure for docking 49 into the CCR5-MOR 

heterodimer ........................................................................................................................96 

Figure 30: CCR5-MOR heterodimer model based on the MOR dimer crystal structure 

(PDB code: 4DKL) with bivalent compound 49 bound ....................................................98 

Figure 31: Molecular dynamic system for the CCR5-MOR heterodimer in a membrane 

and water box system .........................................................................................................98 

Figure 32: CCR5-MOR heterodimer RMSD from dynamics study after a total of 13 ns of 

production ..........................................................................................................................99 

Figure 33: Total energy (kcal/mol) of the dynamics simulation after 13 ns ......................99 

Figure 34: Trajectory of 49 in the CCR5-MOR heterodimer at 0, 2.4, 4.4, and 6 ns ......100 

Figure 35: Bivalent compound 49 RMSD from dynamics study after a total of 13 ns of 

production ........................................................................................................................101 

Figure 36: The binding pocket for the triazole region at 0 ns and 6 ns ...........................103 

 



 

 

 

 

 

xiv 

 

List of Schemes 
Page 

Scheme 1: Synthetic route for CCR5 antagonists 42-48 ...................................................45 

Scheme 2: General reaction Scheme for 2,3,5,6-tetrabromo-4-methyl-4-nitrocyclohexa- 

2-5-dien-1-one (66) ............................................................................................................49 

Scheme 3: Mechanisms for aromatic nitration ..................................................................50 

Scheme 4: Alternative route for mono-nitration ................................................................51 

Scheme 5: WST-1 mechanism for action for anti-proliferation assay. ..............................55 

Scheme 6: Synthetic route to form the 3-amino maraviroc intermediate (80) ..................69 

Scheme 7: Synthesis of the 1,2,4-triazole substituted tropane intermediate (86) ..............70 

Scheme 8: Synthesis of 4,4-difluorocyclohexylcarboxylic acid (88) using Fluolead .......72 

Scheme 9: Synthesis of 6β-naltrexone-linker intermediate (95) and final 3-amino bivalent 

compound (50) ...................................................................................................................73 

Scheme 10: 6β-Naltrexamine (98) synthesis .....................................................................75 

Scheme 11: Synthesis of 3-amino maraviroc monovalent control compound (52) ...........76 

 

 



xv 

 

 

 

 

List of Abbreviations 

 
AAH Atypical adenomatous hyperplasia 

AIDS acquired immunodeficiency syndrome 

AP2 Adapter complex protein 2 

AR Androgen receptor 

ATP Adenosine triphosphate 

BBB Blood brain barrier 

β-FNA β-funaltrexamine 

BPH benign prostate hyperplasia 

BRET Bioluminescence resonance energy transfer 

cAMP Cyclic adenosine monophosphate 

CB1 cannabinoid receptor 1 

C-CAM Clocinnamox 

CCK2 type 2 cholecystokine 

CCR5 Chemokine receptor CCR5 

CFP Cyan fluorescent protein 

CNS Central nervous system 

c-SRC Proto-oncogene tyrosine-protein kinase SRC 

CXCR4 chemokine CXC receptor 4 

DAG diacyl glycerol 

DAST diethylamino sulfur trifluoride 

DAMGO [D-Ala
2
, N-MePhe

4
, Gly-ol]-enkephalin 

DCM dichloromethane 

DMF dimethylformamide 

DMF Dimethyl formamide 

DOR Delta opioid receptor  

EDCI 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide 

EL Extracellular loop 

EL Extracellular loop 

Env Envelope protein 

ER Endoplasmic reticulum 

ERK1/2 Extracellular signal-regulated kinases 1/2 

FRET Fluorescence resonance energy transfer  

GDP guanosine diphosphate 

gp Glycoprotein  

GPCR G protein-couple receptor 

GRKs G protein-coupled receptor kinases 

GTP guanosine triphosphate 



xvi 

 

 

 

 

HA influenza hemaglutinin 

HAART highly active antiretroviral therapies 

HAART highly active antiretroviral therapy 

HAND HIV-associated neurocognitive disorders 

HTS High throughput screening 

HTS high-throughput screening 

IL Intracellular loop 

IP3 inositol triphosphate 

JNK Jun-N-terminal kinase 

KOR Kappa opioid receptor 

LHMDS lithium hexamethyldisilazide  

MAPK mitogen-activated protein kinases 

MCP-2 monocyte chemoattractant protein 2 

MIP-1α macrophage inflammatory protein-1α 

MOR Mu opioid receptor 

M-tropic Macrophage-tropic 

neuroAIDS neurological complications of AIDS 

NK1 substance P receptor 

NMR Nuclear magnetic resonance 

NOR Nociception/orphanin receptor 

nRTK Non-receptor tyrosine kinase 

OPM orientations of proteins in membranes 

PBMC peripheral blood mononuclear cells 

PCa Prostate cancer 

Pd/C Palladium on carbon 

PIP2 phosphatidylinositol 4,5-biphosphate 

PKC Protein kinase C 

PLC Phospholipase C 

PLCβ phospholipase C β isoform 

PNS Peripheral nervous system 

POPC phosphatidylcholine 

PSA Prostate specific antigen  

QSAR Quantitative structure activity relationship 

RANTES regulated upon activation normally T-cell 

expressed and secreted 

RNS Reactive nitrogen species 

ROS Reactive oxygen species 

SAR Structure-activity-relationship 

sst2A somatostatin receptor 2A 

TM Transmembrane helix 



xvii 

 

 

 

 

T-tropic T-cell-tropic 

YFP Yellow fluorescent protein 

  



 

 

 

 

xviii 

 

 

Abstract 
 

 

 

DEVELOPMENT OF ANTAGONISTS TARGETING CHEMOKINE RECEPTOR 

CCR5 AND THE CHEMOKINE RECEPTOR CCR5 – MU OPIOID RECEPTOR 

HETERODIMER  

 By Christopher Kent Arnatt, Ph.D.  

A dissertation submitted in partial fulfillment of the requirements for the degree of doctor 

of philosophy at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2013 

 

Major Director:  Yan Zhang 

Associate Professor, Department of Medicinal Chemistry 

 

 

 

The chemokine receptor CCR5 (CCR5) plays an integral role within the 

inflammatory network of cells. Importantly, CCR5 is a mediator in several disease states 

and can be targeted using small molecule antagonists. Within this work, CCR5’s role in 

prostate cancer and HIV/AIDS has been exploited in order to develop potential 

therapeutics and probes.    

First, a series of novel compounds was designed by using pharmacophore-based 

drug design based upon known CCR5 antagonists and molecular modeling studies of the 

CCR5 receptor’s three-dimensional conformation. Once synthesized, these compounds 



xix 

were tested for their CCR5 antagonism and their anti-proliferative effects in several 

prostate cancer cell lines. The data from both the calcium mobilization studies and the 

anti-proliferation studies suggests that the compounds synthesized have activity as CCR5 

antagonists and as anti-proliferative agents in certain prostate cancer cell lines.  

In addition, a bivalent ligand containing both a mu opioid receptor (MOR) and a 

CCR5 antagonist pharmacophore was designed and synthesized in order to study the 

pharmacological profile of the putative CCR5-MOR heterodimer and its relation with 

NeuroAIDS. The structural-activity relationship between the bivalent ligand and the 

heterodimer was studied with radio-ligand binding assays, functional assays, HIV-1 

fusion assays, cell fusion assays, and in silico molecular dynamics. The subsequent 

bivalent ligand was proven to be a potent inhibitor in both an artificial cell fusion assay 

mimicking HIV invasion and a native HIV-1 invasion assay using live virus.  

In all, two novel sets of compounds were synthesized that targeted either CCR5 or 

the CCR5-MOR heterodimer. For the CCR5 antagonists, as leads for prostate cancer 

therapeutics, further work needs to be done to ascertain and develop their structure-

activity-relationship. This library of novel compounds was shown as promising leads as 

CCR5 and anti-prostate cancer agents. The bivalent ligand targeting the CCR5-MOR 

heterodimer proved to be a potent and tissue-specific inhibitor for neuroAIDS where the 

known treatment, maraviroc, is less efficacious and fails to inhibit virus entry in the 

presence of morphine. Both projects illustrate the roles that CCR5 plays in these two 

unique diseases.  

 



 

 

 

 

 

1 

 

1. Introduction 

 

1.1 Chemokine Receptor CCR5 

1.1.1 Chemokine and Inflammatory Response 

 Inflammation is a key physiological process prompted by infection or injury 

involving trafficking of plasma and leukocytes to the site of damage. Generically, there 

are four sequential components to the inflammation process: inducers, sensors, mediators, 

and effectors.
1
 Inflammatory response is first initiated by inducers, which are the factors 

that specifically initiated the signaling cascade. Sensors then are activated by inducers, 

which in turn promote the production of mediators. Mediators act as secondary 

messengers producing the physiological effects (effectors) of inflammation. 

Consequently, the effectors allow for inducer-specific inflammation conditions. Although 

it was developed as a protective mechanism, there are several detrimental pathological 

outcomes to the inflammatory process such as fibrosis, metaplasia, tumor growth, sepsis, 

and autoimmunity.
1
  

 Multiple mediators aid in the different inducer-specific effects seen for 

inflammation. In all, the mediators can be broken into seven groups: lipid mediators, 

vasoactive peptides, vasoactive amines, fragments of complement components, 

proteolytic enzymes, cytokines, and chemokines.
2
 Of interest, chemokines, or 

chemotactic cytokines, are a group of small proteins (8 to 12 kD) that induce chemotaxis 
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in several types of immune cells. These cells include keratinocytes, lymphocytes, 

fibroblasts, neutrophils, and monocytes.
3
 Physiologically, chemokines have several 

functions in inflammation, homeostasis, hematopoiesis, embryonic development, 

angiogenesis, and metastasis.
3,4

 

 Within the inflammatory network, chemokines are secreted from the site of 

infection or injury as a pro-inflammatory or anti-inflammatory response.
3
 The secreted 

chemokines subsequently activate and recruit leukocytes to the site of inflammation, 

which guard the body against unwanted organisms.
3
 These biological effects are 

mediated through chemokines binding to cell surface chemokine receptors.  

To date, approximately 47 chemokines are known and classified by the presence 

of conserved cysteine residues.
5
 In all, four families exist based upon the conserved 

cysteine residues found on the N-terminal: CC chemokine, C chemokine, CXC 

chemokine, and CX3C chemokine family. The first two cysteine residues are adjacent to 

each other in the CC chemokine family, whereas in the CXC chemokine family they are 

separated by one residue. The C chemokine family lacks one of the conserved cysteine 

residues and the CX3C chemokine family has three variable residues between the two 

conserved cysteines. Of the four families, the majority of chemokines are classified as 

either CC or CXC chemokines.
5
 Currently, 18 chemokine receptors are known and are 

classified by the profile of chemokine for which they can bind.
3,5
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1.1.2 Chemokine Receptor CCR5 and GPCRs 

All chemokine receptors are G protein-coupled receptors (GPCR), which have 

seven transmembrane helixes (TM) and couple to heterotrimeric G proteins. Figure 1 

shows a two-dimensional representation of the structure of chemokine receptor CCR5 

(CCR5) and its transmembrane helixes. The GPCR superfamily of proteins has 

approximately 791 genes encoding for the six different receptor subtypes.
6
 Chemokine 

receptors belong to the class A, rhodopsin-like, family and are classified into four main 

subclasses based upon which chemokines they bind: CC, CXC, XC, and CX3C 

receptors.
7
 Many of the chemokine receptors are promiscuous and bind to several 

chemokines within their family and allow for tailored chemokine response and 

redundancy. 

 
Figure 1. Graphical representation of the 7-TM GPCR, CCR5. Figure adapted from Li et 

al.
8
 

 

Leukocyte activation occurs through chemokines binding to a chemokine receptor 

and activating it. There are several events that occur during the activation cycle for 
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GPCRs. First, a resting state receptor that is bound to the G protein heterotrimer, 

composed of a guanosine diphosphate (GDP) bound Gα and a Gβγ subunit, binds an 

agonist. Upon binding an agonist, the receptor is converted to an active state and the GDP 

is exchanged for a guanosine triphosphate (GTP) and the Gα and Gβγ subunits dissociate 

from each other. The Gα and Gβγ subunits then go on to activate or inhibit several 

downstream signaling events through calcium channels, adenylyl cyclase, and 

phospholipase-C. The GTP slowly gets hydrolyzed to GDP by Gα and then reforms the 

complex with Gβγ and the resting state GPCR.
4
 

Several key observations about the active state of GPCRs have been derived from 

the available agonist-bound crystal structures. When comparing the inactive and active-

state crystal structures of the β2-adrenergic receptor (β2AR, PDB codes: 2RH1 and 3SN6 

respectively), upon activation, there are several movements in the transmembrane helixes 

and changes in residue interactions.
9,10

 Notably, there is a rearrangement between TM5 

and TM7, and intracellularly, an outward movement of TM6.
11

 Concurrently, the ionic 

lock between D/E6.30 and R3.50 in the conserved DRY sequence is interrupted along 

with movement of W6.48 (“toggle switch”) from TM7 toward TM5 (amino acids 

represented in the Ballesteros-Weinstein nomenclature
12

).
11,13–15

 However, such 

observations were not commonly seen for every activated GPCR crystal structure due to 

a variety of factors such as varied crystallization techniques.  

As a GPCR, CCR5 undergoes such conformational changes when it binds 

chemokines. Primarily expressed on T-cells and macrophages, CCR5 can bind and be 

activated through several chemokines: macrophage inflammatory protein-1α (MIP-1α), 
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MIP-1β, monocyte chemoattractant protein 2 (MCP-2), and RANTES (regulated upon 

activation normally T-cell expressed and secreted).
4,16

 In all, the chemokine binding 

process involves two steps: first, sulfated tyrosines on CCR5’s N-terminal direct the 

chemokine to the extracellular loop (EL) 2 of CCR5; next, the N-terminus of the 

chemokine interacts with the TM domains of the receptor.
3,4

 Activation of CCR5 leads to 

several signaling cascades and subsequent migration and inflammatory responses. CCR5 

also acts as a key co-receptor for HIV-1 invasion and aids in virus invasion and infection.   

 

1.1.3 Chemokine Receptor CCR5 Signaling 

 As a GPCR, CCR5 can induce several downstream signaling events including 

increasing intracellular Ca
2+

, activating MAP kinases, activating Jun-N-terminal kinases 

(JNK) and inhibiting adenylate cyclases.
4,7,16

 Upon activation, the Gα subunit separates 

from the Gβγ subunit; CCR5 has been shown to couple to both Gαi and Gαq (Figure 2).
17

 

This promiscuous binding allows for different signaling to occur through receptor 

activation. During signaling, Gαi inhibits adenylyl cyclase and thus decreases the 

production of cAMP from ATP. Gαq activates phospholipase C β (PLCβ) and produces 

diacyl glycerol (DAG) and inositol triphosphate (IP3) by hydrolyzing 

phosphatidylinositol 4,5-biphosphate (PIP2).
4,16

 The DAG remains membrane bound and 

can activate protein kinase C (PKC). The cytosol soluble IP3 then activates calcium 

channels on the endoplasmic reticulum (ER), which leads to an increase in cytosolic 

calcium concentration.  
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Figure 2. CCR5 signaling cascade. Upon activation, Gβγ unit dislodges from the Gα unit. 

CCR5 can couple to both Gαi and Gαq which have different downstream effects. Gαi 

inhibits adenylyl cyclase (AC) and stops the formation of cAMP. Whereas Gαq can 

increase intracellular calcium through activation of phospholipase C (PLC) and 

production of diacyl glycerol (DAG) and inositol triphosphate (IP3) by hydrolyzing 

phosphatidylinositol 4,5-biphosphate (PIP2). DAG can then go on to activate PKC which 

activates various mitogen-activated protein kinases (MAPK).The Gβγ subunit can also 

affect signaling though the IP3/DAG pathway and activation transcription factors such as 

Pyk-2 and JNK. 

 

A second set of signaling arises from the Gβγ activating phospholipase C β 

isoform (PLCβ). PLCβ also increases calcium through the DAG/IP3 signal transduction 

pathway. The Gβγ subunit is also important to chemokine induced chemotaxis of 

leucocytes.
4
 This cell motility is primarily due to activation of Pyk-2 and JNK.

18
  

CCR5 signaling is regulated through several mechanisms including 

desensitization, internalization, and receptor recycling/degradation. Essentially, GPCRs 

can be regulated by either changing the number of receptors present or changing the 
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signaling efficiency of the receptors.
19

 An important aspect of GPCR signaling is that a 

GPCR will retain a ‘memory’ of prior activation. Prior exposure to an agonist will lead to 

desensitization, or a reduced capacity to be stimulated by an agonist. Homologous 

desensitization is an agonist specific route that starts with the phosphorylation of the C-

terminus of a GPCR by G protein-coupled receptor kinases (GRKs). For CCR5, there are 

four main serine residues that are phosphorylated: S336, S337, S342, and S349.
20

 In all, 

there are seven members of the GRK family that have specificity towards certain 

GPCRs;
21

 for CCR5, both GRK2 and GRK3 are essential for phosphorylation and are 

highly expressed in leukocytes.
19

 

These specific phosphorylations allow for a 10 to 30 fold increase in binding 

affinity of CCR5 for β-arrestin.
19,20

 Once bound to CCR5, β-arrestin sterically blocks G 

proteins from binding to CCR5 and effectively uncouples it from the activation cycle. β-

arrestin can then complex with an adaptor complex, AP2, and bind calthrin. This complex 

initiates receptor endocytosis of CCR5 and leads either to lysosomal degradation of the 

receptor or recycling it back to the cell membrane (Figure 3).
19

 Besides desensitization 

and internalization, β-arrestins can also initiate several signaling cascades by activating 

mitogen-activated protein kinases (MAPK) such as ERK1/2 and c-SRC and non-receptor 

tyrosine kinases (nRTK). CCR5 is also regulated by heterologous desensitization where 

one ligand can desensitize a GPCR to other ligands. For CCR5, this process is initiated 

by phosphorylation of its C-terminus by PKC and also leads to the desensitization and 

internalization through β-arrestins binding.
4
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Figure 3. β-arrestin mediated receptor internalization. After ligand binding, the c-

terminal of GPCR is phosphorylated which subsequently recruits β-arrestin. Once bound, 

β-arrestin can cause clathrin-dependent internalization from the plasma membrane (PM) 

and can also initiate several signaling pathways (not shown). The GPCR in the clathrin-

coated vesicle (CCV) can then either undergo degradation or be recycled back to the PM. 

Figure adapted from Verkaar et al.
22

 

 

1.1.4 Chemokine Receptor CCR5 in Different Disease States 

 GPCRs are important drug targets and account for approximately 36% of all 

marketed drugs as of August 2011, which can serve as an indicator of their importance 

both in drug discovery and biological systems.
23

 A large number of disease states can be 

attributed directly to the dysfunction of GPCRs and/or their pathways. Of those diseases, 

cancer has emerged as a prominent target for the development of new diagnostic 

techniques and therapeutics.
24

  

CCR5 has been implicated in a number of disease states including: ovarian 

cancer, breast cancer, prostate cancer, Alzheimer’s disease, cardiovascular disease, 

atherosclerosis, and human immunodeficiency virus (HIV) infection. CCR5 been shown 
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to be a viable target in drug discovery today due to its involvement in HIV entry and 

cancer.
25–27

 In HIV pathogenesis, CCR5 acts as an essential co-receptor for HIV invasion 

into host cells; whereas in cancer, it provides a pro-inflammatory environment promoting 

cell invasion and proliferation in several cancers.
28–36

 The roles of CCR5 in prostate 

cancer and HIV are discussed in more detail below. 

 

1.1.4.1 Prostate Cancer 

 Currently, prostate cancer (PCa) is the most common non-cutaneous solid cancer 

in men in the U.S.; in all, approximately one sixth of U.S. men will develop PCa.
37

 

Several therapies exist for PCa, but are limited to early stages of the disease due to their 

dependence on targeting androgen system.
37 

Upon the onset of PCa metastasis and 

androgen independence, no significantly effective therapies exist.
37  

Within the male reproductive system, the prostate gland wraps around the 

prostatic urethra and acts as a secretory gland.
38

 Its primary function is to secret proteins 

essential for sperm function and health.
38

 Cell histology within the prostate consists of 

three main cell types: secretory luminal, basal, and endocrine-paracrine cells.
38

 Of these 

three cell types, the secretory luminal cells are most pertinent in PCa due to their 

expression of prostate specific antigen (PSA) and androgen receptor (AR). The 

glycoprotein PSA is normally present in male ejaculate and in lesser quantities, in male 

serum. However, it is often elevated in prostate disorders and cancers, which is why it is 

used in early detection of PCa.
39

 The AR is a nuclear receptor responsible for cell 

differentiation and growth in response to testosterones. AR based cell proliferation has 
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been shown in benign prostate hyperplasia (BPH), atypical adenomatous hyperplasia 

(AAH) and PCa.
38

 Inflammation is key in the development of all of those conditions, 

especially PCa.
40,41

  

Chronic inflammation, a persistent inflammatory response over a long time 

course, plays a role in PCa development.
28–36

 While exact initiation mechanisms for 

prostate inflammation are not known, sexually transmitted diseases, viruses, and 

carcinogens have been implicated in inducing prostatic inflammation.
41

 However, the 

increase in inflammatory cells will lead to the same damaging effects. At the site of 

inflammation, both reactive oxygen species (ROS) and reactive nitrogen species (RNS) 

are produced and lead to cell damage. This inflammatory microenvironment has been 

shown to increase the risk of cancer formation.
42

 Prolonged cell damage then leads to an 

increased level of proliferating cells and somatic mutations. These mutations lead to cells 

that are able to thrive in an environment of chronic inflammation, which can further 

develop characteristics of cancer and eventually lead to cancer.
41

 Within the tumor 

microenvironment, chemokines aid in the growth, angiogenesis, and invasion of 

malignant cells.
43

   

Several inflammation-related proteins have been studied in PCa; of them, both 

CCR5 and its agonist RANTES are highly expressed in PCa compared to regular or BPH 

prostate cells.
40

 Within the PCa microenvironment, high levels of RANTES are secreted 

and can serve as an autocrine survival factor. RANTES was able to promote their growth 

and invasiveness of the PCa cell lines DU145, PC-3, and LNCaP.
35

 Additionally, the 

small molecule CCR5 antagonist, TAK-779, was able to inhibit the proliferation and 
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invasiveness of PCa cell lines induced by RANTES stimulation.
35

 These results were also 

repeated by using a natural product CCR5 antagonist, anibamine, against PC-3, DU145, 

and M12 PCa cell lines.
26,44

 Anibamine and its derivatives were able to inhibit PCa 

proliferation both in the presence and absence of RANTES stimulation. Furthermore, in a 

tumor growth assay using mice injected with M12 PCa cells, anibamine and an analog 

were able to significantly decrease tumor volume over 16 days.
45

 In all, CCR5 and its 

agonist, RANTES, both have been implicated in contributing to the tumor 

microenvironment and help contribute to proliferation.  

 

1.1.4.2 HIV/AIDS 

 HIV causes the destruction of CD4+ T lymphocytes leading to the disease known 

as acquired immunodeficiency syndrome (AIDS).
46–48

 HIV/AIDS has become an 

epidemic and currently more than 34 million people are infected with the virus.
49

 The 

virus itself is an enveloped single-strand RNA virus that can bind to host cells through 

interacting with CD4 receptors and a co-receptor. Figure 4 illustrates the mechanism for 

HIV entry into host cells.  

Figure 4. HIV entry into host cells. 
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Viral entry is first initiated by the glycoprotein (gp) 120 portion of a HIV 

envelope protein (Env) binding to a host cell’s CD4 receptor. It is important to note that 

Env is a trimeric protein composed of non-covalently bound gp120-gp41 subunits. Upon 

binding to CD4, there is a conformational change within the Env so that the V3 loop 

region of gp120 becomes solvent exposed.
16

 The V3 loop then binds to CCR5, which acts 

as a co-receptor for HIV. Once the trimeric complex is formed between CD4, gp120, and 

CCR5, another conformational change occurs within Env, and gp41 is subsequently 

embedded in the host cell’s membrane, which facilitates viral entry. Since Env is a trimer 

of gp120-gp41 subunits, there is evidence that it can act with multiple co-receptors to 

facilitate HIV invasion. However, only one co-receptor is needed for virus entry.
16

  

 The importance of CCR5 in HIV infection can further be seen in individuals who 

are homozygous for a mutant CCR5 allele. The 32 base pair deletion in CCR5, 

CCR5Δ32, is not expressed on the cell surface and therefore cannot bind to gp120. 

Therefore, individuals who have CCR5Δ32 are resistant to HIV-1 infection.
50

  

There are two main co-receptors of HIV, CCR5 (as noted above) and chemokine 

CXC receptor 4 (CXCR4). The difference between the two co-receptors was first noted 

by Cocchi et al., when they showed that CCR5 specific chemokines MIP-1α, MIP-1β, 

and RANTES only blocked macrophage-tropic (M-tropic) virus and not T-cell tropic (T-

tropic).
51

 M-tropic viruses are the initial stage of the virus and represent asymptomatic 

individuals, whereas T-tropic viruses are present in individuals with accelerated disease 

progression and bind primarily to CXCR4.
16,52

 The ability of chemokines to inhibit virus 
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invasion by blocking the interaction between CCR5 and gp120 makes for an attractive 

target for anti-retroviral therapies.
53

  

 

1.1.5 Chemokine Receptor CCR5 Ligands  

 Due to CCR5’s involvement several disease states, CCR5 antagonists have been 

actively perused by pharmaceutical companies.
25,53,54

 Most of the efforts have been 

targeted towards developing highly active antiretroviral therapies (HAART).
25

 These 

efforts have produced a FDA approved CCR5 antagonist, maraviroc (1), and several 

clinical candidates, Table 1. 

Table 1. Small molecule CCR5 antagonist in clinical development.
25,53,54

 

Name Structure Company Status 

Maraviroc 

 

Pfizer 
FDA 

approved 

Vicriviroc 

 

Schering- 

Plough 

Phase III 

completed, 

withdrawn 

SCH-C 

 

Schering- 

Plough 

Phase I, 

withdrawn 
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Aplaviroc 

 

GlaxoSmith- 

Kline 

Phase III 

completed, 

withdrawn 

INCB009471 

 

Incyte 

Phase I/IIa 

completed, 

suspended 

TBR-652 

 

Torbira 
Phase II 

completed 

PF-232798 

 

Pfizer 
Phase II 

ongoing 

SCH532706 Not available 
Schering- 

Plough 

Phase II 

ongoing 

 

 Maraviroc, 1, was developed by Pfizer from an initial high-throughput screening 

(HTS) hit, 8 (Figure 5). The hit compound showed high affinity for CCR5 (Ki = 4 nM), 

but lacked any anti-HIV-1 activity.
55

 Further modification and development led to 

maraviroc, which had an anti-HIV-1 IC50 = 2 nm in peripheral blood mononuclear cells 

(PBMC). Clinical studies indicated that a twice daily dose of maraviroc (25 mg) was 
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more effective than the HIV-1 anti-retroviral efavirenz.
53

 In 2007 the US FDA approved 

maraviroc for patients with HIV-1. 

 
Figure 5. Pfizer CCR5 antagonist HTS hit CCR5 antagonist which lead to maraviroc, 1. 

 

 Developed by Schering-Plough, vicriviroc (2), had very high anti-HIV-1 activity 

in HIV-1 clinical isolates and did not display the cardiac side effects seen in its lead 

compound SCH-C, 3. However, clinical trials of vicriviroc, 2, reached Phase III and were 

terminated due to lack of efficacy. Another CCR5 antagonist is being developed by 

Schering-Plough, SCH532706 and is currently in Phase II trials; it shows high anti-HIV-1 

activity and high bioavailability (no structure available).
25

 

Similarly, aplaviroc (4), which was developed by GlaxoSmithKline, reached 

Phase III trials and was terminated.
53

 Aplaviroc showed high activity against HIV-1Ba-L 

(IC50 = 0.4 ± 0.3 nM), but during clinical trials severe hepatotoxicity was observed.
25,56

 

INCB9471 (5), was developed as a ‘me-too’ drug that had structural similarities to 2 and 

3 by Incyte, but was suspended after Phase II trials in 2008.
57

  

 The first small molecule CCR5 antagonist to be reported was TAK-779 (Figure 6, 

9) in 1999 by Takeda Chemicals.
58

 It was shown to be a highly potent HIV-1 entry 

inhibitor with an IC50 = 3.7 nM in PBMC.
25

 This was likely due to the high CCR5 

binding affinity it showed in the radioligand binding assay using [
125

I]-RANTES (Ki = 

1.4 nM).
58

 However, 9 was not perused in clinical trials due to poor oral bioavailability 
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and general toxicity issues. Further modification to improve oral bioavailability yielded 

6, TBR-652 (anti-HIV-1 IC50 = 0.061 nM in PBMC), which is currently in phase II 

clinical trials.
25

  

 
Figure 6. TAK-779, the first CCR5 small molecule antagonist. 

 

 Another Pfizer-developed CCR5 antagonist, PF-232798 (7), is a second 

generation maraviroc-based antagonist with improved anti-viral activity and 

pharmacokinetics. It is currently in Phase II clinical trials. Overall, there has been a large 

push for CCR5 antagonists by the pharmaceutical industry and there are several clinical 

candidates. However, maraviroc still remains the only FDA approved treatment.
25

 Both 

efficacy and toxicity issues plague the development of future small-molecule CCR5 

antagonists.
25,53,57,59

  

 

1.2 Mu Opioid Receptor 

1.2.1 Opioid Receptors 

 To date, four GPCR opioid receptors have been identified and crystallized by 

various methods: δ opioid receptor (DOR), κ opioid receptor (KOR), μ opioid receptor 

(MOR), and nociception/orphanin receptor (NOR).
60–64

 Opioid receptors are most well 

known for being the site of action of opium and related opiates. Opiates such as morphine 

were isolated from opium and showed exceptional analgesic and anti-diarrheal effects. 
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However, morphine has a high potential for abuse due to its addictive properties.
65

 

Therefore, much work has done been to decrease the unwanted side effects of opiates 

through development of new compounds and a better understanding of opioid receptors. 

In addition to the exogenous ligands found to act on opioid receptors, several endogenous 

ligands have been discovered. These ligands are small peptides that are classified in three 

groups: enkephalins, dynorphins, and β-neoendorphins.
65

 

 The pharmacological profiles of opiates in different tissues led researchers to the 

conclusion that multiple opioid receptors exist. Using radioligands with high specific 

activities and observation of neurophysiological effects of opiates, it was concluded that 

three opioid receptors exist.
66,67

 These three receptors, σ receptor, μ receptor, and κ 

receptor were thus named after the opiate they bound: SKF 10,047, morphine, and 

ketocyclazocine respectively. Later, evidence showed that one of the receptors in the 

study, σ receptor, was not an opioid receptor.
68

 The δ opioid receptor was then discovered 

in mouse vas deferens.
69

 Much later, in 1994, the nociception/orphanin receptor was 

cloned, but does not bind opioids and only shares homology to the other opioid 

receptors.
70

 

 The opioid receptors have been shown to act in both the central and peripheral 

nervous system (CNS and PNS respectively) and have been linked to several 

pharmacological outcomes. While DOR, KOR, and MOR each exhibit analgesic effects 

upon stimulation they control other different neural responses. For example, DOR has 

been shown to produce anxiolytic and anti-depressive behaviors. KOR is linked to 

dysphoria and MOR is linked to euphoria/reward behavior.
65
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1.2.2 Mu Opioid Receptor Structure 

 Recently, the MOR was co-crystalized with the morphinan antagonist β-

funaltrexamine (β-FNA), Figure 7.
63

 The mouse MOR that was crystalized shares high 

homology with human MOR and does not differ in the observed binding pocket for β-

FNA. The overall structure of MOR is very similar to the other crystalized seven TM 

GPCRs. Of note, like the CXCR4 crystal structure, MOR has a β-hairpin loop in 

extracellular loop (EL) 2.
71

 In order to crystalize MOR, the intracellular loop (IL) 3 was 

replaced with a highly-crystallizable T4 lysozyme.  

 
Figure 7. MOR monomer crystal structure. a) Overall all structure showing the T4-

lysozyme (colored in reds) that replaced IL-3 (PDB code: 4DKL). b) Close-up of MOR 

binding pocket showing the β-hairpin loop in EL-2 and the bound β-FNA molecule. 

 

While this can alter the overall conformation of the structure, it is key in the 

crystallization process. Interestingly, when crystallized, MOR only had a parallel 
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configuration within the crystal structure and formed homodimers within the crystal 

lattice. Two main interactions were seen: a TM5/TM6 interaction, and a TM1/TM2 

interaction between receptor pairs. Overall, the TM5/TM6 dimer has a higher degree of 

packing interactions between the four helical bundles and may represent a possible 

structure of a functional MOR-MOR homodimer.
63

 

 

1.2.3 Mu Opioid Receptor Signaling 

 Since MOR is a GPCR, like CCR5, it has many of the same signaling 

mechanisms. Once stimulated, MOR can inhibit adenylyl cyclase activity, inhibit Ca
+2

 

channels, stimulate G protein inward rectifying K
+
 (GIRK) channels, and increase 

intracellular Ca
+2 

levels.
72

 These events occur through either Gαi/o or Gβγ dependent 

routes. For MOR, Gαi mediates inhibition of adenylyl cyclase and activates K
+
 channels, 

whereas the CNS abundant Gαo inhibits Ca
+2

 channels and stimulates GIRK channels. 

However, the Gβγ subunit has the opposite effect; it can both activate certain subtypes of 

adenylyl cyclase activity and also activate PLC, which subsequently can increase 

intracellular Ca
+2

 concentrations. These opposing effects of inhibition and stimulation 

allows for fine tuning of downstream signaling events.
72

 

 Due to its functions, MOR is tightly regulated; therefore, desensitization is 

essential in MOR activity.
72

  Unlike CCR5, phosphorylation of the C-terminus of MOR is 

only done by GRKs.
72

  This can be deduced from the rapid onset of phosphorylation after 

stimulation that PKC would not be able to facilitate. Upon phosphorylation, β-arrestin is 

recruited and participates in MAP kinase signaling, or in receptor internalization.
72
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Interestingly, MOR agonists can have differential internalization effects depending on the 

agonist type, agonist concentration, and cell type. For example, it has been shown that 

both DAMGO ([D-Ala2, N-MePhe4, Gly-ol]-enkephalin) and etorphine (MOR agonist) 

can induce phosphorylation and subsequent internalization, whereas morphine does not 

induce either effect at significant levels.
72

 Overall, when compared to CCR5, MOR 

desensitization is a more rapid process. 

 

1.2.4 Mu Opioid Receptor Involvement in Different Disease States 

 While pain and addiction are not mutually exclusive, all opiates carry the risk of 

addiction and abuse for patients.
65

 This use and abuse is especially dangerous for patients 

with compromised immune systems such as those with HIV/AIDS. Remarkably, opiates 

have been shown to increase the progression of HIV/AIDS and linked to the HIV-

associated neurocognitive disorders (HAND) and neurological complications of AIDS 

(neuroAIDS).
73–75

  

 

1.2.4.1 Addiction 

 Due to its role in euphoria/reward behavior, the MOR is thought to be the main 

reason for the addictive properties of morphine. In MOR knockout mice, morphine’s 

analgesic and addictive properties are abolished, which shows its central role in 

addition.
76

 Further studies using these mice and other addictive substances such as 

alcohol, nicotine, and cannabinoids also showed the addictive properties were decreased 

in MOR knockouts.
77

 Besides analgesia and anti-diarrheal effects, MOR stimulation by 
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either exogenous or endogenous agonists has also been shown to depress gastrointestinal 

motility, respiration, immune functions, cardiovascular function, thermoregulation, and 

locomotor activity.
65

 Despite their wide range of undesirable side effects, MOR agonists 

are still a frontline agent to treat moderate to severe pain. Furthermore, the use and 

development of classical opiates is on the rise.
78,79

 An extensive amount of work has been 

done to try to lessen the additive properties of MOR agonists in addition to developing 

more selective MOR antagonists to treat addiction.
80

 However, non-medical use and 

abuse of opiates is still a problem in modern society.
81

 

        

1.2.4.2 NeuroAIDS 

 Both drug abuse and HIV/AIDS are intertwined epidemics; injectable drug users 

are at a higher risk of being infected with HIV and developing neuroAIDS.
75

 The 

progression of HIV/AIDS has been shown to be accelerated by abusing substances such 

as opioids, cocaine, and alcohol.
75,82–84

 Moreover, nearly 10% of all HIV infection has 

been attributed to injectable drug use with contaminated needles. Opiates negatively 

impact the immune system through immunomodulation regulated through the MOR, 

which may also effect the progression of HIV/AIDS.
85,86

 While highly active 

antiretroviral therapy (HAART) has improved overall health outcomes related to HIV-1 

infection, other health complications involved with infection are still a significant 

problem in patient populations.
75,82–84

  

 Opiate use and abuse has a direct influence in the progression of HIV/AIDS. 

Overall, the CNS is the most vulnerable to these effects.
73,75

 MOR has been known to 
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effect immunomodulation through acting like a chemokine and affecting chemokine 

receptors.
73,75,87–89

 Specifically, MOR and CCR5 have been shown to undergo 

heterodimerization and bidirectional cross-desensitization.
87–90

 Additionally, activation of 

the MOR has been shown to increase expression levels of CCR5, allowing for more HIV 

co-receptors to be present on the cell surface.
88

  Figure 8 shows the complex role MOR 

plays in neuroAIDS.
73

 

 
 

Figure 8. Pathophysiology and pathogenesis of neuroAIDS. Figure key: red arrows are 

pro-inflammatory/cytotoxic interactions; blue T-bar is a neuroprotective action; changed 

of altered (Δ); decreased (↓); increased, with number of arrows correlating to amount (↑). 

Abbreviations: peripheral blood mononuclear cells (PBMCs); blood brain barrier (BBB); 

μ opioid receptor (MOR); tumor necrosis factor α (TNF-α), interferon-γ (IFN-γ); 

monocyte chemoattractant protein-1 (MCP-1); interleukin-6 (IL-6); reactive nitrogen 

species (RNS); reactive oxygen species (ROS); Toll-like receptor 2 (TLR2); Toll-like 

receptor 9 (TLR9); regulated upon activation, normal T-cell expressed, and secreted 

(RANTES); adenosine triphosphate (ATP); HIV glycoprotein 120 (gp120); HIV 

transactivator of transcription (Tat). Figure adapted from Hauser et al.
73
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 Neurons are not directly affected by HIV-1; instead, glial cells (microglia and 

astroglia) are infected and initiate the neuropathogenesis of HIV.
75

 Early in the 

progression of HIV/AIDS, HIV-1 enters the brain and collects in perivascular 

macrophages.
91

 This process is thought to occur through diapedesis of infected 

monocytes through the blood brain barrier (BBB).
92

 HIV-1 infects mainly microglia and 

infects astrocytes to a lesser extent.
93

 Both new virions and toxic by-products of HIV-1 

infection are produced at these glia sites. Toxic by-products include: viral proteins, 

chemokines, cytokines, ROS, and RNS.
73,75

 

Due to the proximity of glia to neurons, the excreted toxins can directly injure and 

damage neurons leading to neuronal inflammation. During this process, oligodendroglia 

are also harmed through these toxic species. Opiates potentiate this process through 

MORs that are present on microglia and astroglia. The positive feedback loop between 

microglia and astroglia helps sustain inflammation and is also potentiated by opiates.
94,95

 

In order to protect themselves, neurons can release fractalkine (CX3CL1) to act on 

CX3CR1 receptors and limit neurotoxicity caused by infected microglia.
96

  

 

1.2.5 Mu Opioid Receptor Ligands  

1.2.5.1 Agonists 

 Several peptide and non-peptide agonists and antagonists have been described for 

the MOR.
65,80,97

  While morphine (9) is a MOR agonist, its deleterious side effects have 

led to the development of new agonists with lesser side effects and antagonists to block 

MOR mediated effects. Table 2 shows some of the typical non-peptide MOR agonists 
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and their selectivity towards the three main opioid receptors: MOR, DOR, and KOR. 

Morphine is much more potent at MORs than at either KORs or DORs, while etonitazene 

(13) is highly MOR selective with a 9,000 and 12,000 fold higher selectivity for MOR 

compared to DOR and KOR, respectively.
98

 Additionally, there are several synthetic and 

endogenous peptide agonists of MOR; most notable is the enkephalin derived DAMGO 

(12) with high MOR selectivity. 

 

Table 2. Example MOR agonists. Structures are arranged in order of increasing 

selectivity for MOR, starting with the lowest selectivity morphine (in monkey brain 

membranes).
98

 

Name Structure 

KOR 

Ki 

(nM) 

DOR 

Ki 

(nM) 

MOR 

Ki 

(nM) 

Morphine 

 

33.7 111 2.66 

Fentanyl 

 

387 403 1.48 

Sufentanil 

 

37.8 25 0.19 
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DAMGO 

 

534 634 1.23 

Etonitazene 

 

233 176 0.02 

 

1.2.5.2 Antagonists 

 Several opioid antagonists have been developed in order to treat addition, 

alleviate opiate induced side effects, and even alcoholism. Table 3 shows several 

morphinan and peptide based MOR antagonists.
98–101

 Both naloxone (14) and naltrexone 

(15) are non-selective antagonists for the MOR. In order to overcome the lack of 

selectivity for MOR, β-FNA (16) was developed as the first selective MOR antagonist.
102

 

The apparent binding affinity for 16 suggests that it is non-selective, but it irreversibly 

binds only to MOR through alkylation of K233 on TM5. The MOR crystal structure also 

shows this mechanism of action.
63

 The observed interaction between 16 and MOR also 

supports the message-address concept originally proposed by Portoghese et al.
103

 The 

message-address concept refers to the morphanin scaffold having two main parts: the 

address part is the morphanin core that is active at all of the opioid receptors; the message 

portion relays the receptor selectivity for the molecule and is located off of the C-ring of 
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the morphanin core. Figure 9 shows this concept using naltrindole (21, a DOR selective 

antagonist) docked into the MOR crystal structure and the steric clashes that arise 

compared to β-FNA.
63

 Clocinnamox (17, C-CAM) was also designed using the message-

address concept to gain MOR selectivity. Like 16, C-CAM preferentially binds to MOR 

irreversibly. Cyprodime (18) is a modified morphanin that has the highest selectivity for 

MOR.
99

 Removing the dihydrofuran ring dramatically decreased affinity to KOR and 

DOR, but affinity to MOR was maintained.
99

 

 

Table 3. Example MOR antagonists. Structures are arranged in order of increasing 

selectivity for MOR, starting with the lowest selectivity morphine (in monkey brain 

membranes).
98–101

 

Name Structure 

KOR 

Ki 

(nM) 

DOR 

Ki 

(nM) 

MOR 

Ki 

(nM) 

Naloxone 

 

1.95 49 0.62 

Naltrexone 

 

0.28 6.94 0.11 

Β-FNA 

 

3.4
a 

78.7
a 

1.1
a 
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Clocinnamo

x (C-CAM) 

 

5.7
a 

1.9
a 

0.7
a 

Cyprodime 

 

2187 245 5.4 

CTAP 

 

5314
b 

8452
b 

2.1
b 

CTOP 

 

5598
b 

47704
b 

4.3
b 

(
a
)-denotes apparent Ki within mouse brain homogenates

100
, (

b
)-denotes Kd values

101
. 

 

The most selective MOR antagonists are the CTOP and CTAP cyclic peptides (19 

and 20, respectively).
101,104

 Both have nanomolar affinity to MOR and micromolar 

affinity for DOR and KOR. Using somatostatin, both CTOP and CTAP were developed 

to have MOR selectivity.
101,104

 Due to their cyclic nature, these peptides were stable and 

did not readily undergo enzymatic degradation. However, they were not membrane-
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permeable and they could not pass the BBB. Therefore, they only act on MOR in the PNS 

and could not be used in the CNS.
101,104

 

 

 
Figure 9. The message-address concept for opioid receptor selectivity. The 

morphanin core is the message portion, whereas the tryptophan portion is the address 

where DOR selectivity arises for naltrindole. When naltrindole is docked into MOR (blue 

helixes) there are steric clashes (red lines) and does not bind as well as MOR selective β-

FNA. Figure adapted from Manglik et al.
63

 

  

1.3 GPCR Dimerization 

Originally, it was thought that GPCRs acted in a monomeric fashion and that 

there was a general stoichiometry of 1:1, receptor:ligand. However, increasing evidence 

has begun to show that they can act in dimeric or even oligomeric assemblies.
105–107

 One 

of the first observations of dimerization in rhodopsin-like GPCRs was seen in β-

adrenergic receptors; it was seen that binding of one ligand decreased the binding of a 
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second one.
108

 This type of “cross-talk”, better known as negative cooperativity, occurs 

when a dimer bound ligand either inhibits the binding or signaling of a second bound 

ligand to the dimer pair.
106,107

  

 One of the earliest methods for elucidating dimer pairs was to use co-

immunoprecipitation techniques. First used for the β2-adrenergic receptor, an influenza 

hemaglutinin (HA) and a myc-epitope tag were incorporated into the receptor.
109

 These 

two receptor subtypes were then co-expressed, and using an anti-myc antibody, 

immunoprecipitation was performed. If only monomers were present, only the myc-

epitope tagged β2-adrenergic receptor should show up on a Western blot analysis. 

However, using an anti-HA antibody, the HA tagged β2-adrenergic receptor was present. 

Therefore, the two subpopulations of the receptor were able to dimerize with each 

other.
108

 This technique has subsequently been used as a preliminary technique to study 

the homo and heterodimerization of GPCRs. 
105–107

  

 Another important technique for GPCR dimerization/oligomerization detection is 

Frӧster resonance energy transfer. Both bioluminescence and fluorescence (BRET and 

FRET respectively) have been used within this technique. For FRET detection, the two 

receptors of interest (either homo or hetero) are tagged with two different fluorescent 

proteins: i.e., a cyan fluorescent protein (CFP) and a yellow fluorescent protein (YFP). It 

is essential for the Frӧster resonance energy transfer that the excited state of one 

fluorescent protein can transfer energy (donor chromophore) to an acceptor chromophore 

and permit it to emit its unique excitation wavelength. Essential for the observation of 

GPCR dimers, this interaction is very distance specific; in order for FRET to happen, the 
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two chromophores (and associated proteins) must be in close proximity (10 to 100 Å).
109

 

Therefore, excitation of the CFP at ~436 nm would give only one emission wavelength at 

~480 nm if no dimerization was present. If the receptors do dimerize, exciting the CFP 

would yield both the emission wavelength at ~480 nm (for CFP) and an additional 

emission wavelength at ~535 nm which corresponds to the excitation/emission from the 

YFP on the other GPCR in close proximity. This technique can also be coupled with a 

bioluminescent luciferase enzyme instead of the CFP to excite the YFP through BRET.
110

 

The combination of co-immunoprecipitation and FRET/BRET has led to a network of 

GPCR homodimers and heterodimers being discovered.
105

  

 In addition to the biochemical techniques, direct observation of GPCR dimers and 

oligomers has been obtained through both GPCR crystallization and atomic-force 

microscopy.
63,71,111

 Figure 10 shows the current observed GPCR oligomers and dimers 

for rhodopsin, CXCR4, and MOR. Using atomic-force microscopy (Figure 10a) oligomer 

formations of rhodopsin were able to be seen, giving the first direct observation of GPCR 

oligomization.
111

 Both CXCR4 and MOR were observed to form dimer formations within 

their crystal lattice (Figure 10b and c), and while this may be an artifact of the 

crystallization process, it does lend credence to GPCR dimerization.
63,71

 

 Several interactions between dimers have been proposed, and two main 

dimerization models have subsequently been described: a contact dimer model, and a 

domain-swapped dimer.
107

 Both have been supported by mutation and computational 

studies, but due to observations of GPCR crystal structure, the contact dimer may 

represent a more realistic model. The domain-swapped model proposes that TM6 and 
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TM7 are exchanged between monomers to from a dimer.
112

 The contact dimer model 

proposes that dimerization occurs through contact between the helixes of GPCRs. Both a 

TM5/TM6 and a TM1/TM2 interface have been postulated and observed.
15,63,71,113

  

 

 
Figure 10. Observed GPCR oligomers and dimers. a) atomic-force microscopy of 

rhodopsin oligomers, where the dotted circle is an dimer and the arrows point to 

monomers [adapted from Fotiadis et al.
111

]. b) Crystal structure of the CXCR4 dimer with 

a TM5/TM6 interface [PDB code 3ODU].
71

 c) Crystal structure of the MOR dimer with a 

TM5/TM6 interface [PDB code 4DKL].
63

 

  

An important aspect of GPCR dimerization is its effect on receptor function and 

signaling. As alluded to earlier, a possible outcome of dimerization is positive and 

negative cooperativity, see Figure 11.
105,106

 Positive cooperativity occurs when binding of 

a ligand to one receptor leads to partial, full, or enhanced activation of the second 

receptor. It can also occur when two ligands bind both receptors and an enhanced action 

is seen. Negative cooperativity can occur when one ligand bound leads to either 

inhibition of a ligand binding to the dimer, or inhibition of signaling from a second bound 

ligand.  
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Figure 11. Positive and negative cooperativity in GPCR dimerization. a) Agonist A 

binding to the green GPCR results in partial activation of the blue GPCR. b) When two 

agonists, A and B, bind to the GPCRs there will be enhanced activation, synergism. c) In 

negative cooperativity binding of A to the green GPCR leads to inhibition of the binding 

of B to the blue GPCR, leading to suppression of B-related signaling. d) Binding of A 

leads to inhibition of signaling from the blue GPCR even with B bound to it. 

 

Several reports have described homo and heterodimers for MOR. As stated above, 

there has been direct observation of the MOR-MOR dimer through its crystal structure.
63

 

To date, MOR has also been shown to dimerize with: DOR, KOR, NOR, CCR5, 
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cannabinoid receptor 1 (CB1), substance P receptor (NK1), and somatostatin receptor 2A 

(sst2A).
87,90,104,105,114–117

 Functionally, heterodimers may allow for different mechanisms of 

signal regulation for MOR.
118

 For example, within the CCR2-CCR5 heterodimer, 

dimerization leads to the receptors being able to couple with Gαq/11, which, as 

individuals, they normally do not couple with.
18

 A similar effect was seen for the MOR-

DOR heterodimer; when expressed alone, pertussis toxin can inhibit agonist stimulated 

Gα-dependent signaling from both receptors, but when expressed together pertussis toxin 

cannot inhibit Gα-dependent signaling.
119

 These results suggest that the heterodimer can 

couple to different G proteins than the monomers by themselves. Dimerization may also 

affect receptor desensitization and internalization.
105,106,119

  

 

1.3.1 GPCR Dimerization Involving Mu Opioid Receptor 

The effects that dimerization has on desensitization and internalization have been 

shown in both MOR homodimers and MOR-NK1 heterodimers. For MOR-NK1 

heterodimers, it was observed that the interaction promotes DAMGO-stimulated β-

arrestin internalization that is not regularly seen for MOR. Stimulation of cells expressing 

MOR alone leads to β-arrestin internalization to clathrin pits, while stimulation of NK1 

alone leads to β-arrestin internalization into endosomes.
116

 When expressed together, 

stimulation of the MOR-NK1 heterodimer leads to β-arrestin internalization into 

endosomes. This process delays the recycling process for MOR because it is sequestered 

in endosomes and overall leads to greater desensitization of MOR.
116
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Differences in internalization are also seen for MOR homodimers. Under certain 

conditions, when stimulated by morphine, MOR does not undergo desensitization or 

endocytosis.
120

 However, when co-administered with DAMGO, MOR becomes 

desensitized and internalized. The change in trafficking of MOR can be attributed to 

dimerization due to DAMGO and lead to reduced tolerance of morphine.
120

 Overall, 

MOR’s signaling and regulation is greatly affected by dimerization with itself or other 

GPCRs.  

 

1.3.2 Bivalent Ligands Targeting GPCR Dimerization 

Bivalents compounds are essential for studying the relationship between the 

monomers of both GPCR homodimers and heterodimers. A bivalent compound is defined 

as a compound that contains two distinct pharmacophores.
121

 By targeting dimers of 

GPCRs, new pharmacological profiles are obtainable because of their unique 

properties.
122

 Using bivalent ligands may lead to higher affinity, higher selectivity, 

improved physiological response, or altered physiological response. The possible 

synergistic effects are due to the cooperativity between the receptors and an overall drop 

in the entropy of the interaction by targeting two receptors at once.
121

  

Generally, bivalent compounds can either be classified as homobivalent or 

heterobivalent; that is, they either have two of the same pharmacophores or two different 

ones. These two pharmacophores are attached to each other with a linker that will not 

interfere with receptor binding and is the appropriate length to allow the two 

pharmacophores to interact with both receptors. The average distance between dimers is 
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thought to be between 27 Å and 32 Å.
123

 Therefore, the linker length should ideally be 

near that range. Several different linker types have been reported and range from aliphatic 

chains to ethers.
122

 The pharmacophores of choice usually have high affinity and 

selectivity for the targeted receptor(s) dimer and can tolerate added substitutions onto 

their structure to facilitate the addition of the linker. 

To date, five selective, morphanin-based bivalent compounds targeting MOR 

heterodimers have been described (Table 4).
124–127

 Using a MOR agonist, oxymorphone, 

and a type 2 cholecystokinin (CCK2) receptor antagonist, compound 22 was designed to 

determine if MOR and CCK2 associate with each other in vivo. Interestingly, 22 was able 

to induce the heterodimerization of the two receptors that normally do not.
124

 Bivalent 

compound 23 was designed to explore if dimerization is the probable cause of KOR 

subtypes.
125,128

 It is composed of the KOR antagonist 5’-GNTI and MOR antagonist 

naltrexone (15) connected together with a linker composed of glycine and succinyl units. 

Both the glycine and succinyl units allow for linker flexibility and a balance of the 

hydrophobic-hydrophilic within the molecule. 

Compounds 24, 25, and 26 were all designed as MOR-DOR heterodimer 

modulators. All three have both an agonist and antagonist pharmacophore in order to 

evaluate the functional role of the MOR-DOR heterodimer in analgesia.
122,126,127

 

Portoghese et al. had this in mind when designing MDAN-21 (24) as an analgesic 

without the deleterious side effects of morphine (9). The compound is comprised of a 

MOR agonist (oxymorphone) and a selective DOR antagonist (naltrindole) tethered 

together with a 21-atom spacer with a total maximum length of 25.4 Å.
126

 Within in vivo 
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assays, 24 was able to cross the BBB as well as morphine and was 50-fold more potent 

than morphine without tolerance or dependence side effects.
126

  

 

Table 4. Selective, morphanin-based bivalent compounds targeting MOR 

heterodimers.
124–127

 

Heterodimer 

target 
Structure Ref. 

MOR-CCK2 

 

124
 

MOR-KOR 

 

125
 

MOR-DOR 

 

126
 

MOR-DOR 

 

127
 

MOR-DOR 

 

127
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To explore the interaction of the MOR-DOR heterodimer, Harvey et al. developed 

two “tuned-affinity” MOR-DOR bivalent compounds.
127

 Bivalent compounds like 24 

may not intrinsically be able to distinguish the MOR-DOR heterodimer from either the 

MOR-MOR or DOR-DOR homodimers.
126,127

 Both the pharmacophores used in 24 had 

high affinity for their receptors; therefore, when used to evaluate the function of MOR-

DOR heterodimers, compound 24 could also interact with the homodimers and thus skew 

observations. To overcome this caveat, compounds 25 and 26 were designed to have high 

affinity MOR ligands and low affinity DOR ligands. That way the bivalent ligand should 

bind to the MOR-DOR heterodimer since its affinity at DOR will rise due to the change 

in entropy.
121

 This effect would not be present at either MOR or DOR homodimers, thus 

making 25 and 26 preferentially bind to the MOR-DOR heterodimer. Compound 25 has 

the MOR agonist oxymorphone and a low affinity DOR antagonist, ENTI, whereas 

compound 26 has a MOR antagonist, naltrexone, and a low affinity DOR agonist, DM-

SNC80.
127

 The composition and length of the linker connecting the pharmacophores was 

chosen based upon results in other studies, and its well-balanced flexibility and 

hydrophobic-hydrophilic characteristics.
126,127

 Both compounds were shown to 

preferentially bind to MOR-DOR heterodimers and synergistically raise the binding 

affinity for the DOR pharmacophore when binding assays were done with MOR-DOR 

membranes vs. DOR alone membranes. The concept of tuning the affinity of bivalent 

ligands by using a mixture of low and high affinity pharmacophores is a new but 

powerful tool.
127
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1.4 Hypotheses and Specific Aims 

 Both prostate cancer and neuroAIDS are devastating diseases without any 

standout treatments; therefore, it is adventitious to develop novel ways to target these 

diseases in order to advance their treatment.  

1.4.1 Antagonists Targeting CCR5 

Targeting the underlying up-regulated inflammatory pathways in prostate cancer 

may help stem the proliferation of cancer cells. CCR5, a crucial receptor in the 

inflammation system, has been shown to play an important role in prostate cancer 

proliferation and therefore, it may be adventitious to target its functions. We aim to show 

that by targeting CCR5 with newly developed antagonists, that prostate cancer 

proliferation can be inhibited. The specific aims for his project are: design and synthesize 

CCR5 antagonists; test the compounds for their cytotoxicity, CCR5 activity, and anti-

proliferative abilities; and further develop a structure-activity relationship for the 

antagonists. 

1.4.2 Bivalent Compounds Targeting the Putative CCR5 – MOR Heterodimer  

The mechanism behind the potentiation of neuroAIDS by opiates is still not fully 

understood. In order to elucidate the mechanism, bivalent compounds targeting the 

CCR5-MOR heterodimer were synthesized. The direct interaction between CCR5 and 

MOR may offer a potential explanation for what is seen in vivo. The specific aims for this 

project are: design and synthesize bivalent compounds targeting the CCR5-MOR 

heterodimer, test the compounds for their affinity and activity at both receptors, ascertain 
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their abilities to alter HIV-1 infection in primary human CNS cells, and postulate how the 

bivalent compounds directly interact with the heterodimer in silico. 
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2. Small Molecule Chemokine Receptor CCR5 Antagonists for Prostate Cancer 

Treatment 

 

2.1 Project Design 

Within the immune system, CCR5 primarily functions through interaction with 

endogenous small cytokines (chemokines) which include CCL3 (MIP-1α), CCL4 (MIP-

1β) and CCL5 (RANTES).
4
 Of those chemokines, CCL5 expression has been correlated 

to the progression of several cancers.
35,129,130

 Within those cancers, prostate cancer 

specimens have also been shown significant overexpression of CCR5.
40

 Importantly, 

RANTES induced prostate cancer cell invasion and proliferation can be inhibited with the 

CCR5 antagonist TAK-779.
35

 This mechanism of prostate cancer progression represents 

a novel and targeted cancer therapy.  

 Currently, prostate cancer is the most common non-cutaneous solid cancer in men 

in the U.S.; in all, approximately one sixth of U.S. men will develop prostate cancer.
37

 

Several therapies exist for prostate cancer, but are beneficially limited to early stages of 

the disease. Upon the onset of prostate cancer metastasis no significantly effective 

therapies exist.
26,44

 Therefore, exploiting RANTES-induced cell invasion and 

proliferation could prove to be a useful therapy to stop the progression of prostate cancer 
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in later stages. In order to do so, new CCR5 antagonists targeting prostate cell 

proliferation and invasion need to be developed. 

 Several small molecule CCR5 antagonists have been developed as HIV-1 entry 

inhibitors and currently one has been approved by the FDA for the treatment of HIV 

since 2007 (Table 1).
25,53,54

 Some examples of CCR5 antagonists are maraviroc, 

aplaviroc, vicriviroc, and TAK-779 (Figure 12); all of which have shown high efficacy 

inhibiting CCR5 mediated virus entry 25 However, there has been little success in getting 

them through clinical trials due to toxicity, cardiac side effects, lack of efficacy and 

bioavailability.
25,56,58

 Therefore, there is a need to continue looking for unique chemical 

structures and templates in order to curtail the negative side effects of those compounds.  

 
Figure 12. Example CCR5 antagonists used as the basis of CCR5-pharmacophore. 
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A series of novel compounds were designed by using the CCR5 antagonists in 

Figure 12 and a molecular modeling study of the CCR5 receptor’s three-dimensional 

conformation analysis to create an antagonist pharmacophore. Figure 13 shows the 

pharmacophore found based on this fragmentation and molecular modeling study.  

 

 

 

 

 

Figure 13. Molecular modeling based pharmacophore analysis, and designed CCR5 

antagonist scaffold. 

 

 
Figure 14. Example pharmacophore-based compound docked into a CCR5 homology 

model. 

 

It was found that the known CCR5 antagonists shared an aromatic moiety 

connected with an amide bond and also contain a secondary amine with a hydrophobic 

group with an attached polar moiety attached. The proposed piperazine-containing CCR5 
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antagonists were designed based upon those pharmacophore features. Homology 

modeling and docking studies indicated that the piperazine-containing antagonists may 

bind in a similar binding pocket as maraviroc and TAK-779 (Figure 14).  

 
Figure 15. Synthesized derivatives with substituted benzyl groups based upon the CCR5 

antagonist scaffold and pharmacophore in Figure 9. 

 

Previously, a total of 15 compounds based on the scaffold in Figure 15 (27-41).
131

 

As shown in Figure 11, most of the benzyl substitutions of the synthesized compounds 

consisted of electron withdrawing groups. Biological data for the compounds suggested 

that electron donating groups may enhance activity. Some additional groups were also 

added based upon the commercial availability of the appropriate starting materials. Figure 

16 shows the compounds synthesized in this study in order to gain a better understanding 

of the structure-activity-relationship (SAR) of the piperazine-containing antagonists (42-



44 

48). They were tested for their CCR5 antagonism, anti-proliferative effects in several 

prostate cancer cell lines, and basal cytotoxicity.  

 
Figure 16. Synthesized CCR5 antagonists for elucidating the SAR of the piperazine-

containing compound library.  

 

2.2 Chemical Syntheses 

 The synthetic route for the small molecule piperazine-based antagonists had 

previously been elucidated by Dr. Gou Li and Ms. Joanna Adams of the Yan Zhang 

Group.
131

 However, several steps still needed to be optimized in order to receive higher 

yields of pure product. Scheme 1 shows the overall 11-step synthetic route used to 

synthesize compounds 42 through 48.  
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Scheme 1. Synthetic route for CCR5 antagonists 42-48.  
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2.2.1 Williamson ether synthesis 

A Williamson ether synthesis was used to alkylate 4-nitrophenol (56) with 2-

bromopropane. This reaction was done in the presence of K2CO3 in dimethylformamide 

(DMF). Temperature control proved to be critical in this reaction; if the reaction was 

below 100 °C, no product was formed and if the temperature was raised above 110 °C the 

2-bromopropane was lost to excessive evaporation since its boiling point is around 59 °C. 

Therefore, the reaction was initiated in a pre-warmed oil bath at 105 °C and kept constant 

at that temperature. After 1 hour of reaction 99% yields of 57 were regularly achieved.  

 

2.2.2 Nitro-group reduction to primary amine 

The hydrogenation of 57 to form the primary amine 58 was done using 10% 

palladium on carbon (Pd/C) with hydrogen gas and 1.3 equivalents of concentrated HCl. 

While yields for this reaction were previously reported to be 86%, the reaction times 

exceeded 24 hours.
131

 In order to overcome this long reaction time, we hypothesized that 

the starting material had to be a pure as possible and completely devoid of any chemical 

species that could poison the Pd/C. Therefore, before hydrogenating 57, it was washed 

with activated charcoal to remove of any residual salts and bromine species. After using 

the wash, yields were raised to 98% and reaction times ranged from 1 hour to 2 hours for 

up to 5 grams of starting material. 

  

 

 



47 

2.2.3 Piperazine ring formation 

The cyclization of 58 to 59 to form the piperazine ring proved to be a very 

difficult and fastidious reaction. Previously, using bis(2-chloroethyl)amine hydrochloride 

and K2CO3 in chlorobenzene yields up to 71% were achieved.
131

 However, the reaction 

was not repeatable. Using the same method, 59 was synthesized with a moderate yield of 

84%, but yields varied widely. The reaction is very temperature dependent and 

undetermined side products were readily formed if the reaction was below 130 °C for a 

short amount of time. Therefore, in order to improve the reproducibility of the reaction, a 

pre-warmed oil bath at 150 °C was used. While this raised the overall yields of the 

reaction, they still varied. Next, the use of a different solvent was investigated; since the 

boiling point of chlorobenzene is only 131 °C. Diethylene glycol monomethyl ether was 

tried since its boiling point is around 194 °C, and this allowed the reaction temperature to 

be kept constant in the reaction mixture at 150 °C. However, when used with and without 

K2CO3 at this temperature, a complex mixture was formed that could not be separated 

from the diethylene glycol monomethyl ether. These results suggest that the cyclization 

reaction required temperatures above 130 °C, but below 150 °C in order to get 59 in 

appreciable yields. Thus, the original reaction conditions were used, while carefully 

monitoring the temperatures.  

 The piperazine derivative formed (59) was found to be unstable at 0 °C after 

about a week’s time; nuclear magnetic resonance (NMR) also showed degradation of the 

product. It was found that older starting material for the following protection reaction 
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seriously diminished its yields to around 70%. Therefore, immediately after workup, 59 

was protected with acetic anhydride to form 60 with consistent yields around 94%.  

 

2.2.4 Aromatic mono-nitration 

Mono-nitration of 60 to form the meta-nitro group was not obtainable through 

normal aromatic nitration. Using several different reaction conditions with acetic acid or 

acetic anhydride and nitric acid, only di-meta nitration was found to be possible. It was 

thought that due to the presence of both the 1-propyl-oxy group and the 4-piperazine 

group, that the aromatic ring was highly activated because of their electron donating 

capabilities. This in turn made mono-nitration unlikely with conventional synthetic 

routes. Therefore, a different route was devised using a nitrocyclohexadienone (66) as a 

mild nitrating reagent. This reagent has previously been shown to mono-nitrate several 

activated substrates without leading to the usual oxidative byproducts of normal aromatic 

nitration.
132

 Scheme 2 illustrates the general mechanism of nitration using 66.  

 Upon hemolytic fission of the C-N bound, a radical pair is formed which can 

subsequently mono-nitrate the aromatic substrate. This in turn leaves the phenol 

byproduct, 65, which can be regenerated using nitric acid to reform 66.
132

 The formation 

of 66 was first reported using 65 in acetic acid with 100% HNO3 at 10 °C and then 

consequently stirring at 5 °C for 2 hours. However, using this set of reaction conditions 

led to several problems. First, 100% HNO3 must be used, which is both hard to handle 

and readily decomposes. Second, the reaction temperature is very crucial and difficult to 

maintain; it was found that above 5 °C the stating material 65 decomposed and below that 
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temperature the reaction would not proceed and freeze, making mechanical mixing of the 

reaction difficult.  Lastly, 65 is sparingly soluble in acetic acid. Altogether, these factors 

made yields and reaction times vary widely.
132
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Scheme 2. General reaction Scheme for 2,3,5,6-tetrabromo-4-methyl-4-nitrocyclohexa-

2,5-dien-1-one (66). Figure adapted from Arnatt et al.
132

 

 

 Therefore, the conditions were changed to overcome these difficulties. When 70% 

HNO3 was utilized, reaction temperature still proved to be a problem to maintain and 

freezing of the reaction mixture was hard to overcome. Reaction times varied widely 

from 2 to 72 hours and yields ranged from 10% to 75%. However, replacing the acetic 

acid in the reaction mixture with acetic anhydride, alleviated all the above problems of 

the reaction. Acetic anhydride allowed for a wider range of reaction temperatures without 

freezing and offered a different mechanism of action than using acetic acid. When 
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exposed to nitric acid, acetic anhydride rapidly forms acetyl nitrate and directly forms 

nitronium ions in solution that is milder than HNO3 (Scheme 3).
132
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Scheme 3. Mechanisms for aromatic nitrations. a) Nitration mechanism for HNO3 b) 

Putative nitration mechanism for acetyl nitrate reaction. Adapted from Arnatt et al.
132

 

 

Several different reaction conditions were used with and without acetic acid 

present. It was found that 7 mL of acetic anhydride per gram of 65 with 4 M HNO3 gave 

scalable yields up to 95%. Additionally, reaction times were drastically cut from up to 72 

hours to consistently 5 to 10 minutes after the addition of nitric acid.
132

 Once synthesized, 

66 had a half-life of around a month at 0 °C in a desiccator most likely due to the nature 

of its radical pair. Once the route to make 66 was resolved, the mono-nitration was easily 

facilitated. Consistent yields of 87% of the mono-nitrated product 61 were readily 

achieved. However, an alternative route was tried in order to eliminate the need of 66 and 

still get a mono-nitrated intermediate (Scheme 4). Mono-nitrating 58, before cyclization 

to form the piperazine, was attempted by first making the nitric acid salt of 58. The nitric 

acid salt is then stirred with concentrated H2SO4 to facilitate the nitration. Without excess 

HNO3 in solution, there will be a stoichiometric ratio of one 58 for one nitrate and 

therefore only mono-nitrate products should be made. However, these conditions were 
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too harsh and the starting material degraded. Therefore, we returned to the original 

conditions using 66.  

 
Scheme 4. Alternative route for mono-nitration. 

 

 Subsequent reduction of the nitro group of 61 to the amine, 62, was done using 

Pd/C hydrogenation with yields around 98% without any complications. The amide-

coupling of 62 with pyrazine-2-carboxylic acid to form 63 was done using 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDCI). Originally, separation yields were reported 

to be 85%.
131

 The reaction was found to be moisture sensitive, so the starting material 62 

was dried over molecular sieves overnight and yields were raised to up to 99%. 

Deprotection of the piperazine moiety was done by refluxing 63 under basic conditions in 

a methanol/water mixture (1:1). Yields of 64 for this reaction were quantitative. 

 

2.2.5 Final compound synthesis 

Compounds 42 through 48 all used the key intermediate 64, which allowed for 

final compounds to be synthesized rapidly. For compounds 42 through 46 the benzyl 

chloride was coupled with the secondary amine of the piperazine group. This reaction 

was done in DMF with K2CO3 and a catalytic amount of KI. The KI allows for the 

chloride of the benzyl group to be replaced with an iodine atom via a Finkelstein reaction. 
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The iodine is a better leaving group than the chloride, which allows for faster reaction 

times for the coupling between the piperazine amine and the benzyl group. The reaction 

yields ranged from 35% to 94%.  

 Both 47 and 48 had to be coupled to 64 via a reductive amination because the 

benzyl chloride for dimethylamino and diethylamino was not commercially available and 

the synthesis of them required multiple protection and deprotection steps. Either 

dimethylaminobenzylaldehyde or diethylaminobenzylaldehyde were combined with 64 in 

THF and sodium triacetoxyborohydride was added to reduce the subsequent imine 

formed between the secondary amine of 64 and the aldehyde group. In all, 47 was 

recovered with a 35% yield while 48 was synthesized with a 30% yield.  

 All final compounds were analyzed with IR, 
1
H NMR, 

13
C NMR, MS, EA, and 

melting point. Before use in biological assays, all compounds were transferred into their 

hydrochloride salts.  

 

2.3 In Vitro Studies 

2.3.1 Calcium Mobilization Functional Assays 

 All of the compounds were tested for their agonism and antagonism in a calcium 

mobilization assay using MOLT-4 cells (human acute lymphoblastic leukemia cells) 

transfected with CCR5 (NIH AIDS Research and Reference Reagent Program).
133

 Using 

the calcium sensing dye Fluo-4, compounds 42 through 48 were first tested for their 

CCR5 agonism and did not show any agonism up to 30 μM. Figure 17 shows the general 

Scheme for the calcium assay using Fluo-4 dye. Upon activation by an agonist, calcium 



53 

ions are released intracellularly from the endoplasmic reticulum (ER). These ions are 

then detected by the addition of the Fluo-4 AM (Fluo-4 acetoxymethyl ester, Invitrogen) 

that is hydrolyzed by esterases into its active Fluo-4 ion. When bound to a calcium ion, 

there is a shift in fluorescence of Fluo-4 that is proportional to the amount of calcium ions 

released, which is in turn proportional to receptor activation. 

 
Figure 17. Calcium assay mechanism. Upon activation of a Gαq-coupled GPCR, there is 

an efflux of calcium ions from the endoplasmic reticulum (ER), which is proportional to 

receptor activation. Using a calcium-sensing dye such as Fluo-4 the amount of 

intracellular calcium mobilization can be quantified.  
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The compounds were tested for their antagonism of RANTES-stimulated calcium 

release. First, MOLT-4 cells were incubated with Fluo-4 dye and different doses of the 

compounds. The agonist, RANTES, was then added and the calcium mobilization was 

measured at 485 nm/520 nm emission/excitation wavelengths. Table 5 shows the results 

of three independent assays each done in triplicate.  

 

Table 5. CCR5 antagonism (calcium mobilization) of compounds 42 through 48 using 

RANTES as the agonist 

Compound # 

R-groups 

 

IC50 (μM) 

42 -NHCOCH3 25.6 ± 2.1 

43 -OCF3 43.5 ± 11.9 

44 -COOH 41.2 ± 2.9 

45 -C(CH)3 -
 

46 -SO2CH3 45.8 ± 9.1 

47 -N(CH3)2 28.1 ± 4.0 

48 -N(CH2CH3)2 48.0 ± 2.9 

(-) Denotes that no antagonism was seen for the compound. 

 

 None of the compounds showed a high level of CCR5 antagonism since they all 

antagonized the receptor function at micromolar levels. Additionally, the compounds’ 

antagonism was severely diminished compared to maraviroc (1.57 ± 0.32 nM).
134

 

However, they still antagonized CCR5 stimulation caused by RANTES. Compound 45 

was not soluble at the concentrations tested, so no antagonism data was collected for it. 

Overall, the differences between substitutions could not allow for any SAR elucidation.  
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2.3.2 Prostate Cancer Anti-Proliferation Assays 

 An anti-proliferation assay using 96-well plates and the colorimetric reagent, 

WST-1, was used to test compound 27 through 48 against a panel of three prostate cancer 

cell lines. The three prostate cancer cell lines, PC-3, DU145 and M12 were chosen based 

upon their high expression of CCR5 and RANTES. M12 cells have been isolated from 

the prostate gland and selected for more metastatic cells from tumors in mice. DU145 

cells are from a metastatic prostate tumor removed from a CNS lesion. PC-3 cells were 

obtained from a metastatic prostate tumor obtained from a lumbar vertebra.
135

 

 After plating the respective prostate cancer cells on a 96 well plate, they were 

treated with up to 200 μM of the compounds and allowed to incubate for 72 hours. After 

72 hours the formazan dye WST-1 (68) was added and subsequently converted to the 

darker red formazan dye (69) by a mitochondrial succinate-tetrazolium-reductase system. 

Scheme 5 shows the general reaction for the conversion. The amount of WST-1 

converted to 69 is directly related to the proliferative potential of the cells.  

 
Scheme 5. WST-1 mechanism of action for anti-proliferation assay. 
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 Table 6 shows the anti-proliferation data in all three prostate cancer cell lines for 

compounds 27 through 48. Unfortunately, consistent data for DU-145 cells could not be 

obtained. These results may be due to lower expression of CCR5 and RANTES in DU-

145 or corrupted cell stocks. Therefore, only M12 and PC-3 were used to evaluate all of 

the compounds’ anti-proliferative abilities. Within PC-3 cells, compound 48 had the 

lowest IC50 of 6.5 ± 0.7 μM, while 40 and 43 had IC50s below 20 μM (19.7 ± 1.8 and 13.1 

± 7.7 μM respectively).  

These results suggest that, for PC-3 anti-proliferation, electron donating groups 

are more favored than electron withdrawing groups. Due to the small range between the 

IC50 values, it is difficult to elucidate any concrete SAR for the compounds. Within M12 

cells, 48 also had the lowest IC50 of 11.4 ± 0.2 μM. Compound 40 again had a low IC50 

again of 15.8 ± 4.4 μM. However, the activity of 43 was abolished and had an IC50 well 

above 100 μM. Overall, there was no desirable trends between the prostate cancer cell 

lines seen for the compounds.  

These results may be explained by differences in CCR5 and RANTES expression 

levels between cell lines, or the compounds may be hitting off-target receptors due to 

their low CCR5 functional activities. Nevertheless, compound 48 did show moderate 

anti-proliferation activity against PC-3 and M12. TAK-779 was shown previously to have 

IC50’s of 20.40 ± 1.1 μM and 37.85 ± 0.99 μM in M12 and PC-3 cells respectively.
45

 

However, there is a large difference in their calcium mobilization inhibition IC50s: while 

TAK-779 has an IC50 of 7.9 ± 2.5 nM, 48 has an IC50 of 48 ± 2.9 μM. The discrepancy 

in IC50 but similarity in anti-proliferation may be due to 48 affecting other target sites. 
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That being said, TAK-779 was originally developed for HIV entry inhibition, so its 

prostate cancer anti-proliferation mechanism is still being elucidated. 

 

Table 6. Anti-proliferation assays for DU-145, PC-3 and M12 prostate cancer cells using 

WST-1 to measure cell proliferation. 

Compound # Substitution 
DU-145 IC50 

(µM) 

PC-3 IC50 

(µM) 

M12 IC50 

(µM) 

27 3,5-NO2 >100 54.5 ± 5.4 37.6 ± 6.5 

28 4-NO2 >100 49.1 ± 6.6 78.7 ± 4.0 

29 2-NO2 83 ± 23 62.9 ± 9.5 183 ± 2.5 

30 3-NO2 >100 43.3 ± 19 73.9 ± 4.8 

31 4-OCH3 >100 - - 

32 4-SCH3 >100 78.0 ± 19 >100 

33 4-CO2CH3 >100 91.5 ± 3.7 73.7 ± 20 

34 4-Cl >100 56.1 ± 9.6 26.3 ± 0.8 

35 4-CN >100 68.5 ± 12 37 ± 11 

36 4-F >100 96.4 ± 2.5 >100 

37 4-Br >100 31.5 ± 1.4 48.8 ± 25 

38 H >100 67 ± 15 29.9 ± 4.3 

39 4-SO3CH3 >100 119 ± 41 198 ± 11 

40 4-CH3 cytotoxic 19.7 ± 1.8 15.8 ± 4.4 

41 4-NH2 cytotoxic 20.1 ± 1.3 19.7 ± 5.3 

42 4-NH2COCH3 >100 24.3 ± 1.6 39 ± 12 

43 4-OCF3 >100 13.1 ± 7.7 104 ± 22 

44 4-COOH >100 74 ± 12 129 ± 19 

45 4-C(CH3)3 >100 >100 >100 

46 4-SO2CH3 >100 >100 141 ± 26 

47 4-N(CH3)2 26 ± 17 71.2 ± 1.6 65.9 ± 2.9 

48 4-N(CH2CH3)2 8.2 ± 2.3 6.5 ± 0.7 11.4 ± 0.2 

Concentrations up to 200 μM were tested. (>100) Denotes that the IC50 was above 100 

μM and was not tested at higher concentrations due to solubility. (-) Denotes that the 

compound was not tested.   
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2.3.3 Basal Cytotoxicity Assays 

 To ensure the anti-proliferation results are not due the toxicity of the compounds, 

a basal cytotoxicity assay was run. The NIH-3T3 cells used for the assay are mouse 

fibroblasts that have been used extensively along with neutral red uptake (NRU) to assess 

basal cytotoxicity levels of small molecules.
136,137

 The assay utilizes a red neutral dye that 

viable cells will absorb and incorporate into their lysosomes. Any alterations to the cell 

surface or sensitivity of the lysosomal membrane will lead to decreased uptake. Based 

upon the amount of dye present, NRU makes it possible to distinguish between viable 

and damaged cells. Therefore any toxicity caused by exogenous compounds will be 

seen.
136,137

 

In all, several of the compounds that showed high anti-proliferative activity in 

both M12 and PC-3 were also cytotoxic in NIH-3T3 cells, which indicates their observed 

anti-proliferative activity is related to their cytotoxicity (Table 7). For example, 

compound 41 has an IC50 of 20.1 ± 1.3 and 19.7 ± 5.3 μM in M12 and PC-3, respectively, 

but it shows cytotoxicity in NIH-3T3 with a TC50 of 10.7 ± 1.2 μM. Therefore, this 

compound is not a good lead due to its proportional effects in both cancerous and 

noncancerous cells.  
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Table 7. Basal cytotoxicity assays using NRU and WST-1 to test for exogenous toxicity 

of compounds 27 through 48 in NIH 3T3 cells. 

Compound # Substitution 
NIH3T3 (NRU) 

TC50 (µM) 

NIH3T3 (WST-1) 

TC50 (µM) 

27 3,5-NO2 204 ± 25 55.9 ± 8.4 

28 4-NO2 29.3 ± 2.3 
 

29 2-NO2 >30 
 

30 3-NO2 16.6 ± 1.1 
 

31 4-OCH3 >30 
 

32 4-SCH3 >30 
 

33 4-CO2CH3 >30 
 

34 4-Cl 1.6 ± 0.8 42.7 ± 4.2 

35 4-CN >30 
 

36 4-F 16.8 ± 3.4 
 

37 4-Br >30 
 

38 H 46.6 ± 3.2 
 

39 4-SO3CH3 >30 
 

40 4-CH3 >30 
 

41 4-NH2 10.7 ± 1.2 
 

42 4-NH2COCH3 7.8 ± 1.1 15.5 ± 4.7 

43 4-OCF3 >30 
 

44 4-COOH >30 
 

45 4-C(CH3)3 >30 
 

46 4-SO2CH3 >30 
 

47 4-N(CH3)2 >30 
 

48 4-N(CH2CH3)2 31.9 ± 1.6 27.9 ± 1.2 

 

However, two compounds in the series have both anti-proliferative activity while 

displaying no cytotoxicity up to 30 μM in the NRU assay. Compound 27 has an IC50 of 

37.6 ± 6.5 and 54.5 ± 5.4 μM for M12 and PC-3 and displayed a TC50 of 204 ± 25 μM. 

Similar results were seen for 48, but its TC50 was found to be 31.9 ± 1.6 μM which makes 

for a much narrower therapeutic window when comparing its TC50 to its IC50’s in PC-3 

and M12 cells.  
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In addition to using NRU to test for cytotoxicity, WST-1 was used to see the 

differences in measurements. Since the two assays measure different cell processes it 

may lead to different results relating to cytotoxicity. Only four example compounds were 

tested, but several discrepancies between the assays were seen. Compounds 42 and 48 

were found to have similar TC50’s in both assays while 27 had a lower TC50 and 34 had a 

higher TC50 in the latter assay. These differences for both 27 and 34 could illuminate the 

mechanism of anti-proliferative effects of the compounds. 27 could affect mitochondrial 

dehydrogenases more than the structure of its lysosomes, which leads to a lower TC50 in 

the WST-1 assay. Conversely, 34 could affect lysosome structure more than it affects 

mitochondrial dehydrogenase activity, which would lead to a higher apparent TC50 in the 

WST-1 assay compared to the NRU assay. 

 

2.4 Conclusion 

 Accumulating evidence has shown the multiple roles that chemokine receptor 

CCR5 plays to promote the progression of several types of cancer. The mechanism of 

action of the promotion is thought to involve chronic inflammation, which creates a 

microenvironment that enhances tumor survival. Blocking CCR5 function with an 

antagonist may provide a novel treatment of cancers such as prostate cancer. Currently, 

several CCR5 antagonists are available, but all have been optimized for their anti-HIV 

entry inhibition rather than inhibition in endogenous signaling. Thus, there is need to 

develop antagonists focused on blocking CCR5 signaling and inhibiting CCR5 related 

prostate cancer proliferation. Using a combination of pharmacophore and CCR5 docking 
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studies a unique CCR5 antagonist skeleton was created and functionalized at multiple 

positions to optimize activity. A combination of calcium inhibition, anti-proliferation, 

and basal cytotoxicity assays were used to screen for active compounds. In CCR5 

calcium mobilization inhibition assays all of the compounds acted as antagonists, but 

lacked the nanomolar activity of the known CCR5 antagonists they were based on. By 

using a combination of anti-proliferation assays and basal cytotoxicity assays, 

compounds having the most desirable therapeutic potential could be determined. With an 

IC50 of 11.4 ± 0.2 μM and 6.5 ± 0.7 μM in M12 and PC-3 prostate cancer cells, and basal 

cytotoxicity around 30 μM, compound 48 proved to be the best lead compound. In order 

to increase the activity of the series of compounds, new compounds will be synthesized 

based upon lengthening the molecule and adding more polar substituents increase 

solubility.   
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3. Bivalent Ligands Targeting the CCR5-MOR Heterodimer 

 

3.1 Project Design 

The progression of human immunodeficiency virus (HIV)-1/acquired 

immunodeficiency syndrome (AIDS) has been shown to be accelerated by abused 

substances such as opioids, cocaine, and alcohol.
73,75,82–84

 Moreover, nearly 10% of all 

HIV infections have been attributed to injectable drug use with contaminated needles.
138

 

Both abusive and addictive behaviors are associated with the mu opioid receptor (MOR). 

Additionally, opiates negatively impact the immune system through immunomodulation 

regulated through the MOR.
73,99

 These deleterious results on the immune system may 

also affect the progression of HIV/AIDS.
85

  

 CCR5 is expressed on both immune and non-immune cells, and is a major co-

receptor that regulates HIV-1 invasion.
47,48,139,140 

In 2007, maraviroc, a CCR5 antagonist, 

was approved by the FDA as an antiretroviral therapy (ART). In combination with 

different ARTs, maraviroc has improved the overall health outcomes related to HIV-1 

infection.
141

 However, other health complications involved with infection are still a 

significant problem in patient populations. In particular, the effects of HIV-associated 

neurocognitive disorders (HANDS) affects about half of AIDS patients and leads to 

abnormalities in neurocognition, behavior, and motor control.
142

 These neurological 
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complications of AIDS (neuroAIDS) are largely due to the injury of neurons by indirect 

effects of infected microglia and astrocytes.
73,143

 

 The progression of neuroAIDS has been linked to opiate abuse that may arise 

from the synergistic interactions between CCR5 and MOR.
73,75,83,84,94,95

 A key example of 

this is that MOR agonists can up-regulate the expression of CCR5 and promote HIV-1 

infection, which can be blocked by MOR antagonists.
90

 Opiates can also exacerbate the 

amount of indirect neuronal injury in neurons and glia through HIV-1 induced CNS 

inflammation.
74,144

 The specific opioid dependent neuronal injury may be primarily 

induced by MOR expressing glia in the CNS.
145

 Importantly, MOR and CCR5 have been 

shown to heterodimerize and undergo crosstalk.
87,146

 The interaction has been shown to 

affect immune cell function and may produce the synergistic effects seen in neuroAIDS 

progression.
90,147

 Previously, a bivalent compound (49) containing both a mu opioid 

receptor (MOR) and chemokine receptor CCR5 (CCR5) antagonist pharmacophore was 

synthesized in our laboratory in order to study the pharmacological profile of MOR–

CCR5 heterodimerization and its relation with neuroAIDS (Figure 18).
134

  

 
Figure 18. The first reported bivalent compound targeting the CCR5-MOR 

heterodimer.
134
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Figure 19. Bivalent compound strategy for targeting the CCR5-MOR heterodimer 

 

The premise of the bivalent compound 49 was to use both a MOR and a CCR5 

antagonist to try to block both receptors at the same time, Figure 19. Both naltrexone, 15, 
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and maraviroc, 1, were chosen for their high binding affinities and well known 

pharmacological profiles. Both molecules had to be functionalized with an amine group 

in order to allow for attachment of the linker. 6β-Naltrexamine has been synthesized 

before, but 4-aminophenyl-maraviroc had never been reported, so a new synthetic route 

was devised.
134

 The linker connecting the two pharmacophores was chosen based on the 

work of Daniels et al. with MOR-DOR bivalent compounds.
126

 They found that a 21-

atom spacer made of an aliphatic diamine flanked by two diglycolic groups was optimum 

for opioid receptor heterodimers.
126

 

In order to study the SAR of compound 49, a new bivalent compound with the 

amine group at the 3-position of maraviroc was synthesized, 50 (Figure 20). The change 

in attachment site to maraviroc will allow for fine-tuning of the bivalent compound 

towards the CCR5-MOR heterodimer. Additional compounds were synthesized to study 

how substitutions on maraviroc affected CCR5 binding and functional activity (51-55, 

Figure 20). Calcium mobilization assays were used to determine the functional activity of 

the compounds to both the MOR and the CCR5. Cell fusion assays that mimic HIV-1 

invasion were then carried out to assess 49 and 50 inhibition on cell fusion. Since the 

fusion assay may not reflect how native cells and HIV-1 interact, a HIV-1 infection assay 

using human astrocytes was used to assess how the compounds inhibited infection 

compared to maraviroc. In order to observe how the compounds interact with the CCR5-

MOR heterodimer on the atomic level, computation methods such as molecular dynamics 

simulations were used.  
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Figure 20. Additional CCR5-MOR bivalent compound (50) and control compounds 

studying the SAR of maraviroc substitution. 

 

3.2 Chemical Syntheses 

The synthetic route for the 4-amino maraviroc bivalent compound (49) had 

previously been discovered by Dr. Yunyun Yuan and Dr. Gou Li of the Yan Zhang group 

and compounds 49, 51, 53-55 were synthesized by Dr. Yunyun Yuan.
134

 However, the 

route for the 3-amino maraviroc bivalent compound (50) had to be developed. 

Serendipitously, the same route used to make 49 could be used with minor modifications 

in reaction conditions and workup by using 3-bromocinnamic acid instead of 4-

bromocinnamic acid. Scheme 6 shows the synthetic route used to synthesize the 3-amino 

maraviroc intermediate, 80.  
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Scheme 6. Synthetic route to form the 3-amino maraviroc (80) intermediate. 

 

3.2.1 Buchwald-Hartwig Coupling 

3-Bromocinnamic acid (70) is first protected via an esterification reaction using 

isopropanol (i-PrOH) and a catalytic amount of H2SO4 while being refluxed. The overall 

yield of 71 was 79%. The bromide was then converted to the amine (72) using lithium 
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hexamethyldisilazide (LHMDS), Pd2(dba)3, and P(t-Bu)3. This reaction was previously 

reported for the synthesis of 4-amino maraviroc and had yields around 90%. However, 

this reaction proved to be difficult for the 3-bromo derivative 71. Yields of 72 were often 

around 50% with the highest achieved yield being 69%. The reaction can be sensitive to 

moisture and the catalysts can be poisoned by many chemical species, but even when 

extremely dry conditions were achieved and new catalyst was used, the yield failed to 

improve. Therefore, the starting material, 71, may be slightly deactivated compared to the 

4-bromo derivative previously reported.
134

 Since the benzene is substituted at the 3-

position it may lead to a different, less active, electronic configuration of the molecule 

that would affect subsequent reactions. Additionally, workup proved to be difficult and 

often required multiple rounds of column chromatography. Both dichloromethane 

(DCM)/MeOH and hexane/ethyl acetate eluent systems failed to effectively separate the 

produce from the crude reaction mixture. After a lengthy investigation on the solubility 

properties of 72 in different organic solvents, it was found that it could be crystalized 

from hot hexane with moderate separation yields.  

 Initially, immediately after being purified, the amine of 72 was protected with a 

Boc group by heating it in THF in the presence of di-tert-butyl dicarbonate. However, 

this reaction proved to produce an undetermined byproduct that could not be separated 

from the reaction mixture. New reactions conditions were used to try to produce 73 

without any excess byproduct formation. Still using di-tert-butyl dicarbonate, 72 was 

stirred in a 1:1 mixture of H2O/Dioxane with NaHCO3 at room temperature which gave 

73 at yields up to 76%. The stereoselective Michael addition to form 74 was achieved by 
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using lithium (R)-N-benzyl-N-α-methylbenzylamide. This reaction has been used 

previously in multiple synthetic routes to selectively form enantiomerically pure 

adducts.
134,148–150

 Both column chromatography and recrystallization were used to purify 

the product with yields up to 70%. 

 

3.2.2 1,2,4-Triazole Substituted Tropane Intermediate Synthesis 

Saponification of the isopropyl ester (74) to form the carboxylic acid 75 was 

accomplished by refluxing in MeOH/H2O with LiOH. After reaction workup a yield of 

88% was achieved. Next, an amide coupling between 75 and 86 was done by using 

EDCI. Compound 86 was formed using a five step synthetic route previously described in 

Scheme 7.
151,152

 Overall the synthetic route to form 86 proved to be straightforward 

except for the synthesis of 85. Yields of only 38% could be achieved for the formation of 

the triazole, which were drastically lower than yields reported by literature. 
151

 To form 

the triazole ring from 84 there are three sequential reactions that first formed the imidoyl 

chloride that was then trapped with acetic hydrazide and then cyclized using an acid 

catalyzed cyclization. The imidoyl chloride reaction intermediate could easily be 

decomposed, which may explain the low yields. Additionally, if excess water was present 

during the acetic hydrazide addition the amide could easily be hydrolyzed leading to 

lower yields. No optimization was attempted since large quantities could easily be 

synthesized through the route. Saponification of the isopropyl ester (74) to form the 

carboxylic acid 75 was accomplished by refluxing in MeOH/H2O with LiOH. After 

reaction workup a yield of 88% was achieved.    
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Scheme 7. Synthesis of the 1,2,4-triazole substituted tropane intermediate (86). 

 

3.2.3 Debenzylation with Hydrogenation 

As stated above, 76 was formed through an EDCI mediated amide coupling 

between 75 and 86. The reaction yields were regularly around 74% which is close to the 

reported yields seen for the same reaction for the 4-amino maraviroc derivative.
134

 The 

reduction of the (R)-N-benzyl-N-α-methylbenzylamide to form the amine 77 proved to be 

more difficult compared to the same reaction for the 4-amino maraviroc derivative.
134

 

The hydrogenation of 76 was first tried using 10% Pd/C and 60 psi H2 in MeOH, but very 

little product was formed even after 168 hours. Therefore, new conditions were tried 

using 20% Pd(OH)2/C, MeOH, 10% H2O, 5% AcOH, and 1 atm H2. This reaction 

successfully made 77 with a 48% yield. Reaction conditions were further modified to try 

to improve the yields of this reaction due to the scarcity and preciousness of the starting 
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material 76. Using 10% Pd/C, 60 psi H2, and 2 equivalents of AcOH in MeOH, a yield of 

91% was achieved. Therefore, acid was essential for facilitating the reduction of 76 to 77.  

 

3.2.4 Selective Difluorination 

Reduction of the amide, 77, to form 78 was accomplished by using lithium 

aluminum hydride. This reaction was easily done, but the quenching of excess LiAlH4 

produced an inseparable reaction mixture. Therefore, using the Fieser method, an exact 

ratio of 1:1:2 of H2O, 4N NaOH, and H2O were added sequentially and the lithium salts 

were filtered. Using this method, 78 could easily be separated by column chromatography 

with a yield of 93%. Another EDCI mediated amide coupling was performed between 78 

and 88 to form 79. The 4,4-difluorocyclohexanecarboxylic acid (88) had previously been 

synthesized from ethyl-4-oxocyclohexanecarboxylate.
134,152

 Difluorination was done 

using diethylamino sulfur trifluoride (DAST) and only gave a 4 to 1 ratio of the difluoro 

product to the vinyl fluoride impurity, which is essentially inseparable. In order to 

overcome the difficulty and specificity of the gem-difluorination reaction, a different 

fluorination reagent was used. The reagent, 4-tert-butyl-2,6-dimethylphenylsulfur 

trifluoride (Fluolead), was more stable and selective than DAST, which leads to less 

vinyl fluoride impurity (89) formed. As shown in Scheme 8, the diflourination of 87 to 

form the acid, 88, with a ratio of 99 diflouro product to 1 vinyl fluoride impurity. The 

overall combined yield of the diflourination and saponification reactions was 27%.  
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Scheme 8. Synthesis of 4,4-difluorocyclohexanecarboxylic acid (88) using Fluolead. 

 

3.2.5 Linker Synthesis  

The 6β-naltrexamine-linker intermediate (95) was previously synthesized using 

the synthetic route seen in Scheme 9.
134

 First diaminoheptane (90) was monoprotected 

with a carboxybenzyl group to form 91. This product has previously been reported by 

several groups using various methods.
134,153,154

 The initial method consisted of adding 

very dilute benzyl chloroformate to an excess of very dilute 1,7 diaminoheptane over the 

period of a week at exactly 5 °C. Yields from this reaction did not exceed 16%, which is 

close to what is reported in the literature.
134

 Several byproducts are present in the reaction 

mixture during workup, including unreacted diamine, diprotected diamine, and several 

other uncharacterized byproducts. 

There are several drawbacks to this method: very low yields, long reaction time, 

hard to maintain reaction temperature, excessive solvent waste, and large amounts of 

byproduct formation. Separation of 91 from the reaction mixture proved to be very 

difficult and often required multiple rounds of column chromatography. Eventually, it 

was found that, after an initial column to concentrate 91 in the reaction mixture, that the 

product could be recrystallized using DCM.   
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Scheme 9. Synthesis of 6β-naltrexone-linker intermediate (95) and final 3-amino bivalent 

compound (50). 

 

Due to the drawbacks of this reaction, several new reaction conditions were 

tested. First, the amount of benzyl chloroformate was varied from 2 equivalents to 0.5 

equivalents in several reactions to see if an excess of benzyl chloroformate or an even 

larger excess of diamine would decrease the amount of byproducts formed in order to 

increase yields. However, this method failed to produce any different results. Reaction 

temperature was then systematically changed to 0 °C and 10 °C. At 0 °C very little 
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monoprotected diamine (91) was formed and the reaction mixture mainly consisted of 

unreacted diamine. At 10 °C there was more diprotected diamine and uncharacterized 

byproducts than 91. Therefore, we explored a complete change in reaction conditions. 

The first alternative reaction conditions consisted of reacting the diamine (90) 

with 1 equivalent of HCl to form the mono-hydrochloride salt. This effectively would 

only allow one of the amine groups to react with the benzyl chloroformate when 

added.
153

 After exploring various conditions of this reaction by varying concentrations 

and temperatures no monoprotected diamine 91 was formed. A second set of reaction 

conditions was then explored that focused on controlling the pH of the reaction so that 

the equilibrium of the reaction would be shifted towards the formation of 91. We 

hypothesized that keeping the pH around pH 4 instead of pH 14 (normal pH of reaction 

mixture for original conditions) may lead to more 91 being formed. An exploratory 

reaction was done using 1 M, pH 4 acetate buffer and MeOH to dissolve the diamine, 90, 

and then benzyl chloroformate was added dropwise while the pH of the resulting solution 

was checked every 5 drops. No monoprotected diamine 91 was formed during the 

reaction and the buffer did not have enough ionic strength to keep the reaction at pH 4. 

Therefore, the original reaction conditions were kept, and crude product from multiple 

reactions was pooled together during purification to aid yields.  

 

3.2.6 6β-Naltrexamine-Linker Intermediate Synthesis 

After monoprotection, 91 was lengthened with a diglycolic anhydride to give the 

corresponding carboxylic acid, 92. Overall, this reaction was very simple and yields 
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around 92% were achieved after crystallization. Through an EDCI mediated amide 

coupling reaction, 92 and 98 were coupled to form 93 with a yield of 42%. 6β-

Naltrexamine (98) was previously synthesized by the Portoghese group using the 

synthetic route in Scheme 10.
155

 First, naltrexone hydrochloride (96) was converted to 

6β-dibenzylamine intermediate 97 through a reductive amination using dibenzylamine 

and NaCNBH3 with yields around 64%. The dibenzylamine intermediate 97 was then 

reduced using a Pd/C hydrogenation to form 98 with yields around 78%.  

 

 
Scheme 10. 6β-Naltrexamine (98) synthesis. 

 

 The 6β-naltrexamine linker intermediate 93 is then deprotected using Pd/C 

hydrogenation. This reaction only had a yield of 51% of 94, which is much lower than the 

reported yield of 99%.
134

 The purity of the starting material may have affected this 

reaction, but no further investigation was done. Another diglycolic anhydride was added 

to 94 to bring the total linker length to 21 atoms. Compound 95 was synthesized with a 

final yield of 91%.  



76 

3.2.7 Final Compound Synthesis 

Final compound synthesis was facilitated by coupling 95 with 80 using EDCI to 

form the bivalent compound 50. This coupling reaction was done with only 1 equivalent 

of both 95 and 80 due to their scarcity. After 7 days, no staring material was present. 

Column chromatography was used and a total of 33 mg, 26% yield, of 50 was received. 

In addition to 50, a 3-amino maraviroc monovalent control compound, 52, was also 

synthesized using the synthetic route in Scheme 11. The monoprotected diamine 91 was 

coupled with methylcarbamoylmethoxy-acetic acid to form 99 with a yield of 67%. Next, 

99 was deprotected using Pd/C mediated hydrogenation to form 100 (90% yield). A 

diglycolic anhydride group was then added to bring the total linker length to 21 atoms 

(101) with quantitative yields. Finally, 101 and 80 were coupled using EDCI to form 30 

mg of the monovalent compound 52 (33% yield). 

 
Scheme 11. Synthesis of 3-amino maraviroc monovalent control compound 52. 
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 All final compounds were analyzed with IR, 
1
H NMR, 

13
C NMR, MS, and 

melting point. Before use in biological assays all compounds were transformed into their 

hydrochloride salts.  

 

3.3 In Vitro Studies 

3.3.1 Calcium Mobilization Functional Assays 

 In all, 8 compounds were synthesized for the study of the CCR5-MOR 

heterodimer. Compounds 50 and 52 were synthesized by Chris Arnatt; compounds 49, 

51, 53 through 55 and 102 were synthesized by Dr. Yunyun Yuan of the Yan Zhang 

laboratory.  Figure 21 shows the bivalent compounds (49, 50), the monovalent controls 

(51, 52, 102) and the 4-substituted maraviroc compounds (53, 54, 55). The compounds 

were tested in cells that expressed either CCR5 or MOR and cells that co-expressed both 

CCR5 and MOR. Calcium mobilization assays were chosen to test for the compounds 

functional activity due to their robustness and simplicity. During GPCR signaling, release 

of intracellular calcium stores is proportional and directly related to receptor activation. 

Ideally, the IC50 values of the compounds will have little deviation from the IC50 values 

of the parent compounds maraviroc and naltrexone. 

Compounds were tested for both their agonism and antagonism for either CCR5 

or MOR in MOLT-4 cells, hMOR-CHO cells, and a co-expressed CCR5YFP-hMOR-

CHO cell line.
133,156

 For both the MOLT-4 cells and the hMOR cells, the calcium 

sensitive fluorescent dye Fluo-4 was used. However, a specialty red fluorescent dye had 

to be used in the CCR5YFP-hMOR-CHO cells (vide infra). 
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Figure 21. Library of compounds for the study of the CCR5-MOR heterodimer. The 

library consists of the bivalent compounds (49, 50), the monovalent controls (51, 52, 102) 

and the 4-substituted maraviroc compounds (53, 54, 55). 

  

First, the compounds were tested in the CCR5 expressing MOLT-4 cells for their 

CCR5 agonism and antagonism. Over a range of concentrations, compounds 49 through 

55 showed no apparent agonism of CCR5. Antagonism assays tested for the inhibition of 
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RANTES stimulated calcium mobilization. Prior to use, the MOLT-4 cells were 

transiently transfected with a chimeric G protein, Gqi5, in order to boost their calcium 

signaling levels.
157

 Gqi5 is an engineered Gαq protein with its last five residues on its C-

terminal replaced with the last five residues from the Gαi protein. A range finding assay 

was first performed in order to find a rough IC50 of each compound so that a finer dose 

curve could be used. An example inhibition curve for compound 49 is shown in Figure 

22. All measurements were run in triplicate and repeated 3 separate times.  
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Figure 22. Example CCR5 inhibition curve for 49 MOLT-4 cells. RANTES was used to 

stimulate the cells.  

 

The CCR5 antagonism results from the calcium mobilization assays (Table 8) 

indicate that modification of maraviroc (1) with phenyl substituents is not well favored 

and hint towards a general SAR for CCR5 antagonism for the library. When an amine is 

added to the 4-position (55), there is a close to a 7-fold loss in CCR5 inhibition. An even 

more drastic effect is seen for the bulkier substituents in 53 and 54 with losses in activity 

of 3600-fold and 700-fold respectively. Therefore, smaller substituents on the phenyl ring 
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of maraviroc are well tolerated compared to more sterically bulky groups. However, this 

observation is not seen to the same extent for the bivalent and monovalent compounds.  

 

Table 8. Antagonism of RANTES stimulated calcium mobilization in MOLT-4 cells. 

Compound CCR5 antagonism IC50 (nM) 
Fold-decrease in activity 

compared to 1 

1 (maraviroc) 2.19 ± 0.31 - 

49 126 ± 28 60 

50 1340 ± 110 600 

51 622 ± 36 200 

52 129 ± 42 60 

53 7910 ± 760 3600 

54 1570 ± 180 700 

55 14.2 ± 1.9 7 

  

Both 51 and 52 have larger substituents than 53 and 54, but they have only a 200-

fold and 60-fold decrease in activity compared to 1. These results suggest that the longer 

monovalent compounds may adopt a different binding mode than 53 and 54 and retain 

some of their CCR5 antagonism. For the bivalent compounds, 49 and 50, there is a 

discrepancy between the 4- and 3-position attachments that is not seen in the monovalent 

compounds (51, 52). While 49 has only a 60-fold decrease in activity, 50 has a large 

decrease in activity of 600-fold compared to 1. Therefore, for the bivalent compounds, a 

4-position attachment is favored over the 3-position attachment, which is the opposite 

compared to the monovalent compounds. One possible explanation for this is their ability 

to adopt binding modes for the different trends in activity of the 3- and 4-position 

attachment of the monovalent and bivalent compounds.     

MOR antagonism was also tested by using calcium inhibition assays; hMOR-

CHO cells were first transiently transfected with Gqi5 in order to couple MOR activation 
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to calcium release.
157

 Compounds containing a morphanin group (49, 50, 102) were first 

tested for their MOR agonism: no apparent agonism was seen for the compounds. Using 

the MOR agonist DAMGO, compounds were then tested for their antagonism and 

compared to naltrexone (15). Overall, substitution of naltrexone (15) is much more 

tolerated than for maraviroc as seen in Table 9. The highest fold decrease compared to 15 

was only 4.5-fold (49). All of the compounds had similar IC50 values which means that 

the difference in maraviroc attachment sites and lack of maraviroc did not affect MOR 

antagonism.  

 

Table 9. Antagonism of DAMGO stimulated calcium mobilization in hMOR-CHO cells. 

Compound MOR antagonism IC50 (nM) 
Fold-decrease in activity 

compared to 15 

15 (naltrexone) 8.93 ± 0.87 - 

49 40.0 ± 4.8 4.5 

50 17.1 ± 4.9 1.9 

102 37.8 ± 4.4 4.2 

 

Having a cell line that consistently expressed both CCR5 and MOR was essential 

for studying how the two receptors interact with each other using calcium mobilization 

assays and cell fusion assays. A previously established hMOR-CHO cell line 
156

 was 

transfected with a plasmid containing CCR5 tagged with a yellow fluorescent protein on 

its N-terminus (CCR5-YFP) by Seth Dever (Hauser Laboratory, VCU). Using 

fluorescence-activated cell sorting (FACS), cells containing CCR5-YFP were separated, 

subcultured and used in subsequent assays. Due to the YFP present in the cell line, the 

calcium sensitive fluorescent dye Fluo-4 could not be used due to an overlap between 

their excitation/emission wavelengths. Therefore, a red calcium sensitive fluorescent dye, 
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GFP-FluoForte was used that had a different excitation/emission spectrum compared to 

YFP.
158

 

 Using the CCR5YFP-hMOR-CHO cell line, the activity at both receptors was 

studied for compounds 49 through 55 and 102. Before the assay, cells were transfected 

with a chimeric G protein Gqi5 in order to boost the calcium signaling and couple to 

MOR signaling to calcium mobilization.
157

 All compounds were tested for both their 

agonism and antagonism and none showed any agonism. Table 10 shows the IC50 values 

for the compounds using either DAMGO (MOR agonist) or RANTES (CCR5 agonist) to 

stimulate calcium mobilization.  

 

Table 10. Results from calcium mobilization assays using the CCR5YFP-hMOR-CHO 

co-expressed cell line. 

Compound MOR IC50 (nM)
a 

CCR5 IC50 (nM)
b 

1 (maraviroc) - 17.8 ± 4.3 

15 (naltrexone) 5.8 ± 2.5 - 

49 29.9 ± 2.4 6240 ± 250 

50 17.4 ± 5.7 14040 ± 350 

51 - 7030 ± 400 

52 - 2202 ± 8.5 

53 - 8820 ± 870 

54 - 6670 ± 540 

55 - 54.8 ± 11.2 

102 50.5 ± 4.8 - 

(a) Cells were stimulated with DAMGO, (b) cells were stimulated with RANTES, (-) 

denotes that the compound was not tested. 

 

The results from MOR antagonism indicate that all of the compounds maintained 

their ability to antagonize DAMGO signaling. However, compared to naltrexone, 

compounds 49 and 102 have higher IC50 values, which indicate a loss in activity. The loss 

ranges from 5-fold to 10-fold compared to 15. There is a less drastic decrease of 3-fold 
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seen for 50. Interestingly, both 49 and 50 are more potent than the monovalent control 

compound 102. The difference in activity could arise between the compounds due to 102 

lacking the maraviroc portion of the full bivalent compounds. Since 49 and 50 have both 

antagonists present in them, they can interact with both CCR5 and MOR concurrently 

which could synergistically lower their IC50 values and thus increase their activity. 

Compound 102 lacks such synergism since it can only interact with MOR.  

The CCR5 antagonism results from the calcium mobilization assays indicate that 

modification of maraviroc through the phenyl substituents is not well favored, which 

agrees with the data from the mono-expressed MOLT-4 cells. Addition of an amino 

group at the 4-position, 55, is the only well-tolerated change, with only a 3-fold loss in 

activity. However, as the substituent starts to become bulkier, as seen in 53 and 54, there 

is a drastic decrease in activity of around 400-fold compared to 1. The same trend in 

decreased activity is seen for bivalent compounds 49 and 50. Overall, there is 350-fold 

decrease in activity for 49 compared to 1 and a 700-fold decrease for 50. Additionally, no 

clear synergism is seen for bivalent compounds compared to the monovalent control 

compounds 51 and 52. The lack of synergism may be due to the phenyl attachment of 

maraviroc not being well tolerated by CCR5. However, all of the compounds do maintain 

their activity at both MOR and CCR5, despite the extensive modifications. 

 Overall, the data from the co-expressed cell line agrees with the data from the 

mono-expressed cell lines for MOR and CCR5 antagonism. However, there is a decrease 

in the apparent CCR5 antagonism for all of the compounds when tested in the co-

expressed CCR5YFP-hMOR-CHO cell line. While this may be attributed to difference 
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between the MOLT and CHO cell types, it is most likely from the yellow fluorescent 

protein tag on the C-terminal of CCR5. The YFP may alter the binding of G proteins to 

CCR5 enough to see a decrease in antagonism from the compounds or alter receptor 

conformation and thus alter its ability to signal. Additionally, these reasons may be why 

no synergism is seen for the bivalent compounds over the monovalent compounds.  

  

3.3.2 Binding Assays  

 In addition to the CCR5 and MOR functional assays, binding assays were 

conducted to verify that the compounds can bind to the receptors with high affinity. 

Assays were run by Yunyun Yuan, Orgil Elbegdorjo, and the radioligand binding service 

at EMD Millipore. Table 11 shows the results of both CCR5 and MOR radiobinding 

assays for selected compounds. Within the MOR assay, all of the compounds bind have 

higher Ki values than naltrexone (15) and display the same trend as the functional assays. 

For MOR, the 3-position attachment (50) on maraviroc is favored compared to the 4-

position (49). 

Table 11. CCR5 and MOR radiobinding assay. 

Compound MOR Ki (nM)
a 

CCR5 Ki (nM)
b 

1 (maraviroc) - 0.24 ± 0.06 

15 (naltrexone) 0.7 ± 0.1 - 

49 51.8 ± 7.9 239 ± 56 

50 10.0 ± 0.6 - 

51 - 151 ± 44 

55 - 15.3 ± 4.8 

102 9.2 ± 3.4 - 

(a) [
3
H]naloxone was used in hMOR-CHO membranes.

156
 (b) [

125
I]MIP-1α was used 

in CCR5 rhesus macaque membranes. All values are means ± S.E.M. of three 

independent experiments.  
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 The data for the CCR5 radiobinding assay confirms the results seen in the 

functional assays that any substitution on maraviroc’s phenyl ring is detrimental. There is 

a clear trend of decreasing affinity with increasing size of the group at the 4-position. 

Overall, there is a large 1000-fold loss of affinity seen for 49 compared to maraviroc. 

Importantly, it does still bind CCR5 at nanomolar levels, meaning that its affinity wasn’t 

completely abolished. 

 

3.3.3 Cell Fusion Assays  

While the calcium mobilization assays can measure the activity of the compounds 

at the receptor level, they fail to show the compounds’ anti-HIV invasion activity. Cell 

fusion assays provide a less dangerous alternative to working with the live virus and have 

been shown to mimic the HIV invasion process. Figure 23 illustrates the general process 

for the cell fusion assay. Two cell populations, called the target and effector cells, are 

used in the assay. Fundamentally, the target cells act as the host cells that HIV infects, 

and the effector cells act as the virus. 

The CCR5YFP-hMOR-CHO cells were used as the basis for the target cells and 

were transiently transfected with CD4 and a luciferase reporter with the help of Seth 

Dever (Hauser Laboratory, VCU). Human embryonic kidney (HEK) cells were used as 

the effector cells and were transiently transfected with HIV-1 gp120 and a T7 

polymerase. Once overlaid, CD4 and gp120 form a complex and interact with the CCR5-

MOR heterodimer and initiate the fusion process. Upon cell fusion, the luciferase gene 

reporter is transcribed and after 18 hours luminescence is measured. Adding a CCR5 
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antagonist, such as maraviroc, during the overlay process inhibits the fusion process and 

leads to a decrease in luminescence. Therefore, addition of the bivalent compounds 

should also inhibit the fusion process.  

 
Figure 23. Cell fusion assay used to mimic HIV invasion without using live virus. 
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Figure 24 is a representative cell fusion assay with and without morphine (9) 

stimulation during the fusion process. Upon the addition of morphine and +CD4 effector 

cells there is a significant increase (p < 0.05) in fusion compared to +CD4 effector cells 

alone. Addition of 49, 50, and maraviroc (1) all significantly lowered cell fusion at 

concentrations of 3,000 nM, 10,000 nM, and 100 nM, respectively. The inhibitory effect 

of both 49 and 50 was amplified by 2-fold when morphine was present.  
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Figure 24. Cell fusion assay based upon luminescence from expressed luciferase reporter 

gene. For morphine stimulation, 300 nM was added. 100 nM Maraviroc, 3,000 nM 49, 

and 10,000 nm 50 was used. Values are representative of 4 assays run. (
*
p < 0.001 vs. 

+CD4 +morphine; 
$
p < 0.05 vs. +CD4 +morphine; 

#
p < 0.01 vs. +CD4 +morphine) 

At the concentrations shown, 49 is less effective than 50, but it is equally effective 

at the higher 10,000 nM concentration that is shown for 50. Maraviroc’s cell fusion 
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inhibition was not amplified with the addition of morphine. This trend was seen in an 

additional three assays. The concentrations of compounds used in the assay indicate that 

maraviroc is more potent than either bivalent compound.  

A fundamental issue of this assay is its reproducibility. The same trends were seen 

in all three cell fusion assays attempted, but IC50 values for fusion inhibition could not be 

determined: IC50 values from plate to plate varied up to 2-fold. Assay variability may be 

attributed to user error, protocol setup and or transfection efficiencies. Since the fusion 

assay is luminescence based, errors in pipetting and protocol could severely affect the 

results due to the sensitivity of the measurement. The complexity and cost of the assay 

did not allow for optimization of all the conditions such as incubation times, cell number, 

and ratio of effector to target cells. Incubation time for cell fusion to occur was limited to 

24 hours and no optimization was attempted. Fusion assays like this have been conducted 

for 8, 12 and 24 hours by various laboratories.
159–162

 Both cell number and cell ratio could 

have been explored more in order to increase the reproducibility of the assay: only 20,000 

and 15,000 cells/well were attempted and only a 1:1 and 1:2 effector to target cell ratios 

were attempted. Changing either parameter may lead to less variation among wells. 

 

3.3.4 HIV-1 Infection Assays 

 While the cell fusion assay mimics the native system, it cannot reproduce the 

natural expression levels of CCR5 and MOR (and other proteins) that are seen in native 

systems. Therefore, an HIV-1 infection assay was conducted by the Hauser laboratory at 

VCU using primary human astrocytes. Primary human astrocytes were chosen because 
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they are one of the primary sites of infection in neuroAIDS; they are localized on the 

blood brain barrier and they are the sites where opioids can synergistically potentiate the 

pathophysiological effects of HIV-1 infection.
73

 Figure 25 shows the effect of 49 and 

maraviroc have on the infection of astrocytes by HIV-1, in the presence and absence of 

morphine stimulation.  

 Upon infection with R5 HIVSF162 (with and without morphine). there was a 

significant increase in Tat (transactivator of transcription) expression in astrocytes that 

coincides with virus invasion. When maraviroc is added, virus invasion is decreased, as 

expected. However, when morphine is added along with maraviroc, its antiviral effects 

are completely abolished, which is indicated by a significant 4-fold increase in HIV Tat 

expression in the astrocytes. Treatment with naltrexone, or a combination of naltrexone 

and maraviroc, had no effect on virus invasion with and without morphine present. 

Addition of the bivalent compound 49 (“bivalent”) had a significant effect compared to 

maraviroc and maraviroc with morphine stimulation. Overall, there was a 3.3-fold 

decrease in virus entry compared to maraviroc alone and a 7-fold decrease when 

compared to maraviroc with morphine. Importantly, morphine stimulation had no effect 

on the bivalent compound’s activity. Cytotoxicity assays (not shown) indicate neither 

maraviroc nor 49 had any toxicity in the astrocytes. The results show that in a native 

system, the bivalent compound can act as a potent virus invasion inhibitor without 

deleterious effects caused by morphine stimulation. 
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Figure 25.  HIV-1 infection assay. HIV-1SF162 infectivity in human glial was determined 

based on the relative amount of Tat protein expressed by the virus using a luciferase 

based assay.  (HA) human astrocytes, (R5) HIV-1SF162, (M) morphine at 500 nM, (MVC) 

maraviroc at 100 nM, (bivalent) compound 49 at 100 nM, and (NTX) naltrexone at 1500 

nM. Values are absorbance ± SEM of 3 independent experiments at 18 h post-infection 

(*p < 0.005 vs. un-infected cells; 
$
p < 0.05 vs. R5 HIV-1; 

# 
p <0.05 vs. opioid; 

¶
p < 0.05 

vs. maraviroc (MVC); 
§
p < 0.05 vs. morphine + MVC;

 ^ 
p <0.05 vs. MVC + NTX; 

^^ 
p 

<0.05 vs. morphine + MVC + NTX; 
Ω 

p <0.05 vs. bivalent). 

 

3.3.5 Expression Levels of CCR5 and MOR in Primary and Engineered Cells  

Overall, there is a disconnect between the cell fusion assay results and the results 

gained from the astrocyte HIV-1 invasion assay. The differences between the assays may 

be explained through the relative expression levels seen in the cells. Seth Dever (Hauser 

Laboratory, VCU) analyzed the mRNA expression levels, using RT-PCR, of CCR5 and 

MOR mRNA for both astrocytes and the CCR5YFP-hMOR-CHO cells. Figure 26 shows 

the results from PCR of two lots of primary human astrocytes with CCR5 being 
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expressed 12-fold higher than MOR. The levels of MOR and CCR5 in the CCR5-MOR 

CHO cell line with CCR5 mRNA being expressed 30-fold higher than MOR.  
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Figure 26. Relative mRNA expression levels of MOR and CCR5. mRNA levels were 

evaluated for both the CCR5YFP-hMOR-CHO (CCR5-MOR CHO) cell line and two lots 

of primary human astrocytes. 

 

 

There is a 2-fold difference in the concentration of MOR and CCR5 between the 

two cell lines with the CCR5YFP-hMOR-CHO cell line having a much higher expression 

of CCR5 than MOR. With higher amounts of CCR5 than MOR, there may be less 

formation of heterodimers in the CCR5-MOR CHO cell line than in astrocytes. Since the 

bivalent compounds may preferentially bind to CCR5-MOR heterodimers, there will be 

fewer heterodimers available for binding in the CCR5YFP-hMOR-CHO cells than in 

astrocytes; therefore, its effects may be diminished in the CCR5YFP-hMOR-CHO cells.  

Interestingly, when morphine was added to the cells 24 hours before being 

harvested for PCR, there was a downward trend in both CCR5 and MOR mRNA 
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compared to unstimulated cells (data not shown) for the CCR5YFP-hMOR-CHO cells. 

These results contradict what is seen in the native system where morphine up-regulates 

CCR5 expression levels.
87

 One explanation for this difference is that CCR5 and MOR are 

both transfected into the CHO cells, and expression is driven by a non-native promoter. 

Therefore, there may be no significant change in expression levels of CCR5 and MOR in 

the CCR5YFP-hMOR-CHO cells since morphine stimulation would mainly effect 

endogenous expression from the natural promoter. For the CCR5YFP-hMOR-CHO cells, 

the differences seen with and without morphine in the cell fusion assay may be due to 

morphine affecting cell-surface expression of CCR5 or MOR or morphine inducing 

CCR5-MOR heterodimerization. A similar effect of inducing MOR dimerization has 

been reported with DAMGO exposure.
120

 

 

3.4 In Silico Studies  

3.4.1 Modeling the CCR5-MOR Heterodimer  

Computational modeling was used to further explore the relationship between the 

CCR5-MOR heterodimer and compound 49. Using a homology model of CCR5 and the 

recently crystallized MOR homodimer, a CCR5-MOR heterodimer model was 

constructed.
63

 The homology model of CCR5 was created by Saheem Zaldi using 

CXCR4 as the template structure:
71

 the two structures share 29% identity and 49% 

similarity to each other and are both chemokine receptors. As expected, the conserved 

GPCR residues: N1.5, L2.5, R3.5, W4.5, P5.5, P6.5, and P7.5 all aligned properly 
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between CCR5 and CXCR4; and there were no significant gaps in the transmembrane 

helical domains (Figure 27).  

 
Figure 27. Sequence alignment of CCR5 and CXCR4. 

 

Briefly, homology models of CCR5 were produced by using the homology 

modeling program Modeller 9v8.
163

 Modeller works by using a satisfaction of spatial 

restraints in order to map the location of each atom based upon the template structure and 

the sequence alignment. A total of 100 models were generated from this process and 

scored with the assessment scores: molpdf, DOPE, and GA341. These scores serve as an 

indication of the general “native-ness” of the receptors structures made. To further 

analyze the individual structures, maraviroc (1) was docked into each model using the 

ligand docking program GOLD.
164

 Analyzing the individual receptor-ligand complexes 
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and comparing them to known site-directed mutagenesis data guided the decision of 

which model to use. 

 Several methods have been used to model GPCR homodimers and heterodimers. 

Until recently, the most prominent way to model dimerization was to use protein-protein 

docking programs such as ZDOCK, GRAMM, or Rosetta.
165

 Recently, several GPCR 

homodimer crystal structures have been characterized and offer a new way to model 

dimerization.
63,71,111

 These structures have either a TM4-TM5 or a TM5-TM6 interaction, 

which both represent feasible GPCR dimer interfaces.
63,165,166

 Current knowledge 

suggests that GPCRs do not undergo any significant conformational changes upon 

dimerization.
165

 Therefore, GPCR dimers can now be modeled by using the 

experimentally observed dimer structure and overlaying the receptors being studied onto 

it, and aligning them based upon sequence homology. This technique has successfully 

been applied to model 5-HT1A homodimers and has been experimentally verified.
166

  

The MOR homodimer crystal structure was chosen as the template of the CCR5-

MOR heterodimer model since it may represent how MOR may potentially dimerize.
63

 

Importantly, since the crystal structure of the MOR homodimer was used as the basis for 

the CCR5-MOR heterodimer, the heterodimer interface will be assumed to be between 

TM5 and TM6. While one MOR receptor was kept in place, the other was overlaid with 

the CCR5 homology model, aligned based upon homology and replaced. Before docking 

studies, preliminary heterodimer model refinement was carried out through general 

energy minimization using the MMFF94 force field (Figure 28). 
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Figure 28. CCR5-MOR heterodimer model. (a) The CCR5-MOR heterodimer (MOR on 

the left and CCR5 on the right) model based on the MOR crystal structure (PDB id: 

4DKL). (b) The electrostatic map of the heterodimer.
167,168

 

 

3.4.2 Bivalent Ligand Docking Studies  

Docking compound 49 into both binding pockets of the heterodimer 

simultaneously proved to be difficult. The docking program GOLD could not 

simultaneously dock 49 into the CCR5-MOR heterodimer without placing a large amount 

of constraints on the system that may bias the docking results. Therefore, a new method 

had to be devised to dock 49 into the heterodimer. The two different portions of the 

bivalent compound were subsequently docked individually, in their respective receptors, 

and then, afterwards, connected to each other with the 19 atom spacer. While this is a 

more lengthy procedure it allows for the best binding mode of the maraviroc and 

naltrexone portions suited for the heterodimer to be found. Since the MOR homodimer 

was co-crystalized with the morphanin antagonist β-FNA, the naltrexone portion of the 

bivalent compound did not need to be de novo docked and was aligned with the bound 
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structure of β-FNA.
63

 Once aligned, the 6-β position of the naltrexone portion points 

upward toward the TM-5/TM-6 heterodimer interface, which is the correct orientation to 

allow for the spacer and maraviroc to reach the CCR5 binding pocket with the assumed 

TM5/TM6 heterodimer interface. Next, maraviroc was docked into the CCR5 portion of 

the heterodimer using GOLD. The subsequent docking poses obtained were manually 

sifted through to find geometrically correct binding modes that allow for proper 

attachment between the phenyl group of maraviroc and the spacer-naltrexone portion of 

49. Of those poses, the one with the highest GOLD docking score was used. After 

attaching the maraviroc and naltrexone portion of compound 49 with the 19 atom spacer 

the system was energy minimized using the MMFF94 force field (Figure 29). 

 
Figure 29. Overview of docking procedure for docking 49 into the CCR5-MOR 

heterodimer. a) maraviroc fragment before (yellow) and after linker attachment and 

energy minimization (green). a) naltrexone fragment before (cyan) and after linker 

attachment and energy minimization (green).   

 

Using the same procedure as above, the docking of the 3-amino bivalent 

compound, 50, was also attempted. When the 3-amino maraviroc fragment was docked 
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into the CCR5 portion of the heterodimer, the same docking mode was seen as before. 

However, after attempting to link the two pharmacophores together and energy minimize 

the resulting structure, the maraviroc portion of 50 consistently, on more than 3 attempted 

minimizations, lifted out of CCR5 completely. The 3-position attachment added too 

much strain onto the linker and did not allow for the binding mode of the maraviroc 

fragment portion to be maintained. Upon further analysis, we hypothesize that a longer 

linker may alleviate the strain on the maraviroc fragment for the 3-amino maraviroc 

attachment. During the energy minimization(s), the naltrexone fragment did not move 

from its original binding pocket. These results confirm and offer an explanation for the 

complete loss of activity at CCR5 that is seen for 50, but not 49. Since 50 cannot 

optimally bind CCR5 like 49, it loses its affinity to CCR5. However, it retains its activity 

and affinity at MOR because the naltrexone fragment is retained in the MOR binding 

pocket. 

 

 

3.4.3 CCR5-MOR Molecular Dynamics Simulations  

The final energy minimized CCR5-MOR/49 complex is shown in Figure 30 with 

the bivalent ligand spanning between the receptor’s TM5/TM6 helixes. While this model 

does give some insight into the interaction between 49 and the heterodimer, it does not 

indicate how favorable the interaction is or if it is even stable. Therefore, molecular 

dynamics using the program NAMD was used to interpret the stability of the 

heterodimer-bivalent compound complex.
169

 Several steps were needed in order to 

prepare the heterodimer-ligand complex for dynamic simulation: the complex is first 
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added to a lipid bilayer and then solvated with a pre-defined water box with ions to 

accurately simulate its native membrane environment (Figure 31).  

 
Figure 30 CCR5-MOR heterodimer model based on MOR dimer crystal structure (PDB 

code: 4DKL) with bivalent compound 49 bound. The blue protein represents CCR5 

whereas the green protein is MOR. Compound 49 is colored in yellow. 

 

 
Figure 31. Molecular dynamics system for the CCR5-MOR heterodimer in a membrane 

(grey), and water box system (red). The green protein represents MOR while the blue 

protein is CCR5 and compound 49 is colored in yellow.  
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In all, the system built had 162385 atoms. A series of minimizations were then 

done in a step-wise manner to slowly equilibrate and energy minimize the components of 

the dimer-ligand-lipid-water-ion complex. It took a total of 13 ns for the system to 

equilibrate as indicated by the changes in RMSD and total energy of the heterodimer 

(Figure 32 and 33). 

 

 
Figure 32. CCR5-MOR heterodimer RMSD from dynamics study after a total of 13 ns of 

production. 

 

 

 
Figure 33. Total potential energy (kcal/mol) of the dynamic simulation after 13 ns.  
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After the 13 ns of dynamic simulation, the maraviroc portion of compound 49 

partially dislodged from the CCR5 binding pocket, whereas the naltrexone portion did 

not move from the MOR binding pocket (Figure 34). This result indicates that for the 

heterodimer model, compound 49’s initial binding mode for CCR5 was not energetically 

favored. However, it is important to note that the phenyl ring and the difluorocyclohexyl 

group of CCR5 stayed in their initial docked poses, while the rest of the molecule 

(triazole group and tropane ring) moved from its original, starting position. Figure 34 

illustrates how after 6.0 ns of dynamic simulation, the triazole ring rotates upward out of 

its initial binding pocket. This shift upward is reflected in the changes in RMSD as seen 

in Figure 35.  

 
 

Figure 34 Trajectory of 49 in the CCR5-MOR heterodimer at 0, 2.4, 4.4, and 6.0 ns, with 

dark blue representing 49 at 0 ns and subsequently becoming a light blue at the 6.0 ns 

mark. 
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Figure 35. Bivalent compound 49 RMSD from dynamics study after a total of 13 ns of  

production. 

 

Table 12 shows the major interactions between compound 49 and the CCR5-

MOR heterodimer between 0 and 6.0 ns. The opiate portion of 49 does not move from its 

original binding pocket as indicated from the conservation of interacting residues with 

MOR. This binding pose matches that of β-FNA within the MOR crystal structure.
63

 

However, there are significant changes in the CCR5 interactions of 49 between 0 and 6.0 

ns (after an additional 7 ns of stimulation 49 does not move from the later binding 

pocket). For the CCR5-maraviroc interaction several allosteric binding sites have been 

observed and supported by mutagenesis data, this promiscuity shows that no one binding 

mode is favored.
170–174

 At both time periods, the maraviroc portion of 49 interacts with 

I198, L255, N258, Q261, and M279. I198 and L255 have been deemed essential for 

maraviroc binding and N258 has been implicated in HIV-1 gp120 binding.
170,171

  The 

amino acids I198, L255, and M279 all contribute to the hydrophobic pocket surrounding 

the difluorocyclohexyl group. A hydrogen bond is made between the nitrogen of N258 

and the carbonyl oxygen of the amide group connecting the difluorocyclohexyl group to 
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the rest of maraviroc. Q261 can form a carbonyl-π interaction with the phenyl group of 

maraviroc. Interestingly, neither binding pose for the maraviroc portion of 49 can form a 

salt bridge between the tertiary amine of maraviroc and E283, which site directed 

mutagenesis has indicated to be crucial for maraviroc binding to CCR5.
170,173

 Instead, at 0 

ns, a salt bridge is formed between the tertiary amine and D276, which is two-turns 

before E283 on TM7. At 6.0 ns no significant interactions are observed between the 

tertiary amine of maraviroc and CCR5. 

  

Table 12. Major amino acids in the CCR5 and MOR binding pockets, in the heterodimer, 

interacting with compound 49. 

Time 

Frame 
CCR5 Binding Pocket 

a 
MOR Binding Pocket 

0 ns 

W86, Y89, W94, T177, C178, S179, 

I198, L255, N258, Q261, D276, 

M279 

D147, Y148, N150, M151, I293, 

H294, V297, W315, I319, Y323 

6 ns 

K22, E172, G173, Y184, K191, 

I198, L255, N258, Q261, S272, 

N273, D276, M279 

D147, Y148, N150, M151, I293, 

V236, H294, W315, I319, Y323 

a
 The residues in bold are consistent with site-directed mutagenesis data for maraviroc 

binding.
170–174

 Italicized  residues are important to HIV-1 gp120 binding.
170–174

 Bold-

italicized residues are important to both maraviroc and gp120 binding via results of site-

directed mutagenesis data. 

  

The majority of movement between 0 and 6 ns in the CCR5 binding pocket is due 

to the shift of the triazole group upward out of the initial, deeper binding pocket for the 

maraviroc. The initial binding pocket for the triazole region at 0 ns was comprised of 

W86, Y89, W94, C178, and S179, whereas at 6.0 ns the binding pocket consisted of K22, 

G163, E172, S272, and N273 (Figure 36). The residues interacting with the triazole 

group at 0 ns form a hydrophobic pocket and the aromatic residues (W86, Y89, and Y94) 
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can form π-π interactions with it also. At 6 ns, the triazole group moves into a more polar, 

solvent exposed pocket and lacks the previous π-π interactions. However, after the 

additional 7 ns of dynamic simulation the triazole group does not move from this pocket 

and can form either polar or hydrogen bond interactions with K22, E172 and N273. 

Overall, this suggests that the shallower binding mode at 6 ns is favored over the deeper 

one observed at 0 ns.  

 

 
 

Figure 36. The binding pocket for the triazole region at 0 ns and 6.0 ns. 

 

The dynamics simulation study can also help explain the changes in functional 

activities seen between maraviroc and 49. As suggested by the simulations, addition of 

the linker to the para-phenyl portion of maraviroc leads to 49 being able to adopt only 

one general binding mode that may represent a lower affinity mode. Within this binding 

mode, there is an unstable binding pocket for the triazole portion of the molecule that led 

to it adopting two different conformations during the simulation. These observations are 

in agreement with the experimental data observed for the bivalent compounds. For the 
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CCR5 calcium antagonism assays, the loss in activity between maraviroc and compounds 

49 through 52 can be explained by the unstable triazole binding pocket. In comparison, 

MOR calcium antagonism between naltrexone and compounds 49, 50 and 102 is affected 

to a much lesser extent. During the simulation, the naltrexone portion of 49 does not 

move from its original binding pocket, which suggests that the 6β-attachment does not 

affect MOR binding as greatly. 

Overall, the dynamics simulations indicate that 49 can bind to the CCR5-MOR 

heterodimer in a stable manner. Furthermore, while the CCR5 binding mode may not be 

optimal for 49, it still blocks gp120 mediated invasion/fusion. As seen in both the cell 

fusion assay and the HIV-1 invasion assay, 49 can block gp120 binding to CCR5. Within 

the HIV-1 invasion assay, 49 has even higher activity for inhibiting invasion than 

maraviroc or a combination of maraviroc and naltrexone. Thus, the binding mode 

revealed in the dynamics study may allow for greater inhibitory effects by utilizing both 

MOR and CCR5 to bind to. 

 

3.5 Conclusion 

 Due to modern antiretroviral therapies, HIV-1 infected patients have longer 

lifespans and better quality of life. However, several neurological complications are now 

being seen due to HIV-1 associated injury of neurons by infected microglia and 

astrocytes. Furthermore, these effects can further be exacerbated with opiate use and 

abuse. A possible mechanism for the potentiation effects of opiates is the interaction of 

the mu-opioid receptor (MOR) with chemokine receptor CCR5 (CCR5), a known HIV-1 
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co-receptor. In order to explore this interaction and its relevance to neuroAIDS, a 

bivalent ligand targeting the CCR5-MOR heterodimer was previously synthesized. To 

understand how the bivalent ligand interacts with the heterodimer, biological studies 

using cell fusion, calcium inhibition and HIV-1 invasion were undertaken. These results 

were further confirmed using a dynamic simulation study of the CCR5-MOR heterodimer 

with the bivalent ligand. Overall, compound 49 was shown to have a unique 

pharmacological profile in HIV-1 infection assays using primary human astrocytes and 

morphine stimulation. Its interactions with the heterodimer were confirmed with both 

functional and radiobinding assays and a general SAR was elucidated for the compound 

series. While alteration of the naltrexone pharmacophore was well tolerated, the 

maraviroc pharmacophore was very sensitive to alterations. Specifically, for the other 

bivalent compound, 50, MOR activity was well maintained and actually higher than 49, 

but its CCR5 antagonism was essentially abolished compared to maraviroc. Molecular 

modeling and dynamic simulation provided evidence that 50 could not efficiently stay in 

the CCR5 binding pocket, while staying bound to MOR. Furthermore, molecular 

dynamics indicated that while not optimal, it was energetically favorable for 49 to stay 

bound to both MOR and CCR5 simultaneously. Within this project more optimization 

needs to be done with linker length and its attachment site to maraviroc. Further, studying 

the bivalent compound 49 in mice could also offer prove it to be a useful 

pharmacological tool to study the pathogenesis of neuroAIDS with and without morphine 

stimulation.  
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4. Experimental 

 

4.1 Chemical syntheses 

All chemicals and solvents were obtained from Sigma-Aldrich or another quality 

chemical company. Melting points were determined on a Fisher-Scientific melting point 

apparatus. 
1
H and 

13
C NMR were determined on a Bruker 400 MHz spectrometer with an 

autosampler and tetramethylsilane was used as an internal standard. Infrared spectra were 

obtained on a Thermo Nicolet FT-IR with a Smart iTR attachment. MS analysis was 

performed with a Applied Bio Systems 3200 Q trap with a turbo V source for 

TurbolonSpray. Column chromatography was performed on grade 230-400 mesh silica 

gel (Merck). Thin-layer chromatography was performed on Analtech Uniplate F254 

plates. HPLC analysis of final compounds was performed on a Varian ProStar 210 

system with a Microsorb-MV 100-5 C18 column (250 mm x 4.6 mm). Elemental analysis 

of final compounds was conducted by Atlantic Microlaboratory, Inc. 

 

4.1.1 Small Molecule CCR5 Antagonists: Intermediates  
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1-isopropoxy-4-nitrobenzene (57). In a 250 mL flask, 4-nitrophenol (10 g, 0.0719 mol) 

was dissolved in 25 mL of anhydrous dimethylformamide (DMF). To that potassium 

carbonate (1.5 equivalents, 14.9 g, 0.10785 mol) and 2-bromopropane (1.5 equivalents, 

10.12 mL, 0.10785 mol) were then added to the flask while stirring. The suspension was 

then allowed to reflux at 120 °C for 1 h. The reaction was monitored via TLC (4:1 

Hex:EA) and upon completion the reaction mixture was vacuum filtered and the DMF 

was evaporated under reduced pressure. The reaction mixture was then dissolved in ethyl 

acetate and washed once with brine, once with 1 N sodium hydroxide, and then three 

times with brine. The organic layer was then dried over anhydrous sodium sulfate, 

filtered and evaporated under reduced pressure. In all, 12.89 g of a yellow oil, 1-

isopropoxy-4-nitrobenzene, was received with final yield of 99.0 %. 
1
H NMR (400 MHz, 

CDCl3) δ 1.379 (d, J=6.09 Hz, 6H), 4.667 (septet, J=6.08, 1H), 6.905 (d, J=9.28 Hz, 2H), 

8.172 (d, J=9.28 Hz, 2H). IR (ATR, cm
-1

) νmax: 2980, 2935, 1591, 1492, 1336, 1255, 

1183, 1099, 945, 843. 

 

 

4-isopropoxybenzenamine hydrochloride salt (58). In a 500 mL hydrogenation flask, 

concentrated hydrochloric acid (1.3 equivalents, 2.58 mL, 0.0313 mol) was added to 60 
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mL MeOH. To that 1-isopropoxy-4-nitrobenzene (1) (4.349 g, 0.02403) was added to the 

solution along with 10 % w/w palladium on carbon (0.435 g, 10 %). The flask was placed 

on a hydrogenator  at 60 psi H2 gas for 16 h, and monitored via TLC (20:1:0.01 

DCM:MeOH:NH4OH). Once completed, the reaction mixture was vacuum filtered 

through celite, treated with activated carbon, filtered through celite, and then evaporated 

under reduced pressure. The obtained product was recrystallized with methanol and 

diethyl ether and dried. In all, 4.402 g of a purple solid, 4-isopropoxybenzenamine 

hydrochloride salt, was received with a final yield of 97.8 %. 
1
H NMR (400 MHz, 

CDCl3) δ 1.307 (d, J=6.0 Hz, 6H), 4.632 (septet, J=6.04, 1H), 7.017 (d, J=9.0 Hz, 2H), 

7.283 (d, J=9.04 Hz, 2H). IR (ATR, cm
-1

) νmax: 2817, 2582, 2288, 1997, 1506, 1450, 

1255, 1121, 942, 833. 

 

1-(4-isopropoxyphenyl)piperazine (59). In a 250 mL flask, 4-isopropoxybenzenamine 

hydrochloride salt (3.898 g, 0.02079 mol) was added to 100 mL of anhydrous 

chlorobenzene and to that suspension potassium carbonate (2 equivalents, 5.75 g, 

0.04158 mol) was added over the period of an hour while being stirred under nitrogen 

protection. Bis(2-chloroethyl)amine hydrochloride (1.2 equivalents, 4.44 g, 0.02495 mol) 

was then added and stirred under nitrogen protection for an additional hour. The reaction 
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mixture was then refluxed at 140 °C for 24 h under nitrogen protection, and monitored 

via TLC (20:1:0.01 DCM:MeOH:NH4OH). Upon completion the reaction mixture was 

vacuum filtered and the chlorobenzene was evaporated under reduced pressure. Column 

chromatography was then conducted (10:1:0.01 DCM:MeOH:NH4OH) and a total of 

3.832 g of a purple oil, 1-(4-isopropoxyphenyl)piperazine, was received with a final yield 

of 83.7 %. 
1
H NMR (400 MHz, CDCl3) δ 1.297 (d, J=8.48 Hz, 6H), 3.138 (broad s, 8H), 

4.437 (septet, J=6.08, 1H), 6.818 (q, J=9.79 Hz, 4H). 
13

C NMR (400 MHz, CDCl3) δ 

22.04, 43.32, 49.02, 70.52, 117.09, 120.23.  

 

1-(trifluoromethyl)-4-(4-isopropoxyphenyl)piperazine (60). In a 250 mL flask, 1-(4-

isopropoxyphenyl)piperazine (4.268 g, 0.0194 mol) was dissolved in 100 mL anhydrous 

dichloromethane and pyridine (3.44 mL, 0.04268 mol) was added while the reaction 

mixture was stirred at 0 °C for 0.5 h with 4 Å molecular sieves. Triflouroacetic anhydride 

(2.2 equivalents, 2.35 mL, 0.01676 mol) was then added to the solution over a period of 

an hour. The reaction was allowed to proceed to room temperature over the period of 15 

hours, and monitored via TLC (2:1 Hex:EA). Upon completion the reaction mixture was 

filtered, washed three times with 1 N hydrochloric acid, and then two times with brine. 
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The organic layer was dried over anhydrous sodium sulfate, filtered and evaporated under 

reduced pressure. Column chromatography was then conducted (6:1 Hex:EA) and a total 

of 5.775 g of a yellow solid, 1-(trifluoromethyl)-4-(4-isopropoxyphenyl)piperazine, was 

received with a final yield of 94.0 %. 
1
H NMR (400 MHz, CDCl3) δ 1.301 (d, J=6.04 Hz, 

6H), 3.097 (m, 4H), 3.784 (m. 4H), 4.449 (septet, J=6.08, 1H), 6.851 (m, 4H). 

 

 

1-(trifluoromethyl)-4-(4-isopropoxy-3-nitrophenyl)piperazine (61). In a 100 mL flask, 1-

(trifluoromethyl)-4-(4-isopropoxyphenyl)piperazine (1.196 g, 0.00378 mol) was 

dissolved in 40 mL anhydrous diethyl ether and stirred at room temperature. To the 

reaction mixture 1 equivalent of 2,3,5,6-tetrabromo-4-methyl-4-nitrocyclohexa-2,5-

dienone (1.772 g, 0.00378) was added and stirred for 5 h.  The reaction was monitored 

via TLC (4:1:1 Hex:EA:DCM) and upon completion the reaction mixture was vacuum 

filtered and the THF was evaporated under reduced pressure. The reaction mixture was 

then dissolved in dichloromethane and washed once with 1 N sodium hydroxide, and then 

once with brine. The organic layer was dried over anhydrous sodium sulfate, filtered and 

evaporated under reduced pressure. Column chromatography was then conducted (4:1:1 
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Hex:EA:DCM) and a total of 0.569 g of an orange oil, 1-(trifluoromethyl)-4-(4-

isopropoxy-3-nitrophenyl)piperazine, was received with a final yield of  42%. 
1
H NMR 

(400 MHz, CDCl3) δ 1.340 (d, J=6.08 Hz, 6H), 3.036 (m, 4H), 3.748 (m. 4H), 4.529 

(septet, J=6.04, 1H), 7.048 (m, 1H), 7.141 (d, J=8.92, 1H), 7.267 (s, 1H). IR (ATR, cm
-1

) 

νmax: 2978, 1688, 1525, 1496, 1179, 1137, 1020, 976, 828.  

 

 

5-(4-(trifluoromethyl)piperazin-1-yl)-2-isopropoxybenzenamine (62). In a 250 mL 

hydrogenation flask, acetic acid (1.2 eq, 0.36 mL, 0.00627) was added to 60 mL MeOH. 

To that, 1-(trifluoromethyl)-4-(4-isopropoxy-3-nitrophenyl)piperazine (1.889 g, 0.005226 

mol) was added to the solution along with 10 % w/w palladium on carbon (0.18 g, 10% 

w/w). The flask was placed on a hydrogenator  at 60 psi H2 gas, and monitored via TLC 

(20:1:0.01 DCM:MeOH:NH4OH). Once completed (24 h), the reaction mixture was 

vacuum filtered through celite, and then evaporated under reduced pressure. Column 

chromatography was then conducted (10:1 DCM:MeOH, NH4OH) and a total of 1.262 g 

of a purple oil, 5-(4-(trifluoromethyl)piperazin-1-yl)-2-isopropoxybenzenamine, was 

received with a final yield of  73%. 
1
H NMR (400 MHz, CDCl3) δ 1.296 (d, J=6.08 Hz, 
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6H), 2.91 (m, 4H), 3.72 (m. 4H), 4.445 (septet, J=6.08, 1H), 6.264 (m, 1H), 6.305 (m, 

1H), 6.852 (d, J=8.56, 1H). 

  

 

N-(5-(4-(trifluoromethyl)piperazin-1-yl)-2-isopropoxyphenyl)pyrazine-2-carboxamide 

(63). In a 25 mL flask, pyrazine-2-carboxylic acid (2 eq, 0.061 g, 0.000489 mol) was 

dissolved in 1 mL anhydrous dimethylformamide (DMF). To the solution N-(3-

Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (1.5 eq, 0.071 g, 0.0003668 

mol), 1-hydroxybenzotriazole hydrate (1.5 eq, 0.05 g, 0.0003668 mol), triethylamine (3 

eq, 0.1 mL, 0.000734 mol), and 4 Å molecular sieves were added and stirred under 

nitrogen protection at 0 °C for 0.5 h. 5-(4-(Trifluoromethyl)piperazin-1-yl)-2-

isopropoxybenzenamine (1 eq, 0.081 g, 0.0002445) was then added to the reaction 

mixture and allowed to proceed to room temperature over the period of 24 h, and 

monitored via TLC (20:1 DCM:MeOH). Once completed, the reaction mixture was 

filtered and the DMF was evaporated under reduced pressure. The reaction mixture was 

then dissolved in chloroform and washed once with brine. The organic layer was dried 

over anhydrous sodium sulfate, filtered and evaporated under reduced pressure. Column 
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chromatography was then conducted (20:1 DCM:MeOH) and a total of 0.101 g of a 

yellow oil, N-(5-(4-(trifluoromethyl)piperazin-1-yl)-2-isopropoxyphenyl)pyrazine-2-

carboxamide, was received with a final yield of  94%. 
1
H NMR (400 MHz, CDCl3) δ 

1.357 (d, J=6.04 Hz, 6H), 2.974 (m, 4H), 3.852 (m. 4H), 4.612 (septet, J=6.04, 1H), 

6.657 (m, 1H), 7.066 (d, J=8.72, 1H), 8.2733 (d, J=2.89 Hz, 1H), 8.625 (m, 1H), 8.827 

(d, J=2.48, 1H), 9.536 (s, 1H), 10.929 (s, 1H). 

 

 

N-(2-isopropoxy-5-(piperazin-1-yl)phenyl)pyrazine-2-carboxamide (64). In a 25 mL 

flask, N-(5-(4-(trifluoromethyl)piperazin-1-yl)-2-isopropoxyphenyl)pyrazine-2-

carboxamide (0.101 g, 0.000231 mol) was dissolved in 3 mL MeOH and 0.3 mL H2O. A 

total of 5.2 equivalents of potassium carbonate (0.166 g, 0.00120 mol) were then added to 

the solution and the reaction mixture was allowed to reflux under N2 protection for 2 h. 

The reaction was monitored via TLC (20:1:0.1, DCM:MeOH:NH4OH) and upon 

completion the reaction mixture was filtered, evaporated down under reduced pressure, 

and then dissolved in DCM. The DCM solution was washed once with saturated sodium 

bicarbonate, brine, and then dried over sodium sulfate. The resulting solution was 
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filtered, evaporated down to dryness and a total of 0.0789 g of N-(2-isopropoxy-5-

(piperazin-1-yl)phenyl)pyrazine-2-carboxamide was received with a total yield of 100%. 

1
H NMR (400 MHz, CDCl3) δ 1.353 (d, J=6.04 Hz, 6H), 2.854 (m, 4H), 3.852 (m. 4H), 

3.491 (s, 1H), 4.605 (septet, J=6.08, 1H), 6.654 (m, 1H), 7.102 (d, J=8.72, 1H), 8.271 (d, 

J=2.88 Hz, 1H), 8.635 (m, 1H), 8.795 (d, J=2.44, 1H), 9.510 (d, J=1.44, 1H), 11.073 (s, 

1H). 

  

 

4-methyl-2,3,5,6-tetrabromophenol (65). To a solution of 1 g p-cresol (9.25 mmol) in 20 

mL CCl4 was added a trace amount of Fe dust and was allowed to stir at room 

temperature. Dropwise, 2.15 mL Br2 (41.6 mmol) was added to the solution while 

carefully monitoring the reaction temperature. The reaction mixture was allowed to stir 

overnight and monitored via TLC (2:1 hexane:ethyl acetate). Once completed, the 

reaction was heated for 1 h to remove any excess Br2. The reaction mixture was allowed 

to cool to room temperature and diluted with 50 mL CHCl3 and vacuum filtered to 

remove solid byproduct. The solution was then evaporated down to dryness and 4-

methyl-2,3,5,6-tetrabromophenol was purified via recrystallization with CHCl2.
 1

H NMR 

(400 MHz, CDCl3) δ 2.74 (s, 3H), 6.09 (s, 1H).  
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2,3,5,6-tetrabromo-4-methyl-4-nitrocyclohexa-2,5-dien-1-one (66). To a solution of 4.0 g 

(9.35 mmol) of 2, 4-methyl-2,3,5,6-tetrabromophenol in 28 mL of acetic anhydride was 

added, dropwise, 6 mL(135.2 mmol) HNO3 (d 1.42) at 0 °C. The reaction was monitored 

via TLC (hexane:ethyl acetate, 2:1). The suspension was stirred at for 10 min and the 

product was precipitated out with the addition of 20 mL H2O. The product was then 

vacuum filtered out, washed with H2O and hexane and dried underneath vacuum giving a 

pale yellow powder with a yield of 4.144 g (94.6%). 
1
H NMR (400 MHz, CDCl3) δ 2.26 

(s, 3H); mp: decomposed 80 °C, IR Vmax (ATR): 1682 cm
-1

. 

 

4.1.2 Small Molecule CCR5 Antagonists: Final Compounds 

Final compounds 42 through 46 were synthesized by reacting the unprotected 

piperazine derivative, 8, with the corresponding benzyl chloride in the presence of 

potassium carbonate and trace potassium iodide. Compounds 47 and 48 were synthesized 

by reacting 64 with the corresponding substituted benzaldehyde to form the imine and 

then reducing it with sodium triacetoxyborohydride to form the subsequent tertiary 

amine. Column chromatography was then performed to afford the final product which 

was then converted into a hydrochloride salt.  
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N-(5-(4-(4-acetamidobenzyl)piperazin-1-yl)-2-isopropoxyphenyl)benzamide (42) In a 25 

mL flask N-(2-isopropoxy-5-(piperazin-1-yl)phenyl)pyrazine-2-carboxamide (0.083 g, 

0.000243 mol) was dissolved in 4 mL anhydrous DMF. To the solution 1.2 equivalents 4-

acetamidobenzyl chloride (0.0535 g, 0.000292 mol), 1.5 equivalents potassium carbonate 

(0.0504 g, 0.000365 mol), and a trace amount of potassium iodide were added. The 

suspension was allowed to stir at room temperature overnight and the reaction was 

monitored via TLC (2:1 Hex:EA). Upon completion, the reaction mixture was filtered, 

evaporated down to dryness, dissolved in chloroform, washed once with brine, dried over 

sodium sulfate, and evaporated down to dryness. Column chromatography (20:1 

DCM:MeOH) was performed and a total of 0.081 g N-(5-(4-(4-

acetamidobenzyl)piperazin-1-yl)-2-isopropoxyphenyl)benzamide was received with a 
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total yield of 55%. 
1
H NMR (400 MHz, DMSO) δ 1.275 (d, J=6.04 Hz, 6H), 2.090 (s, 

3H), 3.148 (m, 4H), 3.497 (m. 4H), 4.434 (s, 2H), 4.557 (septet, J=6.04, 1H), 6.712 (m, 

1H), 7.196 (d, J=8.72, 1H), 7.569 (d, J=7.8 Hz, 2H), 7.707 (d, J=8.08 Hz, 2H), 8.022 (d, 

J=2.76 Hz, 1H), 8.733 (s, 1H), 8.983 (d, J=2.32 Hz, 1H), 9.336 (d, J=1.4 Hz, 1H), 10.806 

(s, 1H).
 13

C NMR (400 MHz, DMSO) δ 21.796, 23.989, 48.554, 69.611, 106.484, 

110.842, 119.001, 119.065, 133.178, 133.755, 133.859, 143.449, 143.545, 144.057, 

148.089, 155.004, 155.064, 160.189, 168.635, 176.145. IR (ATR, cm
-1

) νmax: 3313, 3182, 

2974, 2831, 2551, 2492, 2465, 1684, 1601. Anal. Calcd. For C29H34N4O3Cl: C 61.67, H 

6.34, N 16.01; found: C 60.76, H 6.45, N 15.49. MS (ESI) m/z found 489 (M + H)
+
. MP: 

192-196 °C. 

 

N-(2-isopropoxy-5-(4-(4-(trifluoromethoxy)benzyl)piperazin-1-yl)phenyl)benzamide 

(43) In a 25 mL flask N-(2-isopropoxy-5-(piperazin-1-yl)phenyl)pyrazine-2-carboxamide 

(0.048 g, 0.000141 mol) was dissolved in 4 mL anhydrous DMF. To the solution 1.2 

equivalents 4-(trifluoromethoxy)benzyl chloride (0.0266 mL, 0.0356 g, 0.000169 mol), 

1.5 equivalents potassium carbonate (0.0293 g, 0.000212 mol), and a trace amount of 

potassium iodide were added. The suspension was allowed to stir at room temperature 

overnight and the reaction was monitored via TLC (20:1 DCM:MeOH). Upon 

completion, the reaction mixture was filtered, evaporated down to dryness, dissolved in 

chloroform, washed once with brine, dried over sodium sulfate, and evaporated down to 

dryness. Column chromatography (20:1 DCM:MeOH) was performed and a total of 

0.068 g N-(2-isopropoxy-5-(4-(4-(trifluoromethoxy)benzyl)piperazin-1-
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yl)phenyl)benzamide was received with a total yield of 94%. 
1
H NMR (400 MHz, 

CDCl3) δ 1.347 (d, J=6.04 Hz, 6H), 2.693 (broad s, 4H), 2.9231 (m, 4H), 3.645 (s, 2H), 

4.596 (septet, J=6.04, 1H), 6.637 (m, 1H), 7.116 (d, J=8.72, 1H), 7.1922 (d, J=8 Hz, 2H), 

7.395 (d, J=8.52 Hz, 2H), 8.255 (d, J=2.84 Hz, 1H), 8.569 (m, 1H), 8.792 (d, J=2.49 Hz, 

1H), 9.500 (d, J=1.4 Hz, 1H), 11.028 (s, 1H).
 13

C NMR (400 MHz, CDCl3) δ 22.127, 

50.894, 52.614, 53.762, 62.338, 70.355, 106.643, 112.332, 120.817, 121.563, 130.431, 

133.828, 135.055, 136.719, 142.597, 144.668, 145.309, 147.224, 148.394, 155.539, 

160.607. IR (ATR, cm
-1

) νmax: 3296, 2980, 2941, 2845, 2538, 2496, 2469, 1688, 1247, 

1159. Anal. Calcd. For C28H30F3N3O3Cl: C 56.57, H 5.30, N 12.69; found: C 56.21, H 

5.31, N 12.61. MS (ESI) m/z found 516 (M + H)
+
. MP: 136-139 °C. 

 

4-((4-(3-benzamido-4-isopropoxyphenyl)piperazin-1-yl)methyl)benzoic (44) In a 25 mL 

flask N-(2-isopropoxy-5-(piperazin-1-yl)phenyl)pyrazine-2-carboxamide (0.086 g, 

0.000252 mol) was dissolved in 4 mL anhydrous DMF. To the solution 1.2 equivalents 4-

chloromethyl benzoic acid (0.0516 g, 0.0003024 mol), 1.5 equivalents potassium 

carbonate (0.0522 g, 0.000378 mol), and a trace amount of potassium iodide were added. 

The suspension was stirred, and allowed to return to room temperature overnight. The 

reaction was monitored via TLC (5:1:0.1 DCM:MeOH:formic acid). Upon completion, 

the reaction mixture was filtered, evaporated down to dryness, dissolved in chloroform, 

washed once with brine, dried over sodium sulfate, and evaporated down to dryness. 

Column chromatography (10:1:0.1, DCM:MeOH:formic acid) was performed and a total 

of 0.042 g 4-((4-(3-benzamido-4-isopropoxyphenyl)piperazin-1-yl)methyl)benzoic was 
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received with a total yield of 35%. 
1
H NMR (400 MHz, DMSO) δ 1.277 (d, J=6.0 Hz, 

6H), 3.168 (m, 6H), 3.488 (m, 2H), 4.553 (m, 3H), 6.716 (m, 1H), 7.201 (d, J=8.84, 1H), 

7.813 (m, 2H), 8.036 (m, 3H), 8.829 (d, J=1.52 Hz, 1H), 9.005 (m, 1H), 9.346 (d, J=1.32 

Hz, 1H), 11.037 (s, 1H), 13.133 (s, 1H).
 13

C NMR (400 MHz, CDCl3) δ 21.806, 48.555, 

51.479, 69.614, 106.566, 110.865, 121.652, 129.548, 131.859, 133.109, 143.472, 

143.545, 144.093, 148.105, 154.976, 160.139, 166.878. IR (ATR, cm
-1

) νmax: 3542, 3306, 

2977, 2926, 2837, 2652, 2548, 2466, 1722, 1688. Anal. Calcd. For C28H31N3O4Cl + 

2H2O: C 57.09, H 6.00, N 12.8; found: C 57.19, H 5.85, N 12.25. MS (ESI) m/z found 

476 (M + H)
+
. MP: 245-250 °C.  

 

N-(5-(4-(4-(tert-butyl)benzyl)piperazin-1-yl)-2-isopropoxyphenyl)benzamide (45) In a 25 

mL flask N-(2-isopropoxy-5-(piperazin-1-yl)phenyl)pyrazine-2-carboxamide (0.062 g, 

0.000182 mol) was dissolved in 4 mL anhydrous DMF. To the solution 1.2 equivalents 4-

(tert-butyl)benzyl chloride (0.0422 mL, 0.0399 g, 0.000218 mol), 1.5 equivalents 

potassium carbonate (0.038 g, 0.000273 mol), and a trace amount of potassium iodide 

were added. The suspension was allowed to stir at room temperature overnight and the 

reaction was monitored via TLC (10:1 DCM:MeOH). Upon completion, the reaction 

mixture was filtered, evaporated down to dryness, dissolved in chloroform, washed once 

with brine, dried over sodium sulfate, and evaporated down to dryness. Column 

chromatography (20:1 DCM:MeOH) was performed and a total of 0.031 g N-(5-(4-(4-

(tert-butyl)benzyl)piperazin-1-yl)-2-isopropoxyphenyl)benzamide was received with a 

total yield of 35%. 
1
H NMR (400 MHz, DMSO) δ 1.277 (d, J=6.0 Hz, 6H), 1.318 (s, 9H), 
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3.171 (m, 6H), 3.475 (m, 2H), 4.458 (m, 2H), 4.558 (septet, J=6.04 Hz, 1H), 6.717 (m, 

1H), 7.189 (d, J=8.76, 1H), 7.558 (m, 4H), 8.026 (d, J=2.76 Hz, 1H), 8.791 (m, 1H), 

9.017 (d, J=2.12 Hz, 1H), 9.344 (d, J=1.36, 1H) 11.014 (s, 1H). 
13

C NMR (400 MHz, 

CDCl3) δ 21.809, 31.026, 34.447, 48.555, 69.623, 106.539, 110.862, 121.608, 125.601, 

133.085, 143.395, 143.549, 144.069, 148.118, 160.097. IR (ATR, cm
-1

) νmax: 3257, 2968, 

2905, 2867, 2496, 2448, 2426, 1687. Anal. Calcd. For C32H39N3O2Cl + H2O: C 64.25, H 

7.44, N 12.92; found: C 65.34, H 7.30, N 13.01. MS (ESI) m/z found 488 (M + H)
+
. MP: 

137-141 °C. 

 

N-(2-isopropoxy-5-(4-(4-(methylsulfonyl)benzyl)piperazin-1-yl)phenyl)benzamide (46). 

In a 25 mL flask N-(2-isopropoxy-5-(piperazin-1-yl)phenyl)pyrazine-2-carboxamide 

(0.065 g, 0.00019 mol) was dissolved in 4 mL anhydrous DMF. To the solution 1.2 

equivalents 4-methylsulfonyl benzyl chloride (0.0467 g, 0.000228 mol), 1.5 equivalents 

potassium carbonate (0.04 g, 0.000285 mol), and a trace amount of potassium iodide 

were added. The suspension was allowed to stir at room temperature overnight and the 

reaction was monitored via TLC (10:1 DCM:MeOH). Upon completion, the reaction 

mixture was filtered, evaporated down to dryness, dissolved in chloroform, washed once 

with brine, dried over sodium sulfate, and evaporated down to dryness. Column 

chromatography (20:1 DCM:MeOH) was performed and a total of 0.036 g N-(2-

isopropoxy-5-(4-(4-(methylsulfonyl)benzyl)piperazin-1-yl)phenyl)benzamide was 

received with a total yield of 37%. 
1
H NMR (400 MHz, CDCl3) δ 1.342 (d, J=6.08 Hz, 

6H), 3.068 (m, 6H), 3.608 (m, 4H), 4.396 (m, 2H), 4.589 (septet, J=6.08, 1H), 6.654 (m, 
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1H), 7.198 (d, J=6.6, 1H), 8.086 (m, 4H), 8.204 (m, 1H), 8.427 (m, 1H), 8.861 (m, 1H), 

9.518 (d, J=1.32 Hz, 1H), 13.698 (s, 1H).
 13

C NMR (400 MHz, CDCl3) δ 22.016, 44.291, 

49.112, 50.844, 52.635, 70.38, 106.944, 112.176, 128.428, 133.489, 142.532, 144.776, 

145.009, 147.825, 156.595, 160.279. IR (ATR, cm
-1

) νmax: 3282, 2982, 2919, 2844, 2534, 

2410, 2324, 1682, 1524, 1304,1147. Anal. Calcd. For C28H34N3O4SCl + H2O: C 55.36, H 

6.08, N 12.42; found: C 55.30, H 5.83, N 12.05. MS (ESI) m/z found 509 (M + H)
+
. MP: 

179-180 °C. 

 

N-(5-(4-(4-(dimethylamino)benzyl)piperazin-1-yl)-2-isopropoxyphenyl)benzamide (47). 

N-(2-isopropoxy-5-(piperazin-1-yl)phenyl)pyrazine-2-carboxamide (0.146 g, 0.000428 

mol) and 1.1 equivalents of diethylaminobenzylaldehyde (0.0834 g, 0.000471 mol) were 

dissolved in 10 mL anhydrous THF and allowed to stir for 1 hour under N2 protection. 

1.5 equivalents of sodium triacetoxyborohydride (0.136 g, 0.000672 mol) was added to 

the reaction mixture and allowed to stir under N2 protection overnight. The reaction was 

monitored via TLC (10:1:0.1, DCM:MeOH:NH4OH). Once completed the reaction was 

quenched with saturated aqueous sodium bicarbonate. The aqueous layer was extracted 

twice with ether and the organic layer was separated, dried over sodium sulfate and 

evaporated down to dryness. Column chromatography (30:1:0.1, DCM:MeOH:NH4OH) 

was performed and a total of 0.075 g N-(5-(4-(4-(dimethylamino)benzyl)piperazin-1-yl)-

2-isopropoxyphenyl)benzamide was received with a total yield of 35%. 
1
H NMR (400 

MHz, DMSO) δ 1.342 (d, J=6.0 Hz, 6H), 2.698 (broad s, 4H), 2.918 (s, 4H), 2.968 (s, 

6H), 3.594 (m, 2H), 4.589 (septet, J=6.04, 1H), 6.631 (m, 1H), 6.727 (d, J=8.48, 2H), 
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7.109 (d, J=8.68, 1H), 7.222 (d, J=8.32 Hz, 2H), 8.239 (d, J=2.64 Hz, 1H), 8.536 (s, 1H), 

8.771 (d, J=2.4 Hz, 1H), 9.489 (s, 1H), 11.071 (s, 1H).
 13

C NMR (400 MHz, CDCl3) δ 

22.139, 40.673, 52.418, 53.395, 70.379, 106.640, 112.316, 112.389, 121.688, 130.595, 

133.878, 142.673, 144.612, 145.352, 147.135, 150.103, 155.578, 160.580. IR (ATR, cm
-

1
) νmax: 3295, 2975, 2919, 2840, 2531, 1692. For C29H38N4O2Cl2: C 59.23, H 6.63, N 

15.35; found: C 58.41, H 6.48, N 15.00 MS (ESI) m/z found 475 (M + H)
+
. MP: 160 °C. 

 

N-(5-(4-(4-(diethylamino)benzyl)piperazin-1-yl)-2-isopropoxyphenyl)benzamide (48). 

N-(2-isopropoxy-5-(piperazin-1-yl)phenyl)pyrazine-2-carboxamide (0.134 g, 0.0003925 

mol) and 1.1 equivalents of dimethylaminobenzylaldehyde (0.0644 g, 0.000432 mol) 

were dissolved in 10 mL anhydrous THF and allowed to stir for 1 hour under N2 

protection. 1.5 equivalents of sodium triacetoxyborohydride (0.125 g, 0.000589 mol) was 

added to the reaction mixture and allowed to stir under N2 protection overnight. The 

reaction was monitored via TLC (10:1:0.1, DCM:MeOH:NH4OH). Once completed the 

reaction was quenched with saturated aqueous sodium bicarbonate. The aqueous layer 

was extracted twice with ether and the organic layer was separated, dried over sodium 

sulfate and evaporated down to dryness. Column chromatography (30:1:0.1, 

DCM:MeOH:NH4OH) was performed and a total of 0.056 g N-(5-(4-(4-

(diethylamino)benzyl)piperazin-1-yl)-2-isopropoxyphenyl)benzamide was received with 

a total yield of 30%. 
1
H NMR (400 MHz, DMSO) δ 1.179 (t, J=7 Hz, 6H), 1.342 (d, 

J=6.0 Hz, 6H), 2.709 (m, 4H), 2.924 (m, 4H), 3.364 (m, 4H), 3.587 (s, 2H),4.589 (septet, 

J=6.08, 1H), 6.646 (m, 3H), 7.112 (d, J=8.64, 1H), 7.182 (d, J=8.28, 2H), 8.237 (d, 
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J=2.64 Hz, 1H), 8.513 (m, 1H), 8.762 (d, J=2.2 Hz, 1H), 9.485 (s, 1H), 11.082 (s, 1H).
 

13
C NMR (400 MHz, CDCl3) δ 12.662, 22.139, 44.402, 70.380, 106.628, 1111.581, 

112.307, 121.725, 133.881, 142.658, 144.599, 145.342, 147.128, 155.635, 160.558. IR 

(ATR, cm
-1

) νmax: 3287, 2976, 2937, 2897, 2523, 2462, 1690, 1521. For C31H43N4O2Cl3: 

C 56.91, H 6.75, N 13.73; found: C 56.93, H 6.86, N 13.60. MS (ESI) m/z found 503 (M 

+ H)
+
. MP: 145-149 °C. 

 

4.1.3 CCR5-MOR Bivalent Ligands: Intermediates 

 

(E)-isopropyl 3-(3-bromophenyl)acrylate (71). 3-bromocinnamic acid (5 g, 0.022022 

mol) was dissolved in 100 mL isopropyl alcohol in a round bottom flask. Several drops of 

concentrated H2SO4 (~100 μL) was added to the solution. The mixture was refluxed at 

120 °C in an oil bath and monitored with TLC (4:1 Hex:EA). After 24 h the reaction 

mixture was cooled down to RT and the solvent evaporated via rotovap. Ethyl acetate 

was added to dissolve the residue and washed with NaHCO3 (aq) and dried over Na2SO4, 

filtered and purified using column chromatography (4:1 Hex:EA). A total of 4.71 g (E)-

isopropyl 3-(3-bromophenyl)acrylate (71) was received with a yield of 79%. 
1
H NMR 

(400 MHz, CDCl3) δ 1.3 (d, J=6.3 Hz, 6H), 5.14 (septet, J=6.28, 1H), 6.38 (d, J=16 Hz, 

1H), 7.23 (t, J=7.88 Hz, 1H), 7.46 (d, J=1.8 Hz, 1H), 7.48 (d, J=1.8 Hz, 1H), 7.55 (d, 
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J=16 Hz, 1H), 7.65 (s, 1H). IR (ATR, cm
-1

) νmax: 3061, 2978, 2935, 2874, 1705, 1638, 

1144, 1105. 

 

 

(E)-isopropyl 3-(3-aminophenyl)acrylate (72). (E)-isopropyl 3-(3-bromophenyl)acrylate 

(71). (4.71 g, 0.0175 mol) was dissolved in 60 mL anhydrous toluene. To it, in a stepwise 

manner, was added Pd2(dba)3 (0.801 g, 5%), and P(t-Bu)3 (0.142 g, 4%) and the mixture 

was allowed to stir for 15 min under NO protection. To the suspension, LHMDS in 

toluene (19.25 mL, 1 M in toluene, 1.1 eq, 0.01925 mol) was added dropwise and the 

reaction mixture was allowed to stir overnight under N2 protection. An additional 2.5% 

Pd2(dba)3, 2% P(t-Bu)3, and 0.5 eq LHMDS was added subsequently to the reaction 

mixture and stirred overnight under N2 protection. The resulting reaction mixture was 

quenched using 1 N HCl very slowly over ice. The mixture was stirred for an additional 2 

h and filtered through celite and diluted with DCM. The organic layer was extracted and 

washed with saturated aq. NaCHO3, then brine and dried over Na2SO4. The crude product 

was then purified using column chromatography (100:1 DCM:MeOH, NH4OH) to give 

2.461 g of (E)-isopropyl 3-(3-aminophenyl)acrylate (72) at a yield of 69%. 
1
H NMR (400 

MHz, CDCl3) δ 1.29 (d, J=6.3 Hz, 6H), 3.74 (s, 2H), 5.12 (septet, J=6.24, 1H), 6.33 (d, 

J=16 Hz, 1H), 6.67 (dd, J=4.28 Hz, 1H), 6.80 (m, 1H), 6.90 (d, J=7.6 Hz, 1H), 7.14 (d, 

J=7.8 Hz, 1H), 7.55 (d, J=16, 1H). 
13

C NMR (400 MHz, CDCl3) δ 21.95, 67.73, 114.12, 
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117.00, 118.56, 118.58, 129.73, 135.55, 144.63, 146.85, 166.63. IR (ATR, cm
-1

) νmax: 

3457, 3420, 3368, 2979, 2934, 1694, 1633, 1458, 1270, 1173, 1103.   

 

 

(E)-isopropyl 3-(3-((tert-butoxycarbonyl)amino)phenyl)acrylate (73). (E)-isopropyl 3-(3-

aminophenyl)acrylate (72) (2.54 g, 0.0124 mol) was added to 30 mL H2O, and to it 

NaHCO3 (2 eq, 3.12 g, 0.0248 mol) was added and allowed to stir for 10 min. The 

solution was cooled to 5 °C and di-tert-butyl dicarbonate (1.5 eq, 4.06 g, 0.0186 mol) in 

20 mL dioxane was added dropwise. The resultant solution was cooled to 0 °C for 1 h 

and allowed to stir at RT overnight. The aqueous solution was then washed with 50 mL 

of ethyl acetate and the organic layer was then extracted with saturated NaHCO3 (aq). 

The aqueous layers were then combined and acidified with 10 % HCl to a final pH of 1. 

The aqueous solution was then extracted with ethyl acetate, and the organic layer was 

dried over Na2SO4 and rotovapped. The crude product was then purified with column 

chromatography (4:1 Hex:EA) and a total of 2.884 g (E)-isopropyl 3-(3-((tert-

butoxycarbonyl)amino)phenyl)acrylate (73) with a yield of 76%. 
1
H NMR (400 MHz, 

CDCl3) δ 1.29 (d, J=1.28 Hz, 6H), 1.53 (s, 9H), 5.13 (septet, J=6.24, 1H), 6.40 (d, J=16 

Hz, 1H), 6.55 (s, 1H), 7.19 (m, 1H), 7.28 (m, 2H), 7.60 (m, 2H).
 13

C NMR (400 MHz, 

CDCl3) δ 21.93, 28.33, 67.79, 80.81, 117.64, 119.34, 120.05, 122.79, 129.39, 135.46, 
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138.97, 144.03, 152.61, 166.43. IR (ATR, cm
-1

) νmax: 3307, 3057, 2979, 2936, 1702, 

1484, 1439, 1229, 169, 1104. 

 

 

(S)-isopropyl-3-(benzyl((R)-1-phenylethyl)amino)-3-(3-((tertbutoxycarbonyl)amino) 

phenyl) propanoate (74). R-(+)-N-benzyl-α-methylbenzylamine (4.6 g, 0.0218 mol) was 

dissolved in 30 mL anhydrous THF and stirred at 0 °C under N2 protection. To it, n-

butyl-lithium (1 eq, 8.76 mL, 2.5 M in hexane, 0.0218 mol) was added dropwise and 

stirred for 30 minutes. During the addition, the reaction mixture went from being clear to 

a deep purple-drank color. The reaction mixture was then cooled down to -78 °C and (E)-

isopropyl 3-(3-((tert-butoxycarbonyl)amino)phenyl)acrylate (73) (2.68 g, 0.00872 mol) in 

15 mL anhydrous THF was added dropwise and allowed to stir for 2 h. Saturated NH4Cl 

(50 mL) was then added to the reaction mixture and it was allowed to warm up to RT 

over 1.5 h. Ethyl acetate was added to the reaction mixture and extracted. The organic 

layer was then washed twice with 1 N HCl, dried over Na2SO4, filtered, and rotovapped 

down. MeOH was then added to the residue and then rotovapped off to get rid of any 

residual ethyl acetate. (S)-isopropyl-3-(benzyl((R)-1-phenylethyl)amino)-3-(3-

((tertbutoxycarbonyl)amino) phenyl) propanoate (74) was then recrystallized from hot 

MeOH and a total of 1.827 g was received with a 41% yield from the first crop. 
1
H NMR 
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(400 MHz, CDCl3) δ 0.997 (d, J=6.24, 3H), 1.05 (d, J=6.24, 3H), 1.25 (d, J=6.84 Hz, 

3H), 1.53 (m, 14H), 2.53 (m, 2H), 3.68 (s, 2H), 3.98 (q, J=6.8, 1H), 4.38 (m, 1H), 4.79 

(septet, J=6.28, 1H), 6.43 (s, 1H), 7.07 (m, 1H), 7.15 (m, 1H), 7.21 (m, 4H), 7.28 (m, 

3H), 7.31 (m, 2H), 7.35 (m, 1H),7.41 (m, 2H). 
13

C NMR (400 MHz, CDCl3) δ 16.27, 

21.58, 21.59, 28.37, 37.82, 46.25, 50.91, 57.09, 59.55, 67.54, 80.41, 117.30, 118.27, 

122.86, 126.55, 126.82, 127.88, 128.07, 128.12, 128.31, 128.39, 128.57, 128.73, 128.82, 

137.50, 138.30, 141.55, 142.84, 144.07, 152.60, 171.30. IR (ATR, cm
-1

) νmax: 3379, 

2977, 2932, 2162, 1722, 1613, 1539, 1154. MS (ESI) m/z found 517 (M + H)
+
. 

 

 

(S)-3-(benzyl((R)-1-phenylethyl)amino)-3-(3-((tert-butoxycarbonyl)amino)phenyl) 

propanoic acid (75). (S)-isopropyl-3-(benzyl((R)-1-phenylethyl)amino)-3-(3-

((tertbutoxycarbonyl)amino)phenyl) propanoate (74) (1.4 g, 0.00271 mol) was dissolved 

in a 2:1 mixture of MeOH/H2O (30 mL). To it LiOH (5 eq, 0.32 g, 0.01355 mol) was 

added will the reaction was stirring. The suspension was then refluxed (~85 °C) using a 

preheated oil bath under N2 protection overnight. The reaction mixture was allowed to 

cool to RT and was adjusted to pH 1 using 10% HCl. The solution was then extracted 

with DCM three times and the resulting organic layers were dried over Na2SO4, filtered, 

and rotovapped down. No additional purification was required and a total of 1.12 g (S)-3-
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(benzyl((R)-1-phenylethyl)amino)-3-(3-((tert-butoxycarbonyl) amino)phenyl)propanoic 

acid (75) was received with a 88% yield. 
1
H NMR (400 MHz, CDCl3) δ 1.28 (d, J=6.9, 

3H), 1.54 (s, 9H), 2.43 (m, 1H), 2.88 (m, 1H), 6.64 (s, 1H), 7.04 (m, 1H), 7.28 (m, 6H), 

7.34 (m, 6H), 7.47 (s, 1H). 
13

C NMR (400 MHz, CDCl3) δ 15.89, 27.27, 34.60, 49.88, 

57.26, 58.44, 79.32, 116.97, 117.40, 118.65, 122.12, 126.61, 126.92, 127.74, 127.93, 

128.04, 128.10, 128.47, 139.07, 140.60, 152.75, 161.25, 172.06. IR (ATR, cm
-1

) νmax: 

3229, 2978, 2931, 2520, 1713, 1593, 1495, 1153. 

 

 

tert-butyl(3-((S)-1-(benzyl((R)-1-phenylethyl)amino)-3-((1R,3R,5S)-3-(3-isopropyl-5-

methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octan-8-yl)-3-oxopropyl)phenyl) 

carbamate (76). In a 25 mL flask, (S)-3-(benzyl((R)-1-phenylethyl)amino)-3-(3-

((tertbutoxycarbonyl)amino) phenyl)propanoic acid (75) (0.600 g, 0.0012643 mol) was 

dissolved in 6  mL anhydrous DCM. To the solution N-(3-Dimethylaminopropyl)-N′-

ethylcarbodiimide hydrochloride (1.5 eq, 0.364 g, 0.0018965 mol), 1-

hydroxybenzotriazole hydrate (1.5 eq, 0.256 g, 0.0018965 mol), triethylamine (3 eq, 0.54 

mL, 0.003793 mol), and 4 Å molecular sieves were added and stirred under nitrogen 

protection at 0 °C for 0.5 h. (1R,3s,5S)-3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-

azabicyclo[3.2.1]octane (86) (1.2 eq, 0.314 g, 0.0015172 mol) was then added to the 
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reaction mixture and allowed to proceed to room temperature over the period of 96 h, and 

monitored via TLC (20:1 DCM:MeOH). Once completed, the reaction mixture was 

filtered and the DCM was evaporated under reduced pressure. The reaction mixture was 

then washed once with brine. The organic layer was dried over anhydrous sodium sulfate, 

filtered and evaporated under reduced pressure. Column chromatography was then 

conducted (20:1 DCM:MeOH) and a total of 0.645 g of a yellow oil, tert-butyl(3-((S)-1-

(benzyl((R)-1-phenylethyl)amino)-3-((1R,3R,5S)-3-(3-isopropyl-5-methyl-4H-1,2,4-

triazol-4-yl)-8-azabicyclo [3.2.1]octan-8-yl)-3-oxopropyl)phenyl)carbamate (76), was 

received with a final yield of  74%.  1H NMR (400 MHz, CDCl3) δ 1.31 (m, 9H), 1.51 

(m, 11H), 1.71 (m, 4H), 1.87 (m, 2H), 2.06 (m, 1H), 2.12 (s, 1H), 2.26 (s, 2H), 2.56 (m, 

2H), 2.83 (septet, J=6.56, 1H), 3.75 (m, 3H), 4.02 (m, 1H), 4.38 (m, 2H), 4.64 (m, 1H), 

6.54 (s, 1H), 7.17 (m, 5H), 7.32 (m, 5H), 7.45 (m, 3H), 7.59 (s, 1H). 13C NMR (400 

MHz, CDCl3) δ 10.51, 19.46, 19.52, 19.75, 26.55, 28.28, 28.36, 28.55, 35.01, 37.29, 

38.61, 39.99, 41.01, 50.63, 50.88, 51.30, 54.19, 56.49, 64.46, 80.83, 119.62, 120.95, 

123.29, 126.37, 126.71, 127.31, 127.89, 127.98, 128.01, 128.14, 129.59, 142.73, 144.02, 

145.35, 153.55, 166.19, 176.81. IR (ATR, cm
-1

) νmax: 3247, 2972, 2931, 2185, 2050, 

1716, 1632, 1529, 1436, 1158. 
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tert-butyl(3-((S)-1-amino-3-((1R,3R,5S)-3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-

8-azabicyclo[3.2.1]octan-8-yl)-3-oxopropyl)phenyl)carbamate (77). In a 250 mL 

hydrogenation flask, acetic acid (2 eq, 0.166 mL, 0.0029) was added to 60 mL MeOH. To 

that, 1-(trifluoromethyl)-4-(4-isopropoxy-3-nitrophenyl)piperazine (1.0 g, 0.00145 mol) 

was added to the solution along with 20 % w/w palladium on carbon (0.2 g, 10% w/w). 

The flask was placed on a hydrogenator  at 60 psi H2 gas for 48 h, and monitored via 

TLC (20:1:0.01 DCM:MeOH:NH4OH). Once completed, the reaction mixture was 

vacuum filtered through celite, and then evaporated under reduced pressure. Column 

chromatography was then conducted (20:1 DCM:MeOH, NH4OH) and a total of 0.66 g 

of a yellow oil, tert-butyl(3-((S)-1-amino-3-((1R,3R,5S)-3-(3-isopropyl-5-methyl-4H-

1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octan-8-yl)-3-oxopropyl)phenyl)carbamate, was 

received with a final yield of  91%. 
1
H NMR (400 MHz, CDCl3) δ 0.90 (m, 1H), 1.39 (m, 

7H), 1.57 (s, 9H), 1.90 (m, 9H), 2.24 (m, 2H), 2.36 (m, 3H), 2.69 (m, 2H), 2.95 (septet, 

J=6.88, 1H), 4.23 (m, 1H), 4.53, (m, 2H), 4.89 (s, 1H), 5.30 (s, 2H), 6.70 (s, 1H), 7.08 

(m, 1H), 7.23 (m, 2H), 7.48 (m, 1H). IR (ATR, cm
-1

) νmax: 3255, 2972, 2933, 2879, 2161, 

1714, 1610, 1440, 1158. MS (ESI) m/z found 497 (M + H)
+
.  
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tert-butyl(3-((S)-1-amino-3-((1R,3R,5S)-3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-

8-azabicyclo[3.2.1]octan-8-yl)propyl)phenyl)carbamate (78). Lithium aluminum hydride 

(5 eq, 0.191 g, 0.005035 mol) was added to 15 mL anhydrous THF at 0 °C under NO 

protection. To the suspension tert-butyl(3-((S)-1-amino-3-((1R,3R, 5S)-3-(3-isopropyl-5-

methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octan-8-yl)-3-oxopropyl) 

phenyl)carbamate (77) (0.5 g, 0.001007 mol) was dissolved in 15 mL anhydrous THF 

and added dropwise. The resultant mixture was stirred at 0 °C for 15 min and then 

allowed to reach RT over a 3 h period. The reaction mixture was then cooled to 0 °C in 

an ice bath and quenched with the sequential addition of 0.2 mL H2O, 0.2 mL 4 N NaOH, 

and then 0.6 mL H2O and stirred at RT for 1 h. The suspension was filtered and the 

filtrate was washed with THF and diethyl ether. The organic filtrates were combined, 

dried over Na2SO4, filtered, and then evaporated to dryness. After column 

chromatography (10:1, DCM:MeOH) a total of 0.38 g tert-butyl(3-((S)-1-amino-3-

((1R,3R,5S)-3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octan-8-

yl)propyl)phenyl)carbamate (78), with a yield of 79%. 
1
H NMR (400 MHz, CDCl3) δ 

1.254 (s, 1H), 1.386 (m, 8H), 1.508 (broad s, 10H), 1.611 (m, 6H), 1.769 (m, 2H), 1.841-

2.000 (m, 7H), 2.050 (m, 3H), 2.238 (m, 3H), 2.464 (m, 5H), 2.541 (s, 1H), 2.987 (septet, 

J=6.8 Hz, 1H), 3.405 (m, 2H), 3.747 (m, 1H), 4.101 (t, J=6.7 Hz, 1H), 4.282 (m, 1H), 
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5.299 (s, 1H), 6.540 (broad s, 1H), 7.012 (d, J=7.6 Hz, 1H), 7.130 (m, 1H), 7.229 (m, 

1H), 7.519 (s, 1H). IR (ATR, cm
-1

) νmax: 3362, 2930, 2875, 1682, 1444, 1365, 1159. 

 

 

tert-butyl(3-((S)-1-(4,4-difluorocyclohexanecarboxamido)-3-((1R,3R,5S)-3-(3-isopropyl-

5-methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octan-8-yl)propyl)phenyl)carbamate 

(79). In a 10 mL flask, 4,4-difluorocyclohexanecarboxylic acid (88) (1.3 eq, 0.132 g, 

0.0008008 mol) was dissolved in 2 mL anhydrous DCM. To the solution N-(3-

dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (1.5 eq, 0.177 g, 0.000924 

mol), 1-hydroxybenzotriazole hydrate (1.5 eq, 0.125 g, 0.000924 mol), triethylamine (3 

eq, 0.26 mL, 0.001848 mol), and 4 Å molecular sieves were added and stirred under 

nitrogen protection at 0 °C for 0.5 hours. tert-butyl(3-((S)-1-amino-3-((1R,3R,5S)-3-(3-

isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octan-8-

yl)propyl)phenyl)carbamate (78) (0.3 g, 0.000616 mol) was then added to the reaction 

mixture and allowed to proceed to room temperature over the period of 48 h, and 

monitored via TLC (20:1 DCM:MeOH, NH4OH). Once completed, the reaction mixture 

was filtered, washed with brine, dried over Na2SO4 and the DCM was evaporated under 

reduced pressure. Column chromatography was then conducted (20:1 DCM:MeOH, 

NH4OH) and a total of 0.234 g of a yellow oil tert-butyl(3-((S)-1-(4,4-
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difluorocyclohexanecarboxamido)-3-((1R,3R,5S)-3-(3-isopropyl-5-methyl-4H-1,2,4-

triazol-4-yl)-8-azabicyclo[3.2.1]octan-8-yl)propyl)phenyl)carbamate (79), was received 

with a final yield of  60%. 
1
H NMR (400 MHz, CDCl3) δ 1.38 (d, J=6.12, 6H), 1.51 (s, 

9H), 1.74 (m, 9H), 1.95 (m, 4H), 2.05 (m, 2H), 2.18 (m, 5H), 2.43 (m, 2H), 2.51 (s, 3H), 

2.98 (septet, J=6.88, 1H), 3.39 (m, 2H), 4.30 (septet, J=6.04, 1H), 5.10 (quartet, J=7.24, 

1H), 6.59 (m, 2H), 6.93 (d, J=7.64, 1H), 7.07 (m, 1H), 7.24 (m, 1H), 7.24 (t, J=7.8, 1H), 

7.55 (s, 1H). 
13

C NMR (400 MHz, CDCl3) δ 13.22, 21.66, 25.89, 25.92, 26.07, 26.84, 

28.34, 32.55, 32.79, 33.04, 34.69, 35.12, 35.31, 42.89, 47.26, 47.66, 52.20, 53.43, 58.16, 

58.79, 116.23, 117.41, 121.16, 129.29, 138.94, 142.98, 150.63, 152.67, 159.14, 173.29. 

IR (ATR, cm
-1

) νmax: 3257, 2968, 2936, 2875, 2227, 2161, 1980, 1717, 1655, 1527, 1443, 

1367, 1236, 1158. MS (ESI) m/z found 529 (M + H)
+
.  

 

 

N-((S)-1-(3-aminophenyl)-3-((1R,3R,5S)-3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-

8-azabicyclo[3.2.1]octan-8-yl)propyl)-4,4-difluorocyclohexanecarboxamide (80). tert-

butyl(3-((S)-1-(4,4-difluorocyclohexanecarboxamido)-3-((1R,3R,5S)-3-(3-isopropyl-5-

methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octan-8-yl)propyl)phenyl)carbamate 

(79) (0.2 g, 0.0003181 mol) was dissolved in 5 mL anhydrous DCM and stirred at 0 °C. 

To the solution, 10% trifluoro acetic acid by volume (0.5 mL) was added dropwise and 
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the solution was allowed to reach RT and stirred for 2 h. The solution was then cooled to 

0 °C in an ice bath and saturated aqueous Na2CO3 was added and the aqueous layer was 

adjusted to pH 12 and extracted three times with DCM. The combined organic layers 

were then washed with brine, dried over Na2SO4, filtered, and evaporated to dryness. A 

total of 0.215 g N-((S)-1-(3-aminophenyl)-3-((1R,3R,5S)-3-(3-isopropyl-5-methyl-4H-

1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octan-8-yl)propyl)-4,4-

difluorocyclohexanecarboxamide (80) of a yellow oil was received with quantitative 

yield. 
1
H NMR (400 MHz, CDCl3) δ 0.91 (m, 5H), 1.31 (m, 6 H), 1.37 (d, J=6.84, 6H), 

1.42 (m, 1H), 1.67 (m, 7H), 1.83 (m, 4H), 1.93 (m, 5H), 2.04 (m, 2H), 2.16 (m, 4H), 2.24 

(m, 1H), 2.44 (m, 2H), 2.50 (s, 3H), 2.98 (m, 1H), 3.39 (s, 2H), 3.70 (s, 2H), 4.19 (m, 

2H), 4.29 (m, 1H), 5.00 (quartet, J=6.92, 1H), 6.38 (m, 1H), 6.59 (m, 2H), 6.65 (d, 

J=7.68, 1H), 7.13 (t, J=7.88, 1H), 7.52 (m, 1H), 7.69 (m, 1H).
 13

C NMR (400 MHz, 

CDCl3) δ 10.96, 13.19, 14.05, 21.66, 22.99, 23.76, 25.86, 25.99, 26.10, 26.83, 28.93, 

30.37, 32.60, 32.83, 33.08, 34.71, 35.16, 35.32, 38.75, 42.95, 47.25, 47.81, 52.13, 58.23, 

58.76, 68.17, 113.37, 114.32, 116.26, 128.81, 129.80, 130.88, 132.47, 143.04, 146.86, 

150.67, 159.13, 167.76, 173.15. IR (ATR, cm
-1

) νmax: 3318, 3224, 2957, 2932, 2873, 

2257, 2177, 2035, 1979, 1724, 1651, 1519, 1455, 1345, 1165, 1105. 
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(1R)-8-benzyl-8-azabicyclo[3.2.1]octan-3-one (82). The synthesis of (1R)-8-benzyl-8-

azabicyclo[3.2.1]octan-3-one (82) has been previously described elsewhere.
149,152

 Briefly, 

under NO protection 2,5-dimethoytetrahydrofuran (7.8 mL, 0.06 mol) was dissolved in 50 

mL of 2 M HCl and stirred for 1 h and then cooled to 0 °C. To it, benzylamine (8 mL, 

0.073 mol), acetonedicarboxylic acid (8.85 g, 0.06 mol), and aqueous AcONa (3 g in 27 

mL H2O) were added sequentially. The resulting solution was stirred at RT for 1 h and 

then heated to between 60-70 °C for 1.5 h. The reaction was cooled to RT and its pH was 

adjusted to pH 1-2 with 2 M HCl and washed with diethyl ether. The aqueous layer was 

then brought up to pH 6-7 with saturated aqueous NaHCO3 and extracted 3 times with 

DCM. The organic layers were dried over Na2SO4. The crude product was purified with 

column chromatography (4:1, Hex:EA) and a total of 3.914 g (1R)-8-benzyl-8-

azabicyclo[3.2.1]octan-3-one (82) was received at a yields of 30%. 
1
H NMR (400 MHz, 

CDCl3) δ 1.64 (m, 2H), 2.12 (m, 2H), 2.18 (d, J=17.2 Hz, 2H), 2.66 (m, 2H), 3.49 (m, 

2H), 3.75 (s, 2H), 7.27 (t, J=7.16 Hz, 1H), 7.34 (t, J=7.12 Hz, 2H), 7.41 (d, J=7.2, 2H). 
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(1R,5S,Z)-8-benzyl-8-azabicyclo[3.2.1]octan-3-one oxime (83). Under N2 protection, 

H2NOH-HCl (1.125 eq, 1.423 g, 0.02049 mol), and NaHCO3 (1.1 eq, 1.694 g, 0.020031 

mol) were stirred in H2O (50 mL) for 10 min. (1R)-8-benzyl-8-azabicyclo[3.2.1]octan-3-

one (82) (3.914 g, 0.01821 mol) in 50 mL EtOH was added and then refluxed for 2 h. The 

reaction mixture was then cooled to RT and the EtOH removed through evaporation. The 

aqueous solution was then extracted with 50 mL five times, the combined organic layers 

were dried over Na2SO4, filtered and evaporated to dryness. A total of 4.422 g (1R,5S,Z)-

8-benzyl-8-azabicyclo[3.2.1]octan-3-one oxime (83)  was received (90% yield). 
1
H NMR 

(400 MHz, CDCl3) δ 1.501 (m, 1H), 1.627 (m, 1H), 2.029 (m, 2H), 2.111 (d, J=14.7 Hz, 

1H), 2.213 (dd, J= 11.7, 3.8 Hz, 1H), 2.575 (dd, J=11.36, 3.32 Hz, 1H), 2.961 (d, J=15.4, 

1H), 3.346 (m, 2H), 3.653 (s, 2H), 7.238 (d, J=7.44 Hz, 1H), 7.328 (m, 2H), 7.389 (d, 

J=7.16 Hz, 2H), 8.086 (broad s, 1H). 

 

 

N-((1R,3s,5S)-8-benzyl-8-azabicyclo[3.2.1]octan-3-yl)isobutyramide (84). Sodium metal 

(7.52 g, 0.3271 mol) was added to anhydrous toluene (60 mL) at RT and then heated to 

reflux. (1R,5S,Z)-8-benzyl-8-azabicyclo[3.2.1]octan-3-one oxime (83) (4.422 g, 

0.016355 mol) in a mixture of 50 mL toluene and 25 mL 1-pentanol was added dropwise 
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to the refluxing solution for 2 h until a thick white slurry formed. The reaction was 

cooled to 60 °C and isopropyl alcohol (40 mL) was added, and then the reaction mixture 

was cooled to RT and 60 mL H2O was added. The pH was adjusted to 1 with 

concentrated HCl and the organic layer was separated out. Ethyl acetate (60 mL) was 

added to the aqueous layer and adjusted to pH 12. The organic layer was separated out, 

dried over Na2SO4 and evaporated to dryness. The product was then recrystallized in hot 

ethyl acetate and a total of 2.309 g N-((1R,3s,5S)-8-benzyl-8-azabicyclo[3.2.1]octan-3-

yl)isobutyramide (84) was received in the first crop with a yield of 58%. 
1
H NMR (400 

MHz, CDCl3) δ 1.113 (d, J=6.88 Hz, 6H), 1.494 (td, J=8.08, 1.28 Hz, 2H), 1.818 (m, 

2H), 2.038 (m, 2H), 2.267 (septet, J=6.88, 2H), 3.221 (t, J=3.2 Hz, 2H), 3.535 (s, 2H), 

4.151 (m, 1H), 5.170 (dd, J=6.88 Hz, 1H), 7.222 (d, J=7.24, 1H), 7.56 (t, J=7.56, 2H), 

7.362 (d, J=7 Hz, 2H).  

 

 

(1R,3s,5S)-8-benzyl-3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1] 

octane (85). N-((1R,3s,5S)-8-benzyl-8-azabicyclo[3.2.1]octan-3-yl)isobutyramide (84) 

(2.704 g, 0.009464 mol) was dissolved in anhydrous DCM (40 mL) and stirred under N2 

at 0 °C. PCl5 (1.5 eq, 2.96 g, 0.014215 mol) was added portion-wise and allowed to stir 

for 30 min. Next, pyridine (3 eq, 2.29 mL, 0.028429 mol) was added dropwise and the 

ration was allowed to reach RT and stirred for 4 h. The reaction mixture was cooled to 0 
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°C and t-amyl-alcohol (40 mL) was added and AcNHNH2 (2 eq, 1.4 g, 0.018928 mol) 

was added portion-wise and stirred at 0 °C for 30 min and then at RT overnight. The 

reaction mixture was evaporated to dryness and 30 mL toluene was added along with 2.4 

mL AcOH (~0.0014 mol) under NO protection and refluxed for 2 hours. The reaction 

mixture was cooled in an ice bath and then rotovapped down. DCM and H2O were added 

and the pH of the aqueous layer was adjusted to pH >9 with 2 N NaOH and the organic 

layer was extracted, dried over Na2SO4, filtered, and evaporated to dryness. The crude 

product was recrystallized using a mixture of hexane and ethyl acetate and a total of 

1.171 g (1R,3s,5S)-8-benzyl-3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-

azabicyclo[3.2.1]octane (85) at a yield of 38%. 
1
H NMR (400 MHz, CDCl3) δ 1.394 (d, 

J=.84 Hz, 6H), 1.708-1.642 (m, 4H), 2.189 (m, 2H), 2.279 (td, J=9.88, 2.6 Hz, 1H), 3.359 

(d, J=2.84, 2H), 4.318 (m, 1H), 7.270 (d, J=7.08 Hz, 1H), 7.361 (m, 4H).  

 

 

(1R,3s,5S)-3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octane 

(86). In a 250 mL hydrogenation flask, (1R,3s,5S)-8-benzyl-3-(3-isopropyl-5-methyl-4H-

1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octane (85) (3 g, 0.0092 mol) was dissolved in 60 

mL MeOH. To that, 10% Pd/C (0.3 g, 10% w/w) was added. The flask was placed on a 

hydrogenator  at 60 psi H2 gas for 24 h, and monitored via TLC (5:1:0.01 

DCM:MeOH:NH4OH). Once completed, the reaction mixture was vacuum filtered 
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through celite, and then evaporated under reduced pressure. Hexane was added to the 

residue to crystalize the product and in the first crop, 2.1 g (1R,3s,5S)-3-(3-isopropyl-5-

methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octane (86) was received with a 90% 

yield. 
1
H NMR (400 MHz, MeOD) δ 1.065 (d, J=6.88 Hz, 6H), 1.437 (td, J=10.4, 1.2 Hz, 

2H), 1.842-1.749 (m, 6H), 2.373 (septet, J=6.84 Hz, 1H), 3.345 (s, 2H), 3.508 (broad s, 

2H), 4.067 (m, 1H).  

 

 

4,4-difluorocyclohexanecarboxylic acid (88). Ethyl 4-oxycyclohexanecarboxylate (1.13 

g, 0.00667 mol) was dissolved in anhydrous DCM (10 mL) in an HDPE container. To it, 

Fluolead (1.5 eq, 2.5 g, 0.00999 mol) was added and stirred under NO at 0 °C. HF-

pyridine (0.4 eq, 0.64 mL, 0.00264 mol) was added to the vessel and the reaction was 

allowed to reach RT. After 5 hours, the reaction mixture was quenched with saturated 

aqueous NaHCO3. The organic layer was allowed to stir at RT and 2 N NaOH  for 1 h 

and washed with DCM and the aqueous layer was acidified to pH 1 and extracted with 

DCM. A total of 0.435 g 4,4-difluorocyclohexanecarboxylic acid (88) (99:1, 

difluoro:monofluoro-vinyl byproduct) at a 27% yield. 
1
H NMR (400 MHz, CDCl3) δ 

1.872-1.753 (m, 4H), 1.984-1.881 (m, 4H), 2.498-2.278 (m, 1H).  
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(7-amino-heptyl)-carbamic acid benzyl ester (91). The synthesis of 91 was previously 

described.
134

 1,7-Diaminoheptane (1.1 eq, 1.5 g, 0.01152 mol) was dissolved in 250 mL 

DCM/MeOH (1:1) and stirred in an ice-water bath at 5 °C. To it, benzylchloroformate (1 

eq 1.787 g, 0.010473 mol) in 250 mL DCM was added dropwise over a period of 48 h 

while keeping the temperature at 5 °C. After the addition, the reaction mixture was 

allowed to stir for an additional 24 h. The reaction mixture was evaporated down to ~50 

mL and the H2O was added and the pH was adjusted to pH 2 with 6 N HCl. The layers 

were separated and the aqueous layer was washed with DCM and then adjusted to pH 12 

with 10 N NaOH. The aqueous layer was then extracted with DCM, dried over Na2SO4. 

The crude product was then purified with column chromatography (10:1 DCM:MeOH, 

NH4OH) and recrystallized with hot DCM. A total of 0.482 g (7-amino-heptyl)-carbamic 

acid benzyl ester (91) was received with a 16% yield. 
1
H NMR (400 MHz, CDCl3) δ 

1.314 (broad s, 6H), 1.469 (broad s, 4H), 1.820 (s, 1H), 2.007 (s, 1H), 2.339 (broad s, 

2H), 2.708 (t, J=7.08 Hz, 1H), 3.172 (q, J=6.4 Hz, 2H), 5.092 (s, 2H), 7.315 (m, 5H).  

 

 

[(7-benzyloxycarbonylamino-heptylcarbamoyl)-methoxy]-acetic acid (92). (7-amino-

heptyl)-carbamic acid benzyl ester (91) (0.55 g, 0.0021 mol) was dissolved in 10 mL 
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THF, stirred at RT, and to it, digylcolic anhydride (1.05 eq, 0.254 g, 0.002205 mol) was 

added. The solution was stirred overnight and then evaporated to dryness. The crude 

product was recrystallized with ethyl acetate and hexane giving 0.734 g of [(7-

benzyloxycarbonylamino-heptylcarbamoyl)-methoxy]-acetic acid (92) at a yield of 92%. 

1
H NMR (400 MHz, CDCl3) δ 1.235 (s, 6H), 1.368 (m, 4H), 2.963 (q, J=6.6 Hz, 2H), 

3.071 (q, J=6.6 Hz, 2H), 3.323 (s, 4H), 3.939 (s, 2H), 4.089 (d, J=4.2 Hz, 3H), 4.998 (s, 

2H), 7.214 (t, J=5.5 Hz, 1H), 7.379-7.286 (m, 5H), .7.814 (t, J=5.5 Hz, 1H), 12.779 (s, 

1H). 

 

 

benzyl(7-(2-(2-(((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-dihydroxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl)amino)-2-

oxoethoxy)acetamido)heptyl)carbamate (93). In a 10 mL flask, [(7-

benzyloxycarbonylamino-heptylcarbamoyl)-methoxy]-acetic acid (92) (0.9 eq, 0.414 g, 

0.0010872 mol) was dissolved in 3 mL anhydrous DMF. To the solution N-(3-

Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (1.5 eq, 0.347 g, 0.001812 

mol), 1-hydroxybenzotriazole hydrate (1.5 eq, 0.245 g, 0.001812 mol), triethylamine (6 

eq, 1.01 mL, 0.007248 mol), and 4 Å molecular sieves were added and stirred under 

nitrogen protection at 0 °C for 0.5 h. 6β-naltrexamine hydrochloride salt (98) (0.5 g, 
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0.001208 mol) was then added to the reaction mixture and allowed to proceed to room 

temperature over the period of 96 h, and monitored via TLC (20:1 DCM:MeOH, 

NH4OH). Once completed, the reaction mixture was filtered, washed with brine, dried 

over Na2SO4 and the DCM was evaporated under reduced pressure. Column 

chromatography was then conducted (20:1 DCM:MeOH, NH4OH) and a total of 0.33 g 

of benzyl(7-(2-(2-(((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-dihydroxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl)amino)-2-

oxoethoxy)acetamido)heptyl)carbamate (93), was received with a final yield of  42%. 
1
H 

NMR (400 MHz, DMSO) δ 0.116 (m, 2H), 0.454 (d, J=7.6 Hz, 2H), 0.836 (1H), 1.256 

(broad s, 8H), 1.434 (m, 6H), 1.773 (m, 1H), 1.977 (m, 1H), 2.153 (m, 1H), 2.330 (m, 

2H), 2.576 (m, 2H), 2.981 (m, 4H), 3.159 (m, 3H), 3.930 (m, 4H), 4.579 (d, J=7.6 Hz, 

1H), 4.883 (s, 1H), 4.995 (s, 2H), 5.745 (s, 2H), 6.529 (dd, J=15.6, 8.04 Hz), 7.191 

(broad s, 1H), 7.336 (m, 5H), 8.007 (t, J=5.52 Hz, 1H), 8.200 (d, J=8.4 Hz, 1H), 9.008 (s, 

1H).  

 

 

N-(7-aminoheptyl)-2-(2-(((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-dihydroxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl)amino)-2-

oxoethoxy)acetamide (94). In a 250 mL hydrogenation flask, 93 (0.2 g, 0.0002837 mol) 
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was dissolved in 60 mL MeOH. To that, 10% Pd/C (0.2 g, 10% w/w) was added. The 

flask was placed on a hydrogenator  at 60 psi H2 gas for 24 h, and monitored via TLC 

(5:1:0.01 DCM:MeOH:NH4OH). Once completed, the reaction mixture was vacuum 

filtered through celite, and then evaporated under reduced pressure. In total, 0.082 g 94 

was received with a crude yield of 51% and used without further purification.
 1

H NMR 

(400 MHz, DMSO) δ 0.1096 (m, 2H), 0.458 (d, J=7.56 Hz, 2H), 0.839 (m, 1H), 1.269 

(broad s, 9H), 1.448 (m, 6H), 1.776 (m, 1H), 1.848 (s, 3H), 1.972 (td, J=3.5, 8.7 Hz, 1H), 

2.140 (td, J=4.9, 7.3 Hz, 1H), 2.333 (m, 3H), 2.577-2.64 (m, 3H), 2.945-3.015 (m, 3H), 

3.269-3.339 (m, 8H), 3.508-3.600 (m, 2H), 3.859-3.893 (m, 1H), 3.933 (d, J=3.6 Hz, 

4H), 4.000-4.300 (m, 5H), 4.577 (d, J=7.8 Hz, 1H), 6.508 (d, J=8.1 Hz, 1H), 6.569 (d, 

J=8.0 Hz, 1H), 8.037 (m, 1H), 8.221 (m, 1H).  

 

 

19-(((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-dihydroxy-2,3,4,4a,5,6,7,7a-

octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl)amino)-5,15,19-trioxo-

3,17-dioxa-6,14-diazanonadecan-1-oic acid (95). 94 (0.082 g, 0.00014367 mol) was 

dissolved in 1 mL DMF, stirred at RT, and to it, digylcolic anhydride (1.0 eq, 0.0179 g, 

0.00014367 mol) were added. The solution was stirred overnight and then evaporated to 

dryness. The crude product was recrystallized with ethyl acetate and hexane giving 0.1 g 
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of 95 at quantitative yield. 
1
H NMR (400 MHz, DMSO) δ 0.185 (m, 2H), 0.507 (m, 2H), 

0.894 (m, 1H), 1.304 (m, 8H), 1.445 (m, 6H), 1.800 (m, 1H), 2.015-2.452 (m, 2H), 2.539-

2.890 (m, 4H), 3.043-3.167 (m, 6H), 3.243-3.682 (m, 11H), 3.820-3.900 (m, 2H), 3.928 

(m, 6H), 4.004 (m, 2H), 4.083-4.273 (m, 1H), 4.443-4.527 (m, 1H), 4.646-4.751 (m, 1H), 

6.542-6.627 (m, 1H), 6.756-6.939 (m, 1H), 7.953-8.351 (m, 4 H).    

 

 

(4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-7-(dibenzylamino)-2,3,4,4a,5,6,7,7a-

octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinoline-4a,9-diol (97). Naltrexone, free 

base, (2.0 g, 0.00586 mol) was dissolved in 75 mL absolute EtOH and to it benzoic acid 

(1.2 eq, 0.859 g, 0.007032 mol) was added and allowed to stir for 30 minutes under NO 

protection. The EtOH was rotovapped off and toluene was added to remove any leftover 

H2O. Anhydrous toluene (200 mL) was added, and to it benzoic acid (1.2 eq, 0.859 g, 

0.007032 mol), dibenzylamine (1.2 eq, 1.34 mL, 0.007032), and a trace amount of p-

toluenesulfonic acid were added. The reaction was refluxed under NO for 20 h with a 

Dean-Stark trap to remove produced H2O. The reaction mixture was then concentrated to 

50 mL. Absolute EtOH (200 mL), molecular sieves, and NaCNBH4 (0.8 eq, 0.295 g, 

0.004688 mol) were added and allowed to stir under NO protection overnight. The 

reaction mixture was then filtered, rotovapped, and then re-dissolved in chloroform and 
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3% aqueous NH4OH was added. The chloroform layer was extracted and rotovapped 

down. 97 was then recrystallized from 9:1 MeOH/H2O to give 1.942 g at a 64% yield. 
1
H 

NMR (400 MHz, CDCl3) δ 0.094 (m, 2H), 0.495 (m, 2H), 0.815 (m, 1H), 1.230 (td, 

J=10.4, 2.8 Hz, 1H), 1.409 (dd, J=10.3, 2.4 Hz, 1H), 1.575 (m, 1H), 1.681 (m, 1H), 

1.955-2.119 (m, 2H), 2.170-2.244 (m, 1H), 2.327 (m, 2H), 2.475 (dd, J=12.6, 5.8 Hz, 

1H), 2.547-2.62 (m, 2H), 2.971 (m, 1H), 3.593 (d, J=14.2 Hz, 1H), 3.874 (m, 2H), 4.693 

(d, J=7.8 Hz, 1H), 6.420 (d, J=8 Hz, 1H), 6.551 (d, J=8 Hz, 1H), 7.189 (m, 2H), 7.279 

(m, 5H), 4.222 (d, J=7.2, 4H).  

 

 

6β-naltrexamine (98). In a 250 mL hydrogenation flask, 97 (1.0 g, 0.0019194 mol) was 

dissolved in 50 mL anhydrous MeOH. To that, 20% Pd/C (0.2 g, 10% w/w) and 

concentrated HCl (2.5 eq, 0.4 mL, 0.0047985 mol) were added. The flask was placed on 

a hydrogenator  at 60 psi H2 gas for 24 hours, and monitored via TLC (10:1:0.01 

DCM:MeOH:NH4OH). Once completed, the reaction mixture was vacuum filtered 

through celite, and then evaporated under reduced pressure. After crystallization with 

MeOH/Et2O, a total of 0.622 g 98 x 2 hydrochloride salt was received with yield of 78% 

in the first crop.
 1

H NMR (400 MHz, DMSO) δ 0.387-0.521 (m, 2H), 0.533-0.6812 (m, 

2H), 1.081 (m, 1H), 1.295 (m, 1H), 1.434 (m. 1H), 1.769 (m, 1H), 1.855 (m, 1H), 2.013 
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(m, 1H), 2.444 (m, 2H), 2.751 (m, 1H), 2.906 (m, 1H), 3.042 (m, 2H), 3.363 (m, 5H), 

3.956 (m, 1H), 4.707 (d, J=7.4 Hz, 1H), 6.505 (s, 1H), 6.657 (d, J=8.2 Hz, 1H), 6.837 (d, 

J=8.2 Hz, 1H), 8.594 (broad s, 3H), 8.967 (broad s, 1H), 9.662 (s, 1H). 

 

 

Benzyl (7-(2-(2-(methylamino)-2-oxoethoxy)acetamido)heptyl)carbamate (99). In a 10 

mL flask, methylcarbamoylmethoxy acetic acid (1.2 eq, 0.179 g, 0.0012168 mol) was 

dissolved in 2 mL anhydrous DMF. To the solution, N-(3-Dimethylaminopropyl)-N′-

ethylcarbodiimide hydrochloride (1.5 eq, 0.292 g, 0.001521 mol), 1-

hydroxybenzotriazole hydrate (1.5 eq, 0.206 g, 0.001521 mol), triethylamine (3 eq, 0.43 

mL, 0.003042 mol), and 4 Å molecular sieves were added and stirred under nitrogen 

protection at 0 °C for 1 h. (7-Amino-heptyl)-carbamic acid benzyl ester (91) (0.268 g, 

0.001014 mol) was then added to the reaction mixture and allowed to proceed to room 

temperature over the period of 96 h, and monitored via TLC (20:1 DCM:MeOH, 

NH4OH). Once completed, the reaction mixture was filtered, washed with brine, dried 

over Na2SO4 and the DCM was evaporated under reduced pressure. Column 

chromatography was then conducted (30:1 DCM:MeOH, NH4OH) and a total of 0.266 g 

of benzyl (7-(2-(2-(methylamino)-2-oxoethoxy)acetamido)heptyl)carbamate (99), was 

received with a final yield of  67%. 
1
H NMR (400 MHz, CDCl3) δ 1.325 (s, 6H), 1.511 

(m, 6H), 2.869 (d, J=4.9 Hz, 3H), 3.175 (m, 2H), 3.288 (m, 2H), 4.032 (d, J=4.3 Hz, 4H), 

4.796 (broad s, 1H), 5.092 (s, 2H), 6.448 (m, 2H), 7.324 (m, 1H), 7.349 (m, 4H). IR 



147 

 

(ATR, cm
-1

) νmax: 3330, 3096, 2931, 2855, 2284, 1685, 1652, 1533, 1391, 1377, 1269, 

1128, 1107. 

 

 

N-(7-aminoheptyl)-2-(2-(methylamino)-2-oxoethoxy)acetamide (100). In a 50 mL 

hydrogenation flask, benzyl (7-(2-(2-(methylamino)-2-

oxoethoxy)acetamido)heptyl)carbamate (99) (0.252 g, 0.00064 mol) was dissolved in 30 

mL MeOH. To that, 10% Pd/C (0.025 g, 10% w/w) was added. The flask was placed on a 

hydrogenator  at 60 psi H2 gas for 24 h, and monitored via TLC (10:1:0.01 

DCM:MeOH:NH4OH). Once completed, the reaction mixture was vacuum filtered 

through celite, and then evaporated under reduced pressure to give 0.15 g N-(7-

aminoheptyl)-2-(2-(methylamino)-2-oxoethoxy)acetamide (100) at a yield of 90%. IR 

(ATR, cm
-1

) νmax: 3234, 3058, 2928, 2857, 2161, 1725, 1651, 1552, 1448, 1382, 1266, 

1122, 1098. 
1
H NMR (400 MHz, CDCl3) δ 0.836 (m, 2H), 1.236 (broad s, 6H), 1.456 (m, 

2H), 1.989 (m, 2H), 3.168 (s, 3H), 5.510 (m, 2H), 4.070 (broad s, 1H). 

 

 

3,7,17-trioxo-5,19-dioxa-2,8,16-triazahenicosan-21-oic acid (101). N-(7-aminoheptyl)-2-

(2-(methylamino)-2-oxoethoxy)acetamide (100) (0.142 g, 0.000548 mol) was dissolved 
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in 3 mL DMF, stirred at RT, and to it, digylcolic anhydride (1.0 eq, 0.064 g, 0.000548 

mol) was added. The solution was stirred for 3 hours and then evaporated to dryness. A 

total of 0.212 g of 3,7,17-trioxo-5,19-dioxa-2,8,16-triazahenicosan-21-oic acid (101) was 

obtained at quantitative yield and used without further purification. IR (ATR, cm
-1

) νmax: 

3306, 3090, 2929, 2857, 2532, 2161, 1735, 1633, 1551, 1436, 1220, 1130, 1047. 
1
H 

NMR (400 MHz, CDCl3) δ 0.836 (m, 2H), 1.259 (m, 12H), 1.429 (m, 4H), 1.989 (m, 

2H), 2.632 (m, 2H), 3.111 (s, 3H).  

 

4.1.4 CCR5-MOR Bivalent Ligands: Final Compounds  

 

3-amino bivalent compound 50. In a 10 mL flask, 95 (1.0 eq, 0.073 g, 0.00010592 mol) 

was dissolved in 2 mL anhydrous DMF. To the solution N-(3-Dimethylaminopropyl)-N′-

ethylcarbodiimide hydrochloride (1.5 eq, 0.031 g, 0.0015888 mol), 1-

hydroxybenzotriazole hydrate (1.5 eq, 0.022 g, 0.00015888 mol), triethylamine (3 eq, 

0.05 mL, 0.00031776 mol), and 4 Å molecular sieves were added and stirred under 

nitrogen protection at 0 °C for 1 h. 80 (0.056 g, 0.00010592 mol) was then added to the 

reaction mixture and allowed to proceed to room temperature over the period of 24 h, and 

monitored via TLC (20:1 DCM:MeOH, NH4OH). After 24 h, more N-(3-

dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (1.5 eq, 0.031 g, 0.0015888 
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mol), 1-hydroxybenzotriazole hydrate (1.5 eq, 0.022 g, 0.00015888 mol), triethylamine 

(3 eq, 0.05 mL, 0.00031776 mol) were added. Once completed (5 days), the reaction 

mixture was filtered, washed with brine, dried over Na2SO4 and the DCM was evaporated 

under reduced pressure. Column chromatography was then conducted (30:1 

DCM:MeOH, NH4OH) and a total of 0.033 g of 50 was received with a final yield of  

26%. 
1
H NMR (400 MHz, DMSO) δ 0.099 (m, 2H), 0.45 (m, 2H), 0.83 (1H), 1.25 (m, 

17H), 1.43 (m, 7H), 1.56 (m, 1H), 1.65 (m, 7H), 1.80 (m, 8H), 1.93 (m, 3H), 2.07 (m, 

6H), 2.33 (m, 6H), 2.39 (s, 4H), 2.99 (m, 2H), 3.11 (m, 6H), 3.50 (m, 1H), 3.93 (d, 

J=3.48, 4H), 4.03 (s, 2H), 4.13 (s, 2H), 4.22 (m, 1H), 4.58 (d, J=8.08, 1H), 6.57 (d, 

J=7.88, 1H), 7.03 (d, J=7.52, 1H), 7.27 (t, J=7.8, 1H), 7.44 (d, J=9.04, 1H), 7.61 (s, 1H), 

8.02 (t, J=5.8, 1H), 8.08 (t, J=6.04, 1H), 8.20 (d, J=8.32, 1H), 8.26 (d, J=8.68, 1H), 9.03 

(s, 1H), 9.99 (s, 1H). 
13

C NMR (400 MHz, CDCl3) δ 3.74, 4.08, 9.26, 13.04, 21.59, 

22.69, 23.53, 25.79, 25.92, 25.99, 26.28, 26.66, 28.25, 28.99, 29.31, 32.57, 32.82, 33.06, 

35.00, 35.14, 38.77, 38.99, 42.66, 47.25, 47.84, 50.31, 51.89, 58.33, 58.46, 58.97, 59.26, 

62.34, 70.07, 70.95, 71.38, 71.63, 91.65, 118.09, 118.24, 119.19, 119.31, 122.62, 129.23, 

130.68, 137.87, 143.11, 150.79, 159.16, 167.75, 168.62, 168.86, 169.11, 173.88. IR 

(ATR, cm
-1

) νmax: 3271, 3078, 2931, 2858, 2161, 2036, 1979, 1655, 1536, 1447, 1323, 

1251, 1106, 1034. MS (Tof-MS) m/z found 599.365 ([M + 2]/2)
+
.  
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3-amino monovalent compound 52. In a 10 mL flask, 100 (1.0 eq, 0.04 g, 0.000102 mol) 

was dissolved in 2 mL anhydrous DMF. To the solution N-(3-Dimethylaminopropyl)-N′-

ethylcarbodiimide hydrochloride (1.5 eq, 0.03 g, 0.000153 mol), 1-hydroxybenzotriazole 

hydrate (1.5 eq, 0.021 g, 0.000153 mol), triethylamine (3 eq, 0.043 mL, 0.000306 mol), 

and 4 Å molecular sieves were added and stirred under nitrogen protection at 0 °C for 1 

h. 80 (0.070 g, 0.0001053 mol) was then added to the reaction mixture and allowed to 

proceed to room temperature over the period of 7 days, and monitored via TLC (20:1 

DCM:MeOH, NH4OH). Once completed (7 days), the reaction mixture was filtered, 

washed with brine, dried over Na2SO4 and the DCM was evaporated under reduced 

pressure. Column chromatography was then conducted (30:1 DCM:MeOH, NH4OH) and 

a total of 0.030 g of 50 was received with a final yield of  33%. 
1
H NMR (400 MHz, 

MeOD) δ 1.175 (t, J=7 Hz, 3H), 1.366 (m, 7H), 1.416 (d, J=6.7 Hz, 6H), 1.558 (m, 4H), 

1.808 (m, 5H), 1.957 (m, 1H), 2.103 (m, 2H), 2.252-2.443 (m, 10H), 2.787 (m, 8H), 

3.129 (m, 1H), 3.477 (q, J=7 Hz, 2H), 3.668 (m, 1H), 4.031 (s, 4H), 4.143 (s, 2H), 4.226 

(s, 3H), 4.337 (1H), 4.709 (m, 1H), 4.998 (m, 1H), 7.224 (d, J=7.4 Hz, 1H), 7.378 (t, 

J=7.9 Hz, 1H), 7.475 (d, J=8 Hz, 1H), 7.789 (s, 1H).  
13

C NMR (400 MHz, MeOD) δ 

15.428, 21.724, 21.778, 26.698, 27.805, 29.916, 30.323, 33.873, 34.973, 36.455, 40.011, 
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40.068, 43.488, 63.77, 66.888, 71.428, 71.699, 71.982, 120.366, 121.413, 130.513, 

139.581, 158.673, 165.968, 168.864, 171.961. IR (ATR, cm
-1

) νmax: 3256, 3054, 2933, 

2857, 2531, 2161, 1979, 1651, 1544, 1444, 1108. MS (Tof-MS) m/z found: 443.788, 

886.556 ([M + 2]/2 and [M + H] respectively)
+
. 

 

4.2 Biology Methods  

4.2.1 Anti-Proliferation Assay 

 All cell lines, PC-3 and M12, were incubated at 37 ºC in the presence of 5% CO2. 

RPMI 1640 serum free media (GIBCO Invitrogen) containing 1 % L-glutamine, 0.1% 

ITS (insulin, 5μg/mL; transferrin, 5μg/mL; and selenium, 5 μg/mL; Collaborative 

Research, Bedford) and 0.1% gentamicin was used to cultivate all cells. M12 cells were 

first incubated in media with 5% fetal bovine serum (FBS); after 24 h serum free media 

was added with 0.01% epidermal growth factor (EGF). DU-145 and PC-3 cell lines were 

incubated in media containing 10% FBS at all times. 

Prostate cancer tumor cells (PC-3, and M12) were plated into 96 well plates (BD 

Falcon, VWR) at a concentration of 1000 cells per well. Each cell line was plated in its 

respective serum containing media for a total concentration of 100 μL per well. After 24 

hours, various concentrations of drugs in a 50 μL PBS solution were added to the cells. 

Control cells were given 50 μL of PBS. Seventy-two hours after incubation with drug, the 

serum containing media was replaced with 100 μL of a 9:1 solution of serum free media 

and WST-1 (Roche). After 3 h of incubation with WST-1, the absorbance of each well 

was measured by a microplate reader (FlexStation3, Molecular Devices). Absorbance 
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values were obtained using SoftMaxPro software (Molecular Devices) and non-linear 

regression curves were generated using Prism (GraphPad) to calculate IC50 values. 

 

4.2.2 Basal Cytotoxicity Assay 

 NIH-3T3 cells were routinely maintained in Dulbecco’s Modified Eagle’s 

Medium (DMEM, with high-glucose, L-glutamate, and sodium pyruvate; Invitrogen) 

supplemented with 10% new born calf serum (NBCS, Invitrogen) and 1% 

penicillin:streptomycin. Mouse embryonic fibroblast cells (NIH-3T3) were plated into 96 

well plates (Costar, Corning) at a concentration of 2000 cells/well/100 μL. Plates were 

incubated at 37.5 °C, 5% CO2 for 24 h. At that point, media was discarded from the 

plates and 50 μL of fresh culture media was added to the wells. Plates were then treated 

with 50 μL of compounds at various concentrations in a dilution media made up of 

DMEM with 1% penicillin:streptomycin. Control wells were given 50 μL of the dilution 

media. After 48 h of incubation, media was removed from the plates, each well was 

washed with 200 μL of Hank’s Buffered Salt Solution (HBSS, with calcium and 

magnesium, Invitrogen) and the rinsing solution was removed from the plates. To each 

well, 200 μL of 25 μg/mL of neutral red (NR, 0.33% solution in DPBS; Sigma) in 

DMEM containing 5% NBCS and 1% penicillin:streptomycin was added and plates were 

incubated for 3.0 ± 0.1 h. After incubation, NR media was removed from the plates and 

each well was washed with 200 μL of HBSS. The washing solution was decanted from 

the plates and 100 μL of a solution containing 50% ethanol, 49% H2O, and 1% glacial 

acetic acid was added. Plates were shaken rapidly for 20 min while being protected from 
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light. Once removed from the shaker, plates were allowed to sit for 5 min and absorbance 

at 540 nM was measured by a microplate reader (FlexStation3, Molecular Devices). 

Absorbance values were obtained using SoftMaxPro software (Molecular Devices) and 

TC50 values were calculated using non-linear regression curves on Prism (GraphPad). 

 

4.2.3 Establishing a CCR5-hMOR-CHO Cell Line 

 Initially, hMOR-CHO cells
156

 were cultured in DMEM/F12 (1:1) (Gibco) 

supplemented with 5% FBS, 1% penicillin-streptomycin, and 0.25 mg/mL Hygromycin B 

(Invitrogen).  For stable selection of hMOR/hCCR5-CHO cells, hMOR-CHO cells were 

transfected with a plasmid encoding human CCR5-eYFP (GeneCopoeia, Inc.; Rockville, 

MD, USA; catalog number EX-Z0659-M16) using Lipofectamine 2000 (Invitrogen) and 

selected with 800 μg/mL Geneticin (Gibco) using the manufacturers’ protocol.  To 

further enrich the population of stably transfected CCR5 cells under selection, YFP-

positive cells were sorted from non-fluorescent cells using the 530/30 filter of a BD 

FACSAria II cell sorter (BD Biosciences; San Jose, CA, USA) at the VCU Massey 

Cancer Center Flow Cytometry Shared Resource Core. 

 

4.2.4 Calcium Mobilization Assays 

4.2.4.1 CCR5-MOLT-4 Cells 

CCR5-MOLT-4 cells (Obtained through the AIDS Research and Reference 

Reagent Program, NIAID, NIH, from Dr. Masanori Baba, Dr. Hiroshi Miyake, Dr. Yuji 

Iizawa
133

) were transfected with Gqi5 pcDNA1
157

 using Lipofectamine 2000 (Invitrogen) 
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according to the manufacturer’s recommended procedure and maintained in RPMI 1640 

supplemented with 10% fetal bovine serum, 100 μg/mL penicillin, 100 μg/mL 

streptomycin, and 1 mg/mL G418 at 37 °C and 5% CO2. 48 h after transfection, a total of 

2,500,000 cells were spun down and brought back up in 8 mL of 50:1 HBSS:HEPES 

assay buffer. Cells were then plated at 25,000 cells per well into a clear bottom, black 96-

well plate (Greiner Bio-one) and 50 μL of Fluo-4 loading buffer (40 μL 2 μM Fluo-4-AM 

(Invitrogen), 100 μL 2.5 mM probenacid, in 5 mL assay buffer) was added to bring the 

volume up to 130 μL. After incubating for 45 min, 50 μL of varying concentrations of 

ligands and controls were added and the plate was incubated for an additional 15 min. 

Plates were then read on a FlexStation3 microplate reader (Molecular Devices) at 

494/516 ex/em for a total of 120 seconds. After 16 s of reading, 20 μL of 200 nM 

RANTES (Biosource) in assay buffer, or assay buffer alone, was added to the wells to 

bring the total volume up to 200 μL. The changes in Ca
2+

 mobilization were monitored 

and peak height values were obtained using SoftMaxPro software (Molecular Devices). 

Non-linear regression curves and IC50 values were generated using GraphPad Prism. All 

experiments were repeated a total of three times. 

 

4.2.4.2 hMOR-CHO Cells  

 HMOR-CHO (established previously
156

) cells were transfected with Gqi5 

pcDNA1
157

 using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s 

recommended procedure. Cells were incubated for 6 hours at 37 °C and 5% CO2 and then 

trypsinized and transferred to a clear bottom, black 96-well plate (Greiner Bio-one) at 
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20,000 cells per well in DMEM/F-12 supplemented with 5% fetal bovine serum, 100 

μg/mL penicillin, 100 μg/mL streptomycin, and 250 μg/mL hygromycin B. 48 h after 

transfection the growth media was decanted and wells were washed with 100 μL of 50:1 

HBSS:HEPES assay buffer. Cells were then incubated with 55 μL of Fluo-4 loading 

buffer [30 μL 2 μM Fluo4-AM (Invitrogen), 84 μL 2.5 mM probenacid, in 5.5 mL assay 

buffer] for 30 minutes. Varying concentrations of ligands and controls were added to the 

wells to bring the total volume up to 80 μL in each well and the plates were subsequently 

incubated for 15 min. Plates were then read on a FlexStation3 microplate reader 

(Molecular Devices) at 494/516 ex/em for a total of 90 s. After 15 s of reading, 20 μL of 

1.25 μM DAMGO in assay buffer, or assay buffer alone, was added to the wells to bring 

the total volume up to 100 μL. The changes in Ca
2+

 mobilization were monitored and 

peak height values were obtained using SoftMaxPro software (Molecular Devices). Non-

linear regression curves and IC50 values were generated using GraphPad Prism. All 

experiments were repeated a total of three times. 

 

4.2.4.3 CCR5-hMOR CHO Cells  

CCR5-hMOR-CHO cells were transfected with Gqi5 pcDNA1 using 

Lipofectamine 2000 (Invitrogen) according to the manufacturer’s recommended 

procedure.
157

 Cells were incubated for 6 hours at 37 °C and 5% CO2 and then trypsinized 

and transferred to a clear bottom, black 96-well plate (Greiner Bio-one) at 20,000 cells 

per well in DMEM/F-12 supplemented with 5% fetal bovine serum, 100 μg/mL 

penicillin, 100 μg/mL streptomycin, 250 μg/mL hygromycin B and 800 μg/mL geneticin. 
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48 h after transfection the growth media was decanted and wells were washed with 100 

μL of 50:1 HBSS:HEPES assay buffer. Cells were then incubated with 55 μL of GFP-

fluoforte loading buffer [10 μL 1 μM GFP-fluoforte (Enzo Life Sciences), 84 μL 2.5 mM 

probenacid, in 5.5 mL assay buffer] for 30 min. Varying concentrations of ligands and 

controls were added to the wells to bring the total volume up to 80 μL in each well and 

the plates were subsequently incubated for 15 min. Plates were then read on a 

FlexStation3 microplate reader (Molecular Devices) at 530/555 ex/em for a total of 90 s. 

After 15 s of reading, 20 μL of 1.25 μM DAMGO in assay buffer, or assay buffer alone, 

was added to the wells to bring the total volume up to 100 μL. The same procedure was 

done for CCR5 antagonism, but 50 nM RANTES was used instead of DAMGO for 

stimulation. The changes in Ca
2+

 mobilization were monitored and peak height values 

were obtained using SoftMaxPro software (Molecular Devices). Non-linear regression 

curves and IC50 values were generated using GraphPad Prism. All experiments were 

repeated a total of three times. 

 

4.2.5 Cell Fusion Assay  

 For the cell fusion assay two cell populations were constructed: target cells 

containing CCR5, MOR, CD4, and pT7EMCLuc; and effector cells containing 

pCAGGS-SF162gp160 and pCAGT7pol. The established CCR5-MOR cells (target cells) 

were transfected with the plasmids pcDNA3.1 CD4 (PMID: 17722977) and pT7EMCLuc 

(PMIDs: 9770428, 9349488, and 14625051) using Lipofectamine 2000 (Invitrogen) 

according to the manufacturer’s recommended procedure. HEK-293T (GenHunter 
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Corporation; Nashville, TN, USA; catalog number Q401) cells (effector cells) were also 

transfected with plasmids pCAGGS-SF162gp160 (PMIDs: 10890360, 9737584, and 

8995695) and pCAGT7pol using polyethlenimine (Polysciences, Inc.; Warrington, PA, 

USA; catalog number 23966). Prior to being overlaid, compound dilutions were added to 

a 96-well, white, clear bottom plate at 25 μL of 5 times concentration stock. For 

morphine stimulation assays, morphine stock was added to the 5 times concentrated 

stocks to give a final concentration of 500 nM in test wells. 24 h post transfection, the 

target and effectors cells were detached and overlaid onto each other at a 1:1 mixture in 

the 96-well white, clear bottom plate at a final concentration of 15,000 cells/well and 

incubated at 37 °C and 5% CO2. After an additional 24 h, 96 well plates are allowed to 

reach room temperature in darkness. Once equilibrated, 100 μL of a luciferin-lysis buffer 

solution was added (Bright-Glo Luciferase Assay System, Promega). Plates were allowed 

to incubate for 2 min and read luminescence for each well with a FlexStation3 plate 

reader (Molecular Devices). IC50s were obtained using GraphPad Prism. All experiments 

repeated a total of three independent times.  

 

4.2.6 HIV-1 Infection Assay  

In a 24-well plate, primary human astroglia cells (Sciencell catalog #1901) were 

infected by incubation with the neurotropic HIV-1 strain SF162 and obtained through the 

NIH AIDS Research and Reference Reagent Program.  A concentration of HIV-1 p24 50 

pg /106 cells was used and a no virus condition served as a negative control. Cells were 

treated with and without morphine (500 nM) along with naltrexone (1.5 μM), maraviroc 
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(increasing concentrations of 10, 50, 100, 500 nM), and bivalent compound 49 

(increasing concentrations of 10, 50, 100, 500 nM) 60 minutes before HIV-1 infection. 

After approximately 18 to 20 h the supernatant was removed and stored at -80 °C, cells 

were rinsed twice with PBS and lysed. The lysate was subsequently tested for the relative 

Tat protein expression by using the Luciferase assay system (Promega) by measuring 

luciferase activity. Luciferase activity was measured using a PHERAstar FS plate reader 

(BMG Laboratorytech) and  

 

4.2.7 PCR Studies  

Total RNA was isolated from the CCR5-MOR CHO cell line and two lots of 

primary human astrocytes from two different individuals (ScienCell Research 

Laboratories; Carlsbad, CA, USA; catalog number 1800) using the miRNeasy Mini Kit 

(Qiagen, Inc.; Valencia, CA, USA) and used to generate cDNA templates by reverse 

transcription using the High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems; Carlsbad, CA, USA) according to the manufacturer's instructions. PCR 

reactions were performed in a total volume of 20 μL containing SensiMix SYBR qPCR 

reagents (Bioline USA, Inc.; Tauton, MA, USA) using a Corbett Rotor-Gene 6000 real-

time PCR system (Qiagen, Inc.). PCR conditions consisted of an initial hold step at 95 °C 

for 10 min followed by 35 amplification cycles of 95 °C for 5 s, 55 °C for 10 s, and 72 °C 

for 20 s. Sequences of the primer sets used were forward: 5'- 

CCCAACCTCTTCCAACATTGAGCAA -3' and reverse: 5'- 

AACGGAGCAGTTTCTGCTTCCAGAT -3' for MOR-1; forward: 5'-  
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CTGCTCAACCTGGCCATCTCT -3' and reverse: 5'- 

CTTTTAAAGCAAACACAGCAT GGAC -3' for CCR5; forward: 5'- 

CATGGCACCGTCAAGGCTGAGAA -3' and reverse: 5'- 

CAGTGGACTCCACGACGTACTCA -3' for human GAPDH; and forward: 5'- 

CTGGAGAAACCTGCCAAGTA -3' and reverse: 5'- ACCACTCTGTTGCTGTAGCC -

3' for hamster GAPDH. The specificity of the amplified products was verified by melting 

curve analysis and agarose gel electrophoresis. qRT-PCR data were calculated as relative 

expression levels by normalization against GAPDH mRNA using the 2
−ΔΔCt

 method 

(reference PMID: 11846609). 

 

4.2 Computational Methods  

4.2.1 Small Molecule Construction  

All ligands used in the docking studies were built with standard bond lengths and 

angles using the molecular modeling package SYBYL-X 2.0.  The small molecules were 

assigned Gasteiger-Hückel charges and energy minimized with the Tripos Force Field. 

 

4.2.2 Sequence Alignment and Model Building  

 All molecular modeling was collected using the SYBYL-X 2.0 molecular 

modeling package (Tripos LP, St. Louis, MO) on  dual-core AMD Opteron(tm) 2.4 GHz 

processors. The amino acid sequence of chemokine receptor CCR5 was obtained from 

UniProtKB/Swiss-Prot (P51681). Within ClustalX a multiple alignment was performed 

with a gap opening penalty of 15 using the BLOSUM protein weight matrix series.
175
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Sequence alignment between CCR5 and CXCR4 was further optimized based on the 

most conserved residues among most GPCRs and used for model construction for both 

the inactive and active models. The comparative modeling software, MODELLER 9v8, 

was used to generate 100 homology models for each state using the default parameters.
163

  

 

4.2.3 Model Selection and Quality Assessment  

 Model screening was performed by using the genetic-algorithm docking program 

GOLD 5.1 (Cambridge Crystallographic Data Centre, Cambridge, UK) to dock 

maraviroc into the CCR5 homology models using GOLD score as the fitness function.
164

 

Once receptor model was chosen based upon the discrete optimized protein energy 

(DOPE) scores, fitness function values, and the electronic and steric interactions between 

the ligands and receptor. Further model refinement was done by using molecular 

mechanics based energy minimization in Sybyl-X 2.0. Briefly, the model was minimized 

using a Tripos Force Field with Gasteiger-Hückel charges, a non-bonded interaction 

cutoff of 8 Å with a distance-dependent dielectric constant of ε = 4 being terminated at 

0.05 kcal/(mol Å). The minimized models were then analyzed using PROCHECK and 

ProTable within SYBYL-X 2.0 to ensure the overall quality of the models (i.e., 

acceptable torsion angles, steric clashes, bond lengths, etc.). 

 

4.2.4 CCR5-MOR Heterodimer Model Building 

 The heterodimer was built within SYBYL-X 2.0 using the above described CCR5 

homology model and the mu opioid receptor crystal structure functional dimer (PDB 



161 

 

code: 4DKL).
63

 MOR was crystallized as both a dimer and both a TM5/TM6 and a 

TM1/TM2 dimer interface were observed.
63

 The TM5/TM6 has more extensive packing 

and network of interactions, which make it a more plausible dimer interface. In order to 

construct the heterodimer, one of the MOR units was aligned with the CCR5 homology 

model according to their homology levels. The subsequent MOR was removed and a 

MOR-CCR5 heterodimer was left. Initial heterodimer refinement was done by using 

molecular mechanics based energy minimization in Sybyl-X 2.0. Briefly, the model was 

minimized using a MMFF94 force field with Gasteiger-Hückel charges, a non-bonded 

interaction cutoff of 8 Å, with a distance-dependent dielectric constant of ε = 4, and 

terminated at 0.05 kcal/(mol Å). The minimized heterodimer was then analyzed using 

PROCHECK and ProTable within SYBYL-X 2.0 to ensure the overall quality of the 

models (i.e. acceptable torsion angles, steric clashes, bond lengths, etc.). 

The heterodimer interface had extensive hydrophobic and polar interactions 

similar to the ones seen in the MOR homodimer.
63

 Using APBS, the electrostatic 

interfaces between MOR and CCR5 were mapped (Figure 17).
167,168

  

 

4.2.4.1 Molecular Docking 

The optimized heterodimer model was then subjected to another round of docking 

of the agonists and antagonists. Using GOLD 5.1, the ligands were docked into both the 

heterodimer. The putative binding area was restricted to a 15 Å radius around E283 and 

compound 53 was docked into the receptor a total of 100 iterations using the generic 

GOLD docking parameters.
170,173

 Concurrently, naltrexone was aligned/overlapped with 
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the morphanin antagonist β-FNA within the MOR binding pocket of the heterodimer 

model. The attachment site of the linker to naltrexone allows for the linker to span into 

the CCR5 binding pocket through the TM5/TM6 interface (Figure 18). Therefore, of the 

100 docked poses of maraviroc, the poses with the linker portion pointed towards the 

TM5/TM6 interface were sorted out for further analysis. The pose with the highest 

GOLD score and that was within the proper 21-atom distance to naltrexone (linker 

length: 21 atoms long) was chosen. Once both the naltrexone and 53 binding modes were 

chosen, they were connected to each other using SYBYL X 2.0 with the 21-atom linker 

to yield compound 49. The subsequent bivalent compound was then merged with the 

heterodimer and the whole system was energy minimized using a MMFF94 force field.  

The same procedure was attempted for the 3-position attachment (compound 50). 

While the same binding mode as the 4-position compound 53 was seen, the distance 

between it and naltrexone was too great. During minimization of compound 50 bound to 

the heterodimer, the maraviroc portion came out of the CCR5 binding pocket due to the 

strain the 3-position attachment put on the linker. 

 

4.2.4.2 Molecular Dynamics Simulations 

 All molecular dynamics simulations were run using the Teal cluster housed at the 

Virginia Commonwealth University Center for High Performance Computing. The 

cluster consists of ~2480 64 bit AMD computer cores, each with 2-4 GB RAM/core.  

The heterodimer-49 complex was further analyzed using molecular dynamics 

with the CHARMM force field using NAMD.
169,176,177

 Using the program VMD (Visual 
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Molecular Dynamics), a solvated 150 Å x 150 Å phosphatidylcholine (POPC) was 

constructed on the x-y plane.
178

 The CCR5-MOR bound 49 complex was then properly 

orientated for insertion into the lipid bilayer using the orientations of proteins in 

membranes (OPM) database.
179

 After inserting the protein into the middle of the 

membrane, lipids within 0.8 Å of the protein were removed. Next the system was 

solvated with TIP3 water and equilibrated with 0.15 M NaCl ions. In the completed 

system there were a total of 162385 atoms. A modified CHARMM27 force field was 

constructed with the parameters for compound 49; the online server SwissParam was 

used to calculate the CHARMM force field for the ligand.
180

  

Using NAMD, the system was equilibrated in a three step process. First, 500 ps of 

molecular dynamic simulation was run (with a time step of 2 fs) on only the lipid tails of 

the POPC bilayer while keeping the protein, water, ions, ligand, and lipid-head groups 

fixed. During the second round of equilibration, the protein and ligand were harmonically 

constrained while the rest of the system was allowed to move. The simulation was run for 

500 ps (2 fs time step) while keeping water out of the lipid bilayer. The third step was run 

completely without constraints for 500 ps while keeping a constant area for the water 

box. 

Molecular dynamics stimulation was then run on the equilibrated system for 13 ns 

with a time step of 2 fs with the area of the membrane kept constant. Langevin dynamics 

helped maintained a constant temperature of 310 K and a hybrid Nosé-Hoover Langevin 

piston method was used to keep a constant pressure of 1 atm with an oscillation period of 

200 fs. Electrostatics were maintained using periodic boundary conditions and the 
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particle mesh ewalds method. A 12 Å non-bonded cutoff and a grid spacing of 1 Å per 

point in each dimension while calculating van der Waals energies using a switching 

radius of 10 Å and a cutoff radius of 12 Å. Trajectory analyses were carried out using 

VMD focusing on the heterodimer and 49 interactions.  
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5. Conclusion 

 

 The role of CCR5 in both prostate cancer and neuoroAIDS was explored by 

developing antagonists either targeting CCR5 or the CCR5 – MOR heterodimer. CCR5 

plays a major role in the pro-inflammatory environment that aids in the proliferation of 

prostate cancer cells. First, using molecular modeling and a homology model of CCR5, a 

series of compounds were designed based upon the proposed CCR5 antagonist 

pharmacophore. The developed CCR5 antagonists were able to antagonize CCR5 at μM 

levels and inhibit the proliferation of metastatic prostate cancer cell lines. However, the 

compounds’ cytotoxicity and solubility will limit their use. From the series of 

compounds, compound 48 showed the most promising activity with an IC50 of 11.4 ± 0.2 

μM and 6.5 ± 0.7 μM in M12 and PC-3 prostate cancer cells, and basal cytotoxicity 

around 30 μM. Based upon the available data, the structure-activity relationship suggests 

that the pharmacophore needs to be lengthened and additional polar groups need to be 

adding to increase solubility.   

 Morphine potentiates neuroAIDS and viral invasion, and the putative CCR5 – 

MOR heterodimer may help explain its effects on AIDS pathogenesis and neuroAIDS 

development. Based upon previous bivalent ligand strategies, a bivalent ligand targeting 

the CCR5 – MOR heterodimer was synthesized to contain both a CCR5 and MOR 

antagonist pharmacophore. Several compounds were made, including two bivalent 
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compounds, in order to elucidate the structure-activity relationship of the bivalent ligand. 

In all, bivalent compound 49 proved to have a more balanced pharmacological profile 

between its CCR5 and MOR activity compared to bivalent compound 50. This difference 

can be explained by the difference in linker attachment between the two compounds; the 

4-position attachment is more tolerated, 49, than the 3-position attachment, 50. 

Interestingly, under morphine stimulation, the CCR5 antagonist, maraviroc, fails to 

inhibit HIV-1 infection of astrocytes, while bivalent compound 49 shows full inhibition. 

When the interaction between 49 and the heterodimer was investigated using molecular 

modeling, the results closely matched the experimental data; they suggested that the 

bivalent compound 49 could favorably bind the heterodimer and block viral gp120 from 

binding to CCR5. Overall, compound 49 may be an invaluable tool to help elucidate the 

role of the CCR5 – MOR heterodimer in neuroAIDS.  

In all, the CCR5 antagonists developed in this study may be useful leads for 

prostate cancer therapies for the later, metastatic stages of the disease; while the bivalent 

compounds may be useful as diagnostic tools and molecular probes for determining the 

underlying mechanisms of neuroAIDS development. Using the two different strategies to 

target CCR5 function has shown its usefulness in therapeutics and the multiple roles it 

plays in vivo. 
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