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Abstract

AUTOMATIC SEGMENTATION OF PRESSURE IMAGES ACQUIRED IN A

CLINICAL SETTING

By Anathea Pepperl, Ph.D.

A dissertation submitted in partial fulfillment of the requirements of the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2013.

Major Director: Paul A. Wetzel, Ph.D.

Associate Professor, Dept. Biomedical Engineering

Hospital-acquired pressure ulcers are a major health care concern, costing the United

States approximately $3 billion per year. Development of a pressure ulcer prolongs hos-

pital length of stay by almost 4 days and increases mortality by more than 7%. Despite

the apparent need for pressure ulcer prevention, the incidence of pressure ulcers has

increased almost six times more than the increase in total number of hospitalizations.

One of the major obstacles to pressure ulcer research is the difficulty in accurately

measuring mechanical loading of specific anatomical sites. A human motion analysis

system capable of automatically segmenting a patient’s body into high-risk areas can

greatly improve the ability of researchers and clinicians to understand how pressure

ulcers develop in a hospital environment. Such a system could also reduce costs as-

sociated with patient care and aid in clinical intervention decision-making, such as

ix



determining an effective turning schedule or selecting appropriate support surfaces.

This project has developed automated computational methods and algorithms to

analyze pressure images acquired in a hospital setting. The first step of this algorithm

involves the correct classification of pressure images into appropriate pose classes (left

lateral, supine, and right lateral). The classification algorithm achieved 99% overall

accuracy. The second step of this algorithm uses a kinematic model to estimate the

overall pose of the patient. From the model, high risk areas were extrapolated. The

algorithm accuracy depended on the body site, with the sacrum, left trochanter, and

right trochanter achieving an accuracy of 87-93%.

This project represents the first algorithm to reliably segment pressure images into

high-risk regions of interest, given a variety of poses that patients generally take. The

proposed algorithm generates a statistical summary of each region, allowing clinicians

to study how pressure ulcers may develop in a clinical setting.
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Chapter 1

Introduction

This chapter demonstrates the need for further research in pressure ulcer epidemiology,

particularly as to how progression occurs in the critically ill. First, intrinsic and extrinsic

factors are discussed, followed by a review of the pressure sensing systems currently available.

Lastly, this chapter summarizes the overall research objective and the method proposed in

this project.

1.1 Overview

In the United States, pressure ulcers developed in hospitals affect more than 1.5 million

patients and represent an annual cost of $2.2 to $3.6 billion [1]. Pressure ulcer incidence

studies vary greatly, reporting anywhere from 4% – 49% of patients in a hospital setting

develop pressure ulcers [2, 3, 4].

According to the Healthcare Cost and Utilization Project (HCUP) [5] report, in 2006

there were 503,300 hospital stays during which pressure ulcers were noted. This is a 78.9%

increase from 1993 where there were about 281,300 pressure ulcer related hospitalizations.

During this same time period, the total number of hospitalizations increased by only 15%.

The National Quality Forum argues that pressure ulcers that develop while hospitalized are

preventable with implementation of evidence-based guidelines [6]. However, the discrepancy

1



between this statement and the lack of improvement in pressure ulcer incidence rates points

to a gap in our understanding of pressure ulcer risk.

Figure 1.1: Common anatomical sites of pressure ulcers. Adapted from [7].

Prolonged pressure is certainly a crucial factor in the development of a pressure ulcer.

The weight of the body causes a compressive load on the muscle and skin over the bony

prominences – such as the sacrum, scapula, or calcanae – resulting in tissue death and

necrosis[8, 9]. Figure 1.1 shows the areas deemed at-risk of developing pressure ulcers, par-

ticularly for those who are confined to a hospital bed. However, there exists two conflicting

theories (the deep tissue injury and top–to–bottom models) as to how external pressure

translates to tissue injury. The deep tissue injury model claims that ulcers begin at the

muscle layer near a bony prominence, eventually growing outward until injury is seen at the

epidermis. The top–to–bottom model claims that tissue injury first occurs at the epider-

mal layer and proceeds inward. The deep tissue injury has gained more recent attention,

particularly with the fact that muscle cells are more susceptible to tissue injury [10]. Still,

according to the most recent international survey on pressure ulcer prevalence, of the 6,859

facility–acquired pressure ulcers reported, 4,985 (76%) were Stage I or Stage II superficial

(skin) ulcers[11] while only 642 (10%) were suspected deep tissue injury (DTI). Figure 1.2

illustrates the differences in each of the pressure ulcer stages, as defined by the National

2



Pressure Ulcer Advisory Panel (NPUAP).1 Since this study is concerned with pressure ulcer

development in the critically ill, this higher occurrence of superficial pressure ulcer shows

that the top–to–bottom model is likely the more relevant theory in this research project.

Stage Description
Stage I Intact skin with non-blanchable redness of a localized

area, usually over a bony prominence.
Stage II Partial thickness loss of dermis presenting as a shal-

low open ulcer with a red pink wound bed, without
slough.

Stage III Full thickness tissue loss. Subcutaneous fat may be
visible but bone, tendon or muscle are not exposed.
Slough may be present but does not obscure the depth
of tissue loss.

Stage IV Full thickness tissue loss with exposed bone, tendon
or muscle. Slough or eschar may be present on some
parts of the wound bed.

Unstageable Full thickness tissue loss in which the base of the ulcer
is covered by slough and/or eschar in the wound bed.

Suspected Deep Tissue Injury Purple or maroon localized area of discolored intact
skin or blood-filled blister due to damage of under-
lying soft tissue from pressure and/or shear. The
area may be preceded by tissue that is painful, firm,
mushy, boggy, warmer or cooler as compared to ad-
jacent tissue.

Table 1.1: NPUAP Pressure Ulcer Staging System

1.2 Pressure Ulcers in the Critically Ill

Patients who are critically ill are especially susceptible to pressure ulcers for a number of

intrinsic and extrinsic factors. Braden & Bergstrom developed a conceptual schema to relate

1While the results of the 2008 – 2009 International Pressure Ulcer Prevalence SurveyTMdemonstrates
that facility–acquired pressure ulcers are largely superficial skin ulcers, it is important to note that the
classification “suspected deep tissue injury” was formally introduced to the pressure ulcer staging system
recently[12]. As such, its low incidence may be somewhat attributed to unfamiliarity of hospital staff in
classifying a pressure ulcer as a suspected deep tissue injury. However, the fact still remains that the
majority of facility–acquired pressure ulcers at any given time are described by tissue injury that starts at
the epidermal layer.
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(a) Normal skin

(b) Stage 1 (c) Stage 2 (d) Stage 3

(e) Stage 4 (f) Unstageable (g) Suspected DTI

Figure 1.2: National Pressure Ulcer Advisory Panel’s Staging System. [13]
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(a) Braden and Bergstrom (1987) (b) Defloor (1999)

Figure 1.3: Comparison of conceptual schemas. Reprinted from Defloor [15]

these intrinsic and extrinsic factors to a conceptual model of tissue tolerance[14]. They

theorized pressure ulcers were caused by pressure and tissue tolerance.

Defloor later adapted this model[15], citing that tissue tolerance alone cannot cause

pressure sores. Rather, a sufficiently high pressure sustained for a sufficiently long time will

cause pressure sores. An individual’s tissue tolerance will dictate the maximum threshold for

pressure intensity and duration required to cause tissue injury. Figure 1.3 provides a visual

representation of the two conceptual schemas. Tissue tolerance for pressure is influenced

by both extrinsic and intrinsic factors. This section will outline the various intrinsic factors

that make critically ill patients particularly susceptible to pressure ulcers.

1.2.1 Intrinsic Factors

Intrinsic factors refers to patient-specific characteristics that might make that person more

vulnerable to developing pressure ulcers. Many authors have attempted to identify these

intrinsic factors that predispose certain patient populations to develop pressure ulcers; their

research has led to the development of various risk assessment tools for use in clinical prac-
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tice [14, 16, 17, 18, 19, 20].

Determining which risk factors are most important is a difficult task; in a review of 100

articles by Gosnell [21], 126 different items documented as risk factors for pressure ulcer

development were found. However, there are several factors that have been consistently

named as major determinants of pressure ulcer susceptibility, namely mobility, age, and

nutrition.

Mobility

Mobility is associated with two concerns: the individual’s ability to feel pain or discomfort

and the individual’s physical ability to reposition themselves in response to the painful

stimulus. Healthy individuals regularly change their position in order to relieve pressure.

Keane [22] observed that normal sleeping individuals make an average of one gross pos-

tural change every 11.6 minutes, suggesting that this is the minimum physiological mobility

required in order to maintain healthy tissue. When a patient is unable to perform a postural

change, interface pressures must be relieved, either through manual turning or the use of

pressure-relieving devices. Indeed, much of the costs associated with pressure ulcer preven-

tion revolves around the use of equipment intended to reduce interface pressures caused by

prolonged periods of immobility.

Exton-Smith and Sherwin [23] demonstrated the importance of spontaneous movement

when they counted elderly individuals’ spontaneous movements during sleep. In their study,

patients who made 50 or more movements during the 7-hour observation period had no

pressure ulcers. In comparison, 90% of patients who made 20 or fewer movements developed

ulcers.

Papanikolaou et al. [24] found that patients with reduced mobility were at greater risk

of pressure ulcer than those without reduced mobility. Similarly, Mino et al. [25] found that

patients who are unable to turn over in bed are four times more likely to develop pressure

ulcers than those patients who are capable of turning in bed.
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Age

As individuals age, their skin experiences a number of pathological changes. These changes

alter the elastin and collagen composition of the skin, reducing skin elasticity and ultimately

reducing the skin’s tolerance to pressure [15].

Margolis et al. [26] found a statistically significant relationship between the likelihood

of pressure ulcer development and increased age. In the US, a study of 116 acute care

facilities [27] found that 73% of pressure ulcers developed in those over 65 years of age.

While age is a major factor in pressure ulcer development, clinicians should be cautioned

that individuals of any age can develop a pressure ulcer depending on their condition [28].

Nutrition

The exact influence of nutrition on tissue tolerance, and therefore pressure ulcer development,

is still not well understood [29]. However, compromised nutritional status, such as rapid

weight loss, undernutrition, protein energy malnutrition (PEM), and dehydration, has been

linked to pressure ulcer development [30, 31]. Other nutrition-related risk factors associated

with increased risk of pressure ulcers include low body mass index (BMI), reduced food

intake, and impaired ability to eat independently [32, 33].

Although the exact mechanism by which nutrition affects pressure ulcer development is

unknown, it is reasonable to assume that nutrition may impact an individual’s ability to

withstand the adverse effects of pressure shear and friction.

1.2.2 Extrinsic Factors

Pressure, shear, and friction play the key role in causing pressure ulcers. The role of pressure

is so vital to the understanding of pressure ulcers that it will be discussed in greater detail in

the next section. Shear and friction are forces that may exacerbate the impact of pressure,

resulting in greater tissue damage.
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Shear Forces

Shear is a mechanical stress that is parallel to a plane of interest. When the head of the bed

is elevated, it is thought that shear develops as a result of the patient’s sacral skin adhering

to the bed linen. If the effects of shear are prolonged or exacerbated by the presence of

moisture, localized stretching of the microcirculation of the skin may occur.

With a sufficient shear force, the amplitude of external pressure needed to occlude the

underlying microvasculature is reduced by about half of that required when there is no shear

present [34].

Shear is difficult to study in isolation as it is difficult to apply pressure without causing

shear, or to apply shear without creating compressive force [35].

Friction

The role of friction in pressure ulcer development is not well understood, owing in part to

inconsistent terminology in the literature and failure to identify the use of static or dynamic

friction[36]. One of the earliest authors to study friction and pressure ulcer development

was published Dinsdale in 1974[37]. His study used a swine model to apply friction and a

compressive load; however, it is unclear if friction applied was static or dynamic.

Dynamic friction is thought to exacerbate tissue injury of broken epidermis, or cause an

initial break in the skin. Thus, while friction itself is not a primary factor2 in the development

of pressure ulcers, friction can accelerate tissue injury or delay wound healing.

1.2.3 The Pressure-Time Curve

Both the intensity and duration of a compressive load must be taken into account when

investigating the role of pressure in the development of pressure sores. Several animal models

and clinical research studies have attempted to describe the relationship between the intensity

2Not all friction injuries should be labeled as pressure ulcers. If tissue injury is caused solely by friction,
the injury presents as a visible skin impairment, such as a skin tear or laceration. If, however, the injury
presents as a blister with surrounding purple or maroon discoloration, then a pressure ulcer may be suspected.
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and duration of pressure that can be tolerated without resulting in tissue injury. It is

generally agreed that a parabolic relationship exists between the intensity and duration of

pressure. In other words, while it is possible for tissue to be exposed to a low pressure for a

longer duration without experiencing injury, it is also possible for a high intensity of pressure

applied for only a short period of time to fail to produce tissue injury.

The relationship between intensity and duration was first evidenced in 1942, when Groth[38]

analyzed the histological samples of ulcers produced in the gluteus muscle of rabbits. In the

study, he observed that damage to muscle fibers and capillaries increased with the magni-

tude and duration of the mechanical loads applied. In 1953, Husain[39] applied mechanical

loads of differing intensity and duration to rats; then sacrificed the animals 24 hours after

the initial injury and studied histological samples of the affected areas. He noted that mi-

croscopic changes occur following a pressure of 100 mmHg applied for two hours, indicating

that this might be the injury threshold for skeletal muscle. In 1959, Kosiak[40] used a dog

model for pressure ulcers, illustrating an inverse trend between the magnitude and duration

of pressures necessary before tissue injury occurred. Figure 1.4a includes the raw data Kosiak

used to arrive at his conclusions, in which the symbol 5 indicated that ulceration occurred

and the symbol l indicated that no ulceration was present. Finally, in 1976, Reswick and

Rogers [41] developed an intensity-duration curve based on more than 980 observations in

the Rancho Los Amigos hospital.

While Reswick and Rogers’s pressure-time curve is often cited, it has fallen under scrutiny

in recent years. Gefen (2009) [42] highlights the flaws associated with the simple pressure-

time curve first hypothesized by Reswick and Rogers, pointing to the fact that the curve

cannot be easily applied when pressure is applied for very short or very long periods. For

example, patients undergoing a lengthy surgery of 12 hours or more could expect signs of

ulceration at pressures lower than 25 mmHg. A study of four operating table surfaces by

Defloor et al. [43] showed that none of the mattresses evaluated were able to reduce pressure

below that threshold; and yet the majority of patients undergoing long periods of surgery do
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not develop pressure ulcers [44]. Gefen proposed a sigmoid function to describe the pressure-

time relationship. He defined the limit on the left-side of the curve using the work of Linder-

Ganz et al. [45], which referred to pressures applied directly to muscle tissue. The limit on

the right-side of the curve was found using the work of Gefen et al.[46], from which relative

deformations in the muscle tissue were determined. The importance of Gefen’s sigmoid

function is that it provides a separate maximum intensity threshold (in which tissue injury

will occur regardless of the duration), as well as a maximum duration threshold (meaning

tissue injury will occur if a minimum pressure is sustained for an intolerable amount of

time). Figure 1.4 illustrates how pivotal studies have changed clinical perceptions regarding

the pressure-time curve.

A pressure higher than the capillary pressure slows the flow in the capillaries and lymph

nodes, resulting in insufficient supply of oxygen and nutrients and insufficient evacuation of

metabolic wastes.

1.3 Pressure Mapping Systems

Several instruments for analyzing pressure at the skin-bed interface exist. The most com-

monly used sensors for measuring interface pressures consist of two layers of a flexible material

which have either conductive or capacitive electrodes embedded in a specific pattern. On one

layer, electrodes form a column pattern and in the other layer, electrodes form a row pattern.

The intersection of each row and column represents a unique sensing cell, typically called

a sensel. Research has supported the validity of these sensors, manufactured by Tekscan

(Tekscan, Inc.; Boston, MA) [49, 50] and XSensor (XSENSOR Technology Corporation:

Calgary, Alberta, CANADA) [51, 52, 53].

A fiber-optic tactile sensor (KINOTEX sensor; NITTA Corp, Osaka, Japan) has also

been shown to be a valid instrument for measurement of interface pressures [54]. This

sensor is comprised of urethane foam which acts as a scattered medium, optical fiber as an
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(a) Kosiak(1959) (b) Reswick & Rogers (1976)

(c) Gefen (2009)

Figure 1.4: A comparison of pressure time curves. (a) and (b) Reprinted from Sacks [47].
(c) Reprinted from Gefen [48]

illumination source and energy detector, and optical receiver and a transducer. The sensor

operates on the principle that deformation of the scattered medium results in a localized

change to the illumination energy intensity.

Other studies have observed surface pressure and shear forces by attaching sensors directly

to the skin of subjects [55]. Due to the critical condition of the subject population and the

observation time, this method is deemed too invasive for use in the subject population.

While several studies have utilized sensors to measure pressure at the skin-surface in-

terface, it is important to note that the majority of these studies can be placed into one
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of two categories: (1) studies of healthy individuals; or (2) studies of stable patients with

paraplegia. Few studies involve measuring the interface pressures experienced by hospital-

ized patients for an extended period of time and, to date, the author has found only one

study [54] that monitored the interface pressures of 30 postoperative patients continuously

for up to 48 hours.

1.4 Research Objective

One of the major obstacles to pressure ulcer research is the difficulty in accurately measuring

mechanical loading of specific anatomical sites. It is because of this that much of the current

research focuses on mechanical loading of a specific area, namely the sacrum, or summarize

pressure statistics based on pressure across the whole body. However, hospital-acquired

pressure ulcers also develop on the heel, scapula, and trochanter of patients.

The aim of this research project is to develop an algorithm for the segmentation of full-

body pressure images acquired from the XSensor pressure sensing system into anatomical

sites that are highly susceptible to pressure ulcers, or regions of interest (ROIs). The pro-

posed system must be robust enough to account for various poses3 that patients may assume

in a clinical setting. The system will allow clinicians and researchers to extract information

necessary to guide clinical intervention decisions and to further improve understanding of

how pressure ulcers develop in a hospital setting.

This project also demonstrates the need for studying interface pressure over specific body

sites in a controlled experiment used to evaluate the effects of a major risk factor on pressure

ulcer development. Because immobility has long been considered a risk factor, but has rarely

been studied in isolation, the project focuses on the role that immobility has on interface

pressure, as measured in whole body scans and at different body sites.

3Here, “pose” is used in lieu of “position” to describe the particular way a patient is lying in bed. While
the term “position” is more widely used in nursing research, the term “pose” is more commonly used in the
field of computer vision. Additionally, “position” conveys a specific location on the coordinate axes, whereas
“pose” conveys a kinematic description in the sense that body parts and joints are described in relation to
one another.
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1.5 Outline of Following Dissertation

The following dissertation is organized as follows. Chapter 2 provides an overview of human

motion analysis4, providing a comparison between bottom-up and top-down approaches.

Chapter 3 gives a description of the hardware and software involved in collecting pressure

images in a clinical setting. Chapter 4 gives detailed information as to how the patient

pose was determined based on the acquired pressure images. Chapter 5 provides the pose

estimation algorithm, which segments the pressure images into various regions of interest.

Chapter 6 describes one application using segmented pressure images in order to better

understand an important clinical factor in pressure ulcer development. Lastly, Chapter 7

provides general conclusions about the proposed research and its contributions to the field.

4Motion analysis and movement analysis may be used interchangeably throughout the literature. Here,
motion analysis is used as it tends to be used in the field of computer vision; movement analysis tends to be
used in the field of biomechanics.
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Chapter 2

Human Motion Analysis Literature

Review

This chapter discusses the broad topic of human motion analysis. Methodologies deemed

appropriate for the proposed aims of this research project are identified. Finally, design

considerations for the proposed system, which will be used to segment acquired pressure

images into areas deemed high-risk for pressure ulcer development, are outlined.

2.1 Human Motion Analysis Functional Structure

Human motion analysis is currently one of the most active areas of research in the field

of computer vision, and has many applications, including surveillance, medicine, sports re-

habilitiation, video gaming, and human-computer interaction. The field of human motion

analysis can be divided into three areas of focus based on their function: human detection,

tracking, and activity recognition.1 Human detection involves extracting the object of inter-

est (here, the human body) from a scene. Depending on the application, human detection

1Several of the comprehensive surveys referenced in this section may divide the functional structure
slightly differently. Aggarwal & Cai[56] divide human motion analysis into body structure analysis, tracking,
and recognition. Moeslund & Granum [57] use four areas to describe the functional structure: initialization,
tracking, pose estimation, and recognition. However, the categories can still more or less be fit into the three
listed here.
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may also include the labeling of human body parts, during which the human body is di-

vided into segments connected by joints. Tracking involves finding feature correspondences

between either the whole body or body segments in order to locate them in consecutive

frames. Activity recognition analyzes the pose over time in order to categorize the actions

performed by the subject. While there exists overlap between these three areas, this classifi-

cation system provides a good framework by which to understand the field of human motion

analysis. Given the scope of the proposed research project, the area of human detection and

the associated task of segmenting the detected body into meaningful body parts is of the

most interest.

2.2 Human Detection

Human detection is a broad field and there are various ways of classifying the different

methodologies that exist. Gavrilla[58] chose to divide the subject into three parts: 2D

approaches without explicit shape models, 2D approaches with explicit shape models, and

3D approaches. Aggarwal & Cai [56] provided a broader classification scheme, dividing

instead between model-based and non-model-based approaches, and then making further

classifications within the two groups. Poppe [59] also chose to divide the area into two main

subjects: model-based (or generative) and model-free (or discriminative).

2.2.1 Generative vs Discriminative Approaches

Generative approaches employ Bayes’ rule in order to create a full probabilistic model of all

parameters. Generative, or model-based, approaches employ a priori information about the

human body. Generative approaches consist of a modeling phase and an estimation phase.

The modeling phase requires constructing a model that can be described using a finite set

of parameters in order to model the body configuration, body shape, and appearance. The

estimation phase involves finding the set of parameters that best fits the model to the ob-
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served image. The complexity of the estimation phase depends on the number of parameters

used to describe the model. When fewer model parameters are used, it is generally easier

to converge to a solution; however, if not enough parameters are used, the solution may not

adequately describe the image.

Within the general field of machine learning, discriminative models seek to model the

conditional probability distribution P (y|x) in order to predict y from x. Discriminative, or

model-free, approaches do not assume a priori information about the human body. Instead,

model-free approaches seek to describe human movement using simple low-level 2D features.

Techniques using a model-free approach typically divide the image by superimposing a grid

over the region of interest. Within each tile, a simple feature is computed. Features that

have been used include: the sum of normal flow[60], the count of foreground pixels[61], and

either color or pixel intensity[62]. The computed features are then assembled to form a

feature vector, which is used to describe the state of movement over time.

The main difference between generative and discriminative methods lies in whether or

not the probability distribution of the chosen image features is modeled (generative) or

not modeled (discriminative). Generative and discriminative models have very different

characteristics and the decision to use one versus the other is largely application-dependent.

Model-free approaches do not suffer from initialization problems, as model-based approaches

do. However, model-free approaches typically experience problems in dealing with self-

occlusion. Additionally, the computed features must be able to generalize well over the

invariant parameters and distinguish well between the variant ones. Examples of generative

and discriminative models are listed in Table 2.1.

2.2.2 2D vs 3D Approaches

The decision to use a 2D approach as opposed to a 3D approach is largely application

dependent. 2D approaches are “effective for applications where precise pose recovery is not

needed or possible due to low image resolution”, such as tracking pedestrians in a surveillance
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Generative Models Discriminative Models
Gaussian mixture model Logistic regression
Hidden Markov model Support vector machine

Naive Bayes Neural networks
Boltzmann machine Boosting

Probabilitistic context-free grammar Linear regression
Latent Dirichlet allocation Conditional random fields

Table 2.1: Examples of Generative and Discriminative Models

setting. 2D approaches “represent the easiest and best solution for applications with a

single human involving constrained movement and a single viewpoint”. Examples include

recognizing gait lateral to camera, or recognizing vocabulary of distinct hand gestures made

facing the camera.

On the other hand, 3D approaches are more appropriate for indoor (i.e. “controlled”)

environments where one “desires high level of discrimination between various unconstrained

and complex movements”. 3D provides a more accurate representation of physical space,

as well as better prediction and handling of occlusion and collision. Also, 3D approaches

are typically used for action recognition because they are able to provide more meaningful

features.

2.2.3 Kinematic vs Shape Models

Model-based approaches use a human body model, which should consider the kinematic

structure and body dimensions. Additionally, model-based approaches require a function

that, given the model parameters, outputs an approximation of how the model appears in

the image domain.

Human body models can be divided into two categories: kinematic models and shape

or appearance models. Kinematic models describe the body using body part segments that

are linked by joints. Joints are described by the number of degrees of freedom (DOF) they

possess, which indicates how many directions the joint can move. Increasing the number

of DOF increases the model complexity and increases the number of possible poses. One
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way to limit the pose space is by applying kinematic constraints, similar to the methodology

of Ju et al. in [63]. The advantage of this technique is that the pose space is limited

to only physically possible poses; however, assigning these constraints also increases the

computational complexity of the model. Another option is instead to limit the possible

parameter values during the estimation phase.

Shape models describe the body as rectangular or trapezoid-shaped patches for 2D meth-

ods, or as volumetric shapes (e.g., spheres, ellipsoids, cylinders) or surfaces (e.g., mesh of

polygons). A major disadvantage of shape models is that they typically rely on an initializa-

tion step, in which the observed person must adopt a specific pose. Feature parameters are

then estimated using this pose and then used to track the body part in subsequent images.

2.3 Image Features

In computer vision and image processing, features are used to denote a piece of informa-

tion which is relevant for solving the computational task. Depending on the application,

pixel values alone are highly susceptible to variation due to different clothing and lighting

conditions. Extracting certain image features instead of using the original image may im-

prove discrimination and reduce the effect of these variations. Additionally, it may be more

computationally cost effective to reduce the feature size and base a decision on a small set

of features. Feature vectors are designed to be easy to extract, small, and have the abil-

ity to provide the information necessary to discriminate between different poses or objects.

Features can be categorized into two groups: dense features and sparse features.

2.3.1 Dense vs. Sparse Features

Dense features use complete image information at the cost of memory and computational

speed. However, dense features generally have greater discriminative power than sparse

features. Commonly used dense features are the silhouette image vector, silhouette distance
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transform image vector, histograms of oriented gradient (HOG), and moments. Commonly

used sparse features include turning angle, scale-invariant feature transforms (SIFT), and

speeded up robust features (SURF).

In order to decrease the computational cost required of dense features, it is common to

reduce the feature space. Feature reduction is concerned with keeping only the features that

contribute the greatest amount of information necessary to discriminate between different

poses. Principal Component Analysis (PCA) is a common method for reducing the number of

features. PCA transforms a highly correlated feature space into a reduced set of uncorrelated

variables, called principal components. Principal components are ordered such that the first

principal component accounts for as much of the variability in the data as possible.

2.3.2 Commonly Used Features

Silhouettes

Silhouettes and contours can be extracted robustly when backgrounds are reasonably static.

Silhouettes are also insensitive to variations due to color and texture. However, their per-

formance is limited due to artifacts, such as shadows or noisy background segmentation.

Silhouettes also suffer from depth ambiguities and self-occlusion.

Histograms of Oriented Gradients

Histograms of oriented gradients [64, 65] or HOGs are a dense feature that were recently

introduced and have proven to be one of the most robust features, enabling pose recovery

without having to extract a person’s outline. Histograms of oriented gradients obtain a set

of basis vectors that correspond to local features on the human body, such as the shoulders

and bent elbows. When using these vectors to reconstruct an image with clutter, the edges

that correspond to the person are obtained. Okada & Soatto [66] used histograms of oriented

gradients to demonstrate the effectiveness of pose-dependent feature selection to both human

detection and pose estimation.
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Moments

In image processing, an image moment represents a particular weighted average of the image

pixels’ intensities, or a function of these weighted averages. The use of moments for pattern

recognition was first described by Hu [67] in 1962, in which Hu derives a set of seven scale,

translation, and rotation invariant normalized central moments. The first order moment is

the center of gravity of an intensity image; the second order moment is the width of an image

intensity in one direction. However, the traditional Hu’s invariant set is not independent nor

complete, as shown in the works of Flusser [68] and Suk [69].

Zernike moments, however, give full translation, scale, and rotation invariance to any

arbitrary order. Zernike moments are constructed using a set of complex polynomials which

form a complete orthogonal basis set defined on the unit disk. Because of the compact nature

of moment features, image moments are typically applied in image compression.

Contour Distance and Turning Angle

Contours represent the outline of the silhouette and, because of their relative ease of extrac-

tion, are a commonly used feature. In order to extract the contour, a beginning point is

chosen on the edge of the silhouette. The chain code algorithm is then implemented to pro-

ceed around the silhouette, extracting the distance traveled and the turning angle required

to reach the next point in the contour. The procedure continues until the algorithm arrives

at the beginning point, or the edge of the image is reached. The distance is continuous and

always returns to zero. The turning angle is discontinuous.

Typically, the distance function maxima represent appendages, as they are the points

furthest from the object of interest. A major disadvantage of using the contour feature

vector is the assumption that the silhouette is continuous and represents the entire body. In

other words, if an appendage is disjointed from the main silhouette, either through occlusion

or bad segmentation, that object will not be included.
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Scale-Invariant Feature Transform (SIFT)

The motivation behind SIFT is to be able to describe an image object by finding interesting

points on the object, which can then be used to recognize that object, regardless of changes

in image scale, noise, and illumination.2. Typically, such points lie on high-contrast regions

of the image, such as object edges. An important characteristic of these extracted features

is that their positions relative to one another remain unchanged within a video sequence.

However, the relative positions of these features would not remain unchanged in the case of

articulated or flexible objects if such objects’ geometry were to change between two images

in a sequence.

SIFT applies a difference of Gaussians function to a series of smoothed images, then finds

interesting points based on where maxima and minima values occur in the computed image.

Points and edges with poor contrast are discarded. The interesting points are then described

by their dominant orientations (i.e., using HOG). In order to make the algorithm more robust

to local affine distortion, the pixel area around the interesting points are considered.

Speeded Up Robust Features (SURF)

SURF3 is a robust local feature detector partly inspired by the SIFT descriptor. SURF is

computationally more efficient than SIFT and may be more robust against certain image

transformations compared to SIFT.

While SIFT computes the difference of Gaussians over an image sequence, SURF com-

putes the integral image which can be computed extremely quickly. For features, it computes

the sum of the 2D Haar wavelet responses around the interest point.

2An application of the SIFT algorithm is patented in the US [70].
3An application of the SURF algorithm is patented in the US [71].
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2.4 Discussion

This literature review has provided several design options for the proposed system. Low-

level design considerations include whether the proposed system will use a generative or

discriminative approach; 2D or 3D approach; or use kinetic or shape body models. High-

level design considerations provide information for decisions about which image feature(s)

to use in order to describe the acquired images.

Because of their robustness in dealing with self-occlusion, the generative approach is

likely more appropriate for this application. Additionally, because a generative approach

models the whole body configuration, this approach provides the added benefit that regions

of interest and statistical information can be directly extracted from the optimized body

configuration.

The acquired pressure images will have low image resolution and can be considered as

a monocular camera problem. Because of these properties of the acquired pressure images,

a 2D approach provides an adequate level of accuracy without much of the complexity

associated with 3D approaches. Therefore, a 2D approach is likely more appropriate for the

proposed system.

Patients may have limited mobility and may not be able to move into an initialization

pose. Shape models typically rely on this initialization step and are therefore not appropriate

for this application. Therefore, the proposed system will use a kinematic body model to

divide the body into body part segments linked by joints.

Finally, dense features are used to describe the acquired pressure images because of

their better discriminative power. Because the pressure images have low image resolution,

increased memory costs are anticipated to be small. Additionally, because general hospital

practices attempt to distribute pressure as evenly as possible over the body surface, acquired

pressure images may not have enough strong characteristic features (edges and corners)

needed for sparse feature approaches to be effective.
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Chapter 3

Data Acquisition

3.1 Hardware

Data were collected at the patient bedside; study protocols were approved by the Virginia

Commonwealth University IRB. Upon enrollment, XSensor, Inclinometer, and Actigraphy

data collection began. XSensor and inclinometer were collected for three consecutive days;

actigraphy was collected for seven days (Table 3.1).

Data fs Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
XSensor 2 Hz X X X
Inclinometer 2 Hz X X X
Actigraphy 1 Hz X X X X X X X

Table 3.1: Data collection schedule. XSensor and inclinometer data were collected continu-
ously for the first 3 days at a sampling frequency of 2 Hz. Actigraphy data were collected
continuously for 7 days at a sampling frequency of 1 Hz.

3.1.1 XSensor Pressure Imaging System

The pressure sensing system (XSENSOR Technology Corporation: Calgary, Alberta, CANADA)

consists of a 48x144 sensing array of capacitive sensors. Each sensor has a spatial resolution

of 0.5 in, for a total sensing area of 24 in x 72 in. The system is calibrated to a pressure
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range of 10–200 mmHg and has an accuracy of ±10% full scale. The system operates at

an ambient temperature of 10–40◦C (50–104◦F) and ambient humidity of 5%–90% relative

humidity[72, 73]. Pressure data were collected with a sampling frequency of 2 Hz, with each

frame consisting of 48 x 144 pixels. Data were stored continuously on a Dell laptop located

in the patient’s room using XSENSOR’s proprietary software program. Associated data files

had a .xsn extension.

3.1.2 Inclinometer

Patient backrest elevation was continously monitored using a custom-built device called

an inclinometer. The inclinometer hardware consists of three MEMS-based accelerometers

(Analog Devices, Model ADXL203, Norwood, MA) and a data acquisition device (NI USB-

6009, National Instruments, Austin, TX). The three accelerometers were attached to each of

the three steel pivoting sections of the hospital bed, located at the backrest, hip, and knee.

A custom LabView Virtual Instrument (VI) was developed in order to apply correct gain

and offset parameters to the analog input voltage in order to determine the associated angle.

Backrest elevation data were collected with a sampling frequency of 2 Hz, with each sample

consisting of three angles for the elevation of the head of bed, hips, and knee flexion. Data

were stored continuously on the same Dell laptop used to collect XSensor data in .txt files,

each file containing two hours of stored backrest elevation data.

3.1.3 Actigraphy

Patient movement was continously monitored using actigraphy motion loggers (Ambulatory

Monitoring Inc., Ardsley, NY). Motion loggers were worn on the patient’s non-dominant wrist

and ankle, as described in [74]. Motion loggers consist of a piezoelectric ceramic cantilever

beam, which generates a voltage proportional to movement. Actigraphy data were collected

in Proportional Integrating Measure (PIM) mode, which is a measure of the area under the

conditioned transducer signal. PIM mode, therefore, not only measures the frequency and
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duration of motion, but also provides a numerical value to represent activity level or rigor

of motion. Actigraphy data were collected with a sampling frequency of 1 Hz. Data were

stored locally on the motion logger and downloaded to a Dell laptop once the study session

was complete. Data were stored in AMI’s proprietary software program. Associated data

files had a .ami extension.

XSensor pressure
sensing system

Head of bed
elevation

Actigraphy

XSensor A/D
converter

National
Instruments
USB-6009
DAQ card

Laptop

Figure 3.1: Data Acquisition Flow Diagram

3.2 Software

3.2.1 Data Synchronization

Acquired pressure images were processed using MATLAB R2011b on a destop with Intel(R)

Core(TM) i7 CPU running a Windows 64-bit Operating System. XSensor (.xsn) files and

actigraphy (.ami) files were exported to .txt files using their respective proprietary software.

Arm and wrist actigraphy and backrest elevation data were synchronized with XSensor

frames using a linear interpolation (Figure 3.2).

3.2.2 Pressure Image Preprocessing

The raw pressure images obtained from the XSensor pressure sensing system were subject to

several artifacts as a result of type of sensors used and the clinical environment. The most
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Figure 3.2: Signal Processing Flow Diagram

common artifacts were the presence of spurious artifacts and saturated sensor areas following

interaction of the pressure sensing system and a radiology screen. Figure 3.3 shows how an

X-ray screen causes one sensor to reach a saturation point. This saturation point remains

as a high-value point, even after the removal of the X-ray screen.

Spurious artifacts were removed using the MATLAB built-in function bwareaopen, which

removes all connected components that have fewer than p pixels from the binary image. A

threshold value of 4 pixels (≈1 in2) was found to be ideal for deleting small artifacts without

potentially deleting important objects, such as the patient’s heels.

Because of its insensitivity to extreme values, a median filter was found to be the best

method of removing saturated sensor areas. However, because a median filter tends to

blur the image and might reduce the magnitude of valid peak pressures, the median filter

was applied selectively to areas of very high gradient. In other words, if the magnitude of

the image changed rapidly in one particular area, a median filter was applied. This was

determined by finding which pixels had a gradient magnitude greater than σ·∇I
n

, where σ is

a user-determined factor, ∇I is the gradient magnitude, and n is the number of non-zero

gradient pixels. For the pressure images collected a σ of 5 was used. The procedure was

found to handle saturated sensor areas while preserving true peak pressures better than an

adaptive filter, such as a Wiener filter.
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(a) before X-ray (b) during X-ray (c) after X-ray

(d) before X-ray, filtered (e) during X-ray, filtered (f) after X-ray, filtered

Figure 3.3: Artifacts are removed using selective median filter
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Chapter 4

Pose Classification Algorithm

4.1 Introduction

Marker-less pose classification is a common area of research in the field of computer vision.

However, its application to clinical settings and patient monitoring has only recently been

studied. Previous methods for monitoring patient position required markers, or worn sensors.

The earliest work is presented by Harada et al. [75, 76, 77], in which a motion tracking system

based on the physical forces exerted on the mattress surface is described. Yousefi et al. [78, 79]

used a Force Sensing Array to classify five different patient poses: supine, left Yearner, right

Yearner, left Foetus, and right Foetus. Ostadabbas et al. [80, 81] extended the work of her

colleague to create a resource-efficient planning algorithm designed to provide nurses with a

more effective turning schedule. Grimm et al. [82, 83] created a pose classification system to

improve workflow during a diagnostic tomographic imaging session.

This chapter compares the performance of two classification techniques in order to catego-

rize a patient’s pose as left lateral, supine, or right lateral. The classification models included

in this comparison were: a multi-layer perceptron (MLP) neural network and a classification

and regression tree (CART). The predictor variables considered were: the number of acti-

vated sensors on the left side of the image, the number of activated sensors on the right side
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of the image, the center of pressure row, the center of pressure column, peak pressure value,

contact area, peak pressure row, and peak pressure column. Because it is unclear which

features may be important in the classification model, feature selection was implemented

using a stepwise regression analysis. Performance of classification techniques were compared

using sensitivity, specificity, positive predictive ratio, and negative predictive ratio.

4.2 Materials and Methods

4.2.1 Data

Pressure images were acquired using the XSensor Pressure Imaging System described in

Section 3.1.1. The images included in the dataset are a subset from the Skin Integrity

and Backrest Elevation (SIBRE) Study conducted at the Virginia Commonwealth Univer-

sity(NIH R01 NR010381-01; M.J. Grap, PI). Patients included in the study were mechani-

cally ventilated recruited from the hospital’s Medical Respiratory intensive care center (ICU),

Surgical Trauma ICU, and Neuroscience ICU. Patients were at various levels of sedation and

generally required nursing intervention in order to re-position. Ten patients were randomly

selected and a two-minute session, during which the patient was turned, was extracted from

each patient. Thus, each patient has data representative of at least two poses.

Analysis was performed in 2397 images (398 left lateral, 1479 supine, 520 right lateral).

Acquired images have a resolution of 48x144 pixels, with each pixel having a spacial resolution

of 1.27 cm (0.5 in) for a total sensing area of 60.96 cm x 182.88 cm (24 in x 72 in). Patient pose

was determined by visual inspection of the images. Several transition images (e.g., during a

transition from left lateral to supine) were included in the dataset and a classification was

forced. Figure 4.1 shows the pose classifications of ten patients, as determined by expert

visual inspection.

Before building models, the data set was randomly split into training, testing, and val-

idation sets. For the neural network, 60% (n = 1438) of the data were reserved for the
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Figure 4.1: Pose classifications of ten patients. The vertical dotted line separates the ten
datasets of each of the ten patients (labeled with a “V” followed by an id).

training set, 20% (n = 479) for test set, and 20% for validation set. Data were partitioned

in such a way as to preserve the classification ratios of the dataset (i.e., so as not to generate

a training set with only supine images). The classification tree was cross-validated using a

10-fold partition. MATLAB was used to design the models and compare model performance.

4.2.2 Potential Features

Potential features included the number of activated sensors on the left half of the image, the

number of activated sensors on the right half of the image, the x- and y-coordinates of the
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center of pressure (COP), the peak pressure, the x- and y-coordinates of the peak pressure,

and the total area of activated sensors. The total area and COP data were obtained directly

from XSensor software. The other features were obtained using MATLAB software.

4.2.3 Feature Selection

Feature selection reduces the number of features used for model construction by excluding

the redundant or irrelevant features. Feature selection is preferable to feature extraction or

transformation techniques (i.e., PCA, ICA) because the goal of this step is to understand

which features are meaningful. Here, sequential feature selection was applied to iteratively

add features to the model until there is no improvement in prediction. The selection process

was validated with 10-fold cross-validation without stratification.

4.2.4 Classification Techniques

Multi-Layer Perceptron Neural Network (MLP)

MLP is a feedforward neural network that is trained to classify inputs according to target

classes using a back-propagation algorithm. The MLP consists of an input layer, a hidden

layer(s), and an output layer. The input layer consists of the features used to describe the

training set and the output layer consists of vectors of all zero values except for a 1 in element

i, where i indicates which target class the sample represents. This report uses a MLP with

one hidden layer composed of 10 neurons (Figure 4.2).

Here, the Levenberg-Marquardt algorithm is chosen as the back-propagation training

method because of its speed. The application of Levenberg-Marquardt to neural network

training is described in [84]. The Levenberg-Marquardt algorithm uses an approximation of

the Hessian matrix1

H = JTJ (4.1)

1The Hessian matrix is the square matrix of second-order partial derivatives of a function. The second
derivative test uses the Hessian matrix to find extrema of a function.
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Figure 4.2: The neural network is composed of an input layer, one hidden layer of 10 neurons,
and an output layer.

and the gradient is represented by

g = JT e (4.2)

where J is the Jacobian matrix that contains first derivatives of the network errors with

respect to the weights and biases, and e is the network error vector.

The Levenberg-Marquardt algorithm uses the approximation to the Hessian matrix to

update network weights in a Newton-like manner:

xk+1 = xk − (JTJ + µI)−1JT e (4.3)

where µ is a scalar that acts as a damping factor such that adjustments to the weight vector

x are decreased as the equation converges to a solution. When µ = 0, equation 4.3 becomes

Newton’s method, using the approximate Hessian matrix found by equation 4.1. Conversely,

when µ is large, equation 4.3 becomes gradient descent with a small step size. Because

Newton’s method is faster and more accurate near an error minimum, µ is decreased after

each successful step so that the Levenberg-Marquardt algorithm behaves similar to Newton’s

method as it approaches convergence.
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Classification and Regression Tree (CART)

CART is a non-parametric decision tree learning technique that can be used for regression

or classification, depending on whether the dependent variable is numerical or categorical,

respectively. MATLAB trees are binary; in other words, each step in a prediction involves

checking whether the value of a single predictor variable is less than or greater than a

particular threshold value. The basic procedure for creating a decision tree is:

1. Start with all input data and examine all possible binary splits on every predictor.

2. Select a split with the best optimization criterion.

3. Impose the split.

4. Repeat recursively for the two child nodes.

5. Stop splitting when any of the following hold:

(a) The node is pure, meaning that the node contains only observations of one class.

(b) There are fewer than a minimum number of observations in the node.

(c) Any split imposed on this node would produce children with fewer than MinLeaf

observations.

For a regression problem, mean-squared error is a common optimization criterion. For a

classification problem, such as this, commonly used optimization criteria include the Gini’s

diversity index, twoing, and deviance. For this study, the Gini diversity index was used. The

Gini diversity index of a node is

g(t) = 1−
∑
i

p2(i|t), (4.4)

where the sum is over the classes i at the node, and p(i|t) is the observed fraction of classes

with class i that reach the node t. The Gini index is a measure of node impurity: a node
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with just one class (a pure node) has Gini index 0. Conversely, when the observations in a

node are evenly distributed across all categories, the Gini index takes its maximum value of

1− (1/k), where k is the number of categories.

The Gini criterion function for split s at node t is defined as

Φ(s, t) = g(t)− pLg(tL)− pRg(tR) (4.5)

where pL is the proportion of cases in t sent to the left child node and pR is the proportion

sent to the right child node. Therefore, the split s that maximizes the value of Φ(s, t) is

chosen in order to optimize the tree classification.

The CART can also be pruned for simplicity. Here, the tree was pruned using the test

sample in order to determine the best pruning level. Figure 4.3 illustrates the pruned CART.

4.3 Results

A comparison of the sensitivity (SEN), specificity(SPE), positive predictive rate (PPR), and

negative predictive rate (NPR) are presented in Table 4.1. Both MLP and CART performed

well with classification accuracy approximately 99% for all three pose classifications.

Closer inspection of the incorrect classifications revealed that disagreements occurred

when evaluating a transition image, where pose may be ambiguous. The confusion matrices

produced by the two clasification methods (Figure 4.4) reveal that, while both algorithms

generally have good accuracy, CART is somewhat better at correctly classifying the transition

images.

The pose classification algorithm performs better than other classification methods. Hsia

et al. [85] achieved 81.4% average classification accuracy differentiating between six different

sleeping postures (right and left Yearner, right and left Foetus, log, and supine) Yousefi et

al. [78] report an overall accuracy of 97.7%.
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Figure 4.3: The pose classification tree separates images based on the number of activated
sensors on left and right halves of image (nnz left and nnz right, respectively), as well as the
COP row and COP column.

4.4 Discussion

Repositioning is generally regarded as one of the most important and effective measures for

preventing pressure ulcers. The classification algorithm presented here provides an efficient

and accurate way of monitoring re-positioning. The algorithm performs with an overall

accuracy of 99.5%, which is better than the results of several other studies.

Additionally, this study uses pressure images acquired from patients in a hospital setting.

This demonstrates that the classification method is, in fact, robust enough to handle artifacts
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Pose Model SEN SPE PPR NPR
Left Lateral NN 99.50 99.90 99.50 99.90
Left Lateral CART 99.50 99.95 99.75 99.90
Supine NN 99.73 99.24 99.53 99.56
Supine CART 99.86 99.35 99.60 99.78
Right Lateral NN 98.85 99.89 99.61 99.68
Right Lateral CART 99.23 99.95 99.81 99.79

Table 4.1: Comparison of the performance of the models

(a) MLP Neural Network (b) CART

Figure 4.4: Results of MLP Neural Network and CART are compared using their confusion
matrices.

due to manual turning, such as hospital staff leaning on the bed to re-position the patient,

or instances where the patient is partially off the sensing area.

This method can be used for patient monitoring and, ultimately, for aiding clinical

decision-making with regard to effective turning schedule and pressure redistribution. Ad-

ditionally, the developed pose classification algorithm is utilized in segmenting the patient’s

body into at-risk regions of interest, as described in the following chapter.
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Chapter 5

Segmentation Algorithm

5.1 Introduction

Recently, human motion analysis has seen a rapid advancement. However, human motion

analysis is typically applied to optical sensors. Only recently have alternate image and video

modalities, such as range and pressure sensors, been considered. Human motion analysis

holds great promise in the field of pressure ulcer research.

Studying the mechanical loading intensity and duration of specific anatomical sites may

greatly enhance our understanding of pressure ulcer development. This would involve con-

tinuous pressure monitoring in a clinical setting and data analysis would require post hoc

analysis of a large amount of data. In order to decrease the time demands of such analysis,

a human motion analysis system is proposed in order to automatically segment pressure

images into specific anatomical sites deemed high-risk for developing pressure ulcers.

There have only been a few attempts at such a system. Sakai et al. [54] developed a

thermoelastic polymer mattress in order to record whole-body interface pressure for up to

48 hours in a clinical setting. The collected pressure images were segmented into three

parts: head-dorsal, buttocks, and lower limb regions (Figure 5.1a). The head-dorsal and

buttocks regions were separated by the waist, which was defined at the slimmest point in
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the image. The buttocks and lower limb regions were separated by the base of the thigh,

which was considered as the first column in which no sensing points were activated below

the waist. While simple, this segmentation algorithm fails to describe the variety of images

produced by the pressure sensing system used in this research project. It assumes that the

patient is in a supine pose, that the head-dorsal and buttocks region are a single connected

component separate from the heels, and that the patient’s waist remains in a fairly vertical

plane. Moreover, the system does not account for occlusion due to clinical interventions.

Grimm et al. [82] developed a segmentation procedure in order to improve clinical work-

flow during a diagnostic tomographic imaging session (Figure 5.1b). Both range imaging and

pressure imaging sensors were considered in order to estimate patient pose. The algorithm

used an articulated 3D body model rendered using OpenGL. The model pose parameters

were optimized using a genetic algorithm. Anatomical landmarks were chosen based on how

easily they can be differentiated, not necessarily on their clinical relevance to pressure ulcer

research.

The proposed project describes a markerless motion analysis system that can eliminate

the manual analysis required in order to segment pressure images into high-risk regions.

Information provided by such a system can greatly improve the ability of researchers and

clinicians to understand how pressure ulcers develop in a hospital environment. As a conse-

quence, the system could also guide decisions in clinical interventions.

5.2 The Model

The 2D articulated model of the human body used to generate a hypothesis silhouette was

composed of connected ellipses(Figure 5.2). The model configuration is described by the

vector θ ∈ R23, in which θ is decribed by the tuple (x, y, B) where x ∈ R8 and y ∈ R8

describe the 8 points used to define the connected major axes of the 7 ellipses and B ∈ R7

describes the minor axes half-lengths of the ellipses.
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(a) Sakai (2009)

(b) Grimm (2012)

Figure 5.1: Sakai et al. [54] assumed a specific patient pose for segmentation (a). In contrast,
Grimm et al. [82] developed a robust segmentation algorithm using a kinematic model.
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Figure 5.2: 2D articulated body model

Because the 2D patient pose and articulation in the coronal plane (e.g., the plane parallel

to the hospital bed) holds sufficient information, the articulation of the model is restricted

to movement in this plane. This reduces the dimensionality of the pose search space.

As described in Harada [75], a full body model was not able to handle the lower arm and

hand positions well because these body parts generally do not appear in measured pressure

distribution images. Therefore, these body segments were simply excluded from the model.

The articulated model for all three poses is depicted in Figure 5.2.
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5.3 Preprocessing

Pressure images were preprocessed using the procedure described in section 3.2.2. However,

silhouettes still proved noisy, with jagged boundaries, spurious pixels, or missing inner pixels.

5.4 Pose Optimization

Pose classification was determined using the CART algorithm described in Chapter 4. Fol-

lowing this step, pose optimization was achieved in a two-part procedure. First, an approx-

imation of the input parameters θ were obtained by sampling several pose configurations

and determining which configuration best minimized the cost function (as described in sec-

tion 5.4.4). The approximated parameters θi were further refined using the Nelder-Mead

simplex method in order to minimize the cost function. Such that the final parameters θ̂

satisfied

θ̂ = Min
θ
f(I|θ) (5.1)

where the cost function f(I|θ) is explained in Section 5.4.4.

5.4.1 Finding Extremities

In order to initialize a framework for potential skeleton models, the algorithm first searched

for the extremities (head and feet) within the image. Extremities were considered as the

points furthest from the center of pressure. The center of pressure was calculated as:

(µx(I), µy(I)) = (

∑
x ripi∑
x,y pi

,

∑
y ripi∑
x,y pi

) (5.2)

The Chamfer distance was computed for all points within the silhouette. The points with

the greatest Chamfer distance were found and an agglomerative hierarchical cluster analysis

was performed in order to separate the furthest points into the correct extremity clusters.

If the patient was supine, then points were recursively included in the cluster analysis until
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three separate clusters were identified. If the patient was in a lateral left or lateral right

position, then the algorithm was repeated until two separate clusters were identified.

The cluster corresponding to the patient’s head was assumed to be the cluster closest

to the top of the image (e.g., the cluster with the least row values). In the case where the

patient was supine, the left heel was differentiated from the right heel and assumed to be

the cluster closest to the left of the image (e.g., the cluster with the lesser column values).

5.4.2 Sampling Procedure

Once the extremities were found, their values were entered into the pose parameter vector

θ. The points between the extremities were determined by sampling potential values that

could be found in a clinical context. Potential angles between points were determined using

normal range of motion values [86]. The pertinent normal range of motion values used for

determining these locations are summarized in Table 5.1. Distances between points and the

half-length minor axes values for b were determined based on observed value ranges directly

from the acquired pressure images. This was used as opposed to actual patient measurements

because the acquired pressure images may not reflect normal values well due to folding of

the sensor or changes in backrest elevation.

For this experiment, a total of 100 potential pose parameter vectors were generated for

each image. The model was set to each of these vectors and their cost evaluated using the

cost function (Equation 5.3). The vector that had the lowest cost was passed to the next

step for further optimization.

5.4.3 Cost Function Minimization

The pose optimization algorithm is based on the Nelder-Mead, or downhill simplex, method

as described in Lagarias et al. [87]. The Nelder-Mead simplex method is a commonly used

direct search method for minimizing an objective function in a many-dimensional search

space. The method uses the concept of a simplex, which is a special polytope of N + 1
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Joint Motion Range (◦)
Neck (Cervical Spine) Flexion(tilt head towards chest) 0-45

Extension(tilt head back) 0-60
Lateral Extension (tilt head towards shoulders) -45–45

Hip (Lumbar Spine) Abduction (leg crosses center-line) 0-45
Adduction (leg moves away from center-line) 45-0

Lateral Flexion(tilt towards side) 0-25
Flexion(forward from waist) 0-125

Extension(lean backwards from waist) 115-0
Knee Flexion 0-130

Table 5.1: Normal Values for Range of Motion of Joints used in skeleton model, adapted
from [86].

vertices in N dimensions. The method approximates a local optimum of a problem with

N variables when the objective function varies smoothly and is unimodal (e.g.,the function

has no local maxima). The method achieves this by modifying the simplex repeatedly by

reflecting, expanding, contracting outside, contracting inside, or shrinking the simplex (see

Appendix B). The iteration of the Nelder-Mead simplex method terminates when the cost

function f(I|θ) has converged to a minimum (i.e., no longer decreases) or when a maximum

number of iterations is reached.

5.4.4 Image Cost Function

In order to evaluate how well the hypothesized silhouette fit with the acquired pressure image,

a cost function similar to that used by Balan et al. [88] was applied. The cost function

provides a measure of similarity between the image silhouette, F I , and the hypothesized

silhouette, FH .

In order to compare the image silhouettes, if a pixel belongs to the image silhouette (e.g.,

p(x, y) ∈ F I) but not the hypothesized silhouette (e.g., p(x, y) 3 FH), the error is computed

based on the shortest distance between that pixel and the hypothesized silhouette, and vice

versa. In order to compute this distance, a Chamfer distance map is created for the the

image silhouette, CI , and for the hypothesized silhouette, CH . The generated silhouettes
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and Chamfer distance maps are depicted in Figure 5.3.

The final silhouette should minimize the error generated by the hypothesized silhouette

exceeding the image silhouette (FH ·CI) as well as the error generated by the hypothesized

silhouette failing to completely overlap with the image silhouette (F I ·CH). The cost function

f(I|θ) minimizes both these constraints by applying a weighting term and summing the two

errors over all pixels, such that

f(I|θ) =
1

|p|
Σp(aF

H
p · CI

p + (1− a)F I
p · CH

p ) (5.3)

where a = [0, 1] and is intended to weigh the first term more heavily because images sil-

houettes will generally be wider than the region of interest due to pressure redistribution

techniques.

Figure 5.3: The construction of the image cost function is illustrated. The image in the
top left illustrates the acquired pressure image. The image in the bottom left illustrates the
connected ellipse tree. The hypothesized and foreground silhouettes are shown. Chamfer
distance maps hold a value of 0 inside the respective silhouettes. Silhouette distance compar-
ing differences from hypothsized skeleton to true skeleton (top right), and differences from
true skeleton from hypothesized skeleton (bottom right).
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5.5 Determining Regions of Interest

A label map was created in order to mark the regions of interest on the pressure image.

Sacrum or Trochanter

If the patient was supine, then the pixels enclosed by the third ellipse from the top were

marked as sacrum. If the patient was in a lateral position, then the pixels that were enclosed

by the third ellipse were marked as right or left trochanter.

Scapula

The scapula was marked only in the supine position. The midline of the scapula coincided

with the major axis of the second ellipse from the top. Thus, pixels to the left of the major

axis were marked as the left scapula and pixels to the right of the major axis were marked

as the right scapula.

Heels

Heels were determined as the connected component nearest to the point marking the heel. In

order to ensure a good heel candidate, the connected component had to meet a size range.

If the size requirement was not met, then heels were considered to be any pixel within a

distance dh of the heel point. If the patient was in a lateral position, then only one heel was

assumed on the pressure sensing area.

5.6 Experimental Results

The automatic segmentation results were compared to the model placements of an expert.

A custom-built MATLAB graphic user interface (GUI) was designed to enable the expert to

move model markers over acquired pressure images easily (Figure 5.4).
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Figure 5.4: An expert manipulated the model over the acquired pressure images using a
custom-built segmentation app.

Results were based on how well the automatic segmentation algorithm was able to find

the same peak pressure location as the user for each region of interest. If the automatic

and manual segmentations disagreed on peak pressure location, then the average distance

(in pixels) between the two peak locations were determined. Additionally, the ability of the
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automatic segmentation algorithm to accurately classify a pixel in the image as belonging

to the region of interest or not was computed using the equation

accuracy =
TP + TN

TP + FP + FN + TN
(5.4)

where TP represents the number of pixels correctly classified within the ROI, TN represents

the number of pixels correctly classified as being outside the ROI, and the denominator

represents the total number of pixels in the image.

However, because an expert is likely to segment a smaller area, it may be more fitting to

evaluate the percent overlap, compared to the total area in the ROI marked by the automatic

algorithm and by the expert. The equation for area overlap then is

overlapexpert =
(TP + FP )expert ∪ (TP + FP )alg

(TP + FP )expert
(5.5)

overlapalg =
(TP + FP )alg ∪ (TP + FP )expert

(TP + FP )alg
(5.6)

where the numerator represents the number of pixels that were classified by both the expert

and the algorithm as belonging in the ROI, and the denominator represents the total number

of pixels that the expert and the algorithm classified as belonging in the ROI, respectively.

Table 5.2 summarizes the accuracy of the segmentation algorithm. Overall, the results

show that the algorithm was generally better at finding the sacrum and trochanter.

ROI Agreement(%) Error (pix) Accuracy(%) Overlap of Manual(%) Overlap of Auto(%)
Right Scapula 63.7881 15.7531 97.5935 58.0082 65.3025
Left Scapula 67.6262 14.9238 97.6719 63.0185 64.7535
Right Heel 45.0146 13.8007 99.6508 46.5476 48.1120
Left Heel 51.4393 15.8370 99.7713 46.2912 47.3665
Sacrum 87.4009 15.1943 96.1754 73.0380 76.0113
Right Trochanter 90.6133 24.2657 99.2751 65.4739 62.9130
Left Trochanter 93.6170 14.9430 99.2849 61.3709 57.0138

Table 5.2: Segmentation Results

A closer look at typical errors in placement of landmarks by the automatic segmenta-

tion algorithm reveals why heels had the highest error. In the left lateral example shown
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Figure 5.5: A manually segmented pressure image is compared with an automatically seg-
mented pressure image, with the patient in a left lateral position. The sampling procedure
generated a valid parameter vector; however, the function minimization procedure deviated
from the expert user’s configuration. This is because the function minimization attempts to
match the silhouette as closely as possible.

in Figure 5.5, the algorithm correctly assumed that the connected component located in

the bottom of the image was the patient’s right heel. However, in the supine example in

Figure 5.6 shows that the patient’s left foot was not on the pressure sensing area. While the

expert showed this by marking the left heel on an empty region of the image, the algorithm

assumes that the heels must exist in the image. Therefore, the algorithm picked the two

connected components in the image most likely to be heels.

Additional examples in the supine position (Figures 5.7 and 5.8) are provided. Figure 5.7

shows how well the function minimization algorithm was able to improve the initial guess pro-
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Figure 5.6: A manually segmented pressure image is compared with an automatically seg-
mented pressure image, with the patient in a supine position. Note that the patient’s left
foot is not on the pressure sensing area and the expert user marks the location of the right
foot in an ambiguous area. The algorithm instead assumes that both left and right feet are
in the sensing area and marks the patient’s right calf as both left and right heel.

vided by the sampling procedure. Figure 5.8 shows how poorly the algorithm approximates

the pose parameters when the head is not easily located in the pressure sensing area.

In the right lateral example shown in Figure 5.9, the algorithm placed the right heel at an

appropriate location. However, the problem lies in the labeling algorithm following landmark

placement. Because the labeling algorithm seeks to label only one connected component in

the image as the heel, it picked the connected component closer to the bottom edge (the

patient’s toes) instead of the connected component that actually represents the heel. This

problem with the labeling algorithm is not inherent only in cases where the heel and toes
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Figure 5.7: A manually segmented pressure image is compared with an automatically seg-
mented pressure image, with the patient in a supine position. Note that the the sampling
procedure is unable to mark the right feet accurately. The function minimization procedure,
however, is able to address the problem and generates a good approximation of both the left
and right feet. Note also that the function minimization procedure improves the fit of the
sacrum and the scapula.

are present, but also when there are artifacts due to the pressure sensing equipment, such

as in the case of interruptions across a sensing strip.

5.7 Conclusion

Limitations

As stated in section 5.4.1, extrema were assumed to be within the image and located at

the points furthest from the image center of pressure. This assumption may lead to poor

50



Figure 5.8: A manually segmented pressure image is compared with an automatically seg-
mented pressure image, with the patient in a supine position. Note that the expert user
assumed the head was off the pressure sensing area and placed head markers in a region
with no pressure. The automatic algorithm, however, assumes that the head is located in
the pressure sensing area and attempts to place the skeleton in such a way that this condition
is satisfied.

segmentation if the head and feet are not within the sensing area. Additionally, in the case

where the knees are bent (e.g., the foot is tucked), then the assumption that the feet are the

most distant point will cause poor extrema identification.

The proposed algorithm uses a top-down approach, using the image to propose a whole

skeleton structure. A bottom-up approach, in contrast, would extract body segments based

on their appearance, and then assemble a skeleton structure. Combining the proposed al-

gorithm with a bottom-up approach may overcome the limitations associated with finding

extremities. For example, a bottom-up approach might involve training examples to identify
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Figure 5.9: A manually segmented pressure image is compared with an automatically seg-
mented pressure image, with the patient in a right lateral position. The sampling procedure
assumes the heel to be the lowest component of the image, and therefore incorrectly marks
the patient’s toes as a heel. The function minimization algorightm is able to more accurately
mark the heel because of the added cues from the silhouette of the patient’s leg.

body parts with strong features, such as the head and feet. If the identifier is unable to find

the head and feet in the image, then the algorithm would use the top-down approach.

The average computation time, with 100 randomly generated samples, was 16.3 seconds

per frame. Unfortunately, this process is too computationally expensive to be feasible in a

real-time environment. However, the accuracy of the algorithm suggest that this may be

an effective way to initialize a skeleton, especially if combined with a bottom-up approach.

Predictive techniques (such as Kalman filtering) can then be used in order to perform fast

tracking of body segments.
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Contribution

The segmentation algorithm presented is a major contribution to pressure ulcer research.

With the exception of Sakai et al. [54], the algorithm described here is the only method that

has been validated using pressure images acquired in a clinical setting. Similar to Sakai,

the presented algorithm is capable of dealing with inconsistencies due to changes in hospital

bed surface, i.e., changes in perceived body segment lengths due to changes in bed angles.

However, it proves to be more robust than Sakai’s algorithm, which must assume that the

patient is supine. Additionally, the proposed algorithm is robust enough to handle a variety

of poses encountered in a clinical setting.
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Chapter 6

Role of Self-Positioning

6.1 Introduction

Immobility has long been identified as a critical risk factor [89, 90, 91, 92, 93]; however,

only a few studies have shown how independent self-positioning might mitigate the risk of

pressure ulcer development. Exton-Smith and Sherwin [23] conducted one study in a hospital

geriatric unit and observed that 90% of elderly patients who made fewer than 10 movements

over a seven-hour period developed a pressure ulcer. However, those who made at least 54

movements did not develop a pressure ulcer. Barbenel et al. [94] observed the movements

of 40 hospital patients and showed that patients identified as being at risk of developing

a pressure ulcer according to the Norton clinical assessment made a reduced number of

movements. Additionally, spontaneous movements made by patients may be responsible for

a temporary increase in skin blood flow, thereby reducing the risk of pressure ulceration [95].

The inability to re-position is especially crucial in patients who may have reduced mobility

due to pharmacologic therapies (sedatives, analgesics etc), pain, or medical conditions or

treatments that limit movement. These patients may all be impaired in their ability to

reposition in response to discomfort from compressive forces. In particular mechanically

ventilated, critically ill patients, who are placed in elevated backrest positions (>30◦) to
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reduce the incidence of ventilator associated pneumonia, and may have varying levels of

alertness, may be at greater risk for pressure ulcer formation due to inability to reposition.

However, little is known about the effect of an individual’s re-positioning ability based

on their behavior state (alert, sedated) on pressure at the skin-bed interface, particularly

in response to discomfort following changes in head-of-bed elevation. Therefore the specific

aim of this section is to describe the effect of behavior state (alert, sedated) and backrest

elevation on skin interface pressures. Using adult volunteers in a laboratory setting, skin

interface pressure data were collected during simulated behavioral states reflective of those

found in the critically ill (eg, alert or sedated) at varying degrees of backrest elevation.

6.2 Methods

6.2.1 Sample and Setting

The study was conducted in Virginia Commonwealth University, School of Nursing Clinical

Learning Center. Study procedures were approved by the Institutional Review Board. A

sample of 50 healthy participants was obtained from volunteers, 18 years of age or older.

Exclusion criteria included sacral skin disorders, neuromuscular disorders (eg, cerebral palsy

or Parkinson’s disease), inability to move (eg, stroke), or inability to speak English. Self-

reported demographic information was collected from the study participants (age, weight,

height, and gender).

6.2.2 Procedures

Skin interface pressure was measured using the XSensor pressure sensing mat; subject be-

havior state was measured using actigraphy; and backrest elevation was measured using an

inclinometer. The equipment is described in detail in Chapter 3.

Equipment was set up on a standard hospital bed and actigraphy watch was placed

on the participant’s non-dominant wrist. To ensure that each participant was in the same
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body position in relation to the hospital bed’s bending points, a calibration procedure was

performed before data collection began. The calibration procedure required the backrest

elevation to be raised to a 45◦; the participant was asked to align their body’s natural

bending points with the bed’s bending points; then, the bed was lowered.

During data collection, backrest elevation was increased to a randomly selected angle

(30◦/45◦/60◦) and the participant was asked to simulate a sedated state for 30 seconds.

During a sedated state, the participant refrained from repositioning his or her body in

response to discomfort.

The participant was then asked to simulate an alert state for 30 seconds. During an

alert state, the participant could reposition his or her body until a comfortable position was

reached. If the participant felt he or she was already in a comfortable position, then no

repositioning was necessary. The head of bed was then lowered to a flat position. After a 30

second rest period, the procedure was repeated until all data for all three study angles were

collected.

6.2.3 Data Analysis

Descriptive statistics were computed to describe the age, weight, height, and gender for the

sample of participants. Segmentation was completed manually by an expert observer using a

graphic user interface (GUI) created using MATLAB. Pressure images were segmented into 5

regions of interest that represent the body areas where skin interface pressure effects are most

often seen when in a supine position: left scapula, right scapula, sacrum, left heel, and right

heel. Descriptive statistics for pressure within the whole body and at each body segment

were completed for each behavior state. Random effects models were used to examine the

effects of operator and position on pressure. Predictor variables considered were condition

(alert/sedated), angle (30◦/45◦/60◦), the interaction between the two, BMI, actigraphy on

the arm, contact area, total area, the upper leg and the lower leg angles. Statistical analysis

was performed using (SAS/JMP).
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Demographic N %

Gender
Male 9 18
Female 41 82

Race

Asian 5 10
Black or African
American

5 10

Whie 36 72
Other 4 8

Ethnicity
Hispanic or Latino 1 2
Not Hispanic or
Latino

49 98

Variables Mean SD

Age (years) 30.04 10.98
Height (inches) 66.8 3.19
Weight (lbs) 155.78 38.51
BMI 24.39 4.93

Table 6.1: Demographic Data of Healthy Participants for Repositioning Study

6.3 Results

6.3.1 Participants

Fifty participants were recruited for this study. Participants were primarily young females,

who were non-Hispanic, and white (Table 6.1).

6.3.2 Peak Pressure

Peak pressure measured across the whole body, sacrum, and heels generally increased with

increased backrest elevation; peak pressure measured across the scapula generally decreased

as backrest elevation increased (Figure 6.1). Peak pressure measured over the whole body was

typically greater in the alert condition than the sedate condition (Figure 6.1a). There was a

significant interaction between condition and angle as related to peak pressure (p=0.0369).

Thus the differences in peak pressures between the states are not the same for all backrest

elevation angles. Specifically, peak pressure differences between the conditions were greatest

when backrest elevation was 45◦ and least when backrest elevation was 30◦, as shown in
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Figure 6.1a.

Peak pressure experienced at the sacrum tended to increase as backrest elevation in-

creased (Figure 6.1b). Peak pressures at the sacrum were significantly greater during the

alert condition at backrest elevations of 30◦ and 45◦. At backrest elevation of 60◦, there was

no significant difference between the simulated states.

Peak pressures experienced at the right and left scapula tended to decrease as backrest

elevation was increased (Figure 6.1c, 6.1d). Simulated condition had no significant effect on

peak pressure on the left scapula at backrest elevations of 30◦ and 45◦. Simulated condition

had a significant, but relatively small, effect on peak pressure on the right scapula at backrest

elevations of 30◦ and 45◦, with alert condition peak pressures greater by 1.03 mmHg at 30◦

and 0.73 mmHg at 45◦. When backrest elevation was 60◦, there was a slight difference in

both scapula, with alert condition peak pressures lower by 1.93 mmHg and 0.75 mmHg in

left and right scapula, respectively.

Peak pressures experienced at the left and right heels were significantly less for the alert

condition at backrest elevations of 45◦ and 60◦. At backrest elevation of 30◦, the left heel

had slightly lower peak pressures during the alert state by 3 mmHg. However, the right heel

showed no significant differences between peak pressures.

BMI was significantly related to peak pressure (p<0.0001). Specifically, a higher BMI

was associated with a decrease in peak pressure. Age, weight, height, and gender did not

have significant effects on peak pressure.

6.3.3 Average Pressure

Average pressures measured across the whole body tended to increase with increased backrest

elevation. Average pressures were significantly greater for the alert condition. However,

differences in average pressure were no more than ±1.0 mmHg such that, while statistically

significant, they are not likely to be clinically relevant.

There was a significant interaction between condition and angle as related to average

59



pressure (p<0.0001). The higher the BMI, the higher the average pressure. Sedated subjects

had lower average pressure at 30◦, 45◦, and 60◦ than alert subjects, though differences were

smaller and non-significant at 60◦. As angle increased, so did the average pressure for both

alert and sedated subjects. Within subject type (alert versus sedated), average pressure at

45◦ was significantly larger than that for 30◦, and average pressure at 60◦ was significantly

larger than that for 45◦. BMI was significantly related to average pressure (p<0.0001).

6.3.4 Additional Findings

BMI was found to be significantly related to both average pressure and peak pressure. For

this reason, its effect on pressure within the different conditions was explored further. Obser-

vations were divided further into whether or not the participant was overweight (BMI>30).

From this analysis, it was found that participants who were overweight experienced signifi-

cantly lower peak pressures than participants with normal weight, as shown in Figure 6.2a.

Participants who were overweight did not experience any statistically significant differences

as a result of simulated condition; in other words, there was no difference in peak pressure

depending on alert or sedated simulated condition. Participants with normal weight, how-

ever, had statistically significant differences between alert and sedated simulated conditions,

especially as backrest elevation increased.

6.4 Discussion

Patient repositioning can play a crucial role in the prevention of pressure ulcers [96]. Typ-

ically, nurses reposition a patient in an effort to reduce skin interface pressures at bony

prominences or to achieve interface pressures below a threshold of 32 mmHg. However, few

studies have demonstrated the role of a patient’s ability to self-position.

Volunteers experienced greater peak and average pressure across their whole body after

they had re-positioned themselves. This contradicts the suggested hypothesis that self-
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positioning is initiated in order to reduce pressure. This may demonstrate that interface

pressure alone is a poor indicator of patient discomfort.

As supported by the literature, interface pressures tend to increase as backrest elevation

increases [97, 55]. When individual body parts were segmented, the peak pressures occurring

in the sacrum tended to increase with backrest elevation, while peak pressures in both scapula

tended to decrease. This illustrates the tendency for pressure to be off-loaded from the

scapula and instead distributed to the sacrum as the patient is elevated closer to a sitting

position. In other words, pressure on the whole body increases with backrest elevation;

however, some body parts decrease in pressure while others increase. This illustrates the

importance of measuring pressure at different parts of the body in order to understand the

effects of various clinical interventions on interface pressure.

Higher BMI led to higher average pressure, but lower peak pressure. This may indicate

that those with higher BMI had better pressure distribution across their body area. This

is similar to previous studies, in which low BMI is associated with increased pressure ulcer

risk [98, 99, 100]. With regard to how peak pressure in the sacrum behaved with respect to

changes in elevation or simulated state, each elevation increase showed a significant increase

in peak pressure except within the sedated condition comparing 45◦ to 60◦. In terms of

average pressure across the sacrum, those observations in which an alert state was simulated

were significantly greater than when a sedated state was simulated, for all backrest elevations.

Regardless of simulated state, each elevation increase showed a significant increase in average

pressure.

Peak pressure in scapula generally decreased as backrest elevation increased; however,

these decreases were significant for both right and left scapula only within the observations of

a simulated alert state, when comparing 45◦ to 60◦ and 30◦ to 60◦. Peak pressures collected

during a simulated sedate state were generally greater than those collected during an alert

state. When participants were in an alert state, sacrum peak pressures tended to be greater

than during the sedated state, but scapula peak pressures tended to be lesser. This indicates
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that participants may have felt more comfortable distributing pressure largely across their

sacrum in order to relieve pressure applied to their scapula.
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(a) Whole body (b) Sacrum

(c) Left Scapula (d) Right Scapula

(e) Left Heel (f) Right Heel

Figure 6.1: Effect of backrest elevation on peak pressure
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(a) Whole body (b) Sacrum

(c) Left Scapula (d) Right Scapula

(e) Left Heel (f) Right Heel

Figure 6.2: Effect of Body Mass Index (BMI) on peak pressure
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Chapter 7

Conclusions

7.1 Summary

Pressure ulcers are a persistent health care concern of national significance, with an es-

timated yearly cost of $3 billion in the United States alone. Reducing interface pressure

remains one of the most effective methods for reducing pressure ulcer incidence and severity.

However, studying the effect of interface pressure on pressure ulcer development in a hospital

setting has proven difficult. Pressure ulcers may develop after several days of hospitalization;

therefore, the study of pressure ulcer development may require several days of continuous

monitoring. Such monitoring results in an enormous amount of acquired data, which can be

difficult to interpret. Furthermore, continuous data acquisition in a critical-care setting is a

difficult task in itself and patient motion is often sporadic and non-periodic.

The presented research applies human motion analysis techniques in order to automat-

ically segment pressure images acquired in a hospital setting. The algorithm determines

patient pose with a traditional classification algorithm. A model-based approach is applied

to the acquired pressure image and the image is segmented into clinically relevant regions of

interest. The algorithm is robust to some instances of occlusion as well as certain cases of

the object of interest exiting the sensing area.
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The dissertation presented here makes the following contributions to the area of pressure

ulcer research:

• Provides a reliable method for classifying patient pose in a hospital setting. This

method can be used to study the efficacy of turning operations in pressure ulcer devel-

opment.

• Presents an automatic segmentation algorithm specifically designed for marking clini-

cally relevant regions of interest. The algorithm can be used in a hospital setting and

is the most complete algorithm to date for use in pressure ulcer studies.

• Demonstrates the importance of segmenting pressure images into regions of interest.

Additionally, the study with healthy volunteers provides some insight as to how such

risk factors as immobility and BMI might affect pressure ulcer development.

7.2 Future Work

While the presented work provides a robust automatic segmentation method, future work

can improve the algorithm’s performance. Potential areas include:

• Exploring the use of bottom-up approaches. Bottom-up approaches have been used to

identify strong image features, which are assumed to be body parts. Recently, human

motion analysis has made advances in combination techniques that take advantage of

the good qualities of both bottom-up and top-down approaches.

A possible way of incorporating the technique into the presented algorithm may be

to use a bottom-up approach to improve the locating of image extremities. The head

and feet can be assumed to have strong identifying characteristics. In the absence of

finding the head and feet using a bottom-up approach, the algorithm can revert to the

presented method of finding extremities. Conversely, the algorithm can assume that

those parts are not included in the sensing area and act accordingly. This amendment
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may also improve performance by making the algorithm better able to handle unusual

instances when the head and feet are off the bed.

• Improving algorithm performance. One of the major issues with algorithm performance

was the assumption that the patient’s head and heels were present on the pressure

sensing area. However, this was not always the case. A solution to this problem

might be to have several kinematic models and decide beforehand which model is the

most appropriate to apply to the image. The integral histogram is a popular method

to speed up computer vision tasks. Implementing this algorithm may be effective in

deciding whether the patient’s head and heels are present in the image and deciding

which model (head-less or normal) is more appropriate for applying to the image.

• Allowing manual input of patient data. Using patient height may help the algorithm

achieve better results. Additionally, the algorithm does not yet handle cases where

patients who have undergone amputation.

• Reducing the average image processing time. Currently, the computational cost of

the algorithm prohibits its use in a real-time application. One possibility for improv-

ing processing speed may be to translate the algorithm into a different programming

language. However, MATLAB code is optimized for matrices, which lends itself well

to image analysis. Therefore, it is uncertain how much speed can be gained from an

alternate programming language. Additionally, the use of parallel computing has not

yet been explored.

• Improving kinematic constraints. There were a few instances when the optimization

algorithm proposed an improbable pose in order to explain the image. Improving the

kinematic constraints of the model (i.e., improved enforcing of joint angles) may lead

to better overall performance. However, this will add complexity to the model, and

increased computation time may be sacrificed for improved performance.
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• Implementing a motion tracking algorithm. Motion tracking algorithms gain efficacy

in the presence of strong image descriptors and/or periodic motion. Because these are

not valid assumptions for the acquired pressure images, such methods were not initially

used for the algorithm. However, an effective use of a motion tracking algorithm may

be to initialize the model using the algorithm described here, then use the motion

tracking algorithm to speed image analysis for consecutive frames.

• Implementing algorithm directly into the XSensor software. Currently, XSensor does

not even support exporting data into MATLAB files. Even with this software change,

algorithm speed-up is possible. As the need for pressure ulcer research grows, how-

ever, it may be beneficial for XSensor to implement automatic segmentation into their

proprietary software.

Additionally, this algorithm’s application extends to several other areas, including:

• Use in studies to determine the importance of potential risk factors. The role of age

and nutrition are still not well understood; pressure image studies may be used to

determine if the pressure-time threshold changes with respect to these factors. The

segmentation algorithm can be used to determine if certain regions of the body are

more greatly influenced compared to other areas.

• Use to determine the efficacy of clinical interventions for pressure ulcers. In this dis-

sertation, an individual’s ability to re-positioning was explored, and then extended to

the global impact of patient mobility. Other clinical interventions that can be explored

are: the effectiveness of turning operation, heel protective devices, continuous lateral

rotation therapy (CLRT), or the positioning of pillows and wedges. There may also

be the potential for further studying patient mobility through the ability to discern

between spontaneous patient-initiated movement and turning operation initiated by

hospital staff.
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• Use in other pressure imaging applications. The presented algorithm is relatively simple

and easily adaptable to other applications that involve analyzing the movements of an

articulated model.
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Appendix A

Ellipses

An ellipse is a planar curve that results from the intersection of a cone by a plane in a way

that produces a closed curve. The equation of an ellipse centered at the origin and whose

major and minor axes coincide with the Cartesian axes is

x2

a2
+
y2

b2
= 1 (A.1)

The radius in the x-direction is a and in the y-direction is b. The longer of the two radii is

known as the semi-major axis length and the other is the semi-minor axis length.

In matrix quadratic form, the equation for an ellipse A.1 can be written as

(
x y

) 1
a2

0

0 1
b2


x
y

 = 1 (A.2)

xᵀ

 1
a2

0

0 1
b2

x = 1 (A.3)

xᵀE−1x = 1 (A.4)
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In the most general form E is a symmetrix matrix

E =

A C

C B

 (A.5)

and its determinant det(E) = AB − C2 defines the type of conic

det E


> 0 ellipse

= 0 parabola

< 0 hyperbola

(A.6)

Non-zero values of C change the orientation of the ellipse. The ellipse can be arbitrarily

centered at xc by writing it in the form

(x− xc)ᵀE−1(x− xc) = 1 (A.7)

Since E is symmetrix it can be rewritten as

E = XΛXᵀ (A.8)

where X is an orthogonal matrix comprising the eigenvectors of E.

Conversely, equation A.7 can be represented in polynomial form by considering the equa-

tion of the form

(x− (x0, y0))
ᵀ

a c

c b

 (x− (x0, y0)) = 1 (A.9)

and expanding to obtain

e1x
2 + e2y

2 + e3xy + e4x+ e5y + e6 = 0 (A.10)
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where e1 = a, e2 = b, e3 = 2c, e4 = −2(ax0 + cy0), e5 = −2(by0 + cx0), and e6 = ax20 +

by20 + 2cx0yy − 1. The ellipse has only five degrees of freedom, its center coordinate and

three unique elements in E. For a non-degenerate ellipse e1 6= 0 and equation A.10 can be

rewritten in normalized form

x2 + E1y
2 + E2xy + E3x+ E4y + E5 = 0 (A.11)

such that the polynomial equation for the ellipse has only five unique parameters.

A.1 Fitting an Ellipse to a Set of Boundary Points

Given a set of points (xi, yi) that define the boundary of an ellipse, the polynomial form of

the ellipse given by A.11 can be used such that



y21 x1y1 x1 y1 1

y22 x2y2 x2 y2 1

...

y2N xNyN xN yN 1





E1

E2

E3

E4

E5


=



−x21

−x22
...

−x2N


(A.12)

The above equation is solvable for N ≥ 5.
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Appendix B

Nelder-Mead Simplex Algorithm

MATLAB’s built-in function fminsearch uses the Nelder-Mead simplex method as described

in Lagarias et al. [87]. The Nelder-Mead simplex algorithm is a derivative-free optimization

method, which minimizes a real-valued function f(x)for x ∈ Rn. The Nelder-Mead considers

search-space parameters as the vertices of a simplex, a geometric object determined by an

assembly of n+ 1 points, p0, p1, · · · , pn, in the n-dimensional space such that

det

p0 p1 · · · pn

1 1 · · · 1

 6= 0 (B.1)

This condition ensures that two points in R do not coincide, three points in R2 are not

colinear, four points in R3, and so on. Thus, a simplex in R is a line segment, in R2 is a

triangle, and in R3 is a tetrahedron.

The algorithm initializes a simplex of n + 1 vertices in n dimensions. A possible way to

set up a simplex [101] is to start wtih an initial point x(0) = p0 and generate the remaining

points of the initial simplex as

pi = p0 + λiei, i = 1, 2, . . . , n (B.2)
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where the ei are the natural basis for (R)n, such that

e1 =



1

0

0

...

0

0


, e2 =



0

1

0

...

0

0


, · · · , en =



0

0

0

...

0

1


(B.3)

The positive constant coefficients λi are selected in such a way that their magnitudes reflect

the length scale of the optimization problem.

In MATLAB, the algorithm creates the simplex around the user-provided initial guess

p0 by adding 5% of each component p0(i) to p0, and using these n vectors as elements of the

simplex in addition to p0
1.

The algorithm then evaluates the function f at each point and order the n + 1 vertices

to satisfy

f(p0) ≤ f(p1) ≤ · · · ≤ f(pn) (B.4)

The method approximates a local optimum of a problem with n variables when the

objective function varies smoothly and is unimodal. Four scalar parameters are necessary

to update the simplex: coefficients of reflection (ρ), expansion (χ), contraction (γ), and

shrinkage (σ). These conditions should satisfy

ρ > 0, χ > 1, χ > ρ, 0 < γ < 1, 0 < σ < 1 (B.5)

The algorithm uses the following procedure to modify the simplex.

1. Order. Order the n + 1 vertices by function value, such that ff(p0) ≤ f(p1) ≤ · · · ≤

f(pn).

1If p0(i) = 0 then component i = 0.00025.
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2. Reflect. Compute the reflection point pr from

pr = p̄+ ρ(p̄− pn+1) = (1 + ρ)p̄− ρpn+1 (B.6)

where p̄ =
∑n

i=1 pi/n represents the centroid of the n best points (i.e., all vertices

except pn+1. Evaluate fr = f(pr).

If f1 ≤ fr < fn, accept the reflected point xr and terminate the iteration.

3. Expand. If fr < f1, calculate the expansion point pe,

pe = p̄+ χ(pr − p̄) = p̄+ ρχ(p̄− pn+1) = (1 + ρχ)p̄− ρχpn+1 (B.7)

Evaluate fe = f(pe). If fe < fr, accept pe and terminate the iteration; otherwise,

accept pr and terminate the iteration.

4. Contract. If fr ≥ fn, perform a contraction between p̄ and the better of pn+1 and pr.

(a) Contract outside. If fn ≤ fr < fn+1 (i.e., pr is strictly better than pn+1), perform

an outside contraction,

pc = p̄+ γ(pr − p̄) = p̄+ γρ(p̄− pn+1) = (1 + ργ)p̄− ργpn+1 (B.8)

Evaluate fc = f(pc). If fc ≤ fr, accept pc and terminate the iteration; otherwise,

perform a shrink (step 5).

(b) Contract inside. If fr ≥ fn+1, perform and inside contraction,

pcc = p̄− γ(p̄− pn+1) = (1− γ)p̄+ γpn+1 (B.9)

Evaluate fcc = f(xcc). If fcc < fn+1, accept xcc and terminate the iteration;

otherwise, perform a shrink (step 5).
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5. Shrink. Evaluate f at the n points defined by

vi = p1 + σ(pi − p1), i = 2, . . . , n+ 1 (B.10)

Calculate f(vi). The unordered vertices of the simplex at the next iteration consist of

p1, v2, . . . , vn+1.
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